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1. Introduction 

Object detection is one of the most popular fields of computer vision used for 
military applications. One of the ways in which object-detection models are used 
in this context is for real-time object recognition on the battlefield. Many of these 
models are starting to be incorporated into technology used by Soldiers (i.e., 
unmanned ground vehicles and heads-up displays) to assist them in identifying 
objects around them that could represent potential threats to their safety. By 
properly detecting and classifying hazardous objects on the battlefield, the models 
could be able to provide Soldiers with useful information about their surroundings 
so they can make decisions regarding how to proceed in their missions. 

A major problem that occurs with current object-detection models is that they have 
trouble detecting objects that are only partially visible or occluded. In these cases, 
object-detection models will often miss detecting these objects at all. They may 
also detect the partially occluded objects but then classify them using the wrong 
object class. Occlusion is a condition that many researchers do not account for when 
developing and training their object-detection models even though it is commonly 
seen in the real world. To ensure the safety of Soldiers, as well as improving the 
state of object-detection models in the future, it is necessary to determine how well 
current object-detection models work when faced with this scenario. 

The main objective of this work was to perform a baseline assessment on three 
state-of-the-art object-detection models on a popular object recognition dataset 
containing many partially occluded objects. After doing so, the results from each 
were compared. The models used in this experiment are the Gonzalez–Garcia 
model,1 Faster R-CNN from Detectron,2 and YOLOv5.3 The dataset in which they 
were trained and tested on was one of the popular Pattern Analysis, Statistical 
Modeling and Computational Learning Visual Object Classes (PASCAL VOC) 
challenge datasets, specifically VOC 2010.4 This report begins by presenting an 
overview describing each of the object-detection models and the VOC dataset. 
Then more details about the experiment are given, along with results and the 
conclusion. 

2. Gonzalez–Garcia Model 

The Gonzalez–Garcia model (GG) is a MATLAB-based object-detection model. 
Like a typical object-detection model, the GG model detects the whole object but 
also the semantic parts of that object.1 “Semantic” parts are those sections of an 
object that can be easily recognized and described by humans.5 This subset field of 
object detection is known as parts-of-object-detection or parts detection. The reason 
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it does this is to improve object detection by being able to identify objects by their 
parts, the combination of which are often unique to each class of object. 

This model uses a convolutional neural network (CNN) as a backbone, specifically 
Fast R-CNN.6 As a result, images used as input are sent through multiple 
convolutional layers so that region-of-interest (ROI) pooling may be performed. 
ROI pooling creates what are known as region proposals from the input images; 
various areas from within the image considered noticeable by the model. Each 
image contains two types of region proposals, one for objects and one for parts. It 
is at this point that the model splits into four separate branches. 

Part proposals are sent to both the part appearance and relative location branches, 
both of which contain two fully connected (FC) layers. The part appearance branch 
focuses on classifying parts based on their appearance, as the name implies. The 
relative location branch uses the location of parts relative to their respective objects 
as a way of identifying those parts. For example, if an identified object within an 
input image is a car, the relative location branch could identify areas underneath 
the car as containing wheels. It would then score the part proposals based on their 
overlap with the areas suggested by the relative location branch. These 
“suggestions” made by the relative location branch are done using a separate 
pretrained CNN that the model’s researchers created for this purpose called 
OffsetNet.1 

Object proposals are sent to both the object class and object appearance branches. 
The object class branch tries to correctly classify objects found within the proposal. 
As mentioned, knowing the class of an object is not only important for the model’s 
effectiveness overall, but also useful for the relative location branch for identifying 
an object’s semantic parts. The object appearance branch, like the part appearance 
branch, identifies objects based on their appearance. The object class branch 
contains three FC layers while the object appearance branch contains only two. 

The outputs from the part appearance branch and from the two object branches are 
concatenated to form one unified part representation, which is then scored and fed 
into a regressed bounding box layer. At the same time, the relative location branch 
computes its own scores for parts. This is done separately since not all parts benefit 
from knowing their relative location within an object. Afterward, the scores from 
the unified part representation and the relative location branch are linearly 
combined to form the final outputs of the GG model. 

The initial results from the developer’s paper show that the GG model works 
considerably better than models that focus on part appearance only to identify parts, 
including on partially occluded objects. 
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3. Detectron2 

Another state-of-the-art model investigated and then used for this research was 
Faster R-CNN. However, the original implementation of this model had already 
been deprecated by the time this project began. One of the most recent 
implementations of it, and one suggested by the original developers of the model, 
was contained within Detectron2. 

Detectron2 is an object-detection platform developed by the Facebook Artificial 
Intelligence Research team and released in 2018.2 As the name implies, it is the 
successor to the original Detectron, which functioned similarly and was developed 
by the same team. As an object-detection framework, the purpose of Detectron2 is 
to provide modern and high-quality implementations of various object-detection 
models through their model zoo. These include, of course, Faster R-CNN,7 Mask 
R-CNN,8 RetinaNet,9 DensePose,10 Cascade R-CNN,11 Panoptic FPN,12 and 
TensorMask.13 

All model implementations are written in Python and use the PyTorch Deep 
learning library. They were also designed with the capability of being used with 
either single or multiple graphics processing units (GPUs) for training. 

4. YOLOv5 

The last of the three models looked at was YOLOv5, the fifth version of the YOLO 
series of object-detection models.3 YOLO, which stands for “You Only Look 
Once”, was originally designed to perform quick object-detection by applying 
entire input images to be analyzed by a neural network.14 The neural network would 
then divide each image into regions to be predicted upon and weighted. Since the 
model only evaluates using the neural network once per image as opposed to the 
hundreds or thousands of times used by other models, it makes using YOLO much 
faster in comparison. 

YOLOv5 is the latest successor to YOLOv3, which was the last version of YOLO 
developed by its original developers.15 YOLOv5 was developed at the same time 
as another YOLOv3 successor (developed by a different group of researchers) 
known as YOLOv4 and was released only a month after it. YOLOv5 offers several 
GPU architecture variations, including some that were pretrained on the Common 
Objects in Context (COCO) dataset3. It was developed by the company Ultralytics 
in May 2020, and the model incorporates the knowledge they obtained from 
numerous hours of research into future vision AI methods. YOLOv5 is written in 
Python and uses PyTorch for deep learning. 
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The results from the developer's GitHub page show the accuracy for each variation 
of YOLOv5 when trained and validated on the COCO dataset. It clearly 
demonstrates the improved average precision and GPU speed of each architecture 
variation as you increase the size. 

5. PASCAL VOC 

PASCAL VOC 2010 is the name of the dataset used for training and testing the 
models in this report.4 PASCAL VOCs are ever-expanding image datasets 
standardized for object class recognition. These datasets were originally made for 
the PASCAL VOC series of challenges that spanned 2005–2012, with each year 
having its own datasets.16 One of the main reasons that the VOC 2010 dataset was 
chosen was because this was the original dataset used to train the GG model, which 
was the first model investigated. The other reason is that the GG model’s 
developers had created a semantic parts dataset using VOC 2010 that will be used 
in this research in the future.1 

Every VOC dataset since 2007 has two things in common. The first is that all 
objects can be classified into at least one of 20 object classes, which feature mainly 
different animals and vehicle types. The second is that all image annotations are 
done using XML files, which contain a variety of tags describing the objects within 
the image.  

Two of the most important XML tags considered in this report are the “occluded” 
and “difficult” tags. The “occluded” tag contains a binary value indicating whether 
an object within an image is occluded (a “1” means it is occluded). The “difficult” 
tag contains a binary value denoting whether an object is considered difficult to 
detect (a “1” means it is difficult). Often, this “difficulty” can be attributed to poor 
lighting conditions within the image. Note in the original PASCAL VOC 
challenges, any objects marked as difficult were skipped in the evaluation process. 
Examples of objects marked occluded or difficult can be seen in Fig. 1. 
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Fig. 1 (top) A VOC 20104 image containing “difficult” objects (the people, highlighted in 
blue); (bottom) a VOC 20104 image containing an “occluded” object (the person, highlighted 
in red)  

6. Experiment 

The crux of this research was to be able to determine the effectiveness of each of 
the three object-detection models on the PASCAL VOC 2010 dataset. Each model 
would be trained on 2010’s training set and tested/evaluated on its validation set 
since the testing set was not publicly available. The results of each were quantified 
by measuring the average precision (AP) for each object class. AP is the measure 
of the model’s precision versus its recall and is a popular metric used for 
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determining a model’s accuracy. Once you have the APs from each object class, 
you can find the mean average precision, or mAP, of the entire model. mAP is the 
mean of all the APs across all of the object classes. 

The object class APs were found based on eight cases/categories. The aggregate 
case was based on the rules of the VOC challenges, which excluded difficult objects 
from the evaluation. This case is also the one used to find each model’s mAP. The 
remaining seven categories were referred to as the breakout categories and 
described the conditions the evaluated objects were under. These categories 
included occluded, unoccluded, difficult, occluded and difficult, occluded and non-
difficult, unoccluded and difficult, and unoccluded and non- 
difficult. 

These categories are mostly combinations of the two XML tags that were 
mentioned before, both of which are very important when determining 
effectiveness on partial occlusion. When finding the class AP, any objects whose 
tags do not match the breakout category were not counted among the true positives. 

7. Results 

The experimental results are presented in Table 1. 

Table 1 Aggregate object class AP results from the GG model, Detectron2, and YOLOv5 

Object class APs (all models) 
Object class GG Detectron2 YOLOv5 
aeroplane 75.37% 82.25% 88.10% 
bicycle 68.85% 56.69% 86.60% 
bird 56.80% 61.64% 81.60% 
boat 36.08% 56.86% 69.80% 
bottle 26.86% 64.59% 73.20% 
bus 71.26% 78.21% 88.60% 
car 58.48% 84.08% 85.50% 
cat 77.61% 70.84% 87.60% 
chair 23.58% 51.21% 65.30% 
cow 45.54% 64.75% 74.20% 
dining table 35.99% 51.63% 57.80% 
dog 72.21% 62.20% 83.90% 
horse 65.33% 83.28% 85.70% 
motorbike 70.96% 87.07% 87.80% 
person 63.22% 87.45% 86.70% 
potted plant 25.45% 54.83% 57.90% 
sheep 60.14% 75.40% 82.00% 
sofa 37.85% 59.33% 67.40% 
train 72.19% 79.92% 87.70% 
tv monitor 58.01% 58.97% 79.80% 
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Based on the current results, it is clear that YOLOv5 is the best model of the three 
for general object-detection purposes. Its aggregate mAP is the highest at 78.90%, 
while Faster R-CNN is 68.56%% and GG is at 55.09%, which can be seen in Table 
2. Incredibly, YOLOv5 has over 80% AP in 12 out of the 20 total classes. The next 
closest would be Detectron2, but it only has five while GG has none. 

Table 2 Aggregate object-class mAPs from the GG model, Detectron2, and YOLOv5 

Aggregate object mAPs (all models) 
GG 55.09% 

Detectron2 68.56% 
YOLOv5 78.90% 

 
All three models share some commonalities in their aggregate object-class APs. 
The object class that contains the highest AP is not the same between each of them. 
However, as seen in Table 1, the set of classes with the highest APs are about the 
same among them. This includes aeroplane, car, cat, horse, motorbike, and person. 
The most likely reasons for this is either because they have lots of examples in the 
training set (car, cat, person) or have very distinctive sizes/shapes compared with 
other classes (aeroplane, horse, motorbike). 

The set of classes with the lowest aggregate APs are also about the same between 
each of them, which include the chair, dining table, and potted plant classes. In the 
case of the dining table class, the APs are probably low due to the amount of 
training examples being lower than many other classes. For chair and potted plants, 
each of those have various types just like the car class. Unlike the car class, which 
mostly maintains the same overall shapes, chair and potted plant classes can be 
more varied. Perhaps this makes it more difficult for the model to correctly detect 
those classes. 

For the occluded category, all models shared similar classes for the highest four 
class APs. In GG’s case, the highest four APs were in the motorbike, horse, bicycle, 
and person classes (from Table 3). In Detectron2’s case, the highest four APs were 
the person, horse, motorbike, and car classes (from Table 4). In YOLOv5’s case, 
the highest four APs were dining table, bicycle, horse classes, and person classes 
(from Table 5). Although Detectron2 and YOLOv5 do not perform any form of 
explicit parts detection natively, it could still be argued that the high APs in these 
classes may be because of how recognizable their parts are even under occlusion. 
The worst occluded AP between both GG and Detectron2 was the boat class, while 
the worst for YOLOv5 was the aeroplane class. 

As seen in Tables 3 and 4, the highest AP in the difficult category for all models 
was the dining table class. Presumably, this is because while considered difficult to 
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detect, a dining table is still very large and hard to mistake for anything else when 
not occluded. All other APs for all models are relatively low (with the exception of 
the person class in Detectron2’s case), presumably due to the difficulty. 

Table 3 GG model’s object class APs for the occluded, unoccluded, and difficult breakout 
categories 

GG detected objects (occluded/unoccluded/difficult) Part 1 
Object class Occluded Unoccluded Difficult 
aeroplane 18.60% 74.12% 0.13% 
bicycle 52.57% 68.24% 0.18% 
bird 22.29% 54.39% 0.02% 
boat 3.39% 38.20% 0.82% 
bottle 5.45% 28.47% 0.42% 
bus 33.17% 75.31% 0.26% 
car 25.89% 62.48% 0.28% 
cat 43.07% 80.96% 1.18% 
chair 8.70% 23.18% 0.62% 
cow 23.63% 40.96% 1.13% 
dining table 30.55% 27.53% 14.06% 
dog 38.83% 74.20% 0.05% 
horse 49.46% 65.10% 0.37% 
motorbike 55.49% 68.28% 1.15% 
person 47.50% 56.57% 2.22% 
potted plant 7.28% 25.42% 1.03% 
sheep 30.32% 58.44% 0.86% 
sofa 24.51% 26.42% 2.67% 
train 46.56% 74.56% 0.51% 
tv monitor 16.77% 62.86% 0.03% 
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Table 4 Detectron2’s object class APs for the occluded, unoccluded, and difficult breakout 
categories 

Detectron2 Faster R-CNN detected objects 
(occluded/unoccluded/difficult) Part 1 

Object class Occluded Unoccluded Difficult 
aeroplane 29.24% 84.54% 8.64% 
bicycle 46.81% 56.51% 4.71% 
bird 29.40% 60.16% 0.00% 
boat 11.47% 63.75% 7.24% 
bottle 45.64% 59.43% 1.94% 
bus 52.32% 79.65% 1.75% 
car 65.47% 81.40% 8.73% 
cat 52.63% 74.27% 0.93% 
chair 31.08% 53.56% 3.36% 
cow 38.27% 67.47% 8.21% 
dining table 50.90% 45.64% 43.13% 
dog 38.93% 63.82% 0.00% 
horse 75.71% 80.76% 0.87% 
motorbike 75.19% 85.09% 7.68% 
person 76.79% 83.69% 21.47% 
potted plant 25.35% 54.52% 1.61% 
sheep 53.56% 71.63% 4.91% 
sofa 43.97% 53.99% 8.26% 
train 62.77% 82.76% 1.43% 
tv monitor 28.26% 65.26% 3.33% 
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Table 5 YOLOv5’s object class APs for the occluded, unoccluded, and difficult breakout 
categories 

YOLOv5 detected objects (occluded/unoccluded/difficult) 
Part 1 

Object class Occluded Unoccluded Difficult 
aeroplane 5.36% 86.10% 1.03% 
bicycle 39.50% 53.90% 0.45% 
bird 10.50% 71.60% 0.13% 
boat 7.11% 68.80% 2.78% 
bottle 16.60% 58.10% 0.68% 
bus 16.10% 81.90% 0.45% 
car 25.90% 68.00% 2.14% 
cat 13.40% 79.50% 0.45% 
chair 25.20% 46.00% 2.57% 
cow 20.80% 58.40% 0.93% 
dining table 42.50% 27.50% 9.38% 
dog 14.00% 75.50% 0.09% 
horse 39.20% 54.10% 0.00% 
motorbike 33.80% 60.60% 0.67% 
person 38.70% 49.00% 2.53% 
potted plant 14.10% 46.90% 0.83% 
sheep 23.20% 62.40% 1.65% 
sofa 36.90% 39.30% 3.23% 
train 17.40% 78.00% 0.28% 
tv monitor 10.90% 72.50% 0.67% 

 

The last breakout category of particular interest is also the hardest, the occluded 
and difficult case. Once again, the highest AP for all models was the dining table 
class (from Tables 6‒8). While it is natural to think that this category would be 
equally influenced by class AP results from both the occluded and difficult 
categories, this does not always seem to be the case. In the cases of the GG and 
Detectron2 models (as seen in Tables 6 and 7), the results show that it seems to be 
mostly dependent on how well the models did in the corresponding difficult classes. 
Especially since the dining table class is relatively average for both models in the 
occluded category, but only high in the difficult category. Similar patterns can be 
observed in their other class APs as well. In contrast, YOLOv5 does seem to at least 
be partially influenced by both the occluded and difficult categories for its occluded 
and difficult category (as seen in Table 8). Its highest AP classes for the occluded 
and difficult category are the dining table, chair, sofa, and person classes. Besides 
the dining table class, the other three were the highest in either occluded or difficult, 
but not both. In addition, the worst class APs for YOLOv5 in the occluded and 
difficult category were in the cat, dog, horse, and tv monitor classes. These classes 
follow in the exact same pattern as the highest classes for this category.  
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Table 6 GG model’s object class APs for the occluded and difficult, occluded and  
non-difficult, unoccluded and difficult, and unoccluded and non-difficult breakout categories 

GG detected objects (occluded/unoccluded/difficult) Part 2 

Object class Occluded and 
difficult 

Occluded and 
non-difficult 

Unoccluded 
and difficult 

Unoccluded and 
non-difficult 

aeroplane Less than 0.01% 23.82% 0.17% 79.45% 
bicycle 0.21% 55.20% 0.05% 71.45% 
bird Less than 0.01% 28.66% 0.03% 59.53% 
boat 0.05% 3.81% 1.01% 43.03% 
bottle Less than 0.01% 6.19% 0.57% 31.61% 
bus 0.02% 38.49% 0.52% 77.70% 
car 0.08% 30.24% 0.29% 69.63% 
cat 0.00% 43.40% 1.41% 81.55% 
chair 0.37% 9.84% 0.39% 26.56% 
cow 0.62% 26.41% 0.88% 44.20% 
dining table 6.58% 31.10% 18.78% 25.80% 
dog 0.00% 39.96% 0.09% 74.87% 
horse 0.10% 51.07% 0.41% 66.63% 
motorbike 0.15% 57.27% 1.46% 71.77% 
person 0.98% 51.76% 1.39% 63.06% 
potted plant 0.94% 7.29% 0.70% 26.49% 
sheep 0.03% 36.56% 1.46% 64.00% 
sofa 1.73% 29.56% 1.91% 26.93% 
train 0.64% 47.83% 0.21% 75.82% 
tv monitor Less than 0.01% 18.07% 0.04% 64.76% 
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Table 7 Detectron2’s object class APs for the occluded and difficult, occluded and  
non-difficult, unoccluded and difficult, and unoccluded and non-difficult breakout categories 

Detectron2 Faster R-CNN detected objects (occluded/unoccluded/difficult) Part 2 

Object class Occluded 
and difficult 

Occluded and  
non-difficult 

Unoccluded 
and difficult 

Unoccluded and 
non-difficult 

aeroplane 0.11% 36.92% 12.96% 88.20% 
bicycle 2.50% 48.15% 6.25% 58.64% 
bird 0.00% 37.84% 0.00% 66.11% 
boat 0.48% 12.57% 8.63% 69.81% 
bottle 0.36% 51.20% 2.08% 66.41% 
bus 0.00% 60.91% 4.17% 82.55% 
car 4.34% 73.41% 6.82% 88.00% 
cat 0.00% 53.04% 1.11% 74.90% 
chair 3.13% 35.64% 0.93% 62.61% 
cow 3.40% 42.19% 7.72% 72.38% 
dining table 34.16% 49.93% 38.56% 40.93% 
dog 0.00% 40.07% 0.00% 64.53% 
horse 0.10% 78.29% 1.10% 82.28% 
motorbike 1.40% 76.68% 8.06% 87.48% 
person 9.75% 81.42% 17.18% 88.90% 
potted plant 0.32% 27.05% 1.84% 56.96% 
sheep 2.40% 62.21% 3.82% 77.58% 
sofa 6.01% 54.66% 5.23% 56.94% 
train 3.33% 64.19% 0.00% 84.49% 
tv monitor 0.00% 30.45% 6.25% 66.94% 

 

 

 

 

 

 

 

 

 

 

 

 



 

13 

Table 8 YOLOv5’s object class APs for the occluded and difficult, occluded and  
non-difficult, unoccluded and difficult, and unoccluded and non-difficult breakout categories 

YOLOv5 detected objects (occluded/unoccluded/difficult) Part 2 

Object class Occluded 
and difficult 

Occluded and  
non-difficult 

Unoccluded 
and difficult 

Unoccluded and 
non-difficult 

aeroplane 0.16% 5.50% 0.90% 88.80% 
bicycle 0.24% 40.00% 0.23% 55.00% 
bird 0.14% 11.20% 0.00% 75.00% 
boat 0.46% 6.78% 2.36% 71.70% 
bottle 0.14% 17.40% 0.55% 62.10% 
bus 0.25% 16.60% 0.23% 83.80% 
car 0.86% 26.40% 1.30% 72.00% 
cat 0.00% 13.50% 0.49% 79.70% 
chair 1.72% 24.40% 1.02% 49.50% 
cow 0.46% 22.00% 0.62% 61.20% 
dining table 6.00% 37.60% 3.90% 24.80% 
dog 0.00% 14.10% 0.10% 75.80% 
horse 0.00% 39.90% 0.00% 55.10% 
motorbike 0.23% 33.80% 0.44% 62.20% 
person 0.88% 39.30% 1.71% 51.20% 
potted plant 0.71% 14.00% 0.19% 48.20% 
sheep 0.47% 24.40% 1.22% 64.90% 
sofa 1.67% 39.90% 2.23% 38.70% 
train 0.39% 17.20% 0.00% 78.90% 
tv monitor 0.00% 11.20% 0.78% 73.00% 

 

8. Conclusion 

All of the object-detection models used for the experiment work very well in 
general. When it comes to partially occluded objects, the GG model does well for 
a few classes but does not work well overall. Detectron2 does the best among the 
three models, with over half of the classes having at least 40% AP. The occluded 
AP scores for YOLOv5 are the worst, with only one class that has above 40% AP. 
All three models falter on objects in poor or abnormal lighting conditions, as 
indicated by the APs from the difficult category. This is concerning and will need 
to be improved since variable and uncontrollable lighting conditions are to be 
expected on the battlefield. 

One of the tasks that will be completed soon will be to train and evaluate Detectron2 
and YOLOv5 on semantic parts and compare to the GG model, since GG is the 
only model to natively perform parts detection. Eventually, the models will also 
have their training augmented by images created from simulation environments to 
see if their accuracy on real-world objects improves. These images will contain 
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various examples of both partially occluded and difficult objects. Last, some of the 
attributes from these models will be incorporated into a new, custom parts-detection 
model that will be developed by researchers within the Battlefield and Information 
Systems Branch of the Computational and Information Sciences Directorate at  
the US Army Combat Capabilities Development Command Army Research 
Laboratory.  
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List of Symbols, Abbreviations, and Acronyms 

AP  average precision 

CNN  convolutional neural network 

COCO  Common Objects in Context 

FC  fully connected 

GG  Gonzalez–Garcia model 

GPU  graphics processing unit 

mAP  mean average precision 

PASCAL VOC Pattern Analysis, Statistical Modeling and Computational 
Learning Visual Object Classes 

ROI  region of interest 

XML  extensible markup language 
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