
Distribution A. Approved for public release; distribution unlimited. 

 
 

AFRL-RH-WP-TR-2021-0076 
 
 
 
 
 
 
 

AUTOMATION BIASES IN HUMAN-ROBOT TRUST 
INTERACTIONS 

Dr. Gene Alarcon 
711th HPW/RHWC 

Wright-Patterson AFB, OH 45433 

April 2021 

FINAL REPORT 
 
 
 

 
 

AIR FORCE RESEARCH LABORATORY 
711th HUMAN PERFORMANCE WING 
AIRMAN SYSTEMS DIRECTORATE 

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433 
AIR FORCE MATERIEL COMMAND 

UNITED STATES AIR FORCE 



NOTICE AND SIGNATURE PAGE 
Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U.S. 
Government. The fact that the Government formulated or supplied the drawings, specifications, 
or other data does not license the holder or any other person or corporation; or convey any 
rights or permission to manufacture, use, or sell any patented invention that may relate to them. 
This report was cleared for public release by the AFRL Public Affairs Office and is available to 
the general public, including foreign nationals. Copies may be obtained from the Defense 
Technical Information Center (DTIC) (http://www.dtic.mil). 
AFRL-RH-WP-TR-2021-0076 HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 

 
ALARCON.GENE.M Digitally signed by 

ICHAEL.113982052 ALARCON.GENE.MICHAEL.113 

 
WEBB.TIMOTHY Digitally signed by 

WEBB.TIMOTHY.S.1085032239 

1 Date: 2022.01.26 11:34:28 -05'00' .S.1085032239 Date: 2022.01.28 10:57:56 -05'00' 

GENE ALACRON, DR-III, Ph.D. TIMOTHY S. WEBB, DR-IV, Ph.D. 
Program Manager Chief, Collaborative Interfaces & 
Collaborative Interfaces & Teaming Branch Teaming Branch 
Airman Systems Directorate Airman Systems Directorate 
711th Human Performance Wing 711th Human Performance Wing 

 
 

LOUISE A. CARTER, DR-IV, Ph.D. 
Chief, Warfighter Interactions and Readiness Division 
Airman Systems Directorate 
711th Human Performance Wing 
Air Force Research Laboratory 

 
 

This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 

982052
 

http://www.dtic.mil/


REPORT DOCUMENTATION PAGE 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 

1. REPORT DATE 
April 2021 

2. REPORT TYPE 
Final 

3. DATES COVERED 

START DATE 
7 June 2018 

END DATE 
7 April 2021 

3. TITLE AND SUBTITLE 
Automation Biases in Human-Robot Trust Interactions 

5a. CONTRACT NUMBER 
In House 

5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 
H0WG 

6. AUTHOR(S) 
Dr. Gene Alacron 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Air Force Material Command 
Air Force Research Laboratory 
711th Human Performance Wing 
Airman Systems Directorate 
Warfighter Interactions and Readiness Division 
Wright-Patterson AFB, OH 45433 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Air Force Material Command 
Air Force Research Laboratory 
711th Human Performance Wing 
Airman Systems Directorate 
Warfighter Interactions and Readiness Division 
Wright-Patterson AFB, OH 45433 

10. SPONSOR/MONITOR'S 
ACRONYM(S) 

11. SPONSOR/MONITOR'SREPORT 
NUMBER(S) 

 
AFRL-RH-WP-TR-2021-0076 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Distribution A. Approved for public release; distribution unlimited. 

13. SUPPLEMENTARY NOTES 
AFRL-2021-3692; Cleared 22-Oct-2021 
14. ABSTRACT 
This final report summarizes the examination of possible human biases in trust between human-human and human-robot teaming. The studies 
found humans do hold biases against robot partners. Specifically, robot partners were suffered greater trustworthiness declinations after a trust 
violation than did human partners but only when lower trustworthiness could be ascribed to specific aspects. That is, there were differences 
between the types of manipulation, such that performance/ability violations were much stronger than benevolence or integrity violations. 
Additionally, the perfect automation schema (PAS) construct significantly predicted slope variance in benevolence perceptions following a 
trust violation. 
15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

SAR 

18. NUMBER OF PAGES 
 
37 

a. REPORT 

U 
b. ABSTRACT 

U 
C. THIS PAGE 

U 
19a. NAME OF RESPONSIBLE PERSON 

Dr. Gene Alacron 
19b. PHONE NUMBER (Include area code) 



 

TABLE OF CONTENTS 
LIST OF FIGURES ........................................................................................................................ ii 
SUMMARY ................................................................................................................................... iii 
1.0 THEORETICAL BACKGROUND OF BIASES BETWEEN HUMAN-HUMAN AND 
HUMAN -ROBOT TEAMING ...................................................................................................... 1 

1.1 Models of Human-Machine Interactions ...................................................................... 1 

1.2 Trust in Machines vs Trust in Humans ......................................................................... 2 

1.3 HRI ................................................................................................................................ 3 

1.3.1 Anthropomorphism ............................................................................................ 3 

1.3.2 Anthropomorphism and Trust ............................................................................ 4 

2.0 METHOD ............................................................................................................................. 6 

2.1 Task ............................................................................................................................... 6 

2.2 Manipulations ............................................................................................................... 7 

2.2.1 Ability ................................................................................................................. 7 

2.2.2 Integrity .............................................................................................................. 7 

2.2.3 Benevolence ....................................................................................................... 8 

3.0 HYPOTHESES .................................................................................................................... 9 
4.0 ACCOMPLISHMENTS ..................................................................................................... 12 
5.0 DISSEMINATION OF RESULTS .................................................................................... 21 
6.0 SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS (STEM)- 
RELATED ACTIVITIES ............................................................................................................. 22 
7.0 IMPACTS ........................................................................................................................... 23 
8.0 CHANGES TO PROTOCOL ............................................................................................. 25 
9.0 REFERENCES ................................................................................................................... 26 
10.0 LIST OF ACRONYMS, ABBREVIATIONS AND SYMBOLS ...................................... 31 

 
 
 
 
 
 
 
 
 
 
 

i 



LIST OF FIGURES 

Figure 1. Ability Perceptions in Each Manipulated Condition Compared to the Control 
Condition....................................................................................................................................... 13 
Figure 2. Benevolence Perceptions in Each Manipulated Condition Compared to the Control 
Condition....................................................................................................................................... 14 
Figure 3. Integrity Perceptions in Each Manipulated Condition Compared to the Control 
Condition....................................................................................................................................... 15 
Figure 4. Risk-taking Behaviors in Each Manipulated Condition Compared to the Control 
Condition....................................................................................................................................... 16 
Figure 5. Overall Trustworthiness Perceptions in Each Manipulated Condition. ........................ 17 
Figure 6. Three-way Interaction of Partner*Time*Manipulation for Latent Growth Model of 
Overall Trustworthiness Perceptions (Ability vs Integrity Conditions) ....................................... 18 
Figure 7. Three-way Interaction of Partner*Time*Manipulation for Latent Growth Model of 
Overall Trustworthiness Perceptions (Ability vs Benevolence Conditions) ................................ 19 
Figure 8. Three-way Interaction of Time*Manipulation*All-or-Nothing Thinking for Latent 
Growth Model of Overall Trustworthiness Perceptions ............................................................... 20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ii 



iii  

SUMMARY 
This final report summarizes the examination of possible human biases in trust between human- 
human and human-robot teaming. The studies found humans do hold biases against robot 
partners. Specifically, robot partners were suffered greater trustworthiness declinations after a 
trust violation than did human partners but only when lower trustworthiness could be ascribed to 
specific aspects. That is, there were differences between the types of manipulation, such that 
performance/ability violations were much stronger than benevolence or integrity violations. 
Additionally, the perfect automation schema (PAS) construct significantly predicted slope 
variance in benevolence perceptions following a trust violation. 
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1.0 THEORETICAL BACKGROUND OF BIASES BETWEEN HUMAN-HUMAN 
AND HUMAN-ROBOT TEAMING 
Robots are becoming more prevalent in many life contexts ranging from manufacturing (Davies 
et al., 2000), surgery (Schäfer et al., 2019), education (Belpaeme et al., 2018), and therapy 
(Chang & Kim, 2013). Robots have increasingly been used in a variety of social interactions 
(Young et al., 2009), departing from the more traditional view of robots as machines. For 
example, robots are being used for companionship in nursing homes (Bemelmans et al., 2012) 
and in autism therapy (Pennisi et al., 2016). There are burgeoning theories on human-machine 
teaming, which explore the machine agent as a teammate rather than a tool (Wynne & Lyons, 
2018). However, the benefits of robot assistance are realized only when robots are accepted by 
the population. Trust undoubtedly plays a role in Human-Robot Interaction (HRI), and the last 
two  decades have seen extensive research on trust in HRI (see Hancock et al., 2011, 2020). 
However, experiments investigating the role of anthropomorphism on trust are not numerous (see 
Hancock et al., 2020). Although much research has examined how humans interact with 
automation, machines, and decision support systems (DSS), more research is needed to 
determine whether findings from trust in automation research generalize to research investigating 
trust toward anthropomorphized robot partners in more social contexts (rather than those contexts 
where the robot is simply used as a tool). Furthermore, the majority of the trust in automation, 
machines, and DSS research has focused on performance manipulations, largely ignoring other 
theoretically   relevant aspects of trustworthiness posited by researchers (Lee & See, 2004). 

1.1 Models of Human-Machine Interactions 
Two dominant paradigms have attempted to understand how humans interact with machines and 
how this interaction may or may not differ from human-human interactions. First, the computers 
as social actors ([CASA]; Nass & Moon, 2000) paradigm (also referred to as media-equation; 
Nass & Moon, 2000) hypothesizes humans attribute human-like characteristics (e.g., personality, 
gender) to machines such as computers (Nass et al., 1994) and automated website purchase 
assistants (Nass & Lee, 2001) in much the same way as they do toward other humans. The 
CASA paradigm proposes people treat computers as social actors. In this paradigm, the 
constructs that govern human-human interactions (e.g., similarity-attraction; Nass & Lee, 2001) 
are the same constructs that govern human-machine interactions. In their review of more than a 
decade of research, Nass and Moon (2000) noted that participants “mindlessly” apply social 
expectations and rules to computers. 
Across CASA studies, participants reacted to gender and ethnic stereotypes, politeness, and 
reciprocity in non-anthropomorphic computers, even though in post-experimental surveys the 
participants note computers do not have any feelings or a sense of self (Nass et al., 1994; Nass & 
Moon, 2000). The researchers attribute these findings to participants relying on “scripts drawn in 
the past” (p. 83). These scripts for social interactions drive the relationships of both human- 
human and human-machine interactions. Although the CASA paradigm was developed based on 
how humans socially respond to computers, research has shown that the model can also be 
applied to other types of machines such as robots. Lee et al. (2006) demonstrated that 
participants applied personality-based social rules (e.g., complementary attraction) to a robotic 
dog, providing evidence that the CASA paradigm can be expanded to HRI. Despite the vast 
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amount of research supporting their theory, other research and models postulate differences 
between human-human and human-machine interactions. 
In contrast to the CASA model (Nass & Moon, 2000), a growing breadth of research has 
demonstrated significant differences between how one interacts with a machine and with a 
human (e.g., de Visser et al., 2016; Madhavan & Wiegmann, 2007; Smith et al., 2017), and this 
has been referred to as the unique-agent hypothesis (de Visser et al., 2016). The unique-agent 
hypothesis posits that people view machines differently than humans based on the characteristics 
of the machine. As such, each referent (i.e., human or machine, respectively; Hoff & Bashir, 
2015) and situation is unique, and may or may not evoke similar mental models used during 
human-human interactions. Madhavan and Wiegmann (2007) emphasized that humans are 
biased to perceive DSS to perform at near perfect levels (i.e., automation bias), which may 
significantly reduce trust in the system following a perceived DSS error (see Dzindolet et al., 
2002). Their model integrated theoretical differences in trust judgements, monitoring behaviors, 
and schemas of automation (Dzindolet et al., 2001, 2002, 2003). The model hypothesizes that 
when humans are partnered with a DSS, users will be more critical of its failures compared to 
failures from human partners (see Dzindolet et al., 2002). These differences have been discussed 
in relation to several constructs such as trust (e.g., de Visser et al., 2016; Madhavan & 
Wiegmann, 2007; Xie et al., 2019), moral accountability (e.g., Kahn et al., 2012), and social 
interactions (Wang & Quadflieg, 2015). Compared to people in human-human social 
interactions, people view robots in HRI as less believable, less intelligent, less capable of 
experiencing emotions, and more eerie (Wang & Quadflieg, 2015). Additionally, people believe 
that humans should be held morally accountable for their actions to a higher degree than robots 
(Kahn et al., 2012). Researchers have also found that increased anthropomorphism of an agent 
activates neural areas that are attributed to more human-like capabilities such as theory of mind 
(Krach et al., 2008). 
Prior research has delineated how people view and treat machines into one of two models (e.g., 
CASA, unique-agent), finding empirical support for both. Research supporting the CASA model 
(Nass & Moon, 2000) has shown that people interact with machines in a similar way as they do 
with human counterparts during interactions, often applying social norms to interactions with 
machines (e.g., Lee et al., 2006; Nass et al, 1994). However, with technology advances—such as 
machines with increased capabilities and diversity (e.g., therapy, military assistance, social 
companion)—researchers (e.g., Wang & Quadflieg, 2015) have found differences in how 
humans treat machines during social interactions, compared to other humans, which supports the 
unique-agent model (de Visser et al., 2016). One factor that has demonstrated influence on 
humans’ perceptions of machines (both similar and different to perceptions of humans) is trust. 

1.2 Trust in Machines vs Trust in Humans 
At its most basic, trust is conceptualized as the willingness to rely on another (Mayer et al., 
1995). Though trust was first investigated as an important construct in organizational and 
interpersonal contexts (e.g., Mayer & Davis, 1999; McAllister, 1995; Rotter, 1980; see also 
Colquitt et al., 2007), trust research has been expanded to the automation (Hoff & Bashir, 2015; 
Lee & See, 2004) and robotics (Hancock et al., 2011; Lee & Seppelt, 2009) literatures. Trust 
toward machines (i.e., automation, robots, computers, etc.), similar to interpersonal trust 
(Colquitt et al., 2007), has been delineated into trustor beliefs (e.g., automation schemas, 
trustworthiness perceptions; Hoff & Bashir, 2015), trust intentions (i.e., a willingness to be 
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vulnerable; Calhoun et al., 2019), and behavioral manifestations of trust (e.g., reliance, trust 
behaviors, monitoring behaviors; Lee & See, 2004; Madhavan & Wiegmann, 2007; Parasuraman 
& Riley, 1997; Sanders et al., 2019). For the purpose of this paper, we focus on trustworthiness 
perceptions, trust intentions, and trust behaviors. 
Trust intentions and trust behaviors are the same theoretically across the interpersonal (Mayer et 
al., 1995) and machine trust literatures (Lee & See, 2004). Trust intentions are the willingness of 
the trustor to be vulnerable to the referent (i.e., human or machine, respectively; Hoff & Bashir, 
2015). Trust behaviors are the subsequent observable risk-taking actions of the trustor. In 
contrast, there are differences in conceptualizations of trustworthiness across the interpersonal 
and machine trust literatures. Lee and See (2004) proposed that perceptions of automation 
performance, purpose, and process are antecedents to user trust toward automated systems. 
These antecedents were informed by Mayer and colleagues’ (1995) organizational trust model, 
where perceptions of a human referent’s ability (how competent are they?), benevolence (do they 
have my best interest in mind?), and integrity (do they have similar principles as I?) inform a 
trustor’s willingness to be vulnerable (i.e., trust) and ultimately their decision to act (i.e., risk- 
taking behavior). In a similar way, the trust in automation literature proposes performance (what 
does the automation do and how well does it do that task?), purpose (why was the automation 
developed?), and process (how does the automation do its task?), respectively, are informative 
antecedents to trust automation and overlap conceptually with antecedents highlighted in Mayer 
et al.’s model of trust (see Lee & See, 2004, p. 59). However, the empirical data on automation 
bias and trust that inform Madhavan and Wiegmann’s (2007) theoretical model has focused 
predominantly on perceptions of automation performance, omitting potentially important 
attributions of purpose and process perceptions on user’s trust (pp. 280-281). 

1.3 HRI 
Although there has yet to be a universally agreed upon definition of robots, the Institute of 
Electrical and Electronics Engineers (IEEE) defined robots as, “autonomous machine[s] capable 
of sensing its environment, carrying out computations to make decisions, and performing actions 
in the real world” (Guizzo, 2020). Additionally, in comparing robots to automation, Hancock et 
al. (2011) noted that “robots differ from most automation in that they are mobile…sometimes 
built in a fashion that approximates human or animal form and are often designed to effect action 
at a distance” (pp. 518-519). These sentiments were also echoed by Salem et al. (2015). As 
robots are adapted to resemble humans more accurately, humans’ biases toward automation may 
be less applicable to humanized robot partners (see Salem et al., 2015). There is a growing 
literature on trust in robots, indicating its importance for a variety of fields. Specifically, meta- 
analytic research has proposed a particularly relevant aspect of robots in relation to trust is 
anthropomorphism (Hancock et al., 2011, 2020). 

1.3.1 Anthropomorphism. 
Anthropomorphism is the degree to which an agent expresses human-like characteristics, often 
leading to humans ascribing intent, motivation, goals, or a sense of self to the agent (Epley et al., 
2007). Advances in technology and robotics have led to the advent of humanoid social robots 
such as the Nao robot and pet robots such as Aibo, the robotic dog. Research in social robotics 
has demonstrated humans prefer anthropomorphic robots more than non-anthropomorphic 
robots. For example, robots with a humanoid face are more preferred than non-humanoid robots 
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(Broadbent et al., 2013; Hertz & Wiese, 2017; Smith & Wiese, 2016). When a robot is viewed as 
more mechanistic than human-like, humans tend to act less politely to the agent, treat it as more 
subservient, and lower their expectations of the agent (Hinds et al., 2004). Humans form a 
mental model of humanoid robots by making unconscious assumptions about them and use these 
assumptions to gauge knowledge, skills, and performance expected from the robot. However, 
people do not treat robots exactly the same way they treat other living things. For example, 
Friedman et al. (2003) found participants did not treat a robotic dog, Aibo, the same as a real 
dog. They found participants did not view the robotic dog as responsible for its actions as a real 
dog. Researchers have suggested it is unlikely humans will treat robots the same as other humans 
and living creatures because of the different mental models and lack of intention on part of the 
robot (Dautenhahn, 2002; Dautenhahn et al., 2006). However, the CASA model has 
demonstrated individuals do treat machines the same as humans, as they unknowingly rely on the 
social interaction norms, despite stating they should not (Nass & Moon, 2000). Therefore, the 
key question is: are there differences in human-human and human-robot trust when the latter 
interaction comprises an anthropomorphized agent? 

1.3.2 Anthropomorphism and Trust 
Research on the role of anthropomorphism in trust in robots has increased in recent years, but 
findings from the research has supported both the CASA (Nass & Moon, 2000) paradigm and the 
unique-agent hypothesis (de Visser et al., 2016). Furthermore, the previous research has almost 
exclusively explored the robot as a tool rather than as a teammate in a social context. Xie et al. 
(2019) examined trust in a human partner (an experimental confederate—that is, someone who is 
privy to the aim of the experiment unbeknownst to the participants) and a non-anthropomorphic 
robotic partner in an unmanned aerial vehicle (UAV) task, in which both the human confederate 
and robot ran the same software algorithms. Participants played various UAV tasks (e.g., 
searching, firefighting) with a partner whom they were told was a human or a robot. Their results 
showed that participants reported higher trust toward the simulated human rather than the 
simulated robot partner. However, they did not find any differences in trust behaviors. 
A study by Sanders et al. (2019) found participants were more likely to choose to use a robot in a 
dangerous context, which in their study was an improvised explosive device disposal task. In 
contrast, participants stated that “being human” or “having a brain” makes the human less 
equipped for engaging in the dangerous task. In both instances, trust predicted use (i.e., trust 
behavior). However, the study did not directly compare trust assessments between the human 
referent and the robot referent, nor was the robot anthropomorphic. As anthropomorphism 
becomes more prevalent in robots, it is important to understand how humans trust them, and 
what aspects of trustworthiness influence this trust (i.e., purpose, process, or performance). As 
such, research directly comparing humans to anthropomorphic robots remains sparse. 
Anthropomorphism of a partner has also been shown to influence initial trustworthiness 
perceptions. For instance, people trusted and complied more with a computer agent, compared to 
an avatar or human agent, in a digit pattern recognition task where the referent offered 
suggestion of what number ought to come next in the pattern, demonstrating automation bias (de 
Visser et al., 2016). However, when reliability of the computer decreased, trust rapidly declined 
compared to the decreased reliability of the avatar and human. Indeed, they found that following 
a trust violation, participants declined less in their trust perceptions toward an anthropomorphic 
robot compared to their non-anthropomorphic counterparts. Somon and colleagues (2019) also 
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found the same neurological responses to an automated agent (e.g., a computer) in the N2-P3 
components as when monitoring a human. However, cluster analysis demonstrated a decrease in 
signal in the P3 component (response clusters associated with detected novelty) when monitoring 
a human, indicating mixed neurological results. That is, differing data analytic techniques in the 
same study yielded results supporting similar or differing neurological responses toward a human 
versus a robot error. 
Although research exists on HRI in performance- and reliability-based scenarios as in Sanders et 
al. (2019), little experimental research has been conducted on human-robot interaction in social 
contexts. Researchers (Mota et al., 2016) conducted a pilot experiment on humans’ perceptions 
of robots during the Trust Game (see Berg et al., 1995), where participants gave an allotment of 
money to a robot, the allotment was tripled, and the robot subsequently returned an amount 
higher or lower than expected by the human. Note that in scenarios such as the Trust Game, there 
is little chance for the robot to display varying task competence (i.e., performance), yet violations 
of trust may be attributed to the robots perceived purpose or process when a return fails to match 
participants’ expectations. However, due to a small sample size (N = 5), Mota et al. were unable 
to investigate quantitative effects of non-performance-related trust violations on human 
perceptions to the robot referent. 
Other researchers (Tulk & Weise, 2018) have investigated the effects of physical human-likeness 
(a component of anthropomorphism) on trust toward a robot during the Ultimatum Game (see 
Güth et al., 1982)—where participants simply decided whether to accept or reject the monetary 
offer from robot—as well as the Trust Game. Though the researchers found that fairer offers in 
both trust games were associated with higher acceptance rates and return offers in the Ultimatum 
Game and Trust games, respectively, they found no effect of human-likeness on behavioral trust 
(i.e., accepting offers, returning more of the endowment). However, Tulk and Weise (2018) 
found that human-likeness was positively related to perceived approachability of the robot in the 
Ultimatum Game and self-reported trust in the Trust Game. These subjective assessments 
mediated the relation between perceived human-likeness and behavioral trust. However, Tulk 
and Weise were unable to investigate the differences between non-performance-related trust 
violations from humans versus robots on trust because their experiment(s) did not comprise a 
human condition for comparison. Moreover, the robot was not physically present but was 
manipulated to display more/less visible human-likeness and displayed on a computer monitor. 
As such, it remains to be seen how such trust violations from a human or a physically present 
robot differentially affect trust. 
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2.0 METHOD 
2.1 Task 
Participants were asked to play Checkmate (Alarcon et al., 2018), a two-player modified 
investor/dictator game. Participants completed the study with a confederate acting as the second 
player. Participants were assigned the role of “banker” (investor), while the confederate was 
assigned the role of “runner” (dictator). The experiment was only available weekdays during 
normal business hours to ensure participants believed they were playing the game with a person 
in the laboratory. All behaviors carried out by the runner were automated, pre-recorded, and only 
varied by participant condition and manipulation. The game was played over the course of one 
practice round (Round 0) and five actual rounds (Rounds 1-5), with the banker tasked with 
loaning money to the runner each round and the runner tasked with collecting as many boxes as 
possible in a virtual maze each round. 
Following an initial practice round to introduce the participant to the game, they were informed 
that any money exchanged over the course of the task represented real money. The amount of 
money the player had after the final round was paid out via Amazon Mechanical Turk (MTurk). 
Participants were initially given a certain amount of money ($50 in person, $25 MTurk) in their 
account, which they used to loan money to the runner before each round. Money loaned to the 
runner had the potential to gain interest or be lost based on the runner’s performance in the 
upcoming round. The runner selected a promised return and a promised risk level for the task. A 
higher risk level meant they could win more money if the runner performed well, but could lose 
more money if the runner performed poorly. The selected risk level could be low (75–150%), 
moderate (50–200%), or high (0–300%). For example, if the risk level was moderate, then the 
maximum loss would be 50% (100%–50% = 50%) if the runner performed as poorly as possible, 
while the maximum gain would be 100%. The participant/banker then chose a risk level for their 
investment. The participant was able to select a loan amount using a slider, which they could 
adjust to select a loan amount in one cent increments within an available range ($1–$7). 
After the banker made their decisions, the runner selected an actual risk level. This process was 
automated so that a moderate (50–200%) risk level would always be selected. Afterwards, the 
runner would complete the maze running task while the banker observed the performance. Prior 
to the beginning of the task, both banker and runner were able to preview the maze from a top- 
down perspective. The goal of the round was to collect boxes of varying colors distributed 
throughout the maze within a time limit. If the runner successfully obtained a sufficient number 
of boxes, the runner would receive earnings based on the banker’s loaned amount and the risk 
level decided at the beginning of the round. If the runner performed poorly, the runner would 
lose a portion of the banker’s loan based on their performance and risk level. While the runner is 
completing the task, the banker is able to see the runner’s performance from a top-down 
perspective where the participant can view the runner’s position on the map and the number of 
boxes collected by the runner, but the banker is not given information as to how much money the 
runner earned in the round. After completing the task, the runner then sends a desired amount 
back to the banker. The banker is then informed of how much money was received from the 
runner. This process is carried out over five rounds, with earnings and losses being carried across 
all rounds. 
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2.2 Manipulations 
Participants were randomly assigned to either a control condition or one of three trust violation 
conditions depending on the study. In the control condition, the runner successfully completed 
the maze and returned the promised amount for all five rounds. In the trust violation conditions, 
the runner successfully completed the maze and returned the promised amount for the practice 
session and first two rounds as well as the final found, but the runner committed a trust violation 
in the third and fourth rounds, which are outlined below. Importantly, across trust violation 
conditions, the banker received the same proportion of money back when the runner displayed 
untrustworthy behavior (i.e., less money than previous rounds), but the reason for this was 
designed to be due to lowered ability, integrity, or benevolence. Specifically, when the runner 
performed a trust violation, the runner returned only 50% of the loaned amount. After the first 
iteration of the Checkmate protocol, we manipulated ability, benevolence, and integrity with the 
following experimental manipulations in the task. Note that not all manipulations were 
conducted in every study. When we discuss the studies we discuss the manipulations employed. 

2.2.1 Ability 
In order to manipulate perceptions of ability, we degraded the performance of the runner in 
rounds three and four. During the rounds in which the runner displayed ability-based trust 
violations, the runner performed poor enough in the maze running task that there was a resulting 
loss in the banker’s investment. To make the ability manipulation salient, the runner performed 
behaviors such as running into buildings and going off into areas where there were no boxes to 
collect. As a result, the runner was unable to return the amount they promised to the banker. 
During all rounds, the banker was able to watch the runner’s performance via the overhead view 
as well as monitor the box count in the upper right-hand corner of the display. However, the 
banker was unaware of the exact dollar amount earned by the runner. Thus, the banker inferred 
the ability of the runner through various stimuli (i.e., overhead view of performance, box count), 
but the banker was unable to verify the runner’s actual behavior (i.e., the banker was not able to 
see how much was earned and thus what percentage was returned). The runner committed the 
same violation again in the fourth round, then performed trustworthy behaviors in the fifth round. 

2.2.2 Integrity 
As mentioned earlier, integrity is a perception the trustee will fulfill their promise or adhere to an 
ethical standard the trustor finds acceptable. If the banker is promised a certain payment and the 
runner’s performance is maintained, it can be reasoned that the runner has earned the promised 
amount to send back to the banker. A less than expected amount of money sent back from the 
runner to the banker can thus be viewed as an integrity violation (i.e., a lack of fulfilling the 
word-action promise). In order to manipulate perceptions of integrity, we manipulated the 
amount returned to the runner as an integrity-based trust violation while keeping performance 
consistent. Performance remained consistent throughout all rounds with the runner collecting 
approximately the same number of boxes in every round. However, during the third and fourth 
rounds, the runner chose to renege on their promised return to the banker, keeping the majority 
of the loaned and earned amount for themselves. Given that performance remained the same 
across all rounds, the runner sending less money back would indicate a lack of fairness and/or 
honesty, indicating an integrity-based trust violation. 
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2.2.3 Benevolence 
In order to manipulate perceptions of benevolence, we modified both initial instructions for the 
task and the performance of the runner. Participants received additional instructions for how 
earnings were calculated in the game. Specifically, they were told that the color of the boxes 
collected by the runner affect how earnings were distributed at the end of the round. Blue and 
white boxes generated earnings that could be shared between the runner and the banker, while 
red boxes only generated earnings for the runner. In other words, any money earned by 
collecting red boxes cannot be sent to the banker. In the first two rounds and the final round of 
the game, the runner primarily collected boxes that benefited both players. During rounds three 
and four, the runner chiefly collected red boxes that only benefited themselves. The number of 
boxes collected was similar across all six rounds, with the main difference being what color of 
boxes were targeted by the runner. Thus, we were able to maintain performance so that any 
differences in the amount of money returned when there was a benevolence-based trust violation 
were due to the collection of boxes that could not be shared, and not performance itself. 
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3.0 HYPOTHESES 
Studies in human-robot trust in teams (Human-Machine Teams [HMT]) are relatively nascent 
(Ososky, Schuster, Phillips, & Jentsch, 2013). The literature has explored some human-robot 
trust interactions. A recent review of the HMT literature found two types of errors are 
prominent: evaluation errors where the operator follows the wrong guidance from the agent and 
intent errors where the operator is aware that the agent has a superior solution but the operator 
fails to follow it (Chen & Barnes, 2014). A recent meta-analysis (Hancocket al., 2020) 
demonstrated robot performance (e.g. failure rate, reliability) related factors were the strongest 
predictors of trust. This not to say attribute related factors (e.g., personality, anthropomorphism) 
did not relate to trust, just not as strongly as performance. This is supported by the literature on 
automation schema. 
Merritt and colleagues (2015) have researched the notion of the PAS and found that it is related 
to higher trust in automated systems. The premise of the PAS is that humans may hold a view of 
automation that they are close to perfect and error-free. PAS may make humans less forgiving of 
automated systems because performance errors may violate their existing expectations of 
technology. Research has shown that PAS can help individuals be more sensitive to positive 
changes in reliability, however it can be detrimental to individuals when reliability is perceived 
to decrease (Pop, Shrewsbury, & Durso, 2015). Dzindolet et al. (2003) also found humans have 
a positive bias toward automation due to better perceived reliability. In contrast, a meta-analysis 
on interpersonal trust illustrated ability, benevolence, and integrity all had similar effects on 
one’s willingness to be vulnerable (Colquitt et al., 2007). Given the importance of performance 
as a significant driver of trust of robotic systems, it is expected that perceived ability will have a 
stronger effect on the perceived trustworthiness of the robot relative to the human. 

• Hypothesis 1: Perceived initial ability/performance in robotic partner will be 
higher than with a human partner (intercept differences) and initial wagers 
will be higher with a robotic partner. 

• Hypothesis 2: Initial wagers with a robotic partner will be higher than with a 
human partner (intercept differences). 

• Hypothesis 3: Ability/performance will have a stronger effect on perceived 
trustworthiness of a perceived robotic partner than a human partner, over 
time (slope differences). 

• Hypothesis 4: Ability/performance will have a stronger effect on change in 
wagers of a perceived robotic partner than a human partner, over time (slope 
differences). 

As mentioned above, humans often ascribed intent to human and non-human agents. Humans do 
not approach robots “tabula rasa” but rather with default models of the robot’s intent and 
knowledge (Powers, 2005). When humans anthropomorphize robots, in-group and out-group 
biases may form. Research has demonstrated when participants were introduced to a robot with 
a name familiar within their country they perceived it as warmer, psychologically closer, 
ascribed more of a mind to the robot, and had more contact than when the robot had a foreign 
sounding name (Powers, 2005). Robots that display empathy may be more liked and trusted 
(Leite et al., 2013), suggesting the importance of intent from the robot. Intelligent agents that are 
more cooperative independent of reliability were more trusted by individuals in a shared resource 
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management task (Chiou & Lee, 2016), again suggesting that intent-based inference can be 
applied to technology. Yet, the state of the art in machine transparency focuses on state 
awareness and projection for tasks (Mercado et al. 2016) and providing rationale for 
recommendations (Lyons et al., 2016). More research is needed for understanding transparency 
of intent (Lyons 2013). There have been no studies to date (that the authors are aware of) which 
have directly compared intent from a human versus intent from a robot using a common task. 
The authors contend that signaling intent from a robot will influence trust perceptions but not as 
much as intent from another person. Some support for this notion can be drawn from research on 
how humans attribute blame for mistakes. Specifically, robots can be believed to be responsible 
for mistakes, though not as much as a human in the same situation (Kahn et al., 2012). Thus, it 
is plausible that the impact of signaling intent may be weaker when directly comparing robots 
versus humans. 
Unlike humans, robots lack free will and hence, behave in accordance with their programming. 
However, machines may someday have both decision authority and decision initiative to act 
autonomously on the battlefield. In such a situation, a robot may be asked to “decide” what the 
best action might be for a set of stimuli and given set of rules of engagement. The idea of 
autonomous robots may invoke fear as individuals endorse the zeitgeist of “killer robots” (Lyons 
& Grigsby, 2016), yet we must consider the fact that autonomous robots may support non- 
combat roles such as information analysis and dissemination, decision aides, mission planning, 
aeromedical evacuation, inspection, among other areas. One notable safety system, the 
Automatic Ground Collision Avoidance System, is a highly-advanced form of automation that 
has the decision authority to take control away from a pilot when an imminent collision with the 
ground is detected. This fielded system has already saved multiple lives and notably, the pilot’s 
perceived “benevolence” of the system is a significant driver of trust in the system (Lyons et al., 
2016). Thus, it is plausible that intent from a robot matters, we just believe that it will matter 
more for humans versus robots. 

• Hypothesis 5: Perceived initial benevolence/intent in robotic partner will be 
lower than a human partner (intercept differences). 

• Hypothesis 6: Initial wagers in a robotic partner will be lower than a human 
partner (intercept differences) in the benevolence/intent conditions. 

• Hypothesis 7: Intent perceptions will change faster with a robotic partner 
than with a human partner, over time (slope differences). 

• Hypothesis 8: Wagers will change faster with a robotic partner than with a 
human partner, over time (slope differences) in the intent conditions. 

Consistency has demonstrated importance in human-automation collaboration as well as in 
interpersonal relationships. Consistency, (thought of as integrity – alignment to shared values in 
the interpersonal domain) is rational evaluation of past successes and or failures and has been 
shown to be the most important driver of trust in high-stakes interpersonal situations (Colquitt et 
al., 2011). Maintaining consistent, predictable behavior is a core antecedent to trust as this 
predictability allows one to forecast potential behavior in novel situations. Prior research has 
shown that consistency is a key to trust of automation (Parasuraman, Molloy, & Singh, 1993). 
The idea of predictability was one of the core antecedents for trust in automation during the 
initial studies of the construct (Muir, 1994). The literature on HMT suggests the importance of 
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shared mental models (Ososky et al., 2013; Wynne & Lyons, 2018) largely because shared 
mental models will help humans anticipate the actions and needs of their machine partners. Due 
to the asymmetry perceived capability between humans and technology, technology will likely 
pay a higher cost for deviations of consistency. Biases such as PAS may play a role in 
consistency as there may be a bias for automation to be perfectly consistent, along with perfect 
performance. Once the cognitive bias has been formed, any deviation from the bias greatly 
impacts trustworthiness perceptions. 

• Hypothesis 9: Perceived initial consistency/integrity in robotic partner will 
be lower than a human partner (intercept differences). 

• Hypothesis 10: Initial wagers in a robotic partner will be lower than a 
human partner (intercept differences) in the consistency/integrity conditions. 

• Hypothesis 11: Reliability perceptions will decline faster with a robotic 
partner than with a human partner, when consistency/integrity is not stable 
over time (slope differences). 

• Hypothesis 12: Wagers will decline faster with a robotic partner than with a 
human partner, when consistency/integrity is not stable over time (slope 
differences). 
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4.0 ACCOMPLISHMENTS 
We finished data collection of in-person and online data collections. A total 953 participants 
were collected via Amazon MTurk for various iterations of the current Long-Range Imaging 
Radar (LRIR). A total of 204 participants were collected from in-person data collections. We 
outline results from each of the studies below. Overall, results have demonstrated a significant 
difference between human-human and human-robot interactions. Additionally, these differences 
span beyond performance manipulations and extend to benevolence and integrity manipulations. 
Furthermore, in the online data collections we found significant differences between rate of 
change (i.e., slopes) for the different trust manipulations, and PAS predicted the change in the 
slopes. 
In our first study, we explored differences between human-human and human-robot teaming 
while holding performance constant. We used a mixed factorial design to examine the effects of 
trust and trust violations on human-human and human-robot interactions over time with an 
emphasis on anthropomorphic robots in a social context. We found consistent and significant 
effects of partner behavior. Specifically, partner distrust behaviors led to participants’ lower 
levels of trustworthiness perceptions, trust intentions, and trust behaviors over time compared to 
partner trust behaviors. We found no significant effect of partnering with a human versus an 
anthropomorphic robot over time across the three dependent variables, supporting the computers 
as social actors (CASA; Nass and Moon, 2000) paradigm. However, we note that trust was 
manipulated by the partner simply not sending back as much as promised, without any 
information as to why. Results were published in Applied Ergonomics. As such, out next study 
was an attempt to manipulate ability, benevolence, and integrity through partner actions. 
In Study 2, we created ability, benevolence, and integrity manipulations. For Study 2, we only 
explored human-human interactions as we were concerned with verifying the manipulations first, 
before attempting to assess their effects on human-robot teaming. We experimentally 
manipulated ability-, integrity-, and benevolence-based trust violations and measured trust- 
related criteria (i.e., trustworthiness perceptions and risk taking). We found differences between 
the ability-based trust violation and the integrity- and benevolence-based trust violations on both 
trustworthiness perceptions and risk-taking. However, no significant differences were found for 
differences in integrity- or benevolence-based trust violations. Figures 1, 2, 3 and 4 illustrate 
manipulation effects on ability perceptions, benevolence perceptions, integrity perceptions, and 
risk-taking behavior, respectively. As illustrated in the figures, ability had the strongest effect on 
all criteria. There were no discernable differences between the benevolence and integrity 
manipulations. Given that Study 2 was conducted online we theorized the lack of differences 
were due to information saliency, as participants may have rushed through training or forgotten 
the caveats to the benevolence condition. As such, we modified the protocol so that in the 
benevolence condition there was a reminder that the box colors have different meaning for future 
studies. 
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Figure 1. Ability Perceptions in Each Manipulated Condition Compared to the Control 
Condition. 

Note. Ability Condition = Ability-based trust violation condition; Integrity Condition = Integrity-based trust 
violation condition; Benevolence Condition = Benevolence-based trust violation condition. 
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Figure 2. Benevolence Perceptions in Each Manipulated Condition Compared to the 
Control Condition. 

Note. Ability Condition = Ability-based trust violation condition; Integrity Condition = Integrity-based trust 
violation condition; Benevolence Condition = Benevolence-based trust violation condition. 
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Figure 3. Integrity Perceptions in Each Manipulated Condition Compared to the Control 
Condition 

Note. Ability Condition = Ability-based trust violation condition; Integrity Condition = Integrity-based trust 
violation condition; Benevolence Condition = Benevolence-based trust violation condition. 
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Figure 4. Risk-taking Behaviors in Each Manipulated Condition Compared to the Control 
Condition. 

Note. Ability Condition = Ability-based trust violation condition; Integrity Condition = Integrity-based trust 
violation condition; Benevolence Condition = Benevolence-based trust violation condition. 
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Next, in Study 3, we tested our manipulations of ability, benevolence, and integrity between 
human-human teaming and human-robot teaming on an in-person sample. We experimentally 
manipulated ability, benevolence, and integrity in both human-human and human-robot teams. 
Using repeated measures multivariate analysis of variance we found several interesting findings. 
First, there were no mean differences between any of the conditions (i.e., partner or manipulation 
type) on risk taking behaviors. All risk-taking behaviors declined significantly following a trust 
violation. In contrast, overall trustworthiness declined significantly more for the robot than for 
the human following an ability violation, as illustrated in Figure 5. Interestingly, when a 
benevolence violation occurred the robot partner also suffered a higher decrease in 
trustworthiness perceptions. When an integrity violation occurred, there were no differences in 
overall trustworthiness between the human-human team and the human-robot team. This latter 
result is similar to the finding in study 1, as they were basically the same manipulation. 

 

 
 

Figure 5. Overall Trustworthiness Perceptions in Each Manipulated Condition. 
Note. Ability Condition = Ability-based trust violation condition; Integrity Condition = Integrity-based trust 

violation condition; Benevolence Condition = Benevolence-based trust violation condition. 

In Study 4, we explored the role of PAS in the rate of change for each slope. In other words, does 
PAS predict the rate of change in trustworthiness perceptions after a trust violation? We 
hypothesized that trust violations committed by a robot would lead to steeper decreases in trust 
behaviors and trustworthiness perceptions for performance violations, compared to violations 
from a human partner. To assess the influence of PAS, we restructured the data so that the 
manipulations were dummy coded, so as to include them as first level variables in a regression 



18 
Distribution A. Approved for public release; distribution unlimited. 

AFRL-2021-3692; Cleared 22-Oct-2021 

 

equation (see Tabachnick and Fidell, 2009). We then conducted latent growth modeling using 
mixed effects models. We treated the ability condition as the referent condition for analyses as 
the previous literature has focused on decrements of trust based on performance in the previous 
literature. We used the same manipulations as outline in Study 3. We found partial support for 
the unique agent hypothesis. As with Study 3 there were significant differences between human- 
human and human-robot teaming. Specifically, when modeling the rate of change the human 
partner actually suffered a larger decrease in overall trustworthiness perceptions than the robot 
partner did in the online study, as illustrated in Figure 6. Additionally there were no differences 
between the human and robot condition in the integrity condition. There was also a significant 
interaction of the benevolence manipulation and partner type, as illustrated in Figure 7. 

 

Figure 6. Three-way Interaction of Partner*Time*Manipulation for Latent Growth Model 
of Overall Trustworthiness Perceptions (Ability vs Integrity Conditions). 
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Figure 7. Three-way Interaction of Partner*Time*Manipulation for Latent Growth Model 
of Overall Trustworthiness Perceptions (Ability vs Benevolence Conditions). 

We added the PAS scale to the equation to determine if PAS predict the rate of change in the 
slopes following a trust violation. We found the all-or-none thinking facet of PAS significantly 
predicted variance in the slope of benevolence perceptions, such that participants higher in all-or- 
none thinking viewed the robot as significantly less benevolent following a trust violation if they 
were higher in the construct. Figure 8 illustrates the results of PAS predicting the slope. 
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Figure 8. Three-way Interaction of Time*Manipulation*All-or-Nothing Thinking for 
Latent Growth Model of Overall Trustworthiness Perceptions 

Note. Data is only plotted for Robot Condition. 

Lastly, we collected data with three levels of anthropomorphism. We used the Nao Humanoid 
Robot, the Cue Robot which has some anthropomorphic features, and an arm robot with no 
anthropomorphic features. We collected data on ability, benevolence, and integrity conditions 
across the three robot types. We have not finished cleaning and analyzing the data. Future data 
analysis will include anthropomorphism as a factor across the ability, benevolence, and integrity 
conditions. We expect that robots that are higher in anthropomorphism will show less 
decrements in trust perceptions and trust behaviors than robots lower in anthropomorphism. 
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5.0 DISSEMINATION OF RESULTS 
Results have been disseminated through conference proceedings and journal publications. The 
LRIR has resulted in one journal publication and five conference proceedings. There are 
currently three journal articles being prepped for publication. References are: 
Alarcon, G. M., Gibson, A. M., Jessup, S. A., & Capiola, A. (in press). Exploring the Differential 
Effects of trust Violations in Human-Human and Human-Robot Interactions. Applied 
Ergonomics, 93, Article 103350. 
Capiola, A., Alarcon, G. M., Gibson, A. M., Jessup, S. A., & Hamdan, I. (in press). The Same or 
Different? Investigating whether Trust and Distrust are orthogonal Constructs or Span a 
Continuum. Paper submitted to Hawaii International Conference on System Sciences. 
Alarcon, G. M., Capiola, A., Morgan, J., Hamdan, I., & Lee, M. (in press). Trust Violations in 
Human-Human and Human-Robot Interactions: The Influence of Ability, Benevolence and 
Integrity Violations. Paper submitted to Hawaii International Conference on System Sciences. 
Gibson, A. M., Alarcon, G. M., Jessup, S. A., & Capiola, A. (January, 2020). Do You Still Trust 
Me? Effects of Personality on Changes in Trust During an Experimental Task with a Human or 
Robot Partner. Proceedings of the Hawaii International Conference on System Sciences Annual 
Meeting, Maui, HI. 
Jessup, S. A., Gibson, A. M., Alarcon, G. M., & Capiola, A. (January, 2020). Investigating the 
Effect of Trust Manipulations on Affect over Time in Human-Human versus Human-Robot 
Interactions. Proceedings of the Hawaii International Conference on System Sciences Annual 
Meeting, Maui, HI. 
Jessup, S. A., Schneider, T. R., Alarcon, G. M., Ryan, T. J., & Capiola, A. (2019, July). The 
Measurement of the Propensity to Trust Automation. In International Conference on Human- 
Computer Interaction (pp. 476-489). Springer, Cham. 
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6.0 SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS (STEM)- 
RELATED ACTIVITIES 
There were several STEM-related activities associated with the project. First, Ms. Sarah Jessup 
utilized data from the current project to complete her Master’s Thesis. This thesis was later 
presented at the Human-Computer Interaction Conference and published in the proceedings. 
Additionally, Ms. Jessup utilized data from the current project to present two additional papers at 
Human-Computer Interaction and Hawaii International Conference on System Sciences 
conferences. Dr. Anthony Gibson utilized the data to publish a paper regarding personality and 
the changes of the experimental manipulations on trust and suspicion while serving as a post- 
doctoral student in the Consortium Research Fellows Program (Consortium of Universities of the 
Washington Metropolitan Area). 
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7.0 IMPACTS 
In Study 1, overall trust perceptions and behaviors decreased over time as expected. However, 
we found few effects of partner type. These findings are somewhat in line with mapping these 
trustworthiness dimensions on to the CASA (Nass & Moon, 2000), in that it appears that the 
participants attributed most of these trustworthiness dimensions to their robot partners, or at least 
in a similar fashion to how they were attributed to the human partners (see also Alarcon et al., 
2021). However, we did find support for the unique agent hypothesis in the marginal interaction 
of the manipulation and partner on integrity and on the interaction of partner and time on 
behaviors. Importantly, Study 1 did not have any ability or benevolence violations. As such, we 
implemented those in Study 2. 
Study 2 expanded the understanding of trust games and their role in the psychological literature. 
As mentioned above, the trust literature has faced a dearth of studies that are able to separate and 
manipulate all aspects of the proposed trustworthiness model by Mayer et al. (1995), and to a 
degree McAllister (1995). With respect to economic game theoretical investigations on trust 
utilizing extant trust games (e.g., prisoner’s dilemma, trust game), we have noticed that it is 
difficult to classify a trustee’s violation of trust as an integrity-based or benevolence-based 
violation. Additionally, the most notable aspect of trustworthiness that has been missing from 
trust games is ability (see Alarcon et al., 2021). In order to examine these concerns, we leveraged 
a trust game (Alarcon et al., 2018) that incorporates a performance component and ambiguity 
over the course of multiple trials and implemented novel manipulations of ability, integrity, and 
benevolence in three experiments to examine the effects of these theoretically relevant trust 
violations on perceptions of trustworthiness. We manipulated trust by instantiating ability, 
integrity, and benevolence trust violations in the distrust conditions and measured the influence 
of these manipulation on participants’ perception of their partners’ trustworthiness and the effect 
of these manipulations on participants’ risk-taking behaviors in subsequent rounds of the game. 
Our work provides a starting point for future investigations to delve into the nuance of 
trustworthiness manipulations and test their effects on criterion of interest. Additionally, it 
supports the theoretical distinction between can do aspects of trustworthiness (ability) and will 
do aspects of trustworthiness (benevolence and integrity). 
Study 3 explored the differential effects of ability, benevolence, and integrity violations onto 
trustworthiness perceptions between humans and robots. Results illustrated a clear bias against 
robots when a trust violation occurred. However, not all trust violations were viewed the same. 
The ability violation had the strongest influence on trustworthiness perceptions and risk-taking 
behavior. These results are supported by the literature on perfect automation schemas (PAS; 
Madhavan & Wiegman, 2007; Merritt et al., 2015). However, the vast majority of research on 
PAS has focused on performance degradations. Study 3 found the robot suffered greater declines 
in trustworthiness, compared to a human, following ability and benevolence trust violations. As 
such, these perfect automation schemas may influence more than performance perceptions. 
Indeed, Study 4 found PAS predicted the change in ability and benevolence perceptions, but not 
integrity perceptions. The reason for this may be that trust is an information processing activity, 
rather than a rational choice. The integrity violations did not provide any information as to why 
the violation occurred, as such biases, or schemas, organize information and relationships among 
them; however if no information is salient, the schemas may not be activated. This explains why 
Study 1 and the integrity condition in Studies 3 and 4 demonstrated no differences between 
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humans and robots, as there was too little information to understand why the trust violation had 
occurred. 
The current project has several implications for the Air Force. First, engineers will want to be 
cognizant of the information displayed to the user. It may not be possible to create displays or 
automation that do not have a performance aspect. Indeed, performance helps to close the 
feedback loop for the operator to understand how the automation/robot is working. However, too 
much information can unduly bias users against automation. Second, engineers and the research 
community have traditionally been focused on performance declinations in the automation/robot. 
However, the current study indicates benevolence information may also be of concern to the 
user. Engineers that can find a way to display benevolence of the system, even when the system 
errs can reduce the impact of the PAS on the perception of the err. As noted above, when 
participants viewed the violation as an ability violation their risk-taking behavior declined much 
more rapidly then when it was a benevolence violation. As such, researchers would do well to 
include benevolence as an important aspect of their systems when thinking about transparency. 
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8.0 CHANGES TO PROTOCOL 
Changes were made to the protocol due to the Corona Virus Disease (COVID) 19 pandemic. The 
pandemic delayed the ability to collect in person data, as such much of the data was collected 
online using Amazon MTurk. We utilized Amazon MTurk to test manipulations for Ability, 
Benevolence and Integrity instead of performing the study in-person. Additionally, we utilized 
the online platform to collect data on any differences in the rate of change between conditions. 
The collection of data using an online platform necessitated a change in reimbursement to 
approximately half of what was proposed in the study. This was to avoid any undue influence by 
offering larger sums of money participation in an online experiment. 
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10.0 LIST OF ACRONYMS, ABBREVIATIONS AND SYMBOLS 
CASA Computers as Social Actors 

COVID Corona Virus Disease 

DSS Decision Support Systems 

HMT Human-Machine Teams 

HRI Human-Robot Interaction 

IEEE Institute of Electrical and Electronics Engineers 

LRIR Laboratory Research Initiation Request 

MTurk Amazon Mechanical Turk 

PAS Perfect Automation Schema 

STEM Science, Technology, Engineering and Mathematics 

UAV Unmanned Aerial Vehicle 
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