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1. INTRODUCTION:

o This research will develop a set of programming rules or machine learning algorithms (i.e.,
algorithms generated by automated learning from manually coded data) to determine the principal
ICD-9-CM code, which is the diagnosis code that is primarily responsible for the admission of the
patient to the hospital. The objective will be to develop machine learning algorithms using Natural
Language Processing (NLP) to develop a dataset called the Automated Clinical Encounter
Repository (ACER). The ACER will primarily be used as supplemental repository. The baseline data
will be obtained using pre-existing coded medical records. At present, the majority of the ICD-9-CM
coded are trauma-related, specifically wounded-in-action, and as such, this proposal will only use
the “Injury and Poisoning” codes (i.e., 800–999). The ACER algorithms will then be tested on the
matched electronic health records in the Theater Medical Data Store to determine accuracy. Three
different models will be developed and analyzed using the ICD-9-CM coding hierarchy: 1) the trauma
and anatomical location subcategory diagnostic code groups; 2) the first three digits of the ICD-9-CM
codes; and 3) the billable or actual ICD-9-CM diagnostic codes.

2. KEYWORDS: natural language processing, machine learning, coding, clinical notes

3. ACCOMPLISHMENTS:

o What were the major goals of the project?

 Specific Aim 1: Predict the ICD-9-CM code by subcategory

 Specific Aim 1 will predict the ICD-9-CM subcategory for each principal diagnosis of
the TMDS. The model will be trained on a subset of the EMED data and then tested
on TMDS data that has been matched to the remaining EMED data. This aim will be
the most achievable, as there are only 24 subcategories for ICD-9-CM codes 800-
999. A complete listing of the subcategories are shown in Table 1.

 Specific Aim 2: Predict the 3-digit ICD-9-CM codes within each subcategory

 Specific Aim 2 will predict the principal 3-digit ICD-9-CM codes from 800-999 for
each record of the TMDS. The model will be trained on a subset of the EMED data
and then tested on TMDS data that has been matched to the remaining EMED data.
The data will consist of around 150 3-digit ICD-9-CM codes. It is envisioned that
certain ICD-9-CM codes will have significantly more data allowing for greater
reliability of the results.

 Specific Aim 3: Predict the billable ICD-9-CM codes within each subcategory

 Specific Aim 3 will predict the principal billable ICD-9-CM code for each record of the
TMDS. The model will be trained on a subset of the EMED data and then tested on
TMDS data that has been matched to the remaining EMED data. This aim will
consist of trying to decipher and code over 1,500 billable ICD-9-CM codes and also
identify the codes for which the algorithms work best. The goal will be to ascertain
which billable ICD-9-CM codes can be predicted with at least a 70–80% accuracy.
We will most likely restrict our coding to the best performing billable codes.

 Specific Aim 4: Predict the secondary and tertiary ICD-9-CM codes in the TMDS

 Specific Aim 4 will attempt to the code additional ICD-9-CM codes from the TMDS in
addition to the principal code. Patient records with secondary and tertiary ICD-9-CM
will be selected and trained from the EMED data and then tested on the same record
in the TMDS. This aim will be the most difficult as patients can have multiple codes
per record but will restrict to the first three diagnoses of the patient (primary,
secondary and tertiary).

 Specific Aim 5: Development of the ACER using all the TMDS data
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 Specific Aim 5 will use the algorithms developed from Specific Aims 1–4 to develop
the ACER. The goal is to identify and predict the coding for trauma patients present
in the TMDS that have not been coded in the EMED, which will enable trauma
patients to be expedited into the registry with considerably less clinical review. We
will most likely restrict our coding to the best performing billable codes.

 Specific Aim 6: Determine the accuracy of the principal ICD-9-CM codes in TMDS

 The accuracy of the ICD-9-CM data in the TMDS has never been quantified,
primarily because most of the data has been captured in Iraq and Afghanistan
without any medical billing concerns. Sensitivity, specificity, and accuracy metrics will
be compared for Specific Aims 1–5.

o What was accomplished under these goals?

 Aim 1: 83% overall accuracy

 Aim 2: 73% overall accuracy

 Aim 3: 53% overall accuracy

 Overall accuracy ~60% removing codes 850.9, 850.5, and 850.12

 Over 30 billable ICD-9 codes had an accuracy of more than 50%

 Represents 75% of the data

 Exploring topic modeling and word vectors provided additional information but more
work is needed

 Removing common phrases prior to text preprocessing is very important in model
performance

 Document term matrix provides an excellent approach in estimating the ICD-9 subcategories

 Inverse document frequency (tf-idf) Random forests and extreme gradient boosting were the
best models

 Deep Learning methods are not performing as well as ‘shallow’ learning models (Random
Forests, XGBoost)

 Only the Subjective Note was used instead of the SOAP note however as stated above the
expanded SOAP notes didn’t improve RF and XGBoost

 There is not enough data to apply multilabel classification using billable ICD-9 codes

 Need to use 3-digit ICD-9 codes

 Aim4 results for Multi-label were not good primarily due to the lack of data however there are
some positive takeaways

 PPV was 78% (Given the predicted value is true how accurate is the model
performing

 Implementing and understanding the Multi-label Classification will be useful for future
studies

 Aim5 results are preliminary but potentially over hundred-thousand of records may be
partially automatically coded
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 Aim6 results are preliminary but potentially thousands of records may be partially
automatically coded

 There is a strong likelihood that the TMDS have a significant portion of misclassified
coded diagnoses

 Among the useable records in TMDS, 90k Intracranial injuries were predicted by
Xgboost algorithm compared to 15k based on the primary diagnoses in the TMDS.
However these findings need to be confirmed my reviewing the clinical notes.

Table 1. Predicting the ICD-9 CM Categories on all the TMDS data 

ICD-9 subcategory Frequency Percent 

Sprain 134608 43.20% 

Intracranial 92590 29.70% 

Injury other head 27716 8.90% 

Open wound lower limb 10719 3.40% 

Open wound upper limb 10707 3.40% 

Fracture lower limb 7166 2.30% 

Fracture upper limb 6675 2.10% 

Open wound head neck trunk 5237 1.70% 

Burns 4964 1.60% 

Dislocation 4688 1.50% 

Internal injury 1404 0.50% 

Superficial 1198 0.40% 

Contusion 941 0.30% 

Amputation lower limb 924 0.30% 

Nerve injury 665 0.20% 

Fracture spine trunk 496 0.20% 

Fracture face skull 494 0.20% 

Injury blood vessel 66 0.00% 

Amputation upper limb 48 0.00% 

Total 311306 100.00% 

o What opportunities for training and professional development has the project provided?

 "Nothing to Report."

o How were the results disseminated to communities of interest?
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 Preliminary results were presented orally at the Navy Applications of Machine Learning
(NAML) Conference in March 2021. NAML is an annual event showcasing current machine
learning research relevant to naval applications. Participants include individuals from the
defense community, industry, and academia.

o What do you plan to do during the next reporting period to accomplish the goals?

 The accuracy of the ICD-9-CM data in the TMDS has never been quantified, largely because
most of the data has been captured in Iraq and Afghanistan without any medical billing
concerns. Sensitivity, positive predictive rates and accuracy metrics will be compared for
Specific Aims 1-3.

4. IMPACT:

o What was the impact on the development of the principal discipline(s) of the project?

 This research developed a set of programming rules or machine learning (ML) algorithms
(i.e., algorithms generated by automated learning from manually coded data) to determine
the principal ICD-9-CM code, which is the diagnosis code that is primarily responsible for the
admission of the patient to the hospital. Using machine learning algorithms and NLP to
develop a dataset through automating or semi-automating a coding system for deployed
military personnel EHRs in an operational setting is a game changer. This research fills a
void and reduces a heavily human capital project that is prone to subjective results and
errors. Additionally, this effort proves that the military can take previously uncoded
encounters and utilize the clinical notes to bring structure to unstructured data.

o What was the impact on other disciplines?

 "Nothing to Report."

o What was the impact on technology transfer?

 "Nothing to Report."

o What was the impact on society beyond science and technology?

 "Nothing to Report."

5. CHANGES/PROBLEMS:

o "Nothing to Report"

6. PRODUCTS:

o Publications, conference papers, and presentations

 Journal publications.

 "Nothing to Report"

 Books or other non-periodical, one-time publications.

 "Nothing to Report"

 Other publications, conference papers, and presentations.

 Zouris, J. M., MacGregor, A. M., Olson, A. S., D’Souza, E., & Elkins, T. (2021, March
23-25 ). Medical Coding the Clinical Text Data from the Theater Medical Data Store
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Using Natural Language Processing [Conference presentation]. Naval Applications of 
Machine Learning Workshop, Virtual event. 

o Website(s) or other Internet site(s)
"Nothing to Report"

o Technologies or techniques
"Nothing to Report"

o Inventions, patent applications, and/or licenses
"Nothing to Report"

o Other Products

 We have begun to develop the Automate Clinical Repository (ACER) as part of Aim 5. This
database will identify and predict the coding for trauma patients present in the TMDS that
have not been coded in the EMED which will enable trauma patients to be expedited into the
registry with considerably less clinical review.

7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS
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o COLLABORATIVE AWARDS:  "Nothing to Report."

o QUAD CHARTS: "Nothing to Report."

9. APPENDICES: "Nothing to Report."


	9. APPENDICES: "Nothing to Report."

