
 

NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

THESIS 
 

EFFECTS OF TARGET CLASSIFICATION ON 
AI-BASED UNEXPLODED ORDNANCE DETECTION 

PERFORMANCE 

by 

Haocheng Joel Li 

September 2021 

Thesis Advisor: Oleg A. Yakimenko 
Second Reader: Fotis A. Papoulias 

 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188 

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions 
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington, DC 20503. 
 1. AGENCY USE ONLY 
(Leave blank)  2. REPORT DATE 

 September 2021  3. REPORT TYPE AND DATES COVERED 
 Master’s thesis 

 4. TITLE AND SUBTITLE 
EFFECTS OF TARGET CLASSIFICATION ON AI-BASED UNEXPLODED 
ORDNANCE DETECTION PERFORMANCE 

 5. FUNDING NUMBERS 
 
  

 6. AUTHOR(S) Haocheng Joel Li 

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

 8. PERFORMING 
ORGANIZATION REPORT 
NUMBER 

 9. SPONSORING / MONITORING AGENCY NAME(S) AND 
ADDRESS(ES) 
N/A 

 10. SPONSORING / 
MONITORING AGENCY 
REPORT NUMBER 

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. 
 12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.  12b. DISTRIBUTION CODE 

 A 
13. ABSTRACT (maximum 200 words)     
 This thesis aims to reduce the safety risks for warfighters in an area of operations where unexploded 
ordnance (UXO) may be present, and  lessen the number of training opportunities due to malfunctioning 
munitions in a controlled environment. The thesis leverages the advancement in unmanned technologies and 
artificial intelligence (AI) development to complete dull, dirty, and dangerous tasks more effectively. 
Specifically, the thesis attempts to improve a trained AI detector’s performance using different data-labeling 
methods as applied to the electro-optical images. The thesis describes the efforts conducted to train a UXO 
detector for a proposed deep learning convolutional neural network followed by validating its performance. 
To further enhance UXO detection capabilities, the research explores how the optimal target classification 
method developed and verified for a single-spectrum sensor can also be applied for a multispectral sensor. 
As such, the thesis outlines a development of a prototype of a real-time UXO detection system composed of 
a commercial-off-the-shelf (COTS) multi-spectral sensor and a small COTS unmanned aerial system. 

 14. SUBJECT TERMS 
small unmanned aerial system, UXO detection, deep learning, neural network , target 
classification, target labelling 

 15. NUMBER OF 
PAGES 
 71 
 16. PRICE CODE 

 17. SECURITY 
CLASSIFICATION OF 
REPORT 
Unclassified 

 18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 
Unclassified 

 19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 
Unclassified 

 20. LIMITATION OF 
ABSTRACT 
 
 UU 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 

i 



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

EFFECTS OF TARGET CLASSIFICATION ON AI-BASED UNEXPLODED 
ORDNANCE DETECTION PERFORMANCE 

Haocheng Joel Li 
Military Expert 5, Singapore Army 

BME, Nanyang Technological University, 2013 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN SYSTEMS ENGINEERING 

from the 

NAVAL POSTGRADUATE SCHOOL 
September 2021 

Approved by: Oleg A. Yakimenko 
 Advisor 

 Fotis A. Papoulias 
 Second Reader 

 Oleg A. Yakimenko 
 Chair, Department of Systems Engineering 

iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

 This thesis aims to reduce the safety risks for warfighters in an area of operations 

where unexploded ordnance (UXO) may be present, and  lessen the number of training 

opportunities due to malfunctioning munitions in a controlled environment. The thesis 

leverages the advancement in unmanned technologies and artificial intelligence (AI) 

development to complete dull, dirty, and dangerous tasks more effectively. Specifically, 

the thesis attempts to improve a trained AI detector’s performance using different 

data-labeling methods as applied to the electro-optical images. The thesis describes the 

efforts conducted to train a UXO detector for a proposed deep learning convolutional 

neural network followed by validating its performance. To further enhance UXO 

detection capabilities, the research explores how the optimal target classification method 

developed and verified for a single-spectrum sensor can also be applied for a 

multispectral sensor. As such, the thesis outlines a development of a prototype of a 

real-time UXO detection system composed of a commercial-off-the-shelf (COTS) 

multi-spectral sensor and a small COTS unmanned aerial system. 
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I. INTRODUCTION 

Unexploded ordnance (UXO) poses a serious threat to military troops and assets 

operating in a hostile area of operations. It also contributes to lost training opportunities 

due to the occurrence of munition malfunctions in a controlled environment. Presently, 

UXO detection operations require intensive manpower and time resources (Etter and 

Delaney 2013). UXO clearance operations are also high-risk activities that expose 

personnel to catastrophic consequences. Capitalizing on technological advancement and 

maturity in the areas of unmanned aerial systems (UAS) and object detection using electro-

optical (EO) sensors, coupled with deep learning (DL) algorithms, this thesis explores 

different data processing factors when employing an AI-based detection algorithm from 

data collected by small unmanned aerial systems (sUAS). 

A. BACKGROUND 

With the understanding of the limitations and risks involved in the current concept 

of UXO detection and capitalizing on the opportunities that emerging technologies offer, 

the value proposition of this thesis is to (1) reduce the safety risks posed to civilians and 

military troops in areas that contain UXO by increasing detection probability, and (2) 

lessen the resources needed to conduct UXO clearing operations by decreasing the time 

required to complete the detection operations. 

1. UXO Landscape   

Philip Grone (2003) defined a UXO as military-grade munitions that 1) have been 

“primed, fused, armed, or prepared for” usage, 2) were projected, dropped, launched, 

delivered, or located to create a “hazard to operations, installations, personnel,” and 3) 

remained “unexploded due to design, malfunction or any causes” (4). Figure 1 shows some 

examples of possible UXO. As mentioned previously, the current method and process of 

UXO detection has safety and throughput limitations. Usually, UXO require surface level 

(non-invasive) detection that uses visual or optical scanning. At times, UXO can be sub-

surfaced, requiring magnetometer, active electromagnetic induction, and ground 

penetrating radar detectors to locate such UXO (Bertrand et al. 2004). The equipment used 
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in such instances is usually manpower intensive as it is operated by handheld means and 

requires personnel to perform physical scanning work to locate the presence of any UXO. 

This method inherently creates operational risks to the operator.  

Figure 1. Examples of UXO. Source: Australia DOD (n.d.). 

Furthermore, UXO decontamination programs also entail high financial costs. The 

“21 mine action projects listed in the U.N. Mine Action Strategy’s portfolio cost an 

average of US $27 million each” (Carter Center 2020, 11). Therefore, increasing the 

probability of detection through tasks automation will increase the efficiency of 

performing area decontamination and reduce the cost of such operations. 

In a land-scarce country like Singapore, the availability of a live-firing area meant 

for training is crucial for soldiers to achieve mastery of weaponry competency and combat 

units to maintain warfighting capabilities. Therefore, it is paramount to reduce the 

downtime necessary to remedy UXO incidents in the designated impact zone during 

training. This, in turn, will allow training sequences to resume quickly and achieve training 

objectives in their designated timeframe. 

2. UXO Threats in Area of Military Operation

A 2020 Carter Center study estimated a minimum of 94,792 individual explosive 

munitions were used during armed conflicts between government forces and local militias 
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within a radius of 105 square kilometers of the Syrian capital of Damascus between July 

2013 and May 2019 (Carter Center 2020). In fact, about 5 percent of all munitions being 

used in any modern conflict can potentially become UXO (Overton. 2020). These estimates 

highlight the potential extent of UXO presence within a small, populated area and the 

resulting danger UXO can pose after a conflict. The UXO scenario not only creates safety 

issues during periods of armed conflict but the contamination from the remaining explosive 

content of the UXO weapons will continue to harm people for an extended period after an 

armed conflict (Carter Center 2020). 

These risks from UXO threaten military personnel and assets operating in the area 

of operations. As UXO are often undetected after armed kinetic conflict, personnel and 

assets might not have prior intelligence about these risks during follow-on operations in 

the area. This UXO threat can hinder the tempo of military operations and consequently 

reduce the military efforts’ effectiveness and cause injury and even death when personnel 

unknowingly come across UXO.  

Civilians and their way of life are also affected by UXO, even after a conflict is 

over (Carter Center 2020). Many areas previously used by the military may remain under-

utilized or not used at all because of UXO threats. There are many instances where 

civilians’ livelihoods depend heavily on agriculture, which is particularly vulnerable to 

dangers posed by remaining UXO and can deny civilians access to large sections of land. 

Figure 2 shows members of the Afghan National Army searching a road for improvised 

explosive devices before marking the area safe for travel and operations. 
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Figure 2. Improvised Explosive Device Clearance. Source: Savell (2019). 

3. Opportunities from Advancements in Technology 

In recent times, development of unmanned technologies has provided promising 

results for unmanned systems to undertake dangerous, dull, dirty, and dangerous tasks 

instead of human operators (Bekmezci et al. 2016). Artificial Intelligence (AI) has also 

created opportunities in military applications by applying DL algorithms based on artificial 

neural networks. 

a. Small Unmanned Aircraft System 

The U.S. Department of Defense (DOD) has defined Group 1 UAS as “typically 

less than 20 pounds in weight and normally operate below 1200 feet above ground level at 

speeds less than 250 knots” (U.S. DOD 2010, 12). This classification falls within the 

Federal Aviation Administration’s definition of any unmanned aircraft or aerial vehicle 

weighing less than 55 pounds. 

The U.S. Army has indicated that it currently employs UAS at different echelons 

of its force structure, and in particular, it will continue to equip Battalion–level and below 

units with sUAS (Group 1) as an organic asset for tactical operations. These sUAS could 

be deployed for full-spectrum military operations and to provide “just-in-time” situational 

awareness (U.S. DOD 2001). The U.S. DOD has also begun integrating UAS into its force 

structure more widely, and these integration efforts highlight the importance of unmanned 
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systems in future warfare. Specifically, the U.S. DOD aims to achieve autonomy and 

human-machine collaboration to revolutionize warfighting concepts (U.S. DOD 2018).  

It is evident that sUAS will be more widely used for military operations in the future 

just by noting the rising percentage of sUAS inventory of the U.S. Army. A 2013 

Department of Transportation Report presented that there are about 6,200 sUAS in the U.S. 

Army’s aircraft fleet, which is equivalent to about 55 percent of the fleet. This percentage 

is expected to increase to more than 75 percent, or about 10,000 sUAS, by 2035 (U.S. 

Department of Transportation 2013).  

It was envisaged that the U.S. Army would continue to fully integrate sUAS into 

its concept of operations during the period of 2016 to 2035 (U.S. DOD 2010). Figure 3 

depicts the U.S. Army’s prediction of work-share between unmanned and manned systems, 

in which UAS will cover a large majority of surveillance and communication tasks and 

about half of the offensive mission profile from 2016 to 2035.  

 
Figure 3. Envisaged Manned-Unmanned Roles Transition. Source: U.S. DOD 

(2010). 

These unmanned systems are projected to have a full suite of detection capabilities 

such as optical sensors ready to be deployed for imagery capturing capabilities, including 
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visible light, multi-spectral (MS), or thermal images. With the improved functionality and 

benefits, the employment of sUAS could be applied to improve the current methodology 

of UXO detection. As a result, the safety of personnel could be improved. 

b. Object Recognition Technologies 

AI has become prevalent in our everyday lives and is defined by Vibhuthi 

Viswanathan (2018) as intelligence demonstrated by computers or machines. Machine 

learning (ML) is a type of AI technology that involves machines that can self-learn and 

improve by reviewing large data sets without intervention from humans. Viswanathan 

(2018) explained that ML can be further broken down into the category of DL which 

mimics the way the human brain gains knowledge. He further added that DL employs 

artificial neural networks for processing data and aids in decision making. The learning 

from DL is derived from observing large data sets that pass through artificial networks and 

are used for recognizing patterns and classifying objects. The availability of the internet 

has facilitated more effective deep learning as users can now access huge datasets easily 

(Khan and Salim 2020). 

In a blog post, Jason Brownlee (2019) has described object recognition as a 

combination of “related computer vision tasks that involve identifying objects in digital 

images.” He further explained that these tasks include image classification that predicts the 

type and location of objects within an image or video with a bounding box. Computer 

vision uses pattern recognition and image mapping to make sense of data and arrive at 

solutions (Esposito and Donato 2001). This technology considers an image to be an array 

of pixels and automates tasks by employing ML techniques (Bond et al. 2019). 

Advancements in object detection technology such as the use of a trained deep learning 

convolutional neural network (DLCNN) during object recognition tasks have allowed such 

tasks to be carried out more precisely (Liu and Lang 2019).  

There are a variety of sensor technologies available commercially to collect data 

for and perform object detection. For example, typical electro-optical (EO) sensors 

combine Red-Green-Blue (RGB) spectrum images using a single lens, and MS sensors 

combine multiple lenses on a single machine to capture images of different sets of 
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wavelength bands to generate adequate spectral contrast within a single global shutter 

activity. The MS sensors can capture wavelengths invisible to the human eye, and these 

MS images can used to detect disturbed soil features caused by changes in the physical 

environment and in chemical properties. Such soil features can be used to locate UXO more 

effectively. MS images can also distinguish the difference in the reflectance of objects and 

background to display more separation, which is useful during UXO classification and 

detection. 

With all these considerations, this author understood the practicality of performing 

UXO recognition using DLCNN from MS images captured from an sUAS. 

B. PROBLEM FORMULATION AND THESIS ORGANIZATION 

The threats posed by the UXO and the opportunities created by recent technological 

advancements in AI technologies inspired the idea of AI-based UXO detection using sUAS 

equipped with optical sensors. It is envisioned to make use of sUAS in UXO detection 

process. Furthermore, target classification, which is an integral part of UXO detection 

capabilities, creates the ground truth to facilitate the training and validation of the detectors. 

Therefore, it is paramount to understand the effects of target classification to introduce 

more effective UXO detection capabilities. 

The objective of this thesis is to improve the present UXO detection model by 

employing alternative methods of EO image data processing. In particular, the thesis aims 

to answer the research question of how different target classifications of the EO image data 

will affect the performance of the UXO detector. The thesis uses EO images collected using 

a digital camera in a prior phase of the research as the data for training, validation, and 

testing of the detector. It trains the You-Only-Look-Once (YOLO) v2 neural network to 

perform UXO detection using different target classification methods of the EO images. 

Methods of classification are varied by deliberately placing tightly fitted or loosely fitted 

bounding boxes around the target present in the EO images data set. These respective 

labeled images are then used as training data to train the corresponding detectors. After 

completing the training, the detectors are tested by performing UXO detection by running 

the detector on all the images in the test dataset. An evaluation of the different models is 
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performed for comparison, and the variance in detection performance is attributed to the 

different target classifications.  

In this phase of the research, images from EO sensors were used for efficiency and 

because of time constraints as the improved method of target classification from the EO 

images could be applied on the MS image dataset as well. This is possible because the same 

image will be captured in different spectrums when working with MS data, and while the 

pre-processing period would require more time resources, using an effective method to 

label the image datasets will allow users to reduce the time required to perform that task. 

The effectiveness of UXO detection would be dependent on 1) Precision criteria, 

and 2) Recall criteria. Precision criteria refers to how accurate the prediction of the trained 

network performing the detection is; that is, the percentage of correct predictions. Recall 

criteria refers to the imprecision estimates of the trained network performing detection 

based on the omission of UXO detection. A measure of average precision (AP) would also 

be computed from the area under the Precision – Recall curve and used as the evaluation 

measure for the detection (Everingham et al. 2010). The performance measure of each of 

the different methods for target classification is used for comparison to identify the best 

data processing method for superior UXO detection capabilities. 

The thesis is structured as follows: Chapter II presents the envisaged concept of 

operation that uses an sUAS coupled with a UXO detection system and includes the 

literature review. Chapter III describes the selection process of an appropriate DLCNN. 

The chapter also describes the process of developing the detection algorithm. Chapter IV 

describes the data sources and different data processing methods. Chapter V presents the 

training procedure of the processed EO images. The chapter also demonstrates the UXO 

detection and presents the evaluation of the detection algorithm. Chapter VI focuses on the 

integration process of the sUAS with a multispectral EO sensor prototype system. This 

process relied on assets available in the Naval Postgraduate School to support the ability 

to collect and analyze data not visible to the human eye and to accomplish these tasks at a 

fraction of the time and at reduced risk. Finally, Chapter VII summarizes the thesis, 

presents the conclusion, and proposes recommendations for future research. 
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II. CONCEPT OF OPERATIONS AND LITERATURE REVIEW  

This chapter describes the employment of an sUAS-based UXO detection system 

in an operational scenario and offers a review of the literature relevant for this research and 

the developed system. 

A. CONCEPT OF OPERATIONS   

The proposed system consists of military operators performing sUAS flight during 

mission sets in a hostile environment. Hostile environments include not only areas of 

current military combat operations but also areas of previous armed conflict where UXO 

may remain and pose a threat. Using an sUAS equipped with optical sensors, teams could 

identify an ingress or egress route for troops or perform area sanitization by detecting 

surface UXO. The type of sensor in such a scenario can be either a standard EO or an MS 

sensor, which tends to provide more information for data classification on the images 

captured during flight. 

Ground commanders would first define the search area and operate the sUAS 

equipped with an imagery sensor. The sUAS would perform a flight path to comb the 

specified area and capture video footage or series of overlapped images of the mission area. 

Upon returning to the take-off location, the sUAS team would perform UXO detection 

from the retrieved footage or series of images. The trained detector would indicate 

suspected UXO within bounding boxes on the video and images automatically. The 

location of suspected UXO would also be marked on the flight path overview for ground 

commanders to make informed decisions about the situation. An illustration of the system 

concept is provided in Figure 4. 
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Adapted from https://commons.wikimedia.org/wiki/File:Biskeri-_Camping_I_IMG_

7238.jpg. 

Figure 4. UXO Detection System Concept. 

B. LITERATURE REVIEW 

This section reviews materials related to this research. These topics include 1) 

detection using sUAS, 2) the feasibility of using DLCNN with images from sUAS, and 3) 

improved detection performance using MS images. 

1. Object and UXO Detection Tasks Using sUAS Equipped with Different 
Sensors 

Other than the traditional handheld UXO detection method, several methods have 

shown promising results for detecting objects. A thesis research in 2018 used Class 1 UAS 

(sUAS) for automated foreign object debris detection over a targeted area of operation. 

Wee Leong Lee (2018) developed algorithms to facilitate object detection and produced a 

graphical-user interface for demonstration of the concept. The study also showed the 

feasibility of achieving improved efficiency in operations and demonstrated promising 

results of detecting objects as small as 3 cm x 3 cm. He proposed an optimized system 

configuration of flight height of 4 m with an optical sensor filter window size of 7 pixels x 

7 pixels. A study by Bartosz Ptak and Mateusz Piechocki in 2020 also showed affirmative 
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results in using aerial photos for the following tasks: 1) object detection, 2) segment tags, 

and 3) classifying objects. The study outlined the usefulness of ML and DL solutions for 

each of the subtasks. Their proposed approach performed well in stationary tests, and the 

authors were confident that this approach would produce similar results in the operational 

environment (Ptak and Piechocki 2020). 

Other studies have explored alternative sUAS surface-detection methods. One such 

study developed a transient electromagnetic (TEM) system integrated with drones 

operating at low altitude to detect underground and near-surface UXO. The successful 

system demonstration results showed the advantages of UXO detection at low flight 

altitude. These advantages included low cost, increased flight safety, and increased 

efficiency (Qi et al. 2020).  

Another research utilized drones equipped with a thermal imaging camera for rapid 

mine detection. Timothy deSmet et al. (2018) successfully used thermal sensing 

commercial-off-the-shelf UAS platforms to accurately detect minefield presence. The 

study also demonstrated the sUAS’s capabilities of detecting UXO in various conditions 

that differed in temperature, moisture content, and earth-covered depth. The study further 

presented the benefits of using vision-based detection methods by having the ability to 

detect more materiel types than only metallic UXO. 

These previous studies showed that the implementation of low flying sUAS 

equipped with sensors meant for UXO detection was feasible due to its inherent advantages 

like effectiveness, safety, and cost benefits. 

2. Application of DLCNN with sUAS Images 

Object detection technology has matured greatly in recent times by applying DL as 

a means of implementing CNN techniques to analyze visual imagery (Liu and Lang 2019). 

A study by Ross Girshick et al. (2014) showed that DLCNN was useful for delivering high 

performance in object detection by using extracting region proposals from an image as an 

input to the network. These proposals are then reshaped to a fixed size and passed on 

through the network. The authors further explained that these features within the proposals 

are subsequently used to “classify each region with a category-specific linear Support 
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Vector Machine” (2). The study also used the bounding box regression technique to ensure 

the object is properly captured by the bounding box (Girshick et al. 2014).  

DLCNN has also been explored for performing inspections of concrete structures 

and buildings using images from sUAS. A study by Sattar Dorafshan et al. in 2018 

demonstrated affirmative object detection capabilities by a network trained using images 

obtained from point-and-shoot camera instead of sUAS images. The study also presented 

that it was feasible to train DLCNN use training images datasets collected with handheld 

cameras and deploying sUAS autonomous structural inspections to achieve similar results 

to human inspectors (Dorafshan et al. 2018). This method is similarly applied in this thesis 

to perform network training and validation test using image datasets from handheld digital 

cameras.  

A study in 2021 presented the feasibility of using ML to perform targeted weed 

control in an area of operations. The study focused on the ML techniques using data from 

the sUAS to produce an autonomous detection method for undesirable vegetation. The 

results obtained provided evidence that object detection could be achieved by using a 

trained convolutional neural network (CNN) with positive outcomes (White 2021). 

Through capitalization of the technological advancements in data processing, 

object detection capabilities could be employed in military operations such as UXO 

detection. 

3. Object Detection Using Multispectral Images 

An sUAS can be equipped with many types of cameras that capture single or MS 

images, and these images when used as inputs for object detection have shown positive 

results in industrial solutions and research studies. For example, a 2009 study said that MS 

images obtained through sensors placed on sUAS created the capacity to meet the 

necessary requirements of spatial, spectral, and temporal resolutions and quick turnaround 

times. The use of sUAS further lowered the cost of this approach as compared to manned 

solutions (Berni et al. 2009). Studies have shown that, for agricultural applications, images 

obtained from an sUAS can achieve equal or better detection estimation as compared to 

manned airborne sensors. For example, spectral red-edge has proven to be highly effective 
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in detecting changes in vegetation because there is a linear relationship between red-edge 

reflectance spectra and the chlorophyll content of vegetation (Curran, Dungan, and Gholz 

1990). This finding could be useful to aid UXO detection. 

Furthermore, according to Delores Etter and Bill Delaney, a U.S. DOD report on 

UXO by the Defense Science Board Task Force, suggested that the use of MS data can 

contribute significant information for detection of surface or near-surface UXO (Etter and 

Delaney 2003). A study from Tokyo University also explored object detection using 

multiple spectral image data of 1) RGB, 2) Near-infrared (NIR), 3) Mid-infrared (MIR), 

and 4) Far-infrared (FIR). The spectral images (FIR, MIR, and NIR) have different features 

from RGB images and would aid in object detection. The results of the study showed the 

model that used multispectral images performed 13 percent above the mean average 

precision (AP) as compared to the model using RGB images for object detection (Takumi 

et al. 2017). 

A recent study by Md Osman Gani et al. (2021) highlighted that MS datasets such 

as NIR images have shown more promising detection results during low visibility 

conditions. In their research UXO detection performed better when MS imagery data was 

used for YOLOv3 CNN training and data augmentation was done to prevent overfitting 

(Gani et al. 2021). As indicated by the promising results presented in these studies, 

multispectral data along with improved data processing, could further enhance detection 

capabilities in future. 
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III. DEVELOPMENT OF THE DETECTION ALGORITHM 

This chapter describes the selection process of appropriate AI neural network and 

detector’s parameters for UXO detection. This chapter also develops the UXO detection 

algorithm based on previous studies and introduces different data labeling methods in 

attempt to improve the detection capabilities of the proposed solution. In order to present 

a comparison of the detection capabilities, this study uses the same evaluation metric 

employed to evaluate detection capabilities in the previous research phase, as performed 

and documented by Cho (2021). 

A. SELECTION OF DEVELOPMENT ENVIRONMENT 

These days there are several environments (trained CNNs) that can be used for 

developing algorithms or programs. Some of the popular ones are Oracle, Python, C++, 

and Java. Each environment has its strengths and weaknesses, and the selection of the 

design environment should be based on the eventual operational need of the program. 

This thesis research used MATLAB to perform UXO detection due to this author’s 

familiarity with MATLAB and the availability of the programming software. MATLAB 

also allows the researcher to develop applications with guided user interfaces and provides 

associated programming toolboxes such as ML and DL toolboxes that were useful in 

developing the algorithm. 

B. SELECTION OF DLCNN FOR UXO DETECTION 

The selection of a suitable DLCNN for UXO detection was dependent on the 

available resources and complexity of tasks. Ozan Ozturk et. al. (2020) largely classified 

computer vision tasks into four groups, 1) image segmentation, 2) image classification, 3) 

object detection, and 4) object recognition. Image segmentation converts the image to the 

pixel level and segments the image into different partitions. This task could be used for 

object detection based on pixels (Sinha 2020). Image classification is the task of classifying 

the object’s presence within the image as an input. Object detection is the process of finding 

instances of object images, whereas object recognition refers to the process of performing 
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object position estimation within the image input based on object classes. This task would 

be useful for scenarios where there are multiple classes of objects within the same image 

(Sharma 2019). 

The requirements for an UXO detection system should include locality of the threat; 

therefore, the object detection task would employ bounding boxes to mark the predicted object 

in the image (Zhao et al. 2019) to warn operators of the potential danger.  

The DLCNN model uses the multiple neural layers abstraction method to acquire 

data representations through inputs. It has proved to be more capable with an exponentially 

increased expressive capability (Zhao et al. 2019). Within MATLAB three popular CNN 

models are available, 1) YOLOv2, 2) Faster R-CNN, and 3) Single Shot MultiBox Detector 

(SSD). 

The YOLOv2 is a single-stage real-time object detection model that performs 

efficiently as the detection process is within a single network. It improves upon YOLOv1 

in several ways, including in its use of 1) batch normalization to improve convergence as 

it uses higher learning rates and is less restrictive on initialization, and this feature can 

eliminate the need for Dropout occurrences (Ioffe and Szegedy 2015); (2) it offers a high-

resolution classifier; and (3) YOLOv2 allows for anchor boxes to predict bounding boxes 

to frame the locality of objects presented in the image (Redmon and Farhadi 2016). The 

study by Joseph Redmon and Ali Farhadi (2016) also presented the YOLOv2’s superior 

accuracy and speed in comparison to the other computational models and the preceding 

version—YOLO on PASCAL VOC 2007 test set—and across a variety of detection 

datasets. 

Another model, named Faster R-CNN, developed by Shaoqing Ren et al. (2016) 

merged the region proposal network (RPN) and an extension of a previous network 

model—Fast R-CNN. The RPN helps create convolutional features in full-image format 

within the detection network for object bounds prediction. The prediction would also have 

an accompanying objectiveness score at each position. The improved model demonstrated 

promising results at near real-time frame rates using the RPN component to inform the 
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unified network where to look. The introduction of RPN also helps improve the quality of 

region proposal and accuracy (Ren et al. 2016). Figure 5 shows the illustration of the RPN.  

a)  

b)  
Figure 5. Region Proposal Network Illustration (a), and Example Detections using 

RPN Proposals (b). Source: Ren et al. (2016). 
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The SSD model encapsulates all computation within a single deep neural network 

to perform object detection using a set of preset bounding boxes of different aspect ratios 

for each  featured map location. The model assesses and creates scores for object class 

detection and could modify the detection box to better fit the object. It is followed by 

performing non-maximum suppression to deliver the final detection results. Hongyu Liu 

and Bo Lang (2016) made use of “multi-scale convolutional bounding box outputs attached 

to multiple feature maps at the top of the network” (16). This model also does not provide 

proposal generation or feature resampling (Liu et al. 2016). Figure 6 presents the network 

architecture of SSD. The base of the network before the classification layers is built upon 

a standard image classification architecture. Although several networks are available, the 

SSD uses the VCG-16 network. Lui and Lang (2016) added extra feature structures to the 

network to enhance the detection capabilities. 

 
Figure 6. SSD Network Architecture. Source: Liu and Lang (2016). 

A comparison of multi-sized ship detection performance among the three network 

models was performed by Zhong-Qui Zhao et al. (2019). It should be noted that the SSD 

model in their study did not utilize a professional network to provide box locating. The 

model composed entirely of a CNN also took convolutional features of different depths 

into consideration. By comparison, the YOLOv2 model in Zhao et al.’s study did not utilize 

RPN and had a different framework from both the R-CNN and SSD models. Their research 

results showed the YOLOv2 model is fast at calculation but slightly less accurate than the 

other models.  
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A separate study also demonstrated that the learning rate of YOLOv2 is 68 percent 

and 16 percent faster than the Faster R-CNN model and SSD model, respectively, but had 

poorer accuracy when used to detect small traffic signs (Grag et al. 2019). 

The present research concurs with the prior studies and considers the YOLOv2 

model as most suitable for real-time UXO detection. This is because the demand for a faster 

learning rate is paramount to support warfighters in maintaining operational momentum. 

Also, a high-performance graphics unit required by models processing large inputs would 

likely be unavailable in an operational environment. 

C. SELECTION OF THE NUMBER OF ANCHOR BOXES 

Both the YOLOv2 and Faster R-CNN models use multiple anchor boxes of 

different sizes and aspect ratios to locate an object’s presence within an image. The anchor 

boxes estimation function obtains the Intersection over Union (IoU) distance through a k-

means clustering method. IoU represents the overlap of the anchor box boundaries and the 

ground truth. Figure 7 shows some examples of the use of anchor boxes. 

  
Figure 7. Examples of Anchor Boxes in the YOLOv2 Model. Adapted from 

Redmon and Farhadi (2016). 
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The quantity of anchor boxes used affects effectiveness as well as efficiency during 

object detection (Redmon and Farhadi 2016). The higher the number of anchor boxes, the 

more accurate the model will be, but it also brings about an increased period of training 

and might lead to degraded detection performance due to overfitting. Therefore, it is 

important to select a suitable quantity of anchor boxes to balance both factors. 

From the results of prior research, shown in Figure 8, nine anchor boxes were 

deemed optimal to train the UXO detector, with a mean IoU of 0.8045, based on the 

relationship between the number of anchor boxes and the mean IoU (Cho 2021). The same 

number of anchor boxes is used in this phase of research because using more than nine 

anchor boxes can improve the mean IoU value trend only marginally. 

 
Figure 8. Number of Anchor Boxes vs. Mean IoU from the Training Data for the 

UXO Detector. Source: Cho (2021). 

D. MEASURE OF EFFECTIVENESS 

This thesis uses AP, an evaluation metric popular in object detection competitions, 

to measure the performance of the trained object detectors. In a blog post, Gad Ahmed 
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(2021) describes AP as “a method to summarize the precision-recall curve into a single 

value representing the average of all precisions.” The metric is based on a confusion matrix 

to assess the performance of the detector by separating the “actual states” into different 

columns and “test results” into different rows (Powers 2010). 

In this definition, Precision measures how accurate the predictions are, which can 

be obtained through the percentage of predictions that are correct 

 
True DetectionsPrecision =
All Detections

 (1) 

The Recall criterion measures how good you find all the positives 

 
True DetectionsRecall =

Actual Occurences
 (2) 

After computing the Precision and Recall criteria, the precision-recall (PR) curve 

is plotted to determine the accuracy of the detector. In the PR curve, the ideal precision is 1 

at all recall levels. The AP summarized the precision-recall curve where a higher AP means 

a better detector performance and can be computed using the 11-interpolation method as 

presented in the PASCAL VOC 2008 Object Detection Challenge. This means that recall 

values from 0 to 1 will be segmented evenly into 11 points (i.e. 0, 0.1, and 0.2). Next we 

compute the interpolated precision at each of the 11 points by obtaining the maximum precision 

measured at each recall level. Lastly, we calculate the average of the interpolated precision at 

each of the 11 points. (Everingham et al. 2010). The equation is as follows: 

  
Re {0,0.1...1.0}

1AP Precision (Recall)
11 Interpolated

call∈
= ∑  (3) 

 
Precision (Recall) = max Precision (Recall) Interpolated  (4) 

where max Precision (Recall) refers to the highest measured precision data point 

selected at each recall point. For example, if the precision values for first recall point “0” 
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are 1, 0.7, and 0.5, we will select the highest value of 1 instead of the other two values. We 

will continue with the same selection method for the remaining 10 recall points and take 

the average of the 11 recorded precision value. 

E. METHODS OF TARGET CLASSIFICATION 

This thesis explores whether detection capability is affected by using different 

methods of target classification. The author of the thesis on the previous research phase 

positioned the bounding boxes around the targets, with some boxes being loosely fitted and 

some fitted tightly (Cho 2021). He labeled the target within the image in a non-standardized 

manner and did not follow a particular methodology or pattern. The present thesis varies 

the methods of target classification. One method was to manually position bounding boxes 

tightly around the targets in all the images in the dataset using the Image Labeler 

application, which took approximately five hours to complete labeling the dataset. The 

other method was to position the bounding boxes loosely instead, which reduced the target 

classification time by nearly 60 percent, to 1.5 hours. Figure 9 provides a visual overview 

of the different methods of target classification applied in this research.  

Nevertheless, other target classification methods are available in the Image Labeler 

application, for example, pixel region of interest (ROI) labels and projected cuboid labels. 

The pixel ROI labeling method assigns a target through pixels for semantic segmentation; 

users can use polygons, brushes, or flood fill to aid with their target classification. Users 

can also “draw” 3-D bounding boxes around their target of interest for the projected cuboid 

labels method. Figure 10 shows these other available methods of UXO labeling. Labels 

could also be broken down to sub labels to provide a greater level of detail about the ROIs 

in the labeled ground truth data. For example, a UXO label might contain warhead, body, 

and propulsion sublabels. When more details cannot be drawn, attributes can be included 

to specify more information about the target, like the color and type of UXO. 
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Figure 9. Different Methods of Target Classification 

a)  

b)  
Figure 10. Alternate Methods of UXO Labeling [Projected Cuboid Method (a), and 

Pixel Method (b)] 
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IV. DATA SOURCES AND DATA PROCESSING METHODS 

This chapter describes the data sources and equipment as well as the data processing 

methods used for this research. 

A. DATA SOURCES 

This research utilized a total of 1,225 of single-spectrum RGB images obtained 

from the preceding phase of the research conducted at the Naval Postgraduate School by 

Cho (2021) to train, validate, and test the sUAS-based UXO detector model.  

B. UTILIZED EQUIPMENT 

This research utilized commercially available products to collect and process data. 

1. Computation Platform 

The MATLAB programming tool was used to perform UXO detection via system 

algorithm. All data processing and computations were performed on a generic laptop for 

the study to replicate a similar processing capacity in the area of operations. The relevant 

system specifications are shown in Table 1.  

Table 1. Computing System Specification. Adapted from Hewlett-Packard 
(n.d.). 

Hewlett-Packard 14 
Processor Intel® Core™ i5-5200U (2.2GHz, 2 cores) 
Memory 8 GB RAM 

Graphic card NVIDIA GeForce 820M 

2. EO Imaging System 

For the prior research phase on which this thesis builds, Cho used the Sony Alpha 

a6000, a commercial digital camera, to collect the RGB data (Cho 2021). Due to 

operational restrictions, the images captured by the digital camera are regarded as images 

obtained from the sUAS equipped with an EO sensor for the purposes of the present 

research. The relevant specifications of the camera are shown in Table 2. 
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Table 2. Relevant Specifications of Imaging System. Adapted from Sony 
(n.d.) 

Sony Alpha a6000 
EO Spectrum Single (Merged RGB) 
Sensor Type  Complementary Metal-Oxide-Semiconductor 
Max View Angle 83° 
Video Resolution 1920 x 1080 (@60 fps) 
Image Resolution  6000×4000 (24 Mega-pixel) 
Image Shutter Speed  1/4000 to 30 sec 

C. DATA PROCESSING METHODS 

This section describes the data processing methods used to curate the collected 

images. There are four processing steps to prepare the data; first, the EO images data from 

the digital camera are resized according to the optimal dimensions for the selected 

DLCNN, and the ground truth is then labeled within the resized dataset. The labeled dataset 

is then allocated to training or validation and test subsets. Finally, image augmentation is 

performed on the training dataset. 

1. Resizing the Images 

The selected YOLOv2 CNN model can be trained using images of different sizes, 

but the image data used for this research were resized from their original dimensions to 

416 x 416 pixels as illustrated in Figure 11. The YOLOv2’s convolutional layers reduced 

spatial resolution by a factor of 32 while maintaining a two-dimensional representation of 

the image to produce an output feature map of 13 x 13 pixels. This in turn creates an odd 

quantity of locations that can accommodate a single cell in the center of the image. Objects 

are often located at the center of images, so it is good to have a singular center location 

instead of four close locations (Redmon and Farhadi 2016). This allows for better CNN 

performance when training with this image size and reduces the training time of the model, 

which can make it more efficient in the operational environment. 
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Figure 11. Original Image Resizing 

2. Labeling the Ground Truth 

Ground truth labeling refers to identifying intended objects and targets within the 

image data. This ground truth is used to train the detector for UXO detection. An object 

detection application, Image Labeler available in the MATLAB programming tools, was 

used to label the ground truth within the image data set. Figure 12 illustrates the process of 

ground truth labeling of UXO targets present within the EO image. 

 
Figure 12. Ground Truth Labeling 
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3. Allocating the Data into Sub-Sets (Training, Validation, and Testing) 

Each subset containing 1,225 single spectrum images is allocated randomly into 

three data sets, namely, 1) the training set, 2) the validation set, and 3) the test set. This 

allocation by data set is broken down by 70 percent, 15 percent, and 15 percent, 

respectively. The training set is meant to train the individual UXO detector, while the 

validation set helps to perform self-correction at regular intervals during training to 

improve the detector’s performance. The test set is used to evaluate the trained detector. 

4. Augmenting the Training Dataset  

DLCNN training relies heavily on a high volume of data and large amount of 

resources in terms of time and budget, which are necessary to obtain a sufficient dataset 

(Wang et al. 2018). In real scenarios, there could be other limitations such as security 

consideration that prevent the collection of sufficient data for detector training. In such 

cases, image augmentation is a feasible option to increase data diversity through geometric 

manipulation like image rotation, flipping, and shifting and color adjustments in data pre-

processing (Ho et al. 2019). An under-constrained model due to the lack of training data 

causes overfitting because of high variance, and this condition can result in an optimistic 

and high variance estimation of trained detector performance (Brownlee 2020). Figure 13 

shows an example of the results of augmenting one EO image to present data for four EO 

images.  
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Figure 13. Example of Data Augmentation Results 
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V. UXO DETECTION EXPERIMENT 

This chapter describes the UXO detection experiment using the EO image dataset. 

EO images captured by the digital camera from the first phase of the research, as 

documented by Cho (2021), were 1) resized, 2) target classified, 3) divided into different 

data subsets, and 4) augmented. Next, the UXO detector was modeled using MATLAB 

and using the training and validation dataset for training of the detector. After which, the 

trained detector was used to detect the UXO for the test dataset. Finally, the detector’s 

performance was evaluated according to the AP metric using an IoU threshold of 0.5, 

which meant the detector would eliminate any detection below the IoU of 0.5. The 

MATLAB codes used to train and evaluate the UXO detector using the tight-fitted labeled 

dataset is included in the Appendix; the codes used were the same for training and testing 

of the loose-fitted labeled dataset except for updates to the relevant fields from tight-fitted 

to loose-fitted. 

A. DATA PROCESSING 

This research phase used the 1,225 UXO images in combined RGB format from the 

preceding phase documented by Cho (2021). These EO images were resized to the 

optimum image size (480 x 480 pixels) for a YOLOv2 network. Next, the ground truth, 

which is the UXO location in the images, was classified and labeled using the Image 

Labeler. There were two types of target classification in this thesis. For the first dataset 

class, the bounding boxes were positioned as tightly as possible around the UXO in the 

images. For the second dataset class, the bounding boxes were deliberately positioned to 

provide about two times the size of the UXO in the image. The labeled UXO datasets were 

then allocated randomly into the training, validation, and test subsets. Lastly, the assigned 

training data were rotated, skewed, and their color and contrast were adjusted to augment 

the training data by four times. 

B. DETECTOR TRAINING 

The ResNet50 and the Activation 40 Recertified Linear Unit layer were specified 

as the backbone network and for feature extraction, respectively, for the YOLOv2 detector. 
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The Adam method was selected for the optimizer, which Diederik Kingma and Jimmy Ba 

(2017) defined as “an algorithm for first-order gradient-based optimization of stochastic 

objective functions based on adaptive estimate of lower-order moments” (2). The Adam 

algorithm further splits the training data into mini-batches, and one epoch means that the 

training algorithm uses mini-batches to pass through the training data. In the preceding 

research phase, it was shown that insignificant training loss was achieved when the mini-

batch size for the detector was specified as eight and the maximum number of epochs was 

selected as 20 to allow fair results comparison (Cho 2021). For this reason, the same 

specifications were used in the present research.  

The training loss of the detector trained using tight-fitted bounding boxes and loose-

fitted bounding boxes were 0.1548 and 0.4716, respectively. The training loss plots are 

shown in Figure 14. Both training losses were close to zero and therefore can be concluded 

as decent training quality. 

a)  

b)  
Figure 14. Training Loss Plot [Tight-fitted (a), and Loose-fitted (b)] 
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C. DETECTION DEMONSTRATION 

UXO detection was performed for the two different datasets that were labeled 

differently. This thesis demonstrates how the detectors work by setting the detectors to 

detect UXO in random images from the test data subset. The detectors generate a visual 

bounding box around the suspected UXO appearing in the image and provide a confidence 

score of the detection. As the IoU threshold was specified as 0.5, any detections with scores 

less than 0.5 were eliminated from the detection results. Figure 15 illustrates the 

demonstration of UXO detection from the test dataset along with the corresponding scores.  

a)  

b)  
Figure 15. Demonstration of UXO Detections [Tight-fitted Data (a), and Loose-fitted 

Data (b)] 
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D. EVALUATION OF DETECTOR 

Evaluation of both detectors that were trained using different datasets was 

performed using the MATLAB computer vision toolbox by plotting the PR curve as 

illustrated in Figure 16. The AP for the tight-fitted detector and loose-fitted detector were 

evaluated to be 0.904 and 0.895, respectively. It shows a one percent improvement in 

detection performance using the same dataset. This superiority of the model is based on 1) 

classification metric performance, which identifies whether the object is present in the 

image, and 2) localization metric performance, which better predicts the coordinates of the 

bounding box with the ground truth around the object present in the image. The steep drop 

in precision value at the beginning of the loose-fitted PR curve could be due to a high 

probability of False Positive detection return, and as the precision value is inversely 

proportionate to the False Positive count, it caused the precision value to drop steeply. 

 
Figure 16. Combined Precision-Recall Graphs 
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VI. INTEGRATION OF MS SENSOR WITH SUAS 

This chapter describes the integration process for a MS sensor with an sUAS. The 

integration offers a phased approach to implement the operational capability using a better 

detection capability—the MS sensor. 

A. MULTI-SPECTRAL SENSOR: MICASENSE REDEDGE-MX™  
The MicaSense RedEdge-MX MS sensor uses separate lenses to obtain five discrete 

spectral bands simultaneously: red, green, blue, near infrared, and red edge spectrum. The 

five spectrums capture narrow bands of blue (centered on 475 nm), green (560 nm), red 

(668 nm), near infrared (NIR, 840 nm), and red edge (717 nm) (MicaSense n.d.). An 

important feature of the sensor is the Downwelling Light Sensor (DLS) 2. The DLS 2 unit 

is an advanced incident light sensor that measures ambient light and sun angle in the 

environment to compensate the lighting index for the images to improve image quality. 

The DLS 2 also provides locality information of the images captured (i.e., GPS, altitude, 

etc.). The image and relevant specifications of the sensor are shown in Figure 17 and Table 

3, respectively. 

 
Figure 17. MicaSense RedEdge-MX™. Source: MicaSense (n.d.). 
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Table 3. Relevant Specifications of MicaSense RedEdge-MX™. Adapted 
from MicaSense (n.d.) 

Spectral Bands Blue, Green, Red, Red edge, Near-IR (narrowband) 
RGB Color Output Global Shutter, aligned with all bands 
Ground Sample Distance 8 cm per pixel (per band) at 120 m (~400 ft) AGL 
Capture Rate 1 capture per second (all bands), 12-bit RAW 
Field of View 47.2° Horizontal and 35.4° Vertical 
Resolution 1280 x 960 (1.2 MP x 5 imagers) 
Weight 231.9 g (8.18 oz.) - includes associated accessories 
Sensor Dimensions 8.7 cm x 5.9 cm x 4.54 cm (3.4in x 2.3in x 1.8in) 

B. SMALL UNMANNED AERIAL VEHICLE: DJI INSPIRE 1 PRO 

The DJI Inspire 1 is considered a Group 1 UAS (i.e., an sUAS). It is listed as a 

professional grade product based on the manufacturer’s website and is meant for taking 

aerial photos or videos. Table 4 summarizes the relevant specifications of the DJI Inspire 

1. 

Table 4. Relevant Specifications of Inspire 1 Drone. Adapted from Adapted 
from DJI (n.d.) 

Max Speed 49 mph or 79 kph (Attitude mode, no wind) 
Max Angular Velocity Pitch: 300°/s and Yaw: 150°/s 
Max Flight Time ~18 mins 
M ax Wind Speed Resistance 10 m/s 
Weight 6.74 lbs (3060 g) - includes associated accessories 
Max Transmission Range 3.1 miles or 5 km (unobstructed, free of interference) 

C. INTEGRATION 

The MicaSense MS sensor has been specifically designed to allow ready-to-use 

integration with popular UAS, and DJI Inspire 1 was one of the commercial sUAS 

specifically identified to allow straightforward integration. 

The DLS 2 unit is first mounted at a position near the top of the drone because it 

requires an unobstructed path to measure the ambient sunlight intensity and sun’s angle 

and record these environmental metadata obtained by MS sensor during flight. An image 

processing software could be used to utilize the recorded data to correct for ambient 

lighting changes during flight, for example during cloudy environment. Next, a sensor 

mounting plate is affixed to the back of the MS sensors for the quick mount adaptor to be 
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attached to the drone’s camera port. The quick mount adaptor contains an electrical 

interface to provide power for the MS sensor through the drone’s power source. Lastly, the 

DLS 2 unit is connected to the MS sensor via an electronic connector board to allow the 

transfer of data like GPS coordinates from the DLS 2 to the memory storage of the MS 

sensor. 

Figure 18 shows the actual integrated system composed of the MS sensor and the 

DJI Inspire drone that can perform data collection. The YOLOv2 DLCNN is designed to 

perform real-time object detection (Redmon and Farhadi 2016). A real-time UXO detection 

system would improve the efficiency of the detection process but at the same time require 

more resources such as additional equipment and processing power. Figure 19 presents an 

example of an MS image captured by the integrated system at a flight altitude of 10 meters. 

 
Figure 18. Actual MS Sensor Integrated with DJI Inspire Drone 
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Figure 19. Example of MS Image Captured by the Integrated System 

Unfortunately, the integration process and further development were disrupted by 

a 2020 ban imposed by the National Defense Authorization Act (NDAA) on U.S. DOD’s 

operation of sUAS manufactured in a covered foreign country or by an entity domiciled in 

a covered foreign country. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

This chapter summarizes the research findings and compares the detection 

performance of the different target classification methods and poses recommendations for 

future work that would advance the proposed UXO detection system in this thesis. 

A. SUMMARY OF FINDINGS 

This thesis explores the impact of different data processing factors when employing 

an AI-based detection algorithm for data collected by an sUAS. Specifically, it aims to 

understand the effects of UXO classification during the labeling of ground truth on the 

performance of the detector. 

The research and experiments performed in this thesis revealed the following: 

• A YOLOv2 network detector trained with a dataset composed of 

deliberately tight-fitted bounding boxes to label UXO was able to detect 

UXO successfully. The precision and recall evaluation of this trained 

detector indicated 0.904 AP against the test dataset. This could be 

considered relatively good performance for the object detection tasks. 

• The other YOLOv2 network detector trained with a dataset composed of 

deliberately loose-fitted bounding boxes to label UXO was also able to 

detect UXO successfully. Nonetheless, its detection performance was lower 

than that of the previous detector, and its precision and recall evaluation 

indicated 0.895 AP against the test dataset.  

• Using Cho’s (2021) evaluation results from the prior research phase that 

labeled the UXO by positioning the bounding boxes around the targets, 

some boxes were loosely fitted and some were tightly fitted in a non-

standardized manner and did not follow a particular methodology. The 

evaluation of the trained detector showed 0.774 AP against the test data 

(Cho 2021). 
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• A comparison of the detection performance of the three different methods 

of UXO labeling showed that the deliberate methods (both tight-fitted and 

loose-fitted) attained better detection performance than the non-standard 

method. This showed that the standardized method of labeling might be 

more beneficial for detector performance. 

• The recommended method of labeling would be loose-fitted bounding 

boxes, because the time required for loose-fitted UXO labeling is about 60 

percent of that required for tight-fitted labeling, with only a marginal drop 

in detection performance. 

B. RECOMMENDATIONS FOR FUTURE WORK 

Future research relating to this topic should consider expanding on the following 

areas of this study to understand field better: 

• With the successful integration of the MS sensor with the sUAS, research 

efforts could aim to develop a real-time UXO detection system with better 

detection performance. It is essential, however, that the prohibition on 

operation or procurement of foreign-made unmanned aircraft systems be 

removed or amended to permit limited cost-effective research work to be 

completed.  

• More improvements to the detection capabilities could be explored through 

the variation of target classification methods. At the same time, the increase 

in man-hours needed to perform detailed labeling might deliver only 

marginally superior detection capabilities. Therefore, more experiments 

could be performed to recommend the optimal method for target 

classification for UXO detection. 
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APPENDIX. MATLAB CODE FOR UXO DETECTOR TRAINING 
AND EVALUATION 

The code used in the detection algorithm developed in this thesis was modified 

from work performed and documented by Cho at the Naval Postgraduate School in the 

preceding phase of the research (Cho 2021). 

 
%% Load Groundtruth 
 
load Data_UXO.mat 
 
%% Create table data format from ground truth data 
trainingDataset=Data_UXO.LabelData; 
trainingDataset.files=Data_UXO.DataSource.Source; 
trainingDataset=trainingDataset(:,[2,1]); 
 
%% Visualize the training images (Labelled) 
 
index=10;                                      %select Image # to 
display 
 
Iout=imread(trainingDataset.files{index}); 
for k=1:width(trainingDataset)-1 
bboxes = table2array(trainingDataset(index,k+1)); 
if ~isempty(bboxes{1}) 
   Iout=insertObjectAnnotation(Iout,’rectangle’,bboxes{1},... 
       trainingDataset.Properties.VariableNames{k+1},’Color’,’red’,... 
       ‘fontsize’,12,’linewidth’,5); 
end 
end 
figure, imshow(Iout); 
 
%% Divide training data into Train/Validation/Test set 
% set default for reproducible 
rng(1004);                                                      
%randomize 
 
% Divide the dataset into training set and test set 
shuffledIndices=randperm(height(trainingDataset)); 
idx=floor(0.7*length(shuffledIndices)); 
trainingData=trainingDataset(shuffledIndices(1:idx),:); 
 
validationIdx=idx+1:idx+1+floor(0.15*length(shuffledIndices)); 
validationData=trainingDataset(shuffledIndices(validationIdx),:); 
 
testIdx=validationIdx(end)+1:length(shuffledIndices); 
testData=trainingDataset(shuffledIndices(testIdx),:); 
%% use imageDatastore and boxLabelDatastore to create datastores 
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imdsTrain=imageDatastore(trainingData{:,’files’}); 
bldsTrain=boxLabelDatastore(trainingData(:,2:end)); 
 
imdsValidation=imageDatastore(validationData{:,’files’}); 
bldsValidation=boxLabelDatastore(validationData(:,2:end)); 
 
imdsTest=imageDatastore(testData{:,’files’}); 
bldsTest=boxLabelDatastore(testData(:,2:end)); 
 
%Combine image and box label datastores 
trainingData=combine(imdsTrain,bldsTrain); 
validationData=combine(imdsValidation,bldsValidation); 
testData=combine(imdsTest,bldsTest); 
 
%% Define backbone network 
basenetwork=resnet50(); 
numClasses=width(trainingDataset)-1;                        %# of class 
= 1  
inputSize=[416 416 3]; %3 represent 3 spectrum - might need to change 
to 1 
 
%% Anchor Box Estimation - Select Number of AnchorBoxes V.S. the Mean 
IoU 
 
anchorTraining = boxLabelDatastore(trainingDataset(:,2:end)); 
maxNumAnchors=15; 
meanIoU=zeros([maxNumAnchors,1]); 
anchorBoxes=cell(maxNumAnchors,1); 
 
doTrain= true; 
if doTrain 
for k = 1:maxNumAnchors 
   [anchorBoxes{k},meanIoU(k)]=estimateAnchorBoxes(anchorTraining,k); 
end 
save AnchorUXO anchorBoxes meanIoU 
else 
load AnchorUXO.mat 
end 
figure 
plot(1:maxNumAnchors,meanIoU,’-o’) 
ylabel(“Mean IoU”) 
xlabel(“Number of Anchors”) 
title(“Number of Anchors vs. Mean IoU”) 
grid on 
 
%% Specify the number of anchor box 
numAnchors=9;  
allBoxes=round(cell2mat(reshape(table2array(trainingDataset(:,2:end)),.
.. 
[],1))); 
scale=inputSize(1:2)./size(imread(trainingDataset.files{1}),[1 2]); 
anchorBoxes = round(anchorBoxes{numAnchors}.*scale); 
meanIoU_chosen = meanIoU(numAnchors); 
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%% Choose Network to Train            %allow network change for future 
use 
nettotrain = 1;                       %1 = YOLOv2, 2 = SSD, 3 = 
FasterRCNN  
 
 
%% Create Network (YOLOv2 or SSD or FasterRCNN) 
if nettotrain ==1 
featureLayer=‘activation_40_relu’; 
lgraph=yolov2Layers(inputSize,numClasses,anchorBoxes,basenetwork,... 
   featureLayer); 
elseif nettotrain ==2 
lgraph=ssdLayers(inputSize, numClasses, ‘resnet50’); 
else  
lgraph=fasterRCNNLayers(inputSize, numClasses, anchorBoxes,... 
   ‘resnet50’); 
end 
 
%% Data Augmentation (function at the end of codes) 
augmentedTrainingData=transform(trainingData,@augmentData); 
 
augmentedData = cell(4,1); 
for k = 1:4 
data=read(augmentedTrainingData); 
augmentedData{k}=insertShape(data{1},’Rectangle’,data{2},... 
   ‘linewidth’,5,’Color’,’red’);  
reset(augmentedTrainingData);                          
end 
figure 
montage(augmentedData,’BorderSize’,10,’Size’,[2 2])       %for demo 
purpose 
 
%% Preprocess Training Data 
preprocessedTrainingData=transform(augmentedTrainingData,... 
@(data)preprocessData(data,inputSize,nettotrain)); 
preprocessedValidationData=transform(validationData,... 
@(data)preprocessData(data,inputSize,nettotrain)); 
 
%% Configure the network training options      %specify detector 
parameters 
options = trainingOptions(‘adam’,... 
     ‘InitialLearnRate’,0.001,... 
     ‘Verbose’,true,... 
     ‘MiniBatchSize’,2,...  
     ‘MaxEpochs’,2,...                 %Single Spectrum - use 20 
     ‘Shuffle’,’never’,... 
     ‘VerboseFrequency’,10,... 
     ‘ValidationData’,preprocessedValidationData); 
        
%% Train the network                               %options for future 
use 
 
doTrain=false; %false 
if doTrain 
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if nettotrain == 1 
   
[detector,info]=trainYOLOv2ObjectDetector(preprocessedTrainingData,lgra
ph,options); 
   save UXO_yolo_detector 
elseif nettotrain ==2 
   
[detector,info]=trainSSDObjectDetector(preprocessedTrainingData,lgraph,
options); 
   save UXO_SSD_detector 
else 
   [detector,info] = 
trainFasterRCNNObjectDetector(preprocessedTrainingData,lgraph, 
options); 
   save UXO_FasterRCNN_detector 
end 
detector; 
figure 
plot(info.TrainingLoss) 
grid on 
xlabel(‘Number of Iterations’) 
ylabel(‘TrainingLoss for Each Iteration’) 
else 
load UXO_yolo_detector.mat             %to load the trained detector 
end 
 
%% Read a test image into the workspace 
I=read(testData); 
I=imresize(I{1},1);                 %%use first picture of testdata 
[bboxes,scores,labels]=detect(detector,I,’threshold’,0.6);  
                                            %thres=0.4 when combineMS 
 
%% Display the results. 
[~,ind]=ismember(labels,detector.ClassNames); 
if(~isempty(bboxes)) 
I = insertObjectAnnotation(I,’rectangle’, bboxes,... 
   strcat(string(labels), “ : “,... 
   string(scores)), “LineWidth,” 5, “fontsize,” 12, ‘Color’,’red’); 
end 
figure 
clf 
imshow(I) 
 
%% Evaluate Detector Using Test Set 
preprocessedTestData = 
transform(testData,@(data)preprocessData(data,... 
inputSize,nettotrain)); 
 
%Run the detector on all the test images 
detectionResults = detect(detector, preprocessedTestData, 
‘threshold’,... 
0.5,’ExecutionEnvironment’,’cpu’); 
 
%Evaluate the object detector using AP metric. 
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[ap, recall, precision] = 
evaluateDetectionPrecision(detectionResults,... 
preprocessedTestData, 0.5); 
 
%Plot the PR curve. 
figure 
plot(recall, precision) 
xlabel(‘Recall’) 
ylabel(‘Precision’) 
grid on 
temp = sprintf(‘ = %.3f’, ap); 
title(sprintf([‘AP for ‘, 
trainingDataset.Properties.VariableNames{2},... 
temp])); 
      
%% my functions 
 
%func for preprocess 
function data = preprocessData(data,targetSize,nettotrain)  
                                             
% Resize image and bounding boxes to the targetSize(not needed for 
YOLOv2) 
if nettotrain==2 
scale=targetSize(1:2)./size(data{1},[1 2]); 
data{1}=imresize(data{1},targetSize(1:2)); 
data{2}=bboxresize(data{2},scale); 
else 
data{1}=imresize(data{1},1); 
data{2}=bboxresize(data{2},1); 
end 
end 
 
function B = augmentData(A)                     %func for augmentation 
B=cell(size(A)); 
 
I=A{1}; 
sz=size(I); 
if numel(sz)==3 && sz(3) ==3 
I=jitterColorHSV(I,... 
   ‘Contrast’,0.2,... 
   ‘Hue’,0,... 
   ‘Saturation’,0.1,... 
   ‘Brightness’,0.2); 
end 
 
tform = randomAffine2d(‘XReflection’,true,’Scale’,[1 1.2], 
‘Rotation’,... 
[-20 20]); 
rout=affineOutputView(sz,tform,’BoundsStyle’,’CenterOutput’); 
B{1}=imwarp(I,tform,’OutputView’,rout); 
 
[B{2},indices]=bboxwarp(A{2},tform,rout,’OverlapThreshold’,0.25); 
B{3}=A{3}(indices); 
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if isempty(indices) 
B=A; 
end 
end 
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