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ABSTRACT

Skein manipulations prove to be computationally intensive due to the exponential

nature of skein relations. Resolving each crossing in a knot diagram produces 2 new

knot diagrams; knot diagrams with over 5 crossings become increasingly difficult to

work with. In this work, I introduce a method for automating these computations

using algorithms developed to perform computations in the knot complement. This

method is developed for all 2-bridge knots, particularly twist knots and (2,2p+1)-

torus knots, but can be extended to other families with modification. After showing

these algorithms produce the desired result, I demonstrate their implementation in

a Python program. This program is used to to compute several known examples,

demonstrating how results obtained through several months of work can be can now

be obtained in less than 5 minutes. This program will be used to for testing various

hypotheses in SU(2) Chern-Simons theory.
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CHAPTER 1

INTRODUCTION

Skeins arise naturally in the study of knot and link invariants. As such, skeins

are linear combinations of embedded (framed) circles, or more generally graphs, in a

3-dimensional manifold which are identified modulo a set of locally defined relations,

called "skein relations". Of all skein theories, the most studied is the one that arises

in the Chern-Simons theory with gauge group SU(2), and this particular theory is

associated with the skeins studied in this paper. We focus on the version of this

theory that is based on the Kauffman bracket, which can be easily related to skeins

constructed via the quantum group associated to SU(2).

Skein computations prove to be computationally intensive due to their exponential

complexity. Try computing the Jones polynomial of a knot with 5 or more crossings,

and you will see why automating such computations is so tempting. In this work,

I develop an automated method for performing skein computations in a family of

manifolds that is sufficiently restrictive so as to make automation possible, but also

sufficiently rich so that insights can be gained from these computations. Following

the advice of my mentor, Razvan Gelca, I will strive to make this work both readable

and engaging. However, given its highly technical nature, and keeping in mind that

this is a dissertation, I sacrifice some readability for accuracy and concision.

It is important to stress out that the skein computations themselves are not difficult

to perform at any single stage. Given a fixed set of skein relations, one need only make

the proper replacement, splitting one term into two, each with a different coefficient.

In fact, performing such a computation is not beyond the reach of even a talented

high-school student, so why should it be considered so impactful as to constitute

my entire dissertation? This lingering question requires no better answer than one

particular example, after which you will agree that it is not the computation itself,

but rather the method and the computational effort necessary to produce meaningful

results that demands the procedure outlined in this paper.

The scale at which we wish to compute the primary motivation for this work. At

each stage, the number of terms in the computation is doubled, rapidly increasing

the complexity of the computation. The organization required to perform such a

1
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computation by hand, carrying terms and signs correctly at each stage, is beyond

what can be expected of most students. Additionally, the diagrammatic nature of

these computations is particularly demanding on the human brain, as they require

mental manipulation of 3-dimensional geometric objects.

It is natural to ask whether it is worthwhile to perform such computations. The

answer to this question comes from experience; within skein theory exist surpris-

ingly simple patterns and formulas awaiting discovery. It often happens that a skein

computation involving numerous terms simplifies to a relation with very few terms.

Further, in the case of trefoil and 3-twist knots, the polynomial results always appear

as Chebyshev polynomials, implying a deeper underlying structure is at work. In

the performance of such computations, some of this structure is revealed, but further

invetigation is crucial to forming conjectures which will lead to further discovery of

these structures. Our automation methods promote such discovery, allowing us to

generate many examples in a reasonable timeframe.

1.1 Outline

Let me provide an outline. In Chapter 2, I will address background, starting from

the birth of the subject from the works of Vaughn Jones and Edward Witten, to

the impact of my grand-advisor, Charlie Frohman. Included are the contributions

of my own advisor, Razvan Gelca, as well as Razvan’s former students Jeremy Sain,

Hongwei Wang, and Shamon Almeida. Next, I will introduce my own assignment and

the surprising output that came from its fulfillment.

In Chapter 3, I will introduce the unfamiliar reader to the fundamentals of skein

modules and skein computations, providing several examples and how the action of

the Kauffman Bracket Skein Module of a knot on the Kauffman bracket skein algebra

of its boundary produces information about both, and how this so closely resembles

the familiar computation of the Kauffman Bracket and Jones Polynomial.

Chapter 4, by far the longest section, will outline all the details regarding a novel

method for the automation of skein computations in the genus 2 handlebody as well as

in the complement of 2-bridge knots. I prove why such a method produces the desired

result in an efficient manner. In short, a multicurve in the complement of a knot is

projected to a specified handlebody embedded in the knot complement and then

2
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manipulated there based on an index assigned at the beginning of the computation:

strands which cross over are moved to lower indices, while strands that cross under are

moved to higher indices. The resolution of crossings introduced in this way produces

"basis elements" with no more effort than brute force, although the steps are shown

to be close to minimum thanks to thoughtful reduction after each stage of resolution.

The final result is reduced, like terms are combined, and it is then written in terms

of Chebyshev polynomials, which correspond to interpreting the skein components to

be colored by the irreducible representations of SU(2).

In Chapter 5, I discuss the algorithms and their convergence. Chapter 6 is devoted

to the results obtained by use of the algorithms presented, and their comparison to

our previous computations performed by hand. As one might expect, the results are

replicated, even corrected in some cases. I conclude with Chapter 7, which outlines

future direction, expanding these methods to fit other situations and alternate skein

relations, and explaining the necessary modifications of our methods for use on a

much larger family of curves.

1.2 Comments

I would also like to note the implementation of two specific writing techniques.

First, I will strive to make the preliminary information given in Chapter 3 sufficient

to introduce the beginner to the fundamentals of skein computations, much like a

section of class notes. I will include as much good reference material as I have found

useful in my own study, including some examples. My hope is that this material

would serve as a starting point for other graduate students, regardless of their use

of my specific contribution. Second, I have included many examples throughout the

text as well as a chapter dedicated to the detailed application of this program to

several known examples. It is my sincerest request that future papers include more

illustrative examples.

Finally, I have included many, many pictures, generated using the vector graphics

editor, Xfig. While I typically prefer to draw diagrams by hand, I have been converted

by the ease of use Xfig offers, as it produces professional drawings while retaining the

character of the author.

3
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CHAPTER 2

BACKGROUND

2.1 History

Skein theory began with John Conway’s discovery of a skein relation for the Alexan-

der polynomial, but it really became a fundamental theory after Vaughn Jones de-

fined his knot polynomial in 1984 [10]. Unlike the Alexander polynomial, the Jones

polynomial could not be defined or computed by other means than skein relations.

Immediately after Jones, Louis Kauffman defined a related knot and link invariant,

known as the Kauffman bracket, which is also computed via skein relations [11].

In 1989 Edward Witten [17] gave an intrinsic definition of the Jones polynomial by

means of quantum field theory. However, since Witten’s constructs lack mathemati-

cal rigor, skein relations remain to date the building blocks of the theory of the Jones

polynomial.

It is worth pointing out that Witten has build a rich theory of knot and manifold

invariants with the tools of a quantum field theory based on the Chern-Simons func-

tional, and that this theory has been developed rigorously by Nikolai Reshetikhin

and Vladimir Turaev [16]. The Reshetikhin-Turaev theory can be constructed en-

tirely with the tools of skein theory as it was shown in [12] and [8]. There is a parallel

theory constructed by Christian Blanchet, Nathan Habegger, Gregor Masbaum, and

Pierre Vogel which makes use of the Kauffman bracket [1] (see also [14]).

Skein relations yield an algebraic topological construction, the skein module of a

manifold, which was introduced in its full generality by Jozef Przytycki [15], following

some particular constructs of Vladimir Turaev. Ch. Frohman, D. Bullock, and Adam

Sikora have noticed that the skein modules of the Kauffman bracket are deformations

of the rings of functions on the SL(2,C) character variety of the fundamental group

of the corresponding manifold, more precisely of the ring of affine characters of the

fundamental group. This lead to a particular interest in the multiplicative structures

of the skein algebras of cylinders over surfaces as well as of the skein modules of knot

complements. The relationship between skein modules and character varieties has

led to a non-commutative generalization of the A-polynomial of a knot, see [4]. The

skein computations that arise in this setting are the target of the program developed

4
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in this dissertation.

In particluar, we replicate the skein computations in the genus 2 handlebody of J.

Przytycki, and in complements of 2-bridge knots as outlined by T.T.Q. Le [13], and,

in particular, those in the complement of (2,2p+1)-torus knots of D. Bullock [2].

2.2 Recent Work

In [5], R. Gelca computed the A-ideal and the A-polynomial of the trefoil knot by

first understanding the action of the skein algebra of the cylinder over the boundary of

the trefoil knot on the skein module of the knot complement. To compute this action,

Gelca developed relations for the action on the family of (p, q)-curves inductively

by first computing the action on the curves (1, 0) and (1, −1), and then using the

product to sum formula to determine the action on (1, q) and (p, q). This action

was used to compute a generator of the A-ideal. Using a similar method, Gelca and

Sain computed the A-ideal for the figure-eight knot in [7]. In [9], Gelca and Wang

performed computations for the 3-twist knot following the work of Gelca and Nagasato

[6]. In the dissertation work of A. Almeida, these computations were replicated using

a different set of skein relations. The computations necessary to derive these results

in even a single example consume several pages, as each particular case requires a

separate and lengthy calculation. Sufficient examples are required to test conjectures

and recognize the general form of recurrence relations and higher structure.

2.3 A Motivational Example

To motivate our current work, consider a skein in the complement of the trefoil

similar to the computation of the (1, 0) curve in [5]. As in [5], we are required

to resolve only 3 crossings resulting in 8 skein diagrams. In [5], these skeins were

written in terms of basis elements of the Kauffman Bracket Skein Module of the

complement of the trefoil. Only some of the skeins produced from the resolution of

the existing crossings were basis elements, and the others were cleverly isotoped and

realized as linear combinations of skeins which were easier to resolve. The additional

computations required for such skeins resulted in a polynomial with over 30 terms,

most of which canceled to produce the relation given by Gelca in Lemma 3 of [5]. In

a similar computation, Figure 2.1 shows a skein computation in which three crossings

5
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are resolved. Although the input skein is not dissimilar from that of the (1, 0)-curve

in [5], differing only in the way it intersects, the resulting skeins are more complicated

than previoulsy obtained.

Resolving one crossing

Resolving all three crossings

+t1 +t−1

t3 +t1 +t1

+t1

+t−1 +t−3

+t−1

+t−1

Figure 2.1. A sample computation

At each stage, two skeins are produced, and so the resulting linear combination

contains 23 = 8 terms. Some of the resulting skeins can be identified by isotopy, hence

combined, and others can be reduced by isotopy. To write the result as the linear

combination of a family of desired skeins (such as basis elements of the Kauffman

Bracket Skein Module), we must now determine relations for each term individually,

6
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necessitating a new skein computation for at least 2 of the 8 terms.

Such a computation, and the additional computations which result from it, is re-

quired for every skein we want to resolve. Each skein we resolve is a particular case

of a more general result, and a several such examples are necessary to develop or test

various conjectures in the skein theory of a particular setting. Similar computations

on knots of higher order yield exponentially more terms; performing such compu-

tations in the complement of more complicated knots could require months, if not

years, invested in producing very few examples. The amount of time and manual

effort required to perform skein computations for higher knots exceeds reason.

As my own assignment, rather than spending several years engaged in the lengthy

computation of yet another example, I have dedicated my efforts over the past several

years to the discovery of a standardized procedure that will suffice for performing these

skein computations. The notion that general procedures naturally beget automation,

and with assurance from my co-advisor Dmitri Pavlov that it was achievable, I set out

to develop algorithms for skein computations. The software which resulted from the

development of these algorithms is really only a proof of concept. I felt it important to

prove that the algorithms described in this dissertation could replicate previous results

in a timely manner. The program, which took the better part of a year to create,

took less time to develop than it would have taken to compute the next example.

In developing these algorithms, I address two major setbacks in the performance

of skein computations. The first is that only experience dictates how a skein is

isotoped. If the skein is incorrectly isotoped, the resulting skein may require additional

computations on one of the many terms produced. In some instances, skeins isotoped

to the wrong location eventually produce the original skein as a term after resolution.

The second setback is that, even when handled with expert care, the complexity of

such computations is overwhelming when the number of crossings exceeds 5 in the

original skein.

Now automation requires two conditions – a generalized procedure and standard-

ized input – and these two conditions happen to perfectly address both of the above

setbacks. A generalized procedure, in the form of the algorithms presented in this

paper, removes the need for cleverly realizing one skein as a linear combination of

other easily resolvable skeins. Additionally, the program, performing all computa-

7
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tions with thoughtful reductions at every iteration, handles the overabundance of

terms increasing in computational complexity very efficiently. As we have discovered

in performing such computations by hand, the final results of such computations are

in general shockingly simple, with most computations resulting in mass cancellations

at the last step. The program expands these terms and eventually combines and

cancels to produce a pleasant output.

8
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CHAPTER 3

PRELIMINARY FACTS

3.1 Knots and Knot Diagrams

A knot is the embedding of a circle S1 in R
3 or S3. More generally, a link is a

disjoint union of several knots. Knots and links are usually identified up to isotopy.

A knot or link can be represented as planar diagrams by taking a projection of the

knot or link to the plane, as shown in Figure 3.1. Essentially, this diagram is a

shadow of the knot or link, except that it produces apparent self-intersections that

must be interpreted. The self-intersections are not intersections at all, but rather

represent one strand crossing over or under the other strand in 3-space. If the knot

or link is oriented, then we can associate to each crossing a sign, positive (+) or

negative (-), using the right-hand rule. For a knot, then signs of the self-crossings

do not depend on the orientation of the knot, and from these signs we can deduce if

that is an overcrossing or an undercrossing. Just as a knot or link may have several

isotopic representations in the 3-dimensional space, a knot or link may also have

several equivalent signed planar diagrams. Figure 3.2 shows three diagrams which

represent the same link (with one component drawn with black and the other with

red).

R
3

R
2

Figure 3.1. Projecting a 3-dimensional knot to the plane, we retain information on
the crossings.

9
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Figure 3.2. Three planar diagrams representing the same link.

A framed knot is the embedding of an annulus. It is customary to represent a

framed knot by the same type of diagram as a usual knot, with the convention that the

framing is parallel to the plane of the diagram – this is called the blackboard framing.

Since the information related to the framing of a knot is important in Chern-Simons

theory, all computations involving knots and links must take into account framing. In

our diagrams, we draw the knots and links as curves with no apparent thickness, and

work in the blackboard framing. This is, of course, only for convenience, although

some diagramatic manipulations apply to knots with no framing as well.

3.2 Reidemeister Moves

A theorem of Reidemeister proves that two diagrams represent the same knot or

link if and only if they can be transformed into each other by an application of some

of the three following moves: The first Reidemeister move (R1) allows us to twist and

untwist the curve in either direction. The second Reidemeister move (R2) allows two

strands to cross or uncross as shown in Figure 3.3. The third Reidemeister move (R3)

allows a strand to pass over or under a crossing in the diagram.

10
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R1 R1 R2

R3R3

Figure 3.3. The Reidemeister Moves

3.3 Skein Relations and the Kauffman Bracket Skein Module of a Manifold

Let M be a 3-dimensional manifold. Consider the free C[t, t−1] module L(M),

with basis the isotopy classes of framed knots and links in M , including the empty

link. We factor this module by the submodule generated by the elements described in

Figure 3.4, where, in each of the linear combinations, the diagrams represents framed

links that are identical except in an embedded ball, where they look as shown. The

resulting module is called the Kauffman Bracket Skein Module of M and is denoted

by Kt(M). It is important to point out that since a ball can be embedded in many

different ways in a manifold, the resulting module is significantly smaller than the

free module spanned by the isotopy classes of knots and links.

The factorization amounts to setting the elements from Figure 3.4 equal to zero.

The two relations that you obtain this way, as in Figure 3.4, are called skein relations.

It is important to point out that adding a positive or negative twist to the framing

of one component amounts to multiplying the skein by −t3 and −t−3, respectively (a

consequence of the two skein relations, shown in Figure 3.5).

11
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−t −t−1

+(t2 + t−2)∅

Figure 3.4. The Kauffman Bracket skein relations

= t +t−1

= t +t−1

K− = tK + t−1(−t2 − t−2)K = −t−3K

K+ = t(−t2 − t−2)K + t−1K = −t3K

Figure 3.5. Twisting relations

Two types of manifolds are relevant for this dissertation: genus g handlebodies and

complements of knots. The genus g handlebody, Hg, is the cylinder over a disk with

g holes, and it is known from the work of J. Przytycki [citation] that Kt(Hg) is a free

module with basis all non-selfintersecting multicurves in the disk with g holes. For

12
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knot complements the situation is more difficult, the skein module has been shown

to be free and a basis has been identified only for the 2-bridge knots [Thang Le] and

torus knots [J. Marche] (one should point out also to the early results of D. Bullock

on (2, 2p + 1) torus knots and twist knots).

When M is the cylinder over a surface, that is M = F × [0, 1] for some surface

F , the Kauffman bracket skein module Kt(F × [0, 1]) has the structure of an algebra

induced by gluing one cylinder on top of another. We denote this algebra shortly by

Kt(F ), the skein algebra of F . In the case where F = T2, the 2-dimensional torus,

the multiplication in the Kauffman bracket skein algebra has been explicated in [3].

When M is a manifold with boundary, the operation of gluing the cylinder over the

boundary to the manifold gives rise to a Kt(∂M)-module structure of Kt(M).

The example that gave rise to the need of developing our algorithm is the one where

M = S3 \ N(K), where N(K) is a tubular neighborhood of a knot K in S3, so where

Kt(M) is the Kauffman bracket skein module of a knot complement. Note that it

is also a module over the Kauffman bracket skein algebra of the torus Kt(T
2). The

study of the Kt(T
2)-module structure of Kt(S

3 \N(K)) is extremely computationally

demanding, and this is the motivation for our work.

3.4 Skein Computations

Given a manifold M and a knot K in M , we can apply a skein relation by embedding

a ball in M so that an apparent crossing is created inside this ball. As an example, the

framed knot from Figure 3.6 becomes, after the application of the Kauffman bracket

skein relation, the linear combination of framed knots in 3.7. So the two represent

the same skein in Kt(M).

13
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M

K

Figure 3.6. A knot in a manifold M

t +t−1

Figure 3.7. Resolving the crossing in M

As an example of interest to us, let B be a fixed knot in S3 and let M = S3 \B. We

will consider skeins in M , such as the one shown in Figure 3.8. You can see that this

skein has an apparent crossing, which can be resolved using the Kauffman bracket

skein relation.

14
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M

B

K

Figure 3.8. Resolving the crossing in M

t +t−1

Figure 3.9. Resolving the crossing in M

K

BM

Figure 3.10. Resolving the crossing in M

For convenience, we can view this system as a knot diagram. The complement of

the curve B is the manifold M in which our computation is performed, and appears

15
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as whitespace in Figure 3.10. The curve K is resolved about the curve B, where B is

the vacancy left in S
3 by the removal of the knot B. Throughout this paper, we work

in diagrams formatted as in Figure 3.10.

3.5 Basis Elements

We use the power notation to represent parallel copies of framed knots as shown in

Figure 3.11. For example, the x2 indicates two parallel copies of x, while x3 indicates

three parallel copies of x, etc.

y2

x2 x3

yn

n copies

Figure 3.11. The power of a framed knot indicates multiple parallel copies.

Of particular interest to us is the problem of representing a skein in the skein

module Kt(H2) of the genus 2 handlebody as a linear combination of the standard

basis elements of this module. In each case, skein computations resolve curves in

the handlebody as a linear combinations of the skeins xmynzk, where x, y, z are the

framed curves depicted in Figure 3.12 (of course, with the blackboard framing).

16
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x

y

z

Figure 3.12. Basis elements x, y, and z

For all 2-bridge knots, skeins in the knot complement can be written as a linear

combinations of xmyn, with m any nonnegative integer but with n ranging in a finite

set. The curves x, y do indeed come from the basis of an embedded handlebody, and

since the knot is one continuous strand, the basis elements x and z of the handlebody

are identified.

3.6 Hindrances to Progress

Number of terms produced from crossings

The problem with brute force (creative moves required, like the brain twister curve!)

Ways that computations can go wrong and human errors

The length of time required to perform computations

17
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CHAPTER 4

PROCEDURE AND ALGORITHM

4.1 Computational Setting

Due to constraints determined by our limited understanding of the structure of the

Kauffman bracket skein module of the complement of a general knot, we are forced to

focus on a family of knots that are sufficiently well understood to be able to perform

meaningful computations, and sufficienly large to allow discoveries and conjectures.

This family consists of 2-bridge knots.

Thang Le has shown [cite Le here] that the Kauffman bracket skein module of the

complement of a 2-bridge knot is free, and he has determined a basis for it. His work

has been performed in a genus 2 handlebody, and in fact any skein computation in the

knot complement can be performed in this handlebody, and this significantly reduces

computational complications. This is because all computations can ultimately be

performed in a twice punctured disk.

This is not the case for knot complements in general. While we will show in Lemma

4.1 that curves in the complement of any knot can always be isotoped to lie within a

genus g handlebody, listing the basis elements for the skein module of handlebodies of

genus g > 2 is quite difficult. So results of computations performed in the complement

of a handlebody of genus g > 2 do not yet produce meaningful formulas. Hence, we

content ourselves, for the time being, by modeling only 2-bridge knots.

Thus, our computations take place either in the complement of a 2-bridge knot

or in a genus 2 handlebody (the complement of a 2-braid), with some parts of the

computations happening in a genus 4 handlebody (seen as the complement of a 4-

braid). In the case of a genus 2 handlebody, our goal is to develop an algorithm

that would write any skein represented by a linear combination of multicurves as a

linear combination of the basis elements of the Kauffman bracket skein module of the

handlebody. In the case of a 2-bridge knot, we identify a genus 2 handlebody inside

the knot complement, and our goal is to represent any skein that is given as a linear

combination of framed multicurves in the knot complement in terms of the basis of

the skein module of that handlebody. Combining this with handle slides will allow us

to represent any skein in a basis of the skein module of the 2-bridge knot complement.
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Every 2-bridge knot can be realized by taking a 4-braid and adding two strands

both at the top and at the bottom of the 4-braid. Each of these pairs of strands

identifies two of the four strands of the 4-braid. The strands attached at the top form

the upper “bridges” of the 2-bridge knot, and the ones at the bottom form the lower

“bridges”. Alternatively, the knot complement is obtained by adding two 2-handles

to the genus 4 handlebody.

4.2 Terminology

Before we proceed, we must establish some conventions and a standardized termi-

nology, that will be used throughout the dissertation.

Base Knot

Curve

Self-intersection (curve)

Intersection (curve and base knot)

Self-intersection (base knot)

Figure 4.1. Labeling points of interest in a knot diagram

Self-intersection (skein)

Skein

Base Braid

Self-intersection (base braid)

Intersection (between skein and base braid)

Strands of the base braid

Components of the skein

Figure 4.2. Labeling points of interest in a braid diagram
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Base Knot and Base Braid

Our computations take place in either a knot complement or in the complement

of a braid. These are the base knot and base braid, and are denoted by B. In

diagrams they are drawn with a black line, and are usually held rigid. The crossings

of this base knot or braid are not resolved.

Skeins

The skeins to be resolved are embedded in the manifold we consider, which is either

a knot complement or a handlebody. A skein is an equivalence class, and we represent

it by choosing a representative of that class, which in our examples will be a framed

link or a linear combination of framed links. In diagrams, the skeins are drawn in red;

to them we apply skein relations and isotopies. A skein may have several components,

which either intersect or are disjoint.

Figure 4.1 shows a skein in the complement of the trefoil knot. The base knot is

therefore the trefoil knot, and the skein is the red curve. We point out that, in 2-

dimensional planar diagrams, apparent self-intersections are places where one strand

passes either over or under another strand in the 3-dimensional diagram. These

intersections are points of interest in such planar diagrams and include places where

the curve (skein) intersects the base knot, places where the curve intersects itself,

and places where the base knot intersects itself. Figure 4.2 shows a skein in the

complement of a 4-braid. The base braid is the 4-braid and the skein is the red curve.

In this case the skein has two components which intersect.

Strand

When the base knot, B, is the entire 2-bridge knot, it is made up of one continuous

strand. A base braid, which can be part of the 2-bridge knot, has multiple strands,

which can be realized as part of the same knot by recording the connecting information

at the top and bottom of the braid. The strands of the braid are indexed sequentially,

counting at the bottom of the braid from left to right.

Over/Undercrossing
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The terms overcrossing, undercrossing are applied both to strands of the base

knot or braid in the diagram and to curves representing skeins in the manifold. It

may be that one strand of the base knot or braid crosses over (or under) another

strand, the curve representing the skein crosses over (or under) a strand of the base

knot/braid, or this curve crosses over (or under) itself. In all cases, we refer to the

crossings using these terms.

Signs of Crossings

The sign of a crossing is determined by the right hand rule. A crossing is made

up of an overstrand and an understrand; each strand is oriented, and the orientation

determines the sign. Imagining the over/undercrossing pair in 3-space, the sign can be

determined by the right hand rule is follows: run the thumb of your right hand along

the overstrand in the direction of travel and curl your fingers along the understrand

as shown in Figure 4.3. If your fingers agree with the direction of the understrand,

the sign of the crossing is positive. If your fingers curve in the other direction, the

sign of the crossing is negative. This convention is inherited from the convention used

in electricity and magnetism to determine current flow in wires and the direction of

magnetic fields. This convention is not arbitrary; it was Gauss who produced the first

ever link invariant using the Biot-Savart law in electro-magnetism.

Figure 4.3. Convention for determining if crossing is positive or negative

4.3 Two Special Skeins

When working in the skein module of the genus 2 handlebody, besides the basis el-

ements xmynzk, we introduce two other skeins, y′
pos and y′

neg, shown in Figure 4.4. We
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rely on these skeins, writing all other skeins as linear combinations of basis elements

and the following two skeins, to reduce computational complexity.

y′
pos

y′
neg

Figure 4.4. Two simple curves, y′
pos and y′

neg.

After performing the computation, these two skeins can be written in terms of

x, y, z as

y′
pos = −t−2xz − t−4y and y′

neg = −t2xz − t4y.

These relations are obtained by inducing a crossing and resolving it as shown in

Figure 4.5. Note that these computations are the same regardless of the orientation of

the picture; a y′
pos rotated by 180 degrees is still a y′

pos. This resolution is independent

of other computations made in the knot complement, hence it does not affect the final

answer to resolve these curves after resolving the rest of the curve as basis elements.

The use of y′
pos and y′

neg is not of necessity, but of convenience.

= −t3(ty + t−1xz)

= −t−3(tx2 + t−1y)

Figure 4.5. The special skeins y′
pos and y′

neg.
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4.4 Conversion from Diagram to Array

The first step to automation is proper input. The difficulty we face is that the

input of our computations is diagrammatic. In order to convert from a diagram to an

input array, we must record all necessary information, such as intersections between

the skeins and base knot/braid, relative position of components of the skeins and

strands of the base knot/braid with respect to each other, and the orientation of

each component of the skein. Our challenge is that this visual information is non-

numerical, and so we establish notation to describe the skein knot/braid system. This

notation borrows some of the familiar format of braid representations, but includes

more information.

Computations are performed by manipulating skeins in the complement of a knot or

braid, sometimes reducing very complicated curves to simple ones by pushing them

over and around the strands of the base knot/braid. These simplifications can be

difficult to recognize, as often isotoping curves generally makes the situation worse

before it gets better.

4.5 Procedure for Performing Skein Computations

Automation will actually take place in the complement of a braid, so if we work in a

knot complement we need an algorithm for mapping the skein in the knot complement

to a skein in the complement of a braid. The idea is to identify a submanifold N of

the knot complement M = S3\N(B) such that skeins can be pushed into N and such

that M\N is the complement of the braid. This idea is illustrated in Figure 4.6. So

from now on we only work with base braids.

Lemma 4.1. Let M = S3\N(B) be the complement of a neighborhood of a knot, B.

We can identify a submanifold N of M such that N is a handlebody of genus g, and

any skein in M can be isotoped to lie completely inside of N .
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handlebody

Figure 4.6. Representing a skein in the knot complement as a skein in a handlebody.

Choosing a section of the base knot as described, we record the connecting in-

formation of the strands at the boundary of this section. With the section, which

corresponds to a handlebody of genus g, oriented so that strands of the braid flow

from bottom to top, we label the strands sequentially from left to right. For twist

knots and torus knots, there is a preferred location for this handlebody. For twist

knots, consider a section of the knot containing 2 strands, one of which is an exterior

strand, labeled strand 1 and strand 2. The curve is projected through a handlebody of

genus 2 and the computations performed are performed in a handle body of genus 2.

For (2,2p+1)-torus knots, the section we choose contains four strands (labeled strand

1, strand 2, strand 3, and strand 4). The curve is projected through a handlebody of

genus 4, and the computations are performed in a handlebody of genus 2. We con-

sider the knot as if proceeding from the lower boundary of the section and terminating

at the upper boundary of the section. Fixing the strands of the base knot, we now

proceed to isotope the curve along the strands, projecting it through the crossings of

the base knot, into the portion of the diagram between the highest crossing and the

upper boundary of the section. This projection from "bottom" to "top" manipulates

the curve through the handlebody of genus g, where g is the number of strands of the

base knot in that section.

To accomplish this projection, we must input all information about the base knot:

the number of strands, the number of crossings, and the sign of each crossing. The

information is always recorded from the lower boundary of the section to the upper
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boundary, that is, from bottom to top. Next, we input all the information about

the multicurve in the complement of the base knot: the strand information (over

and undercrossings), the index information, and the orientation information (relative

to the position of the strands of the base knot). The procedure for recording this

information can be found in Chapter 4.

I will now outline the program for performing computations.

Prepare

The first step is to choose a section of the knot corresponding to a genus g handlebody.

We then manually isotope the curve to lie entirely within this handlebody. Viewing

the curves within this handlebody as braids, we record the connecting information at

the top and bottom of the braid. We will recall this information before proceeding

to the next step. Recall that, for ease of entry, there is a left-sided bias to the way a

curve is entered, sometimes necessitating an isotopy done by hand so that the curve

begins and ends each section on the left side of the base braid. Also, it is occasionally

convenient to separate a single connected strand into multiple components. The

connecting information at the top and bottom of the section determines the number

of actual components in the curve, and will be recalled before the curve is used as

the input of the next step.

Step 1: Project

The curve is then projected through the handlebody, from the bottom of the braid

to the top, by passing the curve section by section through the crossings of the base

knot. The curve is projected to the section above the highest crossing, between that

crossing and the upper boundary of the braid; this section is still a handlebody of

genus g, but does not contain any crossings in the base braid when viewed as a planar

diagram. Also worth noting is that the index and orientation are unnecessary at this

step, as the relative position of strands does not change until crossings are resolved.

However, the index is used to determine if simplification of over-over and under-under

crossings can be made before proceeding. When entries are added before and after

the existing strand values, to account for the strand passing through a crossing, their

orientations are completely dependent on the orientation of the original value.
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Intermediate Step: Reduce

The index information is used to reduce the curve, canceling consecutive over-over

and under-under crossing pairs. To reduce computational complexity, we will perform

reductions at each stage of the next step; after each crossing is resolved, we check for

reductions in the curve and instances of the unknot.

Step 2: Resolve

We now work in a genus 2 handlebody. We resolve all existing crossings, using the

skein relations. This results in a linear combination of simple curves with coefficients

in powers of the variable t. Since this resolution takes place in a handlebody of genus

2, rather than in a 2-punctured disk, the resulting curves are not guaranteed to be

basis elements after all crossings are resolved.

Step 3: Induce

To guarantee the resolution of the skein as basis elements of the skein module, we

must project from the genus 2 handlebody to the 2-punctured disk. To do this, we

implement an algorithm which rearranges strands by inducing crossings and resolving

them. The result of this algorithm is a linear combination of basis elements of the

skein module with coefficients in powers of the variable t.

Post-Processing: Combine

Like terms in this linear combination are combined and canceled. In this stage, we

also substitute any given relations.

4.6 How to Record Input Information

The procedure above can be divided into two parts: the first half of the procedure

(Step 1: Project) involves working with a skein in the complement of a braid (a

genus g handlebody) and projecting it to the top section of the base braid, past any

crossings. The second half of the Program (Step 2: Resolve and Step 3: Induce) works

with a skein in the complement of a genus 2 handlebody whose underlying braid has

no self intersections. Our input depends on our starting situation. The rest of the
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program (Reducing and Combining) formats our output, and can vary depending on

the application. If we start in the complement of an n-braid, we begin with Program

Project, proceed to Program Resolve, and end with Program Induce. If we begin in a

genus 2 handlebody, we begin with Program Resolve and proceed to Program Induce.

Our starting point dictates our input.

4.7 Input for Program Project

In Program Project, we work with a skein in the complement of an n-braid, that

is, in a genus n handlebody. In the diagram in which we work, the braid B has c

crossings (labeled 1 through c) and n strands (labeled 1 through n). The c crossings

segment the braid into c + 1 sections (labeled 1 through c + 1). The skein K has k

components (labeled K0 through Kk−1). For each component K l, for 0 ≤ l ≤ k − 1,

the component consists of c + 1 sections (labeled Sl
0 through Sl

c+1). Each section Sl
d

for 0 ≤ d ≤ c+1 contains p points of interest, which include intersections between the

skein and the base braid, intersections between the skein and itself (self-intersections),

and intersections between other components in the skein. We now outline how to

record this input information.

4.7.1 Base Braid Input Array

Considering an n-braid, B, with c crossings, we index the strands of the braid,

from 1 to c, sequentially from left to right. As with the notation used in conventional

braid representations, the labels for strands are exchanged every time two strands

cross. For example, when strand 1 and strand 2 cross, strand 1 becomes strand 2

in the section following the crossing and strand 2 becomes strand 1. Hence, braids

are naturally sectioned by their crossings. Following this observation, we section the

base braid by its crossings. A base braid with 1 crossing will have two sections, one

above the crossing and one below the crossing; a base braid with 2 crossings will have 3

sections, etc. as shown in Figure 4.7. Hence we label the sections 1 through c+1. The

strands of the base braid in each section are labeled sequentially, from left to right,

with strand 1 the farthest left strand in each section. We use this labeling scheme to

record information about the parts of the skein K that intersect that section.
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Figure 4.7. Strand labels exchange through a crossing; braids are naturally sectioned
by their crossings. Strands are labeled left to right in each section

We record n, the number of strands in the base braid, and proceeding from the

bottom of the braid to the top, we record two pieces of information at each of the

c crossings in the braid. First, we record which two strands cross in each crossing.

Since the consecutive strands will exchange labels, and this labeling depends on which

side of the crossing we are on, we need only take the smaller of these two numbers.

So, if the crossing is between strands m and m + 1, we need only record m. Second,

we record the sign of the crossing using the following convention: if strand m crosses

over strand m + 1 the sign is positive and if strand m crosses under strand m + 1 the

sign is negative.

Thus, the input array for the base braid is as follows:

n: the number of strands in the base braid, and,

B = [[b0, ..., bc−1], [v0, ..., vc−1]]

where c is the number of crossings in the base knot, labeled 1 through c. For 0 ≤

c′ ≤ c, the value bc′−1 = m where 0 ≤ m < n and the crossing c′ is between strands

m and m + 1. The entry vc′−1 = ±1 is the sign of the crossing c′ and corresponds to

the entry bc′−1. This is the only information required from the base braid, B.
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4.7.2 Skein Section Input Array

Now we determine the input array for the skein in the complement of the base

braid. The skein is more difficult to describe, as it has no fixed starting point or

ending point and moves freely throughout the complement of the base braid. Thus

to record the information about arbitrary skeins we require a standardized format

and a common point of reference. We bring the curve entirely to the left side of the

braid, identify a starting point in each component, and manually isotope the skein,

K, to have to form of a braid, beginning and ending at the top and bottom of the

base braid. From here, the components of the skein can be recorded.

The base braid is divided into sections based on its crossings, and we record the

portion of the skein in each section which intersects the base braid. In most cases,

the skein will intersect the base braid in multiple sections, and this is not an issue

except that in moving from section to section we require a fixed point of reference

to connect the portion of the skeins between sections. Thus, we require that, within

each section, the curve starts to the left of strand 1 and comes back to the left of

strand 1 before moving to the next section. This may require some manual isotoping,

albeit in a very predictable way. This prevents us from having to retain additional

information (such as between which two strands the skein connects from section to

section) If the curve does not begin or end to the left of strand 1 in the section, we

manually pull the curve to the left side, resulting in either additional undercrossings

or overcrossings. This is shown in Figure 4.8. Note that in some instances, moving

the curve to the left results in an over-over or under-under crossing pair that can be

then simplified, as exemplified in the bottom diagram from the figure.
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Figure 4.8. The skein is brought to the left side of the diagram; the skein starts and
ends to the left of strand 1 in each section.

In most cases, there is a natural way to write the skein so that each component flows

from the bottom of the braid to the top, proceeding from a lower section of the base

braid to a higher section of the base braid until it reaches the top section in the base

braid. If this is not the case, it is generally easy to manually isotope the curve such

that this condition is fulfilled. The reason for such a condition is pure convenience; we

record the information about the skein from bottom to top, connecting each section

to the previous section and recording the input of each section only once. If it is not

immediately apparent how to write the skein in such a way, we can begin in the first

component at the point where the skein intersects the strand of the base knot closest

to the bottom boundary of the base braid. From this point, we follow the skein as long

as the section number (the number of the section we consider) increases, hence, we
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record information about the skein in each section from bottom to top. At the point in

which the section number decreases, that is, we visit a section of the base braid which

we have already visited, we establish a point R1. We break the skein at R1, recording

the connecting information by labeling the endpoint of each part of the skein with

the same label. This point is brought to the top of the diagram, which connects back

to the bottom of the diagram, and we continue recording information from bottom

to top. We continue in this fashion for each section of the skein, sometimes splitting

a single component into multiple components by breaking the skein at such a point.

However, each time we do this, we must retain the connecting information at the

top and bottom of the braid to reassemble the skein after projection, so the resulting

skein will end up with the same number of components regardless of the number of

times a component is split.

In many cases, the skein can be formatted as a braid with fewer intersections by

manual isotopy. The skein in Figure 4.9 is already in the desired format. Beginning

at the lowest point of intersection between the skein and the braid, we continue until

we reach the top of the braid, where we break the skein, bringing the skein to continue

as a new component at the bottom.
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Figure 4.9. The skein is formatted such that the components of the skein start at
the bottom of the section and end at the top of the section.

After such a procedure, the skein is formatted such that the components of the skein

in each section start at the bottom of the section and end at the top of the section. We

record the information for each component of the skein section by section, starting

from the bottom section (the section below the lowest crossings). First, we label

all crossings, distinguishing self-intersections of the skein and intersections between

the skein and the base braid. Self-intersections of the skein (including intersections

between one component of the skein and another) are labeled 1×10−kr , 2×10−kr , ..., r×

10−kr , where kr is the magnitude of the number of crossings, and the labels are

assigned to these self-intersections in any order. If there are less than 100 crossings,

kr = 2, and so the crossings are labeled 0.01, 0.02, ...0.r; if there are 100-999 crossings,

kr = 3, and the crossings are labeled 0.001, 0.002, ...0.r, etc. Indeed, the order on these

crossings does not matter, as the order only dictates which crossing will be resolved

first, second, etc. Since the skein is always pulled to the left side of the diagram, the

curve either begins by intersecting the first strand of the base braid, passing through

a self-intersection labeled r′ × 10kr for some 0 ≤ r′ ≤ r, or else does not intersect
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the base braid in that section. After this, the curve passes back and forth between

strands, crossing over and under strands of the base braid, until it again returns

to the left side of the diagram. It may pass through a self-intersection, or multiple

self-intersections, before moving to the next section of the base braid.

In each section Sl
d, of component l of the skein, we form an array

Sl
d = [sl

d,0, sl
d,1, ..., sl

d,p−1]

where p is the number of points of interest in the component, and sp′

d , 0 ≤ p′ < p,

is determined by the following chart:

Table 1: Skein Section Input Information (for a base braid with n strands)

If the curve crosses over strand 1 of the base braid, we record a "1", so sk
d,p′ = 1.

If the curve crosses under strand 1 of the base braid, we record a "-1", so sk
d,p′ = −1

If the curve crosses over strand 2 of the base braid, we record a "2", so sk
d,p′ = 2.

If the curve crosses under strand 2 of the base braid, we record a "-2", so sk
d,p′ = −2.

...

If the curve crosses over strand n of the base braid, we record a "n", so sk
d,p′ = n.

If the curve crosses under strand n of the base braid, we record a "−n", so sk
d,p′ = −n.

If the curve crosses over an intersection 0.r′, we record a "0.r′", so sk
d,p′ = 0.r′.

If the curve crosses under an intersection 0.r′, we record a "−0.r′", so sk
d,p′ = −0.r′.

When the skein has multiple components (i.e. is represented by a framed link),

which may or may not be attached via the connecting information retained at the

top and bottom of the diagram, we record the input array for each component. Each

component K l intersects the base braid B in several sections and may intersect other

components of the skein in several places. Each component K l may also intersect

itself in several locations. Thus, the input array for the lth component of the skein,

section by section is

K l = [Sl
0, Sl

1, ..., Sl
c]

where Sl
d is defined above for each section 1 ≤ d ≤ c + 1 with c the number of
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crossings in the base braid (thus c + 1 sections). The input for the first section, Sl
0,

is the portion of component l of the skein below crossing 1. The input for the next

section, Sl
1, is between crossing 1 and crossing 2. In general, the input for section

d + 1, Sl
d, is the portion of component l between crossing d and d + 1.

Thus the skein is given by

K = [K0, K1, ..., Kk−1]

with K l defined above for 0 ≤ l ≤ k − 1 (k components of the skein).

4.8 Program Project Algorithm

From this input, the skein is projected from the bottom of the braid to the top of

the braid in the following way: for c crossings in the base braid, separate the curve

into c + 1 sections, and for each component l of the skein, each section Sl
d is moved

from section d to d + 1, starting with section 0 and ending with section c + 1. At each

stage, the result from moving the input of Sl
d from section d to d + 1 is appended to

the input Sl+1
d+1. The result is the skein projected past all crossings in the base braid

to the c + 1 section of the braid, between the crossing c and the top boundary of the

braid.

For each component l, and each section d, consider Sl
d = [sl

d,0, sl
d,1, ..., sl

d,p−1]. By

Table 1, each entry sl
d,p′ for 0 ≤ p′ ≤ p − 1, is either ±1, ±2, or t for some 0 < t ≤ r.

We push section Sl
d past crossing d, and append the result to Sl

d+1. This is ac-

complished by the algorithm given in Algorithm 1. Passing this portion of the skein

through the crossing d amounts to introducing new elements, overcrossings and un-

dercrossings, at specific locations in Sl
d. The first step in Algorithm 1 is to determine

the location of the insertion, and the second is to insert the overcrossings and under-

crossings as necessary. The sign of the crossing determines which values are inserted.

For each crossing, we pass from the section of the diagram below the crossing to the

section of the diagram above the crossing.

The crossing d is made up of two consecutive strands of the base knot, strand m

and strand m + 1. In the section below the crossing, the skein intersects these two

strands of the base braid. If we think of the intersections between the skein and

the base braid (overcrossings and undercrossings) in groups on each strand, we get

a sequence of intersections on strand m followed by a sequence of intersections on
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strand m + 1. This pattern repeats, alternating groupings of intersections on m and

m + 1, until we get to the location where strand m and strand m + 1 cross. To move

the curve past this crossing, we can move the groups of intersections on each strand

separately, starting with the group closest to the crossing. Intersections between the

skein and any strand of the base braid other than m and m + 1 are unaffected by the

crossing, and are moved to the next section with no changes.

sequence of 2’s

sequence of 1’s

sequence of 1’s

crossing between
strands 1 and 2

section above crossing

section below crossing

move
through
crossing

Figure 4.10. moving curve past crossing between strands 1 and 2 in the base knot

Without loss of generality, let the crossing be between strands 1 and 2 of the base

braid. In the section below this crossing, we have a grouping of intersections which

are over/undercrossings on strand 1 (a sequence of entries ±1), and a grouping of

intersections which are over/undercrossings on strand 2 (a sequence of entries ±2).

When we move groupings on strand 1 through a positive crossing, they move from

strand 1 below the crossing to strand 2 above the crossing (as the strand labels switch

when the strands are crossed). In doing so, we must introduce an undercrossing on

strand 1 before this grouping and after this grouping as shown in Figure 4.11. We

insert a -1 before the grouping and we insert a -1 after the grouping. When we move

groupings on strand 2 through a positive crossing, they move from strand 2 below

the crossing to strand 1 above the crossing. In this case, no additional crossings are

added before or after the sequence, as shown in Figure 4.12. In this manner, we move

groupings of crossings on strand 1 and groupings of crossings on strand 2, group by
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group, starting with the group closest to the crossing and proceeding until all parts

of the curve appear above the crossing. This result is appended to the beginning of

the next section, and the procedure is repeated.

sequence of 2’s

sequence of 1’s

-1

-1

Figure 4.11. crossing c′ with sign vc′−1 = 1, values on strand 1 change to values on
strand 2, undercrossings on strand 1 are added before and after the sequence.

sequence of 2’s

sequence of 1’s

Figure 4.12. crossing c′ with sign vc′−1 = 1, values on strand 2 change to values on
strand 1 and no additional crossings are added
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sequence of 2’s

sequence of 1’s

+1

+1

Figure 4.13. crossing c′ with sign vc′−1 = −1, values on strand 1 change to values
on strand 2, undercrossings on strand 1 are added before and after the sequence.

sequence of 2’s

sequence of 1’s

Figure 4.14. crossing c′ with sign vc′−1 = −1, values on strand 2 change to values
on strand 1 and no additional crossings are added

4.9 Identifying a Genus 2 Handlebody

The result of Program project is a skein in the complement of a genus n handlebody,

where n was the number of strands in the underlying braid. When n = 2, we have

a skein in the complement of a braid with two non-intersecting strands. For n = 4,

we address how to pass Program project (a skein in the complement of a 4-braid

projected to a section of the handlebody with 4 non-intersecting strands) to the

input of Program Resolve and Program Induce (a skein in the complement of a 2-

braid, with 2 non-intersecting strands) in the case of all 2-bridge knots. This is the
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family of knots we consider in this paper. We discuss the use of this program on other

families of knots in Chapter 7.

All 2-bridge knots are of the form shown in Figure 4.15, which can be thought

of as a 4-braid with two 2-braids attached. The upper 2-braid is called the "upper

bridge", and the lower 2-braid is called the "lower bridge". The 2-braids identify pairs

of strands of the 4-braid at the top and bottom. We identify a genus 4 handlebody,

corresponding to the complement of the 4-braid. The Projection algorithm is applied

to skeins in this handlebody, and the result is projected to the upper section of the

handlebody, where the 4 strands of the braid are non-intersecting. Next, we use the

upper bridge to identify strands 1 and 4 and strands 2 and 3. This produces a skein

in a genus 2 handlebody, and to this result we first apply several reduction algorithms

(to reduce under-under and over-overcrossing pairs). Then, we use the curve in the

genus 2 handlebody as the input for the next phase of the program.

.
.

.

Figure 4.15. 2-bridge knot
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. . .

Figure 4.16. twist knot

In our case, a genus 2 handlebody is of particular interest, as every genus 2 han-

dlebody is the cylinder over a 2-holed disk. Resolution in the 2-holed disk produces

a specified set of basis elements. This can be easily seen from the following diagram.

Any curve in the 2-holed disk either encompasses one hole (the elements x and z),

both holes (the element y), or does not encompass either hole at all (the unknot).

y

x z

x
z

y

H

H

Figure 4.17. Framed curves x, y, and z

With this is mind, realizing a curve contained in the 2-handlebody as a curve

contained in a 2-holed disk and resolving all existing crossings produces a polynomial

in the basis of the skein module. The question is, how do we accomplish such a

projection from given a skein in a genus 2 handlebody? This is a spatial question

equivalent to the question: how do we change our view of the skein from a side view

to a top view? From the side view, two strands might not seem to cross, but cross
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when viewed from the top. Similarly, two strands which appear to cross in the side

view may not cross in top view. We will address this in the next section.

Before we concern ourselves further, we must first isotope the curve so as to be

completely contained in a genus 2 handlebody which as a planar diagram has no

intersections. In Lemma 4.2, we show this can be done for every two bridge knot.

As a corollary, for the families of knots we consider, twist knots and (2, 2p + 1)-torus

knots, we have a preferred location for this handlebody. For example, all twist knots

can be written in the form shown in Figure 4.18; there is a hooked section at the top,

and a twisted section at the bottom, with k twists proceeding in the same direction.

The preferred location of the handlebody is indicated. Similarly, for 2-bridge knots,

shown in Figure 4.19, the preferred location of the handlebody is indicated.

Lemma 4.2. For every 2-bridge knot, there is a genus 2 handlebody embedded in

the knot complement such that every framed curve in the knot complement can be

transformed by an isotopy into a framed curve in that handlebody.

Proof. The complement M of the 2-bridge knot is obtained by adding a 2-handle to

a genus 2 handlebody H . View the 2-handle as D × [0, 1] where D is the unit disk.

There is an embedded open disk D0 ⊂ D such that D0 × [0, 1] does not intersect

the framed curve. Then H is a strong deformation retract of M\D0 × [0, 1], and

consequently the original curve can be isotoped to a curve in H .

Corollary 4.3. For every twist knot, every framed curve in the knot complement can

be transformed by isotopy so as to lie completely in the genus 2 handlebody shown in

Figure 4.18.
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. . .

Figure 4.18. Location of the genus 2 handlebody in the particular case of a twist
knot

.
.

.

Figure 4.19. Location of the genus 2 handlebody in a 2-bridge knot

4.10 Reducing Curves After Every Stage

Before proceeding to the next step, the complexity of the following calculations can

be drastically reduced by performing simplifications, canceling consecutive pairs of

overcrossings or undercrossings. This is equivalent to recoginizing instances of Reide-

meister moves, in particular, the Reidemeister move R2. A skein can be reduced when
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it has consecutive overcrossings or undercrossings as shown in Figure 4.20. In this

case, making one such reduction may produce another overcrossing or undercrossing

pair, which can be further reduced. While reducing the curve is not necessary to per-

forming the algorithm, thoughtful simplifications in the skein will reduce the number

of steps required. The skein can be reduced before the algorithm begins, at each

stage, and as a final step. Reduction at each stage drastically improves computation

time.

or reduced

+1

+1

−1

−1

Figure 4.20. Canceling consecutive pairs of crossings (shown here on strand 1)

4.10.1 Reduction Method 1

In a diagram, we recognize a reduction by noting an over-over or under-under

pair. In the array, this is a pair of the same numbers with the same sign. For

example, the entries [...1, 1...] indicate that the curve passes over strand 1 and then

over strand 1 again, undoing each other, and so we cancel them. In another example,

the entries [... − 2, 1, 1, −2, ...] indicate under strand 2, over strand 1, over strand 1,

under strand 2; canceling the over-over pair results in an under-under pair, which

can also be canceled. There is, however, one caveat to this identification: the pairs

we identify must be consecutive along a strand. It is possible to have an over-over

pair that will not cancel, as shown in Figure 4.21. Hence, we must first identify an

over-over or under-under pair, and then check the indices of the pair to determine

if they are consecutive along a strand. If the indices are consecutive numbers, then

they are certainly consecutive. Yet there is a case where the indices might not be

consecutive (compared to all indices), but are still consecutive when compared to all

indices along the same strand. Once we determine if such a pair can cancel based on

their indices, we cancel the pair from curves array. We must also remember to cancel

the corresponding elements from the index array and the orientation array.
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+1

+1

do not reduce!

Figure 4.21. Consecutive pairs of crossings which do not cancel

4.10.2 Reduction Method 2

There is one other instance in which we can identify an over-over or under-under

pair, but it is a result of our notation (and actually performs the same type of re-

duction as the first method). In our diagram, the curve is connected, having no

fixed starting point. When converting to an array, however, we were required to fix

a starting point along each component of the curve, choose an orientation, and list

the crossings of the skein beginning and ending at this point. If the first crossing

we listed was part of an over-over or under-under pair with the last crossing listed,

they would not appear consecutive in the array. Thus we use a separate method to

identify these end pairs. For example, the entries [1, ..., 1] form such a pair. Canceling

this pair might reveal another pair, as in [1, −2, ..., −2, 1], and so we must continue

to check the pairs until the first and last entries are different. Again, we check the

index of this pair to determine if they can cancel, and when canceled we cancel them

from the intersection array E and cancel their corresponding elements in the index

array I and orientation array Q.

4.10.3 Implementing Both Reduction Methods Simultaneously

When we cancel one instance of an over-over pair, we might reveal the other in-

stance. For example, in the curve [1, 1, −2, ... − 2] we must first cancel the over-over

pair (using the first reduction method) and then the under-under pair (using the

second reduction method). This leads us to recognize that in order to achieve full
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reduction at any stage, we must first implement the first method to cancel consecu-

tive pairs, and then the second method to cancel end pairs. If we were to implement

reductions in the opposite order (using the second reduction method before the first),

using the second method would insure that the end pair can not be canceled, but then

using the first method might cause the end pair to cancel, as in the example above

(canceling the 1’s leads to canceling the 2’s). There is, however, no instance in which

the second method will lead to cancellations in the first method, as canceling the end

pairs will not reveal a cancellation that was not already present. Hence, we apply the

methods in the given order, applying the first reduction method and following with

the second.

We begin by scanning the array, front to back, for over-over or under-under pairs

using the first method. Starting with r = 0, we check the curve array for the condition

that Z1
z,r = Z1

z,r+1 for all r from 0 to len(Z1
z ) − 2, since the last index of Z1

z is

len(Z1
z ) − 2 + 1 = len(Z1

z ) − 1. When we find a pair, we check their indices. Let s

be the index of the first crossing in the pair. Then the indices of the pair are Z4
z,s

and Z4
z,s+1. We determine which of these is the smaller index of the two, indicating

it is lower (in terms of height) than the other. Without loss of generality, let Z4
z,s

be the smaller of the two. We then need only check for the indices between Z4
z,s and

Z4
z,s+1. If Z4

z,s and Z4
z,s+1 are consecutive, there are no indices between them, and we

are done. If not, let S be the index between them, so Z4
z,s < S < Z4

z,s+1. Then we

identify t such that Z4
z,t = S. If |Z4

z,t| = |Z4
z,s|, then this is an instance of a crossing on

the same strand with an index between the over-over (or under-under) pair, hence,

they are not consecutive. If no t can be found such that |Z4
z,t| = |Z4

z,s|, then the pair

is consecutive relative to the strand, and can thus be canceled.

Implementing this reduction between steps in the program and between iterations

in each step drastically reduces the overall computation time.

4.11 Input for Program Resolve and Induce

In Program Resolve and Program Induce, we work with a skein in the complement

of an 2-braid, that is, in a genus 2 handlebody. In the diagram in which we work,

the braid B has two non-intersecting strands, strand 1 and strand 2. The skein K is

a framed link with k components. For each component, K l, 0 ≤ l ≤ k − 1, we record
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three pieces of input information: intersection information (El), index information

(I l), and orientation information (Ql). We now outline how to record this input

information.

4.11.1 Skein Crossing Input

We begin by labeling all intersections in the skein (self-intersections and inter-

sections between components of the skein). We distinguish self-intersections of the

skein and intersections between the skein and the base braid. Self-intersections of the

skein (or intersections between one component of the skein and another) are labeled

1 × 10−kr , 2 × 10−kr , ..., r × 10−kr , where kr is the magnitude of the number of cross-

ings, and the labels are assigned to these self-intersections in any order as shown in

Table 4.11.1. Indeed, the order on these crossings does not matter, as the order only

dictates which crossing will be resolved first, second, etc.

We include these labels in an array, S:

S = [1 × 10−kr , 2 × 10−kr , ..., r × 10−kr ]

where kr is the magnitude of the number of crossings. For clarity, this value is

tabulated as follows:

Skein Crossing Information

For a skein with 1-99 crossings, kr = 2.

The crossings are labeled S = [0.01, 0.02, ..., 0.99]

For a skein with 100-999 crossings, kr = 3.

The crossings are labeled S = [0.001, 0.002, ..., 0.999]]

For a skein with 1000-9999 crossings, kr = 4.

The crossings are labeled S = [0.0001, 0.0002, ..., 0.9999]

Next, we assign an orientation to each component of the skein. The orientation

on each component affects the sign of the crossings within that component. For the

r crossings to be resolved, we record an array containing the signs of the crossings
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based on the assigned orientations:

U = [±1, ±1, ..., ±1]

where dim(U) = r. As each crossing is resolved, we delete the corresponding element

of U . Since crossings are resolved in order, the first element will always be deleted,

leaving an array of dimension 1 less that the previous stage. The computation ter-

minates when all crossings have been resolved, and dim(U) = 0.

4.11.2 Skein Intersection Input

It is worth noting that, among all components of the skein, if there are s intersection

points between the skein and the base braid and r intersection points between the

skein and itself, then there are s+r points of interest we consider. We will record s+2r

points, among all components, as the label on each crossing is recorded twice, once

for the overcrossing (0.r) and once for the undercrossing (−0.r). In each component,

l, we say there are pl points of interest.

Let k be the number of components of the link that represents the skein, labeled 0

through k − 1. For each component, K l, 0 ≤ l ≤ k − 1, we form an array

El = [el
0, el

1, ..., el
(pl)−1]

where el
j , 0 ≤ j ≤ (pl) − 1, is determined by the following chart:

Skein Intersection Information (for a base braid with 2 non-intersecting strands)

If the skein crosses over strand 1 of the base braid, we record a "1", so el
j = 1.

If the skein crosses under strand 1 of the base braid, we record a "-1", so el
j = −1

If the skein crosses over strand 2 of the base braid, we record a "2", so el
j = 2.

If the skein crosses under strand 2 of the base braid, we record a "-2", so el
j = −2.

If the skein crosses over an intersection 0.r′, we record a "0.r′", so el
j = 0.r′.

If the skein crosses under an intersection 0.r′, we record a "−0.r′", so el
j = −0.r′.

Figure 4.22 shows this labeling for the case of a skein with one component. When

the curve we consider goes over the strand, the number of that strand is recorded
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with a positive sign; when the curve goes under, the number of that strand is recorded

with a negative sign.

strand 1 strand 2

−1

1

−2

2

Figure 4.22. Labeling intersections between the skein and the base braid.

Now consider the case in which there are two components in the curve. The com-

ponents may intersect each other, but each component may also intersect itself in

several locations. It is worth noting that there is no difference between the way we

label self-intersections (in the same component of the skein) versus how we label

intersections between two different components of the skein. The difference is only

realized by investigating the recorded arrays. If the crossing is a self-crossing, both

labels "0.01" (the overcrossing) and "-0.01" (the undercrossing) will appear in the same

component of the array E. Otherwise, the overcrossing will appear in one component

of the array, and the undercrossing will appear in another component of the array.

For example, in Figure 4.23, the diagram on the left has two components. Each one

component contains a crossing labeled -0.01 and a crossing labeled 0.02. The other

component contains a crossing labeled 0.01 and a crossing labeled -0.02. Together,

they contain all information about both crossings. In the diagram on the right, the

same component contains the label 0.01 and the label -0.01.
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strand 1 strand 2strand 1 strand 2

A B

0.01

0.02

0.01

Figure 4.23. Intersections vs Self-intersections.

Figure 4.24 shows an example on a simple curve in the knot complement:

orientation
assign

-1

2

-2

-2

-1

1

1

-1

1

2

Figure 4.24. Labeling overcrossings and undercrossings, recording the array E

We record El for each component 0 ≤ l ≤ k − 1, and from this we form the skein

intersection array:

E = [E0, ..., Ek−1]

where k is the number of components in the skein.

4.11.3 Skein Index Input

Thus far, the concept of "highest" and "lowest" has been determined based on prox-

imity to the top and bottom of the braid. Crossings closer to the top of the braid are
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considered higher than crossings closer to the bottom of the braid. While sufficient

for recording information in the base knot, this ambiguity leaves room for multiple

definitions of the (multi)curve representing the skein as it intersects the strands of the

base braid. Figure 4.25 shows an ambiguous case in which the same strand informa-

tion describes two different curves. To distinguish between these cases, we separately

assign a height index (relative to the datum we established at the bottom of the

diagram). This additional information serves as the connecting information between

components of the (multi)curve, producing a sense of relative position. Although we

aim for a unique result, the way we assign such an index is not unique. As noted in

the example, ambiguity only arises in determining position along a single strand of the

base braid, hence, we only require indexing to be sequential along each strand. Those

places where the (multi)curve crosses a strand of the base braid must be ordered by

index based on their proximity to the datum. Crossings, both self-intersections and

crossings between different components, are also indexed, but their indices are not

required to be sequential or even relate to the indices of the other points of interest.

In fact, we can use an entirely different system of indices for the crossings with no

bearing on the result. Figure 4.26 shows two valid ways of indexing intersections

between the skein and the braid. The first is by height in which the index is assigned

strictly based on distance from a datum at the bottom of the diagram. Points of

interest close to the datum (towards the bottom of the diagram) are indexed by lower

numbers and points far away from the datum (towards the top of the diagram) are

indexed by higher indices, regardless of whether they are self-intersections of the skein

or not and regardless of which strand of the base braid they intersect.
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Figure 4.25. Assigning the index based on position from the datum.
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Figure 4.26. Two basic ways to index a curve: (A) by height, and (B) sequentially
along each strand.

For each component l, we form the array:

I l = [il
0, il

1, ..., il
(pl)−1]

by starting at the point of interest corresponding to El
0 (the first entry in El), and

recording the index il
j point by point. We proceed in the same order as the elements

of El, so that the entries of I l correspond to the entries of El.

We record I l for each component 0 ≤ l ≤ k − 1, and from this we form the index

array:
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I = [I0, ..., Ik−1]

where k is the number of components in the skein.

4.11.4 Skein Orientation Input

The last case of ambiguity is the order in which we record information, that is, the

orientation we assign to the curve. After projecting the skein to a genus 2 handlebody,

we are left with a curve whose orientation could be in either direction. Hence, we

record the orientation of the curve by recording from which side of the strand we

travel. The orientation is determined by recording from which side of the strand we

travel. Given a strand n, we label the region to the left of the strand n + 2 and we

label the region to the right of the strand n + 3. These labels are chosen so as not

to coincide with strand labels. So, when the curve passes from the left of the strand

to the right of the strand, we assign the value n + 2 as the orientation. When the

curve passes from the right of the strand to the left of the strand, we assign the value

n + 3 as the orientation. Since n = 2 here, the numbers we use here, 3 4,5, are chosen

arbitrarily, and could be any consecutive integers (3 was chosen as the first of these

integers to avoid conflicts with the labeling of 2-stranded braids). The important

thing to notice is that an increase in these orientation numbers indicates a move from

left to right, and a decrease indicates a move from right to left.

We already have a sense of orientation from the arrays E and I. In each component,

with intersection array El and index array I l, we traverse the component of the skein

in the same direction. We make this direction explicit by assigning a sequence of

numbers to determine when we are traveling left to right versus right to left as the

skein passes back and forth between strands 1 and 2 of the base braid. In most cases,

this information is extraneous. However, it is required to uniquely determine the

skein.

For each component l of the skein, we form an array:

Ql = [ql
0, ql

1, ...ql
(pl)−1]

where ql
j , 0 ≤ j ≤ (pl) − 1, is determined by the following chart:
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Skein Orientation Information

If the skein crosses over strand 1 from left to right, we record a "3", so ql
j = 3.

If the skein crosses over strand 1 from right to left, we record a "4", so ql
j = 4.

If the skein crosses over strand 2 from left to right, we record a "4", so ql
j = 4.

If the skein crosses over strand 2 from right to left, we record a "5", so ql
j = 5.

If the skein passes a self-intersection, we record a "6", so ql
j = 6.

In general, this notation extends to a braid with n strands, which can be seen as a

diagram with n + 1 sections, labeled 3, ..., n + 3. Crossing from section k to k + 1 is

assigned the value k, while passing from section k + 1 to k assigned the value k + 1.

In our case, we work in a genus 2 handlebody whose base braid has only two strands,

and so the labeling is as shown in Figure 4.27.

orientation
assign

5

4

3

4

3

3

4

4

5
4

Figure 4.27. Labeling orientation based on orientation assigned to skein.
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Figure 4.28. Recording orientation information.

We record Ql for each component 0 ≤ l ≤ k − 1, and from this we form the skein

intersection array:

Q = [Q0, ..., Qk−1]

where k is the number of components in the skein.

4.11.5 Skein Input Array

In describing the skein, we produced three arrays: the intersection array E, index

array I, and orientation array Q. These arrays record all the necessary information

about all components of the skein, the relative position of the different components

with respect to each other, and the orientation information along each component.

We now include all this information in an array of the form

Z0 = [0, E, 1000, U, I, Q]

which is of the form

Z0 = [s0, E0, c0, u0, I0, Q0]

where, s0 = 0 is the initial power of the variable t, and c0 = 1000 is the sign and

value of the initial constant, which is 1. We recover our original skein as c0t
s0K0 =

1t0K, where K = [E, I, Q], the skein uniquely represented by its intersection array,
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index array, and orientation array as in the following theorem. At each stage of the

computation, we resolve one of the r crossings, producing 2r terms. The final result

is an array of the form

Z = [Z0, Z1, ..., Z2r−1]

where each component Zi, representing one term of the final answer, is of the form

Zz = [sz, Ez, cz, uz, Iz, Qz].

Here,

• sz: power of the variable t;

• Ez: the intersection array of term z;

• cz: sign and value of the constant, (...2000 = 2, 1000 = 1, 0 = 0, -1000 = -1,

-2000 = -2,...);

• uz: information on the crossings resolved in the last stage;

• Iz: index array of the term z;

• Qz: orientation array of the term z.

We recover a linear combination of skeins in the variable t from Z as:

c0ts0K0 + ... + cztszKz + ... + c2r−1ts2r
−1K2r−1

where Kz = [Ez, Iz, Qz] is the unique skein recovered from the intersection array,

index array, and orientation array as in the following theorem. The array uz stores

information about the signs of the crossings left to be resolved, and is only used to

perform the next stage of the computation. In the final result, dim(uz) = 0, as their

are no terms left to resolve. This is stated in the following proposition.

Proposition 4.4. A relation between skeins at any stage produced by the resolution

of crossings using a set of given skein relations can be recovered from the array Z =

[Z0, Z1, ..., Z2r−1], where Zz = [sz, Ez, cz, uz, Iz, Qz] for 0 ≤ z ≤ 2r − 1, where r is the

number of crossings to be resolved.
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Finally, we note that every skein K = [E, I, Q] can be uniquely recovered from this

required input information.

Theorem 4.5. Any skein K embedded in a genus 2 handlebody can be uniquely re-

covered from the arrays E, I, and Q by K = [E, I, Q]. This representation produces a

unique skein (or relation of skeins), but such a skein K may have multiple equivalent

representations.

Proof. We recover the skein K from the given arrays E (the intersection array), I (the

index array), and Q (the orientation array). In each component, l, we recover K l =

[El, I l, Ql] as follows: the dimension of the arrays dim(El) = dim(I l) = dim(Ql) = n

is the number of points of interest we consider. Beginning with the array I l, we will

label points along each strand of the base braid with the sequential index values, from

bottom to top by partitioning the array I l into 3 sets: I l
1, I l

2, and I l
r, according to the

corresponding values in El. I l
1 contains all elements il

j for which |el
j| = 1. I l

2 contains

all elements il
j for which |el

j| = 2. Finally, I l
r = I \ (I1 ∪ I2) contains all the crossing

labels, both overcrossing 0.r and undercrossings −0.r. This induces a partition on El

(into El
1, El

2, and El
r) and Ql (into Ql

1, Ql
2, and Ql

r). Let n1 = dim(I l
1), n2 = dim(I l

2),

and nr = dim(I l
r). The value of the elements of I l

1 determines an ordering along strand

1. Similarly for I l
2. Begin with the minimal element of I l

1 (the element with the lowest

index), and consider the corresponding value of El
1: if it is 1 we draw an overcrossing,

and if it is -1 we draw an undercrossing at this point. Use the corresponding value

of Ql
1 to determine if the skein passes left to right or right to left at this crossing.

Returning to the original array, I l, beginning with il
0, we connect the skein by the

corresponding elements of El. Whenever we come to an element el
j = ±0.r, we use the

orientation of the previous element ql
j−1 to determine between which two strands of

the base braid to place the skein intersection. In this manner, we proceed component

by component to recover the original knot diagram.

Finally, each skein K may have multiple, equivalent representations. Indexing

the skein based on height, we only require the index to be sequential on points of

intersection along each strand. The index labeling on one strand of the base braid

does not affect the labeling on any other strands. Additionally, the index labeling on

self-intersections is independent of the labeling along each strand. Hence, the index

array I l used in each component is not unique.
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For clarity, we apply the method outlined in the proof to the following skein.

4.12 Implementing Proof of Theorem 4.5

To illustrate the method of the proof of Theorem 4.5, consider the following skein

K = [E, I, Q] given by:

E = [[1, −1, 1, −0.01, 2, −2, 0.01, −2, 2, −1, 1, 2, −2, 1]]

I = [[0, 1, 2, 3, 5, 4, 3, 6, 7, 8, 9, 10, 11, 12]]

Q = [[3, 4, 3, 4, 4, 5, 4, 4, 5, 4, 3, 4, 5, 4]]

We partition I into the following sets:

I1 = [0, 1, 2, 8, 9, 12]

I2 = [4, 5, 6, 7, 10, 11]

Ir = [3, 3]

To reconstruct the skein, we label points on strand 1 of the base braid by the

elements of I1, and points on strand 2 by the elements of I2. For the elements

of Ir, we consider the corresponding elements in Q: the elements at index 3 in I

correspond to the crossings ±0.01 in E and have orientation value 4 in Q. Recall

that the orientation is determined by a labeling on the sections to the left of strand 1

(orientation value 3), between strand 1 and strand 2 (orientation value 4), and to the

right of strand 2 (orientation value 5). The index 4 indiciates that this crossing lies

between strand 1 and strand 2, so we label a point in the space between the strands

where the crossing will occur with index value 3. This is shown in Figure 4.29.A.

Next, we use the values of Q corresponding to the elements of I1 to draw a segment

of the skein at each point on strand 1, shown in Figure 4.29.B. We do the same for

strand 2. Finally, we connect the segments with respect to this orientation, following

the ordering given by E. This determines a unique skein K = [E, I, Q].
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Figure 4.29. Recontructing the skein K = [E, I, Q]

4.13 Program Resolve Algorithm

In each component, Z[z] of Z, we will resolve the crossings 1×10kr , 2×10kr , ..., r ×

10kr , where kr is the magnitude of the number of crossings, beginning with the

first crossing. Without loss of generality, let us assume the crossings are labeled

0.01, 0.02, .... Beginning with Z = [Z0], we resolve crossing 0.01, producing two

terms. The array Z has one element, the term Z0, given by:

Z = [Z0] = [[s0, E, c0, u0, I, Q]]

where E, I, and Q are the initial input arrays, and s0 = 0, c0 = 1000, and u0 = [1].

In the element Z0, crossing 0.01 is resolved first, and the element Z0 is then replaced

by two terms, Z ′
0 and Z ′′

0 , produced by applying the skein relation:

Z = [Z ′
0, Z ′′

0 ] = [[r′, E ′, c′, u′, I ′, Q′], [r′′, E ′′, c′′, u′′, I ′′, Q′′]]

after such a replacement, we can re-index the entries of Z as:

Z = [Z0, Z1]

In each of these entries, the crossing 0.01 has been resolved. We again consider the
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element Z0, resolving the crossing 0.02. This produces 2 new terms, Z ′
0 and Z”0, and

we replace Z0 in Z:

Z = [Z ′
0, Z ′′

0 , Z1]

The crossing 0.02 has been resolved in each of the components Z ′
0 and Z ′′

0 . Next we

consider the element Z1 and resolve the crossing 0.02. This produces 2 new terms,

Z ′
1 and Z ′′

1 , and we replace Z1:

Z = [Z ′
0, Z ′′

0 , Z ′
1, Z ′′

1 ]

Again, we can re-index the entries of Z after replacement in each component:

Z = [Z0, Z1, Z2, Z3]

Note that after the resolution of 2 crossings, we have produced 22 = 4 terms. Pro-

ceeding in this manner, we resolve all labeled crossings, resulting in an array Z of

dimension 2r, where r is the number of crossings. The result is realized as a linear

combination of these entries, each containing the coefficient and power of the variable

t specified by the given skein relations.

Z = [Z0, Z1, ..., Z2r−1]

where each Zi is a skein containing no self-intersections.

The only remaining question is to determine the values of the terms Z ′
i and Z ′′

i

which replace Zi after resolution of a crossing. We know that Z ′
i and Z ′′

i are of the

form:

Zi = [si, Ei, ci, ui, Ii, Qi]

Z ′
i = [s′

i, E ′
i, c′

i, u′
i, I ′

i, Q′
i]

Z ′′
i = [s′′

i ,′′i , c′′
i , u′′

i , I ′′
i , Q′′

i ]

When written as diagrams with coefficients in t, we have the relation

cit
siKi = t(c′

it
s′

iK ′
i) + t−1(c′′

i ts′′

i K ′′
i ),

where Ki = [Ei, Ii, Qi], K ′
i = [E ′

i, I ′
i, Q′

i], and K ′′
i = [E ′′

i , I ′′
i , Q′′

i ]. Given the skein
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relation, K = tK ′ + t−1K ′′, we can see that s′
i = si +1, s′′

i = si −1, c′ = c = c′′. As for

the skeins K ′ = [E ′, I ′, Q′] and K ′′ = [E ′′, I ′′, Q′′], they are related to K = [E, I, Q]

as shown in Figure 4.30. Thus, we must edit the array K to match the skeins K ′ and

K ′′ shown in the Figure. However, the way we edit these arrays depends on several

factors. If the crossing resolved is an intersection within the same component of the

skein, only that component will be edited. If the crossing resolved is between two

components of the skein, both components involved must be edited. We now consider

both cases, and the arrays K ′ and K ′′ formed from K in each case.

K K ′ K ′′

= t +t−1

K = tK ′ + t−1K ′′

Figure 4.30. The relation between skeins K, K ′, and K ′′

4.13.1 Locating a Crossing

We start by locating the crossing in the array Z. Without loss of generality, con-

sider resolving the crossing labeled 0.01 (the same discussion certainly extends to all

crossings). We will resolve this crossing in each component of Z, so let us fix an ele-

ment Zi. When resolving the first crossing, 0.01, there is initially only one component

of the array Z, which is split into two components after the resolution of the crossing.

When resolving the second crossing, there are initially two components, each of which

are split into two components, resulting in four components after the resolution of

the crossing. When resolving the third crossing, there are initially four components

which results in eight components after the resolution of the crossing, etc.
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Each Zi is of the form

Zi = [si, Ei, ci, ui, Ii, Qi].

Here, Ei is of the form

Ei = [E0
i , E1

i , ..., Ek−1
i ].

Let p = dimEi. We search through the array Ei, component by component, until

we locate the entry 0.01 and −0.01, that is, el′

i,j′ = 0.01 for some 0 ≤ j′ ≤ p − 1 and

0 ≤ l′ ≤ k −1 and el′′

i,j′′ = −0.01 for some 0 ≤ j′′ ≤ p−1 and 0 ≤ l′′ ≤ k −1. If l′ = l′′,

the overcrossing (0.01) and the undercrossing (−0.01) are in the same component

(Case 1). Otherwise, they are in different components (Case 2).

4.13.2 Case 1: Crossing Resolved in Same Component

If the overcrossing (0.01) and the undercrossing (−0.01) are in the same component,

then l′ = l′′ = l and only that component, El
i, needs to be edited. We actually form

two components from the one component by considering the portion of the skein as

follows: the overcrossing (0.01) and the undercrossing (−0.01) form a pair, with one

portion of the skein between this pair and the other portion of the skein outside of

this pair. When we break the crossing, we reattach the top and bottom of the former

crossing in K to make the skein K ′, and we reattached the left and right of the former

crossing to make the skein K ′′. This amounts, in one case, splitting off the portion

between the crossings as a new component and, in the other case, reordering the

portion of the skein between the crossings.

When we edit El
i, we will also edit I l

i and Ql
i, however, when editing the orientation

array, some additional work is required as some portion of the skein is reversed while

the rest remains in the same orientation. We form EAl
i and EBl

i from the skein El
i

as explained in what follows.

Without loss of generality, let j′ < j′′. To form skein EAl
i, we split the one compo-

nent El
i into two components EA1 and EA2. First form a component EA1 containing

only the elements of index j′+1 through j′′−1, EA1 = [el′

i,j′+1, el′

i,j′+2, ..., el′

i,j′′−2, el′

i,j′′−1].

Form the second component EA2 by removing the elements of index j′ through j′′

from El
i. Replace El

i in Ei by these components EA1 and EA2 (EAl
i = EA1 ∪ EA2).

Note that the array EAl
i has two components.

To form skein EBl
i, reorder elements in the skein El

i by reversing the order of the
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elements of index j′ + 1 through j′′ − 1, and removing the elements of index j′ and

j′′: EBl
i = [el

i,0, el
i,1, ..., el

i,j′−1, el
i,j′′−1, ..., el

i,j′+1, el
i,j′′+1, ..., el

i,p−1], where p = dimEl
i.

The element El
i, component l in the array Ei, is replaced by the two components

of EAl
i, EA1 at index l and EA2 at index l + 1. This forms the array EAi. To form

the array EBi, we replace by El
i by EBl

i at index l. The replacement of El
i by EAl

i

increasing the dimension by 1. The replacement of El
i by EBl

i does not increase the

dimension.

We edit the arrays I l
i and Ql

i in the same way to form IAl
i, QAl

i, IBl
i, and QBl

i.

However, when editing the orientation array, there is one additional step: we must

modify the orientation of any portion of the skein whose direction was reversed. In

the array, EAl
i, orientation is preserved, so no changes are necessary. In the array

EBl
i, the portion of the skein from index j′ + 1 to j′′ − 1 is reversed, so we edit the

elements of the index array QBl
i between index j′ + 1 and j′′ − 1. For each element

ql
i,s, where j′ + 1 ≤ s ≤ j′′ − 1, we reverse the orientation number. If ql

i,s = 3 (right

across strand 1), we change it to ql
i,s = 4 (left across strand 1). If ql

i,s = 5 (left across

strand 2), we change it to ql
i,s = 4 (right across strand 2). If ql

i,s = 4, it could be either

the skein passes left across strand 1 or right across strand 2. In this case, we look at

the corresponding element el
i,s. If |el

i,s| = 1, the skein passes left across strand 1, so

we change the orientation number to ql
i,s = 3 (right across strand 1). If |el

i,s| = 2, the

skein passes right across strand 2, so we change the orientation number to ql
i,s = 5

(left across strand 2).

The only element we have left to modify is the element ui, which contains the signs

of the crossings left to be resolved. We modify ui to produce the elements uai and

ubi by considering which of the remaining crossings are affected in the resolution of

the crossing in this step. Any crossings included in portion of the skein which is

reversed may experience a sign change. Each crossing 0.r has two components: the

overcrossing (0.r) and the undercrossing (−0.r). If both components are contained

in the portion of the skein which is reversed, the direction of both will change, and

the sign on the crossing will remain the same. If only one component of any crossing,

either the overcrossing or the undercrossing, is contained in the portion of the skein

which is reversed, and the other is unaffected, the sign on the crossing will change.

We determine this by inspecting the elements of El
i between index j′ + 1 and j′′ − 1.
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For each crossing 0.r, if no element |el
i,s| = 0.r in the interval j′ + 1 ≤ s ≤ j′′ − 1, the

sign of crossing 0.r is unaffected. If there is one element for which |el
i,s| = 0.r in the

interval j′ + 1 ≤ s ≤ j′′ − 1, the sign of the crossing 0.r is reversed, as the orientation

on only one component of the crossing was reversed. If there are two elements for

which |el
i,s| = 0.r in the interval j′ + 1 ≤ s ≤ j′′ − 1, the crossing is unaffected, as the

orientation of both components of the crossing was reversed.

Thus the skein Ki = [Ei, Ii, Qi] is replaced by skeins KAi = [EAi, IAi, QAi] and

KBi = [EBi, IBi, QBi]. Hence, we replace the component Zi = [si, Ei, ci, ui, Ii, Qi]

by ZAi = [si + 1, EAi, ci, uai, IAi, QAi] and Zi = [si − 1, EBi, ci, uBi, IBi, QBi].

4.13.3 Case 2: Crossing Resolved in Different Components

If the overcrossing (0.01) and the undercrossing (−0.01) are in the different com-

ponents, both El′

i and El′′

i need to be edited. More precisely, we take the two compo-

nents, one which contains the overcrossing and one which contains the undercrossing,

and join them together as a single component in two different ways: When we break

the crossing, we reattach the top and bottom of the former crossing in K to make the

skein K ′, and we reattached the left and right of the former crossing to make the skein

K ′′. This amounts, in one case, joining the arrays at the location of the overcrossing

and, in the other case, joining the arrays in the location of the undercrossings.

When we edit El′

i , we will also edit I l′

i and Ql′

i . Similarly, when we edit El′′

i , we

will also edit I l′′

i and Ql′′

i . Again, the orientation array is edited in certain instances

to account for reversing the direction of a portion of the skein.

We have located the overcrossing in component l′ at index j′, and the undercrossing

in component l′′ at index j′′. We form EAl′

i and EBl′′

i from the skeins El′

i and El′′

i as

follows.

Let p′ = dim(El′

i ) and p′′ = dim(El′′

i ). To form skein EAl′

i (which replaces skein

El′

i after the computation), we form a component containing the elements of El′

i from

index 0 to j′ − 1, then the elements of El′′

i from index j′′ to p′′ − 1, then the elements

of El′′

i from 0 to j′′ − 1, and finally the elements of El′

i from j′ + 1 to p′ − 1. Thus,

EAl′

i = [el′

i,0, ..., el′

i,j′−1, el′′

i,j′′+1, ..., el′′

i,p′′−1, el′′

i,0, ..., el′′

i,j′′−1, el′

i,j′+1, ..., el′

i,p′−1].

To form the skein EBl′′

i (which replaces skein El′′

i after the computation), we form a
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component containing the elements of El′

i from index 0 to j′ −1, then the elements of

El′′

i from index j′′ −1 to 0 (traversing the portion of the skein in the reverse direction),

then the elements of El′′

i from p′′ − 1 to j′′ + 1 (traversing the portion of the skein in

the reverse direction), and finally the elements of El′

i from j′ + 1 to p′ − 1. Thus,

EBl′

i = [el′

i,0, ..., el′

i,j′−1, el′′

i,j′′−1, ..., el′′

i,0, el′′

i,p′′−1, ..., el′′

i,j′′+1, el′

i,j′+1, ..., el′

i,p′−1].

The elements El′

i and El′′

i , components l and l′ in the array Ei, are replaced by

the component EAl′

i at index l′ to form the array EAi. To form the array EBi, we

replace by El′

i and El′′

i by EBl′′

i at index l′′. The replacement of El′

i and El′′

i by EAl′

i

decreases the dimension by 1. The replacement of El′

i and El′′

i by EBl′′

i also decreases

the dimension by 1.

We edit the arrays I l′

i , Ql′

i , I l′

i , and Ql′

i in the same way to form IAl′

i , QAl′

i , IBl′′

i , and

QBl′′

i . As in case 1, when editing the orientation array, we modify the orientation of

any portion of the skein whose direction was reversed. In the array, EAl′

i , orientation

is preserved, so no changes are necessary. In the array EBl′′

i the entire component

El′′

i of the skein is reversed, so we edit all the elements of Ql′′

i . For each element ql
i,s,

where 0 ≤ s ≤ j′′ − 1, we reverse the orientation number. If ql
i,s = 3 (right across

strand 1), we change it to ql
i,s = 4 (left across strand 1). If ql

i,s = 5 (left across strand

2), we change it to ql
i,s = 4 (right across strand 2). If ql

i,s = 4, it could be either the

skein passes left across strand 1 or right across strand 2. In this case, we look at the

corresponding element el
i,s. If |el

i,s| = 1, the skein passes left across strand 1, so we

change the orientation number to ql
i,s = 3 (right across strand 1). If |el

i,s| = 2, the

skein passes right across strand 2, so we change the orientation number to ql
i,s = 5

(left across strand 2).

In the same manner as in case 1, we modify the element ui to produce the elements

uai and ubi by considering which of the remaining crossings are affected in the resolu-

tion of the crossing in this step. The entire skein El′′

i is reversed in EBl′′

i , and so any

crossings included in this skein may experience a sign change. If both components

of the crossing, the overcrossing (0.r) and the undercrossing (−0.r), are contained in

El′′

i , the sign on the crossing 0.r will remain the same. If only one component of any

crossing is contained in El
i and the other is unaffected, the sign on the crossing will

change. For each crossing 0.r, if no element |el
i,s| = 0.r in the interval 0 ≤ s ≤ j′′ − 1,
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the sign of crossing 0.r is unaffected. If there is one element for which |el
i,s| = 0.r in

the interval 0 ≤ s ≤ j′′ − 1, the sign of the crossing 0.r is reversed, as the orientation

on only one component of the crossing was reversed. If there are two elements for

which |el
i,s| = 0.r in the interval 0 ≤ s ≤ j′′ − 1, the crossing is unaffected, as the

orientation of both components of the crossing was reversed.

Thus the skein Ki = [Ei, Ii, Qi] is replaced by skeins KAi = [EAi, IAi, QAi] and

KBi = [EBi, IBi, QBi]. Hence, we replace the component Zi = [si, Ei, ci, ui, Ii, Qi]

by ZAi = [si + 1, EAi, ci, uai, IAi, QAi] and Zi = [si − 1, EBi, ci, uBi, IBi, QBi].

4.14 Program Induce Algorithm

After resolving all existing crossings, we are left with skeins in the genus 2 han-

dlebody which have no self-intersections. Such skeins may not be simple, and are

certainly not guaranteed to be basis elements. To produce basis elements, we intro-

duce a procedure from projective geometry by first making the following observation.

All curves in the 2-punctured disk are basis elements in the skein module of the knot

complement of a given knot. Viewing any braid with two non-intersecting strands

(the complement of which is the genus 2 handlebody) from the top of the braid look-

ing down yields a planar diagram which is the 2-punctured disk. The question that

arises from this observation is this: what do skeins in the genus 2 handlebody look

like when viewed from the top? More formally, how to we translate skeins in the

genus 2-handlebody into skeins in the 2-punctured disk naturally embedded in the

genus 2-handlebody? This sort of projection, from the genus 2 handlebody to the

2-punctured disk, produces a crossing each time the skein moves from crossing over

strand 1 of the base braid to crossing under strand 2 of the base braid (or equivalently,

crossing under strand 1 of the base braid to crossing over strand 2 of the base braid).

That is, each time the skein moves from the "front" of the picture to the "back" of

the picture in the side view, a crossing in the skein is introduced in the top view.

Equipped with this knowledge, we propose a method of inducing crossings in the side

view at the same locations as they would bewhen viewed from the top. Once these

induced crossings have been resolved in every instance, the resulting skein will be a

basis element of the skein module of the complement of the original knot.

A crossing in the top view occurs whenever the skein moves from the "front" of the
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diagram to the "back" of the diagram. Portions of the skein which are in "front" of

the diagram are seen as overcrossings and portions of the skein which are in "back"

of the diagram are seen as undercrossings in the side view. We will sort the crossings

along strand 1, bringing overcrossings to lower indices and undercrossings to higher

indices, exchanging the position of an overcrossing and an undercrossing on strand 1

by inducing a crossing between them. An example of such an exchange is shown in

Figure 4.31. Crossing these two components of the skein induces two crossings, one

on the left and one on the right, and the indices of the overcrossing and undercross-

ing are exchanged (the index of the overcrossing is decreased and the index of the

undercrossing is increased). Whenever we cross components of the skein, we either

cross two strands which are in the same component of the skein, or else cross two

strands which are in different components. In the first case, if the overcrossing and

undercrossing are consecutive in the same component, it is only necessary to induce a

single crossing. In the second case, a crossing is introduced on each side of the over-

crossing in the first component and on each side of the undercrossing in the second

component. The orientation on the component(s) of the skein determines the signs

on the induced crossings.

0.01 0.02

Figure 4.31. Crossing strands from different components produces two crossings,
labeled from left to right, 0.01 and 0.02.
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A

DC

B

++ − −

− + +−

Figure 4.32. The orientations of the curves determine the signs of the crossings.

We implement a sorting method, moving overcrossings to lower indices and un-

dercrossings to higher indices, on each strand of the base braid. Overcrossings and

undercrossings are exchanged pairwise on each strand. Consider a skein K = [E, I, Q].

Starting with the first component of the skein and proceeding componentwise, we form

an array called "ONES" (resp, "TWOS"), which contains the information about ev-

ery entry on strand 1 (resp, 2). The procedure for inducing crossings on strand 2 is

the same as for strand 1, so without loss of generality, consider strand 1. The array

we produce on this strand is of the form:

ONES = [[o11, o12, o13, o14], [o21, o22, o23, o24], ..., [ok1, ok2, ok3, ok4]]

where the entries oij , j=1,2,3,4 contain all the information about the entry. The

entries of ONES are recorded as follows:

Entries in the array ONES (strand 1)

ONES = [[o11, o12, o13, o14], [o21, o22, o23, o24], ..., [ok1, ok2, ok3, ok4]]

ok1 = +/ − 1, the value of the el
j (overcrossing or undercrossing)

ok2=index il
j of value

ok3=component l of the array where this value can be found

ok4=the index j within that component

For strand 2, we form a similar array, TWOS, with entires as follows:
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Entries in the array TWOS (strand 2)

TWOS = [[t11, t12, t13, t14], [t21, t22, t23, t24], ..., [tk1, tk2, tk3, tk4]]

tk1 = +/ − 2, the value of the el
j (overcrossing or undercrossing)

tk2=index il
j of value

tk3=component l of the array where this value can be found

tk4=the index j within that component

ok3 and ok4 (resp. tk3 and tk4) locate the entry within the arrays E, I, and Q

containing the skein, index, and orientation information.

After forming the array ONES, we will split the index values, located at ok1, into

two arrays: P containing the index values ok1 of ONES such that ok0 = 1 and N

containing the index values ok1 of ONES such that ok0 = −1. Next, we form an

array B containing all the index values ok1. By comparing the entries of P and N

against the values of B, we determine where to induce the next crossing.

If the minimum element of B is the minimum element of N , we proceed to determine

the elements of N and P that should be switched. Otherwise, while the minimum

element of B is the minimum element of P , delete this element from both B and P ,

until either P is empty or the minimum element of B is the minimum element of N .

If P is empty, no switch is required. If P is not empty, identify the maximum element

of N . We compare this element to the minimum element remaining in P . If the

maximum element of N is less than the minimum element of P , these two elements

are the elements of P and N to be switched. Otherwise, delete the maximum element

of N , and compare the new maximum element of N to the minimum element of P .

Continue until the maximum element of N is less than the minimum element of P .

These two elements, the maximum element remaining in N and the minimum element

remaining in P , indicate the location at which we will induce a crossing (by switching

the location of these elements).

We have now identified an element of P , corresponding to an element ok′
1 in ONES,

and an element in N , corresponding to an element ok′′
1 in ONES. We determine the

location of the crossing to be induced as follows: let l′ = ok′
2, j′ = ok′

3, l′′ = ok′′
2 ,

j′′ = ok′′
3 . We are now faced with three cases: (1) the elements to be switched are in

the same component and consecutive, (2) the elements to be switched are in the same

component and nonconsecutive, and (3) the elements to be switched are in different
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components. The following table outlines where to insert a crossing in each case.

Inducing crossings in a skein

Case 1: elements in same component (l′ = l′′ = l), consecutive (j′ = j′′ + 1 or j′′ = j′ + 1)

If j′ < j′′, insert a crossing ±0.99 at el
j′′+1 and el

j′ (in this order)

If j′ > j′′, insert a crossing ∓).99 at el
j′+1 and el

j′′ (in this order)

Case 2: elements in same component (l′ = l′′ = l), nonconsecutive

insert a crossing ±0.01 at el
j′+1

insert a crossing ∓0.02 at el
j′+1

insert a crossing ∓0.01 at el
j′′+1

insert a crossing ±0.02 at el
j′′

Case 3: elements in different components

insert a crossing ±0.01 at el′

j′+1

insert a crossing ∓0.02 at el′

j′+1

insert a crossing ∓0.01 at el′′

j′′+1

insert a crossing ±0.02 at el′′

j′′

In Case 1, we insert a single crossing. This crossing is resolved, producing 2 skeins.

In Case 2 and Case 3, two crossings are inserted. These crossings are resolved,

producing 4 skeins. We use the same algorithm as in Step 2 (Program Resolve)

to resolve these crossings. Once resolved, we repeat this procedure on each skein.

This procedure terminates when the array P formed from ONES is empty (after

cancellation with elements of B, as described above). At this point, the index of

every overcrossing is lower than the index of any undercrossing, and the skein in the

genus 2 handlebody is equivalent in planar representation to a skein in the 2-punctured

disk. After sorting values in this manner, all resulting skeins, once reduced, will be

one of the basis elements of the skein module of the genus 2 handlebody. Since this

handlebody is embedded in the complement of a 2-bridge knot, the skeins produced

will be basis elements of the Kauffman Bracket Skein Module of the knot complement.

Theorem 4.6. The strand sorting method given in Algorithm 5 produces only basis

elements x, y, z, and the unknot.
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Proof. The same method is applied to both strands of the base braid independently,

so consider the elements along one strand of the base braid. The result of this strand

sorting method is that overcrossings are moved to lower indices and undercrossings

are moved to higher indices. This is accomplished by considering all elements pairwise

along the strand. If the pair is a pair of overcrossings or a pair of undercrossings,

no changes are made. If the pair is a pair of an overcrossing and an undercrossing,

if the overcrossing has a higher index than the undercrossing, a crossing is induced

between the two, switching their indices. If the overcrossing and undercrossing are

consecutive in the same component, only one crossing is necessary. Otherwise, two

crossings are induced. The crossing(s) are resolved, producing either 2 or 4 skeins

in which the same pair either no longer exists (if the skein has been reduced at that

pair) or else the indices of the pair have been switched such that the overcrossing has

a lower index than the undercrossing. Continuing in this manner, all such pairs are

switched until the following condition is satisfied: each skein in the resulting linear

combination has the property that for all entries el
j = 1, and all entries el′

j′ = −1,

the corresponding indices satisfy the relation il
j < il′

j′. Such a skein in the genus 2

handlebody is actually a skein in the 2-punctured disk, and all non-intersecting skeins

in the 2-punctured disk are either x, y, or z as shown in Figure 4.33.

We note that in practice we treat the skeins y′
pos and y′

neg, introduced in the previous

section, as basis elements. This is only for convenience in the computation, reducing

the total number of steps required, hence reducing total computation time. Since

these skeins are resolved independent of We use these variables as basis elements to

simplify computations; rather than producing two additional terms at each encounter,

which then requires the algorithm to be run separately on each term, we perform the

resolution of all y′
pos and y′

neg elements after the algorithm terminates. Thus, the

computation time is improved as the increase is only linear, rather than exponential.

This strand sorting method realizes all skeins in the genus 2 handlebody as skeins

in the 2-punctured disk, which are basis elements shown in Figure 4.33.
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x
z

y

y′
pos

y′
neg

Figure 4.33. Basis elements.

4.15 Program Combine

The output of Program Induce, resulting from the strand sorting method of The-

orem 4.6, is a linear combination of skeins which are basis elements of the Kauffman

Bracket Skein Module of the Knot Complement of the given 2-bridge knot. Given

this output, we identify the resulting skeins as one of the variables x, y, z, the unknot,

or one of the simple skeins, y′
pos or y′

neg. These two simple skeins have been identified

only for convenience and the reduction of computational complexity, and so we must

replace them by their values in terms of x, y, and z.

4.15.1 Identifying Variables

We first reduce all remaining skeins using Algorithm 2. What remains are skeins

of length 2 or 4. If the skein is of length 2, it is either x or z. If the skein is of length

4, it is either y, y′
pos or y′

neg. If the remaining skein is of length 0, it is the unknot.
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Identifying Basis Elements and Simple Skeins

For len(El) = 0:

El =unknot

For len(El) = 2:

El = [1, −1] = x

El = [−1, 1] = x

El = [2, −2] = z

El = [−2, 2] = z

For len(El) = 4:

El = [1, 2, −2, −1] = y

or any permutation of this array

El = [1, −2, 2, −1] = y′
pos or El = [1, −2, 2, −1] = y′

neg

or any permutation of this array,

whose value depends on the index of the entries

Recall the array X = [x0, x1, x2, x3, x4, x5], where x0 is the number of copies of the

skein x, x1 is the number of copies of the skein y, x2 is the number of copies of the

skein z, x3is the number of copies of the skein y′
pos, x4 is the number of copies of the

unknot, and x5 is the number of copies of the skein y′
neg.

For len(El) = 0, we increase x4 by 1 and delete El from E.

For len(El) = 2, if |el
0| = 1, we increase x0 by 1 and delete El from E. Otherwise,

|el
0| = 2, and we increase x2 by 1 and delete El from E. Note that all crossings

have been resolved, and the computation was performed in a genus 2 handlebody, so

el
j = ±1 or ±2.

For len(El) = 4, if el
0 = −el

1 and el
2 = −el

3 and
el

1

|el

1
|

=
el

2

|el

2
|
, then we increase x1 by 1.

Similarly, if el
0 = −el

3 and el
1 = −el

2 and
el

0

|el

0
|

=
el

1

|el

1
|
, then we increase x1 by 1.

Otherwise, El is one of the variables y′
pos or y′

neg. We determine which of the two

by considering the elements of El such that |el
j| = 1. Take the element satisfying

this condition with the highest index. If that element el
j = 1, we increase x3 by 1.

Otherwise, that element el
j = −1, and we increase x5 by 1.

We replace the skeins y′
pos and y′

neg with their relations (in terms of x and y) given

in the previous section. Finally, we use the relation for the unknot, replacing those
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skeins containing one or more copies of the unknot by the corresponding skeins. These

relations are as follows:

y′
pos: y’ with a positive twist = −t−2xz − t−4y

y′
neg: y’ with a negative twist = −t4y − t2xz

unknot=−t2 − t−2

Note that in each case, a skein with one copy of these skeins is replaced by two

skeins; the coefficients, powers of t, and variables are updated accordingly.

In the special case of the trefoil knot given in [5], higher powers of y can be written

in terms of lower powers of y. Instances of futher relations, such as those shown below

for the trefoil, are handled in a similar manner.

y2 = 1 + t4 + t2y − t2x2y − t4x2

y3 = t10 + t6 − 3t6x2 + t6x4 + 2y + t4y − 2t4x2y − t4x2y + t4x4y

We replace the given skein by this linear combination, updating the coefficients,

powers of t, and variables in each component of the array.

4.15.2 Cancellations

After implementing the algorithm in Step 3 (Program Induce), all skeins are written

in terms of powers of x, y, and z. In program combine, we combine like terms by

combining their coefficients, cz.
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CHAPTER 5

PYTHON PROGRAMS

In this chapter, we provide algorithms for each stage of the program. We state

the input and output of each stage, and address the implementation of the methods

described in Chapter 2. The final code, written in Python, is included in Appendix

A.

5.1 Step 1: A Program to Project Curves

Program Project isotopes a skein in the complement of a knot past crossings in the

base braid into a specified genus g handlebody embedded in the knot complement. As

the curve moves past crossings in the base braid, new overcrossings and undercrossings

are introduced, and the resulting skein may look more complicated.

5.1.1 The Projection Algorithm

The input of Algorithm 1 is a base braid B and a skein K. The required input

information is as follows:

(1) n is the number of strands in the base braid;

(2) c is the number of crossings in the base braid;

(3) B = [[b0, ..., bc−1], [v0, ..., vc−1]] is the base braid input array;

(4) skein: K = [K0, K1, ..., Kk−1], where k in the number of components in the

skein, with component K l = [Sl
0, Sl

1, ..., Sl
c] for 0 ≤ l ≤ k − 1, and section

Sl
d = [sl

d,0, sl
d,1, ..., sl

d,p−1] for 0 ≤ d ≤ c.

The output of Program Project is the skein, isotopic to the original skein, which

lies entirely within a genus g handlebody, N .
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Algorithm 1: Projecting a Skein in the Complement of the Base Knot

Input: n, c, B, k, K

Output: E

Data: Projecting a skein in the complement of the base knot to a genus g

handlebody. The skein must pass through crossings of the base braid.

Initialization

Let E = [] start as an empty array and set l = 0

while l < k do

For each component, K l = [Sl
0, Sl

1, ..., Sl
c], set d = 0. while i < c + 1 do

We consider section Sl
i = [sl

i,0, sl
i,1, ..., sl

i,p−1]. We pass section Sl
i

through crossing bi, and append the answer to section Sl
i+1 Let x = bi,

y = bi + 1, n = len(Sl
i), and t = 0

Exchange strand labels on all instances of x and y.

while t < n do

if sl
i,t = x then

sl
i,t = y

else if sl
i,t = −x then

sl
i,t = −y

else if sl
i,t = y then

sl
i,t = x

else if sl
i,t = −y then

sl
i,t = −x

t+ = 1

Let t = 0

if the sign of bi is positive, vi > 0 : then

while t < n and |sl
i,t| 6= x do

t+ = 1

z = t

while t < n and |sl
i,t| 6= y do

t− = 1

if t < n then

insert −x at index t + 1 of Sl
i

insert y at index t + 1 of Si

n+ = 2

t = z + 3

while t < n and |sl
i,t| 6= y do

t+ = 1

if t < n then

insert y at index t of Sl
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5.2 Intermediate Step: Reducing Curves

Throughout the process of resolving crossings (Step 2: Program Resolve) and in-

ducing crossings (Step 3: Program Induce) we can reduce the skein by canceling

consecutive pairs of overcrossings or undercrossings. We determine if a pair can be

cancelled by looking at the corresponding indices. If the indices are consecutive along

the strand (not necessarily consecutive integers), then the pair can be canceled. We

determine if a pair of indices is consecutive by comparing to all other indices along

the strand.

5.2.1 The Reducing Algorithm

The input of Algorithm 2 is a skein K = [E, I, Q]:

(1) the skein intersection input E = [E0, ..., Ek−1], where El = [el
0, el

1, ..., el
(pl)−1] for

each component 0 ≤ l ≤ k − 1;

(2) the skein index input I = [I0, ..., Ik−1], where I l = [il
0, il

1, ..., il
(pl)−1] for each

component 0 ≤ l ≤ k − 1;

(3) the skein orientation input Q = [Q0, ..., Qk−1], where Ql = [ql
0, ql

1, ..., ql
(pl)−1] for

each component 0 ≤ l ≤ k − 1.

The output is a reduced skein K ′ = [E ′, I ′, Q′], where dim(E ′) = dim(I ′) =

dim(Q′) ≤ dim(E) = dim(I) = dim(Q), such that E ′ has no consecutive pairs

of overcrossings or undercrossings whose indices are consecutive along a strand (that

is, there are no simplifications).
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Algorithm 2: Reducing a skein

Input: A skein K = [E, I, Q]

Output: A reduced skein K ′ = [E ′, I ′, Q′], where

dim(E ′) = dim(I ′) = dim(Q′) ≤ dim(E) = dim(I) = dim(Q)

Data: Reducing a skein by canceling pairs of overcrossings or undercrossings.

Initialization

Let l = 0

Let D = [] start out as an empty array while l < k − 1 do

Set j = 0

while j < pl do

if |el
j | = 1 then

append il
j to D

j+ = 1

Set l = 0 while l < k − 1 do

Let j = −1 while j < pl − 1 do

if |el
j | and el

j = el
j+1 then

Set r = 0 (if indices are consecutive, this variable will remain at 0)

Let il
min = min(il

j , il
j+1) Let il

max = max(il
j , il

j+1) Let

il
mid = il

min + 1 while il
mid < il

max do

Let d = 0 while d < len(D) do

if Dd = il
j then

Set r = 1
d+ = 1

il
mid+ = 1

if r = 0 then

delete el
j+1, il

j+1, and ql
j+1

delete el
j , il

j , and ql
j

j− = 1 Set d = 0 while d < len(D) do

if Dd = il
min or Dd = il

max then
delete Dd

else
d+ = 1

else
j+=1

else
j+=1

l+ = 1
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5.3 Step 2: Program to Resolve Crossings

Program Resolve resolves crossings in a skein as a planar diagram in a genus 2

handlebody. The algorithm below resolves existing crossings by considering 2 cases:

either the crossings are in the same component or the crossings are in different

components. The algorithm is initially implemented on a single diagram, Algo-

rithm 3, producing two diagrams. The resulting skeins are recorded in an array,

Z = [[±1, E1, 1000, U1, I1, Q1], [∓1, E2, 1000, U2, I2, Q2]], each with a coefficient in t

and information retained about the crossings left to be resolved (U1 and U2 may

have different signs for the next crossing to be resolved). Indeed, as each crossing is

resolved, this information is updated according to which part of the skein reversed

directions as this affects the signs of some of the remaining crossings. After the first

crossing is resolved, producing the array Z, we perform the same computation on

each component of Z, Algorithm 4. We consider the next crossing, resolve that cross-

ing in each component of Z, and replace that component with two new components,

increasing the dimension of Z. The final array Z has dimension 2r, where r is the

number of crossings to be resolved.

5.3.1 The Resolving Algorithm

The input of Algorithm 3 is a skein K, with r self-intersections. The input variables

are as follows:

(1) the skein intersection input E = [E0, ..., Ek−1], where El = [el
0, el

1, ..., el
(pl)−1] for

each component 0 ≤ l ≤ k − 1;

(2) the skein index input I = [I0, ..., Ik−1], where I l = [il
0, il

1, ..., il
(pl)−1] for each

component 0 ≤ l ≤ k − 1;

(3) the skein orientation input Q = [Q0, ..., Qk−1], where Ql = [ql
0, ql

1, ..., ql
(pl)−1] for

each component 0 ≤ l ≤ k − 1;

(4) S = [1 × 10−kr , 2 × 10−kr , ..., r × 10−kr ], the array containing the labels on the

crossings to be resolved;

(5) U = [±1, ±1, ..., ±1], the array containing the signs of the crossings, with

dim(U) = r.
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The output of Program Resolve is 2r skeins with coefficients in Z[t, t−1]. The skeins

produced by resolution of all existing crossings are skeins in a genus 2 handlebody

with no self-intersections when viewed as a planar diagram of the same form as

the input diagram. The resulting linear combination of skeins in the variable t is

not necessarily a linear combination of basis elements of the skein module, as not

every non-intersecting skein in the genus 2 handlebody is a basis element of the skein

module. We recover the linear combination of skeins from the output of Algorithm 4

as in Proposition 4.4.
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Algorithm 3: Resolving One Crossing Using Skein Relations

Input: E, I, Q, S, U

Output: Z, an array containing two components,

Z = [[±1, E1, 1000, U1, I1, Q1], [∓1, E2, 1000, U2, I2, Q2]]

Data: Resolving crossing S[s] in a skein in a genus 2 handlebody into two

skeins using the Kauffman bracket skein relations.

Initialization

Let a = [] start as an empty array

Set l = 0

First, we locate the crossing to be resolved, S[s] with sign U [s]

while l < k do

Let j = 0

while j < pl do

if |el
j | = S[s] then

append l to a

append j to a

j+ = 1

else
j+ = 1

l+ = 1
Case 1: The overcrossing and undercrossing are in the same component of the

curve (l′ = l′′) if a[0] = a[2] then

Let C = E, IC = I, and QC = Q

Let A = [], IA = [], and QA = [] start as empty arrays

Let j′ = a[1] and j′′ = a[3]

while j′ < j′′ − 1 do

append C l
j′+1 to A

append IC l
j′+1 to IA

append QC l
j′+1 to QA

remove C l
j′+1 from C

remove IC l
j′+1 from IC

remove QC l
j′+1 from QC

j′′− = 1

delete C l
j′+1

delete C l
j′

delete IC l
j′+1

delete IC l
j′

delete QC l
′+1
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The output of Algorithm 3, the array Z = [[±1, E1, 1000, U1, I1, Q1], [∓1, E2, 1000, U2, I2, Q2]],

is used as the input of Algorithm 3.
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Algorithm 4: Resolving All Crossings Using Skein Relations

Input: A curve, Z, with n crossings

Output: A curve, Z, with all crossings resolved

Data: Resolving exisiting crossings in a multicurve in a genus 2 handlebody

in the complement of the base knot using the Kauffman Bracket Skein

Relations.

Initialization

For all s in S, we resolve the crossing S[s] in each component Z[z] as follows:

Fix S[s] and let z = 0

while z < len(Z) do

Let E = Z1
z

Let I = Z4
z

Let Q = Z5
z

Let U = Z3
z

Implement ?? for skein K = [E, I, Q] in Z[z] Z[z] is resolved into two

components inserted at Z[z + 1] and Z[z + 2] Set Z0
z+1 = Z0

z+1 + Z0
z

Set Z0
z+2 = Z0

z+2 + Z0
z

Set Z2
z+1 = (Z2

z+1 ∗ Z2
z )/1000

Set Z2
z+2 = (Z2

z+2 ∗ Z2
z )/1000

delete Zz

z+ = 1

5.4 Step 3: Program to Induce Crossings

The output of Algorithm 4 is a linear combination of skeins in the genus 2 handle-

body with coefficients in t. Such skeins may be complicated, and are not guaranteed

to be basis elements of the skein module of the knot complement of the original dia-

gram. To produce basis elements, we introduce crossings as described in Chapter 4.

Locating such crossings, we form an array S1 on strand 1 and S2 on strand 2, Algo-

rithm 5. Ordering these arrays as described in Chapter 4 introduces new crossings. In

one case, a single crossing is induced, and this crossing is resolved by Algorithm 3. In

all other cases, two crossings are induced, and Algorithm 4 is implemented. The result

of Algorithm 5 is an array Z where each component is skein that is a basis element
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of the skein module described in Chapter 3, with additional information pertaining

to its coefficient.

5.4.1 The Induce Crossings Algorithm

The input of Algorithm 5 is an array

Z = [[s0, E0, c0, u0, I0, Q0], [s1, E1, c1, u1, I1, Q1],

..., [s2r−1, E2r−1, c2r−1, u2r−1, I2r−1, Q2r−1]]

where r is the number of crossings resolved in the previous stage (Step 2: Program

Resolve). As in the input to Algorithm 3, each Ez, Iz, and Qz are of the form:

(1) s0 ∈ Z is the power of the variable t;

(2) the skein intersection input Ez = [E0
z , ..., Ek−1

z ], where El = [el
0, el

1, ..., el
(pl)−1]

for each component 0 ≤ l ≤ k − 1;

(3) cz = ±c × 103, where c ∈ N, which is the coefficient in front of the power of t;

(4) Uz = ∅, as all crossings were resolved at the previous stage;

(5) The skein index input Iz = [I0
z , ..., Ik−1

z ], where I l = [il
0, il

1, ..., il
(pl)−1] for each

component 0 ≤ l ≤ k − 1;

(6) The skein orientation input Qz = [Q0
z, ..., Qk−1

z ], where Ql = [ql
0, ql

1, ..., ql
(pl)−1]

for each component 0 ≤ l ≤ k − 1.

To each component, we append the array Xz = [0, 0, 0, 0, 0, 0], to store skeins which

have already been reduced to basis elements. The form of this array is as follows:

(1) X0: the number of parallel, independent copies of the skein x;

(2) X1: the number of parallel, independent copies of the skein y;

(3) X2: the number of parallel, independent copies of the skein z;

(4) X3: the number of parallel, independent copies of the skein y′
pos;
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(5) X4: the number of copies of the skein unknot;

(6) X5: the number of parallel, independent copies of the skein y′
neg.

The output of Algorithm 5 is an array Z such that in each component z, the skein

Ez is made up of only basis elements.
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Algorithm 5: Inducing Crossings to Resolve a Curve into Basis Elements

Input: Linear combination of skeins, Z = [[], [], ..., []], with coefficients in

powers of t

Output: Linear combination of skeins x, y, z, y′
pos, y′

neg, and the unknot, with

coefficients in powers of t

Data: Inducing crossings in a skein in a genus 2 handlebody to realize the

skein as a linaer combination of basis elements of the skein module.

Initialization

Let z = 0

while z < len(Z) do

Consider component Zz = [sz, Ez, cz, uz, Iz, Qz]

Implement algorithm 2 with input skein K = [Ez, Iz, Qz]

Let S = [] start out as an empty array

Let l = 0

while l < k do

Consider El
z = El j = 0

while l < k and j < pl do

if |el
j| = 1 then

Append the array [el
j , il

j, l, j] to S

j+=1

l+=1

Let P = [], N = [], and B = [] start out as empty arrays

Let s = 1

while s < len(S) do

Append Ss
1 to B

if Ss
1 = 1 then
Append Ss

1 to P

else
Append Ss

1 to N

s+ = 1

if len(P ) > 0 then
Let pmin = min(P ) and pmax = max(P )

if len(N) > 0 then
Let nmin = min(N) and nmax = max(N)

if len(B) > 0 then
Let bmin = min(B) and bmax = max(B)

while len(P ) > 0 do

Let r = 0

while len(P ) > 0 and bmin = pmin and do

if len(B) > 0 then
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5.5 Post-Processing: Program Combine

The output of Algorithm?? is an array Z such that in each component z, the skein

Ez is identifiable as one or several copies of the elements of Xz. It may be that the

components of the skein must be reduced first (using Algorithm 2) before they can

be identified. It is worth noting that this identification can be performed at each

stage to reduce computational complexity. We state is here, as well as outline how

to combine like terms in the final result. In most computations, shown in Chapter 6,

the result has a drastic number of cancellations, leading to a final polynomial with

few terms.
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CHAPTER 6

APPLICATIONS

As proof of concept, we use the methods presented in this dissertation and the

resulting program to recover some previous results of R. Gelca, J. Sain, and H. Wang.

6.1 Example 1: Computing powers of y

In [5], Gelca produced a relation for y2 in terms of y in the complement of the

trefoil knot by setting the top diagram equal to the botton in Figure 6.1.

y2 = t4 − t4x2 + t2y − t2x2y + 1

The last term in the bottom relation, however, was resolved with some difficulty,

as it becomes necessary to isotope the curve first, introduce a crossing in a specific

location, and resolve that crossing.

= (−t3) = (−t3)(−t2 − t−2)

= t1 +t−1

Figure 6.1. Resolving these curves produces the value of y2

Similarly, Gelca found a relation for y3 in terms of y by resolving the curve shown

in Figure 6.2 with n = 1, and substituting the relation for y2.

y3 = t10 + t6 − 3t6x2 + t6x4 + 2y + t4y − 2t4x2y − t4x2y + t4x4y

These were the only relations necessary for the trefoil, as the highest power we

encounter in any computation y3. However, extending to a broader family of knots,
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it becomes necessary to compute higher powers of y. We can reproduce the results

of these computations, both for y2 and y3 as well as arbitrary higher powers of y by

the skein shown in Figure 6.2. We use Program Project to project the skein to the

left of the diagram and we isotope the curve along the top of the diagram to the

right side. Setting the two results equal to each other produces the desired relation.

In the case of y2, we use the diagram in Figure 6.2 with n = 0. Since the skein

has no self-intersections, Step 2 (Program Resolve) is not necessary, and so we apply

Algorithm 5 in Step 3 (Program Induce) to the skein on each side.

yn

Figure 6.2. Resolving these curves produces the value of yn
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yn

yn

LEFT SIDE RIGHT SIDE

Figure 6.3. Curves pushed to the left and right side of the diagram

The input arrays are as follows.

The input for the left diagram is:

E = [[−1.0, −2.0, 2.0, 1.0, −1.0, −2.0, 2.0, −1.0, 1.0, 2.0, −2.0, −1.0, 1.0, 2.0, −2.0, 2.0, −2.0, −1.0]]

I = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 15, 14, 17]]

Q = [[3, 4, 5, 4, 3, 4, 5, 4, 3, 4, 5, 4, 3, 4, 5, 4, 5, 4]]

and so the array Z is of the form:

Z = [[0, E, 1000, [1], I, Q]]

The input for the right diagram is:

E = [[2, −2, 2, −2]]

I = [[0, 3, 2, 1]]

Q = [[4, 5, 4, 5]]

and so the array Z is of the form:

Z = [[0, E, 1000, [1], I, Q]]

Additionally, we quickly compute relations for y4 and y5 in terms of y using input

given by Figure 6.2. The input for the relation for y4 (Figure 6.2 with n = 2) is:

The input for the left diagram is:

E = [[−1, −2, 2, 1, −1, −2, 2, −1, 1, 2, −2, −1, 1, 2, −2, 2, −2, −1], [1, 2, −2, −1]]

I = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 15, 14, 17], [18, 19, 20, 21]]

Q = [[3, 4, 5, 4, 3, 4, 5, 4, 3, 4, 5, 4, 3, 4, 5, 4, 5, 4], [3, 4, 5, 4]]
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and so the array Z is of the form:

Z = [[0, E, 1000, [1], I, Q]]

The input for the right diagram is:

E = [[2, −2, 2, −2], [1, 2, −2, −1]]

I = [[1, 8, 7, 2], [5, 3, 4, 6]]

Q = [[4, 5, 4, 5], [3, 4, 5, 4]]

and so the array Z is of the form:

Z = [[0, E, 1000, [1], I, Q]]

which produces:

y4 = t14 − t8x6 + 5t8x4 − 6t8x2 + t8 − t6x6y + 5t6x4y − 6t6x2y + t6y − 3t4x2 + 3t4 −

3t2x2y + 3t2y + 2

The input for the left diagram is:

E = [[−1, −2, 2, 1, −1, −2, 2, −1, 1, 2, −2, −1, 1, 2, −2, 2, −2, −1], [1, 2, −2, −1], [1, 2, −2, −1]]

I = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 15, 14, 17], [18, 19, 20, 21], [22, 23, 24, 25]]

Q = [[3, 4, 5, 4, 3, 4, 5, 4, 3, 4, 5, 4, 3, 4, 5, 4, 5, 4], [3, 4, 5, 4], [3, 4, 5, 4]]

and so the array Z is of the form:

Z = [[0, E, 1000, [1], I, Q]]

The input for the right diagram is:

E = [[2, −2, 2, −2], [1, 2, −2, −1], [1, 2, −2, −1]]

I = [[1, 12, 11, 2], [5, 3, 4, 6], [9, 7, 8, 10]]

Q = [[4, 5, 4, 5], [3, 4, 5, 4], [3, 4, 5, 4]]

and so the array Z is of the form:

Z = [[0, E, 1000, [1], I, Q]]

which produces:

y5 = −t22x2 + t22 − t20x2y + t20y + t10x8 −7t10x6 + 15t10x4 −10t10x2 + 5t10 + t8x8y −

2t8x6y + 15t8x4y + 10t8x2y + t8y + 4t6x4 + 12t6x2 + 4t6 + 4t4x4y − 12t4x2y + 4t4y + 5y

We can use this information to investigate how higher powers of y can be written

in terms of lower powers of y in the skein module of the complement of the trefoil

knot. Studying the next several terms in this sequence may lead to a very educated

guess at the formula for yn.
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6.2 Example 2: The (1,0)-curve

In Theorem 1 of [5], Gelca computed the action of the skein algebra of the cylinder

over the boundary of the trefoil knot on the skein module of the knot complement by

determining the action on the family of (p, q)-curves. In order to perform induction

on the values p and q, it was necessary to first compute this action on the (1, 0)-

curve (Lemma 3 of [5]). We reproduce this result using the methods presented in this

dissertation.

The action on the (1, 0)-curve is determined by considering a skein which goes one

time around the longitude of the knot and zero times around the meridian. Note

that we must introduce three twists to cancel the effect of the curve passing the

three crossings in the knot so that the skein has a twisting number 0 with respect

to the base knot. We push this skein from the boundary of the knot in to the knot

complement; resolving this skein in the knot complement gives the action of the skein

algebra of the boundary on the skein module of the knot complement. We identify a

handlebody in which the knot appears as a braid, shown in Figure 6.4.

Figure 6.4. The skein is pushed from the boundary into the knot complement

Figure 6.5 shows the input for Progrom Project. We format the curve so that each

component flows from the bottom of the diagram to the top of the diagram, passing

once through each section of the diagram, and consider the skein in each section of

the base braid.
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A B

BA

0.01

0.03

0.020.02

0.03

0.01

0.03

0.01 0.02

Figure 6.5. Implement Program Project

The input information for the base braid and the skein in each section of the base

braid is as follows:

The base braid has 2 strands, so n = 2. The crossings are between strands 1 and

2, so we record a "1" for each of the two crossings. Strand 1 crosses over strand 2 in

both cases, so we record a "1" for the sign of each crossing. Thus, B = [[1, 1], [1, 1]].

Next, we record the skein section array. The two crossings section the base braid

into three sections. For the three crossings in the diagram, we let the crossing with

lowest index (0.02) be a part of the bottom section, the crossing 0.03 be part of the

middle section, and the crossing 0.01 be part of the top section. For each of the two

components shown in Figure 6.5, we form an array: KA = [[−0.02], [−1, 2, −2, 1, 0.03], [−0.01]]

and KB = [[−1, 2, −2, 1, 0.02], [−0.03], [−1, 2, −2, 1, 0.01]]. The array K = [KA, KB]

in the input for Algorithm 1. The result of this algorithm, after applying the con-

necting information, is the skein E shown in Figure 6.6 and given by the array:

E = [[−1, −2, 2, 1, −1, 2, −2, 2, −2, −1, 0.02, −0.03, −1, 2, −2, 1, 0.01, −0.02, −1, −2, 2, −1, 1, −1, 0

We assign index values and orientation values (according to the conventions de-

scribed in Chapter 4):

I = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 92, 93, 16, 17, 18, 19, 91, 92, 10, 11, 12, 13, 14, 15, 93, 91]]

Q = [[3, 4, 5, 4, 3, 4, 5, 4, 5, 4, 92, 93, 3, 4, 5, 4, 91, 92, 3, 4, 5, 4, 3, 4, 93, 91]]
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Figure 6.6. Implement Programs Resolve and Induce

We apply Algorithm 3 and Algorithm 4 to the skein K = [E, I, Q] with input array

U = [−1, −1, −1] to store the signs of crossings 0.01, 0.02, 0.03. The resolution of

these three crossings produces 23 = 8 terms. The output of Program Resolve is an

array:

Z = [[3, [[−1, −2, 2, 1, −1, 2, −2, 2, −2, −1], [−1, 1, −1, 2, −2, −1], [−1, 2, −2, 1]], 1000, [−1, 1, 1], [[0

corresponding to the following 8 terms:

term 1 : 1ṫ(3)[̇[−1, −2, 2, 1, −1, 2, −2, 2, −2, −1], [−1, 1, −1, 2, −2, −1], [−1, 2, −2, 1]]

with index array [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [15, 14, 13, 12, 11, 10], [16, 17, 18, 19]]

and orientation array [[3, 4, 5, 4, 3, 4, 5, 4, 5, 4], [3, 4, 3, 4, 5, 4], [3, 4, 5, 4]]

term 2 : 1∗t(1)∗[[−1, −2, 2, 1, −1, 2, −2, 2, −2, −1], [1, −2, 2, −1, −1, 1, −1, 2, −2, −1]]

with index array [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [19, 18, 17, 16, 15, 14, 13, 12, 11, 10]]

and orientation array [[3, 4, 5, 4, 3, 4, 5, 4, 5, 4], [3, 4, 5, 4, 3, 4, 3, 4, 5, 4]]

term 3 : 1∗t(1)∗[[−1, −2, 2, 1, −1, 2, −2, 2, −2, −1, −1, −2, 2, −1, 1, −1], [1, −2, 2, −1]]

with index array [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [19, 18, 17, 16]]

and orientation array [[3, 4, 5, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 4, 3, 4], [3, 4, 5, 4]]

term 4 : 1∗t(−1)∗[[−1, −2, 2, 1, −1, 2, −2, 2, −2, −1, −1, −2, 2, −1, 1, −1, −1, 2, −2, 1]]

with index array [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]]

and orientation array [[3, 4, 5, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 4, 3, 4, 3, 4, 5, 4]]

term 5 : 1∗t(1)∗[[−1, −2, 2, 1, −1, 2, −2, 2, −2, −1, −1, 2, −2, 1], [−1, 1, −1, 2, −2, −1]]

with index array [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17, 18, 19], [15, 14, 13, 12, 11, 10]]

and orientation array [[3, 4, 5, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 4], [3, 4, 3, 4, 5, 4]]

term 6 : 1∗t(−1)∗[[−1, −2, 2, 1, −1, 2, −2, 2, −2, −1, −1, −2, 2, −1, 1, −1, −1, 2, −2, 1]]
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with index array [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]]

and orientation array [[3, 4, 5, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 4, 3, 4, 3, 4, 5, 4]]

term 7 : 1∗t(−1)∗[[−1, −2, 2, 1, −1, 2, −2, 2, −2, −1, −1, −2, 2, −1, 1, −1, −1, 2, −2, 1]]

with index array [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]]

and orientation array [[3, 4, 5, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 4, 3, 4, 3, 4, 5, 4]]

term 8 : 1∗t(−3)∗[[−1, −2, 2, 1, −1, 2, −2, 2, −2, −1, −1, −2, 2, −1, 1, −1, −1, 2, −2, 1], []]

with index array [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], []]

and orientation array [[3, 4, 5, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 4, 3, 4, 3, 4, 5, 4], []]

We use this array as the input for Algorithm 5. The application of this algorithm,

realizing each of the 8 skeins as a linear of basis elements of the skein module of

the complement, produces 1257 terms. After cancellations, we are left with an array

corresponding to the following 9 terms:

Z = [[−3, [], −1000, [1], [], [], [6, 0, 0, 0, 0, 0]], [−3, [], 5000, [1], [], [], [4, 0, 0, 0, 0, 0]], [−5, [], −1000, [1], []

term 1 : −1 ∗ t( − 3) ∗ x6 ∗ y0

term 2 : 5 ∗ t( − 3) ∗ x4 ∗ y0

term 3 : −1 ∗ t( − 5) ∗ x4 ∗ y1

term 4 : 3 ∗ t( − 5) ∗ x2 ∗ y1

term 5 : −6 ∗ t( − 3) ∗ x2 ∗ y0

term 6 : 1 ∗ t( − 9) ∗ x0 ∗ y1

term 7 : −1 ∗ t( − 5) ∗ x0 ∗ y1

term 8 : 1 ∗ t( − 3) ∗ x0 ∗ y0

term 9 : 1 ∗ t( − 7) ∗ x0 ∗ y0

This is the polynomial:

−t−3x6 + 5t−3x4 − t−5x4y + 3t−5x2y − 6t−3x2 + t−9y − t−5y + t−3 + t−7

Multiplying by the framing factor −t9 (as in [5]), and grouping terms, we obtain:

t6[x6 − 5x4 + 6x2 − 1] + t4[x4 − 3x2 + 1] − t2 − y

which matches the result of Lemma 3 in [5].
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CHAPTER 7

FUTURE DIRECTION

Step 1 of the Program (Project) is written in full generality, projecting curves in

a handlebody of genus g for any value g. Step 2 (Resolve) and Step 3 (Induce) are

written explicitly for computations in the genus 2 handlebody, and can be applied to a

large family of knots (as many other families of knots include computations performed

in a genus 2 handlebody). In fact, for computations in the complement of any knot,

many times the curves of interest can be projected into a genus 2 handlebody. Step 2

and Step 3 of this program can be modified to perform computations all handlebodies

of genus g, but the algorithms need to be updated to include multiple strands. The

same algorithm is applied separately to each strand. Hence we could expand these

computations to other families of knots.

The skein theory for (2,2p+1)-torus knots, as well as 2-bridge knots in general,

is well understood, and so examples produced in these settings are useful and en-

lightening. A better understanding of the skein theory for skein computations in the

complement of arbitrary knots is required before such methods could be applied in

a more general setting. Step 2 and Step 3 of the program given in this dissertation

apply to a genus 2 handlebody. While the given methods could certainly be applied to

a genus g handlebody (inducing crossings along each strand is the manner specified),

the resulting skeins would not necessarily be basis elements for a genus g handlebody

when g > 2.

7.1 Alternate Skein Relations

On a brighter note, the algorithms given here can be easily modified to accom-

modate a different set of skein relations. Performing computations for the Jones

Polynomial (rather than the Kauffman Bracket) is only a matter of changing a few

signs in Algorithms 3, 4, and 5. Note that the signs of the crossings are retained and

modified in the array uz of each term. Given the Jones polynomial skein relations,

which depend on the sign of the crossing, we can apply the same algorithm with few

changes. Further, the algorithm actually compute skeins in a genus 2 handlebody,

which is a submanifold of the knot complement. In this context, the variables x and
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z are identified. These variables are kept separate throughout the process in the

event that computations are performed in a genus 2 handlebody which globally does

not identify x and z. Maintaining the generality of this procedure in every possible

instance will promote usage of these methods in a more general context.

7.2 Conclusion

In this dissertation, we have outlined a method for the automation of skein com-

putations that is accurate, effective, and efficient. We recovered results previously

obtained over months of work in a fraction of the time, reducing computation time

to the few minutes required to prepare the skein for input. The methods outlined in

this paper can be modified to accommodate a broader family of curves, but only once

more information about the skein theory of larger families of knots is well known. In

the meantime, the family of 2-bridge knots, for which the algorithms in this disserta-

tion apply, will provide an extensive library of examples. Such examples will promote

the testing of conjectures and the discovery of new relations sufficient to occupy the

next several years of work.
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