

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

ACTIVITY MAPPING OF DEVELOPMENT METHODS
AS A DECISION AID FOR HARDWARE

DEVELOPMENT PROGRAMS

by

Aimee K. McCarthy

September 2021

Thesis Advisor: Clifford A. Whitcomb
Second Reader: Walter E. Owen

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2021 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
ACTIVITY MAPPING OF DEVELOPMENT METHODS AS A
DECISION AID FOR HARDWARE DEVELOPMENT PROGRAMS

 5. FUNDING NUMBERS

 6. AUTHOR(S) Aimee K. McCarthy

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 Adoption of alternate development methods throughout engineering domains is resulting in more
effective execution. However, implementation of such methods for hardware development programs has not
been widely adopted or their processes well documented. To understand their potential for implementation,
the generic life cycle defined in the INCOSE Systems Engineering Handbook is set as the baseline for
comparison of development methods. This work analyzes six alternate development methods including
design thinking, lean product development, agile, set-based concurrent engineering, systems thinking, and
development and operations, focusing on their activities and overall flow to not only align them with the
generic life cycle for visual representation of development progression, but more importantly, to map the
similarities between the activities of the concept and development stages of the generic life cycle. Presented
in this work is a mapping that compares the execution of the generic life-cycle baseline development
activities to their occurrence in the six methods discussed. This mapping can be used as a decision aid within
the hardware domain for determining the feasibility of an alternate method, giving programs a tailorable
approach for hardware development.

 14. SUBJECT TERMS
hardware development process, development methods, design thinking, human centered
design, lean product development, agile, set-based concurrent engineering, systems thinking,
development and operations, activities, mapping

 15. NUMBER OF
PAGES
 93
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

ACTIVITY MAPPING OF DEVELOPMENT METHODS
AS A DECISION AID FOR HARDWARE DEVELOPMENT PROGRAMS

Aimee K. McCarthy
Civilian, Department of the Navy

BS, Union College, 2014
MPS, Pennsylvania State University, 2019

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2021

Approved by: Clifford A. Whitcomb
 Advisor

 Walter E. Owen
 Second Reader

 Oleg A. Yakimenko
 Chair, Department of Systems Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Adoption of alternate development methods throughout engineering domains is

resulting in more effective execution. However, implementation of such methods for

hardware development programs has not been widely adopted or their processes well

documented. To understand their potential for implementation, the generic life cycle

defined in the INCOSE Systems Engineering Handbook is set as the baseline for

comparison of development methods. This work analyzes six alternate development

methods including design thinking, lean product development, agile, set-based concurrent

engineering, systems thinking, and development and operations, focusing on their

activities and overall flow to not only align them with the generic life cycle for visual

representation of development progression, but more importantly, to map the similarities

between the activities of the concept and development stages of the generic life cycle.

Presented in this work is a mapping that compares the execution of the generic life-cycle

baseline development activities to their occurrence in the six methods discussed. This

mapping can be used as a decision aid within the hardware domain for determining the

feasibility of an alternate method, giving programs a tailorable approach for hardware

development.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. GENERIC LIFE-CYCLE ...2

1. Life-Cycle Model ..2
2. Life-Cycle Stage Description ...4

C. RESEARCH SCOPE ...5
1. Research Questions ..6
2. Research Approach ..6

D. PURPOSE ...7
E. DELIVERABLES ..8
F. ORGANIZATION OF STUDY ..8

II. DEVELOPMENT METHODS OVERVIEW ...9
A. DESIGN THINKING ..9
B. LEAN PRODUCT DEVELOPMENT ...12
C. AGILE ...15
D. SET-BASED CONCURRENT ENGINEERING17
E. SYSTEMS THINKING ...19
F. DEVELOPMENT AND OPERATIONS ...21

III. CASE STUDY REVIEW ...25
A. METHOD APPLICATION AND PROCESS

IDENTIFICATION ...25
1. Design Thinking ...25
2. Lean Product Development ...27
3. Agile ...28
4. Set-Based Concurrent Engineering ..29
5. Systems Thinking ...31
6. Devops ...32

B. IMPLEMENTATION ANALYSIS ..32

IV. METHOD ALIGNMENT AND MAPPING ...35
A. INCOSE PROCESS BASELINE AND ASSUMPTIONS35
B. DESCRIPTIVE METHOD FIGURES ..38

1. Design Thinking ...39
2. Lean Product Development ...41
3. Agile ...43

viii

4. Set-Based Concurrent Engineering ..45
5. Systems Thinking ...47
6. Development and Operations..49

C. METHOD ALIGNMENT ...51
D. ACTIVITY MAPPING ...53
E. ACTIVITY MAPPING SCENARIO ...55

V. CONCLUSIONS, LIMITATIONS, AND RECOMMENDATIONS59
A. CONCLUSIONS ..59
B. LIMITATIONS ..59
C. RECOMMENDATIONS FOR FUTURE RESEARCH60

LIST OF REFERENCES ..63

INITIAL DISTRIBUTION LIST ...71

ix

LIST OF FIGURES

Figure 1. Standardization/International Electrotechnical Commission/ Institute
of Electrical and Electronics Engineers (ISO/IEC/IEEE) 15288:2015
Generic Life-Cycle Stages. Source: INCOSE (2015).3

Figure 2. Top-Ten Sources of Product Development Waste. Source: Mascitelli
(2006). ..14

Figure 3. Proposed Set-Based Concurrent Engineering Development Model.
Source: Raudberget (2011). ...30

Figure 4. In Scope and Out of Scope Stages of the INCOSE Generic Life
Cycle. Adapted from INCOSE (2015). ..36

Figure 5. INCOSE Generic Life-Cycle Process Summary, Concept and
Development Stages. Adapted from INCOSE (2015) and Ulrich and
Eppinger (2016). ..37

Figure 6. Design Thinking Development Process Summary. Adapted from
Lindberg et al. (2010), Mueller-Roterberg (2018), Linke (2017), Pop
(2020), Balcaitis (2019), and Hasso Plattner Institute of Design
(2019). ..40

Figure 7. Lean Product Development Process Summary. Adapted from Mynott
(2012), Mascitelli (2006), Radeka (2013), and Liker and Morgan
(2011). ..42

Figure 8. Agile Scrum Development Process Summary. Adapted from Walsh
and Mahesh (2015), Pries and Quigley (2010), and Vanderjack
(2015). ..44

Figure 9. Set-Based Concurrent Engineering Development Process Summary.
Adapted from Sobek et al. (1999), and Khan et al. (2011).46

Figure 10. Systems Thinking Systems Dynamics Development Process
Summary. Adapted from Maani and Cavana (2007), and Sweeney
and Sterman (2000). ...48

Figure 11. Devops Development Process Summary. Adapted from Kim et al.
(2016), Ebert et al. (2016), Dornenburg (2018), and Microsoft (n.d.).50

Figure 12. Method Alignment ...52

Figure 13. High-Level Development Method Activity Mapping54

x

Figure 14. Example Use of Activity Mapping ..57

xi

LIST OF TABLES

Table 1. Generic Life-Cycle Stage Purpose. Source: INCOSE (2015).3

Table 2. Generic Life-Cycle Stages, Phases, and Activities. Adapted from
INCOSE (2015) and Ulrich and Eppinger (2016).38

Table 3. Design Thinking Phases and Activities. Adapted from Lindberg et
al. (2010), Mueller Roterberg (2018), Linke (2017), Pop (2020),
Balcaitis (2019), and Hasso Plattner Institute of Design (2019).41

Table 4. Lean Product Development Phases and Activities. Adapted from
Mynott (2012), Mascitelli (2006), Radeka (2013), and Liker and
Morgan (2011). ..43

Table 5. Agile Scrum Phases and Activities. Adapted from Walsh and
Mahesh (2015), Pries and Quigley (2010), and Vanderjack (2015).45

Table 6. Set-Based Concurrent Engineering Phases and Activities. Adapted
from Sobek et al. (1999), and Khan et al. (2011).47

Table 7. Systems Thinking Systems Dynamics Phases and Activities.
Adapted from Maani and Cavana (2007), and Sweeney and Sterman
(2000). ..49

Table 8. Devops Phases and Activities. Adapted from Kim et al. (2016),
Ebert et al. (2016), Dornenburg (2018), and Microsoft (n.d.).51

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

devops development and operations
DOD Department of Defense
INCOSE the International Council on Systems Engineering
ISO/IEC International Organization for Standardization/International

Electrotechnical Commission
ISO/IEC/IEEE International Organization for Standardization/International

Electrotechnical Commission/Institute of Electrical and Electronics
Engineers

LPD lean product development
MVP minimum viable product
NASA National Aeronautics and Space Administration
SBCE set-based concurrent engineering
SE systems engineering
TR technical report

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

EXECUTIVE SUMMARY

The INCOSE Systems Engineering Handbook documents the generic life cycle as

defined by ISO/IEC/IEEE 15288-2015. This standardized process, well understood

throughout engineering development, suggests that a product can progress through its life

cycle by means of serial or iterative processes, or a combination thereof (INCOSE 2015).

Though, it does not provide guidance as to the method in which could be applied for that

progression. Contrary to software or information technology services, implementation of

development methods for hardware development are not well documented throughout

engineering and Department of Defense industries. Furthermore, there is increasing

pressure to adopt new practices to align with the DOD’s mission of providing capabilities

at the speed of relevancy (Garamone 2017; Ferdinando 2018). This paves the path of an

immediate need for hardware development programs to have a foundational level of

knowledge of existing development methods that would allow for effective program

execution.

With a lack of guidance for applicability of development methods, this work

analyzes the activities that occur during development given the implementation of an

explicit method, and those defined by the generic life cycle for the concept and

development stages as baseline for development activities. By means of literature review,

the activities of six methods are compared to such baseline. The result is a high-level

mapping of activities, in matrix form, that can be used as a decision aid, or as a general

educational resource for method determination in hardware development programs.

This work analyzes development methodologies including design thinking, lean

product development, agile, set-based concurrent engineering, systems thinking, and

development and operations. For each, hardware development processes are presented

based on the literature review and case study analyses that are used to describe the activities

that occur in a specific stage or phase or the process in addition to high-level details, and

any governing technical principles or requirements that are part of the process. The

literature and case studies presented in this work are limiting in the sense that adoption of

development methods specifically for hardware development has not been widely applied

xvi

or documented. For such methods that do not heave specific implementations for hardware

development, more general applications are considered.

Analysis of the activities of which occur throughout hardware development show

that no matter the method of execution there is similar intent, and the expected outcome

can be similarly achieved. The results indicate that between different system engineering

methods, many of the same activities occur, though a methods defining characteristics in

addition to their problem-solving approach affect the execution of those activities.

Further, the results show that in many cases development methods are successful

when utilized collectively. Particularly, development and operations implement lean

principles and is in agile in structure (Kim et al. 2016), agile on its own may implement

lean principles (Pries and Quigley 2010), and set-based concurrent engineering principles

are inherently part of lean product development (Al-Ashaab et al. 2013). The only

development methods discussed in this work that could be exclusively implemented are

design thinking and systems thinking. Design thinking is a well-defined and well-

documented process utilized mostly within the commercial industry, and systems thinking

is a holistic approach to problem solving that is typically used from an organizational

perspective. There is evidence that hard systems thinking, or systems dynamics can be used

for product development, however current literature does not expand upon its

implementation.

The mapping of activities presented in this work only represent a subset of all the

activities that occur and does not map activity to activity. Additional work is needed to

expand upon not only these activities, but to also identify other development. Furthermore,

while having an awareness to development methods for determining an appropriate method

for use, knowing the defining characteristics of a given method is also valuable in

determining feasibility. Used in conjunction with an activity mapping would provide a

more cohesive package for aid in decision making for development method implementation

within an organization.

xvii

List of References

Al-Ashaab, Ahmed, Matic Golob, Usama M Attia, Muhammad Khan, Jon Parsons,
Alberto Andino, Alejandro Perez, et al. 2013. “The Transformation of Product
Development Process into Lean Environment Using Set-Based Concurrent
Engineering: A Case Study from an Aerospace Industry.” Concurrent
Engineering, Research and Applications 21 (4): 268–85. https://doi.org/10.1177/
1063293X13495220.

Ferdinando, Lisa. 2018. “DOD Must Be More Agile in Technology Development,
Official Says.” DOD NEWS. April 19, 2018. https://www.defense.gov/Explore/
News/Article/Article/1497393/.

Garamone, Jim. 2017. “DOD Restructures Acquisition, Technology Office to Improve
Military Lethality, Speed.” DOD News Defense Media Activity. August 7, 2017.
https://www.army.mil/article/191904/dod_restructures_acquisition_technology_of
fice_to_improve_military_lethality_speed.

INCOSE. 2015. Systems Engineering Handbook: A Guide for System Life-cycle
Processes and Activities. Hoboken, NJ: John Wiley & Sons.

Kim, Gene, Jez Humble, Patrick Debois, and John Willis. 2016. The Devops Handbook
How to Create World-Class Agility, Reliability, & Security in Technology
Organizations. Portland: IT Revolution Pres, LLC.

Pries, Kim H., and Jon M. Quigley. 2010. Scrum Project Management. Boca Raton, FL:
CRC Press.

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

ACKNOWLEDGMENTS

First and foremost, I would like to thank and recognize my husband, TJ,

for supporting me through this journey. Navigating this program while becoming first-

time parents has been challenging and the greatest blessing, and it was his

positivity that continued to motivate me. I owe so much of my success to him.

Next, I’d like to thank my advisor, Distinguished Professor Cliff Whitcomb. His

guidance allowed me to progress through this thesis with a sense of defined creativity.

More importantly, his expertise in methods and development processes in general was

critical to the success of this work.

I must also show my gratitude to my PD-21 cohort members for the constant, never-

ending thesis motivation. No matter the time of day or place, I could always count on them

for guidance, point-directed help, and uplifting humor. It has been a pleasure to learn from

you all, and I wish you all the best in your careers.

Finally, this thesis would not have been possible without the encouragement of my

supervisor Dan O’Connell and those I work with at PMO SPSP. I so appreciate the

flexibility provided to attend this program and complete this thesis. I look forward to

sharing it with SSP as we continue to explore and adopt new methods within our

development efforts.

xix

xx

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND

In 2018, Michael D. Griffin went before the House Armed Services Committee for

a special hearing for the Department of Defense’s (DOD) culture of innovation and

delivered a powerful testimony. He emphasized how critical it is that the DOD pursue new

technologies and breakthrough research to preserve its technological advancements

(Ferdinando 2018). Ferdinando also noted that today’s adversaries systematically and

strategically develop and field advanced systems more rapidly than the United States.

Griffin added that it is a priority for the DOD to drive the innovation cycle to sustain

technological superiority by developing innovative capabilities in addition to being

innovative in our processes (Ferdinando 2018). The typical waterfall development process

cannot keep pace in aligning with this vision (Moore 2021). A sequential approach does

offer benefits including predictability, stability, repeatability, and high assurance

throughout the development process, though it has slow accommodation to change and

lack of adaptability and flexibility, and longer delivery times due to its serial nature

(Smartsheet n.d.). Sequential approaches are best used in a development program that is

incredibly rigid where tasks and deadlines are set and maintained (Smartsheet n.d.), and

not conducive in an environment where change is inevitable, and programs must adapt and

remain flexible to stakeholder needs and required changes. To be successful and rapidly

deploy capabilities to the warfighter, the DOD must “move at the speed of relevancy”

(Garamone 2017). Deputy Director Secretary Pat Shanahan perfectly explained this when

he said, “baseball doesn’t get a phenomenal 17-year-old player and finally get him to the

major leagues when he is 45, and neither should the DOD” (Garamone 2017). Prompting

the DOD into action, it now faces the challenge of developing hardware more effectively

and by use of innovative processes.

Consider the development buzzword “agile” that has quickly become a

development standard in software, and “development and operations” likewise for

information technology applications. These development methods aim to develop software

and related services to their users quicker and with the same fidelity otherwise achieved

2

using waterfall development methods. For hardware development however, there is a lack

of literature and case studies that define similar processes to streamline development efforts

resulting in faster deliveries of hardware products. The DOD has a need to execute

hardware development more rapidly, given that the status quo for development has been

serial or sequential in nature. This work, then considers a need to provide program

managers, designer, engineers, and organizations with knowledge of not only existing

development methods and processes that are available for implementation, but also the

activities which occur as part of those processes. Provided as a resource, such information

could be used to help programs tailor specifically to the activities in which they need to

complete to meet their objective, without sacrificing quality. Specifically, this work will

compare existing development methods by analyzing main activities, phases or process

flows against a defined, baseline hardware development life cycle. Throughout this work,

the development methods discussed and analyzed will be referred to as methods.

B. GENERIC LIFE-CYCLE

This work uses the generic life-cycle model defined in the International Council on

Systems Engineering (INCOSE) Systems Engineering (SE) Handbook as a baseline for

hardware development stages and process. The scope of this work considers the concept

and development life-cycle stages because they involve the physical design and

development of a hardware product. The focus throughout this work is strictly on the design

activities from concept, through development up until, but not including production

readiness.

1. Life-Cycle Model

According to the International Organization for Standardization/International

Electrotechnical Commission (ISO/IEC) Technical Report (TR), ISO/IEC TD 24748-1, a

“system progresses through a common set of life cycle stages” including concept,

development, production, utilization, support, and retirement (INCOSE 2015, 29). The life-

cycle model represents the stages that the product will progress through to ensure it meets

the intended functionality through its life, shown in Figure 1. The stages are shown in

general sequential order, though stages in practice can be interdependent, overlapping, and

3

concurrent (INCOSE 2015). Possible progressions of a product through its life cycle may

include sequential, iteration and recursion, and incremental and iterative methods

(INCOSE 2015).

Figure 1. Standardization/International Electrotechnical Commission/

Institute of Electrical and Electronics Engineers (ISO/IEC/IEEE)
15288:2015 Generic Life-Cycle Stages. Source: INCOSE (2015).

The purpose of each phase is further delineated in the INCOSE SE Handbook and

is shown in Table 1. For example, the concept stage is more extensive than others due to

the amount of up-front work required including defining the problem space, characterizing

the solution space, and identifying stakeholder needs, to name a few. Without fulfilling that

purpose, rework may be required later during the development process resulting in cost

and schedule impacts, or the result is a system that does not meet the needs of the

stakeholders.

Table 1. Generic Life-Cycle Stage Purpose. Source: INCOSE (2015).

Life-Cycle Stages Purpose
Concept Define Problem Space

• Exploratory Research
• Concept Selection

Characterize solution space
Identify stakeholders’ needs
Explore ideas and technologies
Refine stakeholders’ needs
Explore feasible concepts
Propose viable solutions

Development Define/refine system requirements
Create solution description-architecture and design
Implement initial system

4

2. Life-Cycle Stage Description

a. Concept Stage

The INCOSE SE Handbook breaks down the concept stage into two parts:

exploratory research and concept selection. During exploratory research, the team develops

a high-level preliminary concept to a depth that allows them to “identify technological risks

and assess the technology readiness level of the project” (INCOSE 2015, 29). Ulrich and

Eppinger (2016) simply suggest these phases investigate the feasibility of product concepts

where a preliminary concept “is a description of the form, function, and features of a

product accompanied by specifications” and technical documentation, “analysis of

competitive products, and economic justification” (15). Key activities of exploratory

research include defining the problem space, identifying mission requirements and

stakeholder needs, establishing target specifications, and providing “an estimate of the cost

and schedule for full-scale development” (INCOSE 2015, 30).

During concept selection, the team analyzes multiple candidate solutions (concepts)

and presents justification for the selected candidate based upon refined stakeholder needs

and concept of operations (INCOSE 2015; Ulrich and Eppinger 2016). This effort can

include prototyping or building mock-ups and developing models and simulations. This

would allow the team to perform architectural tradeoffs and explore risks and opportunities

(Ulrich and Eppinger 2016). The concepts are tested to show preliminary results again

critical stakeholder needs and scored for overall adherence to stakeholders needs and

requirements. Key activities of concept selection include creating the functional definition

of the system, defining the architecture, and planning for integration, verification, and

validation testing (INCOSE 2015; Ulrich and Eppinger 2016).

b. Development Stage

During development, the team further defines a product of interest that will

ultimately be produced. Development should not start until a concept, or concepts are

chosen or down selected into this phase. In this stage, stakeholder needs, and requirements

are formally defined and used to develop the system architecture (INCOSE 2015). One key

activity during development “is to specify, analyze, architect, and design the system so that

5

the system elements and their interfaces” are understood and specified, and testable

(INCOSE 2015, 31). Operator or end user interfaces are specified, tested, and evaluated.

Feedback is provided by stakeholders through technical reviews and decision gates for

information awareness and approval to proceed (INCOSE 2015). As part Ulrich and

Eppinger’s (2016) generic product development process, development is broken into two

major phases, system-level design, and detail design, and supported by a testing and

refinement stage. The activities accomplished throughout the development stage as a whole

or broken in multiple phases are the same (Ulrich and Eppinger 2016). For example, in

Ulrich and Eppinger’s (2016) generic product development process, system level design

feeds the design of the product, while detail design focuses on documenting the system

configuration, ensuring quality assurance processes are in place, and placing early

procurement orders. They further define a testing and refinement phase which covers

system testing for overall performance, reliability, and durability in addition to prepping

for production (Ulrich and Eppinger 2016). It is important to recognize that the generic

life-cycle stage of development defined in the INCOSE SE Handbook serves as a large

umbrella for many design activities, or phased activities. Nonetheless at the end of the

development stage, is a decision gate requesting approval to move into production or

agreement that the system has met is production readiness criteria (INCOSE 2016).

C. RESEARCH SCOPE

In support of the DOD’s mission to move at the speed of relevancy and the desire

to be innovative within the development process, this work proposes a mapping of methods

against the generic life cycle defined by the INCOSE Systems Engineering Handbook that

would allow programs to choose development phases and activities specifically tailored to

their program. How a program implements the chosen method(s) to fit within their

organization and their schedule is not proposed as part of this work. Rather, this mapping

will align the stages, activities, and major characteristics of the generic life cycle and

methods identified via literature research and review.

The methods chosen for analysis were based on their applicability in solving

problems from a systems perspective, their implementation into software or IT services

6

development, or their implementation into hardware development. Even if one method

lacks the literature supporting application for hardware development, its activities and

governing principles or characteristics could be translated more generically and applied in

a hardware development environment.

1. Research Questions

The following research questions are analyzed:

• How do the identified development methods align with generic life-cycle

process within concept and development phases as defined by the INCOSE

SE Handbook?

• What are major phases and activities of the identified methods?

• Have these methods been executed within hardware development projects/

programs? If not, are there implementations of the given method that may

support hardware development?

2. Research Approach

The research for this work will begin by analyzing six different methods including:

• Design Thinking

• Systems Thinking

• Lean

• Agile

• Set-Based Concurrent Engineering

• Development and Operations

Each method in the context of understanding its phases or effect on the identified

generic life-cycle stages, will be described. Case studies or implementations of each

7

method will be further analyzed to better understand the method as it pertains to hardware

development.

D. PURPOSE

There are two opportunities in which this work can contribute. First, organizations

need to find a way to make their existing processes innovative and more effective. To do

so, organizations should consider employing other methods in executing their hardware

development programs. For example, the DOD Acquisition Framework has been modified

with more flexible pathways so programs can execute as they see fit. This flexibility is lost

if programs, including its design teams, continue to execute in a serial nature, or as Moore

(2021) refers to as waterfall. Programs need a way to compare how their hardware

development process or how a generic hardware development process aligns to others so

that they can tailor their program accordingly.

The INCOSE SE Handbook offers a comparison of the generic life-cycle stages to

other life-cycle viewpoints including DOD acquisition, National Aeronautics and Space

Administration (NASA), and the typical high-tech commercial systems integrator, to name

a few. It also offers three ways in which the generic life-cycle stages can progress through

a life cycle. It does not, however, describe what these methods are and how they fit within

the generic life cycle. Likewise, there is an opportunity to provide some foundational

knowledge of existing development processes and methodologies to hardware designers

and engineers who may not otherwise know exist. Doing so will work to close the gap by

providing designers and engineers material and resources to understand how different

methods, that for example may be sequential or iterative in nature, fit within a product or

hardware life cycle. There is no mapping that is readily available for programs to use as a

decision aid, or as general guidance. Furthermore, there is no available descriptive

resources that provide this information.

The information herein will provide the ability for programs to understand how

each method aligns with the generic life-cycle process, so programs can tailor their own

product development process to best fit its teams, its schedule, and the value it seeks to

provide the customer and end user based on its activities. The methods in this work were

8

chosen because they aim to provide a new pathway for hardware development, or when

applied to current development processes, enhance the product life cycle. Understanding

how the phases of a given method are executed and what activities occur aid in the process

of identifying whether such method would be beneficial within their program.

E. DELIVERABLES

This work will deliver high-level descriptive figures for each of the methods

described, and a comparative alignment mapping to visually represent how each method

aligns to the generic life cycle as defined in the INCOSE SE Handbook. More importantly,

an activity mapping is created based on literature and case study reviews that identify

specific activities that are compared to the INCOSE SE Handbook generic life cycle. These

can be used separately or collectively as decision aids or guiding tools for identifying one

or more methods for implementation. The information provided as part of these

deliverables is based on literature research identified in this work and is not wholly

inclusive of all literature.

F. ORGANIZATION OF STUDY

This work is organized in five chapters. Chapter 1 provides the necessary

background information and lays the road map for the remainder of this work. Chapter II

presents a review of literature and other resources providing descriptive summaries and

activities for the given methods. Chapter III reviews and discusses literature for specific

applications of the given development methods related to hardware development and

discusses implementation characteristics for each. Chapter IV contains the synthetization

of data gather via literature reviews and provides decision aids in the form of descriptive

figures along with mapping of activities for each identified development method. Chapter

V includes the final conclusions, recommendations, and future work.

9

II. DEVELOPMENT METHODS OVERVIEW

This chapter presents key information for methods considered for this work.

Literature research resulted in the analysis of six approaches or methodologies to be

considered based on the criteria that they have or could be utilized in product or system

development from either software, hardware, or human-centered perspectives. Each

method is described in brief, and is not inclusive of all characteristics, details, and nuances.

The six methods are:

A. Design Thinking/Human Centered Design

B. Lean Product Development

C. Agile

D. Set-Based Concurrent Engineering

E. Systems Thinking

F. Development and Operations

A. DESIGN THINKING

Design thinking for purposes of this work is inclusive of “true” design thinking (as

defined by Stanford University) and human centered design methodologies. Design

thinking is an innovative approach to solving problems and suggesting many solutions,

while human centered design approach revolves around the human experience (DiMeo

2018). The term “design thinking” will be referenced herein with the intent of describing

both design thinking and human centered design.

This approach creative in nature and is defined by Wrigley, Nusem, and Straker

(2020) as the ability to solve problems by using cognitive processes to identify and address

stakeholder needs. Schallmo, Williams, and Lang (2018) describe the four principles of

design thinking as: “human needs, multidisciplinary teams, iterative processes, and

creative environments” (12). Recently, researchers have shown design thinking is linked

to higher levels of innovation and is more prominent in the fields of design and

development (Linke 2017). First utilized by IDEO, a design team was challenged to think

10

beyond just designing a product and instead, focus on the process in which the designer

uses during the process (Bjögvinsson, Ehn, and Hillgren 2012). IDEO suggests that,

(1) designers should be more involved in the big picture of socially
innovative design, beyond the economic bottom line, (2) that design is a
collaborative effort where the design process is spread among diverse
participating stakeholders and competencies, (3) that ideas must be
envisioned, “prototyped,” and explored in a hands-on way, tried out early
in the design process in ways characterized by human centeredness empathy
and optimism. (Bjögvinsson, Ehn, and Hillgren 2012)

Even those who are not necessarily trained as designers can apply their human

experience to the design process, providing for more creative potential solutions (What is

Design Thinking n.d.).

There is a phased approach to implementing design thinking. While there are many

processes in which define design thinking, Tim Brown’s (once CEO of IDEO) process uses

different methods including brainstorming, observations, and sketching to iteratively

execute through the phases of design thinking (Wrigley, Nusem, and Straker 2020).

Researchers agree that the phases of design thinking include empathize, define, ideate,

prototype and test. Mueller-Roterberg (2018) further delineates these phases into two major

categories, analytic and synthetic. The analytical phases fall within the problem space and

include collecting, organizing, and evaluating information, while the synthetic phases fall

within the solution space and include developing, testing, and improving solutions (i.e.,

concept and development activities) (Mueller-Roterberg 2018).

During the empathize phase, the team develops a deep understanding of the

challenge. This involves getting to know the customer, and not assuming what someone is

thinking or feeling. Gathering information is a critical piece of this phase, and can be done

via interviews, conversations, and observations of the target audience (IDEO n.d.).

According to the Institute of Design at Stanford, to empathize, an individual must observe

in a context relevant to the issue, engage in conversations always looking for deeper

meaning, and be observant of the user in their environment and how they engage (Hasso

Plattner Institute of Design 2019). Linke (2017) suggests the development team try to

empathize with the target audience to understand their needs and form potential solutions.

11

Then the process transitions into the define phase where the team clearly articulates the

needs based on their information gathering of the target audience and uses the information

to characterize issues and needs, into a well-defined problem statement (Linke 2017;

Mueller-Roterberg 2018). Creating a specific point of view will also help designers to

express their insights and create an actionable problem statement (Hasso Plattner Institute

of Design 2019). Next in the ideate phase, both Linke (2017) and Mueller-Roterberg (2018)

agree that the team engage in creativity techniques to identify potential inventive or

innovative arrangements or solutions where the quantity of solutions is more important

than few quality solutions. The Hasso Plattner School of Design indicates the importance

that the team go beyond what is obvious and explore all possibilities (2019). Once potential

solutions are identified, the team transitions into the prototype phase where they create and

build prototypes that differ in form and fidelity that will be tested with real user prior to

releasing to the market (Linke 2017). In the test phase, according to Linke’s (2017)

description, the prototypes are then tested amongst an audience to determine whether the

product functions or operates as it is supposed to. During test, the point of view is

continuously refined, and designers are encouraged to learn more about their users (Hasso

Plattner Institute of Design 2019). Finally, Linke (2017) indicates feedback is provided to

the team, and modifications or updates are made to the design and retested amongst an

audience.

While well understood, there is more than one approach to design thinking.

According to Mueller-Roterberg (2018) design thinking is an iterative process consisting

of six process steps including “observing, defining problems, finding ideas” (ideate),

“developing prototypes, and testing.” (Mueller-Roterberg 2018, 10). The first three are

within what Lindberg et al. (2010) and Mueller-Roterberg (2018) call the problem space,

while the latter three are within the solution space. In the problem space, the team identifies,

clarifies, analyzes, and understands the problem and in the solution space the team

evaluates and selects ideas (Lindberg et al. 2010; Mueller-Roterberg 2018). They agree

that design teams should utilize different techniques to create prototypes that are then tested

and analyzed against the problem space. Compared to Brown’s design thinking process,

the major difference is how the empathize phase is broken into understanding the problem

12

and observing, and the define phase also includes observing and defining the problem

(Lindberg et al. 2010). The overlap in observing is because there is a level of empathizing

and understanding the problem from the customer’s view in addition to collecting

information from the customer. In Brown’s method, these actions are split between

empathize and define. The design thinking model presented by Plattner et al. (2011) is

categorized as a very comprehensive, user-oriented approach that applies human centered

design techniques within a phase in a process with iteration loops. Further, the model

proposed by Plattner et al. (2011) may have more phases than Brown’s original and

pioneering design thinking process, but the techniques and the inner workings of the teams

follow the same paradigm.

Schallmo, Williams, and Lang (2018) propose a roadmap for design thinking that

include the following steps: defining the design challenge, understanding the design

challenge, defining perspectives, gaining ideas, developing prototypes, testing prototypes,

and integrating prototypes. This roadmap is a culmination of existing design thinking

theories including those of Platter et al. (2011) that map the activities from start to finish

to fill the gap of innovation management (Schallmo Williams and Lang 2018). It further

outlines the objectives and outcomes for each phase. Step two through step five when

considered based on their activities, align with other literature presented in this section.

The additional phases closely align to business and management practices rather than

development and are not considered for analysis.

B. LEAN PRODUCT DEVELOPMENT

Lean product development (LPD) has adapted over many years, originating from

Toyota’s production system (TPS) (Khan et al. 2013). Coined and created by Taiichi Ohno,

TPS was built to increase value and reduce waste, while offering continuous improvement.

Gaining traction through the 1990s, TPS has become industry standard and the much of

the world has converted to lean production. The components of lean production, for

example Kaizen and Gemba, amongst others, are instrumental to the success of executing

a lean production program. While these components were designed for lean production,

much research shows the intent can be applied to lean product development. Further, the

13

foundational characteristics or principles, also considered as a thought process, of lean

production should be applied wholly to lean product development (Mynott 2012). These

include understanding value, value stream mapping, flow, pull, and continuous

improvement. Each of these principles is adapted to be specific to product development:

• Principle #1 – Precisely specify the value of a new product.
• Principle #2 – Identify the value stream for creating the new product.
• Principle #3 – Allow value to flow without interruptions.
• Principle #4 – Let the customer pull value from the development team.
• Principle #5 – Continuously pursue (economical) perfection (Mascitelli

2006, 15).

LPD in one form can be the result of applying such principles to a given, already

defined, development process where the tasks and activities are now part of a value stream

that establishes a leaner product development process that aligns closely with the

customers’ expectations and needs. Further, it provides in the ability to deliver products to

market faster, by maximizing customer value and minimizing waste. By implementing

LPD, a team can better predict schedule and eliminate redesign activities that cause delays,

develop products in a shorter time-period, spend less time on activities and tasks that add

no value, lower costs through the total product life cycle, lessen the uncertainty within the

design and development process, and meet the needs of the customer or end user more

completely (Radeka 2013).

Minimizing waste, per Radeka (2013), allows product developers to focus on their

tasks and prevents them from being interrupted by repetitive status meetings, excess

documentation, or task balancing from participating in other programs. Mascitelli (2006)

proposes his “top-ten” sources of product development waste in Figure 2.

14

Figure 2. Top-Ten Sources of Product Development Waste. Source:

Mascitelli (2006).

Mynott (2012) indicates time should be taken to purposefully remove or minimize

waste throughout the entirety of the development process and the team should be aware of

ways in which they can add value and incorporate such value along the way. His main point

relating to the identification of waste as part of lean product development, is that any part

of a process can be removed if it does not add value to the customer or the process,

including product development. He further suggests the hardest part of identifying waste

in product development is that most of it in invisible.

Development teams should aim to ensure value adding “activities that build

knowledge about customers, activities that build knowledge about our product technology,

activities that iterate customer and technical knowledge into product that we can produce,

and customers want to buy” (Radeka 2013, 19). Value stream mapping while a beneficial

tool, will not produce a process with zero waste until an organization has worked through

the process multiple times (Mynott 2012). Even then, no development project is the same,

so some waste is simply inevitable.

15

From a startup perspective, Ries (2011) in his book The Lean Startup proposes a

three-phase process consisting of a build-measure-learn feedback loop. This process is not

specific to one-kind of development but aims to determine whether a product should be

developed and whether an organization can sustain itself around that product (Ries 2011).

The most significant component of Ries’ proposed three-phased process is the creation of

a minimum viable product, also known as an MVP. He describes an MVP as a version of

a product that delivers a defined minimum capability or functionality that allows the team

to continue in the process and have some measurable impact.

C. AGILE

Agile development is formed via several different methods including scrum, feature

driven development, and extreme programming, amongst others. This section presents

scrum as an implementation of agile because it is the most used method for software

development and is also suitable for any project-based work including hardware

development (Capers 2018; Cooke 2012). In its purest form, scrum provides a structure for

completing development activities or a given development project in an agile manner.

Other tools, including utilizing lean principles, can be implemented to identify value

streams that focus the development efforts and allows for organization of tasks into sprints

that deliver a feature in a short amount of time (Pries and Quigley 2010).

Measey et al. (2015) defines 12 principles of agile that should absolutely make a

program successful. Utilizing scrum is a way that development tempo is increased, in

addition to team responsiveness and communications, and reducing overall risk (Pries and

Quigley 2010). Pries and Quigley (2010) mention when using the scrum approach,

products are improved over time and delivered to the customer for use, at which time

feedback is provided back to the development team. They also state the major “principle

of Scrum is that frequent repetition allows for changes that arise during product

development” (15). Furthermore, they describe agile as an iterative process where there are

continuous opportunities for feedback, and as a deliverable driven development with every

iteration.

16

Compared to a serial development process, agile focuses on delivering one feature

in a short amount of time, as quickly as a few days or weeks (Capers 2018). Rather than

moving serially through the process, each phase of the process is executed to some extent

for each feature or capability being developed through a series of sprints (Pries and Quigley

2010). At any given time, the team can be writing documentation, designing/developing,

or testing and as the team progresses, work becomes more detailed as a product is realized

(Pries and Quigley 2010).

When using scrum, high level requirements are defined in a work breakdown

structure early in the process, with a lesser level of detail (Vanderjack 2015). Use cases are

created in the beginning to streamline and capture functional requirements and provide a

means for customers to be involved and engaged (Pries and Quigley 2010). The use case

method, also known as user stories, provides a minimum documentation level for the team

to execute (Walsh and Mahesh 2015; Pries and Quigley 2010). These user stories become

the product features that are ultimately delivered to the customer (Walsh and Mahesh 2015;

Pries and Quigley 2010). Given the user stories are created, they are set into a backlog to

which the team pulls tasks from and are executed in a sprint (Walsh and Mahesh 2015;

Vanderjack 2015). Tasks can include concept development activities for example

developing a code feature, updating a requirements specification. In software applications

code features are tested and released, and as the team progresses and iterates through sprints

additional design details and functionality defined as well as execution of verification

activities including documentation creation and updates (Pries and Quigley 2010).

Consider an iteration cycle. According to Vanderjack (2015), once the user stories

are created the team completes iteration and sprint planning, and begins choosing the tasks

to work or features to develop. Next the team begins their build or design activities, from

a software development perspective this is when the detail design activities occur including

initial unit/specific test (Vanderjack 2015). Vanderjack (2015) then explains that the team

goes one step further in its testing that would include system test and regression testing.

Once test activities are done, he indicates the team will declare the feature to be complete

and test cases to be successfully addressed and reports delivered. At this point the team

continues to iterate back through development activities or if ready prepares for production.

17

D. SET-BASED CONCURRENT ENGINEERING

Set-based concurrent engineering (SBCE) is a method that Toyota implemented as

part of its product development system. While Toyota follows a lean product development

process, it applies lean principles in addition to set-based concurrent methodology for its

overall product development execution (Sobek et al. 1999). SBCE is included in this work

as a methodology on its own, rather than solely a part of the Toyota product development

process. SBCE uses these principles to progress through a development process.

According to Sobek et al. (1999) SBCE has three principles, and associated with

each are three stages in which work is achieved, described as follows (73):

1. Map the Design Space
a. Define Feasible Regions
b. Explore Trade-Off by Designing Multiple

Alternatives
c. Communicate Sets of Possibilities

2. Integrate by Intersection
a. Look for the Intersection of Feasible Sets
b. Impose Minimum Constraint
c. Seek Conceptual Robustness

3. Establish Feasibility before Commitment
a. Narrow Sets Gradually while Increasing Detail
b. Stay within Sets Once Committed
c. Control by Managing Uncertainty at Process Gates

By contrast, Khan et al., identifies five major categories each with a set of principles

that meet the category objectives. These five categories include (1) strategic value research

and alignment, (2) map the design space, (3) create and explore multiple concepts in

parallel (4) integrate by intersection, (5) establish feasibility before commitment (Khan et

al. 2011, 3). In relation to concept and design/development of a product, Khan’s first

category aligns more with planning prior to execution of development, the latter four

however, could be applied to development activities. Generally, the principles proposed by

Sobek et al. (1999) and categories proposed by Khan et al. (2011) agree on the fundamental

characteristics and activities of SBCE.

To execute SBCE, the team starts with mapping the design space, where they define

the design bounds, explore trade spaces of multiple candidate solutions, and distributes sets

18

of possibilities to its team and its stakeholders (Khan 2011). Khan (2011) describes those

feasible regions are defined by using checklists or design standards that detail design

guidelines and best practices that help to define the initial conditions or defines them as

subsystem targets. According to Sobek et al. (1999), in this phase, the team explores

tradeoffs by designing multiple alternatives via simulations or prototypes, and then defines

evaluation criteria or communicates acceptance criteria for those alternatives. Instead,

Khan et al. (2011) defines the concept development as a separate phase where sets of design

concepts are created and sets for each subsystem are defined. Sobek et al. (2011) suggests

prototypes are created that fit within the defined sets, tested against targets, and then

analyzed for further feasibility to which they are then communicated to the team. Further,

Sobek et al. (1999) and Khan et al. (2011) agree most activities tend to result in some

overlap between phases, however the design is narrowed over time as the project matures.

Khan et al. (2011) defines the next phase as concept convergence and Sobek et al.

(1999) as integrating by intersection. Both are consistent in the activities relating to

determine where set intersections occur and that intersections identify solutions to a set.

Feasible sets are identified based on analysis and critiques of a design (Khan et al. 2011;

Sobek et al. 1999). Sobek et al. 1999 also suggests that minimum constraints be defined to

provide some level of flexibility in exploring designs or improve integration, rather than

being locked into solution early on, and such constraints also allow for a design to be

functional regardless of physical variations. They emphasize that when engineering

functions create designs that work well with all possibilities in other function sets, then it

can be further developed without needing any more information. Both Khan et al. (2011)

and Sobek et al. (1999) agree that as the sets begin to converge the team uses more detailed

models and designs, that can be further narrowed via testing. For example, testing can occur

as part of concept prototyping, while feasible sets are defined, and when the possibilities

are converging (Khan et al. 2011). Testing as part of detailed design verifies and validates

the design in accordance with the final specification (Khan et al. 2011; Sobek et al. 1999).

Sobek et al. (1999) and Khan et al. (2011) also describe the last portion of their

proposed process and activities are devoted to the detailed design of the development effort

where the final design occurs from many possibilities converging gradually into one

19

design. Preliminary specifications become more defined, and each involved function agree

on design sets that results in convergence to a solution (Sobek et al. 1999). The final design

specification is released, including the final set of requirements, interfaces, and standards,

and is managed through process gates that can include design reviews, early procurement

of long lead parts, provisioning, and project milestones (Sobek et al. 1999).

E. SYSTEMS THINKING

Existing literature lacks a focus in understanding how systems thinking applies to

new development or development programs. Rather, the literature focuses on systems

theory as it applies to systems thinking and how systems thinking is utilized from an

organizational and business practice (Galli 2018). Arnold and Wade (2015) argue that there

are many definitions of what systems thinking is or encompasses and the term systems

thinking is more abstract in nature is applied under different system theories. Peter Senge

(2006) takes a business context perspective and describes systems thinking as the fifth

discipline and argues that it is the cornerstone of the learning organization. Senge believes

that systems education only allows people to breakdown pieces into smaller parts making

complex tasks manageable, but connections within the system and the big picture are lost.

In his book, he describes the necessary mind shift from linear thinking to systems thinking.

More importantly he argues systems thinking requires one to see whole systems that have

inter-linkages and causal relations, processes that change overtime, and leverage points or

systemic behaviors. Peter Checkland, another pioneer of systems thinking, spent a large

part of his career identifying the difference between a hard system and a soft system, and

the methodologies of problem within each (Stowell 2013). Specifically, Checkland came

up with what is now known as soft systems methodology, to which systems thinking

applies the best when applied to real world problems (Ramage et al. 2020).

More generally, systems thinking can be used to solve existing problems, finding

fast tracks for improvements, and preventing possible future problems (Rutherford 2019).

According to Senge (2006), people tend to see reality linearly, rather applying systems

thinking results in the ability to see circles of causality where there are inter-relationships

and constant change. Many of the systems thinking experts agree that systems are

20

interconnected and former approaches to solving complex problems by breaking a system

down into smaller manageable elements is no longer sufficient (Goede 2015; Senge 2006;

Rutherford 2019).

Putting systems thinking more in the context of problem solving, when an emergent

issue or failure presents, it can be linked to or categorized as a system archetype, or as a

pattern of behavior (Senge 2006; Rutherford 2019). Rutherford (2019) defines an archetype

as “commonly repeating variation of reinforcing and balancing feedback” where “each

archetype has a typical pattern of behavior overtime, structure, and effective interventions”

(92). He further describes that a system archetype gives structure to the systems thinking

process, as it provides a method for investigations when analyzing errors in a system that

have either occurred or can be predicted.

Arnold and Wade (2015) propose that through the many different definitions of

systems thinking there is not one that is fully correct. Though their analysis shows that

many authors agree on the fundamentals of systems thinking, they indicated the definition

provided by Sweeney and Sterman (2000) relating to education is the most useful because

it outlines six necessary skills to execute in any scenario, including an approach to product

development or for troubleshooting failures as part of evaluating prototypes or system level

test. Their study was based on understanding the inventory of systems thinking concepts

including feedback, delays, and stocks and flows. Arnold and Wade (2015) propose

systems thinking steps that include (672):

• Understand how the behavior of a system arises from the interaction of
its agents over time (i.e., dynamic complexity)

• Discover and represent feedback processes (both positive and negative)
hypothesized to underlie observed patterns of system behavior

• Identify stock and flow relationships
• Recognize delays and understand their impact
• Identify nonlinearities
• Recognize and challenge the boundaries of mental (and formal) models

Sweeney and Sterman (2000) argue that an inventory of systems thinking concepts

will broaden people’s ability to understand dynamic complexity of systems and be able to

apply them to everyday reasoning. Senge (2006) also agrees that we need perspective on

21

problems, and some insight as to how we would do things differently. Systems thinking

therefore takes shape via an inventory of concepts, proposed steps, and necessary skills

that can be applied to hardware development.

Going one step further, Maani and Cavana (2007) propose a systems thinking and

modeling process consisting of five phases including problem structuring, causal loop

modeling, dynamic modeling, scenario planning and modeling, and organizational

implementation. The casual loop modeling portion of this process focuses on showing the

influences within a system, while dynamic modeling is used to model complex processes

(Tsuchida and Jones 2019). Maani and Cavana (2007) suggest the focus of this proposed

systems thinking process is the modeling aspect, and more specifically the ability to

intervene within the problem space. This process is considered to align with a hard systems

thinking methodology as it veers away from the soft systems methodology approach from

Checkland that is more conceptual in nature (Maani and Cavana 2007).

F. DEVELOPMENT AND OPERATIONS

Since Development and Operations (devops) is a combination of different

philosophies, tools, and practices there is a gap in literature describing design activities as

they flow through the process; more specifically as it relates to hardware. Typical devops

applications are accepted for software or IT applications. Thus, an analysis of design

activities is taken literally from the typical continuous loop that results in continuous

development and delivery.

Devops is a culture where “collaboration between development, quality assurance

and operations” (94) are fluid (Ebert et al. 2016). Its focus is to encourage cross-functional

teams that deliver continuous features, products, or services (Leite et al. 2020). It is a

collection of philosophies, tools, and practices, rather than a single defined process. Devops

is a compliment of lean principles and agile in its structure (Kim et al. 2016). Though

devops closely resembles agile in its desire to deliver capabilities quickly, devops brings

two traditionally separate practice together development and operations which would

normally be isolated.

22

Devops until now has been mainly used for software and IT development focusing

on continuous improvement. There are three main phases to devops: build, deployment,

and operations (Ebert et al. 2016). Devops relies on a value stream because of applying

lean principles and has the iterative structure of agile (including stories and creating a

backlog) (Kim et al. 2016). Kim et al. (2016) argues to be successful, devops must embody

flow, feedback, and continual learning and experimentation, and it relies on user

engagement throughout the entirely of the process (Kim et al. 2016).

Ideally, there is constant feedback on work completed which enables the designers

and developers to independently change, integrate and validate their product. Small

changes are completed in a short amount of time, tested, and then deployed into a product

(Dornenburg 2018). Kim et al. (2016) suggests a feature, or a capability or product would

initially start in the planning phase where its requirements are defined and the creation of

any initial up-front documentation. It would then progress through code and build for the

design, through operate where it would be monitored and fed back through the loop for

continuous improvement. In the first phase of work, design and deployment activities occur

and in the second phase testing and operations are executed as value streams (Kim et al.

2016). Lastly, Kim et al. (2016) states that rather than work flowing through the first phase

and then the second phase, the goal is for them to happen concurrently – enabling fast flow

and high quality, and the process requires small batches to build quality into each part of

the value stream.

If the process is considered from Ebert’s three-phase model, then once a project is

kicked off, it begins in the build phase where the team builds the feature/capability. Ebert

et al. (2016) insists that the team focus on continuous integration, and test early and often.

Once in the deployment phase, the main goal is to place the feature/capability under

configuration management (Ebert et al. 2016). Finally, once in the operations phase, they

describe teams use logging and monitoring tools to receive feedback that can be used to

continuously improve the system via improvements.

From the developer’s perspective there is criteria critical to the start of a project or

an improvement iteration. Developers should ensure the systems has met the requisite gates

and approvals prior to making updates and they are encouraged to “place code into

23

production without coordinating with members of other development teams” (Zhu, Bass,

and Champlin-Scharff 2016, 33). They add that it can affect overall design choices and the

style in which architecture is defined. Accordingly, they inform that configuration

management is critical because a system may move through the devops cycle quickly and

that the architectural style of system and its interfaces will affect how a system is monitored

after deployment (Zhu et al. 2016).

Microsoft implements a four-step process for its devops practices for software and

IT services that includes the following phases: plan, develop, deliver, and operate

(Microsoft n.d.). The planning phase includes the upfront definition of features and

capabilities, and as the team shifts into the develop phase all aspects of the design process

including concept and development activities are executed (Microsoft n.d.). Similarly, to

Ebert’s three-phase model, the product is placed under configuration management control

and finally monitored and maintained during the operate phase (Ebert et al. 2016; Microsoft

n.d.). Activity-wise the deployment and operate phases fall outside of the concept and

development phase per the INCOSE SE Handbook – though due to continuous learning and

feedback, devops could be considered as always being in the development stage.

24

THIS PAGE INTENTIONALLY LEFT BLANK

25

III. CASE STUDY REVIEW

This chapter analyzes literature for available or defined processes for the given

methods relating specifically to hardware development. Each are analyzed for their

effectiveness based on the literature findings. If such processes are not defined, or not well

defined, characteristics and activities of the process are elaborated. Further implementation

analysis is provided in addition to example for when to apply such methods.

A. METHOD APPLICATION AND PROCESS IDENTIFICATION

1. Design Thinking

While none of the case studies included a detailed process or details for how design

thinking was specifically implemented, they each provide evidence that the general phases

of design thinking can be implemented in hardware development. Even the way in which

organization implement design thinking for software development can be extrapolated and

applied to hardware development. Design thinking is not prescriptive enough to be suited

for only lane of product development. Rather, literature suggests it is widely applied across

many industries and can be applied to hardware development.

Design thinking is known to solve wicked problems. In solving such problems,

Chang, Kim, and Joo (2013) analyzed how Samsung and Apple approached design

thinking and propose that firms select “different paths to achieve design thinking

depending on environmental dynamics” and organizational capabilities, where some have

less or more exposure to changes. In their analysis the authors propose a technology

epiphany path that outline how an organization achieves a balanced design thinking team.

This team plays the role of the final decision maker and dominates business decisions,

which in turn, allows them to make informed decisions and come to a solution (Chang et

al. 2013). Although criticized sometimes, this separation resulted in less design limitations

and now “Apple products are welcomed by a massive number of consumers, even though

the individual features do not necessarily outperform other products” (Chang et al. 2013,

31). Though the design thinking phases are not elaborated as part of this case study, the

authors infer Apple and Samsung generally implement the design thinking phases as

26

defined in Chapter II. In another Apple study, Thomke and Feinberg (2012) noted for the

operating system, the development team focused on the physical features people would

want and perfected those prior to working the technical features and capabilities. Apples

overall design thinking strategy focused on the most minute details (Thomke and Feinberg

2012).

In a study conducted by Marlena Pop (2020) for the development of the Leather

Library project, she indicates that all stages of design thinking were involved. For the

Ideation stage (third) the design team chose to utilize brainstorming and sketching to come

up with candidate solutions (Pop 2020). Another aspect the design team implemented

during ideation, was to randomly assign roles during conceptualization including a project

manager, three-dimensional design manager, quality manager, environmental design

manager, and market manager resulting in the team generating many potential solutions

(Pop 2020).

On the contrary, Mazzuchetti, Lopes, and Barbosa (2019) present an approach

where design thinking is implemented for new products. The goal was to stimulate new

ideas through design thinking (Mazzuchetti et al. 2019). They propose an approach to

design thinking for new product development consisting of the following steps: identify

where to find innovation opportunity, discover the innovation opportunity, develop the

innovation opportunity, test the ideas and prototypes, and implement the solution.

In another study, a software team developed and tested a phone application that

provides self-management tools for type-2 diabetes (Peterson and Hempler 2017). The

team used a three-phased design thinking method that includes inspiration, ideation, and

implementation (Peterson and Hempler 2017). In the first phase, Peterson and Hempler

(2017) describe the team activities as making observations and gathering information from

the subjects regarding challenges and need related to living with diabetes. In the second

phase, they describe that the team executed focus groups to determine the app needs where

ideas were explored and developed and finally tested over several weeks where users were

interviewed about the app’s usability. Ultimately the team refined the application over the

course of design activities, prototyping, and receiving feedback iteratively, to support five

27

major functions in supporting the self-management of diabetes (Peterson and Hempler

2017).

2. Lean Product Development

In the context of LPD, much of the existing literature focuses on the activities in

which provide value to an organization. For example, a case study on product development

at Ford discussed the necessary process transformations implemented to create a leaner

development process, as they found their current process was wasteful and would

eventually affect their ability to compete (Liker and Morgan 2011). Ford had to find ways

to make immediate and continuous improvements, so as Liker and Morgan (2011) suggest,

they created process improvement maps and held value stream mapping events that enabled

for more dialogue within the team. Matrices were created to prioritize opportunities and to

identify interdependencies and set-based concurrent engineering principles were applied to

“work simultaneously for longer periods and delay key decisions until points in the process

that were closer to customer” interactions and milestones (Liker and Morgan 2011, 22).

The authors also point out that quality of event criteria was used to ensure quality was not

only required but measured at each milestone throughout development. More importantly,

the team at Ford held cross-functional reflection events at critical milestones to talk

opportunities, successes, and waste and created value streams that worked towards cross-

functional objectives (Liker and Morgan 2011). Ultimately, Ford found that they needed

to implement front end loading and innovation into their process and be proactive early on

(Liker and Morgan 2011). The ability to pull value throughout the process was critical to

Ford’s success.

In another automotive case study, Tuli and Shankar (2015) argue that there are

many collaborative activities or processes that the generic development approach cannot

support. They detail two case studies in the automotive industry that employ a generic

approach and then a collaborative and lean approach referred to as OEM1 and OEM2,

respectively, where the collaborative approach consisted of performing a value analysis

that was implemented as a value stream. Both development approaches were executed and

then compared qualitatively and quantitatively (Tuli and Shankar 2015). Qualitatively,

28

three major development phases were measured, and the team determine the overall

development cycle was greater for OEM and quantitatively, evaluation data shows that of

the five parameters considered, OEM1 measured high in all categories except for design

cost (Tuli and Shankar 2015). The authors show the organization was much more

successful in their development when it implemented a collaborative and lean environment.

The results also showed improvement in key performance indicators such as cost and

schedule, risk factors, and quality to name a few (Tuli and Shankar 2015).

3. Agile

There is little supporting literature documenting an agile process approach to

hardware development. Rather, only descriptive principles are outlined that could be

applied more generally to hardware development. One group in particular, Rockwell

Collins, agrees that hardware development platforms are lacking commercially, so in turn,

they created their own, but the process is not available to the public (Dove 2018).

Some organizations, like the LEGO Group, have been able to implement hardware

development as part of a higher-level agile transformation where software and hardware

are integrated into system level design. The LEGO Group implemented agile methods in

multiple departments and found that it not only drove process change, but also positively

affected the behaviors of their employees (Sommer 2019). The LEGO Group

“demonstrates that an agile transformation [via scrum] can be successfully executed by

applying agile values and principles to the transformation efforts themselves, enabling

agile behavior rather than prescribing a particular method or model” (Sommer 2019, 20).

The data from the LEGO Group, Sommer (2019) suggests, that the agile transformation

was successful in its ability to create product-oriented teams who shared ownership in their

responsibilities, for delivering quality products, and value via design iterations. More

importantly, the LEGO Group implemented and executed their agile transformation via a

100-day plan that consisted of four value streams, and defined activities that were rescoped

overtime and throughout the development process (Sommer 2019).

Lockheed Martin is another example in which agile was applied more generally.

The objective of the Agile Systems Engineering Life-Cycle Model (ASELCM) project was

29

to identify foundational principles of agile that could be applied in multi-discipline systems

engineering (Dove, Garlington, and Schindel 2018). Specifically, the article discusses the

importance of “systemic, activity-based, continuous innovation” in an agile environment

(Dove, Garlington, and Schindel 2018). These are analyzed in the case of Lockheed Martin

Aeronautics Integrated Fighter Group (IFG), where the team was faced with the need to

create an agile system engineering environment but address the urgent capability need

(Dove, Garlington, and Schindel 2018). The authors further suggest that to be successful

in both, the organization needs to create interconnection standards for physical

connections, data connections and interfaces, security, and services which would enable

process activity assembly. To sustain the agility within an SE development process, its

infrastructure must remain agile and as outlined by Dove, Garlington, and Schindel (2018).

4. Set-Based Concurrent Engineering

On its own, there is a clear lack and structure of an SBCE process, rather literature

is limited to a set of generic descriptive principles (Ashaab et al. 2013). The

implementation of set-based concurrent engineering principles has been described as

paired with other methods including agile or LPD. Though, Raudberget (2011) proposes a

SBCE model derived using the three principles of SBCE shown in Figure 3, that could be

used foundationally to define a process. The process begins with creating ideas/concepts

and creating a morphological chart (or comparison chart) of those ideas/concepts.

Overtime, the morphological chart is updated based on intersecting sets that define detailed

requirements and features. In an iterative fashion, the development teams work to narrow

the sets to identify and define the final design.

30

Figure 3. Proposed Set-Based Concurrent Engineering Development Model.

Source: Raudberget (2011).

Al-Ashaab et al. (2013) proposes an LPD process model that integrates the

principles of SBCE for use in the aerospace industry, specifically the development of a

helicopter engine. The developed process focuses on core enablers of “lean product

development such as value focus, set-based solutions, integrated documentation,

knowledge creation, and innovation” (Al-Ashaab et al. 2013, 282). Al-Ashaab et al. (2013)

further argues that constant feedback from engineering highlighted areas of improvement

and identified waste. Their proposed model is not available via literature, however much

of their research stems from the use of SBCE process and activities defined in Khan et al.

(2011) paper “Set-Based Concurrent Engineering Process Within the Lean PPD

Environment” as a baseline.

Similarly, Canciglieri et al. (2010) presents an adapted product life cycle between

SBCE and traditional development process. They propose that applying SBCE speeds up

the process substantially, especially when teams work together and simultaneously, the

result of the development can be faster and less expensive. This study does not necessarily

outline a process, rather Canciglieri et al. (2010) show that the differences in the number

of parts, number of operations, attachments, cost, time, and manpower were significantly

lower using an SBCE approach rather than traditional design methods.

31

5. Systems Thinking

According to Goede (2005), “it is the aim of the systems thinkers to describe social

systems where people and their value form part of the system” (83). One of the key

principles to the systems thinking approach is the hierarchical nature of any system – it

implies that every system is part of another larger systems (Goede 2005). In Goede’s (2005)

work, Whitten et al. (2004) indicates that for information systems there is no systems

thinking process defined, rather it uses descriptive systems thinking principles. According

to his research, when applying soft systems methodology, the more important of the

principles is getting the user involved to better understand the system.

Rutherford provides a basic example of how systems thinking is applied within an

organization (2019). He presents a hypothetical story of the company Acme, that had a

persistent problem. As a result of brainstorming, Acme was able to fix the immediate issues

independently. This, however, did not solve the problem. Rather, they needed to adopt a

system view due to underlying problems, as Acme’s issues were just symptoms of a larger

issue.

In a study of health care management, Lebcir (2006) demonstrated under

performance of health care systems is due to inadequacy of the tools and methods used to

analyze and study them. The decision-making processes within the health care system do

not appropriately capture the most important components of the system and their

interconnectedness (Lebcir 2006). Lebcir (2006) describes how systems thinking principles

were applied to “formulate, model, and analyze the system” (6). Their aim was to show,

using systems thinking, the complexity in the structure of the health care system, by starting

with simpler structures and adding in components to show how it can grow both in size

and complexity. Systems thinking was specifically used in Lebcir (2006) to create a model

or a mapping to address the bigger problem.

In a different application, systems thinking was implemented with design thinking

to identify when doctors and their students provide liver fluke infection information to

places within their communities and where the discrepancies are, based on areas that have

high infection rates (Samiphak et al. 2016). Samiphak et al. (2016) describes how a team

32

of medical professionals implemented systems to analyze how to best educate and provide

information most effectively to communities. They also discuss how the approach led the

team to reanalyze and reframe the data with a human centered (or design thinking)

approach, in turn resulting in their ability to identify a disconnect between scientific and

cultural knowledge specifically relating to awareness of health effects from eating certain

fish.

6. Devops

Devops is mainly implemented in software and IT. Gill et al. (2018), discusses the

process view of devops based on information management systems including full product

life cycle, continuous delivery pipeline, continuous improvement, multistage testing,

multistage deployment, and analytics. For each process, high level descriptive principles

that align with those described in Chapter II are referenced. No specific application

however is described for hardware development.

According to Farroha and Farroha (2014), devops is the best approach for software

development within the DOD mission environment. Though the authors do indicate that a

devops culture is made of an integrated, cross-functional team that is tasked with solving

problem they do not reference2 or specifically analyze hardware development (Farroha and

Farroha 2014). In another article, Banica et al. (2017) propose that devops can be used as

a project management tool. They argue that devops is an extension of agile, and where

devops aims to test and release components when they are complete, agile delays delivery

of the components to the customer and focuses on smaller component completions. They

also argue that devops targets to increase efficiency of a design activity, more collaboration

between design and implementation, and a faster transition of components from design to

operation.

B. IMPLEMENTATION ANALYSIS

Literature review and analysis indicates there is little evidence of specific hardware

development processes for the methods described herein. Raudberget (2011) proposed an

SBCE development model that could be applied to hardware development, though there is

a lack of supporting literature on its application. There is extensive research showing

33

application within a software development, however hardware development has limitations

including hardware availability and failure analysis that make it difficult to define a

singular process. Rather, literature describes that the guiding principles for each method

can be applied more generically to hardware development in creating new process or

enhancing a defined process.

Literature shows methods can be used concurrently. For example, some of the

reviewed case studies and literature reveal the use of at least two methods concurrently. In

Samiphak et al. (2016) applied systems thinking with a design thinking approach to better

understand and solve their given issue. Devops according to Banica et al. (2017) is also

implemented concurrently with agile process structure (i.e., following the scrum method).

Ahmed et al. (2013) describes Toyota’s product development process as lean in nature (i.e.,

value streams), implements SBCE principles, and further suggests SBCE be applied to a

lean environment. The one size fits all narrative becomes too generic when dealing with

complex hardware development. Such an endeavor requires cross-functional, cooperative

teams willing to adapt to a different development environment and change their culture to

align with a new strategic development approach.

A specific example of using methods together is Scale Agile Framework, or SAFe,

which is method that provides an agile framework, in conjunction with applying systems

thinking, LPD, and devops. In a white paper published by Scaled Agile (2021),

implementing agile development on its own is not enough. The big picture of the SAFe is

creating business agility with core competencies that results in an agile structured delivery

of software products, within large enterprises (Scaled Agile 2021). According to a

multivocal literature review done by Putta, Paasivaara, and Lassenius (2018), there are

many benefits of adopting SAFe including those of business and organizational benefits,

and measurable quality throughout development. More specifically, in addition to

improved quality, there is overall reduction in defects, continuous improvement, and waste

elimination (Putta et al. 2018).

Nevertheless, these methods should be considered based on what scenarios they

may apply best and some examples for consideration are described:

34

• Design Thinking: prioritizes target audience needs

• Lean Product Development: execute development activities that provide

value and remove those that do not, streamline the process – add and pull

value based on stakeholder needs

• Agile: speed-to-market delivery, incremental deliveries, self-organizing

teams, and early testing that builds in quality during throughout

• Set-Based Concurrent Engineering: cross-functional focus in design and

development activities to improve quality and design robustness

• Systems Thinking: applies best in a problem space where there is

uncertainty in the problem space

• Devops: used to develop, test, and deliver features and products quickly

and deploy modification or updates continuously to improve the product

35

IV. METHOD ALIGNMENT AND MAPPING

This chapter accumulates the phases and activities for the identified methods as

described in Chapters II and III. The first section describes the baseline process for

comparison and list assumptions necessary for the proposed activity mapping. The second

section presents figures with high-level summaries for each method including its activities,

technical principles, and requirements, and present detailed tables for method that list the

activities as they occur in each phase. The third section proposes an alignment of the phases

of each method to the INCOSE generic life cycle in terms of concept and development

phases and activities. The fourth section proposes a mapping of the activities that occur

throughout the INCOSE generic life-cycle concept and development stages to those that

occur within the six methods chosen for analysis in this work that can be used as a decision

aid, a guiding resource, or for educational purposes. Finally, implications and limitations

are presented.

A. INCOSE PROCESS BASELINE AND ASSUMPTIONS

Prior to analyzing how each method aligns to the generic life cycle as presented in

the INCOSE SE Handbook, the following assumptions are made:

• Concept and development phases of INCOSE generic life cycle are

considered for baseline comparison

• The alignment is based on literature research presented in Chapter II and

Chapter III, and is not representative of cumulative existing literature

• For a given method that does not have a fully defined process model, it

will depict concept and development phases

• Each process depicted can be applied to hardware development

• Descriptions for a given method will indicate major activities that occur

during a particular phase or stage of the process, and when applicable

governing principles and characteristics

36

Given the above assumptions, the generic life cycle is revisited in Figure 4 as a

visual representation of the phases that are considered in scope and those that are out of

scope.

Figure 4. In Scope and Out of Scope Stages of the INCOSE Generic Life

Cycle. Adapted from INCOSE (2015).

The generic life-cycle concept and development stages are considered in scope and

are further summarized in Figure 5 (previously elaborated on in Chapter 1). The concept

stage is broken into two phases, exploratory research and concept selection, and the

development phase into two phases, system level design and detailed design. In addition to

phase descriptions, governing technical processes are also included.

37

Figure 5. INCOSE Generic Life-Cycle Process Summary, Concept and

Development Stages. Adapted from INCOSE (2015) and Ulrich and
Eppinger (2016).

Next, the activities as described in the INCOSE SE Handbook are listed and

associated with the phase and overall generic life-cycle concept and development phases

in Table 2. The activities listed are not necessary in chronological order, rather they are

listed as activities that occur as part of the phase. The activities included from the INCOSE

SE Handbook are directly identified in Table 2.

Concept Development

INCOSE, ISO/IEC/IEE 15288 Generic Life Cycle

Conducted in two stages:
Exploratory Research: Define the problem space, establish

target specifica�ons, and iden�fy stakeholder needs. Develop
high-level preliminary concepts including defini�on of form,

func�on, and features.
Concept Selec�on: Evalua�on of high-level concepts based on

refined stakeholder needs and concept of opera�ons.
Func�onal and architecture defined. Planning for further

verifica�on and valida�on efforts.

Specify, analyze, architect, and design the system. Operator
or end user interfaces are specified, tested, and evaluated.
System level requirements are defined. System tes�ng for
overall performance, reliabil ity, and durabil ity executed.

Prepara�on for release into produc�on.

Governing Technical Processes
• Stakeholder Needs and

Requirements Definition
Process

• System Requirements
Definition Process

• Architecture Definition
Process

• Design Definition Process
• System Analysis Process
• Implementation Process
• Integration Process
• Verification Process

38

Table 2. Generic Life-Cycle Stages, Phases, and Activities. Adapted from
INCOSE (2015) and Ulrich and Eppinger (2016).

INCOSE, ISO/IEC/IEEE 15288:2015 - Generic Life cycle
Life-Cycle Stage Phase Activities

Concept

Exploratory
Research

Investigate feasibility of product concepts
Define form, function, and features
Create specifications and technical
documentation
Analyze of competitive products
Economics of justification
Identify mission requirements
Identify stakeholder needs
Establish target specifications
Estimate Cost and Schedule

Concept Selection

Evaluate Candidates
Refine stakeholder needs
Refine concept of operations
Prototype or building mockups
Develop models
Run simulations
Perform architectural tradeoffs
Document risk opportunities

Development

System Level
Design

Define and refine system requirements
Define system architecture
Define interfaces
Test

Detailed Design

Document system configuration
Define quality assurances processes
Procure/provision for production

B. DESCRIPTIVE METHOD FIGURES

This section elaborates on the phases for each of the identified methods: design

thinking, LPD, agile, SBCE, systems thinking, and devops. More specifically, for each, the

phases or stages will be expanded upon regarding the activities that occur. Additionally,

any governing technical or general principles that apply are identified. These descriptive

figures are not inclusive of all activities and do not include differentiating characteristics.

39

Following a similar paradigm, each method is visually represented like Figure 5 and

activities listed in Table 2, based on the literature presented in Chapter II and Chapter III.

The processes depicted are representative of proposed processes or derived from activity

analysis. Phases or activities that fall outside of the concept and development phase are not

considered for further analysis. There are cases in which a phase can be considered as part

in scope and part out of scope. These are depicted for visual representation, and only

analyzed for activities that fall within scope. This information will be used to align the

methods and their activities to the generic life-cycle process as defined in the INCOSE SE

Handbook.

1. Design Thinking

Figure 6 describes design thinking using the five phases as defined by Mueller-

Roterberg (2018), Wrigley, Nusem and Straker (2020), and Pop (2020) to name a few. It

further includes the delineation of the problem space and solution space identified by

Mueller-Roterberg (2018). Design thinking can be a serial process, though it is meant to

be iterative at any point to which the team needs to cycle backwards. For example, this

could depend on whether the prototype that was created wholly meets the needs of the

target audience. Getting the correct design and product though is unlikely to occur in one

iteration through the process, it is more likely that once a protype is created and tested, it

will require, at a minimum, modifications based on testing and feedback.

40

Figure 6. Design Thinking Development Process Summary. Adapted from

Lindberg et al. (2010), Mueller-Roterberg (2018), Linke (2017), Pop
(2020), Balcaitis (2019), and Hasso Plattner Institute of Design (2019).

Based on the phase description in Figure 6, the activities that occur are extrapolated

and organized in Table 3. The activities are identified or reiterated via literature and case

study analyses and matched to the phase in which they occur.

41

Table 3. Design Thinking Phases and Activities. Adapted from Lindberg et
al. (2010), Mueller Roterberg (2018), Linke (2017), Pop (2020), Balcaitis

(2019), and Hasso Plattner Institute of Design (2019).

Design Thinking
Phase Activity

Empathize

Identify stakeholder needs
Gather inspiration
Seek stories
Prepare Research

Define

Define requirements definition
Define problem statement
Frame opportunities
Identify meaning surprises and tensions
Infer insights

Ideate

Brainstorm radical ideas
Generate concepts
Evaluate concepts
Suspend judgement
Refine ideas

Prototype

Develop models
Create low-resolution prototypes
Roleplay to understand context
Build prototypes to think and learn

Test

Test amongst target audience
Gather feedback
Reflect and generate a new solution

2. Lean Product Development

The descriptive figure for LPD includes two phases: concept and development.

Lean product development is considered in the context of applying lean principles to an

existing hardware development process. Therefore, the major phases for consideration will

be those of the generic life cycle and include concept and development. Figure 7 shows the

concept and development phases and includes major activities that would occur when

applying lean principles or exercises during the development process. It is important to

keep in mind that when lean principles are applied to an existing process, the activities of

which occur during both concept and development phases may not change.

42

Figure 7. Lean Product Development Process Summary. Adapted from
Mynott (2012), Mascitelli (2006), Radeka (2013), and Liker and Morgan

(2011).

Based on the process description and technical principles, Table 4 shows the

activities which then occur during concept and development. It is assumed that the

activities during concept and development of which occur in the proposed lean product

development process are at a minimum, the same or similar, to those that occur as part of

the generic life-cycle concept and development stages. Therefore, Table 4 reflects specific

lean activities in addition to concept and development activities defined by the generic life

cycle (Table 2).

43

Table 4. Lean Product Development Phases and Activities. Adapted from
Mynott (2012), Mascitelli (2006), Radeka (2013), and Liker and Morgan

(2011).

Lean Product Development
Phase Activities

Concept

Identify value stream
Identify waste
Eliminate waste
Define quality assurance processes
Define requirements
Develop features in increments
Generate concepts
Evaluate concepts
Prototype or build mockups

Development

Develop models
Run simulations
Perform architectural tradeoffs
Document risk opportunities
Refine value stream
Define and refine system requirements
Define system architecture
Perform system level test
Continue feature development
Iterate for constant feedback
Identify waste
Eliminate waste
Seek continuous improvement

3. Agile

Agile on the other hand, from a literature perspective, is mostly supported in

software and IT service applications. With little evidence that it can or has been applied to

hardware development, the three stages shown in Figure 8 reflect those identified in its

general flow and governed by scrum. The LEGO Group argues that by encouraging agile

behavior, an agile process transformation is an easy transition (2019). Activity analysis of

agile scrum indicated the release and transition stage falls partially outside of the scope of

this work (i.e., outside of development) because the design team may iterate back through

sprint execution to complete the tasks within the backlog or as part of a user story. The

44

main activities through the release and transition phase include releasing a feature or a

complete product so it can be transitioned to a production environment or deployed to its

end users.

Figure 8. Agile Scrum Development Process Summary. Adapted from

Walsh and Mahesh (2015), Pries and Quigley (2010), and Vanderjack
(2015).

Like LPD, activities of agile scrum can include any of those that fall within concept

or development, or those that fit are defined within user stories. Therefore, Table 5 reflects

specific agile scrum activities, lean activities, and concept and development activities

defined by the generic life cycle (Table 2).

45

Table 5. Agile Scrum Phases and Activities. Adapted from Walsh and
Mahesh (2015), Pries and Quigley (2010), and Vanderjack (2015).

Agile
Phase Activities

Concept and Inception

Create use cases
Define functional requirements
Create user stories
Define minimum documentation
Create backlog
Plan sprints for task completion
Execute sprints

Development/Construction

Generate concepts
Evaluate concepts
Prototype or build mockups
Develop models
Run simulations
Perform architectural tradeoffs
Document risk opportunities
Define and refine system requirements
Define system architecture
Perform system level test
Define quality assurance processes
Place product or feature under configuration
management control
Procure necessary resources

Release and Transition

Release feature
Release product
Transition to production
Transition for deployment

4. Set-Based Concurrent Engineering

SBCE is another method in which there is a lack of developed process for general

use and specifically as it relates to hardware development. On its own SBCE lacks

structure, though literature supports its existence based on its principles being applied in

some other method (like LPD). Strictly considering SBCE, it is governed by three

principles defined by Sobek et al. (1999) – “map the design space, integrate by intersection,

and establish feasibility before commitment” (73). Though, it is Raudberget (2011) that

proposes an SBCE model (Figure 3) that includes development phases that align to those

46

principles identified by Sobek et al. (1999). Figure 9 is based on the process proposed by

Sobek et al. (1999), in addition to supporting literature detailing SBCE principles,

categories, phases, and activities.

Figure 9. Set-Based Concurrent Engineering Development Process

Summary. Adapted from Sobek et al. (1999), and Khan et al. (2011).

Table 6 specifically lists the phases as described by Sobek et al. (1999) and the

activities supported by the literature presented in this work. The governing principles

defined by Sobek et al. (1999) are not include in Table 6.

47

Table 6. Set-Based Concurrent Engineering Phases and Activities. Adapted
from Sobek et al. (1999), and Khan et al. (2011).

Set-Based Concurrent Engineering
Phase Activities

Idea Generation / Extended
Morphological Chart

Define design standards and guidelines
Define requirements
Perform tradeoff analysis of multiple
concepts
Define sets
Develop models
Develop prototypes
Run simulations
Identify functions and mechanisms
(documented on morphological chart)
Define evaluation criteria
Perform evaluation tests

Elimination by Compatibility and
Constraint

Identify intersection of sets to determine
feasibility
Set minimum constraints
Down-select feasible sets

Development and Test of Remaining
Alternatives

Increase design details
Perform tests
Update morphological chart
Narrow sets gradually

5. Systems Thinking

Literature supporting systems thinking in terms of product development and

hardware development especially is practically non-existent. Much of the study of systems

thinking focuses on systems theory and applying those principles within a business and

organization (Galli 2018). Though, Rutherford (2019) indicates that systems thinking can

be applied more generally to solve existing problems, adapt, find fast solutions, and prevent

future problems – where any problem at any time can be categorized by a system archetype

giving the system structure. It was Maani and Cavana (2007) who proposed systems

dynamics, a systems thinking process that aligns with hard systems thinking where the

focus, as described by Lebcir (2006), is modeling the problem throughout, allowing the

growth of an initial simple model and structure to something more complex. Though there

48

are other implementations of systems thinking, Figure 10, reflects the systems thinking

process specifically relating to systems dynamics. When implementing systems thinking,

there are minimum process requirements as defined by Sweeney and Sterman (2000) (also

reflected in Figure 10).

Figure 10. Systems Thinking Systems Dynamics Development Process

Summary. Adapted from Maani and Cavana (2007), and Sweeney and
Sterman (2000).

Table 7 then reflects the activities specifically relating to the phases as identified.

The phases and activities shown in Table 7 do not reflect the minimum process

requirements as defined by Sweeney and Sterman (2000). Additionally, Table 7 does not

reflect the “Scenario Planning and Modelling” and “Implementation” phases occurring

concurrently.

49

Table 7. Systems Thinking Systems Dynamics Phases and Activities.
Adapted from Maani and Cavana (2007), and Sweeney and Sterman

(2000).

Systems Thinking
Phase Activities

Problem Structuring

Define the problem
Describe problem in terms of events, patterns, and
structures

Casual Loop Modeling

Identify main variables
Visually represent behavior via time charts (or
reference models)
Develop casual loop diagrams
Analyze relationships amongst variables
Analyze behavior overtime
Identify system archetypes
Document high-level casual patterns
Identify key leverage points
Develop intervention strategies

Dynamics Modeling

Develop models to analyze the system
Represent actors or participants in model
Analyze complex processes
Analyze feedback among behaviors
Regulate performance

Scenario Planning and
Modeling

Execute test scenarios (with changing variables)
Identify key drivers of change
Identify key drivers of uncertainty
Identify factors of significant impact
Evaluate factors of significant impact

Implementation

Implement organizational learning plan
Provide learning plan to management
Provide learning plan to stakeholders

6. Development and Operations

Devops too lacks a specific focus for implementation specifically into hardware

development programs. There is literature though that supports devops execution along

with other methods (Kim et al. 2016). On its own though, devops drives a collaborative

environment in which the designers and the operators work together through the process,

ridding of groups previously siloed from one another (Leite et al. 2020). It is a collection

50

of philosophies tools and practices than a defined process. Therefore, in proposing a

process, Figure 11 represents phases described and supported amongst literature and case

studies. For example, Ebert et al. 2016 identifies three phases, while Microsoft identifies

four phases, in which the only difference is the addition of Microsoft’s planning phase.

Figure 11. Devops Development Process Summary. Adapted from Kim et al.
(2016), Ebert et al. (2016), Dornenburg (2018), and Microsoft (n.d.).

Table 8 documents the activities related to identified phases, though these are not

specific to only Microsoft and Ebert et al. (2016) phase descriptions. The governing

principles and structure as defined by Kim et al. (2016) are not reflected in Table 8.

51

Table 8. Devops Phases and Activities. Adapted from Kim et al. (2016),
Ebert et al. (2016), Dornenburg (2018), and Microsoft (n.d.).

Development and Operations
Phase Activities

Plan

Ideate feature/capabilities or product
Define features/capabilities of product
Define requirements
Create initial documentation
Plan for remainder of project

Build

Identify value stream
Generate concepts
Evaluate concepts
Prototype or build mockups
Develop models
Run simulations
Perform architectural tradeoffs
Document risk opportunities
Define and refine system requirements
Define system architecture
Perform system level test
Define quality assurance processes

Deployment

Place product or feature under
configuration management control
Procure/provision for production
Release feature
Release product
Produce product

Operate

Maintain feature/product
Monitor feature/product
Identify risks and issues
Mitigate risks and issues

C. METHOD ALIGNMENT

Based on the descriptive figures and activity tables presented, each of the methods

are aligned the generic life-cycle process. Specifically, their phases, activities, and general

execution are analyzed and compared to the generic life-cycle concept and development

stages. Figure 12 is a visual representation of how each method aligns to the generic life-

cycle concept and development phases, and subsequently each other.

52

Figure 12. Method Alignment

The Figure 12 proposes that methods execute in a similar fashion–they consist of

activities that are comparable in nature though the way in which they are executed is

different (i.e., the process they follow). For example, consider the activities that occur in

the design thinking empathize and define phases. Figure 12 shows that activities in which

occur during these phases align to the activities that occur in the concept stage of the

generic life-cycle concept stage. The design thinking ideate phase has activities that align

to activities of which occur during the generic life-cycle concept and development stages,

so it aligns to both. Specifically, as part of the ideate phase of design thinking the team

comes up with many potential solutions and concepts (concept stage) and begins to refine

ideas based on stakeholder needs and requirements (development stage). Similarly, all

activities that fall within the prototype and test phase align to those or are like those in the

development stage of the generic life cycle. For each of the identified methods in Figure

12, the phase alignment based on activities is identified and can be expanded upon.

53

D. ACTIVITY MAPPING

The alignment in Figure 12 is strongly based on the activities of which occur during

a given phase, or phases. So, if the activities are solely considered, then such activities that

occur as part of design thinking, LPD, agile, SBCE, systems thinking, and devops can too

be aligned, or mapped to those that occur in the concept and development stages of the

generic life cycle. The challenge though, is that not all activities are created equal. That is,

the activity description may not be a one-for-one match based on literature and case study

analysis. Further, a given method may have a different quantity of activities than another

method, or even some that are completely different. So rather than mapping the activities

of the given methods to the generic life-cycle stages, the generic life-cycle stages will be

mapped to the methods presented throughout this work. The mapping will indicate whether

the generic life-cycle activity definitively occurs in each method based off the literature

and case study research in Chapter II and Chapter III, and the descriptive figure and activity

table as documented Figure 5 and Table 2 respectively. This mapping is presented in

Figure 13. Where there is an “X” denotes an activity that definitely occurs, and where there

is an “●” denotes an activity that may occur.

54

Figure 13. High-Level Development Method Activity Mapping

55

E. ACTIVITY MAPPING SCENARIO

Take for instance, a development team or program, that chooses to execute a

hardware development project using a method other than their standard process-how would

they know which method to choose? Or maybe a hardware design team is given the

opportunity to implement or attempt hardware development utilizing a different process–

how do they know if they choose the right one? While this choice is based on many things

including planning, expertise, training, to name a few, one of the areas of focus should be

the translation of activities that occur between the organizations standard process to a

potential new or different process.

Figure 13 whether a given activity as identified as part of the generic life cycle,

occurs in the method its being compared to. The figure assumes that the given methods

will not execute that activity in the same manner, rather the intent in completing that

activity is the same. If a team needs to identify stakeholder needs, they may go about it

differently using based on the method, though the result would still be identification of

stakeholder needs.

Take for example a team that needs to develop an electronic component as a

technical refresh for a product that has no spares and cannot be repaired. Their typical

hardware development process follows or is closely representative of the generic life cycle

defined in the INCOSE SE Handbook where concept activities and development activities

are those as defined in Table 2 and the process is like that shown in Figure 5. As part of

the program plan (or similar documentation) describing the deliverables and subsequent

activities of the development process, there are several activities that absolutely must be

executed:

1. Define form, function, and features

2. Evaluate candidates

3. Develop models; Run simulations; Build prototypes

4. Refine system level requirements

5. Perform tests

56

6. Document system configuration

7. Procure/provisioning for production

This development team has also been given the opportunity to be apply a different

method within the hardware development environment. However, they do not have enough

knowledge to make an informed decision as to the method they could implement and the

process they should execute. Understanding the activities that they need to execute, is the

first step in figuring out whether a given method is feasible.

Given the seven activities this team is required to execute, Figure 13 can be used to

determine where those activities occur in a specific method. The first step is to identify the

activities that are required for execution, then to identify if the activity occurs in each

method (which is done by seeing if an “X” is checked in the matrix). Figure 14 depicts

these updates. The activities that require execution are bolded, and for each cell that is

populated, it is highlighted green.

57

Figure 14. Example Use of Activity Mapping

58

Next, the team analyzes the chart to determine whether all applicable activities

occur in each method. Based on Figure 14 LPD, agile, SBCE, and devops all execute these

activities as art of the process. Therefore, the development team could use any one or

combination of methods, considering only their activities.

59

V. CONCLUSIONS, LIMITATIONS, AND
RECOMMENDATIONS

This thesis provides a high-level activity mapping of six development methods to

the activities that occur in the generic life cycle defined by the INCOSE SE Handbook,

specific to the concept and development stages for hardware-focused systems. This chapter

presents conclusions, suggested follow-on research, and recommendations.

A. CONCLUSIONS

This thesis lays the groundwork for a much bigger effort in determining feasibility

of methods for not only hardware development but systems engineering in general. What

this work shows is that from an activity perspective, one or more methods can shape

hardware development processes to make them more effective and totally tailorable. Using

the generic life cycle as identified by the INCOSE SE Handbook sets a baseline for

development process and activities by reiterating the most basic understanding of what is

takes to execute development in any domain. The mapping presented reflects a comparison

of the activities that occur as part of the generic life cycle concept and development stages

to their existence in the six methods identified which can be used in any systems

engineering or development environment within the commercial industry or the DOD. The

application of this mapping is unlimited. It is the first step in creating a resource that is

inclusive and exhaustive in documenting existing methods, especially as the engineering

world continues to aim for superiority in its products and services.

B. LIMITATIONS

The six methods discussed in this work were pulled from human, software, and

hardware focused development domains. There are limitations to these methods when

applying them from one domain to another, including hardware. The literature and case

study reviews completed as part of this work truly lacked a focus in hardware development

processes and applications. There are limitations to hardware development that are not

experienced in software development. For one, hardware must be acquired to proof out a

design or build a mature enough product for testing. Modifications can be costly and impact

60

schedule, especially if a component is considered long lead. Testing is also not immediate,

as functional testing and environmental testing require additional fixturing, test setups, and

training for proper use. Due to the nature of hardware development, it is not surprising that

many of methods are being applied to development life cycles that may have better access

determine how to specifically apply these new methods, or potentially create one that is

specific to hardware development. What this work does show, is that some version of the

methods described throughout could apply to hardware development programs if they are

considered solely on their activities.

Additionally, this work does not touch upon the implementation of more than one

method in the hardware development process. Devops for example, has an agile structure

and applied LPD principles. Literature also indicates that SBCE principles are foundational

to the structure and flow of LPD. Therefore, devops could be an accumulation of two to

three different methods. So, if a development team was to choose a method to execute, they

would need to do further research as to how these could be integrated into one cohesive

process. Additionally, it would be possible to use one method during concept and another

during development if the activities aligned properly. Though, by applying two different

methods, an organization may find the transition difficult and need to provide proper

training to accompany the transformation.

C. RECOMMENDATIONS FOR FUTURE RESEARCH

This work is not exhaustive of all methods, their phases, implementations, and

activities, so it would be beneficial to continue building upon the method alignment and

the activity mapping presented herein.

Since the mapping presented in this work is specific in mapping activities to

methods, additional work is needed to map activities to activities between methods. As in,

the activities that occur during the generic life cycle stages of the INCOSE SE Handbook

could be mapped to the activities that occur as part of agile when applied to development

(for example). This would provide an in depth and true comparison of the activities and

events that occur during development given a specific method is applied.

61

Furthermore, rather than solely considering activities, it would be beneficial for an

organization to organize the defining characteristics for the methods discussed herein. This

would give better insight to specific applications including best use case scenarios,

engineering and organizational cultures, and industry implementation. In conjunction with

an activity mapping (or mappings), it would help create a comprehensive resource for use

in any engineering environment.

Finally, the development of a tool that a user could navigate by inputting or

choosing activities and characteristics of a development program, that not only provides a

recommended method but may even propose a baseline process would be beneficial to any

organization and in any development program.

62

THIS PAGE INTENTIONALLY LEFT BLANK

63

LIST OF REFERENCES

Al-Ashaab, Ahmed, Matic Golob, Usama M Attia, Muhammad Khan, Jon Parsons,
Alberto Andino, Alejandro Perez et al. 2013. “The Transformation of Product
Development Process into Lean Environment Using Set-Based Concurrent
Engineering: A Case Study from an Aerospace Industry.” Concurrent
Engineering, Research and Applications 21 (4): 268–85. https://doi.org/10.1177/
1063293X13495220.

Arnold, Ross D, and Jon P Wade. 2015. “A Definition of Systems Thinking: A Systems
Approach.” Procedia Computer Science 44: 669–78. https://doi.org/10.1016/
j.procs.2015.03.050.

Balcaitis, Ramunas. 2019. “Design Thinking Models. Standard d.school.” June 15, 2019.
https://empathizeit.com/design-thinking-models-stanford-d-school/

Banica, Logica, Magdalena Radeulescu, Doina Rosca, and Alina Hagui. 2017. “Is
DevOps Another Project Management Methodology?” Informatica Economica 21
(3/2017): 39–51. https://doi.org/10.12948/issn14531305/21.3.2017.04.

Blanchard, Benjamin S., and W. J. Fabrycky. 2011. Systems Engineering and Analysis.
5th ed. Boston: Prentice Hall

Bjögvinsson, Erling, Pelle Ehn, and Per-Anders Hillgren. 2012. “Design Things and
Design Thinking: Contemporary Participatory Design Challenges.” Design Issues
28 (3): 101–16.

Canciglieri, Osiris, João Pedro Buiarskey Kovalchuk, Marcelo Rudek, and Teófilo
Miguel de Souza. 2010. “Development of White Goods Parts in a Concurrent
Engineering Environment Based on DFM/DFA Concepts.” In New World
Situation: New Directions in Concurrent Engineering, 491–501. London:
Springer London. https://doi.org/10.1007/978-0-85729-024-3_47.

Capers, Jones. 2018. “Agile/Scrum Software Development.” In Software Methodologies
a Quantitative Guide, 1st ed., 49–55. CRC Press. https://doi.org/10/1201/
9781315314488-5

Chang, YoungJoong, Jaibeom Kim, and Jaewoo Joo. 2013. “An Exploratory Study on the
Evolution of Design Thinking: Comparison of Apple and Samsung.” Design
Management Journal 8 (1): 22–34. doi:10.1111/dmj.12001

https://doi.org/10.1016/j.procs.2015.03.050
https://doi.org/10.1016/j.procs.2015.03.050
https://doi.org/10.1016/j.procs.2015.03.050

64

Cooke, Jaime L. 2012. “A Five-Minute History of Agile” In Everything You Want to
Know About Agile, 32–. IT Governance Publishing.

Dornenburg, Erik. 2018. “The Path to DevOps.” IEEE Software 35 (5): 71–75.
https://doi.org/10.1109/MS.2018.290110337.

DiMeo, Andrew. 2018. “Design Thinking and Human Centered Design – What’s the
Difference?” December 4, 2018. https://www.trig.com/explore/design-thinking-
and-human-centered-design-whats-the-difference

Ebert, Christof, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. 2016.
“DevOps.” IEEE Software 33 (3): 94–100. https://doi.org/10.1109/MS.2016.68.

Ferdinando, Lisa. 2018. “DOD Must Be More Agile in Technology Development,
Official Says.” DOD News. April 19, 2018. https://www.defense.gov/Explore/
News/Article/Article/1497393/

Galli, Brian J. 2018. “Effectively Using Systems Thinking in New Product Development
(NPD).” International Journal of Applied Logistics 8 (2): 69–85. https://doi.org/
10.4018/IJAL.2018070104.

Garamone, Jim. 2017. “DOD restructures acquisition, technology office to improve
military lethality, speed.” DOD News Defense Media Activity. August 7, 2017.
https://www.army.mil/article/191904/dod_restructures_acquisition_technology_of
fice_to_improve_military_lethality_speed

Goede, Roelien. 2005. “A Framework for the Explicit Use of Specific Systems Thinking
Methodologies in Data-Driven Support System Development.” Dissertation,
University of Pretoria. http://hdl.handle.net/2263/24606

Hasso Plattner Institute of Design. 2019. An Introduction to Design Thinking PROCESS
GUIDE. San Jose, California.

IDEO. n.d. “What is Design Thinking?” Accessed April 8, 2021. https://www.ideou.com/
blogs/inspiration/what-is-design-thinking.

INCOSE. 2015. Systems Engineering Handbook: A Guide for System Life-cycle
Processes and Activities. Hoboken, NJ: John Wiley & Sons.

https://doi.org/10.1109/MS.2018.290110337
https://doi.org/10.1109/MS.2018.290110337
https://doi.org/10.1109/MS.2016.68
https://doi.org/10.1109/MS.2016.68
https://www.defense.gov/Explore/News/Article/Article/1497393/
https://www.defense.gov/Explore/News/Article/Article/1497393/
https://www.defense.gov/Explore/News/Article/Article/1497393/
https://doi.org/10.4018/IJAL.2018070104
https://doi.org/10.4018/IJAL.2018070104
https://doi.org/10.4018/IJAL.2018070104
http://hdl.handle.net/2263/24606
https://www.ideou.com/blogs/inspiration/what-is-design-thinking
https://www.ideou.com/blogs/inspiration/what-is-design-thinking
https://www.ideou.com/blogs/inspiration/what-is-design-thinking

65

Khan, Muhammad, Ahmed Al-Ashaab, Athanasia Doultsinou, Essam Shehab, Paul
Ewers, and Robert Sulowski. 2011. “Set-Based Concurrent Engineering Process
Within the LeanPPD Environment.” In Improving Complex Systems Today, 433–
40. London: Springer London. https://doi.org/10.1007/978-0-85729-799-0_51.

Khan, Muhammad S, Ahmed Al-Ashaab, Essam Shehab, Badr Haque, Paul Ewers, Mikel
Sorli, and Amaia Sopelana. 2013. “Towards Lean Product and Process
Development.” International Journal of Computer Integrated Manufacturing 26
(12): 1105–16. https://doi.org/10.1080/0951192X.2011.608723.

Kim, Gene, Jez Humble, Patrick Debois, and John Willis. 2016. The DevOps Handbook
How to Create World-Class Agility, Reliability, & Security in Technology
Organizations. Portland: IT Revolution Pres, LLC.

Lebcir, Mohamed. 2006. Health Care Management: The Contribution of Systems
Thinking. UHBS 2006:7. Hartfield, UK: The Business School University of
Hertfordshire. https://uhra.herts.ac.uk/bitstream/handle/2299/683/
S65.pdf?sequence=1

Leite, Leonardo, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles. 2020.
“A Survey of DevOps Concepts and Challenges.” ACM Computing Surveys 52
(6): 1–35. https://doi.org/10.1145/3359981.

Liker, Jeffrey K, and James Morgan. 2011. “Lean Product Development as a System: A
Case Study of Body and Stamping Development at Ford.” Engineering
Management Journal 23 (1): 16–28. https://doi.org/10.1080/
10429247.2011.11431884.

Lindberg, Tilman, Raja Gumienny, Birgit Jobst, and Christoph Meinel. 2010. “Is There a
Need for a Design Process?” In Proceedings of Design Thinking Research
Symposium 8. 243–254. https://hpi.de/fileadmin/user_upload/fachgebiete/meinel/
papers/Design_Thinking/2010_Lindberg_Design.pdf

Linke, Rebecca. 2017. “Design thinking, explained.” September 14, 2017. MIT.
https://mitsloan.mit.edu/ideas-made-to-matter/design-thinking-
explained#:~:text=Design%20thinking%20is%20an%20innovative%20problem-
solving%20process%20rooted,Brown,%20CEO%20and%20president%20of%20d
esign%20company%20IDEO.

Maani, Kambiz E., and Robert Y. Cavana. 2007. “Systems Methodology.” The Systems
Thinker 18 (8) (October): https://thesystemsthinker.com/wp-content/uploads/pdfs/
180801pk.pdf

https://doi.org/10.1007/978-0-85729-799-0_51
https://doi.org/10.1007/978-0-85729-799-0_51
https://doi.org/10.1080/0951192X.2011.608723
https://doi.org/10.1080/0951192X.2011.608723
https://doi.org/10.1145/3359981
https://doi.org/10.1145/3359981
https://hpi.de/fileadmin/user_upload/fachgebiete/meinel/papers/Design_Thinking/2010_Lindberg_Design.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/meinel/papers/Design_Thinking/2010_Lindberg_Design.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/meinel/papers/Design_Thinking/2010_Lindberg_Design.pdf
https://mitsloan.mit.edu/ideas-made-to-matter/design-thinking-explained#:%7E:text=Design%20thinking%20is%20an%20innovative%20problem-solving%20process%20rooted,Brown,%20CEO%20and%20president%20of%20design%20company%20IDEO
https://mitsloan.mit.edu/ideas-made-to-matter/design-thinking-explained#:%7E:text=Design%20thinking%20is%20an%20innovative%20problem-solving%20process%20rooted,Brown,%20CEO%20and%20president%20of%20design%20company%20IDEO
https://mitsloan.mit.edu/ideas-made-to-matter/design-thinking-explained#:%7E:text=Design%20thinking%20is%20an%20innovative%20problem-solving%20process%20rooted,Brown,%20CEO%20and%20president%20of%20design%20company%20IDEO
https://mitsloan.mit.edu/ideas-made-to-matter/design-thinking-explained#:%7E:text=Design%20thinking%20is%20an%20innovative%20problem-solving%20process%20rooted,Brown,%20CEO%20and%20president%20of%20design%20company%20IDEO
https://mitsloan.mit.edu/ideas-made-to-matter/design-thinking-explained#:%7E:text=Design%20thinking%20is%20an%20innovative%20problem-solving%20process%20rooted,Brown,%20CEO%20and%20president%20of%20design%20company%20IDEO

66

Mascitelli, Ronald. 2006. Lean Product Development Guidebook: Everything Your
Design Team Needs to Improve Efficiency and Slash Time-to-Market.
Northridge: Technology Perspectives

Mazzuchetti, Roselis, Elaine Lopes, and Ismael Barbosa. 2019. “Design Thinking in the
Development of New Products: A Case Study.” International Journal of
Development Research 9 (05) (May): 27442 – 27444. IJDR

Measey, Peter., Chris. Berridge, Alex. Gray, Lazaro. Wolf, Peter. Measey, Les. Oliver,
Barbara. Roberts, Michael. Short, and Darren. Wilmshurst. 2015. Agile
Foundations Principles, Practices and Frameworks. 1st ed. Swindon: BCS
Learning & Development Limited.

Microsoft. n.d. “What is DevOps.” Accessed July 5, 2021. https://azure.microsoft.com/
en-us/overview/what-is-devops/

Moore, Dale L. 2021. “Government as Lead Systems Integrator (LSI) as a DOD
Acquisition Program Management Strategy.” Unpublished paper. April 5, 2021.

Mueller-Roterberg, Christian. 2018. Handbook of Design Thinking. Kindle Direct
Publishing: Washington.

Mynott, Colin. 2012. Lean Product Development a Manager’s Guide London: Institution
of Engineering and Technology.

Petersen, Mira, and Nana F Hempler. 2017. “Development and Testing of a Mobile
Application to Support Diabetes Self-Management for People with Newly
Diagnosed Type 2 Diabetes: A Design Thinking Case Study.” BMC Medical
Informatics and Decision Making 17 (1): 91–91. https://doi.org/10.1186/s12911-
017-0493-6.

Plattner, Hasso, Christoph Meinel, and Larry Leifer. 2011. Design Thinking Understand
– Improve – Apply. 1st ed. 2011. Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-13757-0.

Pop, Marlena. 2020. “Design Thinking in Product Development – Case Study: Leather
Library.” Paper presented at ICAMS 2020 8th International Conference on
Advanced Materials and Systems, Bucharest, Romania.

Pries, Kim H., and Jon M. Quigley. 2010. Scrum Project Management. Boca Raton, FL:
CRC Press.

https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://doi.org/10.1007/978-3-642-13757-0
https://doi.org/10.1007/978-3-642-13757-0

67

Putta, Abheeshta, Maria Paasivaara, and Casper Lassenius. 2018. “Adopting Scaled Agile
Framework (SAFe): a Multivocal Literature Review.” In Proceedings of the 19th
International Conference on Agile Software Development, 1–4. ACM.
https://doi.org/10.1145/3234152.3234164

Qumer Gill, Asif, Abhishek Loumish, Isha Riyat, and Sungyoup Han. 2018. “DevOps for
Information Management Systems.” VINE Journal of Information and Knowledge
Management Systems 48 (1): 122–39. https://doi.org/10.1108/VJIKMS-02-2017-
0007.

Radeka, Katherine. 2013. The Mastery of Innovation a Field Guide to Lean Product
Development. Boca Raton, Fla: CRC Press.

Ramage, Magnus, and Karen Shipp. 2020. “Peter Checkland.” In Systems Thinkers, 151–
59. London: Springer London. https://doi.org/10.1007/978-1-4471-7475-2_15.

Raudberget, Dag. 2011. “Enabling Set-Based Concurrent Engineering in traditional
product development.” Paper presented at International Conference on
Engineering Design, University of Denmark.

Ries, Eric. 2011. The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses. 1st ed. New York: Crown
Business.

Rutherford, Albert. 2019. Learn to Think in Systems. South Carolina: Kindle Direct
Publishing. Kindle.

Samiphak, S., A M Agogino, S L Syme, and R H Lamoreaux. 2016. “Design a Systems
Thinking in Development Engineering: A Case Study of Liver Fluke Infection in
Khon Kean, Thailand.” In Proceedings of International Conference on
Engineering Education and Research. https://www.westernsydney.edu.au/__data/
assets/pdf_file/0005/1176746/iCEER2016_Conference_Proceedings_official.pdf

Scaled Agile. 2021. Achieving Business Agility with SAFe 5.
https://www.scaledagile.com/resources/safe-
whitepaper/?_ga=2.53569384.1967315312.1626743188-605840441.1621991766

Schallmo, Daniel, Christopher A. Williams, and Klaus Lang. 2018. “An Integrated
Design Thinking Approach-Literature Review, Basic Principles and Roadmap for
Design Thinking.” Paper presented at ISPIM Innovation Conference – Innovation,
the Name of the Game. Stokholm, Sweden.

https://doi.org/10.1145/3234152.3234164
https://doi.org/10.1145/3234152.3234164
https://doi.org/10.1007/978-1-4471-7475-2_15
https://doi.org/10.1007/978-1-4471-7475-2_15
https://www.westernsydney.edu.au/__data/assets/pdf_file/0005/1176746/iCEER2016_Conference_Proceedings_official.pdf
https://www.westernsydney.edu.au/__data/assets/pdf_file/0005/1176746/iCEER2016_Conference_Proceedings_official.pdf

68

Senge, Peter M. 2006. The Fifth Discipline: The Art and Practice of the Learning
Organization. Rev. and updated. New York: Doubleday/Currency.

Sobek, Durward K., Allen C Ward, and Jeffrey K Liker. 1999. “Toyota’s Principles of
Set-Based Concurrent Engineering.” Sloan Management Review 40 (2): 67– 83.

Sommer, Anita Friis. 2019. “Agile Transformation at LEGO Group: Implementing Agile
Methods in Multiple Departments Changed Not Only Processes but Also
Employees’ Behavior and Mindset.” Research Technology Management 62 (5):
20–29. https://doi.org/10.1080/08956308.2019.1638486.

Smartsheet. n.d. “Waterfall.” Accessed April 17, 2021. https://www.smartsheet.com/
content-center/best-practices/project-management/project-management-guide/
waterfall-methodology

Stowell, Frank. 2013. “Peter Checkland Interview.” International Journal of Information
Technologies and Systems Approach 6 (2): 53–60. https://doi.org/10.4018/
jitsa.2013070105.

Sweeney, Linda B., and John D. Sterman. 2000. “Bathtub Dynamics: Initial Results of a
Systems Thinking Inventory.” System Dynamics Review 16 (4) (Winter): 249–
286. doi: http://dx.doi.org.libproxy.nps.edu/10.1002/sdr.198.

Thomke, Stefan, and Barbara Feinberg. “Design Thinking and Innovation at Apple.”
Harvard Business School Case 609-066. Boston: Harvard Business School
Publishing, 2009.

Tuli, Prashant, and Ravi Shankar. 2015. “Collaborative and Lean New Product
Development Approach: A Case Study in the Automotive Product Design.”
International Journal of Production Research 53 (8): 2457–71. https://doi.org/
10.1080/00207543.2014.974849.

Tsuchida, Bruce T., and Lawrence E. Jones. 2019. Systems Dynamics Modeling an
Approach to Planning and Developing Strategy in the Changing Electricity
Industry. Boston, MA: The Brattle Group.
https://brattlefiles.blob.core.windows.net/files/
16049_system_dynamics_modeling.pdf

Ulrich, Karl T., and Steven D. Eppinger. 2016. Product Design and Development. 6th ed.
New York: McGraw-Hill/Irwin.

https://doi.org/10.1080/08956308.2019.1638486
https://doi.org/10.1080/08956308.2019.1638486
https://www.smartsheet.com/content-center/best-practices/project-management/project-management-guide/waterfall-methodology
https://www.smartsheet.com/content-center/best-practices/project-management/project-management-guide/waterfall-methodology
https://www.smartsheet.com/content-center/best-practices/project-management/project-management-guide/waterfall-methodology
https://www.smartsheet.com/content-center/best-practices/project-management/project-management-guide/waterfall-methodology

69

Vanderjack, Brian. 2015. The Agile Edge: Managing Projects Effectively Using Agile
Scrum. 1st ed. New York, New York (222 East 46th Street, New York, NY
10017): Business Expert Press

Walsh, Kenneth R., and Sathiadev Mahesh. 2015. “Agile Scrum.” In Encyclopedia of
Information Science and Technology. 3rd ed. edited by Khosrow-Pour, D.B.A.,
Mehdi, 7018-7025. Hershey, PA: IGI Global, 2015. http://doi:10.4018/978-1-
4666-5888-2.ch691

Wrigley, C., Nusem, E., & Straker, K. (2020. “Implementing Design Thinking:
Understanding Organizational Conditions.” California Management Review, 62
(2), 125–143.

Zhu, Liming, Len Bass, and George Champlin-Scharff. 2016. “DevOps and Its
Practices.” IEEE Software 33 (3): 32–34. https://doi.org/10.1109/MS.2016.81.

https://doi.org/10.1109/MS.2016.81
https://doi.org/10.1109/MS.2016.81

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	21Sep_McCarthy_Aimee_First8
	21Sep_McCarthy_Aimee
	I. Introduction
	A. Background
	B. Generic Life-cycle
	1. Life-Cycle Model
	2. Life-Cycle Stage Description
	a. Concept Stage
	b. Development Stage

	C. Research Scope
	1. Research Questions
	2. Research Approach

	D. Purpose
	E. Deliverables
	F. Organization of Study

	II. Development Methods Overview
	A. Design Thinking
	B. Lean Product Development
	C. Agile
	D. Set-Based Concurrent Engineering
	E. Systems Thinking
	F. Development and Operations

	III. Case Study Review
	A. Method Application and Process Identification
	1. Design Thinking
	2. Lean Product Development
	3. Agile
	4. Set-Based Concurrent Engineering
	5. Systems Thinking
	6. Devops

	B. Implementation Analysis

	IV. Method Alignment and Mapping
	A. INCOSE Process Baseline and Assumptions
	B. Descriptive Method Figures
	1. Design Thinking
	2. Lean Product Development
	3. Agile
	4. Set-Based Concurrent Engineering
	5. Systems Thinking
	6. Development and Operations

	C. Method Alignment
	D. Activity Mapping
	E. Activity Mapping Scenario

	V. Conclusions, limitations, and Recommendations
	A. Conclusions
	B. Limitations
	C. REcommendations for Future Research

	LIst of References
	Initial Distribution List

