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ABSTRACT 

 Adoption of alternate development methods throughout engineering domains is 

resulting in more effective execution. However, implementation of such methods for 

hardware development programs has not been widely adopted or their processes well 

documented. To understand their potential for implementation, the generic life cycle 

defined in the INCOSE Systems Engineering Handbook is set as the baseline for 

comparison of development methods. This work analyzes six alternate development 

methods including design thinking, lean product development, agile, set-based concurrent 

engineering, systems thinking, and development and operations, focusing on their 

activities and overall flow to not only align them with the generic life cycle for visual 

representation of development progression, but more importantly, to map the similarities 

between the activities of the concept and development stages of the generic life cycle. 

Presented in this work is a mapping that compares the execution of the generic life-cycle 

baseline development activities to their occurrence in the six methods discussed. This 

mapping can be used as a decision aid within the hardware domain for determining the 

feasibility of an alternate method, giving programs a tailorable approach for hardware 

development. 

v 



THIS PAGE INTENTIONALLY LEFT BLANK 

vi 



vii 

TABLE OF CONTENTS 

I. INTRODUCTION..................................................................................................1 
A. BACKGROUND ........................................................................................1 
B. GENERIC LIFE-CYCLE .........................................................................2 

1. Life-Cycle Model ............................................................................2 
2. Life-Cycle Stage Description .........................................................4 

C. RESEARCH SCOPE .................................................................................5 
1. Research Questions ........................................................................6 
2. Research Approach ........................................................................6 

D. PURPOSE ...................................................................................................7 
E. DELIVERABLES ......................................................................................8 
F. ORGANIZATION OF STUDY ................................................................8 

II. DEVELOPMENT METHODS OVERVIEW .....................................................9 
A. DESIGN THINKING ................................................................................9 
B. LEAN PRODUCT DEVELOPMENT ...................................................12 
C. AGILE .......................................................................................................15 
D. SET-BASED CONCURRENT ENGINEERING ..................................17 
E. SYSTEMS THINKING ...........................................................................19 
F. DEVELOPMENT AND OPERATIONS ...............................................21 

III. CASE STUDY REVIEW .....................................................................................25 
A. METHOD APPLICATION AND PROCESS 

IDENTIFICATION .................................................................................25 
1. Design Thinking ...........................................................................25 
2. Lean Product Development .........................................................27 
3. Agile ...............................................................................................28 
4. Set-Based Concurrent Engineering ............................................29 
5. Systems Thinking .........................................................................31 
6. Devops ...........................................................................................32 

B. IMPLEMENTATION ANALYSIS ........................................................32 

IV. METHOD ALIGNMENT AND MAPPING .....................................................35 
A. INCOSE PROCESS BASELINE AND ASSUMPTIONS ....................35 
B. DESCRIPTIVE METHOD FIGURES ..................................................38 

1. Design Thinking ...........................................................................39 
2. Lean Product Development .........................................................41 
3. Agile ...............................................................................................43 



viii 

4. Set-Based Concurrent Engineering ............................................45 
5. Systems Thinking .........................................................................47 
6. Development and Operations......................................................49 

C. METHOD ALIGNMENT .......................................................................51 
D. ACTIVITY MAPPING ...........................................................................53 
E. ACTIVITY MAPPING SCENARIO .....................................................55 

V. CONCLUSIONS, LIMITATIONS, AND RECOMMENDATIONS ..............59 
A. CONCLUSIONS ......................................................................................59 
B. LIMITATIONS ........................................................................................59 
C. RECOMMENDATIONS FOR FUTURE RESEARCH .......................60 

LIST OF REFERENCES ................................................................................................63 

INITIAL DISTRIBUTION LIST ...................................................................................71 

 

  



ix 

LIST OF FIGURES  

Figure 1. Standardization/International Electrotechnical Commission/ Institute 
of Electrical and Electronics Engineers (ISO/IEC/IEEE) 15288:2015 
Generic Life-Cycle Stages. Source: INCOSE (2015). .................................3 

Figure 2. Top-Ten Sources of Product Development Waste. Source: Mascitelli 
(2006). ........................................................................................................14 

Figure 3. Proposed Set-Based Concurrent Engineering Development Model. 
Source: Raudberget (2011). .......................................................................30 

Figure 4. In Scope and Out of Scope Stages of the INCOSE Generic Life 
Cycle. Adapted from INCOSE (2015). ......................................................36 

Figure 5. INCOSE Generic Life-Cycle Process Summary, Concept and 
Development Stages. Adapted from INCOSE (2015) and Ulrich and 
Eppinger (2016). ........................................................................................37 

Figure 6. Design Thinking Development Process Summary. Adapted from 
Lindberg et al. (2010), Mueller-Roterberg (2018), Linke (2017), Pop 
(2020), Balcaitis (2019), and Hasso Plattner Institute of Design 
(2019). ........................................................................................................40 

Figure 7. Lean Product Development Process Summary. Adapted from Mynott 
(2012), Mascitelli (2006), Radeka (2013), and Liker and Morgan 
(2011). ........................................................................................................42 

Figure 8. Agile Scrum Development Process Summary. Adapted from Walsh 
and Mahesh (2015), Pries and Quigley (2010), and Vanderjack 
(2015). ........................................................................................................44 

Figure 9. Set-Based Concurrent Engineering Development Process Summary. 
Adapted from Sobek et al. (1999), and Khan et al. (2011). .......................46 

Figure 10. Systems Thinking Systems Dynamics Development Process 
Summary. Adapted from Maani and Cavana (2007), and Sweeney 
and Sterman (2000). ...................................................................................48 

Figure 11. Devops Development Process Summary. Adapted from Kim et al. 
(2016), Ebert et al. (2016), Dornenburg (2018), and Microsoft (n.d.). ......50 

Figure 12. Method Alignment .....................................................................................52 

Figure 13. High-Level Development Method Activity Mapping ................................54 



x 

Figure 14. Example Use of Activity Mapping ............................................................57 

  



xi 

LIST OF TABLES 

Table 1. Generic Life-Cycle Stage Purpose. Source: INCOSE (2015). ....................3 

Table 2. Generic Life-Cycle Stages, Phases, and Activities. Adapted from 
INCOSE (2015) and Ulrich and Eppinger (2016). ....................................38 

Table 3. Design Thinking Phases and Activities. Adapted from Lindberg et 
al. (2010), Mueller Roterberg (2018), Linke (2017), Pop (2020), 
Balcaitis (2019), and Hasso Plattner Institute of Design (2019). ..............41 

Table 4. Lean Product Development Phases and Activities. Adapted from 
Mynott (2012), Mascitelli (2006), Radeka (2013), and Liker and 
Morgan (2011). ..........................................................................................43 

Table 5. Agile Scrum Phases and Activities. Adapted from Walsh and 
Mahesh (2015), Pries and Quigley (2010), and Vanderjack (2015). .........45 

Table 6. Set-Based Concurrent Engineering Phases and Activities. Adapted 
from Sobek et al. (1999), and Khan et al. (2011). .....................................47 

Table 7. Systems Thinking Systems Dynamics Phases and Activities. 
Adapted from Maani and Cavana (2007), and Sweeney and Sterman 
(2000). ........................................................................................................49 

Table 8. Devops Phases and Activities. Adapted from Kim et al. (2016), 
Ebert et al. (2016), Dornenburg (2018), and Microsoft (n.d.). ..................51 

 



xii 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 

devops development and operations 
DOD Department of Defense 
INCOSE the International Council on Systems Engineering 
ISO/IEC International Organization for Standardization/International 

Electrotechnical Commission  
ISO/IEC/IEEE International Organization for Standardization/International 

Electrotechnical Commission/Institute of Electrical and Electronics 
Engineers 

LPD lean product development 
MVP minimum viable product  
NASA National Aeronautics and Space Administration 
SBCE set-based concurrent engineering 
SE systems engineering 
TR technical report 
 



xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



xv 

EXECUTIVE SUMMARY 

The INCOSE Systems Engineering Handbook documents the generic life cycle as 

defined by ISO/IEC/IEEE 15288-2015. This standardized process, well understood 

throughout engineering development, suggests that a product can progress through its life 

cycle by means of serial or iterative processes, or a combination thereof (INCOSE 2015). 

Though, it does not provide guidance as to the method in which could be applied for that 

progression. Contrary to software or information technology services, implementation of 

development methods for hardware development are not well documented throughout 

engineering and Department of Defense industries. Furthermore, there is increasing 

pressure to adopt new practices to align with the DOD’s mission of providing capabilities 

at the speed of relevancy (Garamone 2017; Ferdinando 2018). This paves the path of an 

immediate need for hardware development programs to have a foundational level of 

knowledge of existing development methods that would allow for effective program 

execution. 

With a lack of guidance for applicability of development methods, this work 

analyzes the activities that occur during development given the implementation of an 

explicit method, and those defined by the generic life cycle for the concept and 

development stages as baseline for development activities. By means of literature review, 

the activities of six methods are compared to such baseline. The result is a high-level 

mapping of activities, in matrix form, that can be used as a decision aid, or as a general 

educational resource for method determination in hardware development programs.  

This work analyzes development methodologies including design thinking, lean 

product development, agile, set-based concurrent engineering, systems thinking, and 

development and operations. For each, hardware development processes are presented 

based on the literature review and case study analyses that are used to describe the activities 

that occur in a specific stage or phase or the process in addition to high-level details, and 

any governing technical principles or requirements that are part of the process. The 

literature and case studies presented in this work are limiting in the sense that adoption of 

development methods specifically for hardware development has not been widely applied 
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or documented. For such methods that do not heave specific implementations for hardware 

development, more general applications are considered. 

Analysis of the activities of which occur throughout hardware development show 

that no matter the method of execution there is similar intent, and the expected outcome 

can be similarly achieved. The results indicate that between different system engineering 

methods, many of the same activities occur, though a methods defining characteristics in 

addition to their problem-solving approach affect the execution of those activities. 

Further, the results show that in many cases development methods are successful 

when utilized collectively. Particularly, development and operations implement lean 

principles and is in agile in structure (Kim et al. 2016), agile on its own may implement 

lean principles (Pries and Quigley 2010), and set-based concurrent engineering principles 

are inherently part of lean product development (Al-Ashaab et al. 2013). The only 

development methods discussed in this work that could be exclusively implemented are 

design thinking and systems thinking. Design thinking is a well-defined and well-

documented process utilized mostly within the commercial industry, and systems thinking 

is a holistic approach to problem solving that is typically used from an organizational 

perspective. There is evidence that hard systems thinking, or systems dynamics can be used 

for product development, however current literature does not expand upon its 

implementation. 

The mapping of activities presented in this work only represent a subset of all the 

activities that occur and does not map activity to activity. Additional work is needed to 

expand upon not only these activities, but to also identify other development. Furthermore, 

while having an awareness to development methods for determining an appropriate method 

for use, knowing the defining characteristics of a given method is also valuable in 

determining feasibility. Used in conjunction with an activity mapping would provide a 

more cohesive package for aid in decision making for development method implementation 

within an organization. 

  



xvii 

List of References 

Al-Ashaab, Ahmed, Matic Golob, Usama M Attia, Muhammad Khan, Jon Parsons, 
Alberto Andino, Alejandro Perez, et al. 2013. “The Transformation of Product 
Development Process into Lean Environment Using Set-Based Concurrent 
Engineering: A Case Study from an Aerospace Industry.” Concurrent 
Engineering, Research and Applications 21 (4): 268–85. https://doi.org/10.1177/
1063293X13495220. 

Ferdinando, Lisa. 2018. “DOD Must Be More Agile in Technology Development, 
Official Says.” DOD NEWS. April 19, 2018. https://www.defense.gov/Explore/
News/Article/Article/1497393/. 

Garamone, Jim. 2017. “DOD Restructures Acquisition, Technology Office to Improve 
Military Lethality, Speed.” DOD News Defense Media Activity. August 7, 2017. 
https://www.army.mil/article/191904/dod_restructures_acquisition_technology_of
fice_to_improve_military_lethality_speed. 

INCOSE. 2015. Systems Engineering Handbook: A Guide for System Life-cycle 
Processes and Activities. Hoboken, NJ: John Wiley & Sons. 

Kim, Gene, Jez Humble, Patrick Debois, and John Willis. 2016. The Devops Handbook 
How to Create World-Class Agility, Reliability, & Security in Technology 
Organizations. Portland: IT Revolution Pres, LLC.  

Pries, Kim H., and Jon M. Quigley. 2010. Scrum Project Management. Boca Raton, FL: 
CRC Press. 

  



xviii 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



ACKNOWLEDGMENTS 

First and foremost, I would like to thank and recognize my husband, TJ, 

for supporting me through this journey. Navigating this program while becoming first-

time parents has been challenging and the greatest blessing, and it was his 

positivity that continued to motivate me. I owe so much of my success to him.  

Next, I’d like to thank my advisor, Distinguished Professor Cliff Whitcomb. His 

guidance allowed me to progress through this thesis with a sense of defined creativity. 

More importantly, his expertise in methods and development processes in general was 

critical to the success of this work. 

I must also show my gratitude to my PD-21 cohort members for the constant, never-

ending thesis motivation. No matter the time of day or place, I could always count on them 

for guidance, point-directed help, and uplifting humor. It has been a pleasure to learn from 

you all, and I wish you all the best in your careers. 

Finally, this thesis would not have been possible without the encouragement of my 

supervisor Dan O’Connell and those I work with at PMO SPSP. I so appreciate the 

flexibility provided to attend this program and complete this thesis. I look forward to 

sharing it with SSP as we continue to explore and adopt new methods within our 

development efforts. 

xix 



xx 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 

1 

I. INTRODUCTION 

A. BACKGROUND 

In 2018, Michael D. Griffin went before the House Armed Services Committee for 

a special hearing for the Department of Defense’s (DOD) culture of innovation and 

delivered a powerful testimony. He emphasized how critical it is that the DOD pursue new 

technologies and breakthrough research to preserve its technological advancements 

(Ferdinando 2018). Ferdinando also noted that today’s adversaries systematically and 

strategically develop and field advanced systems more rapidly than the United States. 

Griffin added that it is a priority for the DOD to drive the innovation cycle to sustain 

technological superiority by developing innovative capabilities in addition to being 

innovative in our processes (Ferdinando 2018). The typical waterfall development process 

cannot keep pace in aligning with this vision (Moore 2021). A sequential approach does 

offer benefits including predictability, stability, repeatability, and high assurance 

throughout the development process, though it has slow accommodation to change and 

lack of adaptability and flexibility, and longer delivery times due to its serial nature 

(Smartsheet n.d.). Sequential approaches are best used in a development program that is 

incredibly rigid where tasks and deadlines are set and maintained (Smartsheet n.d.), and 

not conducive in an environment where change is inevitable, and programs must adapt and 

remain flexible to stakeholder needs and required changes. To be successful and rapidly 

deploy capabilities to the warfighter, the DOD must “move at the speed of relevancy” 

(Garamone 2017). Deputy Director Secretary Pat Shanahan perfectly explained this when 

he said, “baseball doesn’t get a phenomenal 17-year-old player and finally get him to the 

major leagues when he is 45, and neither should the DOD” (Garamone 2017). Prompting 

the DOD into action, it now faces the challenge of developing hardware more effectively 

and by use of innovative processes. 

Consider the development buzzword “agile” that has quickly become a 

development standard in software, and “development and operations” likewise for 

information technology applications. These development methods aim to develop software 

and related services to their users quicker and with the same fidelity otherwise achieved 
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using waterfall development methods. For hardware development however, there is a lack 

of literature and case studies that define similar processes to streamline development efforts 

resulting in faster deliveries of hardware products. The DOD has a need to execute 

hardware development more rapidly, given that the status quo for development has been 

serial or sequential in nature. This work, then considers a need to provide program 

managers, designer, engineers, and organizations with knowledge of not only existing 

development methods and processes that are available for implementation, but also the 

activities which occur as part of those processes. Provided as a resource, such information 

could be used to help programs tailor specifically to the activities in which they need to 

complete to meet their objective, without sacrificing quality. Specifically, this work will 

compare existing development methods by analyzing main activities, phases or process 

flows against a defined, baseline hardware development life cycle. Throughout this work, 

the development methods discussed and analyzed will be referred to as methods. 

B. GENERIC LIFE-CYCLE 

This work uses the generic life-cycle model defined in the International Council on 

Systems Engineering (INCOSE) Systems Engineering (SE) Handbook as a baseline for 

hardware development stages and process. The scope of this work considers the concept 

and development life-cycle stages because they involve the physical design and 

development of a hardware product. The focus throughout this work is strictly on the design 

activities from concept, through development up until, but not including production 

readiness.  

1. Life-Cycle Model 

According to the International Organization for Standardization/International 

Electrotechnical Commission (ISO/IEC) Technical Report (TR), ISO/IEC TD 24748-1, a 

“system progresses through a common set of life cycle stages” including concept, 

development, production, utilization, support, and retirement (INCOSE 2015, 29). The life-

cycle model represents the stages that the product will progress through to ensure it meets 

the intended functionality through its life, shown in Figure 1. The stages are shown in 

general sequential order, though stages in practice can be interdependent, overlapping, and 
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concurrent (INCOSE 2015). Possible progressions of a product through its life cycle may 

include sequential, iteration and recursion, and incremental and iterative methods 

(INCOSE 2015).  

 
Figure 1. Standardization/International Electrotechnical Commission/ 

Institute of Electrical and Electronics Engineers (ISO/IEC/IEEE) 
15288:2015 Generic Life-Cycle Stages. Source: INCOSE (2015). 

The purpose of each phase is further delineated in the INCOSE SE Handbook and 

is shown in Table 1. For example, the concept stage is more extensive than others due to 

the amount of up-front work required including defining the problem space, characterizing 

the solution space, and identifying stakeholder needs, to name a few. Without fulfilling that 

purpose, rework may be required later during the development process resulting in cost 

and schedule impacts, or the result is a system that does not meet the needs of the 

stakeholders. 

Table 1. Generic Life-Cycle Stage Purpose. Source: INCOSE (2015). 

Life-Cycle Stages  Purpose 
Concept Define Problem Space 

• Exploratory Research 
• Concept Selection 

Characterize solution space 
Identify stakeholders’ needs 
Explore ideas and technologies 
Refine stakeholders’ needs 
Explore feasible concepts 
Propose viable solutions 

Development Define/refine system requirements 
Create solution description-architecture and design 
Implement initial system 
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2. Life-Cycle Stage Description 

a. Concept Stage 

The INCOSE SE Handbook breaks down the concept stage into two parts: 

exploratory research and concept selection. During exploratory research, the team develops 

a high-level preliminary concept to a depth that allows them to “identify technological risks 

and assess the technology readiness level of the project” (INCOSE 2015, 29). Ulrich and 

Eppinger (2016) simply suggest these phases investigate the feasibility of product concepts 

where a preliminary concept “is a description of the form, function, and features of a 

product accompanied by specifications” and technical documentation, “analysis of 

competitive products, and economic justification” (15). Key activities of exploratory 

research include defining the problem space, identifying mission requirements and 

stakeholder needs, establishing target specifications, and providing “an estimate of the cost 

and schedule for full-scale development” (INCOSE 2015, 30).  

During concept selection, the team analyzes multiple candidate solutions (concepts) 

and presents justification for the selected candidate based upon refined stakeholder needs 

and concept of operations (INCOSE 2015; Ulrich and Eppinger 2016). This effort can 

include prototyping or building mock-ups and developing models and simulations. This 

would allow the team to perform architectural tradeoffs and explore risks and opportunities 

(Ulrich and Eppinger 2016). The concepts are tested to show preliminary results again 

critical stakeholder needs and scored for overall adherence to stakeholders needs and 

requirements. Key activities of concept selection include creating the functional definition 

of the system, defining the architecture, and planning for integration, verification, and 

validation testing (INCOSE 2015; Ulrich and Eppinger 2016).  

b. Development Stage 

During development, the team further defines a product of interest that will 

ultimately be produced. Development should not start until a concept, or concepts are 

chosen or down selected into this phase. In this stage, stakeholder needs, and requirements 

are formally defined and used to develop the system architecture (INCOSE 2015). One key 

activity during development “is to specify, analyze, architect, and design the system so that 
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the system elements and their interfaces” are understood and specified, and testable 

(INCOSE 2015, 31). Operator or end user interfaces are specified, tested, and evaluated. 

Feedback is provided by stakeholders through technical reviews and decision gates for 

information awareness and approval to proceed (INCOSE 2015). As part Ulrich and 

Eppinger’s (2016) generic product development process, development is broken into two 

major phases, system-level design, and detail design, and supported by a testing and 

refinement stage. The activities accomplished throughout the development stage as a whole 

or broken in multiple phases are the same (Ulrich and Eppinger 2016). For example, in 

Ulrich and Eppinger’s (2016) generic product development process, system level design 

feeds the design of the product, while detail design focuses on documenting the system 

configuration, ensuring quality assurance processes are in place, and placing early 

procurement orders. They further define a testing and refinement phase which covers 

system testing for overall performance, reliability, and durability in addition to prepping 

for production (Ulrich and Eppinger 2016). It is important to recognize that the generic 

life-cycle stage of development defined in the INCOSE SE Handbook serves as a large 

umbrella for many design activities, or phased activities. Nonetheless at the end of the 

development stage, is a decision gate requesting approval to move into production or 

agreement that the system has met is production readiness criteria (INCOSE 2016). 

C. RESEARCH SCOPE 

In support of the DOD’s mission to move at the speed of relevancy and the desire 

to be innovative within the development process, this work proposes a mapping of methods 

against the generic life cycle defined by the INCOSE Systems Engineering Handbook that 

would allow programs to choose development phases and activities specifically tailored to 

their program. How a program implements the chosen method(s) to fit within their 

organization and their schedule is not proposed as part of this work. Rather, this mapping 

will align the stages, activities, and major characteristics of the generic life cycle and 

methods identified via literature research and review.  

The methods chosen for analysis were based on their applicability in solving 

problems from a systems perspective, their implementation into software or IT services 
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development, or their implementation into hardware development. Even if one method 

lacks the literature supporting application for hardware development, its activities and 

governing principles or characteristics could be translated more generically and applied in 

a hardware development environment. 

1. Research Questions 

The following research questions are analyzed: 

• How do the identified development methods align with generic life-cycle 

process within concept and development phases as defined by the INCOSE 

SE Handbook? 

• What are major phases and activities of the identified methods? 

• Have these methods been executed within hardware development projects/

programs? If not, are there implementations of the given method that may 

support hardware development?  

2. Research Approach 

The research for this work will begin by analyzing six different methods including:  

• Design Thinking 

• Systems Thinking 

• Lean 

• Agile 

• Set-Based Concurrent Engineering 

• Development and Operations 

Each method in the context of understanding its phases or effect on the identified 

generic life-cycle stages, will be described. Case studies or implementations of each 
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method will be further analyzed to better understand the method as it pertains to hardware 

development. 

D. PURPOSE  

There are two opportunities in which this work can contribute. First, organizations 

need to find a way to make their existing processes innovative and more effective. To do 

so, organizations should consider employing other methods in executing their hardware 

development programs. For example, the DOD Acquisition Framework has been modified 

with more flexible pathways so programs can execute as they see fit. This flexibility is lost 

if programs, including its design teams, continue to execute in a serial nature, or as  Moore 

(2021) refers to as waterfall. Programs need a way to compare how their hardware 

development process or how a generic hardware development process aligns to others so 

that they can tailor their program accordingly. 

The INCOSE SE Handbook offers a comparison of the generic life-cycle stages to 

other life-cycle viewpoints including DOD acquisition, National Aeronautics and Space 

Administration (NASA), and the typical high-tech commercial systems integrator, to name 

a few. It also offers three ways in which the generic life-cycle stages can progress through 

a life cycle. It does not, however, describe what these methods are and how they fit within 

the generic life cycle. Likewise, there is an opportunity to provide some foundational 

knowledge of existing development processes and methodologies to hardware designers 

and engineers who may not otherwise know exist. Doing so will work to close the gap by 

providing designers and engineers material and resources to understand how different 

methods, that for example may be sequential or iterative in nature, fit within a product or 

hardware life cycle. There is no mapping that is readily available for programs to use as a 

decision aid, or as general guidance. Furthermore, there is no available descriptive 

resources that provide this information.  

The information herein will provide the ability for programs to understand how 

each method aligns with the generic life-cycle process, so programs can tailor their own 

product development process to best fit its teams, its schedule, and the value it seeks to 

provide the customer and end user based on its activities. The methods in this work were 
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chosen because they aim to provide a new pathway for hardware development, or when 

applied to current development processes, enhance the product life cycle. Understanding 

how the phases of a given method are executed and what activities occur aid in the process 

of identifying whether such method would be beneficial within their program.  

E. DELIVERABLES 

This work will deliver high-level descriptive figures for each of the methods 

described, and a comparative alignment mapping to visually represent how each method 

aligns to the generic life cycle as defined in the INCOSE SE Handbook. More importantly, 

an activity mapping is created based on literature and case study reviews that identify 

specific activities that are compared to the INCOSE SE Handbook generic life cycle. These 

can be used separately or collectively as decision aids or guiding tools for identifying one 

or more methods for implementation. The information provided as part of these 

deliverables is based on literature research identified in this work and is not wholly 

inclusive of all literature. 

F. ORGANIZATION OF STUDY 

This work is organized in five chapters. Chapter 1 provides the necessary 

background information and lays the road map for the remainder of this work. Chapter II 

presents a review of literature and other resources providing descriptive summaries and 

activities for the given methods. Chapter III reviews and discusses literature for specific 

applications of the given development methods related to hardware development and 

discusses implementation characteristics for each. Chapter IV contains the synthetization 

of data gather via literature reviews and provides decision aids in the form of descriptive 

figures along with mapping of activities for each identified development method. Chapter 

V includes the final conclusions, recommendations, and future work.  
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II. DEVELOPMENT METHODS OVERVIEW 

This chapter presents key information for methods considered for this work. 

Literature research resulted in the analysis of six approaches or methodologies to be 

considered based on the criteria that they have or could be utilized in product or system 

development from either software, hardware, or human-centered perspectives. Each 

method is described in brief, and is not inclusive of all characteristics, details, and nuances. 

The six methods are: 

A. Design Thinking/Human Centered Design 

B. Lean Product Development 

C. Agile 

D. Set-Based Concurrent Engineering 

E. Systems Thinking 

F. Development and Operations 

A. DESIGN THINKING 

Design thinking for purposes of this work is inclusive of “true” design thinking (as 

defined by Stanford University) and human centered design methodologies. Design 

thinking is an innovative approach to solving problems and suggesting many solutions, 

while human centered design approach revolves around the human experience (DiMeo 

2018). The term “design thinking” will be referenced herein with the intent of describing 

both design thinking and human centered design.  

This approach creative in nature and is defined by Wrigley, Nusem, and Straker 

(2020) as the ability to solve problems by using cognitive processes to identify and address 

stakeholder needs. Schallmo, Williams, and Lang (2018) describe the four principles of 

design thinking as: “human needs, multidisciplinary teams, iterative processes, and 

creative environments” (12). Recently, researchers have shown design thinking is linked 

to higher levels of innovation and is more prominent in the fields of design and 

development (Linke 2017). First utilized by IDEO, a design team was challenged to think 
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beyond just designing a product and instead, focus on the process in which the designer 

uses during the process (Bjögvinsson, Ehn, and Hillgren 2012). IDEO suggests that,  

(1) designers should be more involved in the big picture of socially 
innovative design, beyond the economic bottom line, (2) that design is a 
collaborative effort where the design process is spread among diverse 
participating stakeholders and competencies, (3) that ideas must be 
envisioned, “prototyped,” and explored in a hands-on way, tried out early 
in the design process in ways characterized by human centeredness empathy 
and optimism. (Bjögvinsson, Ehn, and Hillgren 2012) 

Even those who are not necessarily trained as designers can apply their human 

experience to the design process, providing for more creative potential solutions (What is 

Design Thinking n.d.).  

There is a phased approach to implementing design thinking. While there are many 

processes in which define design thinking, Tim Brown’s (once CEO of IDEO) process uses 

different methods including brainstorming, observations, and sketching to iteratively 

execute through the phases of design thinking (Wrigley, Nusem, and Straker 2020). 

Researchers agree that the phases of design thinking include empathize, define, ideate, 

prototype and test. Mueller-Roterberg (2018) further delineates these phases into two major 

categories, analytic and synthetic. The analytical phases fall within the problem space and 

include collecting, organizing, and evaluating information, while the synthetic phases fall 

within the solution space and include developing, testing, and improving solutions (i.e., 

concept and development activities) (Mueller-Roterberg 2018).  

During the empathize phase, the team develops a deep understanding of the 

challenge. This involves getting to know the customer, and not assuming what someone is 

thinking or feeling. Gathering information is a critical piece of this phase, and can be done 

via interviews, conversations, and observations of the target audience (IDEO n.d.). 

According to the Institute of Design at Stanford, to empathize, an individual must observe 

in a context relevant to the issue, engage in conversations always looking for deeper 

meaning, and be observant of the user in their environment and how they engage (Hasso 

Plattner Institute of Design 2019). Linke (2017) suggests the development team try to 

empathize with the target audience to understand their needs and form potential solutions. 
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Then the process transitions into the define phase where the team clearly articulates the 

needs based on their information gathering of the target audience and uses the information 

to characterize issues and needs, into a well-defined problem statement (Linke 2017; 

Mueller-Roterberg 2018). Creating a specific point of view will also help designers to 

express their insights and create an actionable problem statement (Hasso Plattner Institute 

of Design 2019). Next in the ideate phase, both Linke (2017) and Mueller-Roterberg (2018) 

agree that the team engage in creativity techniques to identify potential inventive or 

innovative arrangements or solutions where the quantity of solutions is more important 

than few quality solutions. The Hasso Plattner School of Design indicates the importance 

that the team go beyond what is obvious and explore all possibilities (2019). Once potential 

solutions are identified, the team transitions into the prototype phase where they create and 

build prototypes that differ in form and fidelity that will be tested with real user prior to 

releasing to the market (Linke 2017). In the test phase, according to Linke’s (2017) 

description, the prototypes are then tested amongst an audience to determine whether the 

product functions or operates as it is supposed to. During test, the point of view is 

continuously refined, and designers are encouraged to learn more about their users (Hasso 

Plattner Institute of Design 2019). Finally, Linke (2017) indicates feedback is provided to 

the team, and modifications or updates are made to the design and retested amongst an 

audience.  

While well understood, there is more than one approach to design thinking. 

According to Mueller-Roterberg (2018) design thinking is an iterative process consisting 

of six process steps including “observing, defining problems, finding ideas” (ideate), 

“developing prototypes, and testing.” (Mueller-Roterberg 2018, 10). The first three are 

within what Lindberg et al. (2010) and Mueller-Roterberg (2018) call the problem space, 

while the latter three are within the solution space. In the problem space, the team identifies, 

clarifies, analyzes, and understands the problem and in the solution space the team 

evaluates and selects ideas (Lindberg et al. 2010; Mueller-Roterberg 2018). They agree 

that design teams should utilize different techniques to create prototypes that are then tested 

and analyzed against the problem space. Compared to Brown’s design thinking process, 

the major difference is how the empathize phase is broken into understanding the problem 
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and observing, and the define phase also includes observing and defining the problem 

(Lindberg et al. 2010). The overlap in observing is because there is a level of empathizing 

and understanding the problem from the customer’s view in addition to collecting 

information from the customer. In Brown’s method, these actions are split between 

empathize and define. The design thinking model presented by Plattner et al. (2011) is 

categorized as a very comprehensive, user-oriented approach that applies human centered 

design techniques within a phase in a process with iteration loops. Further, the model 

proposed by Plattner et al. (2011) may have more phases than Brown’s original and 

pioneering design thinking process, but the techniques and the inner workings of the teams 

follow the same paradigm. 

Schallmo, Williams, and Lang (2018) propose a roadmap for design thinking that 

include the following steps: defining the design challenge, understanding the design 

challenge, defining perspectives, gaining ideas, developing prototypes, testing prototypes, 

and integrating prototypes. This roadmap is a culmination of existing design thinking 

theories including those of Platter et al. (2011) that map the activities from start to finish 

to fill the gap of innovation management (Schallmo Williams and Lang 2018). It further 

outlines the objectives and outcomes for each phase. Step two through step five when 

considered based on their activities, align with other literature presented in this section. 

The additional phases closely align to business and management practices rather than 

development and are not considered for analysis. 

B. LEAN PRODUCT DEVELOPMENT 

Lean product development (LPD) has adapted over many years, originating from 

Toyota’s production system (TPS) (Khan et al. 2013). Coined and created by Taiichi Ohno, 

TPS was built to increase value and reduce waste, while offering continuous improvement. 

Gaining traction through the 1990s, TPS has become industry standard and the much of 

the world has converted to lean production. The components of lean production, for 

example Kaizen and Gemba, amongst others, are instrumental to the success of executing 

a lean production program. While these components were designed for lean production, 

much research shows the intent can be applied to lean product development. Further, the 
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foundational characteristics or principles, also considered as a thought process, of lean 

production should be applied wholly to lean product development (Mynott 2012). These 

include understanding value, value stream mapping, flow, pull, and continuous 

improvement. Each of these principles is adapted to be specific to product development: 

• Principle #1 – Precisely specify the value of a new product. 
• Principle #2 – Identify the value stream for creating the new product. 
• Principle #3 – Allow value to flow without interruptions.  
• Principle #4 – Let the customer pull value from the development team. 
• Principle #5 – Continuously pursue (economical) perfection (Mascitelli 

2006, 15).  

LPD in one form can be the result of applying such principles to a given, already 

defined, development process where the tasks and activities are now part of a value stream 

that establishes a leaner product development process that aligns closely with the 

customers’ expectations and needs. Further, it provides in the ability to deliver products to 

market faster, by maximizing customer value and minimizing waste. By implementing 

LPD, a team can better predict schedule and eliminate redesign activities that cause delays, 

develop products in a shorter time-period, spend less time on activities and tasks that add 

no value, lower costs through the total product life cycle, lessen the uncertainty within the 

design and development process, and meet the needs of the customer or end user more 

completely (Radeka 2013). 

Minimizing waste, per Radeka (2013), allows product developers to focus on their 

tasks and prevents them from being interrupted by repetitive status meetings, excess 

documentation, or task balancing from participating in other programs. Mascitelli (2006) 

proposes his “top-ten” sources of product development waste in Figure 2.  



 

14 

 
Figure 2. Top-Ten Sources of Product Development Waste. Source: 

Mascitelli (2006).  

Mynott (2012) indicates time should be taken to purposefully remove or minimize 

waste throughout the entirety of the development process and the team should be aware of 

ways in which they can add value and incorporate such value along the way. His main point 

relating to the identification of waste as part of lean product development, is that any part 

of a process can be removed if it does not add value to the customer or the process, 

including product development. He further suggests the hardest part of identifying waste 

in product development is that most of it in invisible. 

Development teams should aim to ensure value adding “activities that build 

knowledge about customers, activities that build knowledge about our product technology, 

activities that iterate customer and technical knowledge into product that we can produce, 

and customers want to buy” (Radeka 2013, 19). Value stream mapping while a beneficial 

tool, will not produce a process with zero waste until an organization has worked through 

the process multiple times (Mynott 2012). Even then, no development project is the same, 

so some waste is simply inevitable.  



 

15 

From a startup perspective, Ries (2011) in his book The Lean Startup proposes a 

three-phase process consisting of a build-measure-learn feedback loop. This process is not 

specific to one-kind of development but aims to determine whether a product should be 

developed and whether an organization can sustain itself around that product (Ries 2011). 

The most significant component of Ries’ proposed three-phased process is the creation of 

a minimum viable product, also known as an MVP. He describes an MVP as a version of 

a product that delivers a defined minimum capability or functionality that allows the team 

to continue in the process and have some measurable impact.  

C. AGILE  

Agile development is formed via several different methods including scrum, feature 

driven development, and extreme programming, amongst others. This section presents 

scrum as an implementation of agile because it is the most used method for software 

development and is also suitable for any project-based work including hardware 

development (Capers 2018; Cooke 2012). In its purest form, scrum provides a structure for 

completing development activities or a given development project in an agile manner. 

Other tools, including utilizing lean principles, can be implemented to identify value 

streams that focus the development efforts and allows for organization of tasks into sprints 

that deliver a feature in a short amount of time (Pries and Quigley 2010).  

Measey et al. (2015) defines 12 principles of agile that should absolutely make a 

program successful. Utilizing scrum is a way that development tempo is increased, in 

addition to team responsiveness and communications, and reducing overall risk (Pries and 

Quigley 2010). Pries and Quigley (2010) mention when using the scrum approach, 

products are improved over time and delivered to the customer for use, at which time 

feedback is provided back to the development team. They also state the major “principle 

of Scrum is that frequent repetition allows for changes that arise during product 

development” (15). Furthermore, they describe agile as an iterative process where there are 

continuous opportunities for feedback, and as a deliverable driven development with every 

iteration. 
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Compared to a serial development process, agile focuses on delivering one feature 

in a short amount of time, as quickly as a few days or weeks (Capers 2018). Rather than 

moving serially through the process, each phase of the process is executed to some extent 

for each feature or capability being developed through a series of sprints (Pries and Quigley 

2010). At any given time, the team can be writing documentation, designing/developing, 

or testing and as the team progresses, work becomes more detailed as a product is realized 

(Pries and Quigley 2010). 

When using scrum, high level requirements are defined in a work breakdown 

structure early in the process, with a lesser level of detail (Vanderjack 2015). Use cases are 

created in the beginning to streamline and capture functional requirements and provide a 

means for customers to be involved and engaged (Pries and Quigley 2010). The use case 

method, also known as user stories, provides a minimum documentation level for the team 

to execute (Walsh and Mahesh 2015; Pries and Quigley 2010). These user stories become 

the product features that are ultimately delivered to the customer (Walsh and Mahesh 2015; 

Pries and Quigley 2010). Given the user stories are created, they are set into a backlog to 

which the team pulls tasks from and are executed in a sprint (Walsh and Mahesh 2015; 

Vanderjack 2015). Tasks can include concept development activities for example 

developing a code feature, updating a requirements specification. In software applications 

code features are tested and released, and as the team progresses and iterates through sprints 

additional design details and functionality defined as well as execution of verification 

activities including documentation creation and updates (Pries and Quigley 2010).  

Consider an iteration cycle. According to Vanderjack (2015), once the user stories 

are created the team completes iteration and sprint planning, and begins choosing the tasks 

to work or features to develop. Next the team begins their build or design activities, from 

a software development perspective this is when the detail design activities occur including 

initial unit/specific test (Vanderjack 2015). Vanderjack (2015) then explains that the team 

goes one step further in its testing that would include system test and regression testing. 

Once test activities are done, he indicates the team will declare the feature to be complete 

and test cases to be successfully addressed and reports delivered. At this point the team 

continues to iterate back through development activities or if ready prepares for production.  
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D. SET-BASED CONCURRENT ENGINEERING 

Set-based concurrent engineering (SBCE) is a method that Toyota implemented as 

part of its product development system. While Toyota follows a lean product development 

process, it applies lean principles in addition to set-based concurrent methodology for its 

overall product development execution (Sobek et al. 1999). SBCE is included in this work 

as a methodology on its own, rather than solely a part of the Toyota product development 

process. SBCE uses these principles to progress through a development process. 

According to Sobek et al. (1999) SBCE has three principles, and associated with 

each are three stages in which work is achieved, described as follows (73): 

1. Map the Design Space 
a. Define Feasible Regions 
b. Explore Trade-Off by Designing Multiple 

Alternatives 
c. Communicate Sets of Possibilities 

2. Integrate by Intersection 
a. Look for the Intersection of Feasible Sets 
b. Impose Minimum Constraint 
c. Seek Conceptual Robustness 

3. Establish Feasibility before Commitment 
a. Narrow Sets Gradually while Increasing Detail 
b. Stay within Sets Once Committed 
c. Control by Managing Uncertainty at Process Gates 

By contrast, Khan et al., identifies five major categories each with a set of principles 

that meet the category objectives. These five categories include (1) strategic value research 

and alignment, (2) map the design space, (3) create and explore multiple concepts in 

parallel (4) integrate by intersection, (5) establish feasibility before commitment (Khan et 

al. 2011, 3). In relation to concept and design/development of a product, Khan’s first 

category aligns more with planning prior to execution of development, the latter four 

however, could be applied to development activities. Generally, the principles proposed by 

Sobek et al. (1999) and categories proposed by Khan et al. (2011) agree on the fundamental 

characteristics and activities of SBCE. 

To execute SBCE, the team starts with mapping the design space, where they define 

the design bounds, explore trade spaces of multiple candidate solutions, and distributes sets 
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of possibilities to its team and its stakeholders (Khan 2011). Khan (2011) describes those 

feasible regions are defined by using checklists or design standards that detail design 

guidelines and best practices that help to define the initial conditions or defines them as 

subsystem targets. According to Sobek et al. (1999), in this phase, the team explores 

tradeoffs by designing multiple alternatives via simulations or prototypes, and then defines 

evaluation criteria or communicates acceptance criteria for those alternatives. Instead, 

Khan et al. (2011) defines the concept development as a separate phase where sets of design 

concepts are created and sets for each subsystem are defined. Sobek et al. (2011) suggests 

prototypes are created that fit within the defined sets, tested against targets, and then 

analyzed for further feasibility to which they are then communicated to the team. Further, 

Sobek et al. (1999) and Khan et al. (2011) agree most activities tend to result in some 

overlap between phases, however the design is narrowed over time as the project matures. 

Khan et al. (2011) defines the next phase as concept convergence and Sobek et al. 

(1999) as integrating by intersection. Both are consistent in the activities relating to 

determine where set intersections occur and that intersections identify solutions to a set. 

Feasible sets are identified based on analysis and critiques of a design (Khan et al. 2011; 

Sobek et al. 1999). Sobek et al. 1999 also suggests that minimum constraints be defined to 

provide some level of flexibility in exploring designs or improve integration, rather than 

being locked into solution early on, and such constraints also allow for a design to be 

functional regardless of physical variations. They emphasize that when engineering 

functions create designs that work well with all possibilities in other function sets, then it 

can be further developed without needing any more information. Both Khan et al. (2011) 

and Sobek et al. (1999) agree that as the sets begin to converge the team uses more detailed 

models and designs, that can be further narrowed via testing. For example, testing can occur 

as part of concept prototyping, while feasible sets are defined, and when the possibilities 

are converging (Khan et al. 2011). Testing as part of detailed design verifies and validates 

the design in accordance with the final specification (Khan et al. 2011; Sobek et al. 1999). 

Sobek et al. (1999) and Khan et al. (2011) also describe the last portion of their 

proposed process and activities are devoted to the detailed design of the development effort 

where the final design occurs from many possibilities converging gradually into one 
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design. Preliminary specifications become more defined, and each involved function agree 

on design sets that results in convergence to a solution (Sobek et al. 1999). The final design 

specification is released, including the final set of requirements, interfaces, and standards, 

and is managed through process gates that can include design reviews, early procurement 

of long lead parts, provisioning, and project milestones (Sobek et al. 1999). 

E. SYSTEMS THINKING 

Existing literature lacks a focus in understanding how systems thinking applies to 

new development or development programs. Rather, the literature focuses on systems 

theory as it applies to systems thinking and how systems thinking is utilized from an 

organizational and business practice (Galli 2018). Arnold and Wade (2015) argue that there 

are many definitions of what systems thinking is or encompasses and the term systems 

thinking is more abstract in nature is applied under different system theories. Peter Senge 

(2006) takes a business context perspective and describes systems thinking as the fifth 

discipline and argues that it is the cornerstone of the learning organization. Senge believes 

that systems education only allows people to breakdown pieces into smaller parts making 

complex tasks manageable, but connections within the system and the big picture are lost. 

In his book, he describes the necessary mind shift from linear thinking to systems thinking. 

More importantly he argues systems thinking requires one to see whole systems that have 

inter-linkages and causal relations, processes that change overtime, and leverage points or 

systemic behaviors. Peter Checkland, another pioneer of systems thinking, spent a large 

part of his career identifying the difference between a hard system and a soft system, and 

the methodologies of problem within each (Stowell 2013). Specifically, Checkland came 

up with what is now known as soft systems methodology, to which systems thinking 

applies the best when applied to real world problems (Ramage et al. 2020).  

More generally, systems thinking can be used to solve existing problems, finding 

fast tracks for improvements, and preventing possible future problems (Rutherford 2019). 

According to Senge (2006), people tend to see reality linearly, rather applying systems 

thinking results in the ability to see circles of causality where there are inter-relationships 

and constant change. Many of the systems thinking experts agree that systems are 
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interconnected and former approaches to solving complex problems by breaking a system 

down into smaller manageable elements is no longer sufficient (Goede 2015; Senge 2006; 

Rutherford 2019). 

Putting systems thinking more in the context of problem solving, when an emergent 

issue or failure presents, it can be linked to or categorized as a system archetype, or as a 

pattern of behavior (Senge 2006; Rutherford 2019). Rutherford (2019) defines an archetype 

as “commonly repeating variation of reinforcing and balancing feedback” where “each 

archetype has a typical pattern of behavior overtime, structure, and effective interventions” 

(92). He further describes that a system archetype gives structure to the systems thinking 

process, as it provides a method for investigations when analyzing errors in a system that 

have either occurred or can be predicted. 

Arnold and Wade (2015) propose that through the many different definitions of 

systems thinking there is not one that is fully correct. Though their analysis shows that 

many authors agree on the fundamentals of systems thinking, they indicated the definition 

provided by Sweeney and Sterman (2000) relating to education is the most useful because 

it outlines six necessary skills to execute in any scenario, including an approach to product 

development or for troubleshooting failures as part of evaluating prototypes or system level 

test. Their study was based on understanding the inventory of systems thinking concepts 

including feedback, delays, and stocks and flows. Arnold and Wade (2015) propose 

systems thinking steps that include (672): 

• Understand how the behavior of a system arises from the interaction of 
its agents over time (i.e., dynamic complexity) 

• Discover and represent feedback processes (both positive and negative) 
hypothesized to underlie observed patterns of system behavior 

• Identify stock and flow relationships 
• Recognize delays and understand their impact  
• Identify nonlinearities 
• Recognize and challenge the boundaries of mental (and formal) models 

Sweeney and Sterman (2000) argue that an inventory of systems thinking concepts 

will broaden people’s ability to understand dynamic complexity of systems and be able to 

apply them to everyday reasoning. Senge (2006) also agrees that we need perspective on 
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problems, and some insight as to how we would do things differently. Systems thinking 

therefore takes shape via an inventory of concepts, proposed steps, and necessary skills 

that can be applied to hardware development.  

Going one step further, Maani and Cavana (2007) propose a systems thinking and 

modeling process consisting of five phases including problem structuring, causal loop 

modeling, dynamic modeling, scenario planning and modeling, and organizational 

implementation. The casual loop modeling portion of this process focuses on showing the 

influences within a system, while dynamic modeling is used to model complex processes 

(Tsuchida and Jones 2019). Maani and Cavana (2007) suggest the focus of this proposed 

systems thinking process is the modeling aspect, and more specifically the ability to 

intervene within the problem space. This process is considered to align with a hard systems 

thinking methodology as it veers away from the soft systems methodology approach from 

Checkland that is more conceptual in nature (Maani and Cavana 2007).  

F. DEVELOPMENT AND OPERATIONS  

Since Development and Operations (devops) is a combination of different 

philosophies, tools, and practices there is a gap in literature describing design activities as 

they flow through the process; more specifically as it relates to hardware. Typical devops 

applications are accepted for software or IT applications. Thus, an analysis of design 

activities is taken literally from the typical continuous loop that results in continuous 

development and delivery.  

Devops is a culture where “collaboration between development, quality assurance 

and operations” (94) are fluid (Ebert et al. 2016). Its focus is to encourage cross-functional 

teams that deliver continuous features, products, or services (Leite et al. 2020). It is a 

collection of philosophies, tools, and practices, rather than a single defined process. Devops 

is a compliment of lean principles and agile in its structure (Kim et al. 2016). Though 

devops closely resembles agile in its desire to deliver capabilities quickly, devops brings 

two traditionally separate practice together development and operations which would 

normally be isolated.  
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Devops until now has been mainly used for software and IT development focusing 

on continuous improvement. There are three main phases to devops: build, deployment, 

and operations (Ebert et al. 2016). Devops relies on a value stream because of applying 

lean principles and has the iterative structure of agile (including stories and creating a 

backlog) (Kim et al. 2016). Kim et al. (2016) argues to be successful, devops must embody 

flow, feedback, and continual learning and experimentation, and it relies on user 

engagement throughout the entirely of the process (Kim et al. 2016).  

Ideally, there is constant feedback on work completed which enables the designers 

and developers to independently change, integrate and validate their product. Small 

changes are completed in a short amount of time, tested, and then deployed into a product 

(Dornenburg 2018). Kim et al. (2016) suggests a feature, or a capability or product would 

initially start in the planning phase where its requirements are defined and the creation of 

any initial up-front documentation. It would then progress through code and build for the 

design, through operate where it would be monitored and fed back through the loop for 

continuous improvement. In the first phase of work, design and deployment activities occur 

and in the second phase testing and operations are executed as value streams (Kim et al. 

2016). Lastly, Kim et al. (2016) states that rather than work flowing through the first phase 

and then the second phase, the goal is for them to happen concurrently – enabling fast flow 

and high quality, and the process requires small batches to build quality into each part of 

the value stream. 

If the process is considered from Ebert’s three-phase model, then once a project is 

kicked off, it begins in the build phase where the team builds the feature/capability. Ebert 

et al. (2016) insists that the team focus on continuous integration, and test early and often. 

Once in the deployment phase, the main goal is to place the feature/capability under 

configuration management (Ebert et al. 2016). Finally, once in the operations phase, they 

describe teams use logging and monitoring tools to receive feedback that can be used to 

continuously improve the system via improvements.  

From the developer’s perspective there is criteria critical to the start of a project or 

an improvement iteration. Developers should ensure the systems has met the requisite gates 

and approvals prior to making updates and they are encouraged to “place code into 
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production without coordinating with members of other development teams” (Zhu, Bass, 

and Champlin-Scharff 2016, 33). They add that it can affect overall design choices and the 

style in which architecture is defined. Accordingly, they inform that configuration 

management is critical because a system may move through the devops cycle quickly and 

that the architectural style of system and its interfaces will affect how a system is monitored 

after deployment (Zhu et al. 2016).  

Microsoft implements a four-step process for its devops practices for software and 

IT services that includes the following phases: plan, develop, deliver, and operate 

(Microsoft n.d.). The planning phase includes the upfront definition of features and 

capabilities, and as the team shifts into the develop phase all aspects of the design process 

including concept and development activities are executed (Microsoft n.d.). Similarly, to 

Ebert’s three-phase model, the product is placed under configuration management control 

and finally monitored and maintained during the operate phase (Ebert et al. 2016; Microsoft 

n.d.). Activity-wise the deployment and operate phases fall outside of the concept and 

development phase per the INCOSE SE Handbook – though due to continuous learning and 

feedback, devops could be considered as always being in the development stage. 
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III. CASE STUDY REVIEW 

This chapter analyzes literature for available or defined processes for the given 

methods relating specifically to hardware development. Each are analyzed for their 

effectiveness based on the literature findings. If such processes are not defined, or not well 

defined, characteristics and activities of the process are elaborated. Further implementation 

analysis is provided in addition to example for when to apply such methods.  

A. METHOD APPLICATION AND PROCESS IDENTIFICATION 

1. Design Thinking 

While none of the case studies included a detailed process or details for how design 

thinking was specifically implemented, they each provide evidence that the general phases 

of design thinking can be implemented in hardware development. Even the way in which 

organization implement design thinking for software development can be extrapolated and 

applied to hardware development. Design thinking is not prescriptive enough to be suited 

for only lane of product development. Rather, literature suggests it is widely applied across 

many industries and can be applied to hardware development. 

Design thinking is known to solve wicked problems. In solving such problems, 

Chang, Kim, and Joo (2013) analyzed how Samsung and Apple approached design 

thinking and propose that firms select “different paths to achieve design thinking 

depending on environmental dynamics” and organizational capabilities, where some have 

less or more exposure to changes. In their analysis the authors propose a technology 

epiphany path that outline how an organization achieves a balanced design thinking team. 

This team plays the role of the final decision maker and dominates business decisions, 

which in turn, allows them to make informed decisions and come to a solution (Chang et 

al. 2013). Although criticized sometimes, this separation resulted in less design limitations 

and now “Apple products are welcomed by a massive number of consumers, even though 

the individual features do not necessarily outperform other products” (Chang et al. 2013, 

31). Though the design thinking phases are not elaborated as part of this case study, the 

authors infer Apple and Samsung generally implement the design thinking phases as 
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defined in Chapter II. In another Apple study, Thomke and Feinberg (2012) noted for the 

operating system, the development team focused on the physical features people would 

want and perfected those prior to working the technical features and capabilities. Apples 

overall design thinking strategy focused on the most minute details (Thomke and Feinberg 

2012). 

In a study conducted by Marlena Pop (2020) for the development of the Leather 

Library project, she indicates that all stages of design thinking were involved. For the 

Ideation stage (third) the design team chose to utilize brainstorming and sketching to come 

up with candidate solutions (Pop 2020). Another aspect the design team implemented 

during ideation, was to randomly assign roles during conceptualization including a project 

manager, three-dimensional design manager, quality manager, environmental design 

manager, and market manager resulting in the team generating many potential solutions 

(Pop 2020). 

On the contrary, Mazzuchetti, Lopes, and Barbosa (2019) present an approach 

where design thinking is implemented for new products. The goal was to stimulate new 

ideas through design thinking (Mazzuchetti et al. 2019). They propose an approach to 

design thinking for new product development consisting of the following steps: identify 

where to find innovation opportunity, discover the innovation opportunity, develop the 

innovation opportunity, test the ideas and prototypes, and implement the solution.  

In another study, a software team developed and tested a phone application that 

provides self-management tools for type-2 diabetes (Peterson and Hempler 2017). The 

team used a three-phased design thinking method that includes inspiration, ideation, and 

implementation (Peterson and Hempler 2017). In the first phase, Peterson and Hempler 

(2017) describe the team activities as making observations and gathering information from 

the subjects regarding challenges and need related to living with diabetes. In the second 

phase, they describe that the team executed focus groups to determine the app needs where 

ideas were explored and developed and finally tested over several weeks where users were 

interviewed about the app’s usability. Ultimately the team refined the application over the 

course of design activities, prototyping, and receiving feedback iteratively, to support five 
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major functions in supporting the self-management of diabetes (Peterson and Hempler 

2017).  

2. Lean Product Development 

In the context of LPD, much of the existing literature focuses on the activities in 

which provide value to an organization. For example, a case study on product development 

at Ford discussed the necessary process transformations implemented to create a leaner 

development process, as they found their current process was wasteful and would 

eventually affect their ability to compete (Liker and Morgan 2011). Ford had to find ways 

to make immediate and continuous improvements, so as Liker and Morgan (2011) suggest, 

they created process improvement maps and held value stream mapping events that enabled 

for more dialogue within the team. Matrices were created to prioritize opportunities and to 

identify interdependencies and set-based concurrent engineering principles were applied to 

“work simultaneously for longer periods and delay key decisions until points in the process 

that were closer to customer” interactions and milestones (Liker and Morgan 2011, 22). 

The authors also point out that quality of event criteria was used to ensure quality was not 

only required but measured at each milestone throughout development. More importantly, 

the team at Ford held cross-functional reflection events at critical milestones to talk 

opportunities, successes, and waste and created value streams that worked towards cross-

functional objectives (Liker and Morgan 2011). Ultimately, Ford found that they needed 

to implement front end loading and innovation into their process and be proactive early on 

(Liker and Morgan 2011). The ability to pull value throughout the process was critical to 

Ford’s success.  

In another automotive case study, Tuli and Shankar (2015) argue that there are 

many collaborative activities or processes that the generic development approach cannot 

support. They detail two case studies in the automotive industry that employ a generic 

approach and then a collaborative and lean approach referred to as OEM1 and OEM2, 

respectively, where the collaborative approach consisted of performing a value analysis 

that was implemented as a value stream. Both development approaches were executed and 

then compared qualitatively and quantitatively (Tuli and Shankar 2015). Qualitatively, 
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three major development phases were measured, and the team determine the overall 

development cycle was greater for OEM and quantitatively, evaluation data shows that of 

the five parameters considered, OEM1 measured high in all categories except for design 

cost (Tuli and Shankar 2015). The authors show the organization was much more 

successful in their development when it implemented a collaborative and lean environment. 

The results also showed improvement in key performance indicators such as cost and 

schedule, risk factors, and quality to name a few (Tuli and Shankar 2015). 

3. Agile 

There is little supporting literature documenting an agile process approach to 

hardware development. Rather, only descriptive principles are outlined that could be 

applied more generally to hardware development. One group in particular, Rockwell 

Collins, agrees that hardware development platforms are lacking commercially, so in turn, 

they created their own, but the process is not available to the public (Dove 2018). 

Some organizations, like the LEGO Group, have been able to implement hardware 

development as part of a higher-level agile transformation where software and hardware 

are integrated into system level design. The LEGO Group implemented agile methods in 

multiple departments and found that it not only drove process change, but also positively 

affected the behaviors of their employees (Sommer 2019). The LEGO Group 

“demonstrates that an agile transformation [via scrum] can be successfully executed by 

applying agile values and principles to the transformation efforts themselves, enabling 

agile behavior rather than prescribing a particular method or model” (Sommer 2019, 20). 

The data from the LEGO Group, Sommer (2019) suggests, that the agile transformation 

was successful in its ability to create product-oriented teams who shared ownership in their 

responsibilities, for delivering quality products, and value via design iterations. More 

importantly, the LEGO Group implemented and executed their agile transformation via a 

100-day plan that consisted of four value streams, and defined activities that were rescoped 

overtime and throughout the development process (Sommer 2019).  

Lockheed Martin is another example in which agile was applied more generally. 

The objective of the Agile Systems Engineering Life-Cycle Model (ASELCM) project was 
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to identify foundational principles of agile that could be applied in multi-discipline systems 

engineering (Dove, Garlington, and Schindel 2018). Specifically, the article discusses the 

importance of “systemic, activity-based, continuous innovation” in an agile environment 

(Dove, Garlington, and Schindel 2018). These are analyzed in the case of Lockheed Martin 

Aeronautics Integrated Fighter Group (IFG), where the team was faced with the need to 

create an agile system engineering environment but address the urgent capability need 

(Dove, Garlington, and Schindel 2018). The authors further suggest that to be successful 

in both, the organization needs to create interconnection standards for physical 

connections, data connections and interfaces, security, and services which would enable 

process activity assembly. To sustain the agility within an SE development process, its 

infrastructure must remain agile and as outlined by Dove, Garlington, and Schindel (2018).  

4. Set-Based Concurrent Engineering 

On its own, there is a clear lack and structure of an SBCE process, rather literature 

is limited to a set of generic descriptive principles (Ashaab et al. 2013). The 

implementation of set-based concurrent engineering principles has been described as 

paired with other methods including agile or LPD. Though, Raudberget (2011) proposes a 

SBCE model derived using the three principles of SBCE shown in Figure 3, that could be 

used foundationally to define a process. The process begins with creating ideas/concepts 

and creating a morphological chart (or comparison chart) of those ideas/concepts. 

Overtime, the morphological chart is updated based on intersecting sets that define detailed 

requirements and features. In an iterative fashion, the development teams work to narrow 

the sets to identify and define the final design. 
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Figure 3. Proposed Set-Based Concurrent Engineering Development Model. 

Source: Raudberget (2011). 

Al-Ashaab et al. (2013) proposes an LPD process model that integrates the 

principles of SBCE for use in the aerospace industry, specifically the development of a 

helicopter engine. The developed process focuses on core enablers of “lean product 

development such as value focus, set-based solutions, integrated documentation, 

knowledge creation, and innovation” (Al-Ashaab et al. 2013, 282). Al-Ashaab et al. (2013) 

further argues that constant feedback from engineering highlighted areas of improvement 

and identified waste. Their proposed model is not available via literature, however much 

of their research stems from the use of SBCE process and activities defined in Khan et al. 

(2011) paper “Set-Based Concurrent Engineering Process Within the Lean PPD 

Environment” as a baseline. 

Similarly, Canciglieri et al. (2010) presents an adapted product life cycle between 

SBCE and traditional development process. They propose that applying SBCE speeds up 

the process substantially, especially when teams work together and simultaneously, the 

result of the development can be faster and less expensive. This study does not necessarily 

outline a process, rather Canciglieri et al. (2010) show that the differences in the number 

of parts, number of operations, attachments, cost, time, and manpower were significantly 

lower using an SBCE approach rather than traditional design methods.  
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5. Systems Thinking 

According to Goede (2005), “it is the aim of the systems thinkers to describe social 

systems where people and their value form part of the system” (83). One of the key 

principles to the systems thinking approach is the hierarchical nature of any system – it 

implies that every system is part of another larger systems (Goede 2005). In Goede’s (2005) 

work, Whitten et al. (2004) indicates that for information systems there is no systems 

thinking process defined, rather it uses descriptive systems thinking principles. According 

to his research, when applying soft systems methodology, the more important of the 

principles is getting the user involved to better understand the system. 

Rutherford provides a basic example of how systems thinking is applied within an 

organization (2019). He presents a hypothetical story of the company Acme, that had a 

persistent problem. As a result of brainstorming, Acme was able to fix the immediate issues 

independently. This, however, did not solve the problem. Rather, they needed to adopt a 

system view due to underlying problems, as Acme’s issues were just symptoms of a larger 

issue.  

In a study of health care management, Lebcir (2006) demonstrated under 

performance of health care systems is due to inadequacy of the tools and methods used to 

analyze and study them. The decision-making processes within the health care system do 

not appropriately capture the most important components of the system and their 

interconnectedness (Lebcir 2006). Lebcir (2006) describes how systems thinking principles 

were applied to “formulate, model, and analyze the system” (6). Their aim was to show, 

using systems thinking, the complexity in the structure of the health care system, by starting 

with simpler structures and adding in components to show how it can grow both in size 

and complexity. Systems thinking was specifically used in Lebcir (2006) to create a model 

or a mapping to address the bigger problem. 

In a different application, systems thinking was implemented with design thinking 

to identify when doctors and their students provide liver fluke infection information to 

places within their communities and where the discrepancies are, based on areas that have 

high infection rates (Samiphak et al. 2016). Samiphak et al. (2016) describes how a team 
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of medical professionals implemented systems to analyze how to best educate and provide 

information most effectively to communities. They also discuss how the approach led the 

team to reanalyze and reframe the data with a human centered (or design thinking) 

approach, in turn resulting in their ability to identify a disconnect between scientific and 

cultural knowledge specifically relating to awareness of health effects from eating certain 

fish. 

6. Devops 

Devops is mainly implemented in software and IT. Gill et al. (2018), discusses the 

process view of devops based on information management systems including full product 

life cycle, continuous delivery pipeline, continuous improvement, multistage testing, 

multistage deployment, and analytics. For each process, high level descriptive principles 

that align with those described in Chapter II are referenced. No specific application 

however is described for hardware development.  

According to Farroha and Farroha (2014), devops is the best approach for software 

development within the DOD mission environment. Though the authors do indicate that a 

devops culture is made of an integrated, cross-functional team that is tasked with solving 

problem they do not reference2 or specifically analyze hardware development (Farroha and 

Farroha 2014). In another article, Banica et al. (2017) propose that devops can be used as 

a project management tool. They argue that devops is an extension of agile, and where 

devops aims to test and release components when they are complete, agile delays delivery 

of the components to the customer and focuses on smaller component completions. They 

also argue that devops targets to increase efficiency of a design activity, more collaboration 

between design and implementation, and a faster transition of components from design to 

operation. 

B. IMPLEMENTATION ANALYSIS  

Literature review and analysis indicates there is little evidence of specific hardware 

development processes for the methods described herein. Raudberget (2011) proposed an 

SBCE development model that could be applied to hardware development, though there is 

a lack of supporting literature on its application. There is extensive research showing 
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application within a software development, however hardware development has limitations 

including hardware availability and failure analysis that make it difficult to define a 

singular process. Rather, literature describes that the guiding principles for each method 

can be applied more generically to hardware development in creating new process or 

enhancing a defined process.  

Literature shows methods can be used concurrently. For example, some of the 

reviewed case studies and literature reveal the use of at least two methods concurrently. In 

Samiphak et al. (2016) applied systems thinking with a design thinking approach to better 

understand and solve their given issue. Devops according to Banica et al. (2017) is also 

implemented concurrently with agile process structure (i.e., following the scrum method). 

Ahmed et al. (2013) describes Toyota’s product development process as lean in nature (i.e., 

value streams), implements SBCE principles, and further suggests SBCE be applied to a 

lean environment. The one size fits all narrative becomes too generic when dealing with 

complex hardware development. Such an endeavor requires cross-functional, cooperative 

teams willing to adapt to a different development environment and change their culture to 

align with a new strategic development approach.  

A specific example of using methods together is Scale Agile Framework, or SAFe, 

which is method that provides an agile framework, in conjunction with applying systems 

thinking, LPD, and devops. In a white paper published by Scaled Agile (2021), 

implementing agile development on its own is not enough. The big picture of the SAFe is 

creating business agility with core competencies that results in an agile structured delivery 

of software products, within large enterprises (Scaled Agile 2021). According to a 

multivocal literature review done by Putta, Paasivaara, and Lassenius (2018), there are 

many benefits of adopting SAFe including those of business and organizational benefits, 

and measurable quality throughout development. More specifically, in addition to 

improved quality, there is overall reduction in defects, continuous improvement, and waste 

elimination (Putta et al. 2018). 

Nevertheless, these methods should be considered based on what scenarios they 

may apply best and some examples for consideration are described: 
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• Design Thinking: prioritizes target audience needs 

• Lean Product Development: execute development activities that provide 

value and remove those that do not, streamline the process – add and pull 

value based on stakeholder needs 

• Agile: speed-to-market delivery, incremental deliveries, self-organizing 

teams, and early testing that builds in quality during throughout 

• Set-Based Concurrent Engineering: cross-functional focus in design and 

development activities to improve quality and design robustness 

• Systems Thinking: applies best in a problem space where there is 

uncertainty in the problem space 

• Devops: used to develop, test, and deliver features and products quickly 

and deploy modification or updates continuously to improve the product 
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IV. METHOD ALIGNMENT AND MAPPING 

This chapter accumulates the phases and activities for the identified methods as 

described in Chapters II and III. The first section describes the baseline process for 

comparison and list assumptions necessary for the proposed activity mapping. The second 

section presents figures with high-level summaries for each method including its activities, 

technical principles, and requirements, and present detailed tables for method that list the 

activities as they occur in each phase. The third section proposes an alignment of the phases 

of each method to the INCOSE generic life cycle in terms of concept and development 

phases and activities. The fourth section proposes a mapping of the activities that occur 

throughout the INCOSE generic life-cycle concept and development stages to those that 

occur within the six methods chosen for analysis in this work that can be used as a decision 

aid, a guiding resource, or for educational purposes. Finally, implications and limitations 

are presented. 

A. INCOSE PROCESS BASELINE AND ASSUMPTIONS 

Prior to analyzing how each method aligns to the generic life cycle as presented in 

the INCOSE SE Handbook, the following assumptions are made: 

• Concept and development phases of INCOSE generic life cycle are 

considered for baseline comparison 

• The alignment is based on literature research presented in Chapter II and 

Chapter III, and is not representative of cumulative existing literature 

• For a given method that does not have a fully defined process model, it 

will depict concept and development phases 

• Each process depicted can be applied to hardware development 

• Descriptions for a given method will indicate major activities that occur 

during a particular phase or stage of the process, and when applicable 

governing principles and characteristics 
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Given the above assumptions, the generic life cycle is revisited in Figure 4 as a 

visual representation of the phases that are considered in scope and those that are out of 

scope. 

 
Figure 4. In Scope and Out of Scope Stages of the INCOSE Generic Life 

Cycle. Adapted from INCOSE (2015). 

The generic life-cycle concept and development stages are considered in scope and 

are further summarized in Figure 5 (previously elaborated on in Chapter 1). The concept 

stage is broken into two phases, exploratory research and concept selection, and the 

development phase into two phases, system level design and detailed design. In addition to 

phase descriptions, governing technical processes are also included.  
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Figure 5. INCOSE Generic Life-Cycle Process Summary, Concept and 

Development Stages. Adapted from INCOSE (2015) and Ulrich and 
Eppinger (2016). 

Next, the activities as described in the INCOSE SE Handbook are listed and 

associated with the phase and overall generic life-cycle concept and development phases 

in Table 2. The activities listed are not necessary in chronological order, rather they are 

listed as activities that occur as part of the phase. The activities included from the INCOSE 

SE Handbook are directly identified in Table 2.  

 

 

Concept Development

INCOSE, ISO/IEC/IEE 15288 Generic Life Cycle

Conducted in two stages:
Exploratory Research: Define the problem space, establish 

target specifica�ons, and iden�fy stakeholder needs. Develop 
high-level preliminary concepts including defini�on of form, 

func�on, and features.
Concept Selec�on: Evalua�on of high-level concepts based on 

refined stakeholder needs and concept of opera�ons. 
Func�onal and architecture defined. Planning for further 

verifica�on and valida�on efforts.

Specify, analyze, architect, and design the system. Operator 
or end user interfaces are specified, tested, and evaluated. 
System level requirements are defined. System tes�ng for 
overall  performance, reliabil ity, and durabil ity executed. 

Prepara�on for release into produc�on.

Governing Technical Processes
• Stakeholder Needs and 

Requirements Definition 
Process

• System Requirements 
Definition Process

• Architecture Definition 
Process

• Design Definition Process
• System Analysis Process
• Implementation Process
• Integration Process
• Verification Process
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Table 2. Generic Life-Cycle Stages, Phases, and Activities. Adapted from 
INCOSE (2015) and Ulrich and Eppinger (2016). 

INCOSE, ISO/IEC/IEEE 15288:2015 - Generic Life cycle 
Life-Cycle Stage Phase Activities 

Concept 

Exploratory 
Research 

Investigate feasibility of product concepts 
Define form, function, and features 
Create specifications and technical 
documentation 
Analyze of competitive products 
Economics of justification 
Identify mission requirements 
Identify stakeholder needs 
Establish target specifications 
Estimate Cost and Schedule 

Concept Selection 

Evaluate Candidates 
Refine stakeholder needs 
Refine concept of operations 
Prototype or building mockups 
Develop models 
Run simulations 
Perform architectural tradeoffs 
Document risk opportunities 

Development 

System Level 
Design 

Define and refine system requirements 
Define system architecture 
Define interfaces 
Test 

Detailed Design 

Document system configuration 
Define quality assurances processes 
Procure/provision for production 

 

B. DESCRIPTIVE METHOD FIGURES 

This section elaborates on the phases for each of the identified methods: design 

thinking, LPD, agile, SBCE, systems thinking, and devops. More specifically, for each, the 

phases or stages will be expanded upon regarding the activities that occur. Additionally, 

any governing technical or general principles that apply are identified. These descriptive 

figures are not inclusive of all activities and do not include differentiating characteristics. 
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Following a similar paradigm, each method is visually represented like Figure 5 and 

activities listed in Table 2, based on the literature presented in Chapter II and Chapter III. 

The processes depicted are representative of proposed processes or derived from activity 

analysis. Phases or activities that fall outside of the concept and development phase are not 

considered for further analysis. There are cases in which a phase can be considered as part 

in scope and part out of scope. These are depicted for visual representation, and only 

analyzed for activities that fall within scope. This information will be used to align the 

methods and their activities to the generic life-cycle process as defined in the INCOSE SE 

Handbook.  

1. Design Thinking 

Figure 6 describes design thinking using the five phases as defined by Mueller-

Roterberg (2018), Wrigley, Nusem and Straker (2020), and Pop (2020) to name a few. It 

further includes the delineation of the problem space and solution space identified by 

Mueller-Roterberg (2018). Design thinking can be a serial process, though it is meant to 

be iterative at any point to which the team needs to cycle backwards. For example, this 

could depend on whether the prototype that was created wholly meets the needs of the 

target audience. Getting the correct design and product though is unlikely to occur in one 

iteration through the process, it is more likely that once a protype is created and tested, it 

will require, at a minimum, modifications based on testing and feedback.  
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Figure 6. Design Thinking Development Process Summary. Adapted from 

Lindberg et al. (2010), Mueller-Roterberg (2018), Linke (2017), Pop 
(2020), Balcaitis (2019), and Hasso Plattner Institute of Design (2019). 

Based on the phase description in Figure 6, the activities that occur are extrapolated 

and organized in Table 3. The activities are identified or reiterated via literature and case 

study analyses and matched to the phase in which they occur.  
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Table 3. Design Thinking Phases and Activities. Adapted from Lindberg et 
al. (2010), Mueller Roterberg (2018), Linke (2017), Pop (2020), Balcaitis 

(2019), and Hasso Plattner Institute of Design (2019). 

Design Thinking 
Phase Activity 

Empathize 

Identify stakeholder needs 
Gather inspiration 
Seek stories 
Prepare Research 

Define 

Define requirements definition 
Define problem statement 
Frame opportunities 
Identify meaning surprises and tensions 
Infer insights 

Ideate 

Brainstorm radical ideas 
Generate concepts 
Evaluate concepts 
Suspend judgement 
Refine ideas 

Prototype 

Develop models 
Create low-resolution prototypes 
Roleplay to understand context 
Build prototypes to think and learn 

Test 

Test amongst target audience 
Gather feedback 
Reflect and generate a new solution 

 

2. Lean Product Development 

The descriptive figure for LPD includes two phases: concept and development. 

Lean product development is considered in the context of applying lean principles to an 

existing hardware development process. Therefore, the major phases for consideration will 

be those of the generic life cycle and include concept and development. Figure 7 shows the 

concept and development phases and includes major activities that would occur when 

applying lean principles or exercises during the development process. It is important to 

keep in mind that when lean principles are applied to an existing process, the activities of 

which occur during both concept and development phases may not change.  
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Figure 7. Lean Product Development Process Summary. Adapted from 
Mynott (2012), Mascitelli (2006), Radeka (2013), and Liker and Morgan 

(2011). 

Based on the process description and technical principles, Table 4 shows the 

activities which then occur during concept and development. It is assumed that the 

activities during concept and development of which occur in the proposed lean product 

development process are at a minimum, the same or similar, to those that occur as part of 

the generic life-cycle concept and development stages. Therefore, Table 4 reflects specific 

lean activities in addition to concept and development activities defined by the generic life 

cycle (Table 2). 
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Table 4. Lean Product Development Phases and Activities. Adapted from 
Mynott (2012), Mascitelli (2006), Radeka (2013), and Liker and Morgan 

(2011). 

Lean Product Development 
Phase Activities 

Concept 

Identify value stream 
Identify waste 
Eliminate waste 
Define quality assurance processes 
Define requirements 
Develop features in increments 
Generate concepts 
Evaluate concepts 
Prototype or build mockups 

Development 

Develop models 
Run simulations 
Perform architectural tradeoffs 
Document risk opportunities 
Refine value stream 
Define and refine system requirements 
Define system architecture 
Perform system level test 
Continue feature development 
Iterate for constant feedback 
Identify waste 
Eliminate waste 
Seek continuous improvement 

 

3. Agile 

Agile on the other hand, from a literature perspective, is mostly supported in 

software and IT service applications. With little evidence that it can or has been applied to 

hardware development, the three stages shown in Figure 8 reflect those identified in its 

general flow and governed by scrum. The LEGO Group argues that by encouraging agile 

behavior, an agile process transformation is an easy transition (2019). Activity analysis of 

agile scrum indicated the release and transition stage falls partially outside of the scope of 

this work (i.e., outside of development) because the design team may iterate back through 

sprint execution to complete the tasks within the backlog or as part of a user story. The 
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main activities through the release and transition phase include releasing a feature or a 

complete product so it can be transitioned to a production environment or deployed to its 

end users.  

 
Figure 8. Agile Scrum Development Process Summary. Adapted from 

Walsh and Mahesh (2015), Pries and Quigley (2010), and Vanderjack 
(2015).  

Like LPD, activities of agile scrum can include any of those that fall within concept 

or development, or those that fit are defined within user stories. Therefore, Table 5 reflects 

specific agile scrum activities, lean activities, and concept and development activities 

defined by the generic life cycle (Table 2). 
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Table 5. Agile Scrum Phases and Activities. Adapted from Walsh and 
Mahesh (2015), Pries and Quigley (2010), and Vanderjack (2015). 

Agile 
Phase Activities 

Concept and Inception 

Create use cases 
Define functional requirements 
Create user stories 
Define minimum documentation 
Create backlog 
Plan sprints for task completion 
Execute sprints 

Development/Construction 

Generate concepts 
Evaluate concepts 
Prototype or build mockups 
Develop models 
Run simulations 
Perform architectural tradeoffs 
Document risk opportunities 
Define and refine system requirements 
Define system architecture 
Perform system level test 
Define quality assurance processes 
Place product or feature under configuration 
management control 
Procure necessary resources 

Release and Transition 

Release feature 
Release product 
Transition to production 
Transition for deployment 

 

4. Set-Based Concurrent Engineering 

SBCE is another method in which there is a lack of developed process for general 

use and specifically as it relates to hardware development. On its own SBCE lacks 

structure, though literature supports its existence based on its principles being applied in 

some other method (like LPD). Strictly considering SBCE, it is governed by three 

principles defined by Sobek et al. (1999) – “map the design space, integrate by intersection, 

and establish feasibility before commitment” (73). Though, it is Raudberget (2011) that 

proposes an SBCE model (Figure 3) that includes development phases that align to those 
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principles identified by Sobek et al. (1999). Figure 9 is based on the process proposed by 

Sobek et al. (1999), in addition to supporting literature detailing SBCE principles, 

categories, phases, and activities.  

 
Figure 9. Set-Based Concurrent Engineering Development Process 

Summary. Adapted from Sobek et al. (1999), and Khan et al. (2011). 

Table 6 specifically lists the phases as described by Sobek et al. (1999) and the 

activities supported by the literature presented in this work. The governing principles 

defined by Sobek et al. (1999) are not include in Table 6. 
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Table 6. Set-Based Concurrent Engineering Phases and Activities. Adapted 
from Sobek et al. (1999), and Khan et al. (2011). 

Set-Based Concurrent Engineering 
Phase Activities 

Idea Generation / Extended 
Morphological Chart 

Define design standards and guidelines 
Define requirements 
Perform tradeoff analysis of multiple 
concepts 
Define sets 
Develop models 
Develop prototypes 
Run simulations 
Identify functions and mechanisms 
(documented on morphological chart) 
Define evaluation criteria 
Perform evaluation tests  

Elimination by Compatibility and 
Constraint 

Identify intersection of sets to determine 
feasibility 
Set minimum constraints 
Down-select feasible sets 

Development and Test of Remaining 
Alternatives 

Increase design details 
Perform tests 
Update morphological chart 
Narrow sets gradually 

 

5. Systems Thinking 

Literature supporting systems thinking in terms of product development and 

hardware development especially is practically non-existent. Much of the study of systems 

thinking focuses on systems theory and applying those principles within a business and 

organization (Galli 2018). Though, Rutherford (2019) indicates that systems thinking can 

be applied more generally to solve existing problems, adapt, find fast solutions, and prevent 

future problems – where any problem at any time can be categorized by a system archetype 

giving the system structure. It was Maani and Cavana (2007) who proposed systems 

dynamics, a systems thinking process that aligns with hard systems thinking where the 

focus, as described by Lebcir (2006), is modeling the problem throughout, allowing the 

growth of an initial simple model and structure to something more complex. Though there 
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are other implementations of systems thinking, Figure 10, reflects the systems thinking 

process specifically relating to systems dynamics. When implementing systems thinking, 

there are minimum process requirements as defined by Sweeney and Sterman (2000) (also 

reflected in Figure 10).  

 
Figure 10. Systems Thinking Systems Dynamics Development Process 

Summary. Adapted from Maani and Cavana (2007), and Sweeney and 
Sterman (2000). 

Table 7 then reflects the activities specifically relating to the phases as identified. 

The phases and activities shown in Table 7 do not reflect the minimum process 

requirements as defined by Sweeney and Sterman (2000). Additionally, Table 7 does not 

reflect the “Scenario Planning and Modelling” and “Implementation” phases occurring 

concurrently. 
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Table 7. Systems Thinking Systems Dynamics Phases and Activities. 
Adapted from Maani and Cavana (2007), and Sweeney and Sterman 

(2000). 

Systems Thinking 
Phase Activities 

Problem Structuring 

Define the problem 
Describe problem in terms of events, patterns, and 
structures 

Casual Loop Modeling 

Identify main variables 
Visually represent behavior via time charts (or 
reference models) 
Develop casual loop diagrams 
Analyze relationships amongst variables 
Analyze behavior overtime 
Identify system archetypes 
Document high-level casual patterns 
Identify key leverage points 
Develop intervention strategies 

Dynamics Modeling 

Develop models to analyze the system 
Represent actors or participants in model 
Analyze complex processes 
Analyze feedback among behaviors 
Regulate performance 

Scenario Planning and 
Modeling 

Execute test scenarios (with changing variables) 
Identify key drivers of change 
Identify key drivers of uncertainty 
Identify factors of significant impact 
Evaluate factors of significant impact 

Implementation 

Implement organizational learning plan 
Provide learning plan to management 
Provide learning plan to stakeholders 

 

6. Development and Operations 

Devops too lacks a specific focus for implementation specifically into hardware 

development programs. There is literature though that supports devops execution along 

with other methods (Kim et al. 2016). On its own though, devops drives a collaborative 

environment in which the designers and the operators work together through the process, 

ridding of groups previously siloed from one another (Leite et al. 2020). It is a collection 
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of philosophies tools and practices than a defined process. Therefore, in proposing a 

process, Figure 11 represents phases described and supported amongst literature and case 

studies. For example, Ebert et al. 2016 identifies three phases, while Microsoft identifies 

four phases, in which the only difference is the addition of Microsoft’s planning phase.  

 
 

Figure 11. Devops Development Process Summary. Adapted from Kim et al. 
(2016), Ebert et al. (2016), Dornenburg (2018), and Microsoft (n.d.). 

Table 8 documents the activities related to identified phases, though these are not 

specific to only Microsoft and Ebert et al. (2016) phase descriptions. The governing 

principles and structure as defined by Kim et al. (2016) are not reflected in Table 8. 
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Table 8. Devops Phases and Activities. Adapted from Kim et al. (2016), 
Ebert et al. (2016), Dornenburg (2018), and Microsoft (n.d.). 

Development and Operations 
Phase Activities 

Plan 

Ideate feature/capabilities or product 
Define features/capabilities of product 
Define requirements 
Create initial documentation 
Plan for remainder of project 

Build 

Identify value stream 
Generate concepts 
Evaluate concepts 
Prototype or build mockups 
Develop models 
Run simulations 
Perform architectural tradeoffs 
Document risk opportunities 
Define and refine system requirements 
Define system architecture 
Perform system level test 
Define quality assurance processes 

Deployment 

Place product or feature under 
configuration management control 
Procure/provision for production 
Release feature 
Release product 
Produce product 

Operate 

Maintain feature/product 
Monitor feature/product 
Identify risks and issues 
Mitigate risks and issues 

 

C. METHOD ALIGNMENT  

Based on the descriptive figures and activity tables presented, each of the methods 

are aligned the generic life-cycle process. Specifically, their phases, activities, and general 

execution are analyzed and compared to the generic life-cycle concept and development 

stages. Figure 12 is a visual representation of how each method aligns to the generic life-

cycle concept and development phases, and subsequently each other.  
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Figure 12. Method Alignment 

The Figure 12 proposes that methods execute in a similar fashion–they consist of 

activities that are comparable in nature though the way in which they are executed is 

different (i.e., the process they follow). For example, consider the activities that occur in 

the design thinking empathize and define phases. Figure 12 shows that activities in which 

occur during these phases align to the activities that occur in the concept stage of the 

generic life-cycle concept stage. The design thinking ideate phase has activities that align 

to activities of which occur during the generic life-cycle concept and development stages, 

so it aligns to both. Specifically, as part of the ideate phase of design thinking the team 

comes up with many potential solutions and concepts (concept stage) and begins to refine 

ideas based on stakeholder needs and requirements (development stage). Similarly, all 

activities that fall within the prototype and test phase align to those or are like those in the 

development stage of the generic life cycle. For each of the identified methods in Figure 

12, the phase alignment based on activities is identified and can be expanded upon.  
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D. ACTIVITY MAPPING 

The alignment in Figure 12 is strongly based on the activities of which occur during 

a given phase, or phases. So, if the activities are solely considered, then such activities that 

occur as part of design thinking, LPD, agile, SBCE, systems thinking, and devops can too 

be aligned, or mapped to those that occur in the concept and development stages of the 

generic life cycle. The challenge though, is that not all activities are created equal. That is, 

the activity description may not be a one-for-one match based on literature and case study 

analysis. Further, a given method may have a different quantity of activities than another 

method, or even some that are completely different. So rather than mapping the activities 

of the given methods to the generic life-cycle stages, the generic life-cycle stages will be 

mapped to the methods presented throughout this work. The mapping will indicate whether 

the generic life-cycle activity definitively occurs in each method based off the literature 

and case study research in Chapter II and Chapter III, and the descriptive figure and activity 

table as documented Figure 5 and Table 2 respectively. This mapping is presented in  

Figure 13. Where there is an “X” denotes an activity that definitely occurs, and where there 

is an “●” denotes an activity that may occur. 
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Figure 13. High-Level Development Method Activity Mapping 
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E. ACTIVITY MAPPING SCENARIO 

Take for instance, a development team or program, that chooses to execute a 

hardware development project using a method other than their standard process-how would 

they know which method to choose? Or maybe a hardware design team is given the 

opportunity to implement or attempt hardware development utilizing a different process–

how do they know if they choose the right one? While this choice is based on many things 

including planning, expertise, training, to name a few, one of the areas of focus should be 

the translation of activities that occur between the organizations standard process to a 

potential new or different process.  

Figure 13 whether a given activity as identified as part of the generic life cycle, 

occurs in the method its being compared to. The figure assumes that the given methods 

will not execute that activity in the same manner, rather the intent in completing that 

activity is the same. If a team needs to identify stakeholder needs, they may go about it 

differently using based on the method, though the result would still be identification of 

stakeholder needs. 

Take for example a team that needs to develop an electronic component as a 

technical refresh for a product that has no spares and cannot be repaired. Their typical 

hardware development process follows or is closely representative of the generic life cycle 

defined in the INCOSE SE Handbook where concept activities and development activities 

are those as defined in Table 2 and the process is like that shown in Figure 5. As part of 

the program plan (or similar documentation) describing the deliverables and subsequent 

activities of the development process, there are several activities that absolutely must be 

executed: 

1. Define form, function, and features 

2. Evaluate candidates 

3. Develop models; Run simulations; Build prototypes 

4. Refine system level requirements 

5. Perform tests 
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6. Document system configuration 

7. Procure/provisioning for production 

This development team has also been given the opportunity to be apply a different 

method within the hardware development environment. However, they do not have enough 

knowledge to make an informed decision as to the method they could implement and the 

process they should execute. Understanding the activities that they need to execute, is the 

first step in figuring out whether a given method is feasible. 

Given the seven activities this team is required to execute, Figure 13 can be used to 

determine where those activities occur in a specific method. The first step is to identify the 

activities that are required for execution, then to identify if the activity occurs in each 

method (which is done by seeing if an “X” is checked in the matrix). Figure 14 depicts 

these updates. The activities that require execution are bolded, and for each cell that is 

populated, it is highlighted green. 
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Figure 14. Example Use of Activity Mapping
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Next, the team analyzes the chart to determine whether all applicable activities 

occur in each method. Based on Figure 14 LPD, agile, SBCE, and devops all execute these 

activities as art of the process. Therefore, the development team could use any one or 

combination of methods, considering only their activities.  
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V. CONCLUSIONS, LIMITATIONS, AND 
RECOMMENDATIONS 

This thesis provides a high-level activity mapping of six development methods to 

the activities that occur in the generic life cycle defined by the INCOSE SE Handbook, 

specific to the concept and development stages for hardware-focused systems. This chapter 

presents conclusions, suggested follow-on research, and recommendations.  

A. CONCLUSIONS 

This thesis lays the groundwork for a much bigger effort in determining feasibility 

of methods for not only hardware development but systems engineering in general. What 

this work shows is that from an activity perspective, one or more methods can shape 

hardware development processes to make them more effective and totally tailorable. Using 

the generic life cycle as identified by the INCOSE SE Handbook sets a baseline for 

development process and activities by reiterating the most basic understanding of what is 

takes to execute development in any domain. The mapping presented reflects a comparison 

of the activities that occur as part of the generic life cycle concept and development stages 

to their existence in the six methods identified which can be used in any systems 

engineering or development environment within the commercial industry or the DOD. The 

application of this mapping is unlimited. It is the first step in creating a resource that is 

inclusive and exhaustive in documenting existing methods, especially as the engineering 

world continues to aim for superiority in its products and services.  

B. LIMITATIONS 

The six methods discussed in this work were pulled from human, software, and 

hardware focused development domains. There are limitations to these methods when 

applying them from one domain to another, including hardware. The literature and case 

study reviews completed as part of this work truly lacked a focus in hardware development 

processes and applications. There are limitations to hardware development that are not 

experienced in software development. For one, hardware must be acquired to proof out a 

design or build a mature enough product for testing. Modifications can be costly and impact 
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schedule, especially if a component is considered long lead. Testing is also not immediate, 

as functional testing and environmental testing require additional fixturing, test setups, and 

training for proper use. Due to the nature of hardware development, it is not surprising that 

many of methods are being applied to development life cycles that may have better access 

determine how to specifically apply these new methods, or potentially create one that is 

specific to hardware development. What this work does show, is that some version of the 

methods described throughout could apply to hardware development programs if they are 

considered solely on their activities.  

Additionally, this work does not touch upon the implementation of more than one 

method in the hardware development process. Devops for example, has an agile structure 

and applied LPD principles. Literature also indicates that SBCE principles are foundational 

to the structure and flow of LPD. Therefore, devops could be an accumulation of two to 

three different methods. So, if a development team was to choose a method to execute, they 

would need to do further research as to how these could be integrated into one cohesive 

process. Additionally, it would be possible to use one method during concept and another 

during development if the activities aligned properly. Though, by applying two different 

methods, an organization may find the transition difficult and need to provide proper 

training to accompany the transformation. 

C. RECOMMENDATIONS FOR FUTURE RESEARCH 

This work is not exhaustive of all methods, their phases, implementations, and 

activities, so it would be beneficial to continue building upon the method alignment and 

the activity mapping presented herein. 

Since the mapping presented in this work is specific in mapping activities to 

methods, additional work is needed to map activities to activities between methods. As in, 

the activities that occur during the generic life cycle stages of the INCOSE SE Handbook 

could be mapped to the activities that occur as part of agile when applied to development 

(for example). This would provide an in depth and true comparison of the activities and 

events that occur during development given a specific method is applied.  
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Furthermore, rather than solely considering activities, it would be beneficial for an 

organization to organize the defining characteristics for the methods discussed herein. This 

would give better insight to specific applications including best use case scenarios, 

engineering and organizational cultures, and industry implementation. In conjunction with 

an activity mapping (or mappings), it would help create a comprehensive resource for use 

in any engineering environment. 

Finally, the development of a tool that a user could navigate by inputting or 

choosing activities and characteristics of a development program, that not only provides a 

recommended method but may even propose a baseline process would be beneficial to any 

organization and in any development program.
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