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1. Introduction

Writing simulators is an art where the practitioner must balance the accuracy of the
results obtained against the resources required to gain useful information. A sig-
nificant resource that is often in short supply is time, which is why strategies that
reduce work without sacrificing accuracy are generally useful. This work describes
a simple method termed the Tentative Event Strategy (TES) that is useful when
events have starting and ending dates that can be predicted in the future, but which
may be obsoleted by other events before they can conclude. The method is an ex-
tension of the well-known Global Event List (GEL) protocol traditionally used by
discrete event simulators (see1 and Section 2), but which simplifies event cancel-
lation. TES can be viewed as the dual of the well-known Time Warp Strategy,2,3

where instead of rolling back time when a conflict is detected, obsolete events are
discarded before their state is committed to the global state.

As a motivating example of why tentative events might be useful, consider a simu-
lation of a moving robot confined within a box and a simulation engine that takes
as input the current position and velocity of the robot to predict the moment that
the robot collides with one of the walls. These events are tentative in that they are
predictions of the future; if the robot changes its velocity before the moment when
the collision is expected to occur, then the tentative event is no longer valid to exe-
cute or commit to the simulator’s global state. However, continuously verifying that
other events have not affected the collision event may be prohibitively expensive to
calculate. What is needed is a way of quickly determining if the tentative event is
still relevant when it is time to commit its changes to the global state. The TES is
one method that can be used to make this determination quickly.

The TES was successfully used by the author in his doctoral work in the implemen-
tation of a simulator that simulated events whose duration could be as short as a
nanosecond, but might be as long as a full day. In the author’s opinion, the TES as
a strategy is most useful when all of the following statements hold true:

1. A simulation is a collection of datum, each of which is atomic. The collection
of datum contains all information about the state of the simulation (no exter-
nal state), and every version of every datum can be associated with its own
unique canary (described in Section 1).
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2. Global simulation state is only modified when an event is committed.

3. There are large spans of “boring” time that have no effect on simulation state
and that are not of interest to the researcher.

4. It is possible to predict at least some future events using the current state
alone.

5. Any particular event is only dependent on a small subset of the global data*.

6. Some future predictions will be cancelled, and it is not easy to decide which
ones will be cancelled until the simulation has evolved further.

While the strategy may be successfully used under other circumstances, in the au-
thor’s opinion, these are the conditions where the TES will be most useful.

1.1 The Tentative Event Strategy

The strategy depends on canaries and tentative events. Canaries are mutation-unique
128-bit unsigned integers that are incremented each time the datum is mutated. They
are similar to version numbers, but unlike version numbers, the amount that they are
incremented by need not be uniform with each mutation, nor are they guaranteed to
be strictly increasing in value†. The only strict requirement is that every mutation of
a given datum be given its own mutation-unique canary‡. An alternative to using an
incrementing counter is to use Universally Unique IDentifiers (UUIDs).4 The ad-
vantage of using increment operators over that of using UUIDs is that incrementing
a single value may be faster on a given platform than creating a new UUID§.

A canary is cheap to create, cheap to copy, and cheap to compare with any other
canary. Most importantly, a canary is conceptually immutable; if two canaries are

*For example, the motion of a robot only depends on its internal decision-making processes and
collision interactions; radio communication events have no effect on motion events, even though
there may be an indirect connection where a robot receives a radio communication, which affects
its internal decision-making processes, which then affect its motion, but chains of events can be
reduced to the behavior of the individual links between events. That is what we discuss here.

†This allows the use of some bits as flag bits, which can be helpful in some circumstances.
‡In particular, mutations must not reuse canaries while any uncommitted event holds a copy

of the canary. While this can be guaranteed by having a set of in-use canaries, the most pragmatic
choice is to use a counter that can be guaranteed to never roll over, which ensures that the canaries
are never reused.

§The author strongly recommends testing all techniques before adopting them for use within the
reader’s own simulation engine to see if they are the most appropriate solution for the reader’s own
situation.
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not equal, then it implies that something has changed about the item that they are
attached to*. Given these properties, we can now discuss how canaries are used.

Not only does every datum in the simulation have its own canary associated with it,
each and every time a given datum is mutated, it is given a new canary. Since the
canaries are guaranteed to be unique over time, we can immediately determine if
a datum has changed since we last checked it by storing a copy of the canary with
a tentative event when the event is created, and then comparing it with the current
value of the datum’s canary when the event is ready to be executed. In short, a
simulation engine reduces to the following:

1. When a tentative event is created, it captures copies of the canaries of each
datum that could affect execution of the event and stores those copies with
the event.

2. The event is pushed into a minimum-priority queue that is ordered by when
events are supposed to occur.

3. The next event is popped and examined. If and only if the canary values in
the tentative event match the current canary values, execute and commit the
event. Otherwise, discard it.

As an example of how the TES is applied, consider a simple simulation consisting
of two robots driving toward one another. It is possible to predict when the robots
will collide with one another based on their current velocities and positions, and
to schedule an event for that moment in the future. However, as soon as one (or
both) robots alter their velocities, the collision event will be obsolete and must not
be committed to the global state. In this particular case, as soon as a robot alters
its velocity, the canaries associated with each datum (position and velocity) will be
altered at that time. A new collision event can be created with the new canary values
of the relevant data and be pushed into the priority queue. As events are popped and
executed, the old and new events will eventually be encountered and examined for
execution. Since the old event’s canaries no longer match the canaries of the data
used to generate it, the old event will be silently discarded. If the new event has not
been superseded by some other event, then it will be executed.

*It is not always obvious that a particular datum has changed; this is the well-known ABA
problem. See5 for further details.
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1.2 Why the TES Is Useful

There are at least two reasons why the TES is useful. First, events are not necessarily
committed in the same order as they are executed. Second, it makes cancellation
much simpler.

The first point is best illustrated by reconsidering the two robot examples discussed
earlier. Imagine that when the first collision event was calculated, both robots were
traveling toward each other at 1m s−1. Before the event is executed, the robots sud-
denly increase their speeds toward one another to 2m s−1. In this case, the second
event will clearly occur sooner than the first event. Finding the first event in the pri-
ority queue to cancel it may require O (n) search time over the list of future events*.
If the event is not cancelled or otherwise tracked so that it is not executed, then the
simulation can end up in an incorrect state. TES makes it easy to decide if an event
is still valid.

The second reason was implied previously; it makes cancellation easier. With just
two robots, it is difficult to justify the use of this strategy, but imagine that instead
we had a larger number of robots, say, one billion, all of which are spread out on
a finite two-dimensional plane. In addition, instead of collisions, let us consider
radio communications, which can travel long distances. Determining which robots
are in communications range of other robots can require pairwise analysis in the
worst case. This is expensive, and we would like to avoid repeating this work as
far as possible. The problem is that changing the velocity of any robot means that
we need to cancel the radio events which involve that robot. Canceling events is
expensive, even if we store pointers to events of interest within each robot (in the
worst case, we would have to store a billion events with a given robot). However,
since we are using canaries, cancellation becomes a O (1) operation as we need
only change the canaries associated with the position and velocity of the robot†; we
do not have to search for and cancel events individually, we just need to update the
current canary value of the velocity of the robot in question, which immediately
invalidates all events that depend on the old value. Moreover, we do not need to
track the events we are going to cancel; each robot might not know what events

*This assumes that there does not exist an auxiliary data structure which tracks events that may
need to be cancelled.

†There is the obvious issue that we must still examine every event to see if it has been cancelled
yet or not, but if an event’s validity depends on a small number of datum (where the number is upper
bounded by some constant), then examination itself is a O (1) operation.
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are interested in it at all. The only cost incurred happens when events are examined
for execution, which requires comparing the stored values of the canaries with the
current values.

The rest of this technical note is organized as follows. Section 2 discusses some
alternative methods to TES. Section 3 discusses the author’s experiences using the
TES, including some heuristics that may be of use in limiting the memory usage
of the priority queue when using it. Section 4 finishes with remarks on how the
technique could be further improved in the future.

2. Related Work, and the Author’s Experiences

Prior to discovering the TES, the author experimented with a number of other well-
known methods for developing a simulation engine. Some of the approaches that
were tried are discussed in this section.

2.1 Discrete Time

Discrete time step simulators generally have two global states, now and later. The
simulator performs a simple update operation, calculating the later state from the
now state by determining what changes occur over some time delta. The primary
choice in these simulators is whether the time delta is fixed in duration, or if it is
dynamically adjusted.

These types of simulators have a number attractive advantages:

1. They are simple to understand, implement, and debug.

2. They have a strong separation between the now and later states, which makes
parallelization simpler.

3. They are easy to defend when publishing results.

Parallelization is simple because the later state values can only be affected by the
now state values, which means that every state element that must be calculated for
the update can be calculated in isolation from any other element. This is in contrast
to techniques such as the well-known Time Warp method (see3) that optimistically
executes events, and then rollback the results using anti-messages to rollback state
after the fact.
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The disadvantage is the tension between fidelity and speed of execution caused by
the time steps themselves. As noted in Van Verth and Bishop6(p. 510), if our time
steps are too large relative to the speed of the objects within our simulation, there
will be important interactions that occur between now and later that are not cor-
rectly simulated. A method for overcoming this shortcoming is to calculate bound-
ing volumes over the objects, and then to sweep or extend the bounding volume
along the trajectory that the object will take between now and later. Bounding vol-
umes that intersect indicate objects that may intersect, and which require special
handling. The difficulty with this technique is that as the duration between now

and later increases, so does the volume of the bounding volumes, and therefore the
probability that the number of interactions that need to be checked increases.

Nevertheless, due to their simplicity and utility in many areas of interest, discrete
time step simulators are widely used, including by the author in his first two simula-
tor designs for his doctoral work, which are described in Section 2.1.1 and Section
2.1.2.

2.1.1 Fixed Time Step

The first version of the author’s simulator used a fixed time step system. Testing and
performance tuning revealed that there could be long periods of boring time, when
nothing of interest in the evolution of the simulation occurred*. Given that a single
simulation would take place over the period of a simulated day, doing no work
while simulating gigahertz radios would still require weeks of wall-clock time to
execute. Actually updating all state in the simulator between time steps when there
were numerous robots and peers required significantly more time, which meant that
individual experiments could take months to execute, all because of the boring time
steps.

2.1.2 Dynamically Adjustable Time Step

The second version of the simulator was a modest evolution of the first, where a set
of rules were enumerated that described when the simulation was statically known
to be boring. The simplest rule was that if all robots were beyond communications
range of one another, then the radio communications were not calculated. During
these ranges of boring time, the simulator adjusted to take much larger time steps.

*Since this was a fixed time step simulator, the sizes of the time steps had to be chosen to capture
the shortest duration event of interest. For the research in question, this meant that the duration of a
time step was 1 ns.
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While these rules were easy to implement on top of the first version of the simu-
lator, they did not produce the hoped-for performance gains. This was because the
author’s research was focused on improving communication using robots as routers
and couriers, and the behaviors that were studied naturally discovered that forming
mesh networks that covered as many of the stationary peers as possible was the most
efficient at improving communications. So while those simulations that involved
very few mobile robots and widely dispersed immobile peers did improve their
runtime performance, this method did little to improve those simulations where a
significant fraction of the simulation time included at least one pair of actors that
were in radio communications with one another, which forced the simulator into its
low-speed, high-fidelity mode.

Worse, because the rules governing when the simulator switched from low-speed
to high-speed mode were evaluated at every time step, this version of the simulator
was always slightly slower than the first version when operating in the slow mode.
This necessitated the move to a GEL-based continuous time simulator.

2.2 Continuous Time and Events

Continuous time simulators do not have fixed time steps. Instead, they calculate
when the next event of interest will occur using basic physical laws. For example,
using the current velocity and position of an object, it is possible to determine with
perfect accuracy where the object will be at any moment in the future (assuming that
the object’s velocity is constant over the intervening duration). This forms the basis
of continuous collision detection algorithms (see7 for one such type of algorithm),
and became the core of the third version of the simulator, which was a complete
rewrite of the simulator from scratch*. The basics of this type of simulator can be
found in various publications.1,8,9

Switching to the event-based model of continuous time simulators proved to be
an extraordinarily good choice. The boring stretches of time were eliminated com-
pletely, leaving only the “important” events to consider. This greatly improved the
performance of the simulator, but there was still a cost: all events that were cal-
culated that were not the immediate next event to execute were discarded. Events,

*The architectural differences between discrete time simulators and continuous time simulators
are so great that virtually no code can be profitably shared between the two types. The time spent
learning this fact is part of why the author was motivated to write this technical note: it is the author’s
hope that it will save someone from making the same mistakes the author did.
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such as when a robot would reach its destination, would be recalculated a large
number of times even though the robot had not changed its velocity.

This realization lead to the search for methods of avoiding having to redo work,
which led to TES as described in Section 1.

3. Experiences

The TES was successfully used in the author’s Ph.D. dissertation10 research ef-
forts when he needed to write a simulator for his work. In brief, the author’s Ph.D.
research centered around swarms of robots that were tasked with minimizing the
maximum latency of messages that were transmitted between specialized, immo-
bile peers within the network. Normally, one would form a mesh network, possibly
using some form of distributed minimum spanning tree algorithm,11 to connect the
peers together. The author was interested in how to solve the problem when net-
work partition was sometimes unavoidable, such as when the peers were separated
to such a degree that forming a network graph which contained a single compo-
nent was not possible. In this case, some robots could be tasked to physically carry
messages between different network partitions.

The demands of the research meant that the simulator had to cope with very short
duration events (such as one might expect when simulating gigahertz frequency
radios) to long duration events (such as movement). That said, the types of events
did not neatly partition into ‘fast and ‘slow events; as part of the research, the robots
were given multiple radios that they could use concurrently, from kilohertz radios
that had long range to gigahertz radios that had very short range. As a result, it was
not possible to treat transmission of packets as instantaneous events as the robots
could move an appreciable distance between the start of a packet’s transmission
until the end of the transmission. Moreover, while a packet might be corrupted due
to packet collisions, it was still possible for a robot to detect that a channel had
been in use and for how long. This information itself was useful for some of the
strategies that were analyzed and could cause a robot to change its behavior, even
if the packet was corrupted in transmission. Different simulation techniques were
implemented and discarded as their performance characteristics were too slow to be
of use. Once the author discovered the TES, he was able to write a simulator that
had sufficient performance to complete his research.
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4. Conclusions and Future Work

In this work, the author described the TES, a novel and simple strategy for deter-
mining if a given tentative future event is still valid and should be committed to the
global state on its execution date. It was compared and contrasted with other well-
known techniques that were used by the author during his Ph.D. research work,
providing qualitative assessments and recommendations that other researchers may
choose to follow when developing their own simulation engines. The author knows
of three possible improvements that could be useful when designing simulation en-
gines.

First, the TES as currently defined is a conservative strategy. By using confluently
persistent data structures (see12 and13), it may be possible to make the TES an opti-
mistic strategy similar to Time Warp, but without rolling back state. Instead, events
that are still valid at commit time will have their copy of the data structure merged
back into the global data structure. All other events will be silently discarded.

Second, employ a concurrent garbage collection thread that proactively searches
the GEL for events that are no longer valid, either removing them from the GEL
immediately or marking them as invalid so that when they are popped from the
GEL they can be discarded immediately.

Third, limit how far into the future the simulation is able to advance in a single
step. While this appears to directly contradict the gains that event-based simulators
can provide, the advantage gained is in concurrency. With the limit in place, the
speed of light (‘light-cone) limits the distance an event’s cancellation or mutation
can affect the state space. Thus, events that are widely separated cannot affect each
other and can be safely merged into the global state space without regard to one
another. While this may seem to be a useless limit given how fast the speed of light
is, if actions are limited to within a certain range of an actor (e.g., with the range of
what an actor can touch), the light-cone of the actor is defined by the actor’s speed.
This can significantly increase concurrency.
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Lies, Damned Lies, and Statistics

— popularized by Mark Twain

Finally, a comment about the lack of plots, tables, and other quantitative analysis in
this work. While it is normal to make claims about performance and general utility
in a work such as this one, the author wishes to be extremely cautious in making
broad statements about the applicability of this technique. It is too easy to provide
misleading plots and claims of speedups that may not transfer well to other problem
domains or simulation platforms. In the author’s opinion, the TES should be kept as
a potential tool in a researcher’s toolbox, but before it is applied, a researcher must
evaluate it to estimate its utility in a given problem domain. It is for this reason that
the author has deliberately chosen to avoid giving what could be misleading metrics
regarding the use of the TES.
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Glossary

ABA A type of race condition where some datum that is originally in state A, is
mutated to state B, and then back to state A before an observer notices that a
change took place. (3)

Global Event List (GEL) A sorted list of events that are to be executed in the
future. (1, 7, 9)

Tentative Event Strategy (TES) The strategy described within this work. (iii, 1–
5, 8–10)

Universally Unique IDentifier (UUID) Strings of 16 bytes that are generated us-
ing one of several algorithms defined in4 and are probabilistically guaranteed
to be unique through both time and space across the universe. The algorithms
defined within4 do not require coordination between parties to ensure that
each is able to generate their own unique UUIDs. (2)
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