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ABSTRACT 

Every year, the SEAL Officer Community Management (OCM) 

receives approximately 300 applications from candidates who want to attend Basic 

Underwater Demolition/SEAL (BUD/S) training to become Navy SEAL Officers. The 

applications include multiple data elements such as university attendance, grade point 

average (GPA) and physical fitness test scores. From this data, the SEAL OCM selects 

approximately 80% of the candidates to participate in SEAL Officer Assessment and 

Selection (SOAS). At SOAS, the candidates are assessed by the cadre at Naval 

Special Warfare (NSW) Basic Training Command (BTC), who provide evaluation data 

and recommendations to the SEAL OCM for candidate selection to BUD/S. 

In total, the process of assessing, selecting and training candidates to become 

SEAL Officers is resource-intensive, incurring a financial cost to the Navy, manning 

challenges for NSW and the time and energy of the candidates themselves. Removing 

candidates who have a low probability of success at BUD/S early in the process reduces 

the costs and allows them to be reassigned within the Navy to a community more 

appropriate to their abilities. 

This thesis aims to analyze data collected on the candidates to train statistical 

models capable of predicting a candidate’s probability of success in the first phase of 

BUD/S and inform data collection to capture information on candidates for future data 

analysis. 
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EXECUTIVE SUMMARY 

Every year the SEAL Officer Community Management (OCM) receives 

approximately 300 applications from candidates who want to become Navy SEAL officers. 

Basic Underwater Demolition/SEAL (BUD/S) training is the main obstacle that the 

candidates must complete to meet their objective, but it is one stage in a rigorous and 

multifaceted training process that begins with the application. The applications include 

multiple data elements such as university attendance, grade point average (GPA) and 

physical fitness test scores. From this data, the SEAL OCM selects approximately 80 

percent of the candidates to participate in SEAL Officer Assessment and Selection (SOAS). 

At SOAS, the candidates are assessed by the cadre at Naval Special Warfare (NSW) Basic 

Training Command (BTC), who provide evaluation data and a recommendation to the 

SEAL OCM for candidate selection to BUD/S, to which fewer than half can be selected. 

In total, the process of assessing, selecting and training candidates to become SEAL 

officers is resource-intensive, incurring a financial cost to the Navy, manning challenges 

for NSW and the time and energy of the candidates themselves. Removing candidates who 

have a low probability of success at BUD/S early in the process reduces the costs and 

allows for them to be reassigned within the Navy to a community more appropriate to their 

abilities. 

In this thesis, we analyze data collected on the candidates to train statistical models 

capable of predicting a candidate’s probability of success in the first phase of BUD/S. We 

focus on success in the first phase because that is the primary test of a candidate’s will to 

succeed in the program. Subsequent phases are designed to assess a candidate’s ability to 

meet more technical performance requirements.  

We find that the data collected at each stage of the training process is informative 

of a candidate’s probability of transitioning to the next stage of training but loses the power 

to predict outcomes beyond that. Models trained on application data are 85 percent accurate 

at predicting candidates selected for SOAS but only 76 percent accurate at predicting which 

candidates will ultimately be successful in the first phase of BUD/S. Additionally, models 
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trained on both application data and data collected at SOAS are 82 percent accurate in 

predicting a candidate’s probability of being selected for BUD/S, but only 75 percent 

accurate at predicting success in the first phase. 

The discounted value of data in predicting subsequent event outcomes suggests that 

the SEAL OCM is selecting candidates effectively based on the information available. If 

this were not the case and a data element collected in the applications were predictive of 

candidate success at BUD/S, it would suggest that the SEAL OCM was not fully utilizing 

the data to make informed decisions. In addition, if application data were reliably predictive 

of candidate success in the first phase of BUD/S, it would suggest that SOAS is 

unnecessary for making this determination and could be discontinued, saving considerable 

cost. 

Particularly challenging is predicting which candidates will fail in the first phase of 

BUD/S. Our models gain most of their accuracy from predicting positive outcomes in the 

first phase relying on the high (80 percent) success rate of the officers that make it to that 

point. Because the model for predicting candidate success in the first phase of BUD/S 

achieves 75 percent accuracy, a naïve model that predicts success for all candidates 

achieves a higher rate of correct classification. This suggests that the first phase of BUD/S 

is an indispensable part of the training process and it correspondingly collects data on a 

candidate’s determination that is unknown before that point. 

Our research provides NSW with useful insights from data collected on candidates 

to influence future data collection efforts as well as statistical models to predict candidate 

outcomes at each stage of training that can be used to inform candidate selection criteria. 

Of particular interest is the feature importance outputs from the models that suggest that 

the subjective candidate assessments provided by the SOAS cadre are the most important 

factors in predicting candidate selection to BUD/S and success in the first phase. 
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I. INTRODUCTION 

A. THESIS OBJECTIVE 

Naval Special Warfare (NSW) is the U.S. military’s premier maritime special 

operations force. Within NSW, the Navy’s SEAL Teams are comprised of highly trained 

and motivated operators capable of conducting special operations missions from the sea, air 

or land. Basic Underwater Demolition/SEAL (BUD/S) training is the fundamental course 

to prepare students, as they are commonly referred to, for service in the SEAL Teams and 

to reject those unqualified for that service. At its core, BUD/S training is designed to induce 

physical and mental exhaustion to test students’ ability to adapt to challenging conditions, 

their will to succeed, and their determination to commit themselves to a rigorous career in 

the SEAL Teams. Over the years, BUD/S training has evolved, but an attrition rate of 

approximately 70 percent for all students has remained relatively constant despite programs 

instituted by NSW to better select and prepare candidates for training (Atlamazoglou 2021). 

For officers, the attrition rate is lower, approximately 30 percent, due to the more rigorous 

training that officer candidates are subjected to before BUD/S. Increasing the number of 

assessment and screening phases prior to BUD/S may further decrease the attrition rate but 

at a financial cost to the Navy and an expenditure of time and energy by the instructor staff 

and the candidates themselves. Because these costs are higher when candidates matriculate 

into a BUD/S class than during selection, rejecting candidates who are less likely to 

complete training improves efficiency but increases the risk of rejecting those who would 

have completed training and provided needed manning to the force. 

The goal of this thesis is to develop a statistical model for predicting the success of 

a SEAL candidate at various points in the training process, using information that is 

available about the candidate at the point. Such a model could be used by the SEAL Officer 

Community Management (OCM) to inform candidate selection for attendance to SEAL 

Officer Assessment and Selection (SOAS), the primary screening program for officers, 

based on initial data collected from candidate applications, and to BUD/S based on 

additional data collected at SOAS. 
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B. THE PROCESS OF BECOMING A NAVY SEAL OFFICER 

A Navy SEAL officer candidate must endure a rigorous and multifaceted training 

process in order to succeed. We now explain this process in more detail. 

1. Application 

Officers apply for BUD/S training by submitting a package to the SEAL OCM. Each 

package includes the candidate’s medical screening results, letters of recommendation, 

educational information such as university attendance and grade point average (GPA), prior 

service (if applicable), and his or her Physical Screening Test (PST) score described in 

Appendix B. 

The SEAL OCM typically receives applications from over 300 candidates annually, 

of which approximately 70 matriculate into SEAL training. The SEAL OCM conducts an 

initial “down select” on the applications to eliminate roughly one-third of the candidates 

who are physically or academically uncompetitive with peers within their accession source. 

The approximate 200 candidates remaining are invited to SOAS. 

2. SOAS 

During one of the four two-week SOAS blocks offered in May, June, July, and 

August, candidates undergo various training evolutions and tests designed to rank the 

students by performance and reveal aspects of their character (U.S. Navy 2021). Some 

evolutions, such as the PST, are held every year for every block, but most are not; these 

evolutions vary as the SOAS cadre rotates into and out of the command or as NSW 

leadership prioritizes different characteristics. This poses a challenge to data analysis but 

may be a feature that provides value to the organization. 

Based on a candidate’s initial packages, the data collected during SOAS, and the 

recommendations of the SOAS cadre, the SEAL OCM selects approximately 70 candidates 

to receive orders to NSW Basic Training Command (BTC) and matriculate into SEAL 

training as students. 
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3. NSWO 

Upon arrival at BTC, candidates report for Naval Special Warfare Orientation 

(NSWO). In NSWO, officer and enlisted candidates are brought together for the first time 

and become a class. Over the course of three weeks, the NSWO cadre instructs the class on 

cleaning and maintaining their gear, completing the various training evolutions to standard, 

and upholding the Navy and NSW values. NSWO is not designed to down select students 

but rather to prepare them for BUD/S training. However, not all students proceed from 

NSWO to BUD/S. 

At any time and in any phase, a student will be removed from training if that student 

fails to meet the standards set in NSWO. Typically, students who fail to meet a physical 

standard but show strong will and character can stay in BTC, work on their area of 

weakness, and receive an opportunity to join a later class. This is called a Performance Roll 

and typically sets students back by a single class. But students who continue to fall short on 

physical standards or fail to meet the ethical standard are removed from training entirely. 

This is called a Performance Drop and results in the student’s reassignment within the Navy 

or termination of service. 

In prior years, NSWO went by the name Basic Orientation (BO) or Indoctrination 

(“Indoc”). The data available on these legacy programs is sparse. BTC captured little data 

prior to 2013 and has not maintained it since that time. In addition, the purpose of the 

training block has changed over time from arduous assessment and selection to the current 

focus of preparing the class for BUD/S. For this reason, data from the legacy programs does 

not align with the data collected more recently by NSWO. 

4. BUD/S 

BUD/S training is a 21-week training program consisting of three seven-week 

phases. Each phase has a unique focus, building on the foundations of the preceding phase 

with the overall goal of preparing students for service in the SEAL Teams and removing 

those who do not meet the requirements for that service.  

The first phase is designed to test students physically to assess their mental grit and 

the strength of their will to be in the SEAL Teams. Some tests are meant to specifically 
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assess students’ water competency, strength, endurance, capacity to work as part of a team, 

and other characteristics, with the purpose of inducing exhaustion and discomfort so that 

students learn to overcome those temporary conditions. Whether from a self-realized lack 

of ability or will, a BUD/S student can, at any time and in any phase, ask to be removed 

from training. This is called Drop on Request (DOR) and typically occurs within the first 

four weeks of the first phase. 

The fourth week of the first phase, known as Hell Week, is more similar to a single 

weeklong evolution than a week with many individual evolutions. Over five days, students 

run over 200 miles, sleep for less than four hours total and spend little time dry or warm. 

While most DORs take place in the first four weeks of the first phase, most of those occur 

within the first three days of Hell Week.  

Those students who made it through Hell Week but are physically unable to proceed 

in training due to injury go to Physical Therapy Rest and Recovery (PTRR). PTRR gives 

injured students access to medical treatment, physical therapy, and time to heal. Many 

students pass through PTRR during their time in BUD/S, most commonly after Hell Week, 

but an injury sustained in any training phase will send a student to PTRR for recovery before 

they return to training. Those students who cannot fully recover and return to training are 

removed from BTC for medical reasons. This is known as a medical drop and, although it 

is less common than the other reasons for students being removed from training, it is 

observed in the data. 

In the second phase, students are trained in combat diving and tested on their ability 

to execute procedures under stressful, underwater conditions. Attrition tends to be lower in 

the second phase than in the first, but performance rolls and drops take over for DORs as 

the leading causes for attrition and continue to be for the remainder of BUD/S. 

The third phase is the final seven weeks of BUD/S and mainly takes place on San 

Clemente Island. This phase is commonly referred to as land warfare and incorporates land 

navigation, weapons training and instruction on the foundational tactics used by Navy 

SEALs.  
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After the third phase, students graduate from BUD/S but not from training. They 

continue on to SEAL Qualification Training (SQT), where, over the course of a year, they 

develop the tactical and technical proficiency required to join the SEAL Teams. As with 

BUD/S, students who fail to meet performance and ethical standards are dropped from SQT. 

Those who complete SQT are assigned to either an East or West Coast-based SEAL Team. 

C. ORGANIZATION OF THE THESIS 

The remainder of this thesis is focuses on exploring the data we utilize and the 

techniques we employ to develop statistical models for predicting candidate success and 

analyzing model performance. Chapter II is a review of a selection of published work of 

relevance to this thesis. Chapter III explains the data available for this research and the 

methodology we use to train and assess statistical models, as well as a brief explanation of 

the modeling techniques used. Chapter IV presents an analysis of the models and provides 

empirical examples to demonstrate model performance. Lastly, Chapter V summarizes our 

findings and suggests areas for future research. 

 

  



6 

THIS PAGE INTENTIONALLY LEFT BLANK  



7 

II. LITERATURE REVIEW 

Although the SEALs are a unique warfighting force in the U.S. military, their 

multistage training and development have structural similarities to the training processes of 

other organizations, such as the naval aviation community. We examine several studies from 

the technical literature that have focused on these organizations. 

A. NAVAL AIR TRAINING COMMAND PRIMARY FLIGHT TRAINING 

Analyzing data from Naval Air Training Command (NATRACOM), Erjavec (2019) 

develops statistical models of a flight student’s probability of completing primary flight 

training (“primary”) at three points in the training pipeline prior to beginning primary. 

Because primary has a much higher per-student cost ($200,000) than the preceding two 

stages of pilot training, there are significant cost savings associated with removing students 

who have a low probability of success at primary (Erjavec 2019). Similar to this thesis, 

Erjavec utilizes techniques based on decision trees to develop statistical models to predict a 

student’s probability of success. The models that Erjavec presents offer a valuable tool for 

NATRACOM to assess flight students and reduce costly attrition at primary. 

B. U.S. MARINE CORPS FORCE RECONNAISSANCE 

Using data from the U.S. Marine Corps Force Reconnaissance School, Nowicki 

(2017) applies logistic regression to predict student outcomes based on students’ entry data, 

such as demographic information and test scores. The author can identify statistically 

significant predictors that include physical fitness scores, Marine Corps enlistment 

cognition test scores and completion of one or more semesters of college courses as 

positively correlating with candidate success. In addition, he finds that repeating training 

tasks after failure increases candidates’ likelihood of success at given tasks, suggesting 

candidates can improve over time. Nowicki cautions, however, that the school’s mission is 

to select those Marines who are suited for force reconnaissance and repeat attempts should 

be allocated sparingly. 
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C. DEFENSE LANGUAGE INSTITUTE FOREIGN LANGUAGE CENTER 

Bermudez-Mendez (2020) uses four logistic regression models to predict a student’s 

ability to meet the new aptitude standard on the Defense Language Proficiency Test 

(DLPT), which is the culmination of their time at The Defense Language Institute Foreign 

Language Center (DLIFLC). The first model considers a student’s entry data, such as prior 

education and the number of languages the student knows before DLIFLC. This model has 

mediocre performance for predicting students that will meet the aptitude standard, correctly 

identifying 25 percent of those that would, but moderate performance at predicting those 

that will fail, correctly identifying 87 percent (Bermudez-Mendez 2020, p. 21). He trains 

the other three models at the end of the first, second and third semesters incorporating 

academic performance data from those semesters. The models’ performance increases at 

each subsequent milestone, with the third model having the most data inputs and the highest 

accuracy, correctly classifying 69 percent of the students who pass and 82 percent who fail 

(Bermudez-Mendez 2020, p. 18-19). 
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III. DATA AND METHODOLOGY 

We continue to modernize our enterprise data engineering services to 
accommodate an expansion of Naval Special Warfare AI/Machine Learning 
(ML) capabilities. The Naval Special Warfare Data Environment (NDE) is 
the foundational plumbing to support structured and unstructured 
authoritative data from disparate, disconnected, and internal data sources to 
access, ingest, cleanse, curate, store, model, and analyze data efficiently and 
effectively. The NDE includes Operational Data Stores, Warehouses, and 
Lakes in order to connect business systems, data analytics, and machine 
learning initiatives with authoritative data. (Rear Admiral Howard before the 
117th Congress Senate Armed Service Committee. April 28, 2021) 

Naval Special Warfare Command has established a central repository for data from 

throughout the NSW community to enable data analysis and Artificial Intelligence (AI) and 

Machine Learning (ML) application development (Howard 2021). We worked with the data 

engineers leading that effort, who provided key insights into the data to help guide our 

research. However, it is a new initiative and older data, particularly unstructured, older 

training data, is unavailable in the Naval Special Warfare Data Environment. Instead, we 

received most of the data from the SEAL OCM, SOAS and BTC as approximately 30 

Microsoft Excel files, each in a unique format. 

Buttrey and Whitaker (2018) estimate that 80 percent of data analysis is time spent 

preparing data that in real life is “messy.” Of particular relevance to this thesis are the effects 

of missingness, duplication, and inconsistency that occur when merging data from multiple 

sources (Buttrey and Whitaker 2018). These challenges are the focus of the remainder of 

the chapter. 

A. DATA COLLECTION AND MERGING 

The first task for preparing the data was to consolidate the disparate files to merge 

information on SEAL candidates. This is important because candidates may apply multiple 

times; and, while their basic demographic and educational history information does not 

change from one attempt to the next, other information such as PST score are subject to 

change. One challenge to this task is that the data each command maintains changes over 

time to fit the needs of the decision-makers for that year. So, the SEAL OCM collects PST 
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scores for each event some years, but only the cumulative score for others. In addition, the 

separate commands may collect the same data on candidates, but the values that each 

command records do not always agree. 

B. DATA CLEANING 

Once the data is consolidated so that each row represents an individual candidate’s 

unique attempt, the task shifts to dropping those columns with too many missing values or 

combining similar columns to form a composite metric. Working closely with the SOAS 

leadership to understand the individual elements, we were able to combine the data from 

similar events that were held during different years. Figure 1 shows an example of how this 

is implemented with multiple events, each aimed at assessing a candidate’s ability to think 

critically. Once the observations are consolidated into the data element 

“CRITICALTHINKING,” they are grouped by cohort and scaled so that this single data 

element provides a common attribute to assess candidates from different cohorts.  

Sometimes the value of the missing data can be deduced from what is available, as 

is the case when one value from the PST scores is missing because that value can be 

calculated as a linear combination of the other five. Given enough data and assuming that 

the contradictions and missingness are randomly distributed, deletion would be preferable 

for those affected observations that cannot be reliably inferred. However, with this data, 

missingness, in particular, affects a large percent of observations, so we used our best 

judgment to delete only the most problematic observations or, in the case of contradiction, 

select one of the values based on the best information available. At the end of the data 

cleaning and merging phase, missingness is still prevalent, with 136 of the 166 total 

attributes missing values for more than 50 percent of the observations. 
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Figure 1. Consolidating Like Data Elements to Form a New Predictor 

C. MISSINGNESS 

Before discussing methods for resolving missingness in data, it is important to 

understand the reasons for missingness. In multilevel data, such as NSW’s candidate data, 

attribute missingness may be a feature of level dependence. For example, in the candidate 

data, observations are present for variables collected during SOAS only if that candidate 

was selected for SOAS on that specific attempt. It would be nonsensical to fill SOAS 

variables for those candidates/attempt observations that did not make it to SOAS, so we will 

ignore the type of missingness that is entirely a feature of level-based attrition for the 

remainder of the thesis and focus on missingness within observations inherent to each level. 

Missingness Completely At Random (MCAR), Missing At Random (MAR) and 

Missing Not At Random (MNAR) are essential ideas to understanding the nature of 

missingness in data and the methods available to handle it. MCAR implies that missingness 

is entirely unrelated to the data itself so that the occurrence of a missing value in a variable 

or group of variables is independent across observations and randomly distributed (Van 

Buuren 2018). This is rare in that it requires unique circumstances to produce such 

missingness at random that is not influenced by time or observation groupings. 
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MAR is less restrictive than MCAR in that the grouping of observations influences 

the probability of missingness by some attribute or the time at which the operations took 

place so that within each group, the probability of missingness is the same. 

Finally, MNAR describes missingness that is influenced by some factor that is 

unknown and cannot be accounted for; for instance, if the data consists of measurements 

from a scale that malfunctions with greater frequency over time, but the time and order of 

observations were lost, then the specific feature that influences missingness is unknown to 

the researcher but still influential (Van Buuren 2018). In this data, MCAR, MAR and 

MNAR may all be applicable. In 2018 some variables were not recorded, implying MAR, 

while other values are missing without explanation. This presents a challenge for analysis, 

but there are techniques for overcoming the issue. For a more technical explanation of 

MCAR, MAR and MNAR, refer to Van Buuren (2018). 

D. IMPUTATION 

Imputation is a process of replacing missing values with estimates. Commonly used 

methods for imputation include using either the mean, median or mode of the complete 

cases of a variable to replace all missing values with the same estimate. This method of 

imputation is easy to implement. In addition, using the mean for imputation does not change 

the sample mean, which has some strengths for statistical practice, but it does have some 

important drawbacks, including reducing variance and obscuring relationships among 

variables (Van Buuren 2018). 

Regardless of which of these basic imputation methods are used, the result is an 

overly exact estimation that does not accurately quantify uncertainty surrounding the 

estimate or correlations among variables that may be important to the value being 

approximated (Azur et al. 2011). Regression techniques take into account correlations but 

are difficult to implement when missingness is distributed throughout the data and not 

limited to one variable. Additionally, these techniques do not account for the ambiguity 

surrounding missingness. Finally, most basic methods for imputation are valid only under 

the assumption of MCAR, which often do not apply. 
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1. When and Why 

Imputation is an attractive idea for data analysis as it offers an option for saving 

observations from being discarded due to missingness. This is especially true on smaller 

datasets as many modeling techniques only work on complete cases and those may be too 

few to draw both a training and test set from. Separating training and test sets is essential 

for providing a true means for evaluating a model’s performance by training it on a 

randomly sampled subset of about 70 to 80 percent of the original data and then testing its 

performance on the held-out data. If an honest assessment of a modeling technique on data 

with few complete cases is required, then imputation may be necessary to provide a more 

substantial set of complete cases. 

However, imputation is not a replacement for good data collection and management. 

There is a cost to imputation in the form of a loss of degrees of freedom and a reduction of 

the model’s accuracy. In our research, we evaluated the performance of models with 

imputed values for variables that had as much as 49 percent missingness but found that 

model accuracy notably deteriorated with more than 20 percent missingness. 

2. MICE  

Missingness is a ubiquitous feature of human observational data (Rubin 1996). 

Therefore, it follows that researchers interested in fields such as medical research, where 

observations may be few, have pioneered methods for dealing with that missingness that go 

beyond mean imputation or deletion. One such method is Multivariate Imputation by 

Chained Equations (MICE), which builds simulated sets of imputed data, perhaps 5, 20 or 

100, that reflect the uncertainty of the estimate (Van Buuren 2018). 

The MICE algorithm begins by imputing the data using a variable-dependent, basic 

imputation method and then trains a model on a randomly sampled training set using user-

selected modeling techniques appropriate for each variable (King et al. 2001). To produce 

multiple sets of imputed values, the algorithm uses random resampling. Figure 2 

demonstrates this process for one missing value, but the same procedure is followed for 

every missing value, in this case using five imputed values for each missing one. 
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Figure 2. MICE on One Value Using Five Imputations 

Researchers can then explore features of this simulated data, such as variance, to 

determine the fit of the imputed values, higher variance indicating a lack of specificity in 

the model and reason to doubt the imputed values. In addition, the simulated data should 

approximately follow the distribution of the present values. Figure 3 depicts the density 

plots of simulated data compared to the observations using ten imputations. The simulated 

data is plotted in red, while the observed data is plotted in blue. That the simulated data 

holds close to the observed data indicates a good fit in line with what is expected for MAR 

values. If the variance is low and the imputed values appear plausible, then the models which 

produced those values can be “pooled” to produce a single estimate to replace the missing 

value. 
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Figure 3. Density Plot of Ten Sets of Simulated Data (Red) and 

True Data (Blue) 

One strength of MICE is that it can be utilized under the assumption of either 

MCAR, MAR or MNAR (Van Buuren 2018). This makes MICE the ideal technique for this 

data, as the modeling techniques for each variable can be adjusted to accommodate for 

missingness assumptions. 

E. DATASETS 

Given the techniques discussed, three options are available: to impute missing 

values, delete observations with missing values, or do neither and analyze data with some 

portion of missingness. We consider each of these options: Complete Cases (COMPC), Data 

Imputed with MICE (DIM), and Unimputed Data with Missingness (UDWM). This enables 

us to explore the benefits and limitations, as well as compare the outputs of models trained 

from each. All three datasets have the same 22 variables, defined in Table 1 and expanded 

on in Appendix A, that were chosen, in part, because they were the only variables of the 

original 166 with less than 50 percent missingness. 
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Table 1. List and Description of Variables 

 

Each dataset can also be broken down by those variables collected from the 

candidates’ applications and those collected during SOAS. This mostly impacts COMPC 

because there are fewer complete cases when considering all 22 variables than with the 12 

application variables. Figure 4 depicts the dimensions of the datasets. COMPC is the 

smallest of the three, and DIM is approximately the same length as UDWM except for two 

observations that were removed because they could not be reliably imputed. 

Variable Description 
ACCESSION Source the candidate came from 
COLLEGE.FACT Type of college the candidate attended  
PST.SCORE PST score submitted by the candidate 
PST.PULLUPS Number of pullups performed 
PST.SITUPS Number of sit-ups performed 
PST.PUSHUPS Number of pushups performed 
PST.RUN Number of seconds to run 1.5 miles 
PST.SWIM Number of seconds to swim 500 yards 
GPA College grade point average 
CADRE.SCORE Overall score given by SOAS cadre 
COMMUNICATION Ability to communicate clearly and concisely 
PHYSICALFORM Average form while conducting exercises 
CRITICALTHINK Average performance during critical thinking drills 
TEAMABILITY Willingness and ability to work as part of a team 
WATERCOMP Performance and perceived comfort level in the water 
SOAS.SELECT Selected for SOAS or not 
BUDS.SELECT Selected for BUD/S or not 
BROWNSHIRT Completed Hell Week or not 
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Figure 4. Dataset Dimensions 

Across the datasets, the models should generally agree, but some dissimilarity is 

expected based on the unique artifacts of each dataset. For instance, the COMPC data does 

not include any observations for 2018 because no SOAS data was collected in that year. 

While the SOAS data for that year is not used in the estimation of any model that is within 

the scope of our analysis, the models trained on DIM and UDWM data are influenced by 

application data on outcomes for that same year. Comparing the models builds our trust in 

their outputs and gives a sense of the cost that missingness imposes on our analysis. 

F. SCALING 

Because SOAS is conducted in four blocks each summer, the data collected during 

these blocks should be scaled so that values are adjusted to account for the influences unique 

to those blocks. For example, tides and currents may impact the swim times of candidates 

during a swimming evolution. Therefore, it would not be reasonable to compare candidates 

from different blocks that are affected by dissimilar circumstances. Instead, the candidates 

are grouped by their respective cohorts and the values are scaled by subtracting the cohort 

mean and dividing by the standard deviation (RDocumentation 2021). After this 

transformation, candidates from different cohorts can be assessed on a common scale. 

Unfortunately, a value for which block candidates attended is not reliably present in the 

data. This, along with significant missingness, influenced our decision to remove variables 

such as the 1.5 nautical mile swim from consideration. 



18 

Other variables that need to be scaled by cohort are the subjective scores assigned 

by cadre. The grading rubric for candidates remains the same for all SOAS blocks, but 

different cadres oversee the various blocks and their scoring styles will influence the data 

if not accounted for. At first glance, it appears that these variables, like 1.5 nautical mile 

swim performance, must be rejected, but unlike the latter, the subjective variables can be 

scaled by year. While not all of the cadre members will be the same for each block of 

SOAS, the Officer in Charge (OIC) and Senior Enlisted Advisor (SEA) do not change 

within the year and therefore provide the continuity needed to scale the subjective 

variables such as CADRE.SCORE. 

G. PREDICTIVE MODELING USING DECISION TREES 

We used tree-based modeling methods, commonly referred to as decision tree 

methods, due to the interpretability of the models produced with those methods and the 

advantages that some methods offer to deal with missingness (James et al. 2017, p. 303). 

To demonstrate how these methods work, we apply them to an example classification 

problem. Consider the task of classifying items as either class A or class B from a set of 

observations with three variables x, y and z. For both A and B, the variable x is randomly 

sampled from the normal distribution centered at 50 with a standard deviation of 12 for A 

and 10 for B, making x more spread out for A than B, and the variable y is randomly sampled 

from the uniform distribution between 0 and 100 for both. Variable z is defined as 

follows. For class A, z is equal to 1 when x is outside of one standard deviation from the 

mean and z is equal to 0 otherwise. For class B, z is equal to 1 if x is within one standard 

deviation of the mean and z is equal to 0 otherwise.  

This formulation ensures that the interaction between the x and z variables is the 

primary way to determine class. Class B will also tend to have x values closer to 50 than A, 

and the y variable acts as random noise. However, to impose uncertainty into the models, 

we also made z equal to 0 for those observations for which the variable y is a multiple of 

13. This will allow us to explain the concept of impurity. 10,000 observations of each class 

were generated for a total of 20,000. From this, training and test sets of 80 percent and 20 

percent were drawn at random. 
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Classification and Regression Trees (CART) is a commonly used method for using 

data to estimate a decision tree. Because this thesis aims to classify candidates by success 

or failure, we focus on the classification tree and refer to the method as its generic form, 

CART. Figure 5 shows the CART model for the example problem. The top node in the 

CART model, which contains all of the data, is referred to as the root. The root is classified 

as the most common class present in the node. From the root, the model splits the 

observations into two child nodes based on the criterion stated below the node. In this model, 

the criterion is z equal to 0. Observations for which the criterion is true go to the child node 

6 

on the left, and those for which it is false go to the right. The criterion is chosen to 

maximize the contrast between the two child nodes. The model proceeds recursively in the 

same manner on the unsplit nodes until only terminal nodes (“leaves”) remain, as shown at 

the bottom of Figure 5.  

Node color is determined by the proportion of observations in the node belonging to 

each class. The class determination in this example is binary, with class B as the positive 

case and class A as the negative. For the binary classification, the colors scale from dark 

blue, indicating few or no positive observations, to dark green, indicating most or all positive 

observations, with lighter blues and greens representing a mix of classifications. 
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Figure 5. CART Model Applied to Example Problem 

To determine which variable to split on, CART uses Gini impurity to select a split 

for which the two resulting child nodes have the greatest contrast (James et al. 2017, p. 312). 

Impurity is a measure of how cleanly the classes are separated for that split. The Gini 

impurity is calculated as  

   

where the Gini value is calculated for both child nodes and then combined after weighting 

the values by the proportion of observations from the parent node present in the respective 

child.  
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Figure 6 shows the Gini impurity calculated for the first split of the CART model, 

but the model does this for all possible splits and selects the one with the lowest Gini 

impurity, and therefore the one that will result in two child nodes with the greatest contrast. 

 

 
Figure 6. Calculating Gini Impurity to Decide Split in CART Model 

Because z equal to 0 is the first split, we know that it produces the lowest impurity. 

The model continues to identify the next best split in the same way until a user-specified 

cutoff point, usually either the maximum number of splits or a minimum number of 

observations in the leaves is met (James et al. 2017, p. 308). Once a tree is built using this 

process, it is pruned to reduce overfitting on the training data. In our investigation, we apply 
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pruning so that the models have fewer splits; this strategy favors models with greater 

interpretability and guards against overfitting, but it also limits the depth of interactions that 

the models can detect. 

Another benefit of CART is its handling of missing values. Rather than requiring 

complete cases or imputation to fill missing data, CART uses what are known as surrogate 

splits. For a given node, surrogate splits are obtained by considering a set of splitting rules 

that come closest to mimicking the behavior of the chosen split, using different variables. 

When the model is later used for prediction with an observation for which the chosen split 

cannot be calculated due to a missing value, CART uses instead the best surrogate split that 

can be calculated in its place (Feelders 1999). In cases where there is no similar split based 

on the missingness of the observation, the observation is placed in the child with the greater 

quantity of observations and, therefore, a higher naive probability of being the correct choice 

(Feelders 1999). However, this approach to missingness is not superior to imputation. 

Feelders (1999) shows that surrogate splitting is often outperformed by multiple imputation. 

H. RANDOM FORESTS 

Random Forests (RF) is a decision tree method similar to CART, but instead of 

building one tree, it builds a forest of trees that are dissimilar in their construction based on 

the data and set of variables available to each (James et al. 2017, p. 319–323). If all data and 

variables were available when constructing each tree, the result would be a forest of identical 

trees built using the CART method. Instead, RF randomly samples the data before building 

each tree using a method called bagging and randomly samples the variables at each 

opportunity to split (James et al. 2017, p. 319). This reduces the correlation between trees 

and explores more variable interactions.  

The trees in a RF usually are chosen to be of modest complexity, each using only a 

small, randomly selected subset of the available predictors. The power of a RF is derived 

from producing a large collection of such trees on bootstrapped samples, each of which is 

allowed to “vote” in order to make predictions. Aggregation of a large number of trees in 

this manner produces a predictor that can capture interaction structure with low bias and 

low variance (James et al. 2017, p. 319–320). In addition, because each tree is built using a 
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subset of the data that is selected by randomly sampling with replacement, approximately 

one-third of the data is not selected and is therefore available to provide an honest evaluation 

of each tree’s performance. This is called out-of-bag (OOB) error estimation and is 

calculated by comparing an observation’s true class with the class predicted by the model 

using the set of trees created without that observation. (James et al. 2017, p. 317–320). 

One disadvantage to RF is low interpretability. Attempting to construct a “typical” 

tree from RF would violate the methods used to construct the forest, and discerning patterns 

among the many trees in the model is challenging. Fortunately, Gini impurity offers a 

technique for inferring variable importance. By averaging the decrease in Gini impurity 

achieved after each split for which a given variable is used across all trees in the forest, the 

mean decrease Gini impurity offers a measure of overall variable importance, with a higher 

value suggesting greater importance. The plot on the left of Figure 7 depicts the variable 

importance for the example problem as determined by the mean decrease in Gini impurity. 

Another useful analytic tool offered by RF is the partial dependence plot. This plot 

shows the marginal effect of a variable on classification outcomes (James et al. 2017, p. 

331). For the example problem, the marginal effect of variable x is shown by the partial 

dependence plot on the right of Figure 7. The RF model discovered that the values of x for 

class A tend to be less crowded around the mean (50) than for class B. This effect is depicted 

by the smooth line (blue) that averages the effect, as assessed by the likelihood of an 

observation being of class A, that is plotted in black. 
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Figure 7. Analytical Tools Available for RF Models 

I. MODEL SELECTION 

Assuming that no model is perfect at classifying observations, we need to determine 

which performs the best for our application. A confusion matrix like the two shown in 

Figure 8 offers a method for contrasting the predicted and observed classifications. From 

the confusion matrices, the following measures can be calculated. For the sake of discussion, 

class A is associated with “positive” and class B with “negative.” 

Accuracy: percentage of correctly classified observations 
Sensitivity: percentage of correctly classified As (or positive) 
Specificity: percentage of correctly classified Bs (or negative) 
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Figure 8. Confusion Matrices and Performance Metrics 

For this example, the confusion matrices in Figure 8 show that the CART model 

outperforms the RF model in accuracy, sensitivity and specificity, but this is not always the 

case. When modeling rare occurrences, for instance, the most accurate model may always 

predict a negative result and therefore have poor sensitivity. In addition, the models can be 

adjusted so that specificity or sensitivity are favored by tuning the probability threshold, 

usually chosen to be 0.5 by default, that an observation must meet to be classified as 

positive. If, for example, we care more about correctly classifying As and less about 

incorrectly classifying Bs, we could reduce the probability threshold so that classification 

as A is less restrictive. Receiver Operating Characteristics (ROC) curves such as the ones 

plotted in Figure 9 offer a method to discern model performance that considers these 

limitations of confusion matrices. As shown in Figure 9, the ROC curves are plot using true 

positive rate “sensitivity” and false positive rate (1-specificity). 

Based on the plot shown in Figure 9, the CART model dominates at all points along 

the curve. More generally, Area Under the Curve (AUC) may be calculated as a numerical 

measure to determine which is the dominant model. The AUC for these models is 0.98 and 

0.92, respectively. An AUC of 1 is perfect, and an AUC of 0.5 is the performance that can 

be expected from randomly guessing. Although both AUC values indicate strong 

performance in this example, the CART model dominates RF on both simplicity and 

performance.  
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Figure 9. ROC Curves and AUC values 
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IV. ANALYSIS 

This chapter describes the models used to predict candidate outcomes starting from 

the application phase and terminating at the first phase of BUD/S. The methodology 

discussed in Chapter III is applied to the three datasets that we examine: COMPC, DIM, 

and UDWM. We explore individual model strengths, variable interactions and variable 

importance. Figure 10 gives an overview of the models that we consider. 

 
Figure 10. Overview of the Models Depicting the Data Available to Each and 

the Event Being Predicted 

A. MODEL A (INITIAL MODEL) 

A valuable model to increase the efficiency of recruiting would use initial data to 

predict candidates who are most likely to succeed in the first phase of BUD/S. However, 

this prediction is heavily influenced by deselection events before SOAS and BUD/S. We 

start by ignoring these deselection events and compare CART and RF models trained on 

COMPC and a CART model trained on the UDWM. This comparison is shown at the top 

of Figure 11. Both models show ACCESSION as the most important variable to split on. 
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On COMPC, CART does not include any additional splits, but on UDWM, the model splits 

a second time on PST.SCORE, identifying 810 as a threshold value. That these trees 

generally agree is consistent with the variable importance plot from RF in the lower left of 

Figure 11. 

 
Figure 11. Model A for Predicting Success at the First Phase of BUD/S 

The ROC plot in the lower right of Figure 11 indicates that the RF model trained on 

COMPC is the best performing model. As such, we explore its performance as shown in 

Table 2, which is used to calculate the following performance characteristics: 

Accuracy (percentage of observations correctly classified): 76 percent 
Sensitivity (percentage of accurately predicted failures): 44 percent 
Specificity (percentage of accurately predicted successes): 89 percent 
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Table 2. Performance Characteristics of RF Model A 

 
One weakness of this approach is that the models give little consideration to 

variables other than ACCESSION. To gain a richer understanding of more variables and 

their importance, we can use the information available at each stage to predict an outcome 

at the next. Starting with predicting selection for SOAS based on initial data, then selection 

for BUD/S by including the data collected at SOAS, and finally predicting completion of 

the first phase of BUD/S. Understanding what influences success at each stage can help 

explain the evolution of the candidates that proceed through the stages and how the cohort’s 

characteristics affect the models. For instance, if only candidates from one accession source 

are selected for SOAS, then ACCESSION will cease to be a valuable predictor at later 

stages. 

B. MODEL B (SELECTION TO SOAS) 

The SEAL OCM initial selection of candidates to attend SOAS can also be 

considered the first deselection of applicants. This means that models for predicting 

selection to SOAS are the last models we will consider trained and tested on the entire set 

of observed candidates. The reason for exploring these models is not to predict who will be 

selected but to update our understanding of the candidates considered at the next stage. The 

ROC plot in Figure 12 shows that CART and RF models trained on COMPC outperformed 

the CART model trained on UDWM. In particular, the RF model appears to be the dominant 

model at most points along the curve. The tree plot of the CART model in Figure 11 shows 

that candidates from accession sources other than INTR_SRVC, LATERAL and OCS AD 

account for 81 percent of the observations and have a 92 percent probability of being 

selected for SOAS. 

The tree plot also shows some counterintuitive behavior regarding PST.SITUPS. 

According to the model, doing more than 110 situps in the PST is negatively associated with 
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selection to SOAS. The CART model trained on UDWM also detected this phenomenon. 

The partial dependence plot in the lower right of Figure 11 shows the log-likelihood of being 

selected for SOAS given the number of PST.SITUPS reported. According to the plot, the 

optimal number is approximately 90, with a steep decline after 100. There is no clear 

explanation for this phenomenon. It may be an artifact of the data arising as a feature from 

the relatively modest sample size or a correlation between PST.SITUPS and a variable not 

available to the research team. 

Outside of PST.SITUPS, all other variable choices for splits make intuitive sense, 

with the primary split at ACCESSION indicating that as the most important predictor for 

the CART model. The variable importance plot in the lower right of Figure 12 shows that 

ACCESSION is also the most important variable as assessed by the RF model. 



31 

 
Figure 12. Models for Predicting Candidate Selection to SOAS 

In addition to being the best model as indicated by the ROC plot, the RF model is 

also the top-performing model in regard to its performance characteristics outlined in Table 

3, and summarized as follows: 

Accuracy: 85 percent 
Sensitivity: 95 percent 
Specificity: 52 percent 
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Table 3. Performance Characteristics the RF Model B Predicting Candidate 
Selection to SOAS  

 
 

C. MODEL C (SELECTION TO BUD/S) 

Next, we examine selection to BUD/S, given that a candidate was selected for 

SOAS. For this analysis, we no longer consider those candidates who were not selected for 

SOAS, and we gain the set of variables collected on candidates who attended SOAS. The 

ROC plot on the top left of Figure 13 shows RF on COMPC as the dominant model with 

TEAMABILITY, CADRE.SCORE and PHYSICALFORM providing the most significant 

mean decrease to the Gini score. The bottom of Figure 13 shows the partial dependence 

plots for each of these three top predictors, each shown as positively correlated to candidate 

selection to BUD/S. Of note, none of the initial variables were top predictors for candidate 

selection to BUD/S. 
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Figure 13. Models for Predicting Candidate Selection to BUD/S 

As the top-performing model, the performance characteristics of the RF model 

trained on COMPC are outlined in Table 4 and summarized as follows: 

 
Accuracy: 82 percent 
Sensitivity: 79 percent 
Specificity: 84 percent 

Table 4. Performance Characteristics the RF Model C Predicting Candidate 
Selection to BUD/S 
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D. MODEL D (PREDICTING COMPLETION OF THE FIRST PHASE OF 
BUD/S) 

Finally, we predict success in the first phase of BUD/S. At this stage, there are only 

152 observations in COMPC, resulting in 121 observations for an 80 percent training set. 

Models trained on such a small dataset can focus on artifacts unique to the sample and not 

representative of the population, inducing a bias. In addition, the 31 observations in the 20 

percent test set cannot provide a realistic judgment of model performance. To reduce these 

effects, we utilized all 152 observations available in COMPC for training the models. We 

also pruned the CART Model so that no leaf had fewer than 5 percent of the observations 

(8 or more). This limits the depth of the model and may eliminate some valuable splits, but 

it also allows for a more general and transferable model.  

With all 152 observations in COMPC being used to train the models, OOB error is 

used to evaluate the models’ performance. This requires using bagging, discussed in Chapter 

III subsection I, to generate an OOB sample for each of the 100 trees produced with CART. 

The trees are restricted to the variables selected by the original CART Model D shown in 

Figure 14, and the same parameters set for that model. These conditions preserve the 100 

bagged trees as honest representations of the original but allow for variance of splits and 

depth. As discussed in Chapter III subsection I, OOB error estimation is a key feature of 

RF; generating it does not require additional formulation. Upon comparing the OOB error 

estimates, the RF model emerges as dominant by providing greater accuracy and, in 

particular, greater specificity at 32 percent compared to 21 percent achieved by the CART 

model. The results of the RF model are shown in Table 5 and produce the following 

performance characteristics: 

 
Accuracy: 75 percent 
Sensitivity: 86 percent 
Specificity: 32 percent 
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Table 5. Performance Characteristics the RF Model D Using OOB Samples 

 
 

While the performance of this model may appear to be worse than that of Model A, 

the comparison is not justified. That first model benefits from profiling candidates who did 

not make it to BUD/S based on the initial data and relying on the approximate 78 percent 

completion rate in the first phase for officers who make it to BUD/S. Model D, in contrast, 

looks only at those who made it to BUD/S and identified characteristics indicative of those 

who complete the first phase. The tree diagram on the left side of Figure 14 illustrates the 

splits chosen by the CART model, while the graphic on the right shows the variable 

importance as selected by a RF model trained on the same data. 

 
Figure 14. Models for Predicting Candidate Success in the 

First Phase of BUD/S 
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E. EMPIRICAL ANALYSIS  

For illustration, we now examine the progress of five candidates through the stages 

and observe how the models assess them. These five candidates each offer an explanatory 

combination of outcome and probability of success in the first phase of BUD/S, as assessed 

by RF Model A. All five of the candidates were selected for SOAS, but not for BUD/S.  

The cell colors used for tables in this section are meant to match the nodes of the 

CART models and indicate how a candidate’s attributes affect the CART predictions. The 

color grey signifies that the CART model does not consider an attribute for that candidate. 

The colors give no indication as to the workings of the RF models, but ineffable structures 

are a feature of RF, so only the prediction probabilities are given. 

Table 6 represents the assessment of the candidates with Model A. Notice the high 

predicted probability of success for candidate 34, who failed at BUD/S, and the low 

predicted probability for candidate 265, who was successful. While these models are not 

perfect, they are more accurate than suggested by these examples, which were chosen to 

demonstrate features of the models, not to stand as archetypal examples. 

Table 6. Model A Empirical Analysis  

  Probability of Success  
Candidate 

ID 
ACCESSION CART RF Observed Outcome 

1 USNA 0.746 0.976 Success 
34 USNA 0.746 0.846 Failure (Failed at BUD/S) 
86 USNA 0.746 0.740 Failure (Not Selected for BUD/S) 
265 OCS 0.270 0.092 Success 
315 OCS 0.270 0.026 Failure (Failed at BUD/S) 

 
As all five candidates were selected for SOAS, Model B is not as informative but 

resolves as depicted in Table 7. As the table indicates, these five candidates came from 

United States Naval Academy (USNA) and Officer Candidate School (OCS) and therefore 

are selected by the CART model to pass into the leaf with the highest probability of success 

after one split. Had any of the candidates come from an alternate accession source, they 

would pass through more splits in the CART model shown in Chapter IV subsection B. 
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Table 7. Model B Empirical Analysis  

 

CART Model C is shown in Chapter IV subsection C, but the model’s many splits 

are difficult to show in the table format. Table 8 shows the first two splits for the candidates. 

Assigning probabilities greater than 0.50 as predicted for selection, RF Model C accurately 

predicted the four candidates who were chosen for BUD/S. Meanwhile, CART Model C 

fails to predict selection for candidates 34 and 265. The candidates’ low TEAMABILITY 

scores place them in the leaf with the lowest probability of selection without regard for other 

attributes. This demonstrates one weakness of CART models that RF resolves. 

Table 8. Model C Empirical Analysis  

  Probability of Success  
Candidate ID ACCESSION CART RF Observed Outcome 

1 USNA 0.918 0.999 Selected 
34 USNA 0.918 0.998 Selected 
86 USNA 0.918 0.966 Selected 
265 OCS 0.918 0.924 Selected 
315 OCS 0.918 0.958 Selected 

 

Finally, Table 9 shows the three attributes considered by CART and the continued 

power of RF this time for Model D. Neither the CART nor the RF models were given 

selection to BUD/S as a predictor variable, so both consider candidate 86 as if he is eligible 

for success. Despite having a less competitive GPA, candidate 86 is assessed as having a 

high probability of success by both models especially compared to candidate 315. In 

addition, candidate 86’s GPA is in the 15 percent percentile of candidates selected for BUD/

S but appears to be competitive with, and in some cases, a stronger option than other 

candidates in that percentile regarding all attributes. This is one example that demonstrates 

   Probability of 
Success 

 

Candidate 
ID 

TEAMABILITY PHYSICALFORM CART RF Observed 
Outcome 

1 0.157 1.401 0.873 0.928 Selected 
34 -0.959 0.674 0.170 0.842 Selected 
86 0.118 0.831 0.873 0.352 Not Selected 

265 -0.394 -0.693 0.170 0.652 Selected 
315 -0.023 -1.172 0.727 0.758 Selected 
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that information is likely missing from this data. That is not a criticism of this specific data, 

however. Even if the data were complete, there are aspects to human beings that are 

notoriously difficult to quantify. Moreover, the ultimate goal for the SEAL OCM is to select 

candidates who will make good SEALs, not just good BUD/S students. Therefore, the 

prudent assumption would be that the decision-makers are better informed than these 

models and generally make decisions with higher accuracy with respect to that objective. 

Table 9. Model D Empirical Analysis  

 

 

    Probability of 
Success 

 

Candidate 
ID 

CADRE.SCO
RE 

GP
A 

TEAMABILI
TY 

CART RF Observed 
Outcome 

1 1.277 3.88 0.157 0.980 0.992 Success 
34 -0.028 3.20 -0.956 0.770 0.306 Failure 
86 1.217 2.71 0.118 0.980 0.898 NA (Not Selected) 

265 -0.476 3.42 -0.394 0.770 0.884 Success 
315 -0.587 3.00 -0.023 0.313 0.196 Failure 
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V. CONCLUSION 

This thesis aims to provide quantitative analysis of candidate training and selection 

data to inform officer selection criteria to SOAS and BUD/S, provide NSW with an 

appraisal as to the value of that data, and help shape the focus of data collection on 

candidates moving forward. We train CART and RF models to predict candidate success at 

making it to each stage of training from selection to SOAS, selection of BUD/S and finally 

completing the first phase of BUD/S. 

We find that while the initial data collected from candidate applications can be used 

to reliably predict candidate selection to SOAS, those variables are less predictive of 

candidate selection to BUD/S and success at the first phase. Instead, the data elements 

collected at SOAS, particularly the subjective values assigned by the SOAS cadre, are the 

most important variables for predicting candidate selection to BUD/S and success in the 

first phase. This suggests that the methods currently employed to select candidates for 

SOAS and BUD/S are performing well at utilizing the data available at each stage, and there 

is little information remaining to inform later stages. If variables collected in earlier stages 

were predictive of success in later stages, that would suggest a suboptimal selection 

paradigm that does not exploit the information available. 

Additionally, we explore techniques, such as MICE, for imputing values for missing 

data elements. In all cases, the models trained on complete data outperform those trained 

using the imputed data but generally agree on feature importance. This agreement builds 

our confidence in the model structure, but the dominance of models trained on complete 

cases highlights the importance of sound data collection and management practices. 

The importance of the data collected at SOAS in predicting candidate selection to 

and success at BUD/S emphasizes the value of the SOAS program. Throughout the thesis 

process, we have worked with the SOAS cadre to inform data collection at SOAS. Based 

on the data features, including a high rate of missingness, we suggested a more flexible data 

collection plan that allows the SOAS cadre to modify the training plan without generating 
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new data elements or leaving values blank. The new data collection plan was instituted in 

time for the 2021 SOAS blocks. 

Data collected under the new collection paradigm will vary from the data we 

analyze. This new data offers an area for future study. It would be interesting to compare 

models trained on the new data with the ones from this thesis. In addition, while officer and 

enlisted candidates differ in many ways, there is perhaps more commonality than difference 

between the two. For this reason, the features of importance identified in this thesis should 

be explored for applicability in assessing enlisted candidates. 



41 

APPENDIX A. DESCRIPTION OF VARIABLES 

 
  

Variable Description Data Type Factor Levels or Numeric 
Range 

ACCESSION Source the candidate came from Categorical 

INTERSERVICE ACADEMY: 
Commissioning in the Navy from 
U.S. Military Academy West Point, 
U.S. Air Force Academy or other 
service academy 

INTR_SRVC: Transferring from 
Army, Air Force, Marine Corps or 
Coast Guard 

LATERAL: Transfer from other 
community in Navy 

NROTC: Commissioning from a 
college NROTC Program 

OCS: Commissioning from OCS 
OCS AD: Prior enlisted service 

commissioning through OCS 
USNA: Commissioning from U.S. 

Naval Academy 

COLLEGE.FACT Type of college the candidate attended Categorical USNA / Other Military Schools / San 
Diego Schools / Other 

PST.SCORE PST score submitted by the candidate Numeric Min: 450, Max: 1127 
PST.PULLUPS Number of pullups performed Numeric Min: 10, Max: 40 
PST.SITUPS Number of sit-ups performed Numeric Min: 53, Max: 132 
PST.PUSHUPS Number of pushups performed Numeric Min: 50, Max: 146 
PST.RUN Number of seconds to run 1.5 miles Numeric Min: 424, Max: 654 (seconds) 
PST.SWIM Number of seconds to swim 500 yards Numeric Min: 345, Max: 711 (seconds) 
GPA College grade point average Numeric Min: 2.0, Max: 4.0 (4.0 scale) 
CADRE.SCORE Overall score given by SOAS cadre Numeric Min: -2.822, Max: 2.488 
COMMUNICATION Ability to communicate clearly and concisely Numeric Min: -3.741, Max: 2.779 
PHYSICALFORM Average form while conducting exercises Numeric Min: -2.634, Max: 3.872 

CRITICALTHINK Average performance during critical thinking 
drills Numeric Min: -4.081, Max: 2.746 

TEAMABILITY Willingness and ability to work as part of a 
team Numeric Min: -4.551, Max: 2.218 

WATERCOMP Performance and perceived comfort level in the 
water Numeric Min: -2.984, Max: 2.270 

SOAS.SELECT Selected for SOAS or not Binary {0,1} 
BUDS.SELECT Selected for BUD/S or not Binary {0,1} 
BROWNSHIRT Completed Hell Week or not Binary {0,1} 
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APPENDIX B. PST SCORING  

Table 10. PST Scoring Rubric 

Exercise Time Rest Minimum 
Standard 

Calculation 

Swim 500 yards 
(breast or sidestroke) 

Unlimited 10:00 minutes 12:30 + Total seconds 

Push-up 2:00 minutes 2:00 minutes 50 - Number 
Completed 

Curl-up 2:00 minutes 2:00 minutes 50 - Number 
Completed 

Pull-up 2:00 minutes 2:00 minutes 10 - 6 x Number 
Completed 

Run 1.5 miles Unlimited Event over 10:30 + Total seconds 
Adapted from SEAL SWCC (2021) 

   

 

 
Figure 15. Equation for Calculating PST Score 
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