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ABSTRACT 

 Small unmanned aerial systems (sUAS) are a rapidly developing technology with 

countless applications in many areas of human activity, ranging from commercial to 

military use. In the latter case, counter-UAS operations have become an urgent issue. The 

problem is that the small size of a sUAS makes its detection quite a challenging task. 

Many of traditional approaches and technologies may not be applicable at all. This thesis 

describes a feasibility study for using a stationary 3D 360° Light Detection and Ranging 

(LiDAR) sensor to detect a fast-moving sUAS. Specifically, a low-end Velodyne Puck 

Hi-Res LiDAR was used to collect data during a series of flight tests involving different 

size sUASs at two rural locations. The thesis presents an analysis of the LiDAR output 

and the developed algorithms to detect a moving sUAS despite several challenges 

associated with a rich, nonstationary background return. These challenges were overcome 

by using Principal Components Analysis (PCA) as well as masking. The developed 

algorithm demonstrated that using a low-end LiDAR with a detection range of about 100 

m, it is possible to detect a sUAS of about a 0.3 m cross-section, isolate it from other 

moving objects, and track it while as it maneuvers within a 25 m range. Obviously, using 

the same algorithm with a higher resolution LiDAR would allow detection at the higher 

ranges, thus making LiDAR-based counter-UAS technology a viable candidate for 

protecting against a UAS threat. 
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I. INTRODUCTION 

This chapter presents the context of this research. First, it describes the status 

and challenges of the topic. Then it presents a brief description of previous related 

research and the main results of those studies. Finally, this chapter includes the 

formulation of the problem and the thesis outline. 

While the term “Unmanned Aerial System” (UAS) refers to the system composed 

of the unmanned aerial vehicle (UAV) itself, its payload (sensors, communication 

devices, etc.) and ground base station, this thesis is about detecting the vehicle itself. 

However, it is a common practice to use the term UAS to denote just a UAV, hence this 

thesis will also use the UAS notation. 

A. COUNTER UNMANNED AERIAL SYSTEM OPERATIONS AND 
CHALLENGES IN DETECTING SMALL UNMANNED AERIAL 
SYSTEMS 

Small unmanned aerial vehicles (sUAVs) have become a serious threat, in both 

civilian and military areas [1]. During recent years, many reported incidents have 

involved sUAVs in situations that are threatening the security, safety, and privacy of 

areas of either public or private interest [1]-[3]. The threat of sUAVs has increased due 

to the worldwide availability of cheap sUAVs in combination with the ease of operating 

them [2], [3]. Consequently, the issue of detecting sUAVs is a major concern worldwide 

[1]. 

Some representative images of sUAVs are shown in Figures 1 and 2. 



2 

 
Figure 1. Flying sUAVs. Source: [1]. 

 
Figure 2. Different mini/micro UAVs. Source: [2]. 

The aforementioned concern has led to extended research on the possible ways of 

detecting sUAVs. One technique employs processing camera-based images [2], [3]. These 

images can be taken by standard cameras in the visible range, as shown in Figure 3, or by 

short-wave infrared (SWIR) cameras, as shown in Figure 4, in which case the quality of 

the images is a crucial issue affecting the detection results [2], [3]. 
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First row: overall view where the UAV is bounded by a green box 

Figure 3. UAV images from TV-camera, at various distances. Source: [4]. 

 
First row: overall view where the UAV is bounded by a green box. 

Figure 4. UAV images from Bolometer, at various distances. Source: [4]. 

One other approach involves radar sensors which are greatly impacted by the low 

laser-radar cross section (LRCS) of the majority of sUAVs [2], [3]. Also interesting is the 

technique that uses acoustical sensors for detecting the desired targets [2], [3], as shown in 

Figure 5. 
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Figure 5. Acoustic sensor. Source: [1]. 

Active imaging cameras also can be applied; however, while this method presents 

some advantages compared to charge-coupled device (CCD) cameras, it requires 

knowledge of the distance between the sensor and the UAV [2], [3].  

Furthermore, Light Detection and Ranging (LiDAR) technology represents another 

promising method in this field [2], [3]. Finally, more sophisticated methods could be 

developed by combining multi-sensor networks in order to detect and track sUAVs [1]–

[3], as shown in Figure 6. 

 
Figure 6. Multi-sensor network. Source: [1]. 
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Most of the methods just mentioned are studied and applied to many other fields 

that involve detection, but there are crucial peculiarities in the case of sUAVs that make 

this process challenging. First, we have to deal with objects that are small in size [2], [3]. 

Also, these flying objects present a large range of acceleration, speed, and maneuverability 

in all dimensions (3D), which makes it even more difficult to detect or predict their route 

[2], [3]. Additionally, one other crucial feature is the small LRCS that sUAVs usually 

present, which make it difficult for active sensors to detect them (e.g., radar, LiDAR) [2], 

[3]. Moreover, the large variety of the forms of sUAVs does not permit us to classify the 

desired target according to a specific shape. 

Considering that LiDAR sensors are studied in this research, we will highlight the 

features that make detection of sUAVs difficult. In particular, LiDAR sensors present low 

resolution that consequently hinders the detection of the small flying objects [2], [3]. Also, 

the limited field of view (FOV) of these sensors has a negative impact on their ability to 

detect sUAVs [2], [3]. Moreover, we should notice that because LiDAR sensors are active 

sensors; their success is negatively affected by the low LRCS of sUAVs [2], [3]. 

B. PREVIOUS RESEARCH ON THE TOPIC AND KEY RESULTS 

Although the capabilities of LiDAR are very promising in the field of detecting 

sUAS, there is a paucity of literature detailing the results of such research as compared to 

other sensors like cameras and radars. This may be because LiDAR is a newer technology 

or because LiDAR is an expensive sensor with a limited range for appropriate resolution. 

Nevertheless, there are some interesting results from the available research that provide the 

basis for this thesis. 

Most of the available papers on this topic use a collection of sensors that vary in 

number either to cooperate with each other or to compare their effectiveness [1]–[4]. The 

main type of LiDAR sensors used for the detection of sUAS are sensors that consist of an 

array of laser transmitters alternated with laser receivers, which turn 360°around a vertical 

axis [5], with a maximum range of approximately 100 m [2], [3]. In some cases, a set of 

LiDAR sensors is used [3] to increase sensor sensitivity and effectiveness. Other types of 

sensors are also used for collaboration with LiDAR sensors [4], increasing the efficiency 
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in detecting the desired targets. Also, in many experiments different types of sensors are 

used that provide comparable results in terms of efficiency for detecting sUAVs [1]. A 

representative example of such a collection is illustrated in Figure 7, and the results of such 

sets of sensors are shown in Figure 8. 

 
Figure 7. Sensor platform equipped with several sensors. 

Source: [2]. 
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Images from experiments of optical sensing: (a) UAV image in textured background, (b) 
UAV image from a laser gate, (c) UAV images from passive vision sensors, and (d) UAV 
images from passive imaging sensors. 

Figure 8. Experimental results for optical sensing. Source: [1]. 

Generally, the primary results of the experiments just described lead to similar 

conclusions. First, it is a common conclusion that because of the bounded FOV of the 

LiDAR sensors only a small percentage of their scans is capable of detecting sUAVs [2], 

[3]. Also, the small LRCS that sUAVs have contributes to a significant decrease in the 

range at which they can be detected by the sensors [3]. An example of the impact of the 

position of the UAV to the LRCS is demonstrated in Figure 9. 
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Images that show the results of comparisons on LRCS of an actual UAV and theoretical 
models: (a) UAV, (b) UAV at various perspectives, and (c) the results of the LRCS 
comparisons. 

Figure 9. Comparisons on LRCS of UAVs. Source: [2]. 

Finally, the small size of the sUAS and the limited resolution of the LiDAR sensors 

have a direct consequence in the reduction of the detection range of the target [3]. A 

characteristic visualization of the consequences due to the relation between the range and 

the size and resolution is shown in Figure 10. 

 
Theoretical scan patterns related to the distances between the target and the LiDAR sensor, 
with a target outline 

Figure 10. Theoretical scan patterns at different distances. Source: [2]. 

The detection rate of the sUAS when using LiDAR sensors is greatly affected by 

the range of operation. In particular, when the distance between the target and the sensor 

increases above 30 m, the detection rate decreases significantly [2], [3]. Hence, the results 

of these studies illustrated the efficiency of using LiDAR sensors by presenting the 

detection rate of the targets under different scenarios. The main parameter that seems to 

impact this efficiency is the range, while other parameters like the light conditions that 

have considerable influence on other types of sensors (e.g., cameras) [4] have a negligible 

impact on LiDAR sensors. Figure 11 presents the trace of an approaching UAV when a 

LiDAR sensor is used. 
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Figure 11. Image produced from a LiDAR sensor that shows the route of an 

UAV. Adapted from [1] (colors inverted). 

C. PROBLEM FORMULATION AND THESIS OUTLINE 

Considering the previous research results and by making a pragmatic estimation 

of the limitations and the challenges of the sUAS detection by using LiDAR sensors, we 

can formulate realistic goals for this research. In particular, the goal of this research is 

to create an efficient algorithm that would be suitable to distinguish and detect objects 

that are candidates for being an sUAS. The main features of such objects are their small 

size, their motion in three dimensions, and their distance from all the surrounding 

objects. Accordingly, this study excludes all the objects that may present similar 

characteristics but cannot be an sUAS. Also, significant to this study is the fact that 

LiDAR sensors provide low resolution, which consequently could skew our findings. 

This study focuses on detection of an sUAS in a rural environment, which increased the 

difficulty of detection because of the presence of not only uneven ground but also plants 

and trees. Plants and trees, because of their continuous movement due to wind and the 

fact that their surfaces are not consistent, are sources of multiple false target detections. 

This thesis consists of five chapters. In Chapter II, we introduce the 3D LiDAR 

technology. Next, Chapter III we describe the data collection experiments that we 

performed and the methods that we applied to these experiments. In Chapter IV, we 
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make an analytic presentation of the detection algorithm used and the results of the 

processing of the collected data. Finally, Chapter V presents the conclusions drawn from 

this research and recommends areas for future research on this topic. 
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II. THE BASICS OF 3D LIDAR TECHNOLOGY 

This chapter presents some basic information on 3D LiDAR technology. In addition 

to an explanation of the relevant concepts, the chapter describes the hardware underpinning 

this technology. Next, the discussion proceeds with an explanation of the integration of 

those hardware components and the available software for processing the data collect by 

this technology. 

A. BASIC CONCEPT AND APPLICATIONS 

First, a brief description of the nature and the capabilities of the 3D LiDAR 

technology can help to understand this research. In particular, the fundamental technology 

behind 3D LiDAR is laser technology. The implementation of LiDAR sensors is similar to 

that of radar sensors, although it presents many differences. Also, because of the extensive 

variations in LiDAR capabilities, there is a wide field of uses for this technology.  

Laser technology is not a new concept. Actually, the term “laser,” which is an 

acronym drawn from “Light amplification by stimulated emission of radiation,” was 

described as early as the 1950s by Townes and Schalow [1]. This emitting radiation has 

some characteristic features that makes it well suited for remote sensing applications. 

Primarily, the radiation from each laser beam is monochromatic (i.e., it presents a unique 

frequency) [1], so it is easily recognizable and distinguishable. Furthermore, each laser 

beam does not spread significantly over distance and retains its narrow beam width [1]. 

Finally, we should highlight the capability of this kind of radiation to effectively perform 

successive switching between starting and stopping the emission of radiation [6]. 

LiDAR is an application of laser technology, and its functionality shares many 

similarities with radar (Radio Detection And Ranging) applications [1]. The main 

differences between LiDAR and radar are based on the aforementioned characteristic 

features of laser radiation that in combination with the shorter wavelengths [1] provide this 

technology and its products with very interesting and fruitful capabilities. Thus, there are 

many different areas suited to LiDAR applications, extending from those used for 
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observing the dust and the aerosols in the atmosphere to those that are used for remote 

sensing of the surface and subsurface of the earth [6]. 

Typical examples of observing the dust and the aerosols in the atmosphere are 

shown in Figure 12, while in Figures 13 and 14 examples of remote sensing of the surface 

and subsurface of the earth, respectively, can be seen. 

 
Frequency of occurrence of aerosol samples classified as polluted dust in V3 at night and 
during the day (a, b), polluted dust in V4 at night and during the day (c, d) and dusty marine 
in V4 at night and during the day (e, f). June–August 2007. 

Figure 12. Images that show the frequency of the presence of aerosol samples 
classified as polluted dust. Source: [7]. 
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Figure 13. View of the Naval Postgraduate School campus obtained from an 

airborne LiDAR system. Source: [6]. 

 
Figure 14. Example of Airborne Laser Terrain Mapping (ALTM) data 

showing vegetation removal. Source: [8]. 

The basic concept of the applications of the LiDAR systems is to radiate pulses of 

light, which are reflected by the nearest surface that these pulses of light encounter. The 

photo-detectors of the system capture the returning light, which is recognized by its unique 

frequency [9]. An illustration of this procedure is presented in Figure 15.  
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Figure 15. Simple LIDAR example, pulse return. Source: [10]. 

By computing the time that elapsed between the transmission and the reception, we 

acquire the distance between the system and the reflective surface [10], as is shown in 

Equation 2.1: 

 𝑅𝑅 = 𝑡𝑡𝑟𝑟−𝑡𝑡𝑡𝑡
2𝑐𝑐

 (2.1) 

One additional capability of LiDAR systems is their ability to identify the intensity 

of the reflected light [10]. The portion of the received laser light is the result of many 

parameters, as it is the distance from the target and the type of its surface (i.e., snow may 

reflect about 18 times more light than black asphalt) [10]. These properties are immensely 

useful in remote sensing from long distances where we may consider that the distance is 

almost the same for all the targets. Hence, by processing these LiDAR data, we obtain 

images of the environment which look very much like regular images from a standard 

camera.[10]. In Figure 16, we can see an image of the Niagara Falls, captured by exploiting 

the aforementioned properties. 
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Figure 16. LiDAR image of Niagara Falls. Source: [10]. 

B. HARDWARE COMPONENTS OF THE 3D 360° LIDAR SENSOR  

Nowadays there are many integrated systems for collecting LiDAR data. Those 

most suitable for our study are integrated LiDAR systems that have the ability to scan the 

surrounding environment and provide real-time LiDAR data with high resolution [11]. 

Also, it is preferable for these sensors to perform in the Infra-red (IR) spectrum in order to 

be compatible with the regulations for eye safety [11]. 

For these reasons, systems consisting of several LiDAR transmitters and detectors 

with a standard angle among them [11] are ideal for our case. Each pair of the transmitters 

and detectors forms a channel that operates at well-defined frequencies all distinct from 

each other. This array of channels is placed within a compact housing [11]. This array spins 

speedily within its fixed case and scans the surrounding environment by firing each laser 

tens of thousands of times per second [11]. In this way it provides, in real-time, a substantial 

set of 3D point data of the surrounding environment [11]. In Figure 17 is a depiction of 

how the array scans its surroundings, effectively creating a surveillance zone. 
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Figure 17. General overview of the proposed LiDAR system. Source: [5]. 

The crucial resolution feature of the sensor is analyzed in two directions, the 

Horizontal angular (Azimuth) resolution and the Vertical angular resolution [11]. The way 

the LiDAR samples the environment is by a rotating head that fires a fixed number of laser 

pulses per second (the “firing rate”) [11]. As a consequence, the resulting Azimuth angular 

resolution is determined by the rotating speed of the head (in degrees/sec), and it can be 

computed as [11]: 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(°) =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(°/𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  ×  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) (2. 2) 

Consequently, if we increase the rotation speed of the head, the angle we can 

resolve also increases and vice versa [11]. Since the goal of detecting small moving objects 

requires both small angular resolution as well as fast tracking, the rotation rate of the 

LiDAR head chosen must be a compromise between these two conflicting requirements. 
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A different situation is in the vertical plane where there is a fixed number of 

channels all firing at the same time [11]. Therefore, the vertical angular resolution is 

determined by the total field of view (FOV) and the number of firing channels as: 

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(°) =  FOV(°) / 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (2. 3) 

In Figure 18, we can see a visualization of the point density in one frame and in 

successive frames. The difference between the vertical and the horizontal resolution is 

obvious, as is how much the deviation increases during the evolution of scanning. 

 

a)  b)  
Figure 18. Point density in one frame (a) and in series of successive frames 

(b). Adapted from [11] (colors inverted). 

In these kinds of sensors, the data being collected reports the distances from the 

sensor in spherical coordinates (radius r, elevation ω, azimuth α), with the origin (0,0,0) 

defined at the LiDAR sensor [11]. In order to convert this spherical data to Cartesian 

coordinates (X, Y, Z), we need to apply the following formulas [11]: 

𝑋𝑋 = 𝑅𝑅 cos(𝜔𝜔)  sin (𝛼𝛼) 

𝑌𝑌 = 𝑅𝑅 cos(𝜔𝜔)  𝑐𝑐𝑐𝑐𝑐𝑐 (𝛼𝛼) 

𝑍𝑍 = 𝑅𝑅 sin (𝜔𝜔) 

Figure 19 is a graphic representation of the equations. 
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Figure 19. Sensors coordinate system. Source: [11]. 

Although we have already pointed out that each beam along the distance retains its 

narrow width, in reality there is a beam divergence, meaning that a laser beam slowly, 

gradually grows larger after leaving the sensor [11]. Hence the width of the beam could be 

large enough to be reflected by multiple objects. This effect can be exploited by the sensors 

in order to acquire the desired data; it can be accomplished by adjusting which reflection 

we want to capture (i.e., the strongest or the last, or both of them) [11]. Figure 20 shows a 

possible scenario where there are two different reflected portions of the same beam, while 

in Figure 21 we can see the case that there are multiple reflected portions of the same beam. 
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Figure 20. Dual Return example (last and strongest reflections). Source: [11]. 

 
Figure 21. Forestry application with multiple returns. Source: [11]. 

C. SOFTWARE FOR PROCESSING LIDAR DATA 

Currently, many software applications are available to capture, visualize, and 

process LiDAR data. These applications can be separated into two general groups. One 

group consists of the applications designed to capture and visualize the LiDAR data. Such 
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types of software are provided mainly by the manufacturers of LiDAR sensors [12]. A 

second group could be considered the software that presents capabilities of advanced 

processing of the LiDAR data [13]. 

The software provided by the manufacturer usually is designed specifically for their 

sensors and cannot be applied to other sensors. Generally, this software is capable of 

performing real-time visualization, processing, and recording of the data that are being 

captured from the LiDAR sensors.[12]. In particular, it can render either live streaming 

data or stored data as long as they are recorded in an appropriate format. Some common 

view formats are the “3D view,” “2D view,” and “Spreadsheet view” [12]. Some typical 

examples of these choices of views are illustrated in Figures 22 and 23, respectively.  

 
1) 3D View of point cloud data, 2) 2D 360° image view, 3) Basic control toolbar, 4 & 5) 
View toolbars, 6) Measurement and projection toolbar, 7) Player control toolbar, 8) 
Colormap toolbar. 

Figure 22. Overview of Ouster Studio’s graphical interface. Adapted from 
[12] (colors inverted). 
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Figure 23. Spreadsheet view. Adapted from [12] (colors inverted). 

To customize these view formats, capabilities are provided for adjusting the image 

features, such as changing the colors based on the points characteristics (intensity, distance, 

etc.) or filtering the desired data [12]. The recording of the captured data produces files 

containing LiDAR data. A typical format for this kind of data files is the .pcap format [12]. 

The pcap (packet captures) is an application programming interface (API) that has the 

ability to provide information comprehensively from a large amount of data, like the traffic 

of networks [14]. Furthermore, with this software it is possible to perform basic processing 

of the sensor data, like cropping part of the point cloud and keeping only the rest of the 

data [12]. 

Figure 24 presents some implementations of adjusting the colors based on the 

points characteristics. Additionally, Figure 25 shows the results of a cropping operation. 

 
a) Coloring by Intensity b) Coloring by Ring 

Figure 24. Images produced by the same point cloud, differentiated by the 
attributes used for coloring. Adapted from [12] (colors inverted). 
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Top image: no cropping. Middle image: cropped to a 10-meter diameter radius sphere. 
Bottom image: cropped “outside” a 10-meter diameter radius sphere. 

Figure 25. Behavior of the cropping in “Spherical” Mode. Adapted from [12] 
(colors inverted). 
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At this point, we should clarify the form of the LiDAR data that we acquire from 

the related sensors. These data are divided into frames where each frame corresponds to a 

complete rotation of the array of sensors [15]. Generally, the LiDAR sensors provide “point 

cloud” data, which are sets of data points in 3D space. Each of these points describes a 

location on a real-world object’s surface in Cartesian coordinates (X, Y, and Z), and the 

total set of these points map the entire surface of the surrounding objects [16]. The types 

of the point clouds may be grouped into two categories. One type is the “Organized” point 

clouds that have the format M x N x C (where M = number of rows, N = number of 

columns, and C = number of channels), and the “Unorganized” point clouds that have the 

format M x C (M = number of points and C = number of channels) [16]. 

On the other hand, the software that provides capabilities for extended and 

advanced processing of the LiDAR data are programming and computing platforms like 

MATLAB [17], [13] and standalone, and large scale libraries for 2D/3D image and point 

cloud processing, like Point Cloud Library (PCL) [18] [19]. In this study, we make use 

mainly of MATLAB. MATLAB provides a powerful toolbox that consists of a plethora of 

algorithms, functions, and applications for designing, analyzing, and testing LiDAR data 

[20]. In addition, there are many examples that use these tools for processing the LiDAR 

data, which makes this toolbox especially handy to use. Some crucial capabilities among 

the others that could be used for the aim of this study are the capability of “segmentation” 

[21] and the capability of processing the LiDAR data as a stream of frames, as in the case 

of a video file [22]. 

Segmentation associates each point in a frame of a 3D point cloud to a cluster of 

points that is described by a class label [21]. There are different methods for applying data 

clustering, but the most suitable for our case is by evaluating the distance between two 

neighboring points and classifying them into the same cluster only if their distance is below 

a specified threshold [21]. The result of clustering is the classification of each point of a 

frame into a cluster, and each cluster is a probable object. Hence, in that way, we can check 

whether each cluster (probable object) qualifies as a potential desired detection target. 

Figure 26 presents the clusters of a point cloud that are distinguished by their different 
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colors, while Figure 27 displays colored clusters using advanced processing for the 

classification. 

 
Figure 26. Point cloud clusters (distinguished by different colors). Adapted 

from [21] (colors inverted). 
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The car is shown in blue green, the truck is shown in yellow, while the background appears 
grayscale. 

Figure 27. Semantic segmentation of point clouds. Adapted from [16] (colors 
inverted). 

Immediately related to the previous procedure is the processing of the LiDAR data 

as a stream of frames. Specifically, by comparing the attributes of clusters detected in 

successive frames, we can characterize the nature of the corresponding targets. They may 

be large or small objects, moving or steady objects, new entries in the scene, and many 

more attributes could be extracted by this procedure. These attributes are used in this study 

in order to detect the sUAVs. 
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III. DATA COLLECTION 

This chapter describes the experiments that were conducted to collect the LiDAR 

data. First, the test setup is described. Next, the methodology for the test is presented. The 

procedure for the data collection is then described and, finally, the analysis of the raw data 

is presented. 

A. TEST SETUP 

The test setup was performed by using the appropriate equipment in challenging 

environments. In particular, the equipment was composed of LiDAR sensors, sUAVs, and 

auxiliary equipment that performed in rural environments. 

The LiDAR sensor used in the experiments for this research is the “Velodyne Puck 

Hi-Res” LiDAR sensor [23]. This sensor corresponds to the description of the LiDAR 

sensors of Chapter II. It consists of 16 channels (pairs of transmitters and detectors) with a 

measurement range of about 100 meters [23], [24]. The horizontal angular resolution is 

between 0.1° and 0.4°, whereas the vertical angular resolution is 1.33° [23], [24]. Moreover, 

the horizontal FOV is 360°, while the vertical FOV ranges between +10° and -10° (20°) 

[23], [24]. Figure 28 shows the aforementioned sensor, while Table 1 presents its basic 

specifications. 

 
Figure 28. The Velodyne Puck Hi-Res LiDAR sensor. Source: [25]. 
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Table 1. Specifications of the Velodyne Puck Hi-Res LiDAR sensor. 
Source: [24]. 

 
 

Several types of sUAVs have been used during these experiments. During analysis, 

these types were separated by size according to those with a maximum dimension larger 

than 60 cm and ones with a maximum dimension less than 60 cm. Also, the sUAVs that 

operated in the test field were very diverse in shape and size. Nevertheless, this variation 
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fits the scope of the research since it was not intended to focus on a specific model of 

sUAV. Figure 29 shows the sUAVs with a maximum dimension of less than 60 cm, and 

Figure 30 shows the sUAVs with a maximum dimension of more than 60 cm that were 

used in the experiments. 

 
Figure 29. sUAVs with a maximum dimension of less than 60 cm used in the 

experiments. 

 
Figure 30. sUAVs with a maximum dimension of more than 60 cm used in 

the experiments. 

In addition to the main equipment just described, auxiliary equipment was also 

used. For example, the usual uninterruptible power sources (UPS) were used for the 

necessary power supply of the sensors. In addition, a common laptop was used, where the 

software “VeloView” was installed. Velodyne provides VeloView, which is capable of 

analysis, visualization, and recording of LiDAR sensor data [26]. Figure 31 shows the 

LiDAR sensor and some of the auxiliary equipment settled in the test field.  
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Figure 31. LiDAR sensor and some of the auxiliary equipment set up in the 

test field. 

The environment in which the experiments were conducted was quite challenging 

for the detection procedure. Two airfields were used for the experiments: the Monterey 

Bay Academy Airfield (MBA) in WatsonvSille, California, and the NPS Test Site in 

Marina, California. Both fields are in rural areas, characterized by uneven ground and the 

presence of small plants, bushes, and trees. Figures 32 and 33 present the environment at 

the NPS Test Site at Marina. 
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Figure 32. The environment at the NPS Test Site at Marina. 

 
Figure 33. The environment at the NPS Test Site at Marina. 

B. METHODOLOGY FOR EVALUATION OF SUAS DETECTION BY 
LIDAR SENSOR 

The methodology that was applied to this research pertains to identifying the exact 

number of the points that each detected sUAV covers in each frame in regard to the sUAV 

basic attributes (e.g., maximum dimension) and its motion (e.g., speed and distance from the 

sensor). The number of pixels detected that are assigned to each sUAV is also used as a 

measure of the reliability of the estimate itself. 
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Specifically, the LiDAR sensor captured the motion of various sUAVs flying random 

routes. The data that were produced by the sensor were stored and then processed through 

MATLAB software by applying an algorithm for detection of sUAVs. This algorithm 

provided the necessary information about the detected sUAVs. This information consisted of 

the attributes of the detected sUAVs, including the Cartesian coordinates (X, Y, Z) of the 

detected objects, where the origin (0,0,0) was set at the sensor location. Additionally, it 

included the ID of the frame in which the object was detected, the exact time that it happened, 

the distance of the object from the sensor, as well as the number of the points of the object. 

Consequently, the desired results were derived from the preceding information: the 

number of the points for each detected sUAV regarding its distance from the sensor, its 

altitude, direction, and velocity of flight. Also, since the information provided the exact 

position of the sUAV in relation to the sensor, it was simple to determine the texture of its 

background (textured, smooth, etc.) and therefore to figure out whether the background 

correlates to the efficiency of the LiDAR sensor in detecting the sUAVs. 

By assuming a smooth trajectory and averaging the features of different frames, we 

acquired the percentage of sUAV detection in relation to their motion attributes. Specifically, 

in several cases, between two successive detections of an sUAV, there were frames in which 

the targets were not detected because of the occlusion caused by obstacles like trees, or 

because the sUAV was located in the gap that existed between two neighboring points of a 

frame. Hence, in these cases we assumed that the motion between these two positions was 

smooth and straightforward with constant velocity (zero acceleration). 

The algorithm that we applied to the sUAV detection by LiDAR is the result of the 

combination of various techniques. One of them was the principal component analysis (PCA), 

which is a method based on linear algebra used for many applications, such as face recognition 

[27], [28]. Through this process we try to find the optimal projection of the data vectors and 

transform the data on a different basis [27], [28]. This results in a set of sorted uncorrelated 

data with reduced dimensionality [27], [28]. In this research, the PCA algorithm was used to 

facilitate the comparison of data between different frames with the added advantage of more 

efficient computation. 
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Figure 34 shows a flow chart of the methodology just described that was applied in 

this research. 

 
Figure 34. Flow chart of the methodology applied in this research. 

C. DATA COLLECTION PROCEDURE 

The Velodyne Puck Hi-Res LiDAR sensor collected the necessary data at the MBA 

and at the Test Site at Marina. After the required equipment was set up at the test field, the 

LiDAR sensor was activated and scanned the surrounding environment, while the data 

produced were stored in the connected laptop. In addition, the sUAVs used for testing took 

off and flew in random routes, in the active range of the LiDAR sensors (100 m). 

Although the flight routes of the sUAVs were random, they included all the possible 

situations. There were flights with upwards – downwards directions; there were also flights 

where the sUAVs approached the sensor, moved away, and moved while keeping a stable 

distance from the sensor. All these directions were applied both against a textured background 

(plants, trees, etc.) and against a smooth background (clear sky). Additionally, in all the 

aforementioned cases a combination of velocities was applied, including static motion, high 

speeds, and low speeds.  

Figure 35 presents images of the sUAVs with a maximum dimension of more than 60 

cm during their flights, while Figure 36 shows images of the sUAVs with a maximum 

dimension of less than 60 cm during their flights. 
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Figure 35. In-flight images of sUAVs with a maximum dimension of more 

than 60 cm. 
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Figure 36. In-flight images of sUAVs with a maximum dimension of less than 

60 cm. 

D. ANALYSIS OF THE RAW DATA 

The Velodyne Puck Hi-Res LiDAR sensor reports the distances from the sensor in 

spherical coordinates (radius r, elevation ω, azimuth α), where the origin (sensor) is 

declared as (0,0,0) [11]. The spherical data are converted to Cartesian coordinates (X, Y, 

Z) by applying simple formulas [11]. These coordinates, with other data like the timestamp, 

the sensor model, and the laser return mode constitute the first type of packet that this 

sensor generates and is called data packet [11]. The second type of packet is called position 

packet and provides data related to synchronization (e.g., with GPS time source) [11]. 

The data packets that the sensor produces consist of a large number of bytes [11]. 

A single data packet contains the data of 24 firing sequences and its length is 1,248 bytes 

[11]. Moreover, there are two possible formats of these packets, the single return mode 

format and the dual return mode format [11]. Figure 37 shows the typical structure of the 

single return format, while Figures 38 and 39 present the same format, with examples of 

the start and the ending of a data packet, respectively. 
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Figure 37. Structure of the single return mode data packet. Source: [11]. 

 
Figure 38. Example of the start of a single return mode data packet. 

Source: [11]. 
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Figure 39. Example of the ending of a single return mode data packet. 
Source: [11]. 

All the data that were produced from the LiDAR sensor are stored by the VeloView 

software as .pcap files [11], [26]. To process the .pcap files, they should be converted to a 

file format called “point cloud file” [11]. This conversion is a quite challenging process 

[11]. Thankfully, MATLAB provides the “velodyneFileReader” object that can read point 

cloud data immediately, without further interventions, from .pcap files that have been 

captured by a Velodyne LiDAR sensor [29]. 
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IV. DEVELOPMENT OF THE SUAS DETECTION ALGORITHM 

This chapter presents the development of a sUAS detection algorithm. The chapter 

starts by describing the algorithm that was used in this research. Next the computer 

simulations of the application of the algorithm are presented. Finally, after an explanation 

of how the flight test data was processed, the chapter closes with an evaluation of the 

comparisons of the processed data. 

A. KEY FEATURES OF THE DEVELOPED ALGORITHM 

MATLAB was the programming platform used for the development of the 

algorithm for sUAS detection. This algorithm took advantage of the powerful capabilities 

of this platform for processing massive amounts of data in real-time, and the capability of 

expressing matrix and array mathematics directly [13]. 

First, the algorithm reads the LiDAR data that were stored as .pcap files and 

interprets them as point cloud objects [29]. In this way it was quite convenient to extract 

and process, frame by frame, the data for each of the frames, such as the time and the 

Cartesian coordinates of each point of the frame. 

Furthermore, a basic function of the algorithm was the segmentation of the detected 

points into clusters based on their 3-D range [29]. By using the distance between 

neighboring points as the deciding criterion, it was possible to segment the points into 

clusters. These clusters could be considered objects that could then be classified as solid 

(such as a car) or non-solid (such as the leaves of a tree). One of the main challenges of 

this procedure was the large number of clusters for each frame. In this algorithm, the 

average number of the clusters identified in each frame was about 400. It would be possible 

to significantly decrease this number by increasing the minimum number of points that 

could form a cluster. But, since the targets of interest, sUAVs, yield small clusters, we need 

to decrease the number of clusters without eliminating small targets. 

After the segmentation was complete, the algorithm created a list of the 

aforementioned clusters. This list was enriched with the attributes that corresponded to 

each cluster. Such attributes were the median Cartesian coordinates (X, Y, Z), the 
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maximum dimension in each axis (X max, Y max, Z max), the distance from the sensor, 

and the position of the central point in the frame (row and column). The list was updated 

after the segmentation of each frame. If an object (cluster) was shown for the first time, 

then it was added as a new registration, but if it was already detected in previous frames 

the algorithm just updated the attributes of the existing registration. An important 

characteristic of the list of clusters was that each cluster kept the same order in the list. 

The effectiveness of the algorithm depended on its capability in identifying the 

same objects in successive frames. This procedure was performed by comparing the 

clusters of each frame with the clusters of the list. The comparison was realized by applying 

the method of principal component analysis (PCA). Specifically, the PCA was applied to 

the features of each cluster that was registered in the list of the clusters. Furthermore, we 

checked the identification of the clusters by comparing the summation of their features. 

The large number of clusters from each frame complicated the comparison 

procedure and degraded its effectiveness. Hence, the algorithm decreased this number by 

excluding some of them. First, it excluded the big objects, meaning the clusters that had 

dimensions larger than a threshold. Also, it excluded the ground. 

Moreover, the main way that the algorithm decreased the number of clusters was 

by applying a mask. In particular, this mask was inspired from techniques that perform 

foreground detection by extracting the background in videos [30]. In the first frames, 

assuming they had no sUAV, the clusters detected were classified as “background.” This 

background was optimized by filling the gaps between the points of the same clusters and 

adding a margin between the background and the sensor. Hence, we considered this 

background as a mask for any object behind it, and that object was then excluded from the 

process. This mask was quite effective, since it significantly reduced the number of the 

clusters, and more importantly, it excluded most of the clusters that were due to plants, 

leaves, and branches of trees. 

After the processes just described, the algorithm searched for objects that met the 

specifications for sUAVs. Each of the previously mentioned objects was characterized as 

a candidate target if it moved beyond a distance threshold (indicating that it was a moving 
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object); it was not near other objects (indicating that it was a flying object); and it was 

above an altitude threshold (indicating that it was a flying object). If a cluster was 

characterized as a candidate target multiple times (that is, above a threshold), then it was 

characterized as a detected target.  

Additionally, the algorithm provided the capability of visualization from the 

LiDAR data. Actually, various options for data visualization were provided. One option 

was the visualization of the unprocessed LiDAR data. Another option was the visualization 

of only detected objects due to the restrictions of the algorithm. Further modifications could 

be applied to the visualization method, like the limitation of the projected frame and the 

addition of labels to the projected objects. 

Also, the algorithm provided the capability of extracting information from the 

detected targets in tables. This information pertained to the features of each cluster related 

to the ID of frame. The algorithm presented this information concentrated in groups and 

sorted in a way that the features were obvious for each detected sUAV in each frame. 

B. COMPUTER SIMULATIONS 

The application of the algorithm produced both visualized results as well as printed 

ones. 

The visualization of the detected targets was realized by plotting the 3D point cloud. 

As referred to in the previous section, the algorithm provided various options for 

visualization of the results, and in this section, we present some of these options. However, 

because the plots of LiDAR data are quite scarce and the sUAVs cover a small number of 

points due to their small size, to facilitate the presentation of the algorithm functionality 

we have made some assumptions. In particular, we assume that the desired targets for 

detection were generally the moving objects, instead of just sUAVs.  

Figure 40 presents the visualization of the LiDAR data before the application of the 

algorithm, and Figure 41 shows the visualization after the algorithm is applied in the same 

frame. The algorithm isolated all the moving objects, which in this case are humans. Also, 

it is obvious that for each active detected target (moving object) there is a label over it with 
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the ID of the cluster to which it corresponds. Furthermore, the algorithm prints labels that 

show the ID of the frame, the total number of detected targets, and the number of detected 

objects that are active in this frame. 

 
Figure 40. Visualization of the LiDAR data before the application of the 

algorithm for frame with ID 203. 

 
Figure 41. Visualization of the LiDAR data after the application of the 

algorithm for frame with ID 203. 

Another option for extracting results by the algorithm is to print them. The printed 

information consists of the basic features of the detected targets in a sorted list, which is 

formatted to show the route of the target. 
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Table 2 shows an example of printed results showing the route of the cluster with 

clusterID 2. The first frame shown is the one with frameID 51. This is due to the fact that 

the first 50 frames were used for preparing the mask (background) of the scene. Hence, the 

first frame in which the algorithm searches for targets is the one with frameID 51. The 

features of coordinates, the distance, and the position in the frame (row and column) were 

changing at a low rate consistent with the fact that the time distance between each frame 

was ~0.1 sec. Finally, we can notice that the coordinates that correspond to the frame with 

frameID 203 are consistent with the position of the target with clusterID 2 in Figure 41. 

Table 2. Printed results that show the route of the cluster with clusterID 2. 

ID of cluster ID of frame 
length 

(points that 
cover) 

x 
(coordinate) 

y 
(coordinate) 

z 
(coordinate) 

distance 
from the 
sensor 

row (of 
central 
point) 

column (of 
central 
point) 

time elapsed 
from start 
scanning 

2 51 10 -26.35 12.10 -0.34 29.00 10 1478 95.27 
2 53 9 -26.47 12.01 -0.34 29.07 10 1479 95.47 
2 54 9 -26.60 11.95 -0.34 29.17 10 1477 95.57 
2 55 7 -26.75 11.95 -0.34 29.30 9 1477 95.67 
2 56 9 -26.95 11.92 -0.34 29.47 9 1475 95.77 
2 57 9 -27.05 11.92 -0.35 29.56 9 1475 95.87 
2 58 8 -27.11 11.85 -0.35 29.59 9 1476 95.97 
2 59 9 -27.20 11.84 -0.35 29.67 9 1476 96.07 
2 60 8 -27.29 11.84 -0.35 29.75 9 1475 96.17 
2 61 9 -27.44 11.73 -0.35 29.84 9 1472 96.27 
2 70 10 -28.33 11.45 -0.36 30.56 9 1466 97.17 
2 71 8 -28.41 11.39 -0.36 30.61 9 1465 97.27 
2 72 9 -28.51 11.34 -0.36 30.68 9 1464 97.37 
2 73 8 -28.53 11.31 -0.36 30.70 9 1464 97.47 
2 74 7 -28.57 11.21 -0.36 30.69 9 1463 97.57 
2 75 7 -28.67 11.16 -0.36 30.77 9 1463 97.67 
2 76 6 -28.68 11.07 -0.36 30.74 9 1462 97.77 
2 77 6 -28.64 11.06 -0.36 30.71 9 1462 97.87 
2 78 7 -28.70 10.96 -0.36 30.72 9 1461 97.97 
2 79 8 -28.67 10.88 -0.36 30.67 9 1459 98.07 
2 80 8 -28.66 10.78 -0.36 30.62 9 1460 98.17 
2 81 7 -28.56 10.82 -0.36 30.54 9 1460 98.27 
2 82 7 -28.58 10.71 -0.36 30.53 9 1460 98.37 
2 83 8 -28.65 10.63 -0.36 30.56 9 1459 98.47 
2 84 7 -28.69 10.62 -0.36 30.59 9 1457 98.57 
2 85 6 -28.66 10.56 -0.36 30.55 9 1457 98.67 
2 86 7 -28.69 10.57 -0.36 30.57 9 1457 98.77 
2 87 6 -28.69 10.52 -0.36 30.56 9 1457 98.87 
2 88 7 -28.73 10.46 -0.36 30.57 9 1455 98.97 
2 89 8 -28.75 10.47 -0.36 30.60 9 1457 99.07 
2 90 7 -28.76 10.44 -0.36 30.59 9 1456 99.17 
2 91 7 -28.79 10.43 -0.36 30.62 9 1455 99.27 
2 92 7 -28.78 10.42 -0.36 30.61 9 1456 99.37 
2 93 6 -28.79 10.40 -0.36 30.61 9 1454 99.47 
2 94 5 -28.77 10.38 -0.36 30.59 9 1455 99.57 
2 95 7 -28.76 10.37 -0.36 30.57 9 1454 99.67 
2 96 7 -28.73 10.38 -0.36 30.55 9 1456 99.77 
2 97 7 -28.76 10.40 -0.36 30.58 9 1455 99.87 
2 98 7 -28.77 10.36 -0.36 30.58 9 1456 99.97 
2 99 6 -28.76 10.36 -0.36 30.57 9 1455 100.07 
2 100 6 -28.77 10.37 -0.36 30.58 9 1455 100.17 
2 101 6 -28.77 10.38 -0.36 30.58 9 1455 100.27 
2 102 6 -28.79 10.35 -0.36 30.59 9 1453 100.37 
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ID of cluster ID of frame 
length 

(points that 
cover) 

x 
(coordinate) 

y 
(coordinate) 

z 
(coordinate) 

distance 
from the 
sensor 

row (of 
central 
point) 

column (of 
central 
point) 

time elapsed 
from start 
scanning 

2 103 6 -28.76 10.35 -0.36 30.56 9 1455 100.47 
2 104 7 -28.75 10.38 -0.36 30.57 9 1457 100.57 
2 105 6 -28.74 10.39 -0.36 30.56 9 1456 100.67 
2 106 7 -28.75 10.40 -0.36 30.57 9 1456 100.77 
2 107 7 -28.77 10.42 -0.36 30.60 9 1455 100.87 
2 108 7 -28.77 10.41 -0.36 30.59 9 1455 100.97 
2 109 6 -28.73 10.39 -0.36 30.55 9 1454 101.07 
2 110 6 -28.73 10.40 -0.36 30.55 9 1456 101.17 
2 111 6 -28.73 10.40 -0.36 30.55 9 1456 101.27 
2 112 7 -28.76 10.42 -0.36 30.59 9 1458 101.37 
2 113 7 -28.76 10.41 -0.36 30.58 9 1458 101.47 
2 114 7 -28.74 10.37 -0.36 30.56 9 1457 101.57 
2 115 7 -28.72 10.39 -0.36 30.54 9 1455 101.67 
2 116 7 -28.75 10.38 -0.36 30.57 9 1455 101.77 
2 117 6 -28.70 10.40 -0.36 30.53 9 1455 101.87 
2 118 8 -28.75 10.40 -0.36 30.58 9 1455 101.97 
2 119 8 -28.75 10.39 -0.36 30.57 9 1456 102.07 
2 120 7 -28.71 10.38 -0.36 30.53 9 1456 102.17 
2 121 8 -28.77 10.39 -0.36 30.59 9 1456 102.27 
2 122 7 -28.74 10.40 -0.36 30.56 9 1455 102.37 
2 123 7 -28.74 10.38 -0.36 30.55 9 1455 102.47 
2 124 7 -28.74 10.35 -0.36 30.55 9 1454 102.57 
2 125 7 -28.76 10.40 -0.36 30.59 9 1455 102.67 
2 126 7 -28.77 10.38 -0.36 30.59 9 1456 102.77 
2 127 7 -28.76 10.37 -0.36 30.57 9 1455 102.87 
2 128 7 -28.74 10.37 -0.36 30.56 9 1457 102.97 
2 129 7 -28.74 10.38 -0.36 30.56 9 1457 103.07 
2 130 7 -28.76 10.35 -0.36 30.57 9 1456 103.17 
2 131 6 -28.75 10.38 -0.36 30.57 9 1455 103.27 
2 132 6 -28.76 10.38 -0.36 30.58 9 1454 103.37 
2 133 7 -28.76 10.35 -0.36 30.57 9 1456 103.47 
2 134 7 -28.74 10.40 -0.36 30.56 9 1457 103.57 
2 135 7 -28.77 10.36 -0.36 30.58 9 1456 103.67 
2 136 7 -28.77 10.37 -0.36 30.58 9 1458 103.77 
2 137 7 -28.73 10.36 -0.36 30.54 9 1457 103.87 
2 138 7 -28.73 10.37 -0.36 30.54 9 1455 103.97 
2 139 7 -28.73 10.36 -0.36 30.54 9 1454 104.07 
2 140 7 -28.73 10.39 -0.36 30.55 9 1456 104.17 
2 141 7 -28.74 10.38 -0.36 30.56 9 1456 104.27 
2 142 8 -28.75 10.39 -0.36 30.57 9 1457 104.37 
2 143 8 -28.75 10.40 -0.36 30.58 9 1457 104.47 
2 144 8 -28.75 10.40 -0.36 30.58 9 1456 104.57 
2 145 7 -28.75 10.44 -0.36 30.59 9 1457 104.67 
2 146 7 -28.76 10.43 -0.36 30.60 9 1456 104.77 
2 147 7 -28.73 10.41 -0.36 30.56 9 1455 104.87 
2 148 7 -28.70 10.42 -0.36 30.53 9 1455 104.97 
2 149 8 -28.71 10.44 -0.36 30.55 9 1456 105.07 
2 150 7 -28.71 10.42 -0.36 30.54 9 1458 105.17 
2 151 7 -28.67 10.44 -0.36 30.51 9 1458 105.27 
2 152 6 -28.68 10.42 -0.36 30.52 9 1457 105.37 
2 153 7 -28.69 10.45 -0.36 30.54 9 1455 105.47 
2 154 7 -28.71 10.42 -0.36 30.55 9 1455 105.57 
2 155 7 -28.69 10.43 -0.36 30.53 9 1454 105.67 
2 156 7 -28.67 10.46 -0.36 30.52 9 1456 105.77 
2 157 7 -28.70 10.49 -0.36 30.56 9 1457 105.87 
2 158 7 -28.64 10.43 -0.36 30.48 9 1458 105.97 
2 159 7 -28.61 10.49 -0.36 30.48 9 1458 106.07 
2 160 7 -28.62 10.45 -0.36 30.47 9 1456 106.17 
2 161 7 -28.59 10.42 -0.36 30.44 9 1456 106.27 
2 162 7 -28.62 10.44 -0.36 30.47 9 1455 106.37 
2 163 7 -28.61 10.42 -0.36 30.45 9 1454 106.47 
2 164 7 -28.62 10.42 -0.36 30.46 9 1455 106.57 
2 165 6 -28.61 10.47 -0.35 30.47 9 1456 106.67 
2 166 7 -28.61 10.44 -0.35 30.46 9 1457 106.77 
2 167 7 -28.63 10.42 -0.36 30.47 9 1456 106.87 
2 168 7 -28.63 10.44 -0.36 30.47 9 1457 106.97 
2 169 6 -28.63 10.40 -0.35 30.46 9 1455 107.07 
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ID of cluster ID of frame 
length 

(points that 
cover) 

x 
(coordinate) 

y 
(coordinate) 

z 
(coordinate) 

distance 
from the 
sensor 

row (of 
central 
point) 

column (of 
central 
point) 

time elapsed 
from start 
scanning 

2 170 7 -28.66 10.41 -0.36 30.49 9 1456 107.17 
2 171 7 -28.70 10.43 -0.36 30.54 9 1457 107.27 
2 172 7 -28.71 10.42 -0.36 30.54 9 1456 107.37 
2 173 7 -28.70 10.41 -0.36 30.54 9 1457 107.47 
2 174 7 -28.70 10.42 -0.36 30.53 9 1455 107.57 
2 175 7 -28.68 10.44 -0.36 30.53 9 1455 107.67 
2 176 7 -28.68 10.46 -0.36 30.53 9 1457 107.77 
2 177 7 -28.67 10.45 -0.36 30.52 9 1457 107.87 
2 178 7 -28.67 10.45 -0.36 30.52 9 1455 107.97 
2 179 7 -28.63 10.42 -0.36 30.47 9 1456 108.07 
2 180 7 -28.63 10.47 -0.35 30.48 9 1458 108.17 
2 181 7 -28.56 10.44 -0.35 30.41 9 1457 108.27 
2 182 7 -28.58 10.49 -0.35 30.44 9 1457 108.37 
2 183 6 -28.60 10.42 -0.35 30.44 9 1457 108.47 
2 184 9 -28.58 10.48 -0.35 30.44 9 1457 108.57 
2 185 7 -28.51 10.46 -0.35 30.37 9 1456 108.67 
2 186 7 -28.48 10.51 -0.35 30.36 9 1457 108.77 
2 187 7 -28.44 10.53 -0.35 30.33 9 1458 108.87 
2 188 8 -28.36 10.59 -0.35 30.27 9 1460 108.97 
2 189 9 -28.33 10.67 -0.35 30.27 9 1460 109.07 
2 190 8 -28.25 10.67 -0.70 30.21 10 1459 109.17 
2 191 8 -28.20 10.72 -0.35 30.17 9 1459 109.27 
2 192 6 -28.11 10.74 -0.35 30.09 9 1459 109.37 
2 193 6 -28.08 10.77 -0.35 30.08 9 1460 109.47 
2 194 6 -28.04 10.80 -0.35 30.05 9 1460 109.57 
2 195 6 -28.01 10.80 -0.35 30.02 9 1462 109.67 
2 196 7 -27.97 10.83 -0.35 30.00 9 1463 109.77 
2 197 6 -27.93 10.89 -0.35 29.98 9 1463 109.87 
2 198 7 -27.84 10.91 -0.35 29.91 9 1464 109.97 
2 199 7 -27.75 11.00 -0.35 29.86 9 1463 110.07 
2 200 6 -27.72 11.00 -0.35 29.82 9 1465 110.17 
2 201 6 -27.68 11.07 -0.35 29.82 9 1465 110.27 
2 202 7 -27.65 11.08 -0.35 29.79 9 1466 110.37 
2 203 7 -27.62 11.15 -0.35 29.79 9 1466 110.47 

 

C. FLIGHT TEST DATA PROCESSING 

The data collected by the LiDAR sensor were processed with the developed algorithm. 

The test was set up as described in Chapter 3, and the LiDAR sensor scanned the surrounding 

environment while various sUAVs were flying. The data collected through this procedure 

were stored and ultimately processed by the algorithm described in the previous sections. The 

results of the application of the algorithm were both visualized and printed. 

Afterwards, the printed data were processed further through common electronic 

spreadsheet programs. Simple processes through these spreadsheets provided interesting 

information, such as the velocities of the sUAVs. Hence, all the significant information about 

the detected sUAVs, like their distance from the LiDAR sensor, their velocities, their altitude, 

the points of the frame that they cover, as well as their relation to one another, were processed 

to provide meaningful and fruitful results. 



46 

The results of the data processing were grouped for easier comparison. Hence, the 

points that a sUAV covers in a frame were distributed in four groups: 1 to 2, 3 to 5, 6 to 9, 

and 10+ points. Also, the distances from the sensor were distributed in four groups: 0 to 25, 

25 to 35, 35 to 45, and 45+ meters (m). The velocities were also distributed in four groups: 0 

to 1, 1 to 3, 3 to 5, and 5+ meters per second (m/s). The altitude from the sensor (where the 

sensor is in 0 altitude) were broken into four groups: 0 to 1, 1 to 3, 3 to 5, and 5+ meters (m). 

Furthermore, as described in Chapter III, we made some abstract assumptions and averaging 

to estimate the percentage of sUAVs detected according to their motion attributes. 

D. EVALUATION OF THE RESULTS COMPARISONS 

The procedures just described provided some significant results. The main conclusion 

we drew was that the major factors contributing to the successful detection of sUAVs are their 

distance from the sensor and the size of the sUAVs. Specifically, from the results, we note 

that as the distance from the sensor was increasing, the number of points that the sUAV 

covered in the frame was decreasing. It is common that for distances larger than 45 meters, 

almost 80% of the detected sUAVs covered only one or two points in the frame, whereas for 

distances less than 25 meters the sUAVs that covered one or two points accounted for less 

than 10% of the detected sUAVs. Figure 42 shows the indisputable relationship between the 

points that an sUAV covered in a frame and its distance from the LiDAR sensor. 

  
Figure 42. Relationship between the number of points that sUAVs covered in 

a frame and the sUAVs’ distance from the LiDAR sensor. 
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The previous comparisons were in agreement with the results regarding the 

relationship between the percentage of sUAVs detected and their distance from the sensor. 

In particular, as their distance from the sensor was increasing, the percentage of sUAVs 

detected was decreasing. It is indicative that for distances larger than 45 meters, less than 

10% of the sUAVs were detected, whereas for distances less than 25 meters more than 90% 

of the sUAVs were detected. Figure 43 shows the obvious relationship between the 

percentage of sUAVs detected and their distance from the LiDAR sensor. 

  
Figure 43. Relationship between the percentage of sUAVs detected and their 

distance from the LiDAR sensor. 

The clear relationship between the successful detection of sUAVs and their distance 

from the sensor is consistent with the function of the LiDAR sensor. As was mentioned in 

Chapter I and presented in Figure 10, there are gaps between the points in each frame. 

These gaps are significant, especially in the vertical direction. In particular, the vertical 

gaps for distances from the sensor equal to 30, 50, and 100 meters are 0.70, 1.16, and 2.33 

meters, respectively. Also, the horizontal gaps for distances from the sensor equal to 30, 

50, and 100 meters are 0.10, 1.17, and 0.35 meters, respectively. Furthermore, sUAVs are 

inherently small, and their vertical dimensions are normally much smaller than their 
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horizontal dimensions. Hence, the probability that a sUAV could be located within these 

gaps increases as the distance from the sensor increases. 

By contrast, the results did not indicate any relation between the velocity of the 

sUAVs and the points that they cover in a frame. Despite significant changes in the 

distribution of the percentage to which each group corresponded, a specific trend in these 

changes was not observed that would indicate a relation among them. Figure 44 presents 

the relationship between the points that an sUAV covered in a frame and its velocity. 

  
Figure 44. Relationship between the number of points that sUAVs covered in 

a frame and their velocity. 

Similar to the velocity of the sUAVs, the results did not indicate any relation 

between the altitude of the sUAVs and the points that they cover in a frame. Again, there 

were significant changes in the distribution of the percentage to which each group 

corresponded, but a specific trend in these changes was not apparent. Hence, there is no 

indication of any relation among them. Figure 45 presents the relationship between the 

points that an sUAV covered in a frame and the altitude of the sUAV. 
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Figure 45. Relationship between the number of points that sUAVs covered in 

a frame and their altitude. 

Furthermore, the results concerning the false detections of sUAS were significant. 

In particular, one major concern was the effectiveness of the algorithm in distinguishing 

the actual sUAS from other small moving objects. As discussed in Section IV.A, the main 

methods that we applied to achieve this were to exclude the ground and objects that were 

covered by the “mask” that we derived from the background. Specifically, small plants, as 

well as trees and their branches and leaves, were probable sources of false positive 

detections. Moreover, because the experiments took place in rural environments this issue 

was very pronounced. 

The results of the comparisons of the collected LiDAR data that we processed were 

revealing about the false detection issue. Indeed, there were many false detections 

depending on the method we applied and the environment that we investigated. The worst-

case scenario was when we searched for sUAS at low altitude; there were trees in the 

background and the mask that we applied was derived from only a few frames. In contrast, 

the best-case scenario was when we investigated for sUAS at an altitude above the sensor 

altitude, while we applied a mask that was derived from an adequate number of frames. 

Figure 46 presents the number of false detections related to the factors just 

described. In the first case, there were no constraints regarding the minimum altitude in 

searching for sUAS. Given this, two possible masks were applied. One was derived after 

using the data of 10 frames, and the other was derived by using the data from 50 frames. 
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In addition to these results, in the second case we searched at an altitude above the level of 

the sensor. Here we again applied two masks, one mask that used the data from 10 frames 

and one mask after 50 frames. The results, presented to Figure 46, came after searching for 

sUAS in 100 successive frames. In conclusion, these results confirmed the challenges that 

small plants (near the ground) add to the procedure and the decisive contribution of the 

application of the mask to the effectiveness of the algorithm. 

  
Figure 46. False detection rate per 100 frames with height constraint and 

depth mask applied 

The preceding plots were derived from the data collected from the sUAVs with a 

maximum dimension greater than 60 cm. The data from the sUAVs with a maximum 

dimension of less than 60 cm confirmed the aforementioned results. The only difference 

was that the detection of these sUAVs was mainly limited to a range of 20 meters from the 

sensor. Beyond this distance their detection was negligible. 
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V. CONCLUSIONS 

This final chapter presents the conclusions we can draw from the procedures 

presented in this research, and the chapter closes with recommendations for future research. 

A. CONCLUSIONS 

Considering our findings from the evaluation of the developed algorithm, we 

conclude that LiDAR sensors are capable of detecting moving objects and, specifically, 

sUAVs. Nevertheless, from the experimental results it is obvious that there are many 

restrictions and obstacles in this procedure. The range of detection is the most crucial 

restriction. Given the functionality and the limitations of commercial LiDAR sensors, in 

combination with the abstract features of the sUAVs in terms of size, shape, route of flights, 

and so forth, it is very challenging to successfully detect sUAVs with LiDAR sensors at 

long range. 

On the other hand, this type of sensor is ideal for determining the accurate location 

of sUAVs, given that they are already detected. The major advantage of these sensors is 

that they can precisely locate the exact position of each object they detect. In addition, as 

we found in this research, this capability is independent of the altitudes and the velocities 

of the sUAVs. 

In conclusion, it was proven that it is possible to detect an sUAS even with a 

commercial LiDAR sensor. Moreover, it was shown that the developed algorithm runs in 

real time, even in the interpretive environment of MATLAB. In particular, the time needed 

to process each frame of data was about 0.1 seconds, which is approximately the same time 

that the Velodyne 3D LiDAR sensor needs for creating a frame in real time.  

 

B. RECOMMENDATIONS – FUTURE RESEARCH 

The research on the capabilities of 3D LiDAR sensors for detecting sUAVs is a 

promising field that should be studied and investigated in depth. Hence, many more studies 

could and should be performed in this field. 
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One possible research for further exploration is the effectiveness and the necessity 

of the use of different sensors in combination. There are many types of sensors that are 

used for detecting objects. All of them present advantages and disadvantages. So, it would 

be interesting to study the potential of various combinations of sensors, including LiDAR 

sensors, and their consequent advantages and disadvantages. 

Additionally, a follow-on study should focus specifically on LiDAR sensors with 

limited FOV but increased resolution and range. These sensors should function in 

combination with other types of sensors. The goal of the other sensors should be the general 

location of possible targets. After this general location is acquired, the LiDAR sensors 

should undertake the mission of detecting the accurate position of the suspected target, 

determine its size and shape, and track its route. The information provided by the LiDAR 

sensor should then be used to define the texture of this prospective target and clarify its 

status, and consequently, to classify or reject it as a potential target. 

Furthermore, it should be investigated the improvement of the time performance by 

coding the algorithm in Verilog and running it on a field-programmable gate array (FPGA) 

[31]. The parallelism in the execution of the algorithm that FPGA can provide, could give 

the capability to add many more functionalities to the algorithm that either will increase 

the effectiveness of detection or will add additional capabilities, while sustaining the real-

time execution of the code. 
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