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1 Accomplishments

In practice, decision-problems which concern planning horizons spanning several months or years
will typically involve various sources of uncertainty, and in many cases these uncertainties will
impact decisions over differing time-scales and in different levels of the problem. Accurately
accounting for these uncertainties in an optimization model is challenging with traditional ap-
proaches, as all uncertainties would generally be treated simultaneously. Broadly speaking, the
proposed project aimed to develop novel optimization theory and methodologies to tackle multi-
level robust optimization problems in a PhD project over a period of 3 years, with efficient
algorithmic approaches being a cornerstone of the project. We recruited a PhD student with
impressive background in industrial engineering, Farzad Shams, to work fully on this project
shortly after the official start date of the project.

In our proposal, we formally stated our research questions as follows:

Q1. Can we establish a thorough theoretical understanding of the structure of the robust multi-
level optimization problems, including alternative reformulations of the problems and their
theoretical strengths and weaknesses? Furthermore, can we extend such results to the case
of multi-objective problems?

Q2. Can we exploit the statistical or structural properties of these problems in the design of
efficient algorithms? How effective can such algorithms be, whether in regard to theoretical
or computational limitations?

Q3. Can we apply these algorithms effectively to case studies representing a number of different
practical decision-problems?

Though the objectives of the project were set ambitious and despite the dynamic nature of
research, a clear plan of methodology helped to achieve most of the original objectives. This
included extensive theoretical and methodological development (in particular, using robust and
stochastic optimization), identification of real-world problems that would provide simple enough
but also meaningful application of outcomes, and algorithmic development and empirical testing.
We next discus specific accomplishments of the project.

The major activities of the project have had a nature of basic research, where in particular
theoretical and methodological development were essential for success. We first revisit the
specific research questions in order to discuss the accomplishments more in detail.

Q1. This research question aimed at establishing an extensive theoretical understanding on
the structure of the general optimization problems under uncertainty at hand. In partic-
ular, effective model development was crucial. As we discuss later in more detail, the key
outputs of the project present a broad range of theory that was particularly successful
addressing problems with uncertainty, but also effective optimization theory for problems
of practical interest. In order to address this objective, a range of practical problems from
the domains of manufacturing and health systems were identified for investigation: pro-
duction planning under uncertainty (where uncertain parameters were novel, e.g., timing
of a delivery rather than quantity), complex manufacturing problems that integrate often
competing decisions in different levels (e.g., lot-sizing and cutting stock), and healthcare
staff scheduling that contain many real-world constraints. The established theory to ad-
dress this research question range mathematical properties of specific problem structures
and competing uncertainties, to equivalence/strength of alternative formulations.
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Q2. There is an extensive range of algorithms developed throughout this project. These range
from dynamic programming algorithms that may work in polynomial time in certain cases
(but have exponential complexity in general cases) to sophisticated multi-stage algorithms
to handle uncertainties in a systematic fashion, as well as heuristic algorithms for computa-
tionally challenging real-world settings where suboptimal solutions are still very valuable.
The theory developed for Q1 have significantly input into this research question.

Q3. In comparison to the previous two research questions, which have been very thoroughly
addressed (and at times going beyond the original proposed aims), this question was
addressed rather in a more limited fashion, primarily due to the unavailability of real-
world data from companies that have solely prioritized their operations during the Covid-19
pandemic. However, we have still accomplished valuable extensive computational testing
based on some past data we had available, as well as various randomly generated realistic
test instances.

The outcomes of the project were primarily disseminated through journal papers submit-
ted/to be submitted to prestigious OR journals. Although our original proposal had a thorough
plan of dissemination through national and international conferences, in particular in the final
year, we had to revise this plan due to the ongoing pandemic (see Section 3 for further details.)
Next, we list the publications

1. K. Akartunalı, S. Dauzère-Pérès. Lot Sizing with Stochastic Demand Timing. Condition-
ally accepted in European Journal of Operational Research, 2021.

2. E.M. Silva, G.M. Melega, K. Akartunalı, S. de Araujo. Formulations and Theoretical
Analysis of the Multi-Period Cutting Stock Problem with Setups. Under second round of
revision with European Journal of Operational Research, 2021.

3. V.A.P.A. Devesse, K. Akartunalı, M.S. Arantes, C.F.M. Toledo. Linear Approximations to
Improve Lower Bounds of a Physician Scheduling Problem in Emergency Rooms. Revision
submitted to Journal of the Operational Research Society, 2021.

4. F. Shams, A. Agra, K. Akartunalı, E. Barlow. Formulations for Multi-Stage Robust Pro-
duction Planning with Quality Classes of Returns. Working paper, 2021.

5. F. Shams, A. Agra, K. Akartunalı, E. Barlow. A Computational Analysis of Multi-Stage
Production Planning with Imperfect Returns. Working paper, 2021.

2 Impacts

In this section, we briefly discuss the potential impacts of the outcomes of the project, whether
purely in academic sense or to the broader society. Due to the basic research nature of the
project, such impacts are likely to realize in 5-10 years.

There were many practical concepts that were theoretically investigated in this project. For
example, when there is uncertainty with respect to the timing of a delivery, rather than an uncer-
tainty in its quantity, the existing methodologies are very limited to propose how to tackle such
an uncertainty. Similarly, when there are competing uncertainties, e.g., some having a longer
time horizon than others, it is not straightforward to employ existing methodologies to address
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such issues. The theoretical findings of the project, therefore, address a number of challenges
stemming from practical realities, as to provide a better understanding, and primarily contribute
to the discipline of Operations Research/Industrial Engineering. We firstly expect that some
of our theoretical findings will be very likely extended to broader contexts from their current
problem specific contexts. For example, the stochastic timing is a concept not only limited
to the domain of production planning, and the theoretical understanding we have established,
e.g., some interesting special cases being polynomially solvable, will find its application in other
applications. Moreover, there is a wealth of algorithms developed in the project, which again
can be extended to other applications of interest.

Albeit more limited, we also expect some impacts in other disciplines such as machine learn-
ing and artificial intelligence. Although these disciplines have a much stronger focus on han-
dling massive amounts of data rather than optimizing results, there are some key overlaps in
application domains (e.g., both OR and these domains address similar planning and scheduling
problems). This is why there is already a strong synergy between these disciplines and OR,
resulting in intriguing conferences such as CPAIOR.

In addition to employing a young researcher and developing him extensively in research
skills, there is a clear scholarship impact of the project in terms of methodology developed.
Although some theoretical results are not very accessible to the broader OR discipline, some
of the outcomes are rather easy to interpret in a practical manner, and therefore, we plan
to develop intriguing case studies for educational purposes that may be used in the broader
business context as well as for practitioners in strongly related application areas. Moreover, we
are already planning some extensions from this project’s outcomes, for which we will be seeking
funding over the next 3-5 years from a range of funding bodies, including EPSRC and AFOSR,
in order to further contribute to the development of human resources.

In the longer term, we also expect outcomes in the broader society, in particular through
improving economic conditions. As the project has particularly focused on tackling uncertainties
that are not straightforward to address, there is a realistic expectation that the outcomes will
result in improved decision making tools in some industries (e.g., better software for production
planning or hospital scheduling).

3 Changes

The major challenge the project experienced has been the ongoing Covid-19 pandemic. Like
in many other ongoing projects and organizations everywhere in the world, the extraordinary
circumstances caused some disruptions and delays, however, these were mostly with minor nature
and resolved quickly with replanning.

The only change for which we received an approval from the program officer was the re-
purposing of the travel budget. Due to complete infeasibility of travel during the second half of
the project, we have requested this travel budget to be re-purposed for staff time so that the
PI could be much more significantly involved to deliver the expected outcomes of the project.
This change resulted in some re-planning of activities, in particular the cancellation of a crucial
research visit of the PhD student to an international collaborator (and hence some delay in those
specific outputs) while new work of PI contributing to the scope of the project (and more than
compensating with new outputs for the delay in other outputs.)

There have been no further major change in the project, whether in its scope, approach or
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impacts.

4 Technical Updates

In this section, we provide some exposure to the technical outcomes of the project. First, we
present a simple model for a problem of interest, and how we can employ the techniques devel-
oped in the project, and then move onto a different problem to present some of the methodolog-
ical results. We present here only a limited exposure just to provide the reader a methodological
context, rather than a full detailed exposure which would be too long and heavily technical (and
left to the papers to be published.)

4.1 Robust Multi-stage Lot-sizing with Multiple Quality Classes of Returns:
A Deterministic Model

In this section, we present a deterministic model for the robust multi-stage lot-sizing problem,
where the returned or collected products (cores) are classified into multiple quality classes (RML-
MQ). A relevant practical example with such a setting would be the IBM’s remanufacturing
facility in Raleigh, N.C., where the firm receives end-of-lease or returned laptops from different
sources and channels (Denizel et al. (2009)). Each returned laptop could be remanufactured
to a certain acceptable quality level and configuration, before being put back to the market
for sale. In a given inventory of returned laptops, the amount of effort for bringing any two
random laptops to a like-new state can be very different. While one laptop may just require
a thorough cleaning and formatting the hard drive, another laptop may require a few new
parts, such as a new screen panel to replace a worn one, or a new memory card to replace a
faulty one. The effort for bringing the latter laptop to the acceptable condition may require
considerable effort as opposed to the effort for the former one. This directly effects the time and
cost of remanufacturing, creating an important issue that has to be considered in the production
planning.

We consider N finite time periods, where the manufacturer produces a single type of product,
and has a random demand. In each time period, the manufacturer receives a random amount
of returned products, which then are graded and grouped into Q different quality classes. We
assume that the returned products are sorted before any decision has to be made. We consider
cost of sorting activities to be a sunk cost, as they do not directly impact the problem structure,
and including them is out of the scope of this study. The manufacturer has the option to reman-
ufacture the available cores, to fulfill the demand or keep them in stock to be remanufactured
in the future, and backlogging of demand is also allowed. This is a common approach in the
literature for the lot sizing with remanufacturing option (Bienstock & Özbay (2008), See & Sim
(2010), Tao & Zhou (2014), Attila et al. (2017)). The unit manufacturing cost is higher than
the remanufacturing cost of any type of core (for remanufacturing to be a reasonable option),
and graded cores can be disposed at a certain cost.

The problem is to find the optimal values for production of new products, and the amounts
of different quality cores to remanufacture or salvage in each time period, to minimize the total
costs of production, inventory/backlogging, and disposal. We assume that the customers are
indifferent between manufactured and remanufactured products, which is valid for certain cat-
egory of products such as printer cartridges and refillable containers (Zhou et al. (2011)). We
call the ready-to-sell products “serviceable products” in line with the literature. Further, we
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consider the lead times for (re)manufacturing process and the inventory of each type of cores
and serviceable products to be zero without loss of generality. We next present the deterministic
model, following the notation used in our model.

Indices and sets:
t ∈ N = {1, 2, ..., N}: Number of periods;
q ∈ Q = {1, 2, ..., Q}: Number of quality classes;

Variables:
xmt : amount of items manufactured in period t,
xqt : amount of items of quality class q remanufactured in period t,
sqt : amount of items of quality class q salvaged in period t,

yt :=

{
1 if there is a setup in period t

0 otherwise

Parameters:

c = (c0, c1, ..., cQ, cQ+1),
where c0 is the cost of manufacturing per item, c1, ..., cQ are costs of remanufacturing per item
for returns in classes 1 through Q, and cQ+1 is the salvage cost per item for all the return classes,
dt: demand for serviceable products in period t,
rqt : return amount in period t for quality class q,
hs: inventory holding cost of serviceable products per item,
hq: inventory holding cost of return products of quality class q per item,
b: backlogging cost per item,
f : joint setup cost for manufacturing and remanufacturing.

Then the objective is to minimize the total cost incurred due to setup, manufacturing, remanu-
facturing, disposal, inventory, and shortage costs as given below:

N∑
t=1

(ftyt + c0x
m
t +

Q∑
q=1

(cqx
q
t + cQ+1s

q
t ) + Ist +

Q∑
q=1

Iqt ) (1)

where, Ist and Iqt s capture the inventory and backlogging costs. Below we present the determin-
istic mixed integer model of the problem (DML-MQ):
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min
N∑
t=1

(ftyt + c0x
m
t +

Q∑
q=1

(cqx
q
t + cQ+1s

q
t ) + Ist +

Q∑
q=1

Iqt ) (2)

s.t. Ist ≥ hs
t∑

i=1

(xmi +

Q∑
q=1

xqi − di), t ∈ N (3)

Ist ≥ −b
t∑

i=1

(xmi +

Q∑
q=1

xqi − di), t ∈ N (4)

Iqt ≥ hq
t∑

i=1

(rqi − xqi − sqi ), q ∈ Q, t ∈ N (5)

t∑
i=1

(rqi − sqi − xqi ) ≥ 0 q ∈ Q, t ∈ N (6)

xmt +

Q∑
q=1

xqt ≤ Mtyt, t ∈ N (7)

yt ∈ {0, 1}, xmt , xqt , s
q
t ≥ 0, t ∈ N (8)

where the demand and return amounts are assumed to be deterministic.

4.2 General Robust Multi-Stage Model

We first define our variables as functions of the past data, i.e., dt(d1, ..., dt) and rq,t(rq1, ..., r
q
t ).

Then, the adjustable multi-stage robust problem will be:

min F +

N∑
t=1

(ftyt) (9)

s.t. F ≥
N∑
t=1

(c0x
m
t (dt−1) +

Q∑
q=1

(cqx
q
t (r

q,t−1) + cQ+1s
q
t (r

q,t−1)) + Ist +

Q∑
q=1

Iqt ), dt ∈ Dt, r
q
t ∈ Rq

t

(10)

Ist (d
i−1, rq,i−1) ≥ hs

t∑
i=1

(xmi (di−1) +

Q∑
q=1

xqi (r
q,i−1)− di), t ∈ N, dt ∈ Dt, r

q
t ∈ Rq

t (11)

Ist (d
i−1, rq,i−1) ≥ −b

t∑
i=1

(xmi (di−1) +

Q∑
q=1

xqi (r
q,i−1)− di), t ∈ N, dt ∈ Dt, r

q
t ∈ Rq

t (12)

(13)
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Iqt (r
q,i−1) ≥ hq

t∑
i=1

(rqi − xqi (r
q,i−1)− sqi (r

q,i−1)), q ∈ Q, t ∈ N, rqt ∈ Rq
t (14)

t∑
i=1

(rqi − sqi (r
q,i−1)− xqi (r

q,i−1)) ≥ 0, q ∈ Q, t ∈ N, rqt ∈ Rq
t (15)

xmt (dt−1) +

Q∑
q=1

xqt (r
q,t−1) ≤ Mtyt, t ∈ N, dt ∈ Dt, r

q
t ∈ Rq

t (16)

yt ∈ {0, 1}, t ∈ N (17)

xmt (dt−1),≥ 0, t ∈ N, dt ∈ Dt (18)

xqt (r
q,t−1), sqt (r

q,t−1), Iqt (r
q,i−1) ≥ 0, t ∈ N, q ∈ Q, rqt ∈ Rq

t (19)

where now, variables xmt (dt−1), xqt (r
q,t−1), and sqt (r

q,t−1) are defined as functions of the past data
dt and rq,t.

4.3 Affinely Adjustable Model

Next, we present the robust multistage lot-sizing problem where we assume that we have ad-
justable manufacturing and remnaufacturing and disposal variables that are affine functions of
the demand and return values, following the work of Ben-Tal et al. (2004). This means that the
decisions on these variables can be adjusted to the revealed demand/return values up until the
point of time of the decision. We utilise affine decision rules for the variables xmt , xqt , s

q
t , I

q
t , and

Ist as follows:

xmt = xmt,0 +
t−1∑
i=1

xmt,idi, t ∈ N, (20)

xqt = xqt,0 +
t−1∑
i=1

xqt,ir
q
i , t ∈ N, q ∈ Q, (21)

sqt = sqt,0 +
t−1∑
i=1

sqt,ir
q
i , t ∈ N, q ∈ Q, (22)

Iqt = Iqt,0 +

t−1∑
i=1

Iqt,ir
q
i , t ∈ N, q ∈ Q, (23)

Ist = Ist,0 +

t−1∑
i=1

Ist,idi +

Q∑
q=1

t−1∑
i=1

Is,qt,i r
q
i , t ∈ N, (24)

where now, the demand and return values belong to box uncertainty sets D and R, dt ∈ Dt, r
q
t ∈

Rq
t with Dt = [dt − αdt, dt + αdt], Rq

t = [rqt − βrqt , r
q
t + βrqt ] and α, β ∈ [0, 1]. dt and rqt are

nominal demand and return values in period t. Note that we assume the deviation values α
and β are the same throughout the planning horizon. Inserting these new decision rules in the
deterministic model and writing the model in the epigraph form, we obtain:
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min F +
N∑
t=1

(ftyt) (25)

st. F ≥
N∑
t=1

(c0(x
m
t,0 +

t−1∑
i=1

xmt,idi) +

Q∑
q=1

(cq(x
q
t,0 +

t−1∑
i=1

xqt,ir
q
i ) + cQ+1(s

q
t,0 +

t−1∑
i=1

sqt,ir
q
i ))

+ (Ist,0 +
t−1∑
i=1

Ist,idi +

Q∑
q=1

t−1∑
i=1

Is,qt,i r
q
i ) +

Q∑
q=1

(Iqt,0 +
t−1∑
i=1

Iqt,ir
q
i )), dt ∈ Dt, r

q
t ∈ Rq

t (26)

(Ist,0 +
t−1∑
i=1

Ist,idi +

Q∑
q=1

t−1∑
i=1

Is,qt,i r
q
i ) ≥ hs

t∑
i=1

((xmi,0 +
i−1∑
j=1

xmi,jdj) +

Q∑
q=1

(xqi,0 +
i−1∑
j=1

xqi,jr
q
j )− di),

t ∈ N, dt ∈ Dt, r
q
t ∈ Rq

t (27)

(Ist,0 +

t−1∑
i=1

Ist,idi +

Q∑
q=1

t−1∑
i=1

Is,qt,i r
q
i ) ≥ −b

t∑
i=1

((xmi,0 +

i−1∑
j=1

xmi,jdj) +

Q∑
q=1

(xqi,0 +

i−1∑
j=1

xqi,jr
q
j )− di),

t ∈ N, dt ∈ Dt, r
q
t ∈ Rq

t (28)

(Iqt,0 +
t−1∑
i=1

Iqt,ir
q
i ) ≥ hq

t∑
i=1

(rqi − (xqi,0 +
i−1∑
j=1

xqi,jr
q
j )− (sqi,0 +

i−1∑
j=1

sqi,jr
q
j )), t ∈ N, q ∈ Q, rqt ∈ Rq

t

(29)

t∑
i=1

(rqi − (sqi,0 +

i−1∑
j=1

sqi,jr
q
j )− (xqi,0 +

i−1∑
j=1

xqi,jr
q
j )) ≥ 0, q ∈ Q, t ∈ N, rqt ∈ Rq

t (30)

(xmt,0 +
t−1∑
i=1

xmt,idi) +

Q∑
q=1

(xqt,0 +
t−1∑
i=1

xqt,ir
q
i ) ≤ Mtyt, t ∈ N, dt ∈ Dt, r

q
t ∈ Rq

t , (31)

xmt,0 +
t−1∑
i=1

xmt,idi ≥ 0, t ∈ N, , dt ∈ Dt, (32)

xqt,0 +

t−1∑
i=1

xqt,ir
q
i ≥ 0, t ∈ N, q ∈ Q, dt ∈ Dt, r

q
t ∈ Rq

t , (33)

sqt,0 +

t−1∑
i=1

sqt,ir
q
i ≥ 0, t ∈ N, q ∈ Q, dt ∈ Dt, r

q
t ∈ Rq

t , (34)

Iqt,0 +
t−1∑
i=1

Iqt,ir
q
i ≥ 0, t ∈ N, q ∈ Q, dt ∈ Dt, r

q
t ∈ Rq

t , (35)

yt ∈ {0, 1}, t ∈ N. (36)

The above program is a semi-infinite model. In order to derive a tractable AARC model we
need to reformulate the constraints.

We will generate the constraints one by one. Constraint (26) becomes:

9
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0 ≥ −F +
N∑
t=1

[c0x
m
t,0 + Ist,0 +

Q∑
q=1

(cqx
q
t,0 + cQ+1s

q
t,0 + Iqt,0)]

+
N∑
t=1

t−1∑
i=1

(c0x
m
t,i + Ist,i)di +

N∑
t=1

t−1∑
i=1

Q∑
q=1

(cqx
q
t,i + cQ+1s

q
t,i + Is,qt,i + Iqt,i)r

q
i ,

By change of summation:

0 ≥ −F +
N∑
t=1

[c0x
m
t,0 + Ist,0 +

Q∑
q=1

(cqx
q
t,0 + cQ+1s

q
t,0 + Iqt,0)]

+
N−1∑
i=1

N∑
t=i+1

(c0x
m
t,i + Ist,i)di +

N−1∑
i=1

Q∑
q=1

N∑
t=i+1

(cqx
q
t,i + cQ+1s

q
t,i + Is,qt,i + Iqt,i)r

q
i ,

Using the following change of variables:

ηi =
N∑

t=i+1

(c0x
m
t,i + Ist,i) δqi =

N∑
t=i+1

(cqx
q
t,i + cQ+1s

q
t,i + Is,qt,i + Iqt,i)

we have:

0 ≥ −F +
N∑
t=1

[c0x
m
t,0 + Ist,0 +

Q∑
q=1

(cqx
q
t,0 + cQ+1s

q
t,0 + Iqt,0)] +

N−1∑
i=1

ηidi +
N−1∑
i=1

Q∑
q=1

δqi r
q
i ,

then the constraint is equivalent to:

0 ≥ −F +
N∑
t=1

[c0x
m
t,0 + Ist,0 +

Q∑
q=1

(cqx
q
t,0 + cQ+1s

q
t,0 + Iqt,0)] +

N−1∑
i=1

(ηid̄i + αd̄iλ
1
i ) +

N−1∑
i=1

Q∑
q=1

(δqi r̄
q
i + βr̄qi λ

2,q
i ),

ηi =
N∑

t=i+1

(c0x
m
t,i + Ist,i), i ∈ {1, ..., N − 1},

δqi =
N∑

t=i+1

(cqx
q
t,i + cQ+1s

q
t,i + Is,qt,i + Iqt,i), i ∈ {1, ..., N − 1}, q ∈ Q,

− λ1
i ≤ ηi ≤ λ1

i , i ∈ {1, ..., N − 1}
− λ2,q

i ≤ δqi ≤ λ2,q
i , i ∈ {1, ..., N − 1}, q ∈ {1, ..., Q}

Next, constraint (27):

10
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0 ≥ −Ist,0 + hs
t∑

i=1

[xmi,0 +

Q∑
q=1

xqi,0] +
t∑

i=1

i−1∑
j=1

(hsxmi,jdj − hsdi)−
t−1∑
i=1

Ist,idi

+

t∑
i=1

i−1∑
j=1

Q∑
q=1

hsxqi,jr
q
j −

Q∑
q=1

t−1∑
i=1

Is,qt,i r
q
i ,

By change of summation :

0 ≥ −Ist,0 + hs
t∑

i=1

[xmi,0 +

Q∑
q=1

xqi,0] +

t−1∑
j=1

[(

t∑
i=j+1

(hsxmi,j − hs))− Ist,j ]dj+

t−1∑
j=1

Q∑
q=1

[(
t∑

i=j+1

(hsxqi,j))− Is,qt,j ]r
q
j − hsdt,

Using the following change of variables:

ξt,j = (

t∑
i=j+1

(hsxmi,j − hs))− Ist,j θqt,j = (

t∑
i=j+1

(hsxqi,j))− Is,qt,j

we will have the following:

0 ≥ −Ist,0 + hs
t∑

i=1

[xmi,0 +

Q∑
q=1

xqi,0] +
t−1∑
j=1

ξt,jdj +
t−1∑
j=1

Q∑
q=1

θqt,jr
q
j − hsdt,

then the constraint is equivalent to:

0 ≥ −Ist,0 + hs
t∑

i=1

[xmi,0 +

Q∑
q=1

xqi,0] +
t−1∑
j=1

(ξt,j d̄j + αd̄jλ
3
t,j) +

t−1∑
j=1

Q∑
q=1

(θqt,j r̄
q
j + βr̄qjλ

4,q
j )− hsd̄t + hsαd̄t,

− λ3
t,j ≤ ξt,j ≤ λ3

t,j , j ∈ {1, ..., t− 1}, t ∈ N

− λ4,q
t,j ≤ θqt,j ≤ λ4,q

t,j , j ∈ {1, ..., t− 1}, q ∈ Q, t ∈ N

Next, constraint (28):

0 ≥ −Ist,0 −
t∑

i=1

b(xmi,0 +

Q∑
q=1

xqi,0)−
t∑

i=1

i−1∑
j=1

(bxmi,jdj − bdi)−
t−1∑
i=1

Ist,idi −
t∑

i=1

i−1∑
j=1

Q∑
q=1

bxqi,jr
q
j

−
Q∑

q=1

t−1∑
i=1

Is,qt,i r
q
i , t ∈ N,
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By change of summation :

0 ≥ −Ist,0 −
t∑

i=1

b(xmi,0 +

Q∑
q=1

xqi,0) +
t−1∑
j=1

[(
t∑

i=j+1

(b− bxmi,j))− Ist,j ]dj + bdt

+

t−1∑
j=1

Q∑
q=1

[(

t∑
i=j+1

−bxqi,j)− Is,qt,j )]r
q
j ,

Using the following change of variables:

ϵt,j = (

t∑
i=j+1

(b− bxmi,j))− Ist,j µq
t,j = (

t∑
i=j+1

−bxqi,j)− Is,qt,j

we can write the constraint as follows:

0 ≥ −Ist,0 −
t∑

i=1

b(xmi,0 +

Q∑
q=1

xqi,0) +
t−1∑
j=1

(ϵt,j d̄j + αd̄jλ
5
t,j) + b(d̄t + αd̄t) +

t−1∑
j=1

Q∑
q=1

(µq
t,j r̄

q
j + βr̄qjλ

6,q
t,j )

− λ5
t,j ≤ ϵt,j ≤ λ5

t,j , j ∈ {1, ..., t− 1}, t ∈ N,

− λ6,q
t,j ≤ µq

t,j ≤ λ6,q
t,j , j ∈ {1, ..., t− 1}, , t ∈ N, q ∈ Q

Next, constraint (29):

0 ≥ −Iqt,0 + hq
t∑

i=1

(−xqi,0 − sqi,0) + hq
t∑

i=1

i−1∑
j=1

(rqi − xqi,jr
q
j − sqi,jr

q
j )−

t−1∑
i=1

Iqt,ir
q
i ,

By change of summation:

0 ≥ −Iqt,0 + hq
t∑

i=1

(−xqi,0 − sqi,0) +
t−1∑
j=1

[(
t∑

i=j+1

(−hqxqi,j − hqsqi,j)) + hq − Iqt,j ]r
q
j + hqrqt ,

Using the following change of variable:

νqt,j = (
t∑

i=j+1

(−hqxqi,j − hqsqi,j)) + hq − Iqt,j

we will have:

0 ≥ −Iqt,0 + hq
t∑

i=1

(−xqi,0 − sqi,0) +

t−1∑
j=1

νqt,jr
q
j + hqrqt ,
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then the constraint is equivalent to:

0 ≥ −Iqt,0 + hq
t∑

i=1

(−xqi,0 − sqi,0) +
t−1∑
j=1

(νqt,j r̄
q
j + βr̄qjλ

7,q
t,j ) + hq(r̄qt + βr̄qt ),

− λ7,q
t,j ≤ νqt,j ≤ λ7,q

t,j , j ∈ {1, ..., t− 1}, t ∈ N, q ∈ Q

Next, constraint (30):

t∑
i=1

(−xqi,0 − sqi,0) +

t∑
i=1

i−1∑
j=1

(rqi − sqi,jr
q
j − xqi,jr

q
j ) ≥ 0

By change of summation and writing the constraint as a less than or equal form we have:

t∑
i=1

(xqi,0 + sqi,0) +
t−1∑
j=1

t∑
i=j+1

(sqi,jr
q
j + xqi,jr

q
j − rqj )− rqt ≤ 0

Then, using the following change of variable:

τ qt,j =
t∑

i=j+1

(xqi,j + sqi,j − 1)

we will have:

t∑
i=1

(xqi,0 + sqi,0) +

t−1∑
j=1

(τ qt,jr
q
j )− rqt ≤ 0,

then the constraint is equivalent to:

t∑
i=1

(xqi,0 + sqi,0) +

t−1∑
j=1

(τ qt,j r̄
q
j + βr̄qjλ

8,q
j )− (r̄qt − r̄qtβ) ≤ 0,

− λ8,q
t,j ≤ τ qt,j ≤ λ8,q

t,j , j ∈ {1, ..., t− 1}, t ∈ N, q ∈ Q

Next, constraint (31):

(xmt,0 +

Q∑
q=1

xqt,0) +
t−1∑
i=1

xmt,idi +
t−1∑
i=1

Q∑
q=1

xqt,ir
q
i −Mtyt ≤ 0,

using the same approach we have the constraint as:

13
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(xmt,0 +

Q∑
q=1

xqt,0) +
t−1∑
i=1

(xmt,id̄i + αd̄iλ
9
i ) +

t−1∑
i=1

Q∑
q=1

(xqt,ir̄
q
i + βr̄qi λ

10,q
i )−Mtyt ≤ 0,

− λ9
t,i ≤ xmt,i ≤ λ9

t,i, j ∈ {1, ..., t− 1}, t ∈ N

− λ10,q
t,i ≤ xqt,i ≤ λ10,q

t,i , i ∈ {1, ..., t− 1}, q ∈ Q, t ∈ N

Next, constraint (32):

xmt,0 +

t−1∑
i=1

(xmt,id̄i + αd̄iλ
9
t,i) ≥ 0

− λ9
t,i ≤ xmt,i ≤ λ9

t,i

Next, constraint (33):

xqt,0 +

t−1∑
i=1

(xqt,ir̄
q
i + βr̄qi λ

10,q
t,i ) ≥ 0

− λ10,q
t,i ≤ xqt,i ≤ λ10,q

t,i

Next, constraint (34):

sqt,0 +
t−1∑
i=1

(sqt,ir̄
q
i + βr̄qi λ

11,q
t,i ) ≥ 0

− λ11,q
t,i ≤ sqt,i ≤ λ11,q

t,i

Next, constraint (35):

Iqt,0 +
t−1∑
i=1

(Iqt,ir̄
q
i + βr̄qi λ

12,q
t,i ) ≥ 0

− λ12,q
t,i ≤ Iqt,i ≤ λ12,q

t,i

All the generated constraints together will result in the AARC model. This detailed process
shows how much attention is required in order to ensure that the correct modelling is achieved
in such a complex multi-stage robust formulation.

4.4 A Dynamic Problem with Stochastic Demand Timing

Stochastic demand timing is a novel and interesting concept that can be observed in a range of
practical settings. In particular, this happens when a client company sends orders for a product
to a supplier company, when the client company’s product inventory level is empty. The order
to the supplier is fixed, typically related to the inventory capacity of the customer. Hence, the

14
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supplier company knows very well the quantity that will be either picked up by or delivered to a
customer, but is not able to know exactly when, although an interval of several days is known.
This is particularly noticeable in operational or tactical production and inventory planning over
several weeks with periods of a day, where demand and order quantities are well established,
and is a typical context in process industries, which satisfy the demands of other industries. For
example, this case is observed for non-mixable cement products that can be stored (see, e.g.,
Christiansen et al. (2011)) or calcium carbonate slurry products (see, e.g., Dauzère-Pérès et al.
(2007)), where it is known that a vessel, a train, or a truck will arrive in an interval of several
days to be completely filled.

Hence, order management is an interesting context, where stochastic demand timing is rele-
vant. When a company has a list of potential customers’ orders, predicted from historical data,
with known quantities and time windows in which they should occur with their corresponding
probabilities, solving the problem studied in this paper will provide the most efficient plan to
answer these orders. Significant potential losses due to future orders can thus be estimated, and
necessary actions to avoid these losses can be taken.

Let us consider the single-item uncapacitated dynamic lot sizing problem with a planning
horizon of T periods in the classical deterministic sense, as follows:

min
T∑
t=1

ftyt +
T∑
t=1

htst +
T∑
t=1

ctxt (37)

s.t. xt + st−1 − st = Dt t = 1, . . . , T (38)

xt ≤ Mtyt t = 1, . . . , T (39)

yt ∈ {0, 1};xt ≥ 0; st ≥ 0 t = 1, . . . , T (40)

For any period t, variables xt and st represent production and inventory quantities, respec-
tively, and binary yt variables indicate whether a production setup takes place or not. The
objective (37) is to find a minimum cost production plan, where the total cost consists of fixed
setup costs ft (charged only if production is strictly positive, i.e., yt = 1), per unit inventory
holding costs ht, and per unit production costs ct, respectively, for all periods in the horizon.
We also assume all cost parameters to be strictly positive, i.e., no “free lunch”.The flow balance
constraints (38) ensure on-time satisfaction of demand Dt, whereas the relationship between pro-
duction and setup variables is set by (39), whereMt is an upper bound on xt, e.g., Mt =

∑T
ℓ=tDℓ.

Finally, the integrality and non-negativity constraints are provided by (40). Let us recall that
this problem has a complexity of O(T log T ), see, e.g., Wagelmans et al. (1992).

In addition to the deterministic demands Dt, ∀t ∈ [1, T ], that need to be satisfied on time, we
simultaneously consider stochastic demand timing as follows. Let [li, ui] ⊂ [1, T ] be an interval,
indexed by i, where it is certain that a demand of di will fully occur, i.e., at once, in one period,
with a probability of pit ≥ 0 for each period t ∈ [li, ui] and such that

∑ui
t=li

pit = 1. Note that

pit = 0 for t ≤ li − 1 and t ≥ ui + 1. Let I be the set of such intervals with stochastic demand
timing in the planning horizon and, for ease of notation, let |I| = n.

In this paper, we make the following realistic assumptions:

• No backlog is allowed for deterministic demands and, accordingly, no backlog is allowed for
any stochastic demand quantity di after period ui. Note that, however, stochastic demand
quantity di may be satisfied with inventory carried from before li, while backlogging is
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allowed within the interval [li, ui] with a variable backlog cost bt. In Section ??, the more
general case where the variable backlog cost bit also depends on di is discussed.

• Partial delivery of any stochastic demand quantity di is not allowed, i.e., di products must
be delivered to the customer in one and only one period. Hence, each stochastic demand
timing can be seen as a separate order, and the backlog cost is counted until di is fully
satisfied. Note that the problem is easy to solve if partial delivery is allowed, as one can
simply solve in that case a classical lot sizing problem with demand pitd

i in period t.

• As it is usually the case and w.l.o.g., backlog is more costly than inventory, i.e., bt > ht
∀t.

For any period t ∈ [li, ui], the expected stochastic demand quantity to satisfy is pitd
i. As

this stochastic demand quantity cannot be produced after ui, we note that, for any t ≤ ui and
per unit produced, the expected inventory is

∑ui
l=t+1 p

i
l (if one unit of product has already been

produced) and the expected backlog is
∑t−1

l=li
pil (if one unit of product has not been produced

yet). Hence, the expected holding and backlog cost for producing one unit of product to satisfy
di in period t is denoted by ECi(t), which can be defined as follows for any t ≤ ui:

ECi(t) =

ui∑
l=t

hl

ui∑
k=l+1

pik +
t−1∑
l=li

bl

l∑
k=li

pik (41)

Note that the first and second terms of (41) correspond to the expected holding and back-
logging costs, respectively. Also, note that the first term is equal to 0 for t = ui, and the second
term is equal to 0 for t ≤ li. Next, we present a numerical example to illustrate the problem.

Consider a problem with five periods and two stochastic demand timing intervals, i.e., T = 5,
n = 2. For the sake of simplicity, let the cost parameters be time independent, and let ht = 1.5,
bt = 6, ft = 25 and ct = 8, t = 1, . . . , 5. The remaining parameter values are given as follows:

t 1 2 3 4 5

Dt 4 0 10 6 9
p1t 0.45 0.35 0.2 0 0 d1 = 7, [l1, u1] = [1, 3]
p2t 0 0 0.3 0.7 0 d2 = 5, [l2, u2] = [3, 4]

We first note that in period 5, at most 9 units will be produced, i.e., the deterministic de-
mand of period 5, and no stochastic demand. On the other hand, in the first three periods, d1

and/or d2 can be produced, while in period 4, d2 can be produced, in addition to any determin-
istic demand that is produced. To illustrate (41), we provide the following detailed calculations
for the cases of producing in period t when li < t < ui, t < li and t = ui:
EC1(2) = h2p

1
3 + b1p

1
1 = 1.5×0.2 + 6×0.45 = 3

EC2(1) = h1(p
2
3 + p24) + h2(p

2
3 + p24) + h3p

2
4 = 1.5×1 + 1.5×1 + 1.5×0.7 = 4.05

EC1(3) = b1p
1
1 + b2(p

1
1 + p12) = 6×0.45 + 6×0.8 = 7.5

Recall that these are unit costs for expected holding and backlogging costs. For example, pro-
ducing one unit of d1 in period 2 will incur an expected cost of 3, in addition to the unit
production cost of 8 and fixed cost of 25.

The inventory variable st is a stochastic variable since di is stochastic, and thus modeling our
problem by extending the model (37)-(40) is not trivial. Hence, as it is common in lot sizing, we
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propose to formalize our problem with the variables in [0, 1] zlt, the fraction of the deterministic
demand Dt produced in period l ≤ t, and zil , the fraction of the stochastic demand quantity
di produced in period l ≤ ui. In order to illustrate the development of our model, we first
reformulate the deterministic model (37)-(40) using the zlt variables, which are linked to the
original production variables as follows:

xl =
T∑
t=l

zltDt, l = 1, . . . , T. (42)

Then, the deterministic model becomes:

min

T∑
t=1

ftyt +

T∑
t=1

t∑
l=1

(cl +

t−1∑
k=l

hk)zltDt (43)

s.t.
t∑

l=1

zlt = 1 t = 1, . . . , T (44)

T∑
t=l

zltDt ≤ Mlyl l = 1, . . . , T (45)

yt ∈ {0, 1} t = 1, . . . , T (46)

0 ≤ zlt ≤ 1 t = 1, . . . , T ; l = 1, . . . , t (47)

We remark that the objective (37) is rewritten as (43) using (42) and the fact that inventory
variables are no longer explicitly used. Constraints (44) ensure that the deterministic demands
are satisfied in the horizon, and constraints (45) correspond to constraints (39) using (42).

Then, using zil associated with the stochastic demand quantities, we next state the rela-
tionship between the original production variables and the new variables in a similar fashion to
(42):

xl =
T∑
t=l

zltDt +
∑

i∈I; l≤ui

zild
i, l = 1, . . . , T. (48)

Our problem can then be modeled as follows:

min

T∑
t=1

ftyt +

T∑
t=1

t∑
l=1

(cl +

t−1∑
k=l

hk)zltDt +
∑
i∈I

ui∑
l=1

(cl + ECi(l))z
i
ld

i (49)

s.t. (44), (47)
ui∑
l=1

zil = 1 i ∈ I (50)

T∑
t=l

zltDt +
∑

i∈I; l≤ui

zild
i ≤ Mlyl l = 1, . . . , T (51)

yt ∈ {0, 1} t = 1, . . . , T (52)

0 ≤ zil ≤ 1 i ∈ I; l = 1, . . . , ui (53)
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In a similar fashion to (43), the objective (37) is rewritten as (49) using (48) and (41). Con-
straints (50) ensure that the stochastic demand quantities are produced in the horizon similar
to constraints (44) for deterministic demands. Constraints (51) correspond to constraints (39)
using (48).

Next, we remark the following result. argminECi(t) ∈ [li, ui].

Proof. First, note that the first term of (41) is strictly decreasing over [1, ui] since ht > 0 ∀t,
while the second term of (41) is strictly increasing over [li, ui] since bt > 0 ∀t. To prove that the
minimum of ECi(t) is attained in [li, ui], it is sufficient to observe that the second term of (41)
is 0 for t ≤ li while the first term of (41) attains its lowest value over [1, li] at t = li.

In the remainder of the paper, and for the sake of simplicity, we use the notation t∗i to
indicate the period where the minimum of ECi(t) is attained, i.e. t∗i = argminECi(t). In case
of multiple periods attaining this minimum, we assume that t∗i indicates the earliest such period.
Finally, we note that the problem can be rewritten with only stochastic demand quantities by
considering that pit = 1 and li = t = ui for Dt.

4.5 General Case of Stochastic Demand Timing

First, we investigate the general case of stochastic demand timing, in order to propose a general
purpose dynamic programming algorithm. As we will discuss later, this algorithm will be im-
proved from a computational complexity perspective when more restricted but realistic special
cases are considered.

When one considers multiple intervals with stochastic demand timing, one can observe that
such intervals may also have overlaps. Less obvious is a case when there is no particular order
between such overlapping intervals, and therefore, we next define an essential property, in order
to differentiate different cases of overlapping intervals.

Let di and dj be two demands with stochastic timing. If
∑t

l=1 p
i
l ≥

∑t
l=1 p

j
l ∀t ∈ [lj , ui],

then we say that di dominates dj .
Consider a problem with five periods and three stochastic demand timing intervals, i.e.,

T = 5, n = 3. Assume we are given the following data for these intervals:

t 1 2 3 4 5

p1t 0.1 0.5 0.4 0 0 [l1, u1] = [1, 3]
p2t 0 0.3 0.2 0.5 0 [l2, u2] = [2, 4]
p3t 0 0 0.6 0.2 0.2 [l3, u3] = [3, 5]

Demand d1 dominates d2 since 0.1 + 0.5 ≥ 0.3 and 0.1 + 0.5 + 0.4 ≥ 0.3 + 0.2 both hold.
On the other hand, neither d2 nor d3 dominate the other, since 0.3 + 0.2 ≤ 0.6 holds while
0.3 + 0.2 + 0.5 ≥ 0.6 + 0.2 is true.

In this section, we look into the general case with multiple intervals of stochastic demand
timing, where we do not have any dominance relationship between the overlapping intervals.

Let us also introduce the following definition, where we assume that ECi(t) = +∞ if t ≥
ui + 1. Let σi denote the sequence of length T for demand di in which periods are ranked in
non-decreasing order of the production and expected unit holding and backlog cost ct +ECi(t).
More precisely, ∀k = 2, . . . , T , either i) cσi(k) + ECi(σi(k)) > cσi(k−1) + ECi(σi(k − 1)) or ii)
both cσi(k) + ECi(σi(k)) = cσi(k−1) + ECi(σi(k − 1)) and σi(k) > σi(k − 1) hold.
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Using the first interval (i.e., i = 1) from Example 4.5, suppose that c1 + EC1(1) = 12,
c2+EC1(2) = 11 and c3+EC1(3) = 15 (note this is simply +∞ for periods 4 and 5). Then, by
a slight abuse of notation, our ordering vector is σ1 = (2, 1, 3, 4, 5).

Then, we propose the following result.

Theorem 1. For two demands with stochastic timing di and dj, if σi = σj, then there is an
optimal solution in which di and dj are produced in the same period.

Proof. We know that there is an optimal solution in which di is produced in a single period t′

and dj is produced in a single period t′′. If σi = σj and t′′ ̸= t′ then, by definition of σi, the
solution is only optimal if ct′ +ECi(t

′) = ct′′ +ECi(t
′′), otherwise the solution could be strictly

improved by producing both demands di and dj in t′ if ct′ + ECi(t
′) < ct′′ + ECi(t

′′) or in t′′ if
ct′ + ECi(t

′) > ct′′ + ECi(t
′′). Finally, because ct′ + ECi(t

′) = ct′′ + ECi(t
′′), it is possible to

change the solution and keep the same total cost by producing both demands di and dj in t′ or
in t′′.

Theorem 1 implies that, for two stochastic demand timings such that σi = σj and ui < uj ,
there is an optimal solution in which dj is not produced between ui + 1 and uj . Note also that
there are O(T !) possible different sequences of periods in σi.

4.5.1 Dynamic Program for the General Case

Let (sd1, · · · , sdn) be a vector of binary parameters, where sdi is defined for each stochastic
demand timing interval i ∈ I in the same fashion as in Section ??. Then, for the general dynamic
program, we define G(t, (sd1, · · · , sdn)), which indicates the value of the optimal solution for
the horizon [1, t− 1] and the specific vector (sd1, · · · , sdn).

Note that a vector (sd1, · · · , sdn) is classified as valid at period t (or equivalently, G(t, (sd1, · · · , sdn))
is valid) if:

• sdi = 0 for all i ∈ I such that t ≤ li,

• sdi = 0 or sdi = 1 for all i ∈ I such that t ∈ [li + 1, ui], and

• sdi = 1 for all i ∈ I such that t ≥ ui + 1.

By definition, G(1, (sd1, · · · , sdn)) = 0 holds, where sdi = 0, ∀i ∈ I. Let SD(t) denote
the set of valid vectors at period t. For each vector (sd1, · · · , sdn) ∈ SD(t), the recursion for
G(t, (sd1, · · · , sdn)) is formally defined as follows:

G(t, (sd1, · · · , sdn)) = min
t′≤t−1,

(sd′1,··· ,sd′n)∈SD(t′)

(
G(t′, (sd′1, · · · , sd′n))

+ft′ +

t−1∑
k=t′

ct′kDk +
∑
i∈I:

sdi−sd′i=1

di(ct′ + ECi(t
′))

)
(54)

The optimal cost for the full problem is given by G(T + 1, (sd1, · · · , sdn)), where sdi = 1,
∀i ∈ I. We remark that, when n = 1, i.e., there is a single interval, it is easy to observe that this
general dynamic program exactly maps to the one described in Section ??: G(t, sdi) is reduced
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to a single stochastic demand timing while the validity arguments for sdi remain (though now
for a single interval), and the cost of producing di is only applied when sdi value is changed
from 0 to 1 in the new time period.

The complexity of the dynamic program isO(T maxt∈[1,T ] |SD(t)|). The value of maxt∈[1,T ] |SD(t)|
is discussed in Lemma 2.

Lemma 2. In the worst case, maxt∈[1,T ] |SD(t)| ∼ O(min{2n, T !})

Proof. The worst case can be reached in two different ways:

1. If there exists t ∈ [1, T ] such that t ∈ [li + 1, ui], ∀i ∈ I, i.e., all n intervals intersect with
each other at least in one period. This leads to O(2n) combinations.

2. Following Theorem 1, it is possible to combine demands with the same sequence σi in the
same indicator sdi in the dynamic programming algorithm. This leads to a maximum of
O(T !) combinations. This is essentially a preprocessing stage to the algorithm.

Therefore, the time complexity of the algorithm may be exponential in n and in T . However,
as stochastic demand intervals will be short in most practical settings (no more than 4 or 5
periods), a small number of intervals should be overlapping in any period t, leading to small
sets SD(t). If at most k intervals are overlapping in any period t, then the complexity of the
dynamic program is O(Tk). Moreover, as we will see in Sections 4.5.2 and 4.5.3 for practical
general cases, as well as in Section ?? for some relevant special cases, this time complexity can
be effectively reduced to polynomial.

4.5.2 Time Independent Production Costs and Time Independent Ratio between
Inventory and Backlog Costs

An interesting case in practice appears when the ratio between the unit inventory and backlog
costs in each period is time independent, i.e., ht = αth and bt = αtb with αt > 0 ∀t (or,
equivalently, ht/bt = h/b, ∀t). Moreover, we assume time independent production costs, i.e.,
ct = c, ∀t ∈ [1, T ]. Although this case is more restricted than the general case that does not
specify cost functions or other key parameters of the problem, it is very common in practice,
where hard to quantify backlog costs are often defined in terms of inventory holding costs.
Moreover, its limitations are minimal, as there is no specification on how the actual cost levels
would vary from one period to another, and time independent production costs are a common
setting in the lot sizing literature. Because production costs are time independent, they can
be ignored in the remainder of this section. Finally, as discussed in this section, this case can
be solved in polynomial time. A more special case worth remarking is when the inventory and
backlog costs are time independent, i.e., αt = 1 ∀t.

First, we note the step change from t to t+ 1:

∆(t) = ECi(t+ 1)− ECi(t) =

 ui∑
l=t+1

hl

ui∑
k=l+1

pik +
t∑

l=li

bl

l∑
k=li

pik


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−

 ui∑
l=t

hl

ui∑
k=l+1

pik +
t−1∑
l=li

bl

l∑
k=li

pik

 = bt

t∑
k=li

pik − ht

ui∑
k=t+1

pik

Because
∑ui

k=t+1 p
i
k = 1−

∑t
k=li

pik, the expression above can be rewritten:

∆(t) = (ht + bt)
t∑

k=li

pik − ht (55)

Note that (55) can also be used to show Proposition 4.4, since ∆(t) = −ht < 0 when t ≤ li−1.
For the case of time independent ratio, we can rewrite the expression (55) as follows:

∆(t) = αt

(
(h+ b)

t∑
k=li

pik − h
)

(56)

Theorem 3. If the ratio between the inventory and backlog costs is time independent, i.e.,
ht = αth and bt = αtb ∀t, then ECi(t) is strictly decreasing until t = t∗i and strictly non-
decreasing after t = t∗i . Moreover, if inventory and backlog costs are time independent, i.e.,
αt = 1 ∀t, then ECi(t) is convex.

Proof. We first observe that, in (56),
∑t

k=li
pik is strictly increasing with t when li ≤ t ≤ ui

(while being 0 when t ≤ li−1, as noted earlier). Since h+b > 0, the value of ∆(t), starting from
−αth < 0 at t = li−1, will also be strictly increasing. Hence, either (i) t = t∗i ≤ ui−1 holds due to
the first observation of (h+b)

∑t
k=li

pik ≥ h at t, or (ii) t∗i = ui holds if ECi(ui)−ECi(ui−1) < 0.

In case (i), note that (h+ b)
∑t

k=li
pik = h is possible, and hence the function ECi(t) is strictly

non-decreasing (rather than strictly increasing). This concludes the proof of the first claim.
Next, consider the case of αt = 1. Note that we can further simplify (56) by eliminating αt.
Then, we have:

ECi(t+ 1) = ECi(t) + (h+ b)
t∑

k=li

pik − h

ECi(t+ 2) = ECi(t) + (h+ b)

t∑
k=li

pik − h+ (h+ b)

t+1∑
k=li

pik − h

where the second equation is simply the definition of ∆(t+1) with ECi(t+1) substituted using
the first equation. Since

∑t
k=li

pik ≤
∑t+1

k=li
pik, it is possible to observe that ECi(t+2)+ECi(t) ≥

2ECi(t+ 1). This concludes the convexity of ECi(t).

The case of a convex ECi(t) function can be associated to the practical setting where, as
one moves further away from t = t∗i , not only the expected cost increases, but also the rate of
the cost increases.

In line with the previous literature, we next define a regeneration interval [t1, t2] as an interval
of periods such that production takes place in periods t1 and t2 while no production occurs in
periods t, t1 < t < t2. Then, we have the following result.

Given a regeneration interval [t1, t2], let It1,t2 = {i ∈ I : t1 ≤ t∗i ≤ t2}. If the ratio between
the inventory and backlog costs is time independent, and production costs are time independent,
then in an optimal solution involving regeneration interval [t1, t2], for every i ∈ It1,t2 , di will be
produced either at t1 or t2.
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Proof. First, note that the production of di for any i ∈ Ii1,i2 cannot take place in a period t < t1
(or t > t2), since ECi(t) ≥ ECi(t1) (or ECi(t) ≥ ECi(t2), respectively) due to Theorem 3 and
the fact that production costs are time independent. Since production of di for any i ∈ I takes
place in a single period in an optimal solution due to Theorem ??, and since, by definition,
there is no production in any period t such that t1 < t < t2, d

i will be produced either in t1 if
ECi(t1) ≤ ECi(t2), or in t2 otherwise.

Next, we discuss how to use this result to define a dynamic program of polynomial complexity
particularly due to the significantly reduced number of linkages between states. First, we note
that the number of valid states is reduced, since now a state is valid only if sdi = 0 for all i ∈ I
such that t ≤ t∗i (rather than t ≤ li). Next, in order to account for the regeneration intervals,
we replace SD(t′) with SD(t′, t) in the recursion (54) of the dynamic program, where we define
any valid SD(t′, t) as follows:

• If t′ ≤ t∗i ≤ t− 1 and ECi(t
′) ≤ ECi(t), then sdi = 1 must hold at t,

• If t′ ≤ t∗i ≤ t− 1 and ECi(t
′) > ECi(t), then sdi = 0 must hold at t,

• If t′ ≥ t∗i + 1, then sdi = 1 must hold at t.

Note that the first case means that di must be produced at t′ (since it is cheaper at t′)
whereas the second case means that di will be not produced at t′. In the third case, if sdi = 0
holds at t′, then di must be produced at t′ since producing at t will be more expensive (whereas
if sdi = 1 holds at t′, it means production of di is already completed earlier.)

With this transformation of valid states as well as interactions between them, we first note
that, given an interval i ∈ I with stochastic demand timing, the optimal decision regarding a
regeneration interval [t1, t2] is trivial, unless t1 ≤ t∗i ≤ t2 − 1 holds. Note that there are O(T 2)
nontrivial regeneration intervals satisfying t1 ≤ t∗i ≤ t2 − 1, and for each of these regeneration
intervals, we can pre-compute the set of valid vectors SD(t1, t2) as shown above, i.e., by calcu-
lating whether it is cheaper to produce di at the start or the end of the regeneration interval.
With n intervals in total, this would result in at most O(nT 2) computational effort.

Corollary 1. In the case of time independent production costs and time independent ratio
between inventory and backlog costs, the dynamic program has a worst case complexity of O(nT 2).

4.5.3 Time Independent Production Costs and Convex Probability Distributions

We next consider the case where the probability distribution for any stochastic demand timing
is convex between li and uj . Then, it is straightforward to observe that ECi(t) is convex, in the
same fashion as in Theorem 3 when αt = 1 ∀t. Therefore, Proposition 4.5.2 holds in this case as
well, and the worst case complexity of the dynamic program is O(nT 2), as given in Corollary 1.

4.5.4 Final Remarks on Stochastic Timing

Many research avenues are worthwhile investigating from this novel stochastic setting. First,
although we believe it is NP-hard, the complexity of the general problem with backlog costs
that are independent of the quantity of stochastic demand remains an open question to study.
Second, the capacitated case with multiple products could be solved using a Lagrangian heuristic,
such as the ones proposed in Trigeiro et al. (1989) and Brahimi et al. (2006), by relaxing the
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capacity constraints and solving the resulting single-item problems with the dynamic programs
proposed in this paper. Another interesting extension of our work is to consider the case where∑ui

t=li
pit < 1, i.e., there is a probability that demand di may not occur at all. In this case, the

total demand on the planning horizon also becomes uncertain. This implies that some production
quantity aimed at satisfying di might end up remaining in the inventory and thus could be used
to satisfy other demands in the planning horizon. A last related research perspective would
be to analyze the case with lost sales, where answering a demand too late would also result in
products remaining in the inventory.
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