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ABSTRACT 

 This thesis demonstrates an application of machine learning for enabling 

automated decision support to warfighters operating laser weapon systems in complex 

tactical situations. The thesis used the NPS Modeling Virtual Environments and 

Simulation (MOVES) Institute’s Swarm Commander modeling and simulation software 

environment to develop simulated datasets of wargaming scenarios involving a shipboard 

laser weapon system defending against drone swarm threats. The simulated datasets were 

used to train a machine learning algorithm to predict the optimum engagement strategy in 

a complex battlespace with heterogeneous drone swarms. Multiple machine learning 

techniques were evaluated, and the classification tree technique was selected as the 

preferred approach. The final algorithm had an overall accuracy of 96% in correctly 

predicting engagement outcomes based on drone threat types, quantities, and the laser 

weapon system attack strategy. The research results demonstrate (1) the utility of 

modeling and simulation for supporting the development of tactical machine learning 

applications, (2) the potential for machine learning to support future tactical operations, 

and (3) the potential for machine learning and automation, in general, to reduce the 

cognitive load on future warfighters faced with making critical decisions in complex 

threat environments. 
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EXECUTIVE SUMMARY 

Modern tactical warfare is increasingly complex and requires faster and more 

effective decisions. To support these rapid decisions, the use of automated decision aids to 

has been proposed as a solution (Johnson 2019, 63). Decision aids require large amounts 

of data given the complex nature of modern battlefields. To support development of 

decision aids machine learning represents a potential method to support an effective 

decision aid. The goal of this research was to conduct experimentation in exploring the 

application of machine learning to help warfighters in complex laser weapon system versus 

drone swarm engagement decisions. To accomplish this goal, laser weapons systems and 

drone threats were studied, and a simulation program was selected to generate engagement 

data that could be used to train a machine learning algorithm.  

This thesis studied the threat engagement methodologies and identified decision 

factors that must be considered to effectively operate a laser weapon system as well as the 

applications of artificial intelligence and machine learning in supporting decision making. 

Base research was conducted into unmanned aerial vehicle, or drone, threats to identify 

risks and support the development of engagement methodologies. The base research 

supported the selection and programming of scenarios into wargaming and simulation 

software, Swarm Commander Tactics, which was used to simulate battles. This study 

conducted an experiment to develop a machine learning algorithm proof-of-concept by 

modeling and simulating engagement scenarios to collect training data and use that data to 

train a machine learning algorithm. The intent of training the algorithm was to identify 

survivability and successful engagement methodologies when using the simulated 

shipboard laser weapon. Upon generation of simulated engagement data, multiple machine 

learning techniques were tested using the simulated engagements to determine if machine 

learning prediction could support automated decision aids based on simulated data. This  

research studied machine learning algorithmic methods and the process of developing and 

training machine learning systems.  

Overall, multiple machine learning techniques were evaluated to support prediction 

of successful drone engagement methodology within the simulated engagements, and the 
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most suitable was found to be the tree classification technique. The experimentation 

demonstrated the application of machine learning to this problem domain, through 

modeling and simulation, and machine learning algorithm training was successful. Results 

from the final machine learning algorithm predictions had an overall accuracy of 96% in 

predicting engagement outcomes based on enemy types, quantities, and laser weapon 

system attack methodology; with a false positive prediction, that is, the algorithm predicted 

win that was a loss, of 2.1%. These results show that a complex battle space simulation 

software can be used to accurately train a predictive machine learning algorithm.  

This research demonstrated that combining wargaming simulations with machine 

learning algorithms provides a mechanism for supporting complex decisions and 

engagements, by laser weapon system, against enemy drone swarms. By implementing a 

trained machine learning algorithm, it is possible to analyze a complex battlespace with a 

heterogenous drone swarm so the appropriate engagement technique can be selected 

thereby optimizing the survivability and effectiveness of target engagement. The thesis 

addressed the primary research objective of exploring the efficacy of machine learning 

methods for identifying and supporting effective target selection and engagement methods 

for a simulated shipboard laser weapon system. This research represents a building block 

for the generation of decision aids to support drone swarm engagement with a laser weapon 

system. The complex nature of the modern battlespace requires decision aids  to reduce the 

cognitive loading on the warfighter. 
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I. INTRODUCTION 

A. OVERVIEW  

Modern tactical warfare is increasingly complex and requires faster and more 

effective decisions (Johnson 2019, 63). The development of transformative and disruptive 

weapon systems is reshaping the traditional battle space. One example is the Navy’s 

development of high energy laser weapon systems (LWS). The Navy is beginning to install 

LWS on ships for test and evaluation. While these weapons offer potential improvements 

to ship and battle group defense, their performance and behavior differ significantly from 

existing traditional ordinance. Contemporary LWS are based on novel and highly advanced 

technologies. The complexity of LWS and their departure from traditional ordinance 

principles and behaviors requires a new methodology to support warfighters in the 

selection of targets for engagement. The operation of LWS requires the consideration of a 

complex set of decision factors including how much power will be used (and whether it is 

available), what the atmospheric conditions are (and how they will affect the laser beam), 

and what is known about the threat (range, kinematics, characteristics, location of 

components, material composition and thickness). These factors must be considered to 

determine at what target range to fire the weapon, to select the target aimpoint, and to 

predict what the required dwell time needs to be to burn through the target. These factors 

also inform successful engagement methodologies, for example, whether to prioritize and 

target specific enemies or engage all targets to achieve the most effective outcome.  

Advances in threat technology also contribute to the complexity of the tactical 

decision space. One type of disruptive weapon that is evolving rapidly is unmanned aerial 

vehicles (UAVs) (Dunn 2013, 1245). Modern UAVs (or drones) are particularly complex, 

as they can be deployed as swarms. See Figure 1 which depicts a UAV swarm engagement. 

The growing threat and prevalence of easy-to-field drone swarms require a change in both 

conceptual and operational changes (Guitton 2021). Drone swarms introduce a heightened 

speed of warfare that may exceed the cognitive abilities of human warfighters to make 

effective decisions in such short timeframes (Galdorisi 2019).  
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Figure 1. Using Shipboard LWS to Defend Against a UAV Swarm Threat. 

Adapted from Lockheed Martin (2020).  

The use of automated decision aids to support human warfighters has been 

proposed as a solution to address highly complex tactical decision spaces (Johnson 2019, 

17). Extensive research exists concerning algorithms, data fusion, artificial intelligence 

(AI), machine learning (ML) and automation taxonomies (Save 2013). However, the use 

of automated methods brings its own challenges. It has been demonstrated that when 

decision aids have failed to adequately apply cognitive engineering and incorporate the 

human into the system, operator and system trust issues have arisen (Paradis 1999). Should 

the aiming system not adequately incorporate the user’s skills into account, users may lose 

trust in the instrumentation system (Mann et al. 2006).  

The goal of this research is to conduct experimentation in exploring the application 

of ML to help warfighters in complex LWS versus drone swarm engagement decisions. To 

accomplish this goal, multiple ML techniques were tested using simulated LWS 

engagements to determine if ML could support automated decision aids based on simulated 

data. The overall intent was to implement ML algorithms to support human warfighters in 

their use of LWS to defend against drone swarms. This research focused on the use of ML 

to support effective human-machine teaming in making shipboard LWS engagement 

decisions to defend against complex UAV swarm threats effectively. This thesis studied 

the LWS threat engagement methodologies and identified decision factors that must be 

considered to effectively operate the system. This thesis studied ML algorithmic methods 
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and the process of developing and training ML systems as well as methods for simulating 

LWS operational scenarios to obtain datasets to train ML algorithms. Finally, this study 

conducted an ML proof-of-concept by modeling and simulating LWS scenarios to collect 

training data and using the data to train a ML algorithm for the purpose of identifying 

survivability and successful engagement methodologies using the simulated shipboard 

LWS.  

B. RESEARCH OBJECTIVES 

The primary objective of this research was to determine if AI and ML methods can 

support more effective rapid target selection and engagement for a simulated shipboard 

LWS. Additional research goals were: 

• To study AI and ML methods to identify and evaluate methods suitable for 

improving LWS target selection and engagement methodology. 

• To study how ML can support a human-machine teaming approach to making 

complex LWS decisions. 

• To study the use of shipboard LWS to defend against complex UAV swarm 

threats. 

• To demonstrate the application of ML to this problem domain through 

modeling and simulation and ML algorithm training. 

• Exploiting the use of a wargaming modeling and simulation environment for 

use in gathering data sets training to train a ML algorithm. 

C. APPROACH 

This thesis addressed the research objectives through literature review, development of 

LWS modeling wargame scenarios, and experimentation using modeling and simulation 

and the development and evaluation of ML algorithms. The research approach began with 

a literature review to gather information on laser weapons, automated decision aids 

(including human-machine teaming, AI methods, and ML), and UAV swarm threats. This 
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information was used as a foundation and basis for developing and modeling LWS 

operational scenarios and identifying a ML approach. Figure 2 illustrates the process for 

developing ML algorithms; the process involves gathering data sets that are representative 

of the operational domain and using the data to train the algorithm. 

 
Figure 2. Methodology for Developing ML Systems. Adapted from Kopace 

(2021).  

This study used the Naval Postgraduate School (NPS) Modeling Virtual 

Environments and Simulation (MOVES) Swarm Commander Tactics (SCT) wargaming 

software to generate simulated LWS engagement datasets. The SCT software modeled a 

shipboard LWS system defending against UAV swarm threats. The simulated datasets 

were used to train an ML algorithm to perform target selection and identify effective ideal 

engagement methodologies. The ML training process was conducted generally following 

five phases gathering, preparing, training, deploying, and improving. 

This research approach provided limited experimentation into a basic ML algorithm 

approach to serve as a proof-of-concept and feasibility analysis of the future more full-

scale use of AI and ML systems to support and enhance complex LWS engagement 

decisions.  

The research approach followed six primary steps: 

1. Identify preferred ML methodology and ML techniques. 
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2. Develop and run initial LWS engagement simulation test scenarios in 

SCT. 

3. Train ML algorithm based on initial SCT modeling data. 

4. Evaluate ML techniques, compare quantitatively, and identify optimal 

technique for engagement outcome prediction. 

5. Use trained ML algorithm to generate scenario predictions and 

engagement outcome based on enemy or “Red Force” UAV threats and 

force strength as well as ally or “Blue Force” engagement tactics.  

6. Run scenarios with optimized behavior rules to evaluate accuracy of 

predictions.  

D. EXPERIMENT INTRODUCTION  

The experimentation for this thesis followed three major phases based on the ML 

methodology shown in Figure 2. 

• Phase 1 (Gathering and Preparing Phase): Developed initial simulations of 

homogenous and heterogenous threats and collected data on ship survivability 

and engagement methodology. Subsequently identified priority threats, threats 

that pose the greatest kill probability to the ship, and engagement methodology 

most likely to lead to ship survival. 

• Phase 2 (Training Phase): Utilized initial data from Phase 1 and trained a ML 

algorithm to identify Blue Force survivability and engagement strategy based 

on threat type and significance. 

• Phase 3 (Deploying and Improving Phase):  Implemented the ML algorithm to 

predict the outcome of heterogenous attack simulations, compared to actual 

simulations in SCT and quantified results to demonstrate ML performance.  
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E. SCOPE AND APPLICABILITY 

This research focused on the use of shipboard LWS to defend against UAV threat 

swarms as a complex tactical operation that could benefit from a human-machine teaming 

approach. The narrow scope of this thesis was intended to support the investigation of how 

AI and ML approaches can be applied to complex tactical decisions. The LWS engagement 

of UAV swarms provides a challenging threat scenario that requires target engagement 

prioritization. The NPS MOVES SCT system was an appropriate modeling and simulation 

environment to support this research’s ML proof-of-concept demonstration. The scope of 

this research covered a narrow engagement methodology specifically for engagements 

within SCT Software version 6.1. Simulations were conducted with one Blue Force Ship 

and no additional Blue Force assets, at engagement distances of under five kilometers 

within the simulated ship’s radar detection range. Red Force assets consisted of two 

primary UAV types of fighters and bombers, which are discussed in detail in Chapter III.  

F. THESIS ORGANIZATION 

This thesis is organized into five chapters. Chapter I provided the thesis overview, 

research objectives, and general approach. Chapter II highlights the background and 

literature review for the required relevant elements of this research. Chapter III describes 

the modeling and ML software used for this experiment and the methodology that was 

conducted to generate simulated data to train the ML algorithm. Chapter IV discusses the 

research results as well as the optimization and improvement of the ML process. Chapter 

V contains the research conclusion and summary and discusses potential future work.  
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II. LITERATURE REVIEW 

This literature review provides background information for the underlying elements 

required for the implementation of this thesis research. There are three main topics that are 

relevant to the foundation of this study: (1) an overview of laser weapons and their 

characteristics; (2) an overview of automated decisions, including AI, ML, and human 

machine teaming (HMT); and (3) an overview of unmanned aircraft system (UAS) threats 

and target engagement strategies.  

A. LASER WEAPON SYSTEMS  

1. Historical Background on Lasers 

The term laser is an acronym for light amplification by stimulated emission of 

radiation (Gould 1959). The first demonstrated laser was produced in 1960 by Ted H. 

Maiman and was constructed using a ruby rod and flash lamp (Perram et al. 2010, 5). The 

basic principle of how a laser operates is effectively and simply defined by Lawrence 

Livermore National Laboratory:  

A laser is created when the electrons in atoms in special glasses, crystals, or 
gases absorb energy from an electrical current or another laser and become 
“excited.” The excited electrons move from a lower-energy orbit to a 
higher-energy orbit around the atom’s nucleus. When they return to their 
normal or “ground” state, the electrons emit photons (particles of light). 
(Lawrence Livermore National Laboratory [LLNL] 2021) 

Since the development of that first laser, there have been many other types invented 

for industrial purposes, consumer electronics, and non-military applications. One of the 

first research and invention investments into military applications of lasers was a DOD 

sponsored conference in 1963 to identify potential applications (Perram et al. 2010, 7). An 

early military application of the laser was its use as a range finder using a ruby and 

flashlamp laser to irradiate a target and receive the returning signals (Titterton 2016, 8). 

Additional laser demonstrations were conducted including the destruction of a visible-band 

camera which led to directed energy studies using newer gas laser to defeat heat seeking 

missiles in the 1970s (Titterton 2016, 8). Contemporary lasers in use today as full-fledged 
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LWS are commonly referred to as high energy lasers (HELs) which emit a small spot of 

light on a target to damage or destroy it (Perram et al. 2010, 10). Advanced laser systems, 

HELs, are being evaluated, demonstrated, and used by the United States Navy for multiple 

missions. There are two primary engagement approaches when utilizing a LWS for target 

neutralization: a soft-kill or a hard-kill. Soft-kills are the disruption of an enemy weapon 

system by nondestructive means, examples include blinding the sensors or optics on a 

weapon system rendering the target ineffective. Hard kills from a LWS ablate target 

components or materials causing the neutralization and physical destruction and of the 

target. The application of a hard or soft kill may be restricted based on the laser system and 

target characteristics; if the laser lacks sufficient power to destroy a target a soft kill may 

still be possible.  

2. LWS Characteristics 

Power is a primary characteristic which provides a destructive or disruptive 

capability for an LWS. Laser systems designed for hard kills typically range in power from 

50-kilowatt (kW) to one Megawatt (MW) (Perram et al. 2010, 10). A laser’s specified 

power refers to its power at the output of the laser. The power level quickly attenuates as 

the laser beam travels through the air or atmosphere. Thus, a 100 kW laser does not transmit 

100 kW directly to the target being irradiated. The actual damaging power of a LWS is 

referred to as the power in the bucket (PIB) which is the fraction of total power that can be 

delivered measured in angular units of  λ/D  where λ is the laser wavelength and D is the 

beam size (Slater 2016). Wavelengths for LWS vary depending on their design, 

construction, and materials, for example a carbon dioxide laser can emit a beam over a 

wide range of wavelengths and as a result may need to be tuned to facilitate the optimum 

wavelength for laser efficacy (Titterton 2016, 55). The beam size and quality of the beam 

are also key characteristics of the LWS. Beam edges are not clearly defined so to effectively 

quantify beam size one can use the physical space and angular space of the beam to 

generate a size value (Slater et al. 2010). The beam quality is defined as a measure of 

excellence of the beam based on the ratio of the actual spot size to the diffraction-limited 

spot size (Perram et al. 2010, 402). 
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 Additional key system properties for an effective LWS must also consider the 

operating ranges, target types and atmospheric conditions all of which can greatly reduce 

system capability if not factored into design and mission profiles. The amount of time that 

a laser must continuously lase a target is referred to as dwell time, this is a key aspect of 

system performance as a longer dwell time increases the time to score a target kill. 

Atmospheric conditions also play a key role in system function due to interference from 

atmospheric absorption, Rayleigh scattering, and Mie scattering (Titterton 2016, 166–167). 

Turbulence, the atmospheric motions from planetary waves can also cause system function 

degradation (Perram et al. 2010, 413). In addition to atmospheric attenuation, target 

material properties can affect the LWS system performance. To effect total heating of a 

target the target material there are up to seven material response states: expansion, material 

property change, melting, vaporization, ablation, spalling, and plasma (Perram et al. 2010, 

326). Target hard kill may occur as early as the melt stage; however, this would depend on 

the aimpoint and the component melting on the target. Target material type, configuration, 

and properties will dictate the failure modes and the probability of weapon effectiveness 

(Perram et al. 2010, 326–337).  

 Overall LWS and target characteristics represent a complex multivariable system 

interaction. The design of the LWS, atmospheric conditions, and target characteristic can 

all play a part in the probability of a hard-kill. Further data analysis on atmospheric 

conditions or intelligence on target types and construction can support a more effective 

engagement; however, these can be difficult variables to quantify in all scenarios leading 

to complex challenges that in the event of a real-time threat require fast acting responses 

from LWS operators. The United States (U.S.) Navy has begun implementation of LWS as 

part of fleet modernization and advanced ship capabilities, requiring further analysis and 

effective understanding of the key LWS characteristics. 

3. LWS Complex Decision Space 

The modern battle space is increasingly complex as new threats continue to develop 

and advance. The complexity of LWS and their characteristics and their performance 

indicators can be difficult to quantify, and factors like turbulence effects can impact 
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effective LWS range (Chen et. al. 2018). System and target characteristics greatly influence 

LWS performance and effectiveness. Tactical decision making must be performed quickly, 

effectively, and accurately in dynamic high stress environments which sets up the potential 

for human information overload and operator error (Johnson 2021). Utilization of AI and 

ML methods to support the warfighter tactical decision-making process, can address 

information overload by presenting rapid risk analysis and decision aids to the warfighter. 

Figure 3 highlights factors that contribute to the complexity of tactical decisions. Coupling 

these inherent factors with LWS complexities creates a complex decision space for 

operators in the field. 

 
Figure 3. Tactical Decision Complexity. Source: Johnson (2021).  

4. Overview of Current Naval Shipboard Laser Weapon Systems 

The U.S. Navy is adopting LWS to enhance ship defensive and offensive 

capabilities. One example is the High Energy Laser with Integrated Optical-dazzler and 

Surveillance (HELIOS) which has begun permanent deployment on an Arleigh Burke 

destroyer and has been integrated with its combat system (Magnuson 2021). The HELIOS 

system is a hybrid adaptable fiber based LWS, with a HEL weapon to effect hard kills and 
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an optical dazzler to effect soft kills. The laser component of HELIOS is a 60kW LWS 

designed to counter UAS and small craft (Sherman 2021). 

B. AUTOMATED DECISION AIDS 

Given the complexity of LWS and their departure from traditional kinetic ordnance 

principles warfighters require support in making rapid effective engagement decisions. 

Some level of automation is required to ensure tactical superiority with LWS. Humans 

need support in their LWS engagement decision making. The primary challenge is 

incorporation automation with the human decision maker, as weapon systems generally 

have a human-in-the-loop, that is a person that must make the final engagement 

methodology decision. Automated decision aids can reduce the mental load on the human 

operator and facilitate more rapid and effective decisions. However, development and 

understanding of automation within this space require a review of potential the usage of 

automation methods. This section provides an overview of automation as well as providing 

detail on ML techniques and human machine teaming considerations. 

1. Overview of Automation and Artificial Intelligence 

Automated systems operate with little human interaction or input based on a ruleset 

and standing commands (Johnson 2021). The broader realm of automation covers both ML 

and AI as visualized in the Venn diagram Figure 4. Specialized AI systems are developed 

to mimic human intelligence and decision making by developing knowledge from learned 

behavior or information and applying this knowledge and logic to new information 

received by the system (Johnson 2021). 
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Figure 4. Venn Diagram Automation, Artificial Intelligence and Machine 

Learning. Source: Johnson (2021).  

2. Machine Learning 

Within the domain of AI, ML develops algorithms that optimize decisions based 

on available data (Mitchell 1997). ML is considered a subset of AI and can be used to 

identify patterns, learn from the patterns, and then make decisions as a result of the 

information learned to optimize the intended outcome (Shah 2018). Complex scenarios in 

warfighter engagements can benefit from decisions aids driven by ML applications because 

the systems experience can provide better background for target engagement based on the 

target goals. According to Taiwo Oladipupo Ayodele’s chapter in New Advances in 

Machine Learning, there are multiple types of ML methodologies including supervised 

learning, unsupervised learning, semi-supervised learning, reinforcement learning, and 

transduction (Ayodele 2010, 19–22). Ayodele (2010) states supervised learning consists of 

an ML algorithm generated function which uses user labeled datasets to learn and generate 

desired result and outputs based on the labeled examples. The author asserts unsupervised 

learning is a more complex ML algorithm based on inputs without labeled examples, the 

ML algorithm attempts to learn how to do a task that the user does not define for it. A semi-

supervised ML algorithm combines both supervised and unsupervised methods to create 

both labeled and unlabeled examples. Reinforcement learning consists of an algorithm 

which is given a policy of how to behave in a system where actions have defined impacts 

and the algorithm can then learn based on feedback to identify which impacts to avoid or 

to initiate. Lastly, transduction is based on a system learning based on training inputs 
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outputs instead of starting with a constructed function (Ayodele 2010, 19). Upon reviewing 

these methods supervised learning was selected as the desired approach for this thesis. 

Supervised learning provides a methodology for the inference of a learning 

algorithm based on labeled data (Mark et al. 2015, chap. 1). The SCT modeling software 

outputs labeled data which allows for the use of supervised ML allowing a training data set 

to be developed. With the methodology selected the next step in conducting supervised ML 

is to select one or more techniques to execute the learning process. 

3. Machine Learning Techniques  

Supervised learning has multiple techniques, which support the ML process; they 

are classified into two main categories linear regression and classification techniques 

(Mark et al. 2015, chap. 1). 

a. Linear Regression 

Linear regression uses prediction and forecasting to identify connections and 

dependencies between data and is one of the oldest learning techniques (Mark et al. 2015, 

chap. 1). Linear regression is used when there is one independent variable with a linear 

relationship between the independent and dependent variables (Gandhi 2018). Examples 

of suitable linear regression use cases include advertising budget and sales relationships or 

radiation therapy type and tumor sizes (Mark et al. 2015, chap. 1), Linear regression is not 

a suitable technique for use with SCT due to multiple variables, which will be discussed in 

Section 3, and as a result classification is a more suitable technique for this experiment. 

b. Classification Techniques  

Classification is a pattern recognition technique that analyzes data inputs and 

develops a qualitative response, an example of this is identifying fraudulent credit card 

purchases based on multiple variables (Mark et al. 2015, chap. 1). There are many forms 

of classification techniques including logistic regression, decision trees, random forest, K-

nearest neighbor (KNN), and neural networks. Logistic regression is a technique that is 

used when the target variable is categorical, for example if you wanted to identify email 

that was spam or not and had multiple factors, like sender, subject, links, etc., a logistic 
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regression technique would be well suited for this (Swaminathan 2019). Decision trees 

group items with similar features and can be one of the fastest classification methods, they 

also provide a clear visualization of the data (Ayodele 2010, 25). Random forest is a multi-

decision tree collection which provides a more generalized solution (Varghese 2019). 

Provided that KNN is a technique that deals with proximity of data points and requires a 

clear understanding of the inputs, as a result this method was not ideal for this experiment 

(Varghese 2019). Neural networks are multi-node systems where each node is its own 

linear regression model and require very large quantities of training data which could not 

be supplied by SCT given the scope and timeframe of this study (IBM 2020). For this 

experiment three classification techniques will be used and compared: logistic regression, 

decision tree, and random forest, these methods were selected based on the data generated 

from SCT and each respective techniques attributes.  

4. Human-Machine Teaming and Trust Considerations   

Data analysis is conducted by AI to generate and assess decisions in complex 

situations and ML can be used to train a system to better identify tactical courses of action 

in complex systems (Johnson 2019, 1). Multiple types of data can be processed with ML, 

from images and speech to objects and patterns. Naval warfighters must process a large 

amount of data for decision making and will require AI and ML to highlight the most 

relevant information to inform faster and better decisions in the stress of combat (Galdorisi 

2019). One end state for AI and ML implementation in tactical decisions making is in 

support of automated and semi-automated decision aids. Two major challenges in 

implementing an intelligent battle decision aid are to create an effective human-machine 

teaming relationship and to create an effective human-machine trust dynamic.  

Implementation of ML as a decision support tool methodology is ongoing in multiple 

fields including the healthcare industry. There has been a trend to generate ML driven 

diagnosis tools in clinical settings for patient diagnosis. Increasingly, ML is used to support 

clinical decisions to improve human diagnostic performance; however, a study of ML based 

clinical support decision systems found that these ML systems were at a high risk of bias and 

that for better results, a supported human decision should be considered above standalone 
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ML diagnostic systems (Vasey et al. 2021, 1–2). This highlights the need for a human to be 

part of the decisions aid system that can leverage the ML data support to make rapid, and 

effective assessments and take data driven action. Fully automated or heavily automated 

military decision aids that do not properly integrate the operator can lead to failure by 

operator over-reliance on, or lack of trust in, decision aids  (Paradis 1999). The balance of an 

effective AI or ML decision support requires proper user integration and effective data 

analysis to ensure it is a net benefit to the system it is implemented in. 

Utilizing ML to better prioritize LWS targets and inform the operator of the greatest 

threat is one method where the user and ML system could work in harmony to inform an 

expedient and effective kill. The complexity of LWS characteristics and drone threats 

provide a prime example of the need for ML supported decision making by the warfighter.  

C. DRONE SWARM THREATS 

Drone swarm threats were selected as the simulated enemy because of the complex 

nature and wide range of capabilities which can be countered by effective LWS. Usage of 

drones have greatly increased in the last twenty years with multiple mission capabilities 

including surveillance, reconnaissance, and direct-action combat support (Guitton 2021, 

26). Drones have become more prevalent, cheaper, and more capable requiring specific 

anti-drone strategies as drones may appear in any conflict (Guitton 2021, 26).  

1. Swarm Considerations 

Drones represent a dynamic and scalable threat that can drastically change the battle 

space. Single drone attacks like the explosive laden drone used to attack the Erbil Airport 

in Iraq, which consisted of a single drone carrying explosives, detonated targeting U.S. 

forces. (Reuters 2021). Single drones are a threat; however, multi drone attacks represent 

a greater challenge and threat to military forces. When multiple drones are operating 

together, either autonomously or manually controlled, they can perform multi-unit assaults 

referred to as drone swarms (Guitton 2021, 28). These drone swarms can be homogenous, 

multiple drones of one type, or heterogenous where there are multiple types of drones all 

in the same swarm. Figure 5 shows a SCT screenshot with four types of drones attacking 
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a Blue Force vessel: fighter drones, intelligence, surveillance, and reconnaissance (ISR) 

drones, bomber drones, and Loitering Suicide Munition (LSM) drones.  

 
Figure 5. Heterogenous Swarm Attack Scenario. Source: MOVES (2021). 

The wide array of drone types and functions create challenging battlefield 

conditions as operators need to assess and engage hostile drones quickly and effectively. 

Shipboard LWS allow for rapid target engagement and can support hard and soft kills. 

Additionally, a LWS with a decision support aid would further support the warfighter and 

ensure more successful drone swarm engagements.  

Drone swarms pose a significant threat and need to be adequality accounted for in 

risk assessments because of the inexpensive cost and ease of use (Dunn 2013, 1245). 

Drones can be procured and assembled easily and then laden with explosives, or they can 

be used their kinetic energy to mechanically damage planes or systems (Dunn 2013, 1245). 

Drone swarms of sufficiently large quantities have the potential to overwhelm a ship’s 

defensive capabilities (Laird 2016). Utilizing decisions aides or modeling to optimize 
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engagement of the drone swarm can support an operator to engage the drone threats quickly 

and more effectually (Laird 2016). Because of their potential in anti-drone operations LWS 

are being researched and designed to detect, track, and neutralize drone threats for ground 

troops on mobile vehicle platforms (Eckstein 2013). Advanced LWS are becoming more 

prevalent in effective anti-drone warfare because they can scale to meet the needs of the 

warfighter from shipboard lasers to small mobile vehicle lasers there is a high degree of 

scalability allowing for a relevant set of solutions to address drone threats. 

2. Target Engagement Methodology  

Targeting is a key step in the kill chain process especially when utilizing LWS 

because of the necessity of a clear risk assessment, deconfliction, and identification of 

viable LWS targets. Decision aids for the huma-machine team can support more effective 

targeting and by extension enhancing the engagement success probability. Targeting was 

selected as a key area for decision support because of the complex and relatively new 

implementation of LWS. Targeting is one step in the overall kill chain cycle process of 

Find-Fix-Track-Target-Engage-Assess (F2T2E2A) kill chain cycle pictured in Figure 6.  

 
Figure 6. Find-Fix-Track-Target-Engage-Assess Kill Chain Cycle. Source: 

U.S. Joint Chiefs of Staff (2013). 



18 

Per the United States Armed Forces Joint Chiefs of Staff Joint publication 3–0, 

Joint Operations Targeting is defined as “the process of selecting and prioritizing targets 

and matching the appropriate response to them, taking account of command objectives, 

operational requirements, and capabilities” (Joint Chiefs of Staff 2018). 

Target prioritization is key to successful operations by the U.S. Armed Forces. 

Drone swarms pose a unique threat in modern warfare as they are large inexpensive groups 

of hostile forces that can fulfil multiple roles ranging from reconnaissance to direct action 

attacks. Knowing which drones to target and engage may mean the difference between a 

ship’s survival. Countries like China are interested in using drone swarms for U.S. Aircraft 

Carrier targeting (Kallenborn and Bleek 2018, 524). Drone swarms are not necessarily 

homogenous, and proper identification, targeting, and engagement of the drones that pose 

the greatest risk to ship survivability is paramount. When implementing a new LWS on 

ship having a system that can support effective and risk-based targeting can improve LWS 

performance in terms of ship survivability. The primary goal of this research is to determine 

if ship survivability can be maximized by using ML in simulated LWS engagements with 

heterogenous drone swarms to optimize targeting and engagement methodology while 

maximizing kills of enemy forces.  
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III. SWARM COMMANDER TACTICS AND MACHINE 
LEARNING EXPERIMENTATION 

Experimentation based on simulated ship LWS and drone swarm engagements 

provides a simple and effective method for evaluation the efficacy of ML in supporting 

target engagement methodology. The beginning of this section describes the software 

elements and their features for simulation and machine learning and is designed to provide 

sufficient background as well as the experimental approach. After the background 

overview the experiment is detailed, following the three-phase method outlined in section 

1.A Approach:  Phase 1 gathering and preparing, Phase 2 training, and Phase 3 deploying 

and improving.  

A. SWARM COMMANDER TACTICS SOFTWARE OVERVIEW 

The NPS MOVES Institute has created a software program called SCT which 

generates simulated engagements between Red and Blue forces. SCT was originally 

designed as a tactics’ “game” where NPS Students could develop their strategies in a 

simulated battle space. Over time, the model began to grow and include directed energy 

(DE) systems, atmospheric data, and more realistic simulation elements. SCT will serve as 

the virtual simulation test environment LWS UAV swarm engagements. This section is 

designed to provide better understanding of SCT and its capabilities.  

1. Relevant Software Program Organizational Elements and Overview 

The SCT software contains elements to allow for multi-user game play, player 

editing and setup, development of combat scenarios, development of system element 

behaviors called “plays,” and scenario simulations or “runs.” This thesis focuses on the 

scenario development in the scenario editor function, scenario runner, and plays. The title 

screen for software commander is shown in Figure 7.  
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Figure 7. Swarm Commander Tactics Main Menu. Source: MOVES (2021). 

a. Scenario Editor 

Scenario Editor is the primary menu for setting up a simulated battle within a battle 

space, players are established with player assets including asset types, quantities, 

positioning, and asset goals. The editor is used to generate a unique environment where 

simulations can be established in a controlled environment. The scenario editor allows for 

mission objectives based on plays to be attributed to each entity, for example the Blue 

Force ship entity can be programmed to hold (defend) a position while the Red Force UAV 

can be programmed to attack the Blue Force ship entity. Figure 8 shows a sample scenario 

editor with Red and Blue Force elements. 

 
Figure 8. Sample Swarm Commander Tactics Scenario Editor. Source: 

MOVES (2021). 
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b. Scenario Runner 

The scenario runner is the actual simulation of the developed scenario with 

programmed entities. The simulation is conducted in real-time and each entity attempts to 

execute their programmed mission. The software logs data during the engagement 

including time, entity location, damage taken or health of entity, ship LWS power level, 

and entity status (alive or killed). The software outputs a .csv data file after each simulation 

which allows for data harvesting and analysis. Figure 9 shows an active shot of a red team 

versus blue team simulation scenario. 

 
Figure 9. Sample Scenario Running. Source: MOVES (2021). 

c. Play Designer 

The play designer software element allows for behaviors to be developed for entity 

attribution in the scenario editor, this allows experimentation with entity behavior to model 

the effects of various behaviors like target prioritization. This designer allows for the 

addition of rulesets to identify optimized behavior in the scenario ruins. Figure 10 shows a 

sample play behavior development tree representing the command to attack when enemies 

are within weapons range. The default settings for target engagement behavior in SCT is 
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proximity based, meaning the nearest enemy target is the default engagement regardless of 

the target’s actual threat level, as an example, a Red Force ISR drone in closer proximity 

to a blue Force ship would be targeted over a bomber drone even though the bomber drone 

poses a greater potential threat to the ship. The ability to modify entity behavior allows for 

more optimized engagement methodology to be implemented. The second engagement 

methodology developed to support this research was the threat prioritization play which is 

a Blue Force command to ignore non-offensive capable enemy units and target and engage 

only UAVs which pose a damage threat.  

 
Figure 10. Swarm Commander Tactics Play Designer Attack Behavior When 

Enemies in Weapons Range. Source: MOVES (2021). 

2. Swarm Commander Tactics Software System Entities  

a. UAVs 

The software program has five different UAV systems, each with unique qualities 

and functions:  
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1. ISR UAVs, a small UAV which does not pose a damage threat to any 

systems. 

2. Fighter UAVs poses a damage threat to aircraft (1 unit), and no threat to 

ships, its primary function is air to air drone warfare. The fighter UAVs 

are not capable of sinking the ship. 

3. Bomber UAV Variant 1 standard drops ordinance onto ships and causes 

poses a moderate damage threat (1 unit of damage). Multiple ordinance 

impacts are required to sink the ship. 

4. Bomber UAV Variant 2 Loitering Suicide Munition (LSM) represents a 

suicide UAV laden with explosives which rams into and detonates itself 

on the ship target this causes a damage (5 units of damage). Multiple 

impacts are required to sink the ship. 

5. Bomber UAV Variant 3 Missile Platform, This UAV deploys an anti-ship 

cruise missile which causes significant damage (25 units of damage) to the 

ship, a single missile impact sinks the ship. 

The UAVs specific damage characteristics are summarized in Table 1 and pictured 

in Figure 11, Figure 12, and Figure 13, note that the bomber variant is represented by one 

figure type as all three share the same general aesthetic model.  

Table 1. Swarm Commander Tactics UAV Damage and Speed 
Characteristics 

UAV Type Damage 
units to ship 

Cooldown 
(seconds) Speed (m/s) 

UAV Fighter 0 5 100 
UAV Bomber Variant 1               
(air to ground bomber) 1 5 80 

UAV Bomber Variant 2       
(loitering suicide munition) 5 N/A 80 

UAV Bomber Variant 3           
(cruise missile platform) 25 30 80 

UAV ISR 0 N/A 120 
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Figure 11. Red Force Fighter UAV. Source: MOVES (2021). 

 
Figure 12. Red Force Bomber UAV General Representation. Source: MOVES 

(2021). 

 
Figure 13. Red Force ISR UAV. Source: MOVES (2021). 
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b. Simulated Ship 

The Blue Force general representation of a ship for surface to air engagements. 

Simulated DE weapon system with which includes atmospheric attenuation using NPS 

ANCHOR, a laser performance scaling code that provides rapid estimates of laser 

performance in the given conditions (Collins 2016). The ship laser directed energy weapon 

defines inputs to its firing calculation including output power, wavelength, beam diameter, 

jitter, and atmospheric data when targeting and engaging a hostile target (MOVES 2021). 

The ship’s laser is a 10,000-watt system with a wavelength of 1.0642e-06 meters. The total 

energy battery for the system is 300 simulated units with a 1 unit per second power usage 

rate (MOVES 2021). This Ship model and LWS is a simplified representation of a 

shipboard LWS and does not match real-world systems, it is simply used for simulation 

purposes. The Blue Force ship model is pictured in Figure 14. 

  
Figure 14. Blue Force Ship. Source: MOVES (2021). 

B. ORANGE ML SOFTWARE APPLICATION OVERVIEW  

Implementation of ML based on the simulation data from SCT required a 

programming environment, to facilitate the ML execution the software program Orange 
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was selected to conduct the ML portion of the experiment. Orange software was selected 

to be the ML software suite because it is an open-source software for ML and data 

visualization that has a user interface with a widget toolbox (Orange Data Mining [Orange], 

n.d.). Orange software allows users to conduct ML by setting up a graphical interface 

instead of having to code multiple elements in the computer language Python. The ML 

interface is referred to as a project workflow, a sample workflow is presented in Figure 15 

which shows the file linkage to a classification decision tree, distribution statistics, and a 

scatter plot. 

 
Figure 15. Sample Workflow from Orange v3.26. Source: Orange (2021). 

The Orange software be programmed to take data inputs and group based on the 

data attributes. During the initial familiarization with Orange, a group of UAVs was imported 

and the system was able to learn which UAVs are attributed with certain speed levels and 

damage capabilities. Subsequently, a blind import excluding the UAV type was put into 

Orange and the system generated a grouping scatter plot correctly identify the UAVs by 

attributes, this is shown in Figure 16. The Orange software project also generated a 

classification tree for UAV types based on attributes, as shown in Figure 17, which shows how 
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the grouping was performed based on learned attributes. This exercise provides background 

for how the overall experiment was conducted using initial data to support learning    

 
Figure 16. Trained ML UAV 2 Factor Scatter Plot Sample Workflow from 

Orange v3.26. Source: University of Ljubljana (2021). 
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Figure 17. Trained ML UAV Type Classification Tree from Orange v3.26. 

Source: Orange (2021). 

C. PHASE 1: DEVELOPMENT OF INITIAL SIMULATION SCENARIOS 

Phase 1 of the experiment serves a baseline for comparison of the basic engagement 

logic in SCT. The simulation scenario types and methodologies are discussed below in tow 

primary subsections the threat scenarios and the engagement methodology. The threat 

scenarios consist of two primary categories, homogenous and heterogeneous drone 

swarms. The engagement methodology section breaks out the two primary methodologies 

studied in this experiment proximity-based engagement and threat-based engagement. 

Simulation scenarios were generated based on the threat scenarios and engagement 

methodologies to create a baseline data set to train the ML algorithm.  

1. Blue Force Engagement Mythology Variables  

Blue Force engagement methodology consists of two primary methods, proximity 

engagement and threat engagement. Engagement methodology is the target variable for the 

experiment as it represents the decision required to ensure maximum combat effectiveness. 

The entire experiment is designed to provide decision support recommendation to the LWS 

operator based on the battlespace conditions and variables. The proximity methodology will 



29 

command the ship to attack all targets and prioritize the closest target first. The proximity 

method is effective provided the ship can destroy all enemies, meaning no enemies would 

need to be engaged by other Blue Force assets in a real-world scenario freeing other assets 

up to continue their missions. However, should the ship be overwhelmed due to the number 

or types of enemy UAVs there is greater risk of loss of the ship when implementing the 

proximity engagement methodology. The threat engagement method prioritizes the most 

dangerous enemies only, this could require other Blue Force assets to engage fighter drones 

or other non-offensive damage capable UAVs. The threat priority method ignores ISR or 

Fighter drones, which pose no damage threat to the ship. These two engagement methods 

were selected based on the current capabilities of the SCT software as they can be 

programmed in the current version and allow for two distinct approaches to a simulated 

engagement. The optimal engagement methodology must be selected based on the UAV 

types and quantities present in the battlespace. The variables which the ML software must 

assess are the variable type numerical or categorical, and whether the variable is a feature or 

the target variable, the goal variable. Variable classifications in the simulation scenarios are 

defined in Table 2. 

Table 2. Relevant Simulation Scenario Variable Types and Descriptions for 
ML 
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2. Homogenous and Heterogenous Threat Scenarios 

Initial threat scenarios were simulated to build user knowledge of the SCT software 

and the data outputs generated each time a scenario was simulated. Initial simulation 

scenarios involved Red and Blue Force engagements with one Red Force threat type, this 

means varying quantities of homogenous UAVs attacked the Blue Force Ship, see Figure 

18 for a sample attack wave. The data generated in these basic scenarios shows the 

approximate quantity of homogenous UAVs required to destroy the Blue Force Ship 

regardless of engagement strategy. The total quantity by UAV type required to kill the Blue 

Force Ship is summarized in Table 3. 

 
Figure 18. Homogenous UAV Wave Swarm Commander Tactics. Source: 

MOVES (2021). 

Table 3. Homogenous UAV Units Required to Destroy Blue Force Ship 

 

UAV Type Quantity Needed to Destroy Blue Force Ship

UAV Fighter N/A- Non-Offensive to Ship
UAV ISR N/A- Non-Offensive to Ship

UAV Bomber Variant 1                    
( air to ground bomber) 90

UAV Bomber Variant 2       
(loitering suicide munition)

N/A-Maximum simulated wave was 300 units, 
failed to destroy Ship

UAV Bomber Variant 3           
(cruise missile platform) 29
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Homogenous attacks for each UAV type listed in Table 2 were simulated with up 

to three hundred units to determine the quantity of each UAV type required to overwhelm 

the Blue Force defenses. Losses to homogenous waves represent enemy UAV quantities 

that, regardless of engagement tactics, would overwhelm the Ship defenses. These 

homogenous scenarios were run to develop a baseline for UAV type lethality. The Fighter 

UAV type though non-offensive was simulated as they were used in heterogeneous attack 

waves to represent non direct threat UAVs. The most devastating UAV was the UAV 

Bomber Variant 3 which fires an anti-ship missile, when 29 units fire in concert the ship is 

unable to destroy all the incoming missiles and is destroyed. The UAV Bomber Variant 1 

air to ground bomber can overwhelm the Blue Force with a wave of 90 or more units. The 

UAV Bomber Variant 2 LSM was unable to reach the ship prior to being destroyed even 

at the maximum wave size of 300 units.  

Heterogenous simulation scenarios involved Red and Blue Force engagements with 

multiple Red Force threat types, this means varying quantities of heterogenous UAVs were 

simulated attacking the Blue Force Ship, see Figure 19 for a sample attack wave. The data 

generated in these basic scenarios was used to see the damage taken and power utilized by 

the Blue Force Ship. Like the homogenous scenarios, heterogenous threat attacks were 

conducted until the destruction of the Blue Force Ship or until the attacks rendered the laser 

system inert through power drain (which did not occur in any of the simulations). 
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Figure 19. Heterogenous UAV Wave Swarm Commander Tactics. Source: 

MOVES (2021). 

D. PHASE II: ML TRAINING  

Training of ML algorithm in this experiment was conducted using supervised 

learning because of the availability of labeled simulation data. The initial simulations 

generated in SCT were used to train the ML algorithm and training was conducted in 

multiple iterations to optimize the algorithm. This section discusses the training as well as 

the comparison and selection of the optimum ML technique classification process.  

1. Machine Learning Training Process Overview 

Training the ML algorithm began with the generation of baseline data simulations 

in SCT. The baseline scenarios needed to be random to avoid bias and to ensure this initial 

training scenario parameters were generated in an Excel sheet built with a random number 

generation set for each variable provided in Table 2. These generated conditions including 

UAV types and quantities and the random engagement methodology were input and 

simulated in SCT. The output simulation data was from SCT was input into Orange and 

evaluated with multiple ML technique evaluation methods including forest, random forest, 

and logistic regression. The ML algorithm training was conducted in two iterations to 

determine if there was an increase in optimization. The workflow package developed in 

Orange for initial ML training and an additional iteration are shown in Figure 20 and Figure 

21, respectively. The results of the training are discussed in Chapter IV. 
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Figure 20. Initial Experiment Workflow from Orange v3.26. Source: Orange (2021). 
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Figure 21. Iterative Workflow from Orange v3.26. Source: Orange (2021). 
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2. Comparison and ML Technique Evaluation 

Multiple ML techniques (forest, random forest, and logistic regression) were 

utilized to identify the most effective technique in the ML algorithm for predictions 

supporting decisions on future ship engagements. Each ML technique needed to be tested 

and scored allowing for comparison using evaluation metrics. Common evaluation metrics 

include: 

• Classification accuracy (CA) is the overall accuracy of the model, meaning 

how frequently will the ML model be correct. 

• Area under the receiver operating characteristic curve (AUC) “provides an 

aggregate measure of performance … One way of interpreting AUC is as 

the probability that the model ranks a random positive example more highly 

than a random negative example.” (Google 2020) 

• Precision is a helpful metric “when the costs of false positives are high” 

(Nicholson, n.d.).  

• Recall is beneficial “when the cost of false negatives is high” (Nicholson 

n.d.).  

• F1 is a combination of precision and recall which can provide insight to 

false positives and false negatives (Nicholson n.d.). 

Each evaluation metric has advantages and disadvantages, but overall, the CA is an 

effective general method as it denotes the true accuracy of the model which informs the 

viability of using the classification technique for prediction future outcomes. Using the 

AUC gives the correct proportion of correctly classified data instances. The precision and 

recall metrics are beneficial depending on the criticality of false positives or false 

negatives. For the SCT simulations, a false positive would mean the engagement method 

selected for the incoming swarm was predicted to lose the battle and in fact the Blue Force 

would have won. False negatives would be predicting the Blue Force victory when in fact 

the Blue Force would lose, false negatives are more costly in the ML algorithm because a 

false negative provides the LWS operator bad information which jeopardizes the Ship’s 
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survivability. The F1 metric combines precision and recall mathematically as shown in 

Figure 21, and is a helpful amalgamation of precision and recall.  

 
Figure 22. F1 Metric Equation. Source: Nicholson (n.d.). 

E. PHASE III: DEPLOYING AND IMPROVING PROCESS 

After the training process in Phase II the deploying and improvement process 

occurred consisting of two main tasks, deployment of the ML algorithm using a selected 

classification ML technique to predict future engagement outcomes and to iteratively train 

the ML model to see if further optimization is achievable. Utilizing the metrics for ML 

technique evaluation the most effective classification technique was found to be tree 

classification due to the combination of its CA, precision, recall and F1 performance. 

Random forest classification was the second most effective method with slightly smaller 

CA, precision, recall and F1 performance. Logistic regression was not nearly as effective 

as tree or random forest with a lower CA, precision, recall and F1 score. The complete 

scoring of each ML method is summarized in Figure 23.  
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Figure 23. ML Technique Comparison Metrics Orange v3.26. Source: Orange 

(2021). 
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IV. RESULTS AND DATA OPTIMIZATION 

A. INITIAL SIMULATION RESULTS SUMMARY  

Initial homogenous and heterogenous simulations were generated at random to 

develop the baseline data to train the ML algorithm, in total 273 simulated baseline battles 

were run in the SCT software. Overall, the threat engagement methodology is more 

effective in ensuring a Blue Force victory in terms of ship survival as seen in Table 4. The 

primary drawback of the threat engagement methodology is that enemy fighters and ISR 

UAVs are left alone by the Blue Force Ship which in a complex battlespace with multiple 

Blue Force assets another Blue Force entity would need to engage them tying up additional 

resources. Ideally, the Proximity engagement would be used to neutralize all enemies 

provided the Blue Force Operators could determine survivability and success rates prior to 

the engagement which is the purpose of prediction modeling with ML. 

Table 4. Baseline Simulation Scenarios Based on Randomized Engagement 
Methodology 

 
 

The initial simulation data was fed into the ML algorithm to train it to identify 

optimum strategies for successful engagements where the Blue Force survived and while 

maximizing enemies destroyed. Using the training data, a first iteration model algorithm 

was developed to serve as a prediction and decision support tool. The ML model provides 

predictions of combat scenarios and would allow the Blue Force to select the appropriate 

engagement methodology. Results from the ML optimization follow in Section IV.B. 

 
 
 
 
 

Engagement 
Methodology

Number of 
Simulations

Blue Force 
Wins

Blue Force 
Losses

Win 
Percentage

Proximity 161 106 55 66%
Threat 112 100 12 89%
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B. ML ALGORITHM RESULTS 

Optimization of engagement methodology using the ML model occurred in two 

iterations, the first after initial training and the second using the data from the first iteration. 

Initially, a series of new Blue Force versus Red Force engagements was generated in Excel, 

again using random quantities and types of UAVs and fed into a prediction tool within 

Orange which draws on the learned data to provide expected win or loss conditions based 

on the Blue Force’s engagement methodology.  

1. First Iteration of ML Prediction 

The initial ML prediction based on trained data generated a classification tree 

sowing the probabilities of Blue Force winning engagements based on the types and 

quantities of enemy UAVs and the Blue Force engagement methodology (threat or 

proximity). The classification tree shown in  Figure 24 provides a graphical representation 

of the potential engagement outcomes. This classification tree was generated based on the 

training data from Table 4.  
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Figure 24. 1st Iteration ML Classification from Orange v3.26. Source: Orange (2021). 
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Using the randomized Excel generator 69 new scenarios were generated and tested 

in the ML prediction algorithm in Orange. For the initial prediction run all three 

classification techniques tree, random forest, and logistic regression were analyzed to 

confirm that tree classification was in fact the most effective ML technique for simulated 

SCT data analysis. The results of the ML predictions are presented in Table 5. Overall, the 

tree classification technique had the fewest false negatives and highest correct threat 

engagement methodology predictions. The tree classification was less accurate for 

proximity engagement methodology; however, the ML technique was more conservative 

than the random forest and logistic regression as evidenced the eight false positives (losses 

predicted when wins occurred). Overall tree classification is still the most desirable ML 

technique for predictions of SCT engagements.  

Table 5. Initial ML Prediction Results of Simulation Scenarios  

 
 
 
 
 

Engagement 
Methodology

Number of 
Simulations

ML Correct 
Prediction

ML Incorrect 
Prediction 

Percentage 
Correct

False Positive 
(predicted loss 

and win occurred)

False Negative 
(predicted win and 

loss occurred)

Proximity 35 27 8 77% 8 0
Threat 34 33 1 97% 0 1

Engagement 
Methodology

Number of 
Simulations

ML Correct 
Prediction

ML Incorrect 
Prediction 

Percentage 
Correct

False Positive 
(predicted loss 

and win occurred)

False Negative 
(predicted win and 

loss occurred)

Proximity 35 29 6 83% 5 1
Threat 34 32 2 94% 0 2

Engagement 
Methodology

Number of 
Simulations

ML Correct 
Prediction

ML Incorrect 
Prediction 

Percentage 
Correct

False Positive 
(predicted loss 

and win occurred)

False Negative 
(predicted win and 

loss occurred)

Proximity 35 30 5 86% 3 2
Threat 34 27 7 79% 4 3

Tree Classification

Random Forest 

Logistic Regression 
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2. Second Iteration of ML Predictions  

Upon completion of the initial prediction run the model was re-trained using the 

results from the additional scenarios to ensure the algorithm had access to additional 

scenarios. The second iteration of predictions was executed using another randomized 

group of scenarios and the ML algorithm was used to predict the outcome of the simulated 

engagements. The results of the predictions are provided in Table 6. Once again, a 

classification tree was generated to provide a graphic representation of what the algorithm 

had learned, this is shown in Figure 25.  

The second iteration prediction run increased the overall correct percentage of 

Proximity engagement predictions and slightly decreased the threat engagement 

predictions. Overall, there was also an increase in false negatives. After reviewing the 

scenario specifics, it was determined that some of the newly developed test scenarios were 

outside the range of what the ML algorithm had seen. For example, there was a scenario 

with a large quantity of LSM Bombers with Fighter UAVs which effectively screened the 

LSM bombers long enough for them to execute a ship kill. Another scenario had twenty-

three missile platform bombers and a large quantity of fighters again acting as a screen 

allowing the ship to be overwhelmed in proximity engagement mode. Both false negative 

examples represent a gap in the ML algorithm’s training, the ML incorrectly predicted 

victory based on the training data which included homogenous scenarios where both 

bomber types were easily defeated based on the quantity present. As a result of the decrease 

in performance the ML algorithm was subsequently trained again with a larger data set to 

attempt to improve performance.  

Table 6. Second Iteration ML Prediction Results of Simulation Scenarios  

 
 
 

Engagement 
Methodology

Number of 
Simulations

ML Correct 
Prediction

ML Incorrect 
Prediction 

Percentage 
Correct

False Positive 
(predicted loss 

and win occurred)

False Negative 
(predicted win and 

loss occurred)

Proximity 43 39 5 91% 1 4
Threat 26 21 4 81% 0 4

Tree Classification
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Figure 25. 2nd Iteration ML Classification from Orange v3.26. Source:  Orange (2021). 
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3. Additional ML Optimization and Evaluation  

The ML algorithm was retrained using a larger set of simulation data including 

multiple scenarios where Red Force drone swarm attacks were heterogenous and fighter 

UAVs were effectively screening for Bomber UAVs. In total, 420 simulation scenarios 

were used to train the algorithm including all of the baseline scenarios and previously tested 

prediction scenarios. To demonstrate the improvement in the ML Algorithm, a comparison 

of the initial ML model and the final ML model is provided below in Table 7 and Table 8. 

The increased training data and multiple iteration approach greatly improved the prediction 

accuracy of the ML algorithm. Overall, the multiple iteration approach improved the 

overall accuracy and reduces the total false negatives and positives.  

Table 7. Comparative Results for Prediction of Simulation Scenarios in 
Orange  

 

Table 8. Overall Summary ML Model Prediction Accuracy  

 
 

Engagement 
Methodology

Number of 
Simulations

ML Correct 
Prediction

ML Incorrect 
Prediction 

Percentage 
Correct

False 
Positives

False 
Positives %

False 
Negatives

False 
Negatives %

Proximity 244 218 26 89.3% 22 9.0% 4 1.6%
Threat 176 167 9 94.9% 0 0.0% 9 5.1%

Engagement 
Methodology

Number of 
Simulations

ML Correct 
Prediction

ML Incorrect 
Prediction 

Percentage 
Correct

False 
Positives

False 
Positives %

False 
Negatives

False 
Negatives %

Proximity 244 229 15 93.9% 8 3.3% 7 2.9%
Threat 176 175 1 99.4% 1 0.6% 0 0.0%

Initial Model Accuracy

 Final Model Accuracy

Model Accuracy False Negative 
Occurance

False Positive 
Occurance

Initial 
Model 92% 3.1% 5.2%

Final 
Model 96% 1.7% 2.1%

Model Comparison Summary
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C. ML ALGORITHM PREDICTIONS AS A DECISION AID SUPPORT 
TOOL 

The training and optimization of the ML provides the foundation for a user decision 

aid in selecting engagement methodology for SCT simulations. By implementing the ML 

algorithm to assess an approaching drone swarm, the appropriate engagement technique 

can be selected. The ML algorithm provides the user with insight as to the optimal 

engagement strategy. The user would determine based on the ML prediction whether to 

target the threats, the UAV bombers, or target all enemies based on proximity and this 

engagement decision would support the most enemy kills while prioritizing the ship’s 

survival. The ML algorithm has reduced the cognitive load on the system user by 

quantifying the courses of action in terms of most likely outcome for complex heterogenous 

drone swarms.  
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V. CONCLUSION 

A. SUMMARY 

This research studied the combination of simulated wargaming and ML as a proof 

of concept and as a foundation for a decision support tool. To accomplish this goal multiple 

ML techniques were tested using simulated LWS engagements to determine if ML could 

support automated decision aids based on simulated data. Overall, ML techniques were 

evaluated to support engagement methodology analysis for use with a simulated LWS to 

defend against complex drone swarm threats effectively. Experimentation demonstrated 

the application of ML to this problem domain through modeling and simulation and ML 

algorithm training. Results from the ML algorithm predictions had an overall accuracy of 

96% in predicting engagement outcomes based on enemy types and quantities, and LWS 

attack methodology. The ML algorithm predictions had false positives (a predicted win 

that was actually a loss) 2.1% of the time. These results demonstrate that a complex battle 

space simulation software can be used to accurately train a predictive ML algorithm.  

The thesis demonstrates that a research approach that combines wargaming 

simulations with the development of ML algorithms provides a mechanism for studying 

and supporting the use of automation and AI techniques for supporting complex decisions 

and engagements. By implementing a trained ML algorithm, it is possible to analyze a 

complex battlespace with a heterogenous drone swarm so the appropriate engagement 

technique can be selected thereby optimizing the survivability and effectiveness of target 

engagement. The thesis addressed the research objective by demonstrating the efficacy of 

ML as a method to identify and support effective target selection and engagement methods 

for a simulated shipboard LWS defending against UAV swarm threats. This research 

represents a fundamental building block for the development of an automated decision aid 

to support future warfighters operating laser weapon systems. 

B. FUTURE RESEARCH OPPORTUNUTIES 

There are multiple future research opportunities in the implementation of ML to 

support warfighter engagement decisions, the two primary areas are testing expanded 
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simulations and engagements to create more complex ML algorithms and developing ML 

optimized decision aids integrated with user interfaces that can be tested in simulated 

wargaming environments.  

Expansion of the ML training and simulated engagements could be conducted in 

SCT to generate scenarios on a larger scale with multiple Blue Force assets with distinct 

missions. Multi-ship engagements and multi-domain engagements with land, sea, and air 

systems working together could be developed to support large scale wargaming scenarios 

which create an opportunity to generate complex data. The more complex multi-asset 

simulations could be used to train ML algorithms to support target engagement decisions 

across multiple platforms (ships, aircraft, and ground systems). The SCT software is 

constantly growing and expanding as it is upgraded with new systems, capabilities, and 

enticements. The adaptability of SCT allows for programming to establish specific 

environments including blue ocean, islands, and land engagements.  

Development of decision aids using trained ML algorithms presents a unique 

opportunity to test the utility of ML algorithms in a tactical application. Further research 

could be conducted to take a ML algorithm and build it into the wargaming software to 

provide a user interface for making tactical decisions in a simulated environment. This 

represents the next step in bringing this research into practical applications by providing 

mock warfighters with tactical decision aids based on simulated engagements with the 

objectives of reducing the cognitive load on warfighters and ensuring they have the tools 

and capabilities to execute missions rapidly and effectively.  
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