

 ARL-TR-9397 ● FEB 2022

Baseline Assessment of Object Detection
Models on Partially Occluded Objects

by Darius Jefferson II

Approved for public release: distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-9397 ● FEB 2022

Baseline Assessment of Object Detection Models
on Partially Occluded Objects

Darius Jefferson II
Computational and Information Sciences Directorate,
DEVCOM Army Research Laboratory

Approved for public release: distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

February 2022
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

17 June 2020–30 September 2021
4. TITLE AND SUBTITLE

Baseline Assessment of Object Detection Models on Partially Occluded Objects
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Darius Jefferson II
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

DEVCOM Army Research Laboratory
ATTN: FCDD-RLC-IB
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-9397

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release: distribution unlimited.
13. SUPPLEMENTARY NOTES
ORCID ID: Darius Jefferson II; 0000-0002-4538-084X
14. ABSTRACT

One of the fields of computer vision commonly used in military research is object-detection. A particularly good example of
this is real-time object recognition on the battlefield. Developing/evaluating these types of models requires proper object-
detection and classification datasets, which are crucial for Soldiers’ decision-making on the battlefield. A major problem with
current object-detection models is that they flounder when detecting partially occluded objects. This is because the models do
not properly recognize the objects while parts of them are covered. Additionally, occlusion is not a condition that many
object-detection models are designed to handle. The main objective of this work was to perform a baseline assessment of the
Gonzalez–Garcia model compared with the Faster R-CNN model from Detectron2 and YOLOv5 using the PASCAL VOC
2010 dataset. Of course, this dataset contains many examples of partially occluded objects. The results from each would then
be compared to determine their overall effectiveness and their accuracy on partially occluded objects. All three object-
detection models seem to work well overall and somewhat well with partially occluded objects. However, none of them are
very good at detecting objects in poor lighting conditions.

15. SUBJECT TERMS

object-detection, occlusion, parts detection, VOC, computer vision, YOLO, Detectron

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

24

19a. NAME OF RESPONSIBLE PERSON

Darius Jefferson II
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-1404
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. Gonzalez–Garcia Model 1

3. Detectron2 3

4. YOLOv5 3

5. PASCAL VOC 4

6. Experiment 5

7. Results 6

8. Conclusion 13

9. References 15

List of Symbols, Abbreviations, and Acronyms 17

Distribution List 18

iv

List of Figures

Fig. 1 (top) A VOC 2010 image containing “difficult” objects (the people,
highlighted in blue); (bottom) a VOC 2010 image containing an
“occluded” object (the person, highlighted in red) 5

List of Tables

Table 1 Aggregate object class AP results from the GG model, Detectron2, and
YOLOv5 ... 6

Table 2 Aggregate object-class mAPs from the GG model, Detectron2, and
YOLOv5 ... 7

Table 3 GG model’s object class APs for the occluded, unoccluded, and
difficult breakout categories ... 8

Table 4 Detectron2’s object class APs for the occluded, unoccluded, and
difficult breakout categories ... 9

Table 5 YOLOv5’s object class APs for the occluded, unoccluded, and
difficult breakout categories ... 10

Table 6 GG model’s object class APs for the occluded and difficult, occluded
and non-difficult, unoccluded and difficult, and unoccluded and non-
difficult breakout categories ... 11

Table 7 Detectron2’s object class APs for the occluded and difficult, occluded
and non-difficult, unoccluded and difficult, and unoccluded and non-
difficult breakout categories ... 12

Table 8 YOLOv5’s object class APs for the occluded and difficult, occluded
and non-difficult, unoccluded and difficult, and unoccluded and non-
difficult breakout categories ... 13

1

1. Introduction

Object detection is one of the most popular fields of computer vision used for
military applications. One of the ways in which object-detection models are used
in this context is for real-time object recognition on the battlefield. Many of these
models are starting to be incorporated into technology used by Soldiers (i.e.,
unmanned ground vehicles and heads-up displays) to assist them in identifying
objects around them that could represent potential threats to their safety. By
properly detecting and classifying hazardous objects on the battlefield, the models
could be able to provide Soldiers with useful information about their surroundings
so they can make decisions regarding how to proceed in their missions.

A major problem that occurs with current object-detection models is that they have
trouble detecting objects that are only partially visible or occluded. In these cases,
object-detection models will often miss detecting these objects at all. They may
also detect the partially occluded objects but then classify them using the wrong
object class. Occlusion is a condition that many researchers do not account for when
developing and training their object-detection models even though it is commonly
seen in the real world. To ensure the safety of Soldiers, as well as improving the
state of object-detection models in the future, it is necessary to determine how well
current object-detection models work when faced with this scenario.

The main objective of this work was to perform a baseline assessment on three
state-of-the-art object-detection models on a popular object recognition dataset
containing many partially occluded objects. After doing so, the results from each
were compared. The models used in this experiment are the Gonzalez–Garcia
model,1 Faster R-CNN from Detectron,2 and YOLOv5.3 The dataset in which they
were trained and tested on was one of the popular Pattern Analysis, Statistical
Modeling and Computational Learning Visual Object Classes (PASCAL VOC)
challenge datasets, specifically VOC 2010.4 This report begins by presenting an
overview describing each of the object-detection models and the VOC dataset.
Then more details about the experiment are given, along with results and the
conclusion.

2. Gonzalez–Garcia Model

The Gonzalez–Garcia model (GG) is a MATLAB-based object-detection model.
Like a typical object-detection model, the GG model detects the whole object but
also the semantic parts of that object.1 “Semantic” parts are those sections of an
object that can be easily recognized and described by humans.5 This subset field of
object detection is known as parts-of-object-detection or parts detection. The reason

2

it does this is to improve object detection by being able to identify objects by their
parts, the combination of which are often unique to each class of object.

This model uses a convolutional neural network (CNN) as a backbone, specifically
Fast R-CNN.6 As a result, images used as input are sent through multiple
convolutional layers so that region-of-interest (ROI) pooling may be performed.
ROI pooling creates what are known as region proposals from the input images;
various areas from within the image considered noticeable by the model. Each
image contains two types of region proposals, one for objects and one for parts. It
is at this point that the model splits into four separate branches.

Part proposals are sent to both the part appearance and relative location branches,
both of which contain two fully connected (FC) layers. The part appearance branch
focuses on classifying parts based on their appearance, as the name implies. The
relative location branch uses the location of parts relative to their respective objects
as a way of identifying those parts. For example, if an identified object within an
input image is a car, the relative location branch could identify areas underneath
the car as containing wheels. It would then score the part proposals based on their
overlap with the areas suggested by the relative location branch. These
“suggestions” made by the relative location branch are done using a separate
pretrained CNN that the model’s researchers created for this purpose called
OffsetNet.1

Object proposals are sent to both the object class and object appearance branches.
The object class branch tries to correctly classify objects found within the proposal.
As mentioned, knowing the class of an object is not only important for the model’s
effectiveness overall, but also useful for the relative location branch for identifying
an object’s semantic parts. The object appearance branch, like the part appearance
branch, identifies objects based on their appearance. The object class branch
contains three FC layers while the object appearance branch contains only two.

The outputs from the part appearance branch and from the two object branches are
concatenated to form one unified part representation, which is then scored and fed
into a regressed bounding box layer. At the same time, the relative location branch
computes its own scores for parts. This is done separately since not all parts benefit
from knowing their relative location within an object. Afterward, the scores from
the unified part representation and the relative location branch are linearly
combined to form the final outputs of the GG model.

The initial results from the developer’s paper show that the GG model works
considerably better than models that focus on part appearance only to identify parts,
including on partially occluded objects.

3

3. Detectron2

Another state-of-the-art model investigated and then used for this research was
Faster R-CNN. However, the original implementation of this model had already
been deprecated by the time this project began. One of the most recent
implementations of it, and one suggested by the original developers of the model,
was contained within Detectron2.

Detectron2 is an object-detection platform developed by the Facebook Artificial
Intelligence Research team and released in 2018.2 As the name implies, it is the
successor to the original Detectron, which functioned similarly and was developed
by the same team. As an object-detection framework, the purpose of Detectron2 is
to provide modern and high-quality implementations of various object-detection
models through their model zoo. These include, of course, Faster R-CNN,7 Mask
R-CNN,8 RetinaNet,9 DensePose,10 Cascade R-CNN,11 Panoptic FPN,12 and
TensorMask.13

All model implementations are written in Python and use the PyTorch Deep
learning library. They were also designed with the capability of being used with
either single or multiple graphics processing units (GPUs) for training.

4. YOLOv5

The last of the three models looked at was YOLOv5, the fifth version of the YOLO
series of object-detection models.3 YOLO, which stands for “You Only Look
Once”, was originally designed to perform quick object-detection by applying
entire input images to be analyzed by a neural network.14 The neural network would
then divide each image into regions to be predicted upon and weighted. Since the
model only evaluates using the neural network once per image as opposed to the
hundreds or thousands of times used by other models, it makes using YOLO much
faster in comparison.

YOLOv5 is the latest successor to YOLOv3, which was the last version of YOLO
developed by its original developers.15 YOLOv5 was developed at the same time
as another YOLOv3 successor (developed by a different group of researchers)
known as YOLOv4 and was released only a month after it. YOLOv5 offers several
GPU architecture variations, including some that were pretrained on the Common
Objects in Context (COCO) dataset3. It was developed by the company Ultralytics
in May 2020, and the model incorporates the knowledge they obtained from
numerous hours of research into future vision AI methods. YOLOv5 is written in
Python and uses PyTorch for deep learning.

4

The results from the developer's GitHub page show the accuracy for each variation
of YOLOv5 when trained and validated on the COCO dataset. It clearly
demonstrates the improved average precision and GPU speed of each architecture
variation as you increase the size.

5. PASCAL VOC

PASCAL VOC 2010 is the name of the dataset used for training and testing the
models in this report.4 PASCAL VOCs are ever-expanding image datasets
standardized for object class recognition. These datasets were originally made for
the PASCAL VOC series of challenges that spanned 2005–2012, with each year
having its own datasets.16 One of the main reasons that the VOC 2010 dataset was
chosen was because this was the original dataset used to train the GG model, which
was the first model investigated. The other reason is that the GG model’s
developers had created a semantic parts dataset using VOC 2010 that will be used
in this research in the future.1

Every VOC dataset since 2007 has two things in common. The first is that all
objects can be classified into at least one of 20 object classes, which feature mainly
different animals and vehicle types. The second is that all image annotations are
done using XML files, which contain a variety of tags describing the objects within
the image.

Two of the most important XML tags considered in this report are the “occluded”
and “difficult” tags. The “occluded” tag contains a binary value indicating whether
an object within an image is occluded (a “1” means it is occluded). The “difficult”
tag contains a binary value denoting whether an object is considered difficult to
detect (a “1” means it is difficult). Often, this “difficulty” can be attributed to poor
lighting conditions within the image. Note in the original PASCAL VOC
challenges, any objects marked as difficult were skipped in the evaluation process.
Examples of objects marked occluded or difficult can be seen in Fig. 1.

5

Fig. 1 (top) A VOC 20104 image containing “difficult” objects (the people, highlighted in
blue); (bottom) a VOC 20104 image containing an “occluded” object (the person, highlighted
in red)

6. Experiment

The crux of this research was to be able to determine the effectiveness of each of
the three object-detection models on the PASCAL VOC 2010 dataset. Each model
would be trained on 2010’s training set and tested/evaluated on its validation set
since the testing set was not publicly available. The results of each were quantified
by measuring the average precision (AP) for each object class. AP is the measure
of the model’s precision versus its recall and is a popular metric used for

6

determining a model’s accuracy. Once you have the APs from each object class,
you can find the mean average precision, or mAP, of the entire model. mAP is the
mean of all the APs across all of the object classes.

The object class APs were found based on eight cases/categories. The aggregate
case was based on the rules of the VOC challenges, which excluded difficult objects
from the evaluation. This case is also the one used to find each model’s mAP. The
remaining seven categories were referred to as the breakout categories and
described the conditions the evaluated objects were under. These categories
included occluded, unoccluded, difficult, occluded and difficult, occluded and non-
difficult, unoccluded and difficult, and unoccluded and non-
difficult.

These categories are mostly combinations of the two XML tags that were
mentioned before, both of which are very important when determining
effectiveness on partial occlusion. When finding the class AP, any objects whose
tags do not match the breakout category were not counted among the true positives.

7. Results

The experimental results are presented in Table 1.

Table 1 Aggregate object class AP results from the GG model, Detectron2, and YOLOv5

Object class APs (all models)
Object class GG Detectron2 YOLOv5
aeroplane 75.37% 82.25% 88.10%
bicycle 68.85% 56.69% 86.60%
bird 56.80% 61.64% 81.60%
boat 36.08% 56.86% 69.80%
bottle 26.86% 64.59% 73.20%
bus 71.26% 78.21% 88.60%
car 58.48% 84.08% 85.50%
cat 77.61% 70.84% 87.60%
chair 23.58% 51.21% 65.30%
cow 45.54% 64.75% 74.20%
dining table 35.99% 51.63% 57.80%
dog 72.21% 62.20% 83.90%
horse 65.33% 83.28% 85.70%
motorbike 70.96% 87.07% 87.80%
person 63.22% 87.45% 86.70%
potted plant 25.45% 54.83% 57.90%
sheep 60.14% 75.40% 82.00%
sofa 37.85% 59.33% 67.40%
train 72.19% 79.92% 87.70%
tv monitor 58.01% 58.97% 79.80%

7

Based on the current results, it is clear that YOLOv5 is the best model of the three
for general object-detection purposes. Its aggregate mAP is the highest at 78.90%,
while Faster R-CNN is 68.56%% and GG is at 55.09%, which can be seen in Table
2. Incredibly, YOLOv5 has over 80% AP in 12 out of the 20 total classes. The next
closest would be Detectron2, but it only has five while GG has none.

Table 2 Aggregate object-class mAPs from the GG model, Detectron2, and YOLOv5

Aggregate object mAPs (all models)
GG 55.09%

Detectron2 68.56%
YOLOv5 78.90%

All three models share some commonalities in their aggregate object-class APs.
The object class that contains the highest AP is not the same between each of them.
However, as seen in Table 1, the set of classes with the highest APs are about the
same among them. This includes aeroplane, car, cat, horse, motorbike, and person.
The most likely reasons for this is either because they have lots of examples in the
training set (car, cat, person) or have very distinctive sizes/shapes compared with
other classes (aeroplane, horse, motorbike).

The set of classes with the lowest aggregate APs are also about the same between
each of them, which include the chair, dining table, and potted plant classes. In the
case of the dining table class, the APs are probably low due to the amount of
training examples being lower than many other classes. For chair and potted plants,
each of those have various types just like the car class. Unlike the car class, which
mostly maintains the same overall shapes, chair and potted plant classes can be
more varied. Perhaps this makes it more difficult for the model to correctly detect
those classes.

For the occluded category, all models shared similar classes for the highest four
class APs. In GG’s case, the highest four APs were in the motorbike, horse, bicycle,
and person classes (from Table 3). In Detectron2’s case, the highest four APs were
the person, horse, motorbike, and car classes (from Table 4). In YOLOv5’s case,
the highest four APs were dining table, bicycle, horse classes, and person classes
(from Table 5). Although Detectron2 and YOLOv5 do not perform any form of
explicit parts detection natively, it could still be argued that the high APs in these
classes may be because of how recognizable their parts are even under occlusion.
The worst occluded AP between both GG and Detectron2 was the boat class, while
the worst for YOLOv5 was the aeroplane class.

As seen in Tables 3 and 4, the highest AP in the difficult category for all models
was the dining table class. Presumably, this is because while considered difficult to

8

detect, a dining table is still very large and hard to mistake for anything else when
not occluded. All other APs for all models are relatively low (with the exception of
the person class in Detectron2’s case), presumably due to the difficulty.

Table 3 GG model’s object class APs for the occluded, unoccluded, and difficult breakout
categories

GG detected objects (occluded/unoccluded/difficult) Part 1
Object class Occluded Unoccluded Difficult
aeroplane 18.60% 74.12% 0.13%
bicycle 52.57% 68.24% 0.18%
bird 22.29% 54.39% 0.02%
boat 3.39% 38.20% 0.82%
bottle 5.45% 28.47% 0.42%
bus 33.17% 75.31% 0.26%
car 25.89% 62.48% 0.28%
cat 43.07% 80.96% 1.18%
chair 8.70% 23.18% 0.62%
cow 23.63% 40.96% 1.13%
dining table 30.55% 27.53% 14.06%
dog 38.83% 74.20% 0.05%
horse 49.46% 65.10% 0.37%
motorbike 55.49% 68.28% 1.15%
person 47.50% 56.57% 2.22%
potted plant 7.28% 25.42% 1.03%
sheep 30.32% 58.44% 0.86%
sofa 24.51% 26.42% 2.67%
train 46.56% 74.56% 0.51%
tv monitor 16.77% 62.86% 0.03%

9

Table 4 Detectron2’s object class APs for the occluded, unoccluded, and difficult breakout
categories

Detectron2 Faster R-CNN detected objects
(occluded/unoccluded/difficult) Part 1

Object class Occluded Unoccluded Difficult
aeroplane 29.24% 84.54% 8.64%
bicycle 46.81% 56.51% 4.71%
bird 29.40% 60.16% 0.00%
boat 11.47% 63.75% 7.24%
bottle 45.64% 59.43% 1.94%
bus 52.32% 79.65% 1.75%
car 65.47% 81.40% 8.73%
cat 52.63% 74.27% 0.93%
chair 31.08% 53.56% 3.36%
cow 38.27% 67.47% 8.21%
dining table 50.90% 45.64% 43.13%
dog 38.93% 63.82% 0.00%
horse 75.71% 80.76% 0.87%
motorbike 75.19% 85.09% 7.68%
person 76.79% 83.69% 21.47%
potted plant 25.35% 54.52% 1.61%
sheep 53.56% 71.63% 4.91%
sofa 43.97% 53.99% 8.26%
train 62.77% 82.76% 1.43%
tv monitor 28.26% 65.26% 3.33%

10

Table 5 YOLOv5’s object class APs for the occluded, unoccluded, and difficult breakout
categories

YOLOv5 detected objects (occluded/unoccluded/difficult)
Part 1

Object class Occluded Unoccluded Difficult
aeroplane 5.36% 86.10% 1.03%
bicycle 39.50% 53.90% 0.45%
bird 10.50% 71.60% 0.13%
boat 7.11% 68.80% 2.78%
bottle 16.60% 58.10% 0.68%
bus 16.10% 81.90% 0.45%
car 25.90% 68.00% 2.14%
cat 13.40% 79.50% 0.45%
chair 25.20% 46.00% 2.57%
cow 20.80% 58.40% 0.93%
dining table 42.50% 27.50% 9.38%
dog 14.00% 75.50% 0.09%
horse 39.20% 54.10% 0.00%
motorbike 33.80% 60.60% 0.67%
person 38.70% 49.00% 2.53%
potted plant 14.10% 46.90% 0.83%
sheep 23.20% 62.40% 1.65%
sofa 36.90% 39.30% 3.23%
train 17.40% 78.00% 0.28%
tv monitor 10.90% 72.50% 0.67%

The last breakout category of particular interest is also the hardest, the occluded
and difficult case. Once again, the highest AP for all models was the dining table
class (from Tables 6‒8). While it is natural to think that this category would be
equally influenced by class AP results from both the occluded and difficult
categories, this does not always seem to be the case. In the cases of the GG and
Detectron2 models (as seen in Tables 6 and 7), the results show that it seems to be
mostly dependent on how well the models did in the corresponding difficult classes.
Especially since the dining table class is relatively average for both models in the
occluded category, but only high in the difficult category. Similar patterns can be
observed in their other class APs as well. In contrast, YOLOv5 does seem to at least
be partially influenced by both the occluded and difficult categories for its occluded
and difficult category (as seen in Table 8). Its highest AP classes for the occluded
and difficult category are the dining table, chair, sofa, and person classes. Besides
the dining table class, the other three were the highest in either occluded or difficult,
but not both. In addition, the worst class APs for YOLOv5 in the occluded and
difficult category were in the cat, dog, horse, and tv monitor classes. These classes
follow in the exact same pattern as the highest classes for this category.

11

Table 6 GG model’s object class APs for the occluded and difficult, occluded and
non-difficult, unoccluded and difficult, and unoccluded and non-difficult breakout categories

GG detected objects (occluded/unoccluded/difficult) Part 2

Object class Occluded and
difficult

Occluded and
non-difficult

Unoccluded
and difficult

Unoccluded and
non-difficult

aeroplane Less than 0.01% 23.82% 0.17% 79.45%
bicycle 0.21% 55.20% 0.05% 71.45%
bird Less than 0.01% 28.66% 0.03% 59.53%
boat 0.05% 3.81% 1.01% 43.03%
bottle Less than 0.01% 6.19% 0.57% 31.61%
bus 0.02% 38.49% 0.52% 77.70%
car 0.08% 30.24% 0.29% 69.63%
cat 0.00% 43.40% 1.41% 81.55%
chair 0.37% 9.84% 0.39% 26.56%
cow 0.62% 26.41% 0.88% 44.20%
dining table 6.58% 31.10% 18.78% 25.80%
dog 0.00% 39.96% 0.09% 74.87%
horse 0.10% 51.07% 0.41% 66.63%
motorbike 0.15% 57.27% 1.46% 71.77%
person 0.98% 51.76% 1.39% 63.06%
potted plant 0.94% 7.29% 0.70% 26.49%
sheep 0.03% 36.56% 1.46% 64.00%
sofa 1.73% 29.56% 1.91% 26.93%
train 0.64% 47.83% 0.21% 75.82%
tv monitor Less than 0.01% 18.07% 0.04% 64.76%

12

Table 7 Detectron2’s object class APs for the occluded and difficult, occluded and
non-difficult, unoccluded and difficult, and unoccluded and non-difficult breakout categories

Detectron2 Faster R-CNN detected objects (occluded/unoccluded/difficult) Part 2

Object class Occluded
and difficult

Occluded and
non-difficult

Unoccluded
and difficult

Unoccluded and
non-difficult

aeroplane 0.11% 36.92% 12.96% 88.20%
bicycle 2.50% 48.15% 6.25% 58.64%
bird 0.00% 37.84% 0.00% 66.11%
boat 0.48% 12.57% 8.63% 69.81%
bottle 0.36% 51.20% 2.08% 66.41%
bus 0.00% 60.91% 4.17% 82.55%
car 4.34% 73.41% 6.82% 88.00%
cat 0.00% 53.04% 1.11% 74.90%
chair 3.13% 35.64% 0.93% 62.61%
cow 3.40% 42.19% 7.72% 72.38%
dining table 34.16% 49.93% 38.56% 40.93%
dog 0.00% 40.07% 0.00% 64.53%
horse 0.10% 78.29% 1.10% 82.28%
motorbike 1.40% 76.68% 8.06% 87.48%
person 9.75% 81.42% 17.18% 88.90%
potted plant 0.32% 27.05% 1.84% 56.96%
sheep 2.40% 62.21% 3.82% 77.58%
sofa 6.01% 54.66% 5.23% 56.94%
train 3.33% 64.19% 0.00% 84.49%
tv monitor 0.00% 30.45% 6.25% 66.94%

13

Table 8 YOLOv5’s object class APs for the occluded and difficult, occluded and
non-difficult, unoccluded and difficult, and unoccluded and non-difficult breakout categories

YOLOv5 detected objects (occluded/unoccluded/difficult) Part 2

Object class Occluded
and difficult

Occluded and
non-difficult

Unoccluded
and difficult

Unoccluded and
non-difficult

aeroplane 0.16% 5.50% 0.90% 88.80%
bicycle 0.24% 40.00% 0.23% 55.00%
bird 0.14% 11.20% 0.00% 75.00%
boat 0.46% 6.78% 2.36% 71.70%
bottle 0.14% 17.40% 0.55% 62.10%
bus 0.25% 16.60% 0.23% 83.80%
car 0.86% 26.40% 1.30% 72.00%
cat 0.00% 13.50% 0.49% 79.70%
chair 1.72% 24.40% 1.02% 49.50%
cow 0.46% 22.00% 0.62% 61.20%
dining table 6.00% 37.60% 3.90% 24.80%
dog 0.00% 14.10% 0.10% 75.80%
horse 0.00% 39.90% 0.00% 55.10%
motorbike 0.23% 33.80% 0.44% 62.20%
person 0.88% 39.30% 1.71% 51.20%
potted plant 0.71% 14.00% 0.19% 48.20%
sheep 0.47% 24.40% 1.22% 64.90%
sofa 1.67% 39.90% 2.23% 38.70%
train 0.39% 17.20% 0.00% 78.90%
tv monitor 0.00% 11.20% 0.78% 73.00%

8. Conclusion

All of the object-detection models used for the experiment work very well in
general. When it comes to partially occluded objects, the GG model does well for
a few classes but does not work well overall. Detectron2 does the best among the
three models, with over half of the classes having at least 40% AP. The occluded
AP scores for YOLOv5 are the worst, with only one class that has above 40% AP.
All three models falter on objects in poor or abnormal lighting conditions, as
indicated by the APs from the difficult category. This is concerning and will need
to be improved since variable and uncontrollable lighting conditions are to be
expected on the battlefield.

One of the tasks that will be completed soon will be to train and evaluate Detectron2
and YOLOv5 on semantic parts and compare to the GG model, since GG is the
only model to natively perform parts detection. Eventually, the models will also
have their training augmented by images created from simulation environments to
see if their accuracy on real-world objects improves. These images will contain

14

various examples of both partially occluded and difficult objects. Last, some of the
attributes from these models will be incorporated into a new, custom parts-detection
model that will be developed by researchers within the Battlefield and Information
Systems Branch of the Computational and Information Sciences Directorate at
the US Army Combat Capabilities Development Command Army Research
Laboratory.

15

9. References

1. Gonzalez-Garcia A, Modolo D, Ferrari V. Objects as context for detecting their
semantic parts. arXiv.org; 2017 [accessed 2021 Sep 10].
https://arxiv.org/abs/1703.09529.

2. Wu Y, Massa F, Girshick R, Kirillov A, Lo W-Y. Detectron2: A pytorch-based
modular object-detection library. Facebook AI Research; 2019 Oct 10
[accessed 2021 Sep 10]. https://ai.facebook.com/blog/-detectron2-a-pytorch-
based-modular-object-detection-library-/.

3. Jocher G, Stoken A, Chaurasia A, Borovec J, NanoCode012, TaoXie, Kwon
Y, Michael K, Changyu L, Fang J, et al. ultralytics/yolov5: v6.0 - YOLOv5n
'Nano' models, Roboflow integration, TensorFlow export, OpenCV DNN
support. Ultralytics; 2021 Oct [accessed 2022 Jan 28]. https://github.com
/ultralytics/yolov5.

4. Everingham M, van Gool L, Williams C, Winn J, Zisserman A. The PASCAL
visual object classes challenge 2010 (VOC 2010) results; 2010 [accessed 2021
Sep 10]. http://host.robots.ox.ac.uk/pascal/VOC/voc2010/.

5. Gonzalez-Garcia A, Modolo D, Ferrari V. Do semantic parts emerge in
convolutional neural networks? International Journal of Computer Vision.
2017 Oct;126(5):476–494.

6. Girshick R. Fast R-CNN. arXiv.org; 2015 Sep 27 [accessed 2021 Sep 14].
https://arxiv.org/abs/1504.08083.

7. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object-
detection with region proposal networks. arXiv.org; 2016 Jan 6 [accessed 2021
Sep 14]. https://arxiv.org/abs/1506.01497.

8. He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. arXiv.org; 2018 Jan
24 [accessed 2021 Sep 14]. https://arxiv.org/abs/1703.06870.

9. Lin T-Y, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense object-
detection. arXiv.org; 2018 Feb 7 [accessed 2021 Sep 14]. https://arxiv.org
/abs/1708.02002.

10. Guler RA, Neverova N, Kokkinos I. DensePose: dense human pose estimation
in the wild. arXiv.org; 2018 Feb 1 [accessed 2021 Sep 14]. https:P//arxiv.org
/abs/1802.00434.

16

11. Cai Z, Vasconcelos N. Cascade R-CNN: delving into high quality object-
detection. arXiv.org; 2017 Dec 3 [accessed 2021 Sep 14]. https://arxiv.org/abs
/1712.00726.

12. Kirillov A, Girshick R, He K, Dollar P. Panoptic feature pyramid networks.
arXiv.org; 2019 Apr 10 [accessed 2021 Sep 14]. https://arxiv.org/abs
/1901.02446.

13. Chen X, Girshick R, He K, Dollar P. TensorMask: a foundation for dense
object segmentation. arXiv.org; 2019 Aug 27 [accessed 2021 Sep 14].
https://arxiv.org/abs/1903.12174.

14. Redmon J. YOLO: Real-time object-detection; 2018 [accessed 2021 Sep 10].
https://pjreddie.com/darknet/yolo/.

15. YOLOv5 Documentation; 2021 [accessed 2022 Jan 28].
https://docs.ultralytics.com.

16. Everingham M, Winn J. devkit_doc.avi; 2010 May 8 [accessed 2021 Sep 10].
http://host.robots.ox.ac.uk/pascal/VOC/voc2010/devkit_doc_08-May-
2010.pdf.

17

List of Symbols, Abbreviations, and Acronyms

AP average precision

CNN convolutional neural network

COCO Common Objects in Context

FC fully connected

GG Gonzalez–Garcia model

GPU graphics processing unit

mAP mean average precision

PASCAL VOC Pattern Analysis, Statistical Modeling and Computational
Learning Visual Object Classes

ROI region of interest

XML extensible markup language

18

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 DEVCOM ARL
 (PDF) FCDD RLD DCI
 TECH LIB

 1 DEVCOM ARL
 (PDF) FCDD RLC IB
 D JEFFERSON II

	List of Figures
	List of Tables
	1. Introduction
	2. Gonzalez–Garcia Model
	3. Detectron2
	4. YOLOv5
	5. PASCAL VOC
	6. Experiment
	7. Results
	8. Conclusion
	9. References
	List of Symbols, Abbreviations, and Acronyms

