

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

AUTONOMOUS OBSTACLE AVOIDANCE AND
CONTROL USING VOXEL SEGMENTATION OF 3D

LIDAR DATA

by

Justin T. Bracci

September 2021

Thesis Advisor: Xiaoping Yun
Co-Advisor: James Calusdian

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2021 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
AUTONOMOUS OBSTACLE AVOIDANCE AND CONTROL USING VOXEL
SEGMENTATION OF 3D LIDAR DATA

 5. FUNDING NUMBERS

 6. AUTHOR(S) Justin T. Bracci

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
Naval Information Warfare Center Pacific, San Diego, CA 92152

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 The purpose of this work was to determine if a single 3D lidar sensor could provide enough data to
conduct obstacle detection and avoidance for a small ground-based autonomous vehicle in an indoor
environment. This work was based on previous Naval Postgraduate School work with simultaneous
localization and mapping using a 2D lidar sensor and a 3D time of flight camera. A voxel-based point cloud
filtering method was used to interpret data and classify objects as large, small, or negative. The data was
then used as an input to a control algorithm using a potential field control model to navigate around the
identified obstacles. The classification and control algorithm was proven successful through four separate
experiments, and a definition for a small object was developed. Areas for future study were identified to
include the development of a localization method using a single 3D lidar sensor, the implementation of the
obstacle avoidance algorithm on an autonomous platform with six degrees of freedom, and the development
of a path planning algorithm based on an initial point cloud.

 14. SUBJECT TERMS
light detection and ranging, lidar, 3D lidar, simultaneous localization and mapping, SLAM,
voxel, point cloud, autonomous navigation, segmentation

 15. NUMBER OF
PAGES
 121
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

AUTONOMOUS OBSTACLE AVOIDANCE AND CONTROL USING VOXEL
SEGMENTATION OF 3D LIDAR DATA

Justin T. Bracci
Captain, United States Marine Corps

BSME, California Polytechnic State University San Luis Obispo, 2014

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2021

Approved by: Xiaoping Yun
Advisor

James Calusdian
Co-Advisor

Douglas J. Fouts
Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 The purpose of this work was to determine if a single 3D lidar sensor could

provide enough data to conduct obstacle detection and avoidance for a small

ground-based autonomous vehicle in an indoor environment. This work was based on

previous Naval Postgraduate School work with simultaneous localization and mapping

using a 2D lidar sensor and a 3D time of flight camera. A voxel-based point cloud

filtering method was used to interpret data and classify objects as large, small, or

negative. The data was then used as an input to a control algorithm using a potential field

control model to navigate around the identified obstacles. The classification and control

algorithm was proven successful through four separate experiments, and a definition for a

small object was developed. Areas for future study were identified to include the

development of a localization method using a single 3D lidar sensor, the implementation

of the obstacle avoidance algorithm on an autonomous platform with six degrees of

freedom, and the development of a path planning algorithm based on an initial point

cloud.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. PREVIOUS WORK ...2
C. PURPOSE AND GOAL ..3

II. HARDWARE AND SOFTWARE ..5
A. HARDWARE ...5

1. Pioneer 3-DX Mobile Robot ..5
2. Samsung R580 Laptop ...6
3. Microsoft Surface Pro 6...7
4. DC 12V to 24V Step Up Converter ..7
5. Ouster OS1-16 Gen 1 Mid-Range High-Resolution

Imaging Lidar...7
B. SOFTWARE ...15

1. MATLAB ..15
2. The Robot Operating System (ROS) ..15

III. SMALL OBJECT DETECTION AND IDENTIFICATION17
A. DETECTION AND IDENTIFICATION ...17

1. Detection ...18
2. Identification ..18

B. SMALL OBJECT DEFINED ...19
C. SENSOR CHARACTERISTICS WHEN MOUNTED ON THE

ROBOT ...22
D. VERIFICATION OF THEORETICAL RESULTS25

1. Test Distance: 0.8 meters ...27
2. Test Distance: 1.5 meters ...28
3. Test Distance: 3.0 meters ...30

IV. NEGATIVE HEIGHT OBSTACLE DETECTION ...33
A. PREVIOUS WORK ...33
B. CONCEPT OF DETECTION ..33
C. PROCESS ...33
D. NEGATIVE OBSTACLE DETECTION ALGORITHM36
E. EXPERIMENTAL SETUP AND RESULTS ..37

V. SMALL OBJECT IDENTIFICATION ...41

viii

A. POINT CLOUD FILTERING AND VOXELIZATION41
B. SMALL OBJECT CLASSIFICATION ...47
C. FIELD OF VIEW ...49
D. ROBOT CONTROL ALGORITHM ...50

VI. RESULTS ...53
A. LARGE OBSTACLE IDENTIFICATION AND AVOIDANCE53
B. SMALL OBSTACLE IDENTIFICATION AND AVOIDANCE55
C. COMBINED OBSTACLE IDENTIFICATION AND

AVOIDANCE ...57
D. TABLE OBSTACLE IDENTIFICATION AND AVOIDANCE58

VII. CONCLUSION ..61
A. EVALUATION OF RESEARCH OBJECTIVES61
B. LIMITATIONS ..61

1. Negative Obstacle Testing ...61
2. Obstacle Memory ...61
3. Computing Power ..62
4. Algorithm Implementation ...62
5. Sensor Resolution ...62

C. RECOMMENDATIONS FOR FUTURE WORK63
1. Implementation on a Small Unmanned Aerial Vehicle63
2. Simultaneous Localization and Mapping63
3. Obstacle Classification Based on Distance63
4. Implementation of Obstacle Memory ..64
5. Route Planning ...64

APPENDIX A. MATLAB SCRIPT ..65
A. ROBOT_MASTER_CONTROL.M ...65
B. NEGATIVE_OBSTACLE_TH.M ..69
C. OS1_FOV_4.M ...70
D. NEGATIVE_OBSTACLE_DETECTION.M ..71
E. NEGATIVE_OBSTACLE_ID.M ...73
F. OBSTACLE_CLASS.M ..74
G. POTENTIALFIELD_2.M ...76
H. ROBOT_TO_WORLD.M ...80
I. SENSOR_TO_ROBOT.M...81
J. ROBOT_PATH_PLOTTING.M ..82
K. OBST_MEMORY_MANAGER.M ..83
L. P3_CONNECTOR_PAYNE.M ..85

ix

APPENDIX B. P3-DX MATLAB CODES ..89
A. P3_GETBUMPERSCLEAR.M ..89
B. P3_GETXYHEADING.M ...89
C. P3_SETTRANSVEL.M ...90
D. P3_SETROTVEL.M ..91
E. P3_DISCONNECTOR.M ..91

LIST OF REFERENCES ..93

INITIAL DISTRIBUTION LIST ...99

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. Pioneer 3-DX ...5

Figure 2. P3-DX Robot with Lidar Sensor and R580 Control Computer6

Figure 3. Ouster OS1-16 ...8

Figure 4. Signal Strength and Range. Source: [20]. ..9

Figure 5. Range of Lambertian Reflectance. Source: [20].10

Figure 6. Expected Lidar Targets. Source: [20]. ...10

Figure 7. Accuracy and Precision. Source: [20]. ...11

Figure 8. Sensor Beam Orientation ...13

Figure 9. Range Resolution ...14

Figure 10. OS1-16 Fixed Resolution Depth Image and Corresponding Point
Cloud ..14

Figure 11. Panoramic Photo ..15

Figure 12. Resolution and Detection. Source: [31]. ..17

Figure 13. Indication of Object at 0.8 m Distance Picture and Point Cloud18

Figure 14. Identification of an Object ...19

Figure 15. Beam Orientation with Sensor on Robot ...23

Figure 16. Beam Height Representation ...24

Figure 17. Small Object Test Setup at 0.8 m, 1.5 m, and 3.0 m..................................25

Figure 18. Point Cloud of Target Box at 0.8 m ...26

Figure 19. Test Points ..27

Figure 20. PDFs at Test Distance of 0.8 m ...28

Figure 21. PDFs at Test Distance of 1.5 m ...29

Figure 22. Point Cloud of Target Box at 1.5 m ...29

xii

Figure 23. PDFs at Test Distance of 3.0 m ...30

Figure 24. Beam 16 Threshold at Ground Plane ...34

Figure 25. Robot Initialization Parameters..35

Figure 26. Detection of a Negative Obstacle ..35

Figure 27. Example Detection of a Hole ...37

Figure 28. Negative Obstacle Detection Experimental Setup37

Figure 29. Binary Representation of Experimental Results ..38

Figure 30. 3D Representation of Negative Obstacles ...39

Figure 31. Point Cloud Filtering and Voxelization Sample Environment42

Figure 32. Raw OS1-16 Lidar Point Cloud Data ..42

Figure 33. Point Cloud after Ground Plane Segmentation ..44

Figure 34. Output of MATLAB pcdownsample Function ..45

Figure 35. Result of Point Cloud Filtering and Voxelization......................................46

Figure 36. Voxelization Process Example ..46

Figure 37. Table Leg Point Cloud Example ..48

Figure 38. Concept of Small and Large Point Classification48

Figure 39. Voxelized and Classified Point Cloud Comparisons49

Figure 40. FOV of Robot Point Cloud and Voxelized Point Cloud50

Figure 41. Block Diagram of the Control Algorithm ..51

Figure 42. Experiment 1: Large Obstacle Detection and Avoidance54

Figure 43. Robot Navigation Path for Experiment 1...55

Figure 44. Experiment 2: Small Obstacle Detection and Avoidance56

Figure 45. Robot Navigation Path for Experiment 2...56

Figure 46. Experiment 3: Combined Obstacle Detection and Avoidance57

Figure 47. Robot Navigation Path for Experiment 3...58

xiii

Figure 48. Experiment 4: Table Obstacle Detection and Avoidance59

Figure 49. Robot Navigation Path for Experiment 4...59

Figure 50. Unmodified Point Cloud of Experiment 4 ...60

Figure 51. Robot Field of View for Experiment 4 ..60

Figure 52. Comparison Between 16 Channel (Left) and 32 Channel (Right)
Lidar Sensor ...63

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF TABLES

Table 1. OS1-16 Characteristics. Adapted from [19]. ...8

Table 2. Beam Angle ...12

Table 3. Sensor Parameters for the Calculation of Width and Length Variance21

Table 4. Width and Length Calculations for Beams 15 and 1621

Table 5. Beam Ground Strike Location ...23

Table 6. Beam Vertical Locations..24

Table 7. Results of Minimum Object Dimensions Experiment30

Table 8. Smallest Detectable Object ..32

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

LIST OF ACRONYMS AND ABBREVIATIONS

DoF degree of freedom
FOV field of view
GNSS global navigation satellite systems
INS inertial navigation systems
ISR information, surveillance, and reconnaissance
lidar light detection and ranging
PDF probability density function
ROI region of interest
ROS robot operating system
SLAM simultaneous localization and mapping
S&T science and technology
SUAV small unmanned aerial vehicle
ToF time of flight

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

xix

ACKNOWLEDGMENTS

I would like to thank my advisors, Professor Xiaoping Yun and Dr. James

Calusdian, for all the help and support that they offered me throughout the thesis process.

Professor Yun was a constant source of guidance in both technical and practical areas and

ensured my research stayed on track and relevant. Dr. Calusdian was a constant presence

in the lab and a patient sounding board for my ideas and concerns.

xx

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

The automotive industry in recent years has seen a surge in the development of

obstacle avoidance and navigation techniques for autonomous vehicles. Among the

multitude of different sensors used in this endeavor, light detection and ranging sensors

(lidar) have become the pre-eminent tool to provide data about an environment. Recent

technological developments by companies such as Velodyne and Ouster have seen a rise

in the availability of 3D, 360-degree field of view lidar sensors [1], [2]. These sensors

provide a wealth of data that can be used in solving the problem of autonomous navigation

and obstacle avoidance. The viability of using a single 3D lidar sensor to detect different

types of objects is investigated in this thesis. Unlike the automotive industry, the focus of

this research is on small, indoor unmanned vehicles. In this chapter, the motivation behind

this research, past and related work in this field, and ultimately the purpose and goal of this

thesis are presented.

A. MOTIVATION

Current autonomous vehicle control and obstacle avoidance are achieved using a

variety of sensors. The use of multiple sensors operating simultaneously to provide input

data to a single system, also known as sensor fusion [3], requires a physically large

autonomous platform and power source to accommodate all the sensors. This constraint

limits the deployment of autonomous vehicles at the tactical level, specifically in the realm

of autonomous simultaneous localization and mapping (SLAM) in complex indoor

environments [4]. The 2018 United States Marine Corps Science and Technology (S&T)

Strategic Plan identifies joint capabilities area two as the development of battlespace

awareness and calls for a comprehensive information, surveillance, and reconnaissance

(ISR) enterprise to provide intelligence to warfighters at every level [5]. The intelligence

collection capabilities of autonomous vehicles at the tactical level will directly align with

intelligence S&T objectives two and five. Furthermore, S&T Objective four calls for the

development of advanced robotic systems in support of ground maneuver [5].

2

In previous thesis work, Payne identified the need for Marine Corps tactical teams

to have prior knowledge of a building or small, enclosed urban space before entering the

environment and proposed an autonomous SLAM solution [4]. The results from Payne’s

work identified the need for a more robust obstacle avoidance algorithm using emerging

3D lidar technology [4]. Most autonomous vehicle work with 3D lidar sensors has been

done for the automotive industry, therefore a specific analysis of the capability of 3D lidar

sensors to identify obstacles in a confined indoor or urban environment is needed.

B. PREVIOUS WORK

The use of lidar sensors to detect obstacles is a common practice and has been

implemented on numerous different types of platforms. Lidar sensors are classified as

active sensors and are able to return position data of an object relative to the sensor [6]. As

previously stated, this thesis builds on past work at the Naval Postgraduate School (NPS)

in the realm of autonomous navigation and SLAM. The work of Miyakawa [7] explored

the capabilities of an autonomous vehicle to navigate in an outdoor environment using a

potential field model and Global Navigation Satellite Systems/Inertial Navigation Systems

(GNSS/INS) to identify and avoid obstacles. Miyakawa utilized two 2D lidar sensors to

detect large and small obstacles as well as obstacles below an established ground plane

such as stairs, curbs, and holes [7]. Payne, in addition to SLAM, implemented a similar

obstacle avoidance method using a 2D lidar sensor and a 3D Time-of-Flight (ToF) camera

or scanner-less lidar [4].

Outside NPS, other research has been conducted on the use of 3D lidar sensors as

part of a larger sensor fusion suite for autonomous navigation and obstacle avoidance [8]–

[10]. Further research has been conducted on the implementation of 3D lidar sensors on

small unmanned aerial vehicles (SUAV) for obstacle avoidance [11], [12]. Most of this

research involves multiple sensors mounted on large autonomous platforms accomplishing

other tasks in conjunction with obstacle avoidance and navigation such as SLAM.

The research presented in [9] is of particular interest because of the use of voxels

to interpret the environment surrounding the sensor. A commonly encountered obstacle

when working with lidar data sets is the large size of lidar data and consequently the large

3

amount of computing power needed to process the data [4], [13]. If the size of the data sets

can be reduced, then the computing power needs can also be reduced. Simplifying the

interpretation of the environment with the use of voxels has the potential to speed up

computation times to better achieve real time obstacle detection and avoidance at the cost

of accuracy and detail.

The research detailed in [14] looked specifically at the use of 3D lidar sensors to

identify what is defined as a negative obstacle or an obstacle that is “below the ground,

with a negative height” [14]. Some examples of negative obstacles include holes, large

surface cracks, and edges of stairs and floor levels. The conclusion drawn from this

research and the afore mentioned research is that any obstacle detection sensor would need

to identify three types of obstacles: large, small, and negative height obstacles.

C. PURPOSE AND GOAL

The purpose of this thesis is to determine if a single 3D lidar sensor can provide

sufficient data to conduct obstacle detection and avoidance for a small ground-based

autonomous vehicle in an indoor environment. The size and scope of obstacles that can be

detected by the sensor will be determined. A voxel-based 3D point cloud manipulation

algorithm will be developed to provide real-time obstacle detection and avoidance. The

greater purpose of the obstacle detection and avoidance algorithm is to facilitate the

navigation of an autonomous vehicle in an indoor environment to conduct SLAM.

The ultimate goal of this thesis is to produce a working algorithm that, coupled with

a single 3D lidar sensor, has the capability to ensure that a ground-based autonomous robot

is capable of obstacle detection and avoidance when moving from a designated start and

end point. Ideally the robot would be reliant on the single 3D lidar sensor to accomplish all

navigation needs. However, for the sake of simplicity and focus, a dead-reckoning method

for localization was implemented using the built-in wheel encoders of the robot as detailed

in Chapter II. Three-dimensional point cloud localization techniques exist to support this

requirement as detailed in [4]. The algorithm developed in this research will account for

six degrees of freedom to allow for implementation on a SUAV autonomous platform.

4

This thesis is composed of six chapters and two appendices. Chapter II covers the

hardware and software used for this research and includes an in-depth explanation of the

lidar sensor. Chapter III covers the small object identification capabilities of the lidar

sensor and provides a definition for small obstacles in the case of this research. In Chapter

IV, an analysis of the method used for the identification of negative height obstacles and

subsequent test results is presented. Chapter V includes an overall description of the robot

control algorithm and obstacle classification technique used. The results of practical

application of the robot in an indoor environment are presented in Chapter VI. Finally,

Chapter VII includes a summary, conclusion, and recommendations for future study.

Appendices A and B include the code for the implementation of the control algorithm.

5

II. HARDWARE AND SOFTWARE

A. HARDWARE

1. Pioneer 3-DX Mobile Robot

The pioneer 3-DX (P3-DX) mobile robot is a three-wheeled mobile robot made by

Adept Mobile robots and comes ready to run with a suite of front and rear facing sonar

sensors, wheel encoders, a front and rear facing segmented bumper array, and a

programmable microcontroller [15]. The P3-DX is shown in Figure 1. The NPS Controls

Laboratory has developed a series of MATLAB functions to interface and control the P3-

DX [16] and the robot has been used in multiple past NPS theses [4], [7], [17]. While the

P3-DX is not the most up to date model, the experience gained from working with the robot

has ensured ease of use and fusion between the robot and other hardware and software. The

three-wheel design of the robot allows for a turn radius of 0 cm [15] making operating in

tight, indoor environments ideal. The P3-DX has a limited ability to traverse rough terrain,

as highlighted later in Chapter III.

Figure 1. Pioneer 3-DX

6

2. Samsung R580 Laptop

Based on the observations in [4] regarding the computational requirements

associated with large lidar point cloud data sets, a Samsung R580 laptop was chosen to

interface with the robot. The R580 was chosen based on availability and the 512MB

GeForce GT 310M discrete graphics card on the computer. In theory the use of the graphics

card might be able to mitigate some of the computational requirements of working with

large point clouds. However, after installation, the Ubuntu 20.04 LTS suite was revealed

to not support the GeForce 310M graphics card. As no other laptops were readily available,

the Samsung R580 was used and the 2.26 GHz intel Core i5 processor, 4GB of RAM, and

500GB hard drive of the R580 proved sufficient for the conduct of this research. The R580

was connected to the P3-DX using a serial to USB connector and connected to the OS1-16

using an ethernet connection. The laptop itself was mounted on top of the P3-DX and to

the rear of the OS1-16 sensor to mitigate obstruction of the sensor. Shown in Figure 2 is

the complete robot setup with the R580 clearly visible on top of the robot.

Figure 2. P3-DX Robot with Lidar Sensor and R580 Control

Computer

7

3. Microsoft Surface Pro 6

A Microsoft Surface Pro 6 was used as the primary computer to interface wirelessly

with the R580 and thus the P3-DX robot. The Microsoft Surface Pro had a 1.6 GHz Intel

Core i5 processor with 8 GB of RAM and a 128 GB hard drive. The Microsoft Surface Pro

ran Microsoft Windows 10 64 bit and the built in Windows 10 secure shell (SSH) client

[18] was used to connect to and send commands to the R580 laptop. The Microsoft Surface

Pro was also capable of wirelessly receiving output data from the OS1-16 sensor via the

robot operating system (ROS) network and displaying the point cloud from the sensor on

the Surface Pro. This point cloud could be adjusted according to the needs of the user and

was primarily used to view the filtered point cloud that the robot was using for obstacle

avoidance and for troubleshooting purposes. This capability was also in keeping with the

overall motivation for this research to have a wireless operator monitor the data collected

by the robot as detailed in [4]. MATLAB 2020b was used to program and implement this

feature. A detailed description of the control interface between the robot, lidar sensor,

Microsoft Surface, etc., can be found in Chapter V.

4. DC 12V to 24V Step Up Converter

A 5-amp, 120-watt 12-volt to 24-volt DC step up converter was used to supply

power to the 24-volt OS1-16 sensor from the 12-volt P3-DX.

5. Ouster OS1-16 Gen 1 Mid-Range High-Resolution Imaging Lidar

The OS1-16 lidar sensor is a high resolution 360-degree field of view lidar sensor

designed for all-weather indoor and outdoor use [19]. The OS1-16 transmits data to the

Samsung R580 laptop via an ethernet connection and the data is read into MATLAB 2020b

as a ROS point cloud message. A comprehensive understanding of the capabilities and

limitations of the sensor is necessary to inform the decision for the definition of a detectable

small object as detailed in Chapter III. The relevant characteristics of the lidar sensor [19]

are provided in Table 1. Shown in Figure 3 is the Ouster OS1-16 used in this research.

8

Table 1. OS1-16 Characteristics. Adapted from [19].

Parameter Value Comments
Maximum Range 50 m 90% detection

probability with a target
of 10% Lambertian

reflectivity
Minimum Range 0.8 m For returned point

cloud data
Range Accuracy ±5 cm For Lambertian targets

Precision 0.8 → 1 m ±1 cm
1 → 20 m ±1.1 cm
20 → 50 m ±3 cm

>50 m ±5 cm

10% Lambertian
reflectivity; 1 standard

deviation

Range Resolution 0.3 cm
Field of View Vertical: +16.6° to -

16.6° (33.2°)
Horizontal: 360°

Angular Sampling
Accuracy

Vertical: ±0.01°
Horizontal: ±0.01°

Figure 3. Ouster OS1-16

9

a. Maximum Range

The published maximum range of the sensor is representative of the furthest

distance that the sensor can receive point cloud data from a target with 10% Lambertian

reflectivity. In the industry, the standard tends to be between 90% and 10% Lambertian

reflectivity with the more conservative maximum range value in relation to a target with

low Lambertian reflectivity [20]. The published maximum range can be misleading when

considering the differences between detection and identification as discussed later in

Chapter III. There are three primary variables that affect the range of a sensor: type of

target, the probability of detection, and the amount of sunlight or “noise” [20]. A more

detailed explanation of range as it pertains to signal strength is given in Figure 4.

Figure 4. Signal Strength and Range. Source: [20].

Lambertian reflectance is a categorization of a surface based on the reflective

properties of that surface. As stated by Tatum, “the radiance of a Lambertian surface is

independent of the angle from which it is viewed” [21]. Most natural surfaces are

Lambertian [22]. A surface with 100% Lambertian characteristic is considered to be ideal

matte, and a surface with a low Lambertian characteristic would be considered very

reflective [23]. Examples of Lambertian objects across the range of Lambertian reflectance

10

are given in Figure 5, and examples of the three primary types of targets that a lidar sensor

is expected to observe are given in Figure 6 [20].

Figure 5. Range of Lambertian Reflectance. Source: [20].

Figure 6. Expected Lidar Targets. Source: [20].

11

b. Minimum Range

The minimum range is the minimum distance from an object that the sensor can be

and return point cloud data. Any part of an object that is inside of this minimum range will

not be seen by the sensor.

c. Range Accuracy

Accuracy is an evaluation of how close a measurement is to the true value of that

measurement [20]. In a practical sense, the accuracy of the sensor determines what can

visually be interpreted as wall straightness [20]. Shown in Figure 7 is an example of an

uncalibrated sensor and the resulting curve in what is in reality a straight wall.

d. Precision

Precision is a metric for how repeatable consecutive measurements are relative to

each other [20]. The value given in Table 1 for precision is the straight line distance

between two consecutive points from the same beam. In practical terms, the precision can

be thought of as the thickness of a wall [20]. A sensor with high precision will produce

relatively thin walls. The parameters of precision and accuracy are illustrated in Figure 7.

Figure 7. Accuracy and Precision. Source: [20].

12

e. Field of View

The overall field of view of the lidar sensor is the elevation covered by the beams

of the sensor. In the case of the OS1-16, there are 16 total beams covering the total field of

view of 33.2° [19]. The angular elevation of each beam relative to the XY plane of the

sensor, as shown in Figure 8, is given in Table 2.

Table 2. Beam Angle

Beam (from
top to bottom) Angle (in degrees)

1 15.61
2 13.45
3 11.32
4 9.21
5 7.11
6 5.02
7 2.94
8 0.85
9 -1.24
10 -3.33
11 -5.42
12 -7.51
13 -9.62
14 -11.73
15 -13.86
16 -16.04

13

Beams 6 through 15 omitted for simplicity and clarity.

Figure 8. Sensor Beam Orientation

f. Angular Sampling Accuracy

The angular sampling accuracy is the horizontal and vertical angular accuracy of

the returned angle for each point identified by the sensor. The vertical resolution of the

sensor is determined by the number of beams and the angular spacing between each of the

beams. In the case of the OS1-16, the angular resolution varies depending on the two beams

in question but is about 2.1° between adjacent beams. The horizontal resolution of the

sensor is variable, depending on the chosen rotation rate of the sensor and can be set to

512, 1024, or 2048. Given the limitations imposed by the processing power available

during this research, the data collected during this work was limited to a horizontal

resolution of 1024.

g. Range Resolution

The range resolution of a sensor defines how well the sensor can differentiate

between two targets that are very close together [24]. In the case of the OS1-16, this

translates to two targets with the same bearing but different angles relative to the sensor

[24], as shown in Figure 9, where ΔR is the range resolution.

14

Figure 9. Range Resolution

h. Lidar Data Interpretation

The data from the sensor can be visually interpreted as an NxM matrix with N

representing the number of beams and M representing the chosen horizontal resolution of

the sensor. This can be visually interpreted as a panoramic view of a fixed resolution depth,

signal, and ambient image [25], as shown in Figure 10. A panoramic photo of the scan

shown in Figure 10 is given in Figure 11.

Figure 10. OS1-16 Fixed Resolution Depth Image and Corresponding

Point Cloud

15

Figure 11. Panoramic Photo

B. SOFTWARE

1. MATLAB

MATLAB is a programming platform centered around a matrix-based language

that can be used by scientists, engineers, and analysts to perform computational

mathematics relative to an innumerable number of areas of study [26]. MATLAB is ideally

suited for the easy development of algorithms and for the proof of concepts and ideas.

MATLAB also allows for the use of innumerable toolboxes, each geared towards a specific

area of study. Of particular note is the newly introduced MATLAB Lidar Toolbox which

provides numerous tools for processing, interpreting, and visualizing point cloud data for

autonomous systems [27]. All the algorithms described and developed in this thesis were

created and implemented using MATLAB version 2020b. The use of MATLAB also

allowed for easy access to the lidar sensor data with the use of ROS and the previously

developed P3-DX interface functions [16]. The MATLAB ROS Toolbox allows for the

integration of the disparate systems of the robot [28]. Of note, the MATLAB ROS Toolbox

was originally developed for the version of ROS, ROS Melodic. This research utilized the

latest version of ROS, ROS Noetic. No major issues were discovered except that in order

to initiate the ROS environment in MATLAB, the default version of Python in Ubuntu

20.04 had to be changed to Python 2. The default version of Python used with Ubuntu

20.04 is Python 3.

2. The Robot Operating System (ROS)

The Robot Operating System or ROS is a free software suite designed to allow for

the simple and seamless integration of multiple sensors and systems to form a more

complex robotic system [29]. Like MATLAB, ROS is composed of a collection of tools

16

that allow for a user to integrate different systems into a single cloud like network

environment [28], [29]. The basic structure of ROS is the ROS master environment which

contains multiple nodes or sensors/systems [28]. Each of these nodes can publish data or

receive data from what are known as topics [28]. A more in-depth analysis of this

framework is given in Chapter V. For the scope of this research, ROS enabled the lidar

sensor to transmit data in a usable format to MATLAB for implementation in the obstacle

avoidance algorithm. ROS also allowed for the Microsoft Surface laptop to wirelessly

receive the lidar point cloud data.

17

III. SMALL OBJECT DETECTION AND IDENTIFICATION

The objective of this phase of the research was to determine how small of an object

the OS1-16 could detect and clearly define what constituted a small object. For this thesis,

the term place will refer to the sensor receiving a laser return from one of the laser beams

or beams, and providing a set of XYZ coordinates in the sensor frame for that point.

A. DETECTION AND IDENTIFICATION

Ouster, the company that produces the OS1-16, has produced their own

interpretation of small object detection. Based on the widespread use of lidar sensors for

autonomous driving [30], Ouster has identified a small object as a 1.8 m tall pedestrian

[31]. Reliable detection and identification according to Ouster is defined as the ability to

place four horizontal lines on a 1.8 m tall pedestrian [31]. A comparison of three different

Ouster lidar sensors with different vertical resolutions and the effective range of each

sensor based on the Ouster definition of detection is shown in Figure 12.

Figure 12. Resolution and Detection. Source: [31].

18

1. Detection

This work defines detection as the ability of a sensor to identify the presence of an

obstacle. For this work and in the case of the OS1-16 sensor, detection is established by a

threshold of at least one beam placing at least two points on an object. An example of the

detection of an object is given in Figure 13. In this case a 3.0 cm x 3.2 cm x 1.6 cm block

was detected by beam 10 approximately 0.85 m from the sensor. As can be seen in Figure

13, the presence of the object is indicated by the two points returned from beam 10. This

data is enough for the sensor and any attached systems to be alerted to the presence of a

potential obstacle, but not enough to identify the lidar return as an obstacle. This concept

is important because depending on the environment, a lidar sensor can return multiple

erroneous points that may or may not be true obstacles. This phenomenon is discussed

further in Chapter VI.

Figure 13. Indication of Object at 0.8 m Distance Picture and Point

Cloud

2. Identification

In this work, identification is defined as the ability of the sensor to detect and

identify an object as an obstacle. For this work, the identification of an obstacle is defined

as at least two beams placing at least two points each on an object for a total of four points.

19

Based on this definition of identification, the smallest object that would be detectable by

the sensor would be an object large enough for the sensor to place at least four points from

two different beams on the object. An example of this concept is given in Figure 14.

Figure 14. Identification of an Object

B. SMALL OBJECT DEFINED

The definition of a small object depends on environmental considerations, the

employment of the sensor, and the physical capabilities of the sensor. Chapter II covered

the capabilities and limitations of the sensor in depth, including angular sampling accuracy

and range accuracy, which directly influence the values of W and L, as seen in Figure 14.

For this work, the sensor was mounted on a mobile platform with a ground clearance of

approximately 3.9 cm. Any object greater than 3.9 cm is an obstacle for the mobile

platform. Based on this evaluation, the sensor needed to be able to detect an object with a

height of at least 3.9 cm.

To define the dimensions of the smallest detectable object, the minimum values of

W and L from Figure 14 needed to be determined. The value of ϕ is determined from

20

360

Horizontal Resolution
φ °
= . (1)

The value of θ varies based on which two beams are being considered and is derived

from the angular position values given in Table 2, Chapter II. The values of W and L are

then determined using the two equations below

 L 2R sin
2
θ =

 (2)

and

 W 2R sin
2
φ =

 (3)

respectively.

The following two equations, taken from [32], were used to find the variation of W

and L as

 L R
R
f f θ

θ
∂ ∂

∆ = ∆ + ∆
∂ ∂

 (4)

and

 W R
R
f f φ

φ
∂ ∂

∆ = ∆ + ∆
∂ ∂

 (5)

based on the published sensor data from Table 1, Chapter II, repeated here in Table 3 for

convenience. The partial derivatives with respect to R, θ, and ϕ are given by

 2sin
R 2
f θ∂ = ∂

, (6)

 Rcos
2

f θ
θ
∂ = ∂

, (7)

and

21

 Rcos
2

f φ
φ
∂ = ∂

. (8)

Table 3. Sensor Parameters for the Calculation of Width and Length
Variance

Parameter Value
ΔR 0.05 m
Δ ϕ 0.01°
Δθ 0.01°

The values of W and L with corresponding deviations were calculated for each pair

of beams, with R varied from 0.8 m to 10 m in 0.1 m increments using the MATLAB script

given in Appendix A. A sample of the resulting data table is given in Table 4. Based on

this data, the ideal smallest detectable object that the sensor is capable of placing four points

on from two beams has the dimensions of W = 0.0049 m and L = 0.030 m when R = 0.8 m

and W = 0.061 m and L =0.380 m when R = 10.0 m. These dimensions represent the

smallest detectable object under ideal conditions where an object is centered between two

beams. With the sensor mounted on a moving platform, objects can be brought in and out

of this optimum detection location.

Table 4. Width and Length Calculations for Beams 15 and 16

Distance
R (m)

Vertical
Distance (cm)

Vertical Error
in cm (+-)

Horizontal
Distance (cm)

Horizontal
Error in cm (+-)

0.8 3.043670616 0.204189521 0.490873082 0.044642136
0.9 3.424129443 0.205934534 0.552232217 0.046387457
1.0 3.804588269 0.207679548 0.613591353 0.048132778
1.1 4.185047096 0.209424561 0.674950488 0.049878099
1.2 4.565505923 0.211169575 0.736309623 0.05162342
1.3 4.94596475 0.212914588 0.797668758 0.053368741
1.4 5.326423577 0.214659601 0.859027894 0.055114062
1.5 5.706882404 0.216404615 0.920387029 0.056859383
1.6 6.087341231 0.218149628 0.981746164 0.058604704
1.7 6.467800058 0.219894642 1.043105299 0.060350025
1.8 6.848258885 0.221639655 1.104464435 0.062095346

22

Distance
R (m)

Vertical
Distance (cm)

Vertical Error
in cm (+-)

Horizontal
Distance (cm)

Horizontal
Error in cm (+-)

1.9 7.228717712 0.223384669 1.16582357 0.063840667
2.0 7.609176539 0.225129682 1.227182705 0.065585988
2.1 7.989635366 0.226874696 1.28854184 0.067331309
2.2 8.370094193 0.228619709 1.349900976 0.06907663
2.3 8.75055302 0.230364722 1.411260111 0.070821952
2.4 9.131011847 0.232109736 1.472619246 0.072567273
2.5 9.511470674 0.233854749 1.533978381 0.074312594
2.6 9.891929501 0.235599763 1.595337517 0.076057915
2.7 10.27238833 0.237344776 1.656696652 0.077803236
2.8 10.65284715 0.23908979 1.718055787 0.079548557
2.9 11.03330598 0.240834803 1.779414923 0.081293878
3.0 11.41376481 0.242579816 1.840774058 0.083039199

C. SENSOR CHARACTERISTICS WHEN MOUNTED ON THE ROBOT

After fully exploring the characteristics of the OS1-16, the next step was to analyze

the effect on sensor output due to the physical location of the sensor on the robot. Based

on the previous analysis of the sensor and the orientation of the beams, the sensor has the

best chance of detecting a small object on the ground plane the closer the sensor itself is to

the ground plane. For this reason, the sensor was mounted as close to the ground plane as

possible without hindering the 360° field of view of the sensor.

A graphical representation of the sensor mounted on the robot and the associated

angular orientation between the beams and the ground plane is given in Figure 15. The

distance from the sensor to the point where each individual beam strikes the ground plane

is known as the ground strike distance. Each beam has a different ground strike distance

that is determined by the physical orientation of the sensor and the angular orientation of

the beam. In an ideal configuration, the XY plane of the sensor would be parallel to the

ground plane as shown in Figure 16. Because of the uneven nature of the robot wheels, the

XY plane of the sensor is offset from the ground plane by approximately 1.54°. Therefore,

the value of θ, as shown in Figure 15, must be adjusted to account for the 1.54° offset. The

beam ground strike derived from Figure 15 is given by

 () ()Beam Ground Strike Htan H tan 90θ β= = − . (9)

23

In this case, β is the published angle of the beam from the XY plane of the sensor

as given in Table 2, Chapter II. The real-world beam ground strike distances for beams 16–

10 are given in Table 5. Under ideal conditions, beam 9 should also strike the ground plane

but because of the 1.54° offset, the elevation of the beam is above the XY plane of the

sensor and is therefore projected upwards in the positive Z direction.

Figure 15. Beam Orientation with Sensor on Robot

Table 5. Beam Ground Strike Location

Beam Ground Strike
Distance (m)

10 10.031
11 4.6223
12 2.9979
13 2.2086
14 1.7441
15 1.4354
16 1.2122

The initial hypothesis drawn from the data in Table 5 was that given a single point

cloud, an object cannot be seen by the sensor unless the object lay in the direct path of one

of the beams. Any object with a small enough height in the Z direction that lies in the dead

space between two beams has the potential to be missed by the sensor. This concept is

illustrated in Figure 15 as the space between points where two beams strike the ground

plane. Three test distances were determined from which the minimum object dimensions

24

at those distances could be identified. The three test distances determined were 0.8 m, 1.5

m, and 3.0 m.

The theoretical location of beams 16 to 9 in the Z direction at each test distance as

shown in Figure 16 was calculated using

()

BGS Lh
tan θ

−
= . (10)

The theoretical results of this analysis are presented in Table 6.

Figure 16. Beam Height Representation

Table 6. Beam Vertical Locations

Beam
Vertical location

of Beam (m) when
L = 0.8 m

Vertical location
of Beam (m) when

L = 1.5 m

Vertical location
of Beam (m) when

L = 3.0 m
9 0.317688828 0.321354053 0.329208107
10 0.288498751 0.266622657 0.219745315
11 0.259242015 0.211766279 0.110032557
12 0.229840095 0.156637678 -0.000224644*
13 0.199942278 0.100579272 -0.112341456
14 0.169701423 0.043877668 -0.225744665
15 0.138779241 -0.014101423 -0.341702846
16 0.106605933 -0.074426377 -0.462352753

*Negative values indicate that the beam has hit the ground plane before the
distance L

25

As indicated in Table 6, beam 16, the lowest looking beam, will theoretically only

be able to detect an object approximately 10 cm in height that is 0.8 m from the sensor. At

the 1.5 m distance, beam 14 will theoretically be able to see an object that is approximately

4 cm or greater in height.

D. VERIFICATION OF THEORETICAL RESULTS

To determine the validity of the theoretical calculations, an experiment was devised

to either confirm or deny the theoretical results as well as define the dimensions of the

smallest identifiable object. The robot with the sensor was positioned on a flat,

homogenous surface, as shown in Figure 17. A flat, square box large enough to provide

multiple point returns from multiple beams was positioned at varying distances from the

sensor. The resulting point cloud of this box was then analyzed and the two beams which

provided returns on the box and were closest to the ground plane where isolated as shown

by the point cloud in Figure 18.

Figure 17. Small Object Test Setup at 0.8 m, 1.5 m, and 3.0 m

26

Figure 18. Point Cloud of Target Box at 0.8 m

While keeping with the definition of detection, four points, two from two separate

beams, were chosen to be analyzed. For consistency, the two beams closest to the ground

plane were chosen and the four points either side of the Z-axis were analyzed, as shown in

Figure 19. One hundred point clouds were taken for each of the three test distances and the

mean and standard deviation of the dimensions between these four points determined. The

probability density functions (PDFs) of the dimensions at the corresponding test distances

are given by Figure 20, Figure 21, and Figure 23, respectively. The numerical values for

the mean and standard deviation along with a confidence interval for each test are given in

Table 7.

27

Figure 19. Test Points

1. Test Distance: 0.8 meters

In the case of the test distance of 0.8 m, the two beams closest to the ground plane

that return points on the box are beams 15 and 16 as can be seen in Figure 18. From beams

15 and 16, the four points indicated on Figure 19 are chosen for analysis. These same four

points are analyzed across one hundred different point clouds with the box at a distance of

0.8 m from the sensor. The PDFs of the dimensions between the four test points with

corresponding mean and standard deviation are given in Figure 20.

28

Figure 20. PDFs at Test Distance of 0.8 m

2. Test Distance: 1.5 meters

In the case of the 1.5 m test distance, there is an interesting phenomenon due to the

scattering of beam 16 as the laser strikes the table. According to the data in Table 5, beam

16 will strike the ground approximately 0.28 m before the object. As the beam strikes the

ground plane, it is reflected off the ground plane and goes on to strike the box. The sensor

receives a greater energy return from the reflection off the box than from the table top and

therefore records the reflection off the box as a point [33]. This is also why the Z coordinate

for the points on the box are negative or below the table [34]. This same phenomenon is

also seen at the 3.0 m test distance with beam 13. However, as can be seen in Figure 22,

beam 16 still returns relatively accurate points at the base of the object for the test distance

of 1.5m. The PDFs of the dimensions between the four test points with corresponding mean

and standard deviation are shown in Figure 21.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Height (m)

0

5

10

15

20

25

30

Height Left

0 0.01 0.02 0.03 0.04 0.05 0.06

Height (m)

0

50

100

150

200

Height Right

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

Width (m) 10
-3

0

500

1000

1500

2000

2500

3000

Width Top

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

Width (m) 10
-3

0

2000

4000

6000

8000

10000

12000

14000

Width Bottom

mu = 0.031065 sigma = 0.014481 mu = 0.029811 sigma = 0.0021674

mu = 0.0050665 sigma = 0.00014615 mu = 0.0049988 sigma = 2.8951e-05

29

Figure 21. PDFs at Test Distance of 1.5 m

Figure 22. Point Cloud of Target Box at 1.5 m

0 0.02 0.04 0.06 0.08 0.1 0.12

Height (m)

0

50

100

150

200

250

Height Left

0 0.02 0.04 0.06 0.08 0.1 0.12

Height (m)

0

20

40

60

80

100

120

140

160

180

Height Right

9.1 9.15 9.2 9.25 9.3 9.35 9.4 9.45 9.5

Width (m) 10
-3

0

2000

4000

6000

8000

10000

12000

14000

Width Top

9 9.05 9.1 9.15 9.2 9.25 9.3

Width (m) 10
-3

0

2000

4000

6000

8000

10000

12000

Width Bottom

mu = 0.054147 sigma = 0.0017256 mu = 0.052776 sigma = 0.0022779

mu = 0.0093942 sigma = 3.1496e-05 mu = 0.0091905 sigma = 3.5451e-05

30

3. Test Distance: 3.0 meters

As mentioned before, beam 13 shows scattered reflections at the base of the box.

For the sake of analysis, these points were determined to be not sufficiently reliable and

therefore the two closest beams to the ground plane were determined to be beams 12 and

11. The PDFs of the dimensions between the four test points with corresponding mean and

standard deviation are given in Figure 23.

Figure 23. PDFs at Test Distance of 3.0 m

Table 7. Results of Minimum Object Dimensions Experiment

Test Distance: 0.8 m

Dimension Mean (μ) (m) Confidence
Interval (m)

Standard Deviation
(m)

Confidence
Interval (m)

HL 0.0310651 0.0281916,
0.0339385 0.0144815 0.0127148,

0.0168227

HR 0.0298111 0.029381,
0.0302412 0.00216737 0.00190297,

0.00251779

WT 0.00506646 0.00503746,
0.00509546 0.000146154 0.000128324,

0.000169783

WB 0.00499876 0.00499301,
0.0050045 2.89513e-05 2.54194e-05,

3.3632e-05

0.108 0.11 0.112 0.114 0.116 0.118 0.12

Height (m)

0

100

200

300

400

500

Height Left

0.1 0.105 0.11 0.115

Height (m)

0

50

100

150

200

250

300

350

400

Height Right

0.0182 0.0183 0.0184 0.0185 0.0186 0.0187 0.0188 0.0189

Width (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Width Top

0.0182 0.0183 0.0184 0.0185 0.0186 0.0187 0.0188 0.0189

Width (m)

0

2000

4000

6000

8000

10000

Width Bottom

mu = 0.11119 sigma = 0.00079988 mu = 0.11079 sigma = 0.0010626

mu = 0.018742 sigma = 4.7283e-05 mu = 0.018658 sigma = 4.2364e-05

31

Test Distance: 0.8 m

Dimension Mean (μ) (m) Confidence
Interval (m)

Standard Deviation
(m)

Confidence
Interval (m)

Zmin 0.141624 0.141441,
0.141806 0.0013101 0.00119306,

0.0014528
Test Distance: 1.5 m

Dimension Mean (μ) (m) Confidence
Interval (m)

Standard Deviation
(m)

Confidence
Interval (m)

HL 0.0541472 0.0538048,
0.0544896 0.00172561 0.0015151,

0.0020046

HR 0.0527756 0.0523236,
0.0532276 0.00227794 0.00200005,

0.00264623

WT 0.00939422 0.00938797,
0.00940047 3.14957e-05 2.76535e-05,

3.65878e-05

WB 0.00919045 0.00918342,
0.00919748 3.54506e-05 3.11259e-05,

4.11821e-05

Zmin -0.036528 -0.0367579,
-0.0362981 0.00164874 0.00150144,

0.00182833
Test Distance: 3.0 m

Dimension Mean (μ) (m) Confidence
Interval (m)

Standard Deviation
(m)

Confidence
Interval (m)

HL 0.111193 0.111035,
0.111352 0.000799883 0.000702303,

0.000929204

HR 0.11079 0.110579,
0.111001 0.0010626 0.000932972,

0.0012344

WT 0.0187417 0.0187323,
0.0187511 4.72829e-05 4.15147e-05,

5.49274e-05

WB 0.018658 0.0186496,
0.0186664 4.23638e-05 3.71957e-05,

4.9213e-05

Zmin 0.0327893 0.0326841,
0.0328945 0.000754361 0.000686968,

0.00083653

By comparing the values in Table 7 with the corresponding values in Table 4, the

measured results closely match the theoretical results. Furthermore, from the experimental

data, we can draw conclusions about the dimensions and characteristics of the smallest

detectable object to the sensor when mounted on the robot. The approximation for the smallest

identifiable obstacle for each test distance is given in Table 8. The dimensions given are the

height and width of the object as seen by the sensor in a 2D plane. The Zmin threshold

32

requirement from Table 6 was also considered. The Zmin threshold must first be met before the

lowest beam of the sensor can be reasonably expected to strike the object.

Table 8. Smallest Detectable Object

Distance from
Sensor (L)

Minimum dimensions of object
(m) H x W

0.8 m 0.187 x 0.005
1.5 m 0.055 x 0.009
3.0 m 0.111 x 0.018

The lowest beam to the ground plane, beam 16, strikes the ground at approximately

1.2 m. The 1.2 m distance can be taken to be the optimum distance from which the sensor

can detect a small object. Based on this assumption, the dimensions of an object at the test

distance of 1.5 m most accurately predict the smallest object at the ground plane that the

sensor will be able to identify.

This data is taken from a single point cloud snapshot. The data does not take into

consideration that the sensor is mounted on the robot which is capable of both translation

and rotation in the XY plane. As the robot moves and the beams are swept across the ground

plane, any object in the path of the robot will at one time cross the 1.2 m threshold and thus

be detected if the object is at least the dimensions given in Table 8. This concept is explored

briefly and elaborated on in Chapters V and VI.

33

IV. NEGATIVE HEIGHT OBSTACLE DETECTION

A. PREVIOUS WORK

Multiple studies have been conducted concerning the identification and

classification of what are commonly referred to as negative obstacles [14] or obstacles with

negative height that are below the established ground plane. The study conducted in [35]

makes use of cameras and stereo vision to detect negative obstacles in an indoor urban

environment similar to the one used in this study, specifically the identification of drop-

offs. In [36], multiple rules are presented for the establishment of terrain traverse ability

including the analysis of terrain slope. The concept of slope is expanded with the use of a

lidar sensor in [7], [14], and [37] to detect negative obstacles. The method used in this work

is similar to the slope analysis method.

B. CONCEPT OF DETECTION

The method of detection for negative obstacles explored in this work is very similar

to the method presented in [38]. Instead of the pixels used in [38], this work used the point

returns from a single beam of the OS1-16 sensor. Similar to [38], a threshold value of the

sensor was established and then monitored to detect any deviations. The threshold value

used was the range values of a set of points from a single beam. The idea to use a single

beam of the lidar sensor was adapted from the hardware setup used by Miyakawa in [7].

C. PROCESS

The first step involved the isolation of a single beam, in this case the beam closest

to the ground plane, beam 16, as described in Chapter III. Beam 16 was chosen because

the ground strike distance of beam 16 is the smallest of all the lidar beams. The smaller

ground strike distance reduces the chance of other, non-negative obstacles from interfering

with the calibration of the beam as discussed later. The drawback of using the beam with

the smallest ground strike distance was that the robot has less time to react and avoid a

detected negative obstacle. This is a significant issue for autonomous platforms traveling

at higher speeds as indicated in [37], [38]. The translation speed of the robot for this work

34

was slow enough to allow for sufficient reaction time to any negative obstacles detected by

beam 16. As discussed in Chapter V, the control algorithm was adjusted to accommodate

for the smaller reaction time.

The use of different beams with longer ground strike distances, specifically beam

15, was explored. The use of beam 15 to identify negative obstacles would have allowed

for greater reaction time but the chance of interference due to non-negative obstacles is

greater. Therefore, in order to focus on the proof of concept for the identification of

negative obstacles using the discussed method, only beam 16 was used.

The method of detection used in this work ultimately relies on detecting a change

in the ground plane in the Z direction similar to the method used in [38]. The variable used

to detect a negative obstacle is the distance from the lidar sensor to the ground plane R, as

shown in Figure 24. The threshold value, RTH is determined when the robot is initialized

by computing the average R value of all 1,024 point returns of beam 16. This process only

works if the robot is initialized on the intended ground plane of operation with the area

around the robot out to a distance of 1.3 m clear of all obstacles negative and non-negative.

This concept is depicted graphically in Figure 25.

Figure 24. Beam 16 Threshold at Ground Plane

35

Figure 25. Robot Initialization Parameters

The presence of a negative obstacle will result in a value for R greater than RTH, as

shown in Figure 26. The greater value of R translates to a change in the elevation of the

ground plane in the negative Z direction.

Figure 26. Detection of a Negative Obstacle

36

D. NEGATIVE OBSTACLE DETECTION ALGORITHM

The first step of the negative obstacle detection algorithm is to determine the value

for RTH as previously described. The second step is to isolate the 100 forward facing points

from beam 16, as depicted in green in Figure 25. This number was determined to allow

adequate detection of negative obstacles to the left and right of the robot. Increasing this

number will increase the field of view of the robot for detecting negative obstacles but may

constrict the movement of the robot in a tight, indoor environment. As the robot translates

through the environment, the algorithm monitors the R value of each of the 100 forward

facing points. Specifically, the algorithm compares the difference between the R value of

each individual point and RTH with a pre-designated comparison value Rcomp, as depicted

in Figure 26. Rcomp can be adjusted to designate the allowable ΔZ value traversable by the

robot. For this work, the Rcomp was conservatively set at 600 mm to both account for the

limited capabilities of the robot to traverse vertical drops and ensure detection of negative

obstacles for testing purposes.

As the robot translates in the forward X direction, each consecutive row of beam

16 point returns is analyzed and saved as a binary vector where a binary 1 represents a

point on the ground plane and a binary 0 represents the presence of a negative obstacle.

This concept is illustrated in a simplified fashion in Figure 27 to depict the presence of a

hole. The algorithm then identifies the leading and trailing edges of the negative obstacle

by identifying the transitions of 1 to 0 and 0 to 1 between the current scan and the previous

scan or in the case of the example, within a column. In a similar fashion the algorithm

determines the left and right edges of the obstacle by identifying the 10 and 01 transitions

within each scan or row. These transition points, indicated by the red circles in Figure 27,

are saved and used in the potential field model for navigation and obstacle avoidance as

detailed in Chapter V.

37

Figure 27. Example Detection of a Hole

E. EXPERIMENTAL SETUP AND RESULTS

To test the performance of the negative obstacle detection algorithm, an experiment

was set up, as shown in Figure 28. The size of the circular hole was determined based on

the diameter of the front wheels of the robot [37]. The kidney bean shaped hole was chosen

to test the ability to detect a nontraditional geometric shape. The translation speed of the

robot was limited to 20 mm per second and the robot moved along the table top towards

the negative obstacles.

Figure 28. Negative Obstacle Detection Experimental Setup

38

The algorithm view of the negative obstacles is given in Figure 29. This image is

the experimental equivalent of the example given in Figure 27 with the white space

representing a logical 0 and the blue points representing a logical 1. The Y axis in Figure

29 is the scan number with the first scan representing the initial scan of beam 16 as the

robot begins to move. As the robot moves the lidar continues to collect data at 10 Hz and

each consecutive scan of beam 16 is taken from a new position as the robot translates

towards the negative obstacles. As can be seen in Figure 29, the two holes can be clearly

identified along with the edge of the cardboard.

Figure 29. Binary Representation of Experimental Results

By using the binary interpretation, the algorithm then identifies the actual obstacle

points, as indicated in Figure 30. In Figure 30, the table is defined as the ground plane and

is located on the XY plane where Z is 0. The green point cloud in the right half of Figure

30 is the table the robot is moving on. As beam 16 passes the edge of the table, the beam

begins to return points on the lab floor. The larger green point cloud in the left half of

Figure 30 are the points representing the lab floor. The algorithm has identified the leading,

trailing, left and right edges of both negative obstacles. The algorithm has also identified

the edge of the cardboard as a drop off. The XYZ coordinates of the obstacle points can

39

then be fed into the potential field model for navigation and avoidance. This process is

explored in detail in Chapter V.

Figure 30. 3D Representation of Negative Obstacles

40

THIS PAGE INTENTIONALLY LEFT BLANK

41

V. SMALL OBJECT IDENTIFICATION

An algorithm that differentiates between small and large obstacles based on the

definition for a small object detailed in Chapter III was developed. This algorithm was then

integrated into a larger control algorithm that navigates the robot around both large and

small obstacles. The basic premise of this method was to take the raw point cloud data from

the OS1-16 sensor and filter the data to both reduce the number of points that will have to

be computationally dealt with and categorize the various points as belonging to either a

large or small obstacle.

A. POINT CLOUD FILTERING AND VOXELIZATION

Similar to the methods presented in [39] and [40], the conceptual end state of the

point cloud filtering and voxelization algorithm was to reproduce the environment around

the robot with occupied and unoccupied voxels. This environment is represented by a point

cloud composed of the center points of occupied voxels with pre-defined dimensions as

described by [40]. The objects throughout the environment are voxelized or represented by

pre-defined three-dimensional cubes of equal size [41].

The process begins with the collection of the raw point cloud data from the OS1-

16 lidar sensor. For the sake of reference and understanding, the picture presented in Figure

31 is the environment in which the data presented in this section was collected. The

environment has both small and large objects with some of the key large objects

highlighted in green and the small objects highlighted in red. From the environment

presented in Figure 31, the lidar sensor returns the raw point cloud data resulting in the

point cloud presented in Figure 32 with the red star representing the location of the sensor.

The colors of the points in Figure 32 correspond to the intensity of the laser return at the

particular point. The darker the color, the lower the intensity. This color map is used

throughout this work when presenting point cloud data unless otherwise stated.

42

Figure 31. Point Cloud Filtering and Voxelization Sample

Environment

Figure 32. Raw OS1-16 Lidar Point Cloud Data

43

The first step in the filtering process is the removal of all invalid points that return

near infinite distance data and points with coordinates at the origin. In the case of the OS1-

16, when the sensor does not receive a return from a particular point, the sensor outputs the

X, Y, and Z coordinates of (0, 0, 0). The next step in the filtering process is the removal of

all points that lie outside the pre-defined region of interest (ROI). The ROI is a set of six

coordinates that define the minimum and maximum limits for the X, Y, and Z values of

any point. The exact values for the ROI used in this work can be found in the robot master

control code in Appendix A and correspond to the field of view (FOV) of the robot as

discussed later. The ROI of the point clouds presented in this section are much larger than

the FOV of the robot to ensure clarity and understanding.

Aside from establishing the FOV of the robot, the primary purpose of the ROI is to

segment and remove the ground plane from the rest of the point cloud data. The ground

plane points can clearly be seen in Figure 32 as the concentric, circular rings expanding

outwards from the origin. The ground plane points are also colored a dark blue, meaning

the points have a low intensity value. This fact is exploited to ensure as much of the ground

plane is extracted as possible. Due to the variation of the sensor, as discussed in Chapters

II and III, defining the ROI alone is not enough to completely remove the ground plane

from the point cloud data. The data is further filtered by removing all points with Z axis

values and intensity values below a pre-selected elevation and intensity threshold. In the

case of this work, the intensity threshold was determined by trial and error to be 220 and

the Z value threshold was set to the vertical obstacle clearance capabilities of the robot, 60

mm. After removal of the ground plane, the resulting point cloud is presented in Figure 33

with the red star representing the approximate position of the sensor.

The concept of dead space discussed briefly in Chapter III is clearly illustrated

when comparing the environment in Figure 31 with the corresponding point cloud in Figure

32. Close inspection of the point cloud presented in Figure 32 reveals that one of the smaller

blocks seen in Figure 31 is missing. This is because the block falls between two of the lidar

beams, or visually speaking, between two of the concentric rings that represent the ground

plane in Figure 32.

44

Figure 33. Point Cloud after Ground Plane Segmentation

The next step in the filtering process is the voxelization of the point cloud. This was

achieved using the built-in MATLAB pcdownsample function described in detail in [42].

The pcdownsample function voxelizes the environment into cubic voxels of a predefined

dimension and then returns a single X, Y, and Z coordinate for each voxel based on the

average value of the coordinates of all the points that fall within each voxel [42]. The results

of this function are presented in Figure 34 with the red star representing the position of the

sensor.

45

Figure 34. Output of MATLAB pcdownsample Function

The final step in the point cloud filtering and voxelization process is the

replacement of the average points in each voxel with the center point of the occupied voxel.

The code used to accomplish this method of point based voxelization [40] is given in

Appendix A and the output point cloud is presented in Figure 35. The position of the sensor

is presented by the red star in Figure 35.

46

Figure 35. Result of Point Cloud Filtering and Voxelization

The filtering and voxelization reduces the number of points in the point cloud from

16,384 to 4,017. This number is reduced even further when the ROI is narrowed to reflect

the FOV of the robot as discussed in the next section. A simplified example of the

voxelization process is presented in Figure 36.

Figure 36. Voxelization Process Example

47

B. SMALL OBJECT CLASSIFICATION

With the point cloud filtered and voxelized, each point is then classified as either a

small point or a large point. The first criteria to be considered is the height of the point in

the world frame. If the point is greater than a pre-established threshold, the point is

immediately classified as a large point. If the point falls below this threshold, there is the

potential for the point to be a small point. The next step is to establish whether each point

is part of a larger object. For example, a table leg will return a point cloud similar to the

one shown in Figure 37. The bottom most point on the table leg will fall into the category

of potential small objects because the point lies below the Z threshold. However, the point

should be labeled as a large point because it is part of a larger object. The theory is that the

lidar will be able to avoid this larger object using points on the object that are higher in

elevation and thus more easily detected by the sensor as discussed in Chapter III. To

classify the points in the potential small object category as either large or small, each point

is analyzed in relation to the four nearest points to see if there is another point that lies

directly above the point in question. This is possible because of the voxelization of the

point cloud and the standardization of the voxel size or the distance L. This concept is

illustrated with the lattice like depiction in Figure 38.

48

Figure 37. Table Leg Point Cloud Example

Figure 38. Concept of Small and Large Point Classification

The resulting point classification of the filtered and voxelized point cloud is given

in Figure 39. As can be seen in Figure 39, the algorithm is not perfect and there are multiple

misclassifications.

49

Figure 39. Voxelized and Classified Point Cloud Comparisons

Most of these misclassifications are at ranges greater than 4 m or due to irregularly

shaped objects. The reason for the misclassification at range has to do with the size of the

voxels used and the physical limitations of the sensor. For this work, the voxels used were

cubic with length and width of 100 mm. The average distance between two beams is greater

than 100 mm at distances greater than approximately 2.7 m as given in Chapter III, Table 4.

Given the vertical error of the sensor, this means that at greater distances the likelihood of two

vertically adjacent voxels containing a point decreases. This concept can be seen in Figure 40

where the bottom of a table leg is misclassified as a small point. This can be mitigated by

adjusting the size of the voxels at the expense of a less detailed point cloud. Additionally, this

issue is mitigated by the fact that as the robot translates towards an object, such as a table leg,

there will be initial misclassifications that will eventually be corrected as the robot gets closer

to the object. This phenomenon and the impact on obstacle avoidance are discussed in the

experimental results section of Chapter VI.

C. FIELD OF VIEW

The point clouds presented in the previous section represented the complete data

collection capability of the OS1-16 sensor. As stated, one of the objectives of this research

was to minimize the computing requirements when dealing with point cloud data. For this

reason, the FOV of the robot was limited to the forward facing area extending 500 mm to

the left and right of the robot and approximately 100 mm above the height of the robot.

The FOV of the robot when looking at the environment presented in Figure 31 is given in

50

Figure 40 along with the voxelized, small and large point FOV. The voxels in Figure 40

are for graphical representation only.

The voxels do not appear as cubes due to the spacing of the axis.

Figure 40. FOV of Robot Point Cloud and Voxelized Point Cloud

D. ROBOT CONTROL ALGORITHM

The robot control algorithm is a collection of algorithms, as shown in Figure 41.

The control algorithm is composed of three primary sub algorithms, the point cloud filter

and voxelization algorithm, the negative obstacle identification algorithm, and the potential

field model. The previous sections detailed the point cloud filter and voxelization algorithm

and the negative obstacle identification algorithm. These two algorithms identify points

that represent obstacles to the robot. These points, along with the current pose of the robot,

are then used as inputs to the potential field model which computes the relative attractive

and repulsive forces acting on the robot as described in [3], [43], and [44]. The cumulative

force acting on the robot is used to determine the translation and rotation commands the

robot needs to execute to reach a pre-defined goal [44].

51

Figure 41. Block Diagram of the Control Algorithm

52

THIS PAGE INTENTIONALLY LEFT BLANK

53

VI. RESULTS

To evaluate the effectiveness of the algorithm and control method detailed in

Chapter V, three experimental setups were used. For each experiment, the robot was given

a goal in XYZ coordinates in the world frame and tasked with moving to within 200 mm

of that goal. The environment was configured in such a way that the robot would have to

navigate around a small obstacle, a large obstacle, or both to reach the goal. An additional

fourth experiment was executed to highlight the ability of the lidar sensor to identify

narrow objects and simulate the robot moving around a more natural obstacle. As

previously stated in Chapter I, the wheel encoders built into the P3-DX were used to

provide the robot with a pose estimate. The results of these experiments and the conclusions

drawn from this work are presented here in Chapter VI.

A. LARGE OBSTACLE IDENTIFICATION AND AVOIDANCE

The first experiment involved the robot moving from an initial starting point to a

point 6.0 m directly in front of the robot that served as the goal. Placed directly in the path

of the robot was a large obstacle measuring 40.0 cm x 26.5 cm x 7.0 cm. The size of the

obstacle was arbitrarily chosen to be significantly larger than the size of the small obstacle

defined in Chapter III. The experimental setup is shown in Figure 42.

54

Figure 42. Experiment 1: Large Obstacle Detection and Avoidance

The robot successfully navigated around the obstacle to reach the goal. The path of

the robot and the points detected as obstacles for the duration of the experiment are shown

in Figure 43. The size of the blue circles represents the approximate size of the robot in

relation to the obstacle and environment. The collection of green points on the right side

of Figure 43 are the lidar returns off the wall directly behind the obstacle. The

misclassification of points discussed in Chapter V can be seen in Figure 43 around the large

obstacle. Additionally, the distribution of the points around the actual obstacle location

should be noted. The nature of the point cloud filtering and voxelization process detailed

in Chapter V accounts for some of this drift. Also contributing to the wide spread of

obstacle points in relation to the actual obstacle location is the presence of erroneous points.

These erroneous points are lidar returns from small irregularities in the ground plane such

as the small gap between the floor tiles or the prominent edge of a piece of tape. Given that

the obstacle identification and control algorithm only considers a single point cloud at a

time, these erroneous points are only briefly detected, and the parameters of the potential

field model are pre-set by trial and error to ensure that the erroneous points do not

negatively impact the navigation of the robot. Finally, the time delay inherent in the

55

MATLAB script and the drift of the robot pose further add to the spread of the obstacle

point locations. The elapsed time between determining the pose of the robot and the

execution of steering commands due to the presence of an obstacle can be anywhere from

0.7 seconds to 1.2 seconds depending upon the environment. Within this time, the robot is

still in motion and, depending on the translation rate of the robot, could move as far as 200

mm before receiving updated translation and rotation commands.

Figure 43. Robot Navigation Path for Experiment 1

B. SMALL OBSTACLE IDENTIFICATION AND AVOIDANCE

Similar to experiment one, experiment two involved the robot moving from an

initial starting point to a goal 6.0 meters directly in front of the robot. A small obstacle with

dimension 5.0 cm x 3.2 cm x 1.6 cm was placed directly in the path of the robot, as shown

in Figure 44. The size of the small obstacle was determined based on the results found in

Chapter III. The robot successfully navigated around the small obstacle to within 200 mm

of the goal, as shown in Figure 45. The distribution of the small obstacle points shown in

Figure 45 and the erroneous points are caused by the same factors discussed in the analysis

of experiment one.

56

Figure 44. Experiment 2: Small Obstacle Detection and Avoidance

Figure 45. Robot Navigation Path for Experiment 2

57

C. COMBINED OBSTACLE IDENTIFICATION AND AVOIDANCE

Experiment three involved the robot again navigating to a goal 6.0 meters in front

of the robot, this time with both a large and small obstacle placed in the path of the robot,

as shown in Figure 46. The large obstacle used was identical to the obstacle used in

experiment one. The size of the small obstacle used was 7.8 cm x 8.1 cm x 20.0 cm. A

larger small obstacle than the obstacle used in experiment two was used to evaluate the

versatility of the algorithm. The robot successfully navigated around both obstacles and

reached the goal using the path shown in Figure 47. As discussed in the case of experiment

one and two, erroneous points and a wide spread of obstacle points are shown in Figure 47.

Additionally, from the path shown in Figure 47 the robot momentarily became stuck in

front of the first obstacle as the robot looked for a clear path between the large obstacle and

the metal cabinet shown in Figure 46.

Figure 46. Experiment 3: Combined Obstacle Detection and

Avoidance

58

Figure 47. Robot Navigation Path for Experiment 3

D. TABLE OBSTACLE IDENTIFICATION AND AVOIDANCE

The fourth and final experiment required the robot to navigate around a table to

reach a goal 7.0 meters directly in front of the robot. The table was positioned to ensure

the robot needed to navigate around one of the table legs to reach the goal, as shown in

Figure 48. The purpose of this experiment was to simulate the robot moving in a real- world

indoor environment and to evaluate the ability of the OS1-16 sensor to detect a skinny

obstacle such as a table leg. Furthermore, this experiment highlights the ability of the

control algorithm to navigate the robot beneath obstacles and highlight this capability for

future application on autonomous platforms with six degrees of freedom. The path taken

by the robot to reach the goal is given in Figure 49. The same spread of obstacle points

seen in experiments one, two, and three is present in experiment four due to the factors

discussed in experiment one.

59

Figure 48. Experiment 4: Table Obstacle Detection and Avoidance

Figure 49. Robot Navigation Path for Experiment 4

60

The ability of the OS1-16 sensor to detect the legs of the table is clearly shown in Figure

50. The corresponding FOV of the robot is given in Figure 51 with the table leg clearly

indicated.

Figure 50. Unmodified Point Cloud of Experiment 4

Figure 51. Robot Field of View for Experiment 4

61

VII. CONCLUSION

A. EVALUATION OF RESEARCH OBJECTIVES

The overall goal of this research, to evaluate the feasibility of conducting

autonomous obstacle avoidance with input from a single lidar sensor, was accomplished.

The experiments conducted in this research demonstrate the ability of the robot to identify

and avoid both small and large obstacles. Furthermore, the capabilities of the OS1-16 lidar

sensor were explored and the limitations regarding the size of detectable obstacles was

determined.

B. LIMITATIONS

1. Negative Obstacle Testing

Given the limitations of the lab environment, a suitable negative obstacle was not

available to test the negative obstacle detection algorithm developed in Chapter IV with

the control algorithm from Chapter V. The work presented in Chapter IV demonstrates the

ability of the sensor to detect negative obstacles but does not explore the feasibility of

coupling this detection capability with the control method presented in Chapter V.

2. Obstacle Memory

The control algorithm developed in this work lacks any form of obstacle memory.

As explained in Chapter V, the algorithm uses a single point cloud when detecting obstacles

and responding with the necessary translation and rotation commands to the robot. When

the next point cloud is received, the obstacles identified in the previous point cloud are

forgotten. This means that if an obstacle is no longer in the FOV of the robot, the robot will

not react to the obstacle. An obstacle memory feature was briefly implemented but further

development and experimentation was abandoned due to time constraints. The obstacle

memory algorithm developed is presented in Appendix A for potential use in future work.

62

3. Computing Power

The computing power of the R580 computer used as the control computer for this

work was less than ideal. With the OS1-16 sensor running at 10 Hz, the computer can

complete a single iteration of the while loop that receives, analyzes, and controls the robot

in 0.8 seconds. As highlighted in Chapter VI, the delay caused by this time relative to the

translation speed of the robot resulted in delayed steering commands to the robot and errors

in obstacle location in the environment.

4. Algorithm Implementation

Like the limitations encountered in [4], the use of MATLAB to implement the

algorithms developed in this work contributed to the time delay between receiving the input

data from the sensor and executing the appropriate translation and rotation commands on

the robot. The implementation of the algorithms developed in this work for a commercial

system would require the use of a programming language that would allow for

simultaneous execution of multiple algorithms or scripts [4].

5. Sensor Resolution

As detailed in Chapter II, the sensor used for this work was the 16 channel OS1-16.

A higher resolution lidar sensor will allow for the detection of smaller obstacles and greater

accuracy. A comparison between the OS1-16 and the 32 channel Ouster OS1-32 is given

in Figure 52. The OS1-16 is capable of returning 16,384 points and the OS1-32 can return

up to 32,768 points. The OS1-32 was not used in this work due to time constraints.

63

Figure 52. Comparison Between 16 Channel (Left) and 32 Channel

(Right) Lidar Sensor

C. RECOMMENDATIONS FOR FUTURE WORK

1. Implementation on a Small Unmanned Aerial Vehicle

The algorithms developed in this work consider six degrees of freedom despite the

P3-DX being limited to only three degrees of freedom. The reason for this design

consideration is to allow for the use of the algorithms with a SUAV similar to the one used

in [45]. The use of SUAV for indoor navigation would allow for a greater degree of

mobility to navigate around identified obstacles. Furthermore, with adequate computing

power, the speed of navigation could be increased.

2. Simultaneous Localization and Mapping

Combining the obstacle avoidance techniques developed in this work with the

SLAM techniques developed in [4] would allow for a completely autonomous system that

could quickly navigate through an interior space and provide real time map data to a user.

3. Obstacle Classification Based on Distance

To overcome the misclassification of obstacle points identified in Chapter V, a

variable distance threshold could be implemented similar to the method utilized in [10]. In

other words, the distance L between two points as shown in Figure 38 could vary based on

the distance from the point to the sensor. This would decrease the possibility of

misclassification, as discussed in Chapter V.

64

4. Implementation of Obstacle Memory

The lack of an effective obstacle memory necessitated the need to identify and react

to small obstacles at a greater distance than normal to avoid missing the obstacles in the

dead space around the robot. The implementation of an obstacle memory would allow the

sensor to identify a small obstacle at an appreciable distance and remember the location of

the obstacle in the world frame.

5. Route Planning

Given the initial snapshot by the lidar sensor from the starting position of the robot,

a path could be planned through the environment. This path could be adhered to and only

deviated from due to the presence of unanticipated obstacles. The detection of these

obstacles could be solved using the algorithms developed in this work. The use of an octree

filter for path planning in a voxel space might be a viable method to explore.

65

APPENDIX A. MATLAB SCRIPT

A. ROBOT_MASTER_CONTROL.M

%% Master Control Script for Robot Obstacle Avoidance
% Student: Bracci, Justin
% This code is adapted from the code exampleWander_DL.m written by Dr.
James Calusdian, NPS ECE dept.
% particularly the while loop structure and goal checking feature

clear all
close all
clc

%% Pre-Loop Section
% This section pre-defines constants and empty matrices before
initiating
% the while loop that actually controls the robot

% Define the Goal if applicable in the world frame in mm
goal = [7000 0 0]; %format: [x; y; z]

% Establish Range Clearance
range_Clearance = true; %initial value for while loop parameter

% Define Global Variables
global robot_height loopCounter Beam16_save p_c vs
vs = 100; % voxel size in mm
p_c = 3000; % this is the cutoff distance for small obstacles in mm
% it is defined here IOT factor into the ROI
robot_height = 500; % height of robot in world frame
% actual height is 387mm rounded to 400mm for use
% here

% Define ROI or Robot field of view
roi = [0, p_c+7000, -500, 500, -0.5, robot_height]; % Define region of
interest [xmin, xmax, ymin, ymax, zmin, zmax] in mm

% Counter to keep track of while loop
loopCounter = 0;
Max_Loop_Counter = 70; % Robot will stop when counter reaches this
number
runStatus = true; % initialize run status

% Turn memory on (true) or off (false)
Mem_OF = false;

% Initialize matrices
Obst_Memory_small = []; % Empty small object memory
Obst_Memory_Neg = []; % Empty large object memory
Robot_Coord_list = zeros(Max_Loop_Counter + 1, 4); % Pre-allocation of
robot path memory

66

Neg_Obst_Plot = []; % Empty negative obstacle recorder for post
plotting
large_points_plot = []; % Empty large obstacle recorder for post
plotting
small_points_plot = []; % Empty small obstacle recorder for post
plotting

% Subscribe to LiDAR Topic (See How to Subscribe to ROS Topics for more
% info)
rosinit; % Only necessary for remote activation, comment out when
running directly
pause(5) % pause to allow rosinit to activate
laser = rossubscriber(‘/os_cloud_node/points’);

% Establish Beam 16 threshold for negative object detection
% IMPORTANT NOTE: In order for the robot to establish an accurate
% threshold, the robot must be initiated on the intended navigation
ground
% plane with the ROI clear of all positive and negative obstacles
PCloud = receive(laser, 10); % Recieve LiDAR data in ros PointCloud2
msg format
PCloud =
pointCloud(readXYZ(PCloud),’Intensity’,readField(PCloud,’intensity’));%
Convert from ROS message PointCloud2 to Matlab pointCloud Object
[Th_16, Beam16] = Negative_Obstacle_TH(PCloud); % Determine threshold
values for negative obstacles
Beam16_save(:,:,1) = Beam16.Location; % Save the initial Beam 16 values
Beam16_Index_Save(1,:) = true(1,length(Beam16_save)); % Save and
initialize the first Beam 16 binary index

%% Conect to the Robot
% The connector script p3_connector_Payne.m used here was written by
Jameson
% Payne, adapted from one written by Dr. James Calusdian, NPS ECE dept.
% J. S. Payne, “Autonomous interior mapping robot utilizing lidar
% localization and mapping,” M.S. thesis, Dept. Elect. And Comp. Eng.,
NPS,
% Monterey, CA, USA, 2020. [Online]. Available: http://hdl.handle.net/
10945/66121

p3_connector_Payne(‘/dev/ttyUSB0’);
pause(5) % pause to allow matlab to catch up

%% Start While Loop and Robot Control

while (p3_getBumpersClear && range_Clearance && runStatus)
tic
% Establish Pose of robot
[x,y,theta] = p3_getXYHeading; % get pose of robot using wheel encoders
in mm and degrees
z = 0; % hard code robot z coordinate as 0, this would change for robot
with higher degrees of freedom
pose = [x, y, z, deg2rad(theta)]; % Robot pose in [x, y, z, heading]
format; change heading to radians

67

% Save Robot Pose for plotting
Robot_Coord_list(loopCounter+1,:) = pose;

% Pre-Process LiDAR data
PCloud = receive(laser, 10); % Recieve LiDAR data in ros PointCloud2
msg
PCloud =
pointCloud(readXYZ(PCloud),’Intensity’,readField(PCloud,’intensity’));%
Convert from ROS message PointCloud2 to Matlab pointCloud Object
[PC_U1, PC] = OS1_FOV_4(PCloud, roi, pose); % Refine and down sample PC

% Identify Negative Obstacles
% NOTE: the input PC for negative obstacle detection is the
% non-downsampled PC (PC_U1)
[Beam16_save, Neg_Obstacle, Beam16_Index_Current] =
Negative_Obstacle_Detection(PC_U1, Th_16,
Beam16_Index_Save(loopCounter+1,:), pose);
Beam16_Index_Save(loopCounter+2,:) = Beam16_Index_Current;

% Identify ‘small’ and ‘large’ points
[small_points, large_points, points_index] = Obstacle_Class(PC);

% Determine potential field forces
[fwdVel, rotVel, Frep_r, Fatt, Ftotal, Frep_small_r, Frep_large_r,
small_points, large_points] = potentialField_2(pose, goal,
small_points, large_points, Obst_Memory_Neg, Obst_Memory_small,
Obst_Memory_Neg); %Determine Repulsive force Frep in [x, y, z] in robot
frame

% Set Robot Motion
p3_setTransVel(fwdVel);
p3_setRotVel(rotVel);

% For Testing and Presentation only, comment out for faster run times
% Create matrices to save for plotting: all points in world frame
large_points = Robot_to_World(large_points, pose);
small_points = Robot_to_World(small_points, pose);
Neg_Obst_Plot = Robot_to_World(Neg_Obst_Plot, pose);
large_points_plot = [large_points_plot; large_points];
small_points_plot = [small_points_plot; small_points];
Neg_Obst_Plot = [Neg_Obst_Plot; Neg_Obstacle];

% Manage Memory Bank for small and negative obstacles
[Obst_Memory_small, Obst_Memory_Neg] =
Obst_Memory_Manager(small_points, Neg_Obstacle, pose,
Obst_Memory_small, Obst_Memory_Neg, Mem_OF);

% Display formatted data for monitoring/troubleshooting
% Uncomment as needed
clc
% mystring1 = sprintf(‘x y heading %5.2f m %5.2f m %5.2f deg’, pose(1),
pose(2), pose(4));
% disp(mystring1)
% mystring3 = sprintf(‘Attractive Force %7.2f %7.2f’, Fatt(1),
Fatt(2));

68

% disp(mystring3)
% mystring2 = sprintf(‘Repulsive Force %7.2f %7.2f’, Frep_r(1),
Frep_r(2));
% disp(mystring2)
% mystring5 = sprintf(‘Total Force %7.2f %7.2f’, Ftotal(1), Ftotal(2));
% disp(mystring5)
% mystring8 = sprintf(‘Small Object Repulsive Force %7.2f %7.2f %7.2f’,
Frep_small_r(1,1), Frep_small_r(1,2), Frep_small_r(1,3));
% disp(mystring8)
% mystring9 = sprintf(‘Large Object Repulsive Force %7.2f %7.2f %7.2f’,
Frep_large_r(1,1), Frep_large_r(1,2), Frep_large_r(1,3));
% disp(mystring9)
% mystring6 = sprintf(‘Translation Velocity %7.2f’, fwdVel);
% disp(mystring6)
% mystring7 = sprintf(‘Rotation Velocity %7.2f’,rotVel);
% disp(mystring7)
% mystring10 = sprintf(‘Number of Negative Objects Detected %7.2f’,
length(Neg_Obstacle));
% disp(mystring10)
% mystring11 = sprintf(‘Loop Count: %7.2f’, loopCounter);
% disp(mystring11)
% mystring12 = sprintf(‘Distance to Goal: %7.2f’, (norm(q-goal’)));
% disp(mystring12)

% Stop Robot if within 200mm of goal
if (norm((pose(1,1:3))-goal)) < 200
p3_setTransVel(0);
p3_setRotVel(0);
range_Clearance = false;
disp(‘Goal has been reached. Ending Program.’)
p3_disconnector
end

% Exit the while loop when finished
if(loopCounter < Max_Loop_Counter)
loopCounter = loopCounter + 1;
else
runStatus = false;
myString = ‘Ending program...’;
disp(myString);
p3_disconnector;
end
toc
end

%% Save Data
save(‘~/Desktop/sharefile2/Current_Run_Folder/
Robot_Path.mat’,’Robot_Coord_list’);
save(‘~/Desktop/sharefile2/Current_Run_Folder/
Beam16_Index_Save.mat’,’Beam16_Index_Save’);
save(‘~/Desktop/sharefile2/Current_Run_Folder/
Beam16_save.mat’,’Beam16_save’);
save(‘~/Desktop/sharefile2/Current_Run_Folder/
Neg_Obst_Plot.mat’,’Neg_Obst_Plot’);

69

save(‘~/Desktop/sharefile2/Current_Run_Folder/
Large_points_save.mat’,’large_points_plot’);
save(‘~/Desktop/sharefile2/Current_Run_Folder/
Small_points_save.mat’,’small_points_plot’);

B. NEGATIVE_OBSTACLE_TH.M

%% Negative Obstacle Thresholds

% This script will calculate the threshold values for beam 16 in mm.
This

% threshold value is then used in the function Negative_Obstacle_ID to

% determine if a negative obstacle is in the path of the beam.

% Inputs: PCloud => MATLAB pointcloud object

% Outputs: Th_16 => a scalar value in mm indicating the distance from
the

% sensor to the ground plane

% Beam16 => MATLAB pointcloud object containing 100 points of Beam 16
in mm

% in the World Frame.

function [Th_16, Beam16] = Negative_Obstacle_TH(PCloud)

%% Isolate Beams 16

Beam16 =
pointCloud(PCloud.Location(((1024*15)+1):((1024*16)),:),’Intensity’,
PCloud.Intensity(((1024*15)+1):((1024*16)),:));

%% Identify ROI Points and convert to mm

% For this application, 100 points are used. This can be changed by

% adjusting the ranges (462:561) below but might require changes
elsewhere

% in other programs.

% IMPORTANT NOTE: The Negative_Obstacle_Detection function requires an
even

% number of points

Beam16 = pointCloud((Beam16.Location(462:561,:).*(10^3)),’Intensity’,
PCloud.Intensity(462:561,:));

%% Remove Invalid Points from PC (NaN or Inf)

Beam16 = removeInvalidPoints(Beam16);

%% Transform the PC from Sensor Frame to World Frame

% NOTE: the pose of the robot is hard coded as 0 0 0 0 for the

% establishment of the threshold. If this is not the case, replace [0 0
0

% 0] with robot pose in world frame.

Beam16 = Sensor_to_World(Beam16, [0,0,0,0]); % convert PC to world
frame with robot pose assumed to be at origin

%% Identify Ranges in mm

Range16 = PC_Range(Beam16);

%% Identify Threshold in mm

Th_16 = mean(Range16);

end

70

C. OS1_FOV_4.M

%% OS1_FOV_4

% Input: PC_U => MATLAB pointCloud Object, unmodified straight from
sensor in meters
% roi => 1x6 region of interest matrix of the form [xmin, xmax, ymin,
ymax, zmin, zmax]
% r_pose => pose of robot in world frame in mm and radians [x, y, z,
% theta]
% Outputs: PC_U1 => original unmodified PC from sensor for testing and
% evaluation purposes
% PC_U => Down sampled and processed MATLAB pointCloud object in mm

% Pre-processing procedures of this function:
% Conversion of PC from meters to mm
% Conversion of PC from sensor to world
% narrowing of PC to include only points in ROI
% removal of all points below a defined intensity threshhold
% Down sampling of point cloud into 3D voxels of height, length, and
width
% vs (defined below)

function [PC_U1, PC_U] = OS1_FOV_4(PC_U, roi, r_pose)
global vs % establish the voxel size as a global variable
PC_U1 = PC_U; % save the PC in the world frame for use in Negative
Obstacle identification

%% Convert PC from meters to mm
PC_U = pointCloud((PC_U.Location.*(10^3)),’Intensity’, PC_U.Intensity);

%% Remove Invalid Points from PC (NaN or Inf)
PC_U = removeInvalidPoints(PC_U);

%% Remove Points with coordinates [0 0 0]
index = bsxfun(@eq,PC_U.Location,(zeros(1,3))); % binary comparison of
matrix rows with [0, 0, 0]
index_3 = sum(index,2); % sums the rows which results in values of 3
indicating a point [0 0 0]
index_nz = (index_3 ~= 3); % non-zero index
PC_U = select(PC_U, index_nz); % PC with all points of [0 0 0] removed

%% Transform PC from sensor to world
PC_U = Sensor_to_World(PC_U, r_pose);

%% Identify ROI Points
indices = findPointsInROI(PC_U, roi); % Identify points in region of
interest
PC_ROI = select(PC_U, indices); % Create PC with point of interest

%% Remove points with Intensity < 200 & z < 0
int_threshold = 220; % Intensity threshold (most ground points are ~100
on lab floor surface)
robot_clearance = 60; % Clearance of robot in mm

71

% for the lab setting, by increasing the intensity threshold to 200,
this
% eliminates almost all of the ground returns while keeping the returns
for
% the 4cm high obstacles. This value was determined by manual
inspection of
% PCs and will likely differ depending on the composition of the ground
% plane
index = (PC_ROI.Intensity < int_threshold); %& (PC_ROI.Location(:,3) <
robot_clearance);
PC_ROI = select(PC_ROI, ~index);

%% Downsample PC using cubic voxels of size vs in mm

PC_DS = pcdownsample(PC_ROI, ‘gridAverage’, vs);

%% Replace point cloud data with center point of occupied voxels
sz = size(PC_DS.Location);
xyzVoxel = zeros(sz(1),3); % Pre-allocate matrix

for i = 1:sz(1)
% Coordinates of average location of points in voxel
x = PC_DS.Location(i,1);
y = PC_DS.Location(i,2);
z = PC_DS.Location(i,3);

% Center coordinate of occupied voxel
x_v = (floor(x/vs)*vs)+(vs/2);
y_v = (floor(y/vs)*vs)+(vs/2);
z_v = (floor(z/vs)*vs)+(vs/2);

% save voxel center points
xyzVoxel(i,:) = [x_v, y_v, z_v];
end

% Replace average points with voxel centers and re-define output PC_U
PC_U = pointCloud(xyzVoxel,’Intensity’, PC_DS.Intensity); % Convert
from ROS message PointCloud2 to Matlab pointCloud Object

end

D. NEGATIVE_OBSTACLE_DETECTION.M

%% Negative Obstacle Detection

% This Function identifies negative obstacles in the forward field of
view
% of the robot.

% Input: PCloud => unmodified MATLAB pointCloud object from the sensor
% Th_16 => threshold value for beam 16 obtained from
% Negative_Obstacle_TH function
% Beam16_index => index of previous Beam 16 scan where 1 indicates
% clear area and 0 indicates a negative obstacle

72

% r_pose => pose of the robot in the world frame [x y z theta] in mm
and radians

% Output: Beam16_save => 3 dimensional matrix of the form n x m x L
where n
% is the number of points (in this case 100), m is 3
% for x, y, z in mm and L is the Beam 16 scan number in
% terms of the loop counter
% Neg_Obstacle => n x 3 matrix of the form [x, y, z] in mm of
% identified negative obstacles in the world frame
% where n is the number of identified obstacles
% Beam16_Index_Current => The current beam16 scan logical index
% where 1 indicates clear area and 0 indicates a negative obstacle

function [Beam16_save, Neg_Obstacle, Beam16_Index_Current]=
Negative_Obstacle_Detection(PCloud, Th_16, Beam16_Index, r_pose)
global loopCounter Beam16_save

%% Check for Negative Obstacles
[Beam16, Neg_Obstacle_index_16] = Negative_Obstacle_ID(PCloud, Th_16,
r_pose);
Beam16_save(:,:,loopCounter+2) = Beam16.Location; % Save t-1 Beam 16
scan
Beam16_last = Beam16_save(:,:,loopCounter+1); % xyz coordinates of Beam
16 scan at t-1

%% Binary Comparison
Neg_Obstacle_index_16 = Neg_Obstacle_index_16’;
% Pre-Define Matrices
Index_P1 = false(1,100); % index for [1;0] comparison or ‘ground’ to
‘hole’
Index_P2 = false(1,100); % index for [0;1] comparison or ‘hole’ to
‘ground’
% Identify leading and trailing edges of negative obstacle by comparing
% previous scan to current scan and looking for binary transitions
for k = 1:100 % the 100 comes from the number of points from Beam 16
being analyzed
if Neg_Obstacle_index_16(1,k) == false && Beam16_Index(1,k) == true
Index_P1(1,k) = true;
else if Neg_Obstacle_index_16(1,k) == true && Beam16_Index(1,k) ==
false
Index_P2(1,k) = true;
end
end
end

% Identify transition points in current index: [1,0] or [0,1]
% essentiall identify left and right edges of negative obstacle from
% current scan
B = strfind(Neg_Obstacle_index_16,[1,0]);
C = strfind(Neg_Obstacle_index_16,[0,1]);
Index_C = false(1,length(Neg_Obstacle_index_16)); % Pre-define output
Index_C(B) = 1;
Index_C(C+1) = 1;

73

% Identify Negative Obstacles
Obstacles_Prev = Beam16_last(Index_P1’,:);
Obstacles_Cur = Beam16.Location(Index_C’,:);
Obstacles_Cur2 = Beam16.Location(Index_P2’,:);
Neg_Obstacle = [Obstacles_Prev; Obstacles_Cur; Obstacles_Cur2];

% Save Beam Index
Beam16_Index_Current = Neg_Obstacle_index_16;

end

E. NEGATIVE_OBSTACLE_ID.M

%% Negative Obstacle ID

% This script identifies negative obstacles in the robots path by
analyzing
% 100 point returns from Beam 16 in the forward facing direction of the
% robot.

% Inputs: PCloud => Unmodified MATLAB pointcloud object
% Th_16 => a scalar value in mm indicating the distance from the
% sensor to the ground plane
% r_pose => pose of the robot in the world fram in mm and radians [x,
y, z, theta]
% Outputs: Beam16 => MATLAB pointcloud object containing 100 points of
Beam 16 in mm
% in the World Frame.
% Neg_Obstacle_index_16 => 1x 100 logical array where 1 indicates
% clear area and 0 indicates a negative obstacle

function [Beam16, Neg_Obstacle_index_16] = Negative_Obstacle_ID(PCloud,
Th_16, r_pose)

%% Isolate Beams 16
% NOTE: for a complete explanation see the section on OUSTER data PC
format
% in report appendix
Beam16 =
pointCloud(PCloud.Location(((1024*15)+1):((1024*16)),:),’Intensity’,
PCloud.Intensity(((1024*15)+1):((1024*16)),:));

%% Identify ROI Points and convert to mm
% For this application, 100 points are used. This can be changed by
% adjusting the ranges (462:561) below but might require changes
elsewhere
% in other programs.
% IMPORTANT NOTE: The Negative_Obstacle_Detection function requires an
even
% number of points
Beam16 = pointCloud((Beam16.Location(462:561,:).*(10^3)),’Intensity’,
PCloud.Intensity(462:561,:));

%% Remove Invalid Points from PC (NaN or Inf)
Beam16 = removeInvalidPoints(Beam16);

74

%% Transform the PC from Sensor Frame to World Frame
Beam16 = Sensor_to_World(Beam16, r_pose); % convert PC to world frame
with robot pose assumed to be at origin

%% Identify Ranges
Range16 = PC_Range(Beam16); % in mm

%% Account for range returns of 0
% NOTE: Currently, a range of 0 by the OS1-16 indicates that there was
no return for the point in question
% and it is assumed that the return is clear area, trusting points to
% the left and right to dtect the pressence of a negative obstacle
% large enough to impede the robot.
index = Range16 == 0;
Range16(index) = Th_16;

%% Identify Negative Obstacles
% The fudge factor is the +- distance from the threshold value (Th_16)
that
% the function will allow for. Using the angular orientation of the
Beam
% being used (in this case Beam 16) this value can be translated to
account
% for the acceptable drop the robot can navigate.
fudge_factor = 600; % in mm

% Negative Obstacles
Neg_Obstacle_index_16 = (Range16 - Th_16) > fudge_factor;
Neg_Obstacle_index_16 = ~Neg_Obstacle_index_16; % 1 is all clear; 0 is
obstacle

end

F. OBSTACLE_CLASS.M

%% Obstacle_Class calssifies points as either belonging to a small or
large object

% This function classifies each point in a PC as either a ‘large’ point
or
% a ‘small point’. The function initially assumes that all points above
a
% certain height threshold are large. The Function then assumes that
all
% the points below the height threshold are ‘small’ and looks for
reasons
% to classify them as large (see explanation below).

% Input: PC => modified, voxelized point cloud in the world frame in mm

% Output: small_points => [x, y, z] coordinates of small points in mm
in
% world frame
% large_points => [x, y, z] coordinates of large points in mm in

75

% world frame
% points => a logical index of small (0) and large (1) points
% corresponding to the input PC

function [small_points, large_points, points] = Obstacle_Class(PC)
global vs

% set classification height for small points in world frame in mm, all
points with z component < small_height have the potential to be
% labeled as small points
small_height = 107; % in mm
sz = size(PC.Location);
tol = 0.01; % A very small value tolerance value experimentally
determined.
points = true(sz(1),1);

for i = 1 : sz(1)
if PC.Location(i,3) <= small_height % if this is true, there is the
potential for classification as ‘small’
% find the 4 nearest neighbor points or neighbors
index = findNearestNeighbors(PC, (PC.Location(i,:)), 4);
neighbors = PC.Location(index,:);
szn = size(neighbors);
if szn(1) ~= 1 % This is the case if there is only 1 point in the FOV
and that point is small
% Identify if any of the nearest enighbors are directly above the
% point in question
P1 = PC.Location(i,:).*ones(size(neighbors));
dif = P1 - neighbors;
dif = dif(2:length(dif),:); % this is a 4x3 matrix of the x, y , and z
difference between the point in question and the 3 nearest neighbors
for k = 1 : length(dif)
index_temp = ismembertol(abs(dif(k,3)),vs,tol) &&
ismembertol(floor(abs(dif(k,1))),0,tol) &&
ismembertol(floor(abs(dif(k,2))),0,tol);
% 3 criteria are checked to identify if there is another point
% directly above the point in question
% 1.) does the neighbor occupy a voxel in the row above the
% current point
% 2.) is the neighbor in line with the point in question
% along the y-axis
% 3.) is the neighbor in line with the point in question in the
% x-direction
index_2(k) = index_temp;
end
if any(index_2)
% if the answer is ‘true’ to any of the above, the point is
% part of a larger object and can thus be classified as a
% ‘large point’
points(i,1) = true;
else % the point is indeed a small point
points(i,1) = false;
end
else
points(i,1) = true;

76

end
else % classify as ‘large’ (logical 1)
points(i,1) = true;
end
% points is a sz(1) x 1 matrics of logical 1 and 0 which denote large
(1)
% and small (0) points
end

% Small Points
small_points = PC.Location(~points,:);

% Small Points
large_points = PC.Location(points,:);

end

G. POTENTIALFIELD_2.M

%% Function to determine the potential field forces
% This function outputs the attractive and repulsive force experienced
by
% the robot in the robot frame and is adapted from the code
POTENTIALFIELD.M written by
% J.S. Payne and the code exampleWander_DL.m written by Dr. James
Calusdian, NPS ECE dept. NPS/Calusdian image_wander_ROS

% This script employs the same method used in [43].
% Inputs:
% r_pose => pose of the robot in the world frame in mm and radians [x,
y,
% z, theta]
% goal => navigation goal in the world frame in mm [x, y, z];
% range => nx1 matrix of the ranges for each point in the processed
% voxelized point cloud
% small_points => [x, y, z] coordinates of small points in mm in world
frame
% large_points => [x, y, z] coordinates of small points in mm in world
frame
% Neg_Obstacle => n x 3 matrix of the form [x, y, z] in mm of
identified negative obstacles in the world frame
% where n is the number of identified obstacles
% points_index => a logical index of small (0) and large (1) points
% corresponding to the input PC
% Obst_Memory_small => small obstacles stored in the memory in the
world
% frame in [x, y, z] format
% Obst_Memory_Neg => negative obstacles stored in the memory in the
world
% frame in [x, y, z] format

% Outputs:
% fwdVel => translation velocity in mm/sec
% rotVel => rotational velocity in radians/sec

77

% Frep_r => Total repulsive force acting on the robot in the robot
frame
% Fatt_r => Total attractive force acting on the robot in the robot
frame
% Ftotal => Total force acting on the robot in the robot frame
% Frep_small_r => Repulsive force resulting from small obstacles in the
% robot frame
% Frep_large_r => Repulsive force resulting from large obstacles in the
% robot frame
% small_points => [x, y, z] coordinates in mm in the world frame of the
% small points influencing the robot
% large_points => [x, y, z] coordinates in mm in the world frame of the
% large points influencing the robot

%% Compute the Repulsive Force Frep_r
function [fwdVel, rotVel, Frep_r, Fatt_r, Ftotal, Frep_small_r,
Frep_large_r, small_points, large_points] = potentialField_2(r_pose,
goal, small_points, large_points, Neg_Obstacle, Obst_Memory_small,
Obst_Memory_Neg)
global p_c

% Potential Field Algorithm Parameters used to compute fwd_vel and
rot_vel
k1 = 0.7; % sensitivity for transVel
k2 = 12; % sensitivity for rotVel
dA = 1000; % distance in mm for attractive force to reduce robot speed
when close to goal
ZETA = 0.43; % gain for attractive force

%% Determine repulsive forces from ‘small’ points
% Potential Field Constants and Gains
eta = 1e11; % repulsive gain for small obstacles

small_points = cat(1,small_points,Obst_Memory_small); % add small
obstacles from memory
[small_points, range_s] = World_to_Robot(small_points,r_pose); %
Convert from world frame to robot frame and calculate range

index = range_s <= p_c; % Remove any points that are too far from the
robot
small_points = small_points(index,:); % pre-define matrix
if ~isempty(small_points) % if there are small points withing p_c
then...
sz = size(small_points);
Frep_small_r = zeros(3,sz(1)); % Pre-allocate repulsive force matrix
% Calculate Small Obstacle Repulsive Forces
for k = 1:sz(1)
Frep = eta*((1/range_s(k,:))-(1/p_c))*(1/((range_s(k,:))^3))*(-
(small_points(k,:)’));
Frep_small_r(:,k) = Frep’;
end

% Filter out NaN Frep values resulting from ranges of 0
index = isnan(Frep_small_r);
Frep_small_r(index) = 0;

78

% Calculate Cumulative Small Repulsive Forces in the x, y and z
directions
Frep_small_r = [sum(Frep_small_r(1,:)); sum(Frep_small_r(2,:));
sum(Frep_small_r(3,:))]; %total repulsive forces in xyz coordinates in
robot frame
Frep_small_r = Frep_small_r’; % form of [Fx, Fy, Fz]

else
Frep_small_r = [0 0 0];
end

%% Determine Repulsive Force from ‘Negative’ points
% Potential Field Constants and Gains
eta_N = 5e10; % repulsive gain for negative obstacles
p_c_N = 1800; % cut off distance in mm for negative obstacles

Neg_Obstacle = cat(1,Neg_Obstacle,Obst_Memory_Neg); % add negative
obstacles from memory
[Neg_Obstacle, range_N] = World_to_Robot(Neg_Obstacle, r_pose); %
Convert from world frame to robot frame and calculate range

index = range_N <= p_c_N; % Remove any points that are too far from the
robot
Neg_Obstacle = Neg_Obstacle(index,:); % Pre-define matrix
if ~isempty(Neg_Obstacle) % if there are Negative Obstacles withing
p_c_N then...
sz = size(Neg_Obstacle);
Frep_neg_r = zeros(3,sz(1)); % Pre-allocate repulsive force matrix
% Calculate Negative Obstacle Repulsive Forces
for k = 1:sz(1)
Frep = eta_N*((1/range_N(k,:))-(1/p_c_N))*(1/((range_N(k,:))^3))*(-
(Neg_Obstacle(k,:)’));
Frep_neg_r(:,k) = Frep’;
end

% Filter out NaN Frep values resulting from ranges of 0
index = isnan(Frep_neg_r);
Frep_neg_r(index) = 0;

% Calculate Cumulative Negative Obstacle Repulsive Forces in the x, y
and z directions
Frep_neg_r = [sum(Frep_neg_r(1,:)); sum(Frep_neg_r(2,:));
sum(Frep_neg_r(3,:))]; % total repulsive forces in xyz coordinates in
robot frame
Frep_neg_r = Frep_neg_r’; % form of [Fx, Fy, Fz]

else
Frep_neg_r = [0 0 0];
end

%% Determine repulsive forces from ‘large’ points
% Potential Field Constants and Gains
eta_L = 1e11; % Large Obstacle repulsive gain
p_c_L = 1800; % large obstacle cut off distance in mm

79

[large_points, range_L] = World_to_Robot(large_points,r_pose); %
Convert from world frame to robot frame and calculate range

index = range_L <= p_c_L; % Remove any points that are too far from the
robot
large_points = large_points(index,:); % Pre-define the matrix
if ~isempty(large_points) % if there are large points withing p_c_L
then...
sz = size(large_points);
Frep_large_r = zeros(3,sz(1)); % Pre-allocate repulsive force matrix
% Calculate Large Obstacle Repulsive Forces
for k = 1:sz(1)
Frep = eta_L*((1/range_L(k,:))-(1/p_c_L))*(1/((range_L(k,:))^3))*(-
(large_points(k,:)’));
Frep_large_r(:,k) = Frep’;
end

% Filter out NaN Frep values resulting from ranges of 0
index = isnan(Frep_large_r);
Frep_large_r(index) = 0;

% Calculate Cumulative Large Obstacle Repulsive Forces in the x, y and
z directions
Frep_large_r = [sum(Frep_large_r(1,:)); sum(Frep_large_r(2,:));
sum(Frep_large_r(3,:))]; %total repulsive forces in xyz coordinates in
robot frame
Frep_large_r = Frep_large_r’; %form of [Fx, Fy, Fz]

else
Frep_large_r = [0 0 0];
end

%% Determine cumulative repulsive force
% this is where everything is put into the format [Fx; Fy; Fz]
Frep_r = (Frep_large_r’) + (Frep_small_r’) + (Frep_neg_r’);

%% Determine attractive force
% Compute the Attractive Force: Fatt_r
dist = norm([r_pose(1); r_pose(2); r_pose(3)] - goal’); %distance from
robot to goal in mm

if dist <= dA
Fatt_w = -(ZETA)*([r_pose(1); r_pose(2); r_pose(3)] - goal’);
%Attractive force in world coordinate frame
else
Fatt_w = -(ZETA)*dA*(([r_pose(1); r_pose(2); r_pose(3)] - goal’)/dist);
%Attractive force in world coordinate frame
end

% Convert attractive force from world frame to robot frame
Fatt_r = [cos(r_pose(4)), sin(r_pose(4)), 0; (-sin(r_pose(4))),
cos(r_pose(4)), 0; 0, 0, 1]*Fatt_w;

%% Determine Fwd velocity and rotational velocity

80

Ftotal = Frep_r’ + Fatt_r; % Total force acting on robot [Fx; Fy; Fz]
fwdVel = k1 * Ftotal(1); % translation velocity in mm/sec
rotVel = k2 * atan2(Ftotal(2), Ftotal(1)); % rotation velocity in rad/
sec

%% Set constraints on velocities (translation and rotation)
% The code in this section was taken from the script PotentialField.M
% written by Jameson Payne.
% J. S. Payne, “Autonomous interior mapping robot utilizing lidar
% localization and mapping,” M.S. thesis, Dept. Elect. And Comp. Eng.,
% NPS, Monterey, CA, USA, 2020. [Online]. Available: %
http://hdl.handle.net/10945/66121

dir = atan2(Ftotal(2), Ftotal(1));

if dir > pi/2 || dir < -pi/2
if fwdVel > 0
fwdVel = 40; % This is minimum translation velocity (+-40)
elseif fwdVel < 0
fwdVel = -40;
end

if rotVel > 0
rotVel = 10; % This is minimum rotational velocity (+-10)
elseif rotVel < 0
rotVel = -10;
end
else
if fwdVel > 200 % This is maximum translation velocity (+-200)
fwdVel = 200;
end

if rotVel > 40 % This is maximum rotational velocity (+-40)
rotVel = 40;
end
end

end

H. ROBOT_TO_WORLD.M

%% Convert from Robot frame to World frame

% This function transforms x y z coordinates from the Robot frame to
the
% World frame using the techniques presented in [46] Inputs must be in
mm and outpute will be in mm
%
% input: PC_R => can either be a MATLAB pointCloud Object or a nx3
matrix
% of xyz points. Both data types must be in mm
% r_pose => pose of robot in world frame in mm and radians [x, y, z,
theta]
% Output: P_w => Same as input, either a pointCloud object or a matrix

81

function [P_W] = Robot_to_World(P_R, r_pose)
% Define the homogenous transform in mm
T_WR = [cos(r_pose(4)), (-sin(r_pose(4))), 0, r_pose(1);
(sin(r_pose(4))), cos(r_pose(4)), 0, r_pose(2);
0, 0, 1, (r_pose(3) + 313.5);
0, 0, 0, 1];

% Convert from robot frame to world frame
if isa(P_R,’pointCloud’) % If the input is a MATLAB pointCloud object
sz = size(P_R.Location);
P_W = zeros(sz(1),3);
for i = 1:sz(1)
P_r = cat(1, P_R.Location(i,:)’, [1]);
P_w = T_WR*P_r;
P_W(i,:) = P_w(1:3,1)’;
end
P_W = pointCloud(P_W, ‘Intensity’, P_R.Intensity);

else % Otherwise assume the input is a nx3 matrix of xyz points
sz = size(P_R);
P_W = zeros(sz(1),3);
for i = 1:sz(1)
P_r = cat(1, P_R(i,:)’, [1]);
P_w = T_WR*P_r;
P_W(i,:) = P_w(1:3,1)’;
end
end
end

I. SENSOR_TO_ROBOT.M

%% Sensor to World Frame Translation

% This function transforms x y z coordinates from the sensor frame to
the
% world frame using the techniques presented in [46]. Inputs must be in
mm and outpute will be in mm
%
% input: PC_S => can either be a MATLAB pointCloud Object or a nx3
matrix
% of xyz points. Both data types must be in mm
% r_pose => pose of robot in world frame in mm and radians [x, y, z,
theta]
% Output: Same as input: either a pointCloud object or a matrix

function [PC_W] = Sensor_to_World(PC_S, r_pose)

% Define the homogenous transform
phi = deg2rad(1.54); % angular rotation about the y axis (1.54)

T_RS = [cos(phi), 0, (-sin(phi)), 0; % Homogenous transform for sensor
to robot
0, 1, 0, 0;
sin(phi), 0 cos(phi), 0;

82

0, 0, 0, 1];

T_WR = [cos(r_pose(4)), (-sin(r_pose(4))), 0, r_pose(1); % Homogenous
transform for robot to world
(sin(r_pose(4))), cos(r_pose(4)), 0, r_pose(2);
0, 0, 1, (r_pose(3) + 0313.5);
0, 0, 0, 1];

T_WS = T_WR*T_RS; % Homogenous transform for sensor to world

if isa(PC_S,’pointCloud’) % If the input is a MATLAB pointCloud object
sz = size(PC_S.Location);
pc_w = zeros(sz(1),3); % define empty x y z coordinates for world PC

for i = 1:sz(1)
P_s = cat(1,PC_S.Location(i,:)’,[1]);
P_w = T_WS*P_s;
pc_w(i,:) = P_w(1:3,1)’;
end
PC_W = pointCloud(pc_w, ‘Intensity’, PC_S.Intensity);

else % Otherwise assume the input is a nx3 matrix of xyz points
sz = size(PC_S);
pc_w = zeros(sz(1),3); % define empty x y z coordinates for world PC

for i = 1:sz(1)
P_s = cat(1,PC_S(i,:)’,[1]);
P_w = T_WS*P_s;
pc_w(i,:) = P_w(1:3,1)’;
end
PC_W = pc_w;
end

J. ROBOT_PATH_PLOTTING.M

%% Robot path plotting
close all
clear all
clc

load(‘Large_points_save.mat’)
load(‘Small_points_save.mat’)
load(‘Robot_Path.mat’)

% Define Robot z as ground plane
Robot_Z = zeros(1,length(Robot_Coord_list));

% Remove excessive small obstacles
index = small_points_plot(:,1) < 6000;
small_points_plot = small_points_plot(index,:);

figure(1)
hold on
scatter3(large_points_plot(:,1), large_points_plot(:,2),
zeros(1,length(large_points_plot)), 60, ‘.g’)

83

scatter3(small_points_plot(:,1), small_points_plot(:,2),
zeros(1,length(small_points_plot)), 60, ‘.r’)
scatter3(Robot_Coord_list(:,1), Robot_Coord_list(:,2), Robot_Z, 500,
‘ob’)
scatter3(6000, 0, 0, 100, ‘xc’)
scatter3(4000, 0, 0, 100, ‘dk’)
title(‘Robot Path and Small Obstacle Plot’)
xlabel(‘X axis in mm’)
ylabel(‘Y axis in mm’)
zlabel(‘Z axis in mm’)
ylim([-1000,1000])
legend(‘Large Points’, ‘Small Points’, ‘Robot Path’, ‘Goal’, ‘Actual
Obstacle Location’)
grid on

K. OBST_MEMORY_MANAGER.M

%% Obstacle Memory Manager

% This function allows the robot to maintain a memory of obstacles in
the
% world frame that will influence the motion of the robot without being
in
% the current field of view. The memory disregards the ‘oldest’
obstacles and saves the most ‘recent’ obstacles
%
% NOTE: Large obstacles are not stored in memory because it is assumed
that they are large enough to be seen by the sensor in real time. This
function was not used during testing as noted in Chapter VII.
%
% Inputs:
% small_points => small points in mm in [x y z] format in robot frame
from
% most recent scan that influenced the robot motion
% Neg_Obstacle => Negative Obstacles in mm in [x y z] format in robot
frame from
% most recent scan that influenced the robot motion
% r_pose => pose of the robot in the world frame
%
% Outputs:
% Obst_Memory_small => list of small obstacles stored in memory in [x,
y,
% z] format in mm in world frame
% Obst_Memory_Neg => list of negative obstacles stored in memory in [x,
y,
% z] format in mm in world frame

function [Obst_Memory_small, Obst_Memory_Neg] =
Obst_Memory_Manager(small_points, Neg_Obstacle, r_pose,
Obst_Memory_small, Obst_Memory_Neg, Mem_OF)
if Mem_OF % If false, outputs blank matrices for small and negative
obstacle memory

memory_length_small = 5; % Memory length for small obstacles

84

memory_length_neg = 10; % Memory length for negative obstacles

%% Convert from robot frame to world frame
small_points = Robot_to_World(small_points,r_pose);
Neg_Obstacle = Robot_to_World(Neg_Obstacle,r_pose);

%% Save Obstacles in memory
Obst_Memory_small = cat(1,small_points,Obst_Memory_small); % add most
recent obstacles to top of obstacles memory ‘stack’
sz1 = size(Obst_Memory_small);
if sz1(1) > memory_length_small
Obst_Memory_small = Obst_Memory_small(1:memory_length_small,:); %
maintain memory length
else
end

Obst_Memory_Neg = cat(1,Neg_Obstacle, Obst_Memory_Neg); % add most
recent obstacles to top of obstacles memory ‘stack’
sz2 = size(Obst_Memory_Neg);
if sz2(1) > memory_length_neg
Obst_Memory_Neg = Obst_Memory_Neg(1:memory_length_neg,:); % maintain
memory length
else
end

% %% Convert from robot frame to world frame
% % Define the homogenous transform
% T_WR = [cos(r_pose(4)), (sin(r_pose(4))), 0, r_pose(1);
% (-sin(r_pose(4))), cos(r_pose(4)), 0, r_pose(2);
% 0, 0, 1, (r_pose(3) + 313.5); % Recall that we are working in mm here
% 0, 0, 0, 1];
%
% % Convert from robot frame to world frame
% sz1 = size(Obst_Memory_small);
% sz2 = size(Obst_Memory_Neg);
% for i = 1:sz1(1)
% P_r = cat(1, Obst_Memory_small(i,:)’, [1]);
% P_w = T_WR*P_r;
% Obst_Memory_small(i,:) = P_w(1:3,1)’;
% end
%
% for i = 1:sz2(1)
% P_r = cat(1, Obst_Memory_Neg(i,:)’, [1]);
% P_w = T_WR*P_r;
% Obst_Memory_Neg(i,:) = P_w(1:3,1)’;
% end

else
Obst_Memory_small = [];
Obst_Memory_Neg = [];
end
end

85

L. P3_CONNECTOR_PAYNE.M

The following script is taken directly from [4].
function p3_connector(comString)
% p3_connector initializes the connection to the robot. This script was
% adapted from one written by Dr. James Calusdian, NPS ECE dept.
% p3_connector(comString) opens the communication with either the real
% robot or MobileSim. To connect to the actual robot the input
parameter
% comString must be set equal to ‘Com1’ or appropriate com port.
% To connect to MobileSim, comString must be set to ‘MobileSim’.
% Also see p3_disconnector for additional information.

% in case we have some ports open from previous failed connections
if ~isempty(instrfindall)
delete(instrfindall);
end

if ~isempty(timerfindall)
delete(timerfindall)
end

global robotConnector;
global SIP_HANDLER;
global PULSE;

% first define the sync bytes that we need to use
SYNC0 = uint8([250 251 3 0 0 0]);
SYNC1 = uint8([250 251 3 1 0 1]);
SYNC2 = uint8([250 251 3 2 0 2]);
START_SERVER = uint8([250 251 3 1 0 1]);
ENABLE_MOTORS = uint8([250 251 6 4 59 1 0 5 59]);

% also define the constants and variables we need
syncState = 0; % switch parameter
sync0Lock = 0; % case parameter
sync1Lock = 1; % case parameter
sync2Lock = 2; % case parameter
syncLock012 = false; % overall sync status
tryCounter = 0; % number of attempts to communicate
MAX_TRIES = 3; % number of times to try synching up with robot

% determine what type of input we have
if nargin==0
s1 = sprintf(‘p3_connector FAIL! Must provide an input parameter’);
s2 = sprintf(‘Exiting connector function.\n’);
disp(s1);
disp(s2);
return;
else
if strcmp(comString, ‘MobileSim’)

86

s = sprintf(‘Connecting to MobileSim...’);
disp(s);
% define our tcip connection
robotConnector = tcpip(‘localhost’,8101); % connecto to MobileSim
%set(robotConnector,’Terminator’,’’);
fopen(robotConnector); % open the connection

elseif strcmp(comString, comString)
s = sprintf(‘Connecting to real robot on Com1...’);
disp(s);
% establish serial connection to the real robot...
robotConnector = serial(comString,’BaudRate’,9600);
fopen(robotConnector);

else
s1 = sprintf(‘Input parameter not recognized’);
s2 = sprintf(‘Exiting p3_connector function.\n’);
disp(s1);
disp(s2);
return;

end
end

% send and verify our syncronization packets
while(~syncLock012)

switch syncState

case sync0Lock
s = sprintf(‘Sending Sync0’);
disp(s);
fwrite(robotConnector, SYNC0);
[response, counts] = fread(robotConnector, [1 6],’uint8’);
if isequaln(response, SYNC0)
syncState = sync1Lock;
s = sprintf(‘Sync0 acknowledged\n’);
disp(s);

else
if tryCounter < MAX_TRIES
syncState = sync0Lock;
syncLock012 = false;
tryCounter = tryCounter + 1;
s = sprintf(‘Sync0 fail. Sending Sync0 again\n’);
disp(s);
else
syncLock012 = true; % set to TRUE to get out of while-loop
s = sprintf(‘Sync0 fail. Max tries exceeded\nClosing local port\n’);
disp(s);
fclose(robotConnector);
end

end

87

case sync1Lock
s = sprintf(‘Sending Sync1’);
disp(s);
fwrite(robotConnector, SYNC1);
[response, counts] = fread(robotConnector, [1 6], ‘uint8’);
if isequaln(response, SYNC1)
syncState = sync2Lock;
s = sprintf(‘Sync1 acknowledged\n’);
disp(s);
syncLock012 = false;

else
if tryCounter < MAX_TRIES
syncState = sync1Lock;
syncLock012 = false;
tryCounter = tryCounter + 1;
s = sprintf(‘Sync1 fail. Sending Sync1 again\n’);
disp(s);
else
syncLock012 = true; % set to TRUE to get out of while-loop
s = sprintf(‘Sync1 fail. Max tries exceeded\nClosing local port\n’);
disp(s);
fclose(robotConnector);
end
end

case sync2Lock
s = sprintf(‘Sending Sync2’);
disp(s);
fwrite(robotConnector, SYNC2);pause(0.8);
bytesAvail = robotConnector.BytesAvailable;
[response, counts] = fread(robotConnector, [1 bytesAvail],’uint8’);
s = sprintf(‘Connected to %s\n’,response(3:end-3));
disp(s);

% send the OPEN command to start up server
fwrite(robotConnector, START_SERVER);

% start up heartbeat timer
p3_heartbeatTimer;
answer = PULSE.Running;
s = sprintf(‘Heartbeat timer is %s\n’,answer);
disp(s);

% start the SIP handler (timer) to read packets
p3_SIP_Timer;
answer = SIP_HANDLER.Running;
s = sprintf(‘SIP Handler is %s\n’,answer);
disp(s);

% send command 4 to enable the motors
fwrite(robotConnector, ENABLE_MOTORS); pause(0.8)

% break out of this loop

88

syncLock012 = true;

end % switch-case

end % while

pause(5); % wait a few seconds for everything to sync up

89

APPENDIX B. P3-DX MATLAB CODES

All code in this section was written by Dr. James Calusdian, NPS ECE Department

[16].

A. P3_GETBUMPERSCLEAR.M

function [bumpersClear] = p3_getBumpersClear
%P3_GETBUMPERSCLEAR returns true if ALL bumpers clear, false otherwise.
%
% Copyright Naval Postgraduate School, 2015

global SIPdata;
HEADER_BYTE0 = uint8(250);
HEADER_BYTE1 = uint8(251);

% if we have the SIPdata available, we can pull out the battery
voltage.
% First, let’s double check that we have the right data
if SIPdata(1) == HEADER_BYTE0
if SIPdata(2) == HEADER_BYTE1
bumperStatus = make16(SIPdata(17),SIPdata(16));

if bumperStatus
bumpersClear = false;
%disp(‘FALSE’);
else
bumpersClear = true;
%disp(‘TRUE’);
end

end
end

B. P3_GETXYHEADING.M

function [xPos,yPos,theta] = p3_getXYHeading
%P3_GETXYHEADING returns the robot’s coordinates and heading.
% [xPos,yPos,theta] = p3_getXYHeading returns the x and y coordinates
of
% the robot in millimeters, and theta is the robot heading in degrees.
%
% Copyright Naval Postgraduate School, 2015

global SIPdata;
HEADER_BYTE0 = uint8(250);
HEADER_BYTE1 = uint8(251);
angleConvFactor = (2*pi/4096)*360/(2*pi); % degs per count

90

% if we have the SIPdata available, then we can pull out the xPos,
yPos,
% and heading information.

% first, let’s double check that we have the right data by checking the
% sync bytes again.
if SIPdata(1) == HEADER_BYTE0
if SIPdata(2) == HEADER_BYTE1
tempX = make16(SIPdata(6),SIPdata(5));
tempY = make16(SIPdata(8),SIPdata(7));
tempTheta = make16(SIPdata(10),SIPdata(9));
xPos = double(convertToSignedInt(tempX));
yPos = double(convertToSignedInt(tempY));
theta = double(convertToSignedInt(tempTheta)) * angleConvFactor;
theta = wrapTo180(theta);
end
else
xPos = NaN;
yPos = NaN;
theta = NaN;
end

C. P3_SETTRANSVEL.M

function p3_seTransVel(transVel)
%P3_SETTRANSVEL sets the translational velocity for the robot.
% p3_setTransVel(transVel) causes the robot to move forward (+) or
% backward (-) at the speed of “transVel” mm/sec.
% See ARCOS command 11 in Operations Manual, pp 31.
%
% Copyright Naval Postgraduate School, 2015

global robotConnector;
HEADER_BYTE0 = uint8(250);
HEADER_BYTE1 = uint8(251);
commandNumber = uint8(11);

% construct the command to rotate
if transVel < 0
argType = uint8(27); % negative
else
argType = uint8(59); % positive
end

% convert “rotVel” into two bytes of uint8
temp = uint16(abs(transVel));
[MSB, LSB]=split16(temp);

% next construct the command packet
command = uint8([commandNumber argType LSB MSB]);
byteCount = uint8(length(command) + 2); % include 2 checkSum bytes
[chkMSB, chkLSB] = checksum4p3(command);
translateCommand = uint8([HEADER_BYTE0 HEADER_BYTE1 byteCount command
chkMSB chkLSB]);

91

% send everything to the robot
fwrite(robotConnector, translateCommand);

D. P3_SETROTVEL.M

function p3_setRotVel(rotVel)
%P3_SETROTVEL causes the robot to rotate ccw(+) or cw(-) at specified
deg/sec.
% p3_setRotVel(rotVel) causes the robot to rotate with the angular
velocity
% specified in rotVel (deg/second). A (+) rotVel produces a CCW
rotation,
% and a (-) rotVel produces a CW rotation, as viewed from the top of
the
% robot.
% See ARCOS command 9 in Operations Manual, pp 31.
%
% Copyright Naval Postgraduate School, 2015

global robotConnector;
HEADER_BYTE0 = uint8(250);
HEADER_BYTE1 = uint8(251);
commandNumber = uint8(9);

% construct the command to rotate
if rotVel < 0
argType = uint8(27); % negative
else
argType = uint8(59); % positive
end

% convert “rotVel” into two bytes of uint8
temp = uint16(abs(rotVel));
[MSB, LSB]=split16(temp);

% next construct the command packet
command = uint8([commandNumber argType LSB MSB]);
byteCount = uint8(length(command) + 2); % include 2 checkSum bytes
[chkMSB, chkLSB] = checksum4p3(command);
setRotCommand = uint8([HEADER_BYTE0 HEADER_BYTE1 byteCount command
chkMSB chkLSB]);

% send everything to the robot
fwrite(robotConnector, setRotCommand);

E. P3_DISCONNECTOR.M

function p3_disconnector
% P3_DISCONNECTOR disconnects from the robot or MobileSim.
% This function disconnects from the robot by stopping the SIP handler,
% stopping the PULSE timer, and closing the robotConnector object. No
input
% or output parameters are required for this function. Also see
p3_connector.
%

92

% Copyright Naval Postgraduate School, 2015

global robotConnector;
global SIP_HANDLER;
global PULSE;
global myTestData;

% first define the sync bytes that we need to use
CLOSE_CONNECTION = uint8([250 251 3 2 0 2]);

% stop processing the SIP packets
s = sprintf(‘Stopping the SIP handler...\n’);
disp(s);
stop(SIP_HANDLER);
answer = SIP_HANDLER.Running;
s = sprintf(‘SIP Handler is %s’,answer);
disp(s);
answer = SIP_HANDLER.AveragePeriod;
s = sprintf(‘SIP_HANDLER timer period actual is %7.2f seconds’,
answer);
disp(s);
delete(SIP_HANDLER);
%save(‘testData.mat’,’myTestData’);

% stop the heartbeat, which was started with p3_heartbeatTimer.
s = sprintf(‘Stopping PULSE heartbeat...\n’);
disp(s);
answer = PULSE.AveragePeriod;
s = sprintf(‘PULSE timer period actual is %7.2f seconds’, answer);
disp(s);
stop(PULSE);
answer = PULSE.Running;
s = sprintf(‘Pulse heartbeat is %s’,answer);
disp(s);
delete(PULSE);

% close the robot connection
s = sprintf(‘Closing robot connection’);
disp(s);
fwrite(robotConnector,CLOSE_CONNECTION); pause(0.8);
fclose(robotConnector);
delete(robotConnector);

93

LIST OF REFERENCES

[1] Velodyne Lidar, “Autonomous vehicles,” Accessed Jun. 11, 2021. [Online].
Available: https://velodynelidar.com/industries/autonomous/

[2] Ouster, “High-performance digital lidar solutions,” Accessed Jun. 11, 2021.
[Online]. Available: https://ouster.com/

[3] R. Siegwart, I. Nourbakhsh, and D. Scaramuzza, Introduction to Autonomous
Mobile Robots, 2nd ed. Cambridge, MA, USA: The MIT Press, 2011.

[4] J. S. Payne, “Autonomous interior mapping robot utilizing lidar localization and
mapping,” M.S. thesis, Dept. Elect. and Comp. Eng., NPS, Monterey, CA, USA,
2020. [Online]. Available: http://hdl.handle.net/10945/66121

[5] 2018 U.S. Marine Corps S&T Strategic Plan. Marine Corps Warfighting
Laboratory/Futures Directorate, Quantico, VA, USA, 2017. [Online]. Available:
https://www.onr.navy.mil/-/media/Files/About-ONR/2018-USMC-S-and-T-
Strategic-
Plan.ashx?la=en&hash=73B2574A13A8EC6AAE60CF4670E05C6F97309B8F

[6] A. Discant, A. Rogozan, C. Rusu, and A. Bensrhair, “Sensors for obstacle
detection - a survey,” in 2007 30th International Spring Seminar on Electronics
Technology (ISSE), Cluj-Napoca, Romania, May 2007, pp. 100–105. doi:
10.1109/ISSE.2007.4432828.

[7] A. S. Miyakawa, “Autonomous ground vehicle low-profile obstacle avoidance
using 2D LIDAR,” M.S. thesis, Dept. Elect. and Comp. Eng., NPS, Monterey,
CA, USA, 2019. [Online]. Available: http://hdl.handle.net/10945/63486

[8] N. Bernini, M. Bertozzi, L. Castangia, M. Patander, and M. Sabbatelli, “Real-time
obstacle detection using stereo vision for autonomous ground vehicles: A survey,”
in 17th International IEEE Conference on Intelligent Transportation Systems
(ITSC), Qingdao, China, Oct. 2014, pp. 873–878. doi: 10.1109/
ITSC.2014.6957799.

[9] A. Asvadi, C. Premebida, P. Peixoto, and U. Nunes, “3D Lidar-based static and
moving obstacle detection in driving environments: An approach based on voxels
and multi-region ground planes,” Robotics and Autonomous Systems, vol. 83,
pp. 299–311, Sep. 2016, doi: 10.1016/j.robot.2016.06.007.

[10] N. Baras, G. Nantzios, D. Ziouzios, and M. Dasygenis, “Autonomous obstacle
avoidance vehicle using LIDAR and an embedded system,” in 2019 8th
International Conference on Modern Circuits and Systems Technologies
(MOCAST), 2019, pp. 1–4. doi: 10.1109/MOCAST.2019.8742065.

94

[11] S. Hening, C. A. Ippolito, K. S. Krishnakumar, V. Stepanyan, and M. Teodorescu,
“3D LiDAR SLAM integration with GPS/INS for UAVs in urban GPS-degraded
environments,” presented at the AIAA Information Systems-AIAA Infotech @
Aerospace, Grapevine, Texas, USA, Jan. 2017. doi: 10.2514/6.2017-0448.

[12] M. Tulldahl, H. Larsson, G. Tolt, F. Bissmarck, C. Grönwall, and J. Nordlöf,
“Application and capabilities of lidar from small UAV,” Baltimore, MD, USA,
May 2016, p. 98320V. doi: 10.1117/12.2224258.

[13] D. Droeschel and S. Behnke, “Efficient continuous-time SLAM for 3D lidar-
based online mapping,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, QLD, Australia, May 2018, pp. 5000–5007. doi:
10.1109/ICRA.2018.8461000.

[14] E. Shang, X. An, J. Li, and H. He, “A novel setup method of 3D LIDAR for
negative obstacle detection in field environment,” in 17th International IEEE
Conference on Intelligent Transportation Systems (ITSC), Qingdao, China,
Oct. 2014, pp. 1436–1441. doi: 10.1109/ITSC.2014.6957888.

[15] Adept Technology Inc., Pioneer 3-DX. Pioneer 3-DX Data Sheet, 2011.

[16] J. Calusdian, “Help documentation for MATLAB functions used with the P3
mobile robot,” unpublished.

[17] C. S. Hargadine, “Mobile robot navigation and obstacle avoidance in unstructured
outdoor environments,” M.S. thesis, Dept. Elect. and Comp. Eng., NPS,
Monterey, CA, USA, 2017. [Online]. Available: http://hdl.handle.net/10945/
56937

[18] X. Guoan, “3 ways to use SSH on windows to log into Linux server,” LinuxBabe,
Oct. 24, 2019. Accessed Jul. 20, 2021. [Online]. Available:
https://www.linuxbabe.com/linux-server/ssh-windows

[19] Ouster, “OS1 gen 1 (serial numbers starting with “os1-”) mid-range high-
resolution imaging lidar,” 2.0. 2020. [Online]. Available: https://data.ouster.io/
downloads/datasheets/datasheet-gen1-v2p0-os1.pdf

[20] T. Gray, “Ouster range and precision webinar 06.2020,” San Francisco, CA, USA,
Jun. 11, 2020. [Online]. Available: https://go.ouster.io/webinar/how-to-
understand-lidar-performance-range-precision-accuracy/thank-
you/?submissionGuid=389fdcea-3039-471e-9bce-8b9228074695

[21] J. Tatum, “1.13 Lambertian surface,” in Stellar Atmospheres, 2017, pp. 12–13.
Accessed: Jul. 20, 2021. [Online]. Available: http://orca.phys.uvic.ca/~tatum/
stellatm.html

95

[22] M. Young, Optics and Lasers: Including Fibers and Optical Waveguides, 5th ed.
Berlin: Springer, 2000.

[23] M. Pharr, W. Jakob, and G. Humphreys, “09 - Materials,” in Physically Based
Rendering, 3rd ed., M. Pharr, W. Jakob, and G. Humphreys, Eds. Boston: Morgan
Kaufmann, 2017, pp. 571–594. doi: 10.1016/B978-0-12-800645-0.50009-9.

[24] “Range resolution,” Radar Tutorial, 1998. Accessed Jul. 20, 2021. [Online].
Available: https://www.radartutorial.eu/01.basics/Range%20Resolution.en.html

[25] P. Angus, “Lidar as a camera - digital lidar’s implications for computer vision,”
Ouster, Aug. 31, 2018. Accessed Jul. 20, 2021. [Online]. Available:
https://ouster.com/blog/the-camera-is-in-the-lidar

[26] MathWorks, “What Is MATLAB?” Accessed Jul. 20, 2021. [Online], Available:
https://www.mathworks.com/discovery/what-is-matlab.html

[27] MathWorks, “Lidar Toolbox,” Accessed Jul. 20, 2021. [Online], Available:
https://www.mathworks.com/products/lidar.html

[28] MathWorks, “ROS Toolbox,” Accessed Jul. 20, 2021. [Online], Available:
https://www.mathworks.com/help/ros/index.html?s_tid=CRUX_lfnav

[29] ROS, “About ROS,” Accessed Jul. 20, 2021. [Online], Available:
https://www.ros.org/about-ros/

[30] J. Lambert et al., “Performance Analysis of 10 Models of 3D LiDARs for
Automated Driving,” IEEE Access, vol. 8, pp. 131699–131722, 2020, doi:
10.1109/ACCESS.2020.3009680.

[31] T. Grey, “Effective range and the high resolution advantage,” Ouster, Aug. 07,
2020. Accessed Jul. 20, 2021. [Online], Available: https://ouster.com/blog/
effective-range-and-resolution

[32] V. Lindberg, “Propagation of errors, basic rules,” in Uncertainties and Error
Propagation, 2000. Accessed: Jul. 20, 2021. [Online]. Available:
https://www.geol.lsu.edu/jlorenzo/geophysics/uncertainties/
Uncertaintiespart2.html

[33] M. Raffi, “Lidar vs. camera: driving in the rain,” Ouster, Feb. 04, 2020. Accessed
Jul. 20, 2021. [Online], Available: https://ouster.com/blog/lidar-vs-camera-
comparison-in-the-rain

[34] J. S. Evans and A. T. Hudak, “A multiscale curvature algorithm for classifying
discrete return LiDAR in forested environments,” IEEE Trans. Geosci. Remote
Sensing, vol. 45, no. 4, pp. 1029–1038, Apr. 2007, doi: 10.1109/
TGRS.2006.890412.

96

[35] A. Murarka, M. Sridharan, and B. Kuipers, “Detecting obstacles and drop-offs
using stereo and motion cues for safe local motion,” in 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Nice, France, Sep.
2008, pp. 702–708. doi: 10.1109/IROS.2008.4651106.

[36] H. Seraji, “Rule-based traversability indices for multi-scale terrain assessment,”
IFAC Proceedings Volumes, vol. 37, no. 7, pp. 159–164, Jun. 2004, doi: 10.1016/
S1474-6670(17)32141-9.

[37] J. Larson and M. Trivedi, “Lidar based off-road negative obstacle detection and
analysis,” in 2011 14th International IEEE Conference on Intelligent
Transportation Systems (ITSC), Oct. 2011, pp. 192–197. doi: 10.1109/
ITSC.2011.6083105.

[38] T. Hong, S. Legowik, and M. Nashman, “Obstacle detection and mapping
system,” in NISTIR 6213, Aug. 1998, pp. 1–22.

[39] Y. Roth-Tabak and R. Jain, “Building an environment model using depth
information,” Computer, vol. 22, no. 6, pp. 85–90, Jun. 1989, doi: 10.1109/
2.30724.

[40] T. Hinks, H. Carr, L. Truong-Hong, and D. F. Laefer, “Point cloud data
conversion into solid models via point-based voxelization,” J. Surv. Eng., vol.
139, no. 2, pp. 72–83, May 2013, doi: 10.1061/(ASCE)SU.1943-5428.0000097.

[41] D. Cohen, A. Kaufman, and Y. Wang, “Generating a smooth voxel-based model
from an irregular polygon mesh,” The Visual Computer, vol. 10, no. 6, pp. 295–
305, Jun. 1994, doi: 10.1007/BF01900824.

[42] MathWorks, “pcdownsample,” Accessed Jul. 20, 2021. [Online], Available:
https://www.mathworks.com/help/vision/ref/pcdownsample.html

[43] X. Yun and K. Tan, “A wall-following method for escaping local minima in
potential field based motion planning,” in 1997 8th International Conference on
Advanced Robotics. Proceedings. ICAR’97, Monterey, CA, USA, 1997, pp. 421–
426. doi: 10.1109/ICAR.1997.620216.

[44] X. Yun, “Fundamentals of Robotics Part 5: Motion Planning,” class notes for
EC4310 Fundamentals of Robotics, Dept. Elect. and Comp. Eng., NPS, Monterey,
CA, USA, winter 2020.

[45] L. Hardesty, “Flight of fancy,” MIT News | Massachusetts Institute of
Technology, Dec. 03, 2009. Accessed Jul. 20, 2021. [Online], Available:
https://news.mit.edu/2009/helicopters-1203

97

[46] X. Yun, “Fundamentals of Robotics Part 1: Description of Position and
Orientation,” class notes for EC4310 Fundamentals of Robotics, Dept. Elect. and
Comp. Eng., NPS, Monterey, CA, USA, winter 2020.

98

THIS PAGE INTENTIONALLY LEFT BLANK

99

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	21Sep_Bracci_Justin_First8
	21Sep_Bracci_Justin
	I. Introduction
	A. Motivation
	B. Previous Work
	C. Purpose and Goal

	II. Hardware and Software
	A. Hardware
	1. Pioneer 3-DX Mobile Robot
	2. Samsung R580 Laptop
	3. Microsoft Surface Pro 6
	4. DC 12V to 24V Step Up Converter
	5. Ouster OS1-16 Gen 1 Mid-Range High-Resolution Imaging Lidar
	a. Maximum Range
	b. Minimum Range
	c. Range Accuracy
	d. Precision
	e. Field of View
	f. Angular Sampling Accuracy
	g. Range Resolution
	h. Lidar Data Interpretation

	B. Software
	1. MATLAB
	2. The Robot Operating System (ROS)

	III. Small Object Detection and Identification
	A. Detection and Identification
	1. Detection
	2. Identification

	B. Small Object Defined
	C. Sensor Characteristics when Mounted on the Robot
	D. Verification of Theoretical Results
	1. Test Distance: 0.8 meters
	2. Test Distance: 1.5 meters
	3. Test Distance: 3.0 meters

	IV. Negative Height Obstacle Detection
	A. Previous Work
	B. Concept of Detection
	C. Process
	D. Negative Obstacle Detection Algorithm
	E. Experimental Setup and Results

	V. Small Object Identification
	A. Point Cloud Filtering and Voxelization
	B. Small Object Classification
	C. Field of View
	D. Robot Control Algorithm

	VI. Results
	A. large Obstacle Identification and Avoidance
	B. Small Obstacle Identification and Avoidance
	C. Combined Obstacle Identification and Avoidance
	D. Table Obstacle Identification and Avoidance

	VII. Conclusion
	A. Evaluation of Research Objectives
	B. Limitations
	1. Negative Obstacle Testing
	2. Obstacle Memory
	3. Computing Power
	4. Algorithm Implementation
	5. Sensor Resolution

	C. Recommendations for Future Work
	1. Implementation on a Small Unmanned Aerial Vehicle
	2. Simultaneous Localization and Mapping
	3. Obstacle Classification Based on Distance
	4. Implementation of Obstacle Memory
	5. Route Planning

	Appendix A. MAtlab script
	A. Robot_Master_Control.M
	B. Negative_Obstacle_TH.M
	C. OS1_FOV_4.m
	D. Negative_Obstacle_Detection.m
	E. Negative_Obstacle_ID.m
	F. Obstacle_Class.m
	G. potentialField_2.m
	H. Robot_to_World.m
	I. Sensor_to_Robot.m
	J. Robot_Path_Plotting.m
	K. Obst_Memory_Manager.m
	L. P3_connector_Payne.m

	Appendix B. P3-DX Matlab Codes
	A. P3_getBumpersClear.m
	B. P3_getXYHeading.m
	C. P3_setTransVel.m
	D. P3_setRotVel.m
	E. P3_disconnector.m

	List of References
	initial distribution list

