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Many of us have had the vision of learners acquiring STEM subject matters by being immersed 

in motivating learning environments (such as games) that advance learners to new levels of 

mastery. Concepts in STEM (science, technology, engineering, and mathematics) are complex 

and difficult, and require learning at deeper levels than merely memorizing facts, rules, and 

procedures. Learners would ideally be challenged and motivated to improve on mastering 

complex topics that might not be acquired with traditional training methods. They would spend 

hundreds of hours in a hunt for a solution to a problem that few have solved, for the sweet spot in 

a trade-off between two or more factors, or for a resolution to a set of incompatible constraints. 

This is precisely the vision of progress for training in the 21st century. How can deep learning be 

achieved in a motivating learning environment? Games provide a good first place to look for 

answers because well-designed games are motivating and some meta-analyses have reported 

positive impacts of games on learning (Mayer, 2011; O’Neil & Perez, 2008; Ritterfeld, Cody, & 
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Vorderer, 2009; Shute & Ventura, 2013; Tobias & Fletcher, 2011; Wouters, van Nimwegen, van 

Oostendorp, & van der Spek, 2013). 

 

This chapter explores the prospects of integrating games with intelligent tutoring systems (ITSs). 

The hope is that there can be learning environments that optimize both motivation through games 

and deep learning through ITS technologies. Deep learning refers to the acquisition of 

knowledge, skills, strategies, and reasoning processes at the higher levels of Bloom’s (1956) 

taxonomy or the Knowledge-Learning-Instruction (KLI) framework (Koedinger, Corbett, & 

Perfetti, 2012), such as the application of knowledge to new cases, knowledge analysis and 

synthesis, problem solving, critical thinking, and other difficult cognitive processes. In contrast, 

shallow learning involves perceptual learning, memorization of explicit material, and mastery of 

simple rigid procedures. Shallow knowledge may be adequate for near transfer tests of 

knowledge/skills but not far transfer tests to new situations that have some modicum of 

complexity.  

 

There have been some attempts to develop game-ITS hybrids (Adams & Clark, 2014; Halpern et 

al., 2012; Jackson & McNamara, 2013; Johnson & Valente, 2008; McNamara, Jackson, & 

Graesser, 2010; McQuiggan, Robison, & Lester, 2010; Millis et al., 2011; Sabourin, Rowe, Mott, 

& Lester, 2013). However, it is too early to know whether the marriage between games and ITSs 

will end up celebrating a multidecade anniversary or will end up in a divorce because of 

incompatible constraints between the two worlds. Deep learning takes effort, is often frustrating, 

and is normally regarded as work rather than play (Baker, D’Mello, Rodrigo, & Graesser, 2010; 

D’Mello, Lehman, Pekrun, & Graesser, 2014). Indeed, the correlation between liking and deep 
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learning tends to be negative in current ITS research without game attributes (Graesser & 

D’Mello, 2012; Jackson & Graesser, 2007). Perhaps game features can turn this work into play 

with sufficient entertaining features, learner freedom, and self-regulated activities (Lepper & 

Henderlong, 2000), and thereby shift the correlation from negative to positive (Sabourin et al., 

2013). If not, then games may be reserved for the acquisition of shallow knowledge and skills, 

such as memorization of facts, simple skills, and rigid procedures. In contrast, games may not be 

suited for the acquisition of deep knowledge and strategies, such as understanding complex 

systems, reasoning about causal mental models, and applying sophisticated quantitative 

algorithms. 

 

This chapter will not unveil the secrets of building a successful ITS in a game environment. It is 

too early to tell that story. Instead, we hope to achieve three goals. First, we will review 

successes and challenges in ITS research and development. Second, we will describe the 

components of ITSs in the Generalized Intelligent Framework for Tutoring (GIFT). GIFT has 

recently been developed by the U.S. Army Research Laboratory as a stable blueprint and guide 

for developing ITSs in the future (Sottilare, Graesser, Hu, & Holden, 2013; Sottilare, Graesser, 

Hu, & Goldberg, 2014). Third, we will reflect on how these efforts might be integrated with 

games. An adequate understanding of ITS components and the underlying research is a necessary 

prerequisite to formulating a meaningful courtship between ITS and games.  

 

It is important to point out two areas of research and application that will not be addressed in this 

chapter. This chapter does not address the role of games in the acquisition and mastery of 

shallow learning. The empirical evidence has convinced us that a well-designed game can 
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effectively enhance shallow learning, whereas there is uncertainty in the literature on whether 

deep learning can benefit from games. This chapter also does not address learning and problem 

solving in the context of teams. Our focus is on deep learning in individuals who interact with an 

ITS. 

 

Successes and Challenges in ITS Research and Development 

This section briefly defines what we mean by an ITS, reviews the successes of ITS technologies, 

and identifies the chief challenges in scaling up these systems for more widespread use. Meta-

analyses and landmark systems support the claim that ITSs are a promising solution to achieving 

deep learning. However, there are four categories of challenges which we place under the 

umbrellas of motivation, measurement, materials, and money. These challenges can be mitigated, 

if not conquered, by some recommended efforts. 

 

What Is an Intelligent Tutoring System?  

We define an ITS as a computer learning environment that helps the student master deep 

knowledge/skills by implementing powerful intelligent algorithms that adapt to the learner at a 

fine-grained level and that instantiate complex principles of learning (Graesser, Conley, & 

Olney, 2012). We see ITS environments as a generation beyond conventional computer-based 

training (CBT). CBT systems also adapt to individual learners, but they do so at a more coarse-

grained level with simple learning principles. In a prototypical CBT system, the learner (a) 

studies material presented in a lesson, (b) gets tested with a multiple-choice test or another 

objective test, (c) gets feedback on the test performance, (d) re-studies the material if the 

performance in c is below threshold, and (e) progresses to a new topic if performance exceeds 
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threshold. The order of topics presented and tested typically follows a predetermined order, such 

as ordering on complexity (simple to complex) or ordering on prerequisites. The materials in a 

lesson can vary from organized text with figures, tables, diagrams, and multimedia to example 

problems to be solved. ITSs can be viewed as enhancements of CBT with respect to the 

adaptability, grain-size, and the power of computerized learning environments. In ITS, the 

processes of tracking knowledge (called user modeling) and adaptively responding to the learner 

incorporate computational models in artificial intelligence and cognitive science, such as 

production systems, case-based reasoning, Bayes networks, theorem proving, and constraint 

satisfaction algorithms (see Graesser, Conley, & Olney, 2012; Woolf, 2009). 

 

This chapter does not sharply divide systems that are CBT systems versus ITSs, but one useful 

dimension is the space of possible computer-learner interactions that can be achieved with the 

two classes of systems. For an ITS, every tutorial interaction is unique and the space of possible 

interactions is extremely large, if not infinite. Imagine hundreds of alternative states of the 

learner, hundreds of alternative responses of the tutor, and thousands/millions of alternative 

sequences of interaction. An ITS attempts to fill in very specific learning deficits, to correct very 

specific misconceptions, and to implement dynamic sequencing and navigation. For CBT, 

interaction histories can be identical for multiple students and the interaction space is finite, if 

not small (e.g., < 100 possible interactions). 

 

Successful ITSs have been developed for mathematically well-formed topics, including algebra, 

geometry, programming languages (the Cognitive Tutors: Aleven, McClaren, Sewall, & 

Koedinger, 2009; Anderson, Corbett, Koedinger, & Pelletier, 1995; Koedinger, Anderson, 
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Hadley, & Mark, 1997; Ritter, Anderson, Koedinger, & Corbett, 2007; ALEKS: Doignon & 

Falmagne, 1999), physics (Andes, Atlas, and Why/Atlas: VanLehn et al., 2002; VanLehn et al., 

2007), electronics (SHERLOCK: Lesgold, Lajoie, Bunzo, & Eggan, 1992), and information 

technology (KERMIT: Mitrovic, Martin, & Suraweera, 2007). Some intelligent systems handle 

knowledge domains that have a stronger verbal foundation as opposed to mathematics and 

precise analytical reasoning. AutoTutor (Graesser, Chipman, Haynes, & Olney, 2005; Graesser, 

D’Mello, et al., 2012; Graesser et al., 2004; Nye, Graesser, & Hu, 2014) helps college students 

learn about computer literacy, physics, and critical thinking skills by holding conversations in 

natural language. Other natural language ITSs that have shown learning gains include DeepTutor 

(Rus, D’Mello, Graesser, & Hu, 2013), iSTART (McNamara et al., 2010), and My Science Tutor 

(Ward et al., 2013). The Intelligent Essay Assessor (Landauer, Laham, & Foltz, 2003) and e-

Rater (Burstein, 2003) grade essays on science, history, and other topics as reliably as experts of 

English composition. These systems automatically analyze language and discourse by 

incorporating recent advances in computational linguistics (Jurafsky & Martin, 2008; McCarthy 

& Boonthum-Denecke, 2012) and information retrieval, notably latent semantic analysis 

(Landauer, McNamara, Dennis, & Kintsch, 2007). 

 

Meta-analyses 

Meta-analyses and reviews support the claim that ITS technologies routinely improve learning 

over classroom teaching, reading texts, and/or other traditional learning methods. These meta-

analyses normally report effect sizes (sigma, σ), which refer to the difference between the ITS 

condition and a control condition in standard deviation units. The reported meta-analyses show 

positive effect sizes that vary from σ = 0.05 (Dynarsky et al., 2007) to σ = 1.08 (Dodds & 
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Fletcher, 2004), but most hover between σ = 0.40 and σ = 0.80 (Ma, Adesope, & Nisbett, in 

press; Fletcher, 2003; Graesser, Conley, & Olney, 2012; Steenbergen-Hu & Cooper, 2013, 2014; 

VanLehn, 2011). Our current best meta-meta estimate from all of these meta-analyses is σ = 

0.60. This performance is comparable to human tutoring which varies from between σ = 0.20 and 

σ = 1.00 (Cohen, Kulik & Kulik, 1982; Graesser, D’Mello, & Cade, 2011), depending on the 

expertise of the tutor. Human tutors have not varied greatly from ITSs in direct comparisons 

between ITSs and trained human tutors (Olney et al., 2012; VanLehn, 2011; VanLehn et al., 

2007).  

 

We are convinced that some subject matters will show higher effect sizes than others when 

comparing any intervention (e.g., computer trainers, human tutors, group learning) to a control. It 

is difficult to obtain high effect sizes for literacy and numeracy because these skills are 

ubiquitous in everyday life and habits are automatized. For example, Ritter et al. (2007) reported 

that the Cognitive Tutor for mathematics has shown an effect size of σ = 0.30 to 0.40 in 

environments with minimal control over instructors. Human interventions to improve basic 

reading skills typically report an effect size of σ = 0.20. In contrast, when the student starts 

essentially from ground zero, such as many subject matters in science and technology, then effect 

sizes are expected to be more robust. ITSs show effect sizes of σ = 0.60 to 2.00 in the subject 

matters of physics (Van-Lehn, 2011; VanLehn et al., 2007), computer literacy (Graesser et al., 

2004; Graesser, D’Mello, et al., 2012), biology (Olney et al., 2012), and scientific reasoning 

(Millis et al., 2011; Halpern et al., 2012). As a notable example, the Digital Tutor (Fletcher & 

Morrison, 2012) improves information technology by an effect size as high as σ = 3.70 for 
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knowledge and σ = 1.10 for skills. Such large effect sizes would never be expected in basic 

literacy and numeracy. 

 

Motivation 

ITS technologies that target deep learning have the challenge of keeping students motivated 

because, as mentioned earlier, the intrinsic tendency is for there to be an inverse relationship 

between liking a system and deep learning. Simply put, thinking and reasoning hurt. The hope is 

that games will fill in the motivational gap for ITSs. Unfortunately, there have not been enough 

studies that combine games with ITSs for a meta-analysis at this point in history. However, some 

example successful game-ITS hybrids have been Crystal Island (McQuiggan et al., 2010; 

Sabourin et al., 2013), iSTART-ME (Jackson, Dempsey, & McNamara, in press), and Operation 

ARIES and Operation ARA (Halpern et al., 2012; Millis et al., 2011). However, there is not an 

adequate body of research that reports effect sizes that contrast the game versions versus those 

without game features in these ITSs.  

 

Game elements take some time to master so there is the risk of short-term penalties from games 

(Adams, Mayer, McNamara, Koenig, & Wainess, 2012). Narrative, fantasy, competition, choice, 

feedback, challenge, and other distinctive characteristics of games (Ritterfeld et al., 2009) may 

help motivation but they are not often intrinsic to subject matter mastery. In essence, game 

elements may pose a non-germane load to working memory and be a distraction from deep 

learning. This problem could be circumvented if all game elements had tangible hooks to the 

subject matter, but it is very rare to have game affordances aligned with components of deep 

learning. Given this difficulty of mapping game features to serious subject matter, the central 
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question is whether the game features will have a payoff in the long run. For example, the game 

features of iSTART-ME (Jackson et al., in press) had a short-term penalty compared to an ITS 

without game features, but iSTART-ME showed advantages after 8-10 hours. Therefore, we 

would argue that an adequate test of game characteristics for deep learning should involve 

assessments for 10 or more hours. Short interventions of an hour or less are essentially irrelevant 

because deep learning by definition takes many hours of training until mastery. 

 

An ideal assessment of the motivational influence of game features on an ITS would allow 

students a free choice on whether to interact with the system. In essence, there would be a race 

horse comparison in the total amount of learning when the ITS does versus does not have the 

game features. A mathematical integral metric is needed to incorporate both time and learning 

(much like integral calculus). An hour of training might show the game version to be only .7 as 

effective as the standard version without the game, but what if the learner chooses to play the 

game version 10 times as long as the standard version? That would be a substantial long-term 

victory for the game version. There needs to be a learning gain metric that multiplies learning 

efficiency (e.g., learning-per-hour) times time (number-of-hours) that the learner voluntarily uses 

the learning environment in a free-choice or self-regulated learning scenario after a learning 

environment is exposed to the learner. However, such an integral metric is virtually never 

reported because studies attempt to equilibrate time on task between conditions. These studies 

ignore or diminish the motivational dimension of the Learning × Motivation equation. 

 

Measurement 
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All learning systems need to be assessed by defensible measures of performance and learning. 

The validity and reliability of measures are a broad and important matter that is ubiquitously 

discussed among researchers that range from laboratory scientists to stakeholders of international 

assessments. The standards vary among research communities, and this applies to those within 

the ITS field. Ideal metrics have not been identified within the ITS community, let alone those 

involved with high-stakes state, national, and international assessments. Since the goal is deep 

learning, there would ideally be a psychometrically validated metric of deep learning for each 

particular subject matter. Unfortunately, available psychometric measures are a mixture of deep 

and shallow learning, as well as relevant versus irrelevant knowledge/skills. This is because they 

are generic measures of a broad skill rather than a metric that targets the specific subject matter 

of the ITS. Therefore, there is rarely a defensible gold standard for assessment of an ITS. In the 

absence of a suitable psychometric measure, researchers turn to researcher-defined metrics. 

Unfortunately, there is a risk of tailoring the ITS to the test under these circumstances, which 

makes it difficult to compare performance across studies and ITS technologies. 

 

Another measurement problem lies in identifying the correct performance parameter. The typical 

metric is a learning gain metric that compares performance in a posttest with a pretest; there is 

either a difference score [post-pre] or a statistical analysis of posttest scores that partials out 

contributions of pretest scores. The learning gains are compared for the ITS versus the 

comparison condition. Sometimes normalized learning gains are computed that adjust for the 

pretest level: [(post-pre)/(1 – pre)]. Researchers also occasionally collect learning gain data for 

specific principles and concepts (Forsyth et al., 2012; VanLehn et al., 2007) and average these 
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gains for the total set of principles/concepts. Arguments are also made for collecting learning 

parameters, namely how fast the learning occurs.  

 

One parameter that may be considered is learning efficiency, which computes the amount of 

learning per unit of study time, that is, learning gain per hour. We argue that such a metric is 

inappropriate for any ITS that is targeting deep learning and mastery of the subject matter, unless 

it is computed appropriately. There are two problems with any simple metric of learning 

efficiency. First, it does not guarantee mastery of the deep knowledge/skill. Learning 

environments suited for shallow learning may plateau for deep knowledge and never meet the 

threshold of mastery, even after hundreds of hours of training. Second, metrics often include a 

combination of shallow and deep knowledge/skills. When that occurs, the efficiency metric is 

excellent during the initial time window by virtue of shallow learning, but it never reaches the 

threshold of mastery for deep learning. An appropriate performance measure for an ITS that 

targets deep learning should include exclusively deep performance indicators. Of course, a 

separate performance measure could be computed for shallow learning, but it is the worry of 

acquiring the deep knowledge/skills that is the central bottleneck. 

 

We argue that an appropriate learning metric for an ITS would satisfy a number of criteria. First, 

the researchers need to decide on a set of knowledge/skills to master and a threshold for each that 

specifies adequate mastery. Second, the researchers need to measure the amount of training time 

(and/or the rate of learning) until mastery is reached for each knowledge/skill. Third, the 

researchers need to measure the total training time to master the total set of knowledge/skills. 

Our conjecture is that a good ITS will eventually meet these criteria whereas conventional 
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trainers will either fail to reach performance thresholds or will take much more time to reach 

mastery of deep knowledge/skills. 

 

Materials 

The developers of the materials in most of today’s ITSs require at least three forms of expertise: 

Subject matter knowledge, computer science, and pedagogical strategies. Subject matter 

expertise will always be needed, but there has been the dream of creating authoring tools that 

minimize expertise in computer science (Ainsworth & Grimshaw, 2004; Aleven et al., 2009; 

Murray, Blessing, & Ainsworth, 2003). The authoring tools would be so easy to navigate and use 

that only modest expertise in information technologies would be adequate for a subject matter 

expert to create the learning materials. Imagine teachers in K12 and designers of MOOCs 

(Massively Open Online Courses) being able to develop materials for ITS environments. 

Imagine Nobel Laureates creating materials in less than a month to be shared directly with the 

world through ITS technologies. Unfortunately, the complexity of current ITS technologies has 

been a major challenge to this lofty goal. With rare exception, those who create the materials for 

current ITSs have moderate to high computer science expertise. Moreover, their knowledge of 

pedagogy is unspectacular.  

 

We argue that the authoring tool bottleneck is best confronted by developing a science of 

authoring processes that helps the field better understand what training and information resources 

are needed. Just as there are sciences of writing, engineering design, software development, and 

other creative endeavours, there needs to be a science of creating materials for advanced learning 
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environments in the future. Without a systematic science of the cognitive processes, 

technologies, and metrics of assessment, the bottleneck will continue to exist. 

 

Money 

The expense of developing an ITS is often expressed as a concern of those who make budget 

decisions (Fletcher, 2014; Fletcher & Morrison, 2012). Graesser and King (2008) projected the 

following estimates of costs: “Approximate costs for an hour training session with conventional 

computer-based training would be $10,000, for a 10-hour course with conventional computer-

based training and rudimentary multimedia would be $100,000, for an information-rich 

hypertext-hypermedia system would be $1,000,000, for a sophisticated intelligent tutoring 

system would be $10,000,000, and for a serious game on the web with thousands of users would 

be $100,000,000” (pp. 130). Colleagues have raised questions and have sometimes disagreed 

with these estimates, but we would argue that the estimates are within an order of magnitude of 

being correct. 

 

The internet entirely changes the landscape on costs. A learning environment that costs $100 

million to develop is inexpensive if it can be delivered to 10 million people, but too expensive if 

only to 10 people. The population of course delivery is therefore very important in the 

consideration of costs. We would argue that it is also very important to consider the depth of the 

knowledge/skills. Higher cost is essential if it is the only way for the students to receive deep 

knowledge/skills. A $1 million system is worthless if it never progresses students beyond 

shallow knowledge and if depth is required. There need to be concrete answers to stakeholders 
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on the costs for achieving the targeted levels of expertise in addition to planning, developing, 

testing, and scaling up any ITS.  

 

A number of concrete answers have been identified to lower costs and meet the pedagogical 

requirements of deep learning. Four solutions are addressed here. First, there needs to be 

standards for reusing learning objects in different systems in a manner that supports smooth 

interoperability between systems. The military took the lead with their Advanced Distributed 

Learning initiative (Fletcher, 2009) and the development of SCORM (Shareable Content Object 

Reference Model) standards for learning objects. Suppose that a chestnut learning object of 1-10 

minutes is developed by any creative instructor in the internet universe. If it has the right 

structure and metadata, it can be shared with millions of others and incorporated in an ITS. It 

takes only one chestnut learning object to meet standards and once that is achieved it can go viral 

and save costs. Second, authoring tools can be used to develop new learning objects with the 

ideal content, constraints, and metadata to be shared with other learning management systems. 

The authoring tools will of course need to be designed to maximize interface design for those 

with minimal computer science experience. Third, there needs to be a computational 

infrastructure to support these goals of sharability, interoperability, reuse, and so on. And fourth, 

it is important to tap into the successful ITS technologies that have already been built. There 

have been three decades of ITS development for basic universal skills, such as mathematics, 

physics, engineering, reading, and scientific reasoning. We need to capitalize on these landmark 

investments. 

 

Generalized Intelligent Framework for Tutoring (GIFT) 
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The Generalized Intelligent Framework for Tutoring (GIFT) architecture is a major initiative by 

the Army Research Laboratory that targets some of these core ITS roadblocks (Sottilare et al., , 

2013; Sottilare et al., 2014). From the standpoint of the present book, the hope is that a 

systematic architecture (such as GIFT) will help overcome obstacles in building serious games in 

a manner that minimizes costs and development time, but maximizes student learning and 

motivation. Two roadblocks that GIFT concentrates on are the lack of modularity and the lack of 

shared standards, in addition to the other challenges articulated in this previous section. GIFT has 

three high-level components that are widely acknowledged in computer-based learning 

communities: 

1. Standards-based, modular ITS components (i.e., learner models, pedagogy modules) 

and authoring tools to support authoring for these components, 

2. An instructional manager that facilitates selection from the best pedagogical 

strategies, and 

3. A testbed to study the impact of different ITS components and pedagogical strategies 

on learning. 

 

This section is pitched at a somewhat technical level that can accommodate a diverse set of 

learner models and pedagogical strategies. An architecture such as GIFT guides curriculum 

designers, empirical researchers, and software developers in a coordinated manner. GIFT has 

multiple complementary functionalities: a service specification for connecting ITS components, 

the specific ITS components implemented by the standard GIFT runtime, and authoring tool 

suites. GIFT fulfills these objectives by adhering to modular design principles. That is, it needs 

to separate components so that they can be substituted for others that perform similar functions. 
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These principles are also important for integration with third-party systems (e.g., game worlds), 

as they impose a well-defined interface for communicating with new systems. 

 

GIFT addresses a serious challenge for the ITS community that has been recognized for over a 

decade. As discussed earlier, a major blocking point for scaling up ITSs has historically been the 

cost of development. This is particularly important for game-based ITSs that must incorporate 

complex tutoring functionality into an often already complex gaming environment. One solution 

is to tightly integrate the game environment with tutoring. Well-established systems such as 

Crystal Island (Rowe, Shores, Mott & Lester, 2011) and Operation ARIES and Operation ARA 

(Halpern et al., 2012; Millis et al., 2011) use tight integration, such that several ITS principles 

and algorithms impose significant constraints over the entire game. The good news is that both of 

these systems have shown learning gains at deeper levels. One potential liability of these 

complex systems is that they scale poorly whenever a custom solution is required for each new 

game, unless the system can be decomposed into functional pieces.  

 

The GIFT architecture takes an approach that emphasizes a loose, service-based integration of 

tutoring systems into games (Sottilare, Goldberg, Brawner, & Holden, 2012). Thus, the game 

environment imposes most of the constraints, whereas ITS principles are woven into the game to 

enhance the game. To date this has been accomplished technically with two serious games (Nye, 

Hu, Graesser, & Cai, in press): Virtual BattleSpace 2 (a first-person shooter game) and VMedic 

(a combat casualty care game, Engineering and Computing Simulation, 2012). There are 

advantages to having ITS components being modular to the point of being used in many different 

games. It increases reuse of components, which has strong practical benefits. Direct development 
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costs for transferring tutoring to new game platforms are reduced, since only platform-specific 

mechanisms need to be redesigned, rather than the entire pedagogical decision-making system. 

Unfortunately, however, empirical data are not available that assess whether Virtual BattleSpace 

2 and VMedic help student learning or motivation, and also whether there are major reductions 

in development time and costs. Such assessments are currently underway. 

 

It is important to emphasize that GIFT is designed to increase quality but simultaneously 

decrease development costs. Tutoring can be developed for one game, then ported to a second 

game with similar content. This is a general benefit of modularity and separation of components 

in software design: Building components and strategies that are highly portable allows 

researchers to design components and then have them tested and refined more effectively. The 

researchers who use the tools may vary in expertise, ranging from computer scientists to 

curriculum developers who have limited computer technology skills. Modularity also allows 

GIFT to use the same suite of authoring tools across multiple domains and learning 

environments. GIFT is a relatively new architecture, so the magnitude of such benefits remains 

unclear. We argue that the ability to build or modify an ITS “piece by piece” is an important 

avenue that could drastically reduce barriers to developing ITS in the long term. 

 

GIFT Real-Time Adaptive Components 

The major GIFT real-time components are summarized in Nye, Sottilare, Ragusa, & Hoffman, 

2014, see Figure 4.1 of that article).  There is a Tutor-User Interface that interprets the input of 

the learner and transmits system actions to the learner environment. A Gateway Module acts as a 

bridge to third-party environments, ranging from 3D gaming environments to productivity 
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applications such as Microsoft PowerPoint. The Gateway module allows the rest of the system to 

remain separate from the specific game or learning environment. Multiple modules may split this 

functionality, such as SIMILE (Student Information Models for Intelligent Learning 

Environments), a dedicated system for monitoring performance in a learning environment 

(Engineering and Computing Simulations, 2012). A Sensor Module acts as an interface to third-

party sensors, such as biofeedback sensors and emotion classifiers. Such components are 

increasingly popular in ITS research as researchers explore the roles of motivation and affect in 

learning (Calvo & D’Mello, 2010; D’Mello & Graesser, 2010, 2012; McQuiggan et al., 2010). A 

Domain Module manages information about the specific domain of instruction (e.g., algebra, 

military medicine, etc.), which is read from a Domain Knowledge File (DKF) for the current 

tutoring domain. A Learner Module tracks learners’ knowledge, performance, emotion, and 

social states and thereby determines how well they have mastered the material and estimates 

their capabilities for future interactions. Additional learner information may be communicated to 

the learner module by external systems, such as the Learning Record Stores (LRS) that maintain 

biographical data and historical learning data. Finally, a Pedagogical Module contains 

instructional strategies that can be selected during a session. These strategies determine the 

strategies and skills that guide how GIFT intervenes to improve learning. 

 

GIFT intervenes in a gaming environment by monitoring the states and shifts in the learner’s 

state, and then using these shifts to select instructional strategies. The goals of GIFT strategies 

are intended to increase domain knowledge, but in a game environment there are also the goals 

of maintaining motivation and persistence. The representation of pedagogical strategies in GIFT 

consists of IF <state> THEN <action> production rules, a standard representation for 
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strategically selecting instructional strategies. Rule-based tutoring strategies have a long history 

in ITS (Anderson et al., 1995; Graesser, Conley, & Olney, 2012; Woolf, 2009). The system 

watches over the landscape of current states existing in the working memory. Then, if particular 

states exist or reach some threshold of activation, then a production rule is fired probabilistically. 

Contemporary rules are never brittle, but rather are activated to some degree and 

probabilistically. GIFT strategies are intended to be domain independent and are later resolved 

via domain dependent tactics that are specific to the instructional domain and that activate 

actions in the game environment (Nye, Sottilare, Ragusa, Hoffman, 2014). 

 

The general GIFT processes and components provide multiple levels of adaptivity to learners. 

The example in Figure 4.1 focuses on microadaptive behavior, also sometimes referred to as the 

inner-loop or step-based tutoring (VanLehn, 2006). Microadaptivity occurs when a system 

supports the user on one or more ongoing tasks or goals. GIFT can also provide macroadaptive 

support for learning, sometimes called outer-loop adaptivity. Macroadaptivity includes selecting 

tasks or problems for the learner to solve, usually with the intention to keep problems within a 

learner’s zone of proximal development. 

 

GIFT Information Flow 

A simplified view of GIFT information flow can be considered when providing real-time 

microadaptation. GIFT is under active development, so some of these functions are likely to 

evolve over time (the current version is GIFT 4.0). Rather than focusing on specific details or 

mechanisms, we trace how knowledge flows through the system in order to explore how data 

about the learner, the learning environment, and the domain are processed by instructional 
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strategies in GIFT to produce meaningful pedagogical actions for a gaming environment. Table 

4.1 gives a high-level overview of how GIFT uses strategies and tactics to select actions that 

impact the learner as they interact with a game. Each of these steps will be described briefly. 

Symbols are assigned to various information states and functions noted in Table 4.1 to facilitate 

referencing the information in each step. 

< TABLE 4.1 HERE> 

 

Session Inputs: Sensors and the Learning Environment (Step 1) 

GIFT strategies have three main sources of information: the learning environment for the user 

(1.A), the external sensor data streams (1.B), and the model of the learner based on accumulated 

events over time (1.C). The learning environment could include the user interface, the state of the 

game world, or possibly the state of an accompanying slideshow presentation. Events with 

information about user behavior (Et) are sent in real time to GIFT from the communication 

module for the learning environment. External sensors may also provide information about the 

learner (Dt), such as biometrics and emotion classifiers. Each of these input sources reaches the 

learner module by a separate path. While learner behavior from the communication module 

passes through the domain module (Steps 2-4), sensor information is directly fed to the learner 

module. Many sources of information are integrated into the learner module (DL), such as 

persistent learner data (i.e., data stored in a learning management system) or biographical data 

(e.g., gender, age, etc.). Considerable information is not likely to change during a single learning 

session, so they will be treated as invariant for this discussion and will reside in 1.C. However, in 

practice, their states may change during a session. 
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Assessing Performance: Domain Module (Steps 2-4) 

The domain module uses the events and information from the learning environment to assess 

performance on a set of domain concepts (C). Two types of concepts exist: low-level concepts 

(CL) that are evaluated based on performance assessment rules and higher level concepts (CH) 

where performance is inferred from performance on lower level ones. Thus, there is a 

hierarchical structure of grain size, with a threshold differentiating low from high. Assessment 

rules are stored in a domain-knowledge file (DKF), which contains all the domain-specific rules 

and concepts for the tutoring system. For each low-level concept, the performance assessment 

rules for each concept (Rc) use the learning environment events to classify performance as 

“Below Expectation,” “At Expectation,” “Above Expectation,” or “Unknown” (for when it is not 

yet assessed). For higher level concepts, performance is derived from the performance of child 

concepts through an aggregation function that “rolls up” performance (Fc). External performance 

assessments can also be received, such as those calculated by SIMILE, a dedicated system for 

monitoring performance in a learning environment (Engineering and Computing Simulations, 

2012). Third-party systems such as SIMILE can calculate and transmit assessments from a game 

environment, acting as a bridge between GIFT and a specific gaming environment. After 

performance is assessed, these assessments are sent to the learner module and pedagogy module. 

 

Strategy Selection: Learner and Pedagogy Modules (Steps 5-7) 

Performance and sensor data are considered in either discrete or continuous states. A large 

enough change to any of these states in the learner module can trigger a search for an appropriate 

strategy to support the learning goals. This selection process is handled by the pedagogical 

module, which considers the current learner state (sensors and learning assessments) and the 
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prior learner state. For any given transition, one instructional strategy may be selected by the 

pedagogy module. The strategy selection process (FS) is determined by functions in the 

pedagogy module, which may be rules (similar to the DKF) or more advanced Java functions. In 

general, rules are used and different transitions may be combined using Boolean operators (e.g., 

AND) to determine the conditions for selecting a domain-independent strategy decision. For 

many transitions, no strategy may be activated. In that case, the pedagogical module waits until 

the next strategy trigger occurs. When a strategy (St) is selected, it is sent to the Domain Module 

for evaluation. At this stage, the strategy decision may be referred to as an “abstract strategy” 

because it is not domain specific. 

 

As a concrete example, consider the transition of a student being engaged in a task versus 

disengaged or bored. This is a transition that can be sensed from multiple channels with some 

degree of accuracy (Calvo & D’Mello, 2010; D’Mello & Graesser, 2010). One selected 

pedagogical strategy would be to increase or decrease the difficulty of the assigned next task 

(D’Mello & Graesser, 2012), which would depend on the performance level of the student in the 

session. For comparatively higher performers, more difficult tasks would be selected in order to 

increase the challenge level. For lower performers, easier tasks would be selected because the 

existing difficulty level is beyond what the student can handle. So the general abstract 

pedagogical strategy in this example is to adjust the difficulty level of the next task when there is 

a large discrepancy in engagement and the adjustment depends on specific knowledge states and 

performance of the learner. Production rules capture these contingencies in GIFT and there is 

empirical evidence for some of these production rules. An affect-sensitive AutoTutor has been 

shown to improve learning in comparison with an affect-neutral AutoTutor (D’Mello & 
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Graesser, 2012) but it is too early to quantify effect sizes for particular strategies at this point in 

the science. 

 

From Strategies to Tactics: Domain Module (Steps 8-9) 

After a general strategy is selected, it must be translated into a more specific form that is suitable 

for the domain. For example, an abstract strategy decision might be: “Provide corrective 

feedback for Concept A.” The Tactics component of the domain module must map each strategy 

to a domain-specific decision. At present, tactics (T) are mapped on a one-to-one basis to 

abstract strategy decisions (S) in GIFT. This mapping (FA) is defined as part of the domain-

specific information. As an example, a tactical decision for a math domain to “Provide corrective 

feedback for Concept A” would be to inform the learner that the correct answer is 5, but their 

answer was 8. Alternatively, for a medical domain, Concept A might be a diagnosis, so tactical 

design could inform the learner that their diagnosis of anemia was wrong and that the correct 

answer was scurvy. Once a tactical decision has been made, this decision (Tt) will be sent to the 

learning environment, which will take some actions that will implement the decision. So 

continuing the example of corrective feedback, the learning environment might provide a 

voiceover that speaks the corrective feedback. In a different learning environment, this feedback 

might be provided using a text hint instead. This modularity makes GIFT well-matched for 

integrating intelligent tutoring into a variety of game environments. 

 

Closing Comments 

The technical specifications of GIFT help organize the ITS side of the GIFT-ITS marriage. That 

is, all ITSs must somehow fit into the GIFT conception of ITSs. However, what about the 



Chapter 4 24 

motivating game elements? Our conjecture is that game components can fit in the same 

architecture with little or no problems other than understanding the essence of games. Game 

features are essentially like any other subject matter, namely complex, multifaceted, and ranging 

from brittle to probabilistic in is mechanism. Just as math can be merged with physics, so can 

games. Angry Birds and Newton’s Playground (Shute & Ventura, 2013) are success cases in 

illustrating the meshing of game constraints with formal systems. 

 

But alas, games have some constraints that are very different than the components of deep 

learning and that will pose challenges to meshing the worlds (Adams & Clark, 2014; Graesser, 

Chipman, Leeming, & Beidenbach, 2009). We believe it is most feasible to embed ITS modules 

within existing game environments to enhance the game, such as intelligent dialogue, 

simulations, and so on. The native motivational features of a successful game will be minimally 

compromised by the embedded intelligent features. We believe it is possible to add game 

features to ITS and thereby attempt to enhance motivation (called gamification), but that may 

have limited success for reasons articulated below. Finally, we believe that it will be extremely 

difficult to develop a game that has components that are closely aligned with the constraints of 

an ITS because the constraints are very different. Below are some of the pressure points that may 

make it difficult, or even impossible, to design some game-ITS technologies that show benefits 

for deep learning.  

 

1. Non-germane load bloat. The cognitive load from the game elements may not be 

germane to the mastery of the serious subject matter and ultimately reduce deep 

learning (Adams et al., 2012). For example, if the narrative, fantasy, and competition 
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components take up too much time and are profoundly distracting, then an 

insufficient amount of deep learning may be achieved. The penalty may persist over 

and above the added time the game elements afford for intrinsic motivation and self-

regulated learning. When this occurs, there are no payoffs for the game elements on 

any metric, including the integral learning-time metric discussed earlier.  

 

2. Feedback guideline clashes. Feedback is an important aspect of both ITSs and 

games. However, the timing and nature of the feedback may be very different for the 

two worlds. Games often provide timely, if not quick, feedback to the learner about 

the quality of their contributions in order to keep the student in what 

Csikszentmihalyi (1990) called the state of psychological flow. Flow is intense 

engagement to the point where time and sometimes fatigue psychologically 

disappear. In ITS technologies, there needs to be time for thought and reflection over 

the depth of the material, a timing pattern that might clash with the speedy tempo of 

games. In essence, there will be a clash in timing if online temporal dynamics are 

incompatible in games and ITSs. There may also be traffic jams among feedback, 

particularly in complex environments with many competing tasks. Prioritizing 

feedback in a dynamic, game-based environment is non-trivial. Similarly, there may 

be clashes in the qualitative feedback, such as justifications, explanations, and 

recommended actions. Qualitative feedback is perhaps the hallmark of ITS deep 

learning, but hard core gamers may not appreciate technical content encroaching on 

their game experience. The serious content needs to be smuggled into games in slick 

ways that routinely stymie game designers that aspire to build serious games.  
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3. Content collision between narrative and deep learning. The ideal is a seamless 

harmony between the game narrative and the subject matter content. Unfortunately, 

the odds of that happening may be akin to a film director winning an Academy 

Award. What is the typical integration scenario? Either the narrative does not 

promote the difficulties of the subject matter, or the narrative is incoherently boring 

as it caters to the constraints of the subject matter. It is safe to assume that the two 

worlds are in collision unless a genius can find ways to connect them. That being 

said, there may be some realistic approaches in meshing narrative with ITSs to 

promote deep learning. Specifically, the ITS modules can be embedded within the 

game world to increase the intelligence of game components and to avoid interfering 

with the conceptual integrity of the game constraints.  

 

4. Control struggles. The learners want to be in control and follow their whims in a 

capricious trajectory that is guided by intrinsic motivation or possibly self-regulated 

learning. The harbingers of deep knowledge want to be in control over the learning 

experience to satisfy the curriculum, pedagogy, and efficiency metrics. This is a 

power struggle. 

 

5. System engineering disconnections. These various incompatible constraints might 

possibly be resolved by a cost-benefit analysis that maximizes progress. That will not 

happen if stakeholders wallow in their professional caves, guard their positions, and 
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resist communication and compromise. A cost-benefit analysis needs to be quantified 

in monetary units.  

 

It is very true that there are struggles in solving anything fundamental to society. However, we 

continue to be skeptically optimistic on promoting the game-ITS marriage because the lofty goal 

of turning work into play may be in sight with enough effort, coordination, science, and 

creativity. We need to see more success cases of systems that apply game features to intelligent 

tutoring systems, that weave ITS modules into game components, and that have successful 

dances between  the constraints of games and subject matter domains. More success cases are 

needed before we can answer the question of whether serious games can promote deep learning 

of difficult academic material. 
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 Table 4.1 

High-Level Summary of GIFT Strategy Evaluation 

Step Module Description Functional Expression 

1.A Communication The learner interacts with user interface 

and game environment, which sends 

events to the domain module 

Et – Events from user 

behavior at time t 

1.B Sensor Sensor data states (e.g., emotion 

classifications) are sent directly to 

Learner Module 

Dt – Data from sensors at 

time t 

1.C Learner Persistent learner model data, such as 

the contents of a learning management 

system 

DL – Persistent learner 

model data 

2 Domain Performance assessment rules estimate 

discrete performance (e.g., below, at, or 

above expectation) on low-level 

domain concepts (CL) 

Pc,t – Performance on 

concept c at time t 

Rc = Rules to assess c 

Pc,t = Rc(Et)     c  CL 

3  Domain Performance for higher level concepts 

(CH) “rolled up” (aggregated) from 

lower levels 

Fc – Roll-up function for c 

Pc,t = Fc(CL)     c  CH 

4 Domain Performance assessment states sent to 

pedagogical module and to learner 

module 

Pt – Performance states for 

all concepts at t 

Pt = [Pc1,t, Pc2,t, … ] 
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5 Learner Learner state changes on domain 

performance (Step 5) or sensors (Step 

1.B) trigger strategy evaluation 

 

6  Pedagogy Instructional strategy selected based on 

the transition from the prior to current 

learner state 

St – Strategy for time t 

FS – Strategy selection code 

for pedagogy module 

St = FS(Pt-1, Dt-1, Pt, Dt, DL) 

7 Pedagogy Strategy selection is sent to the domain 

module 

 

8 Domain 

(Tactics) 

A strategy selection is mapped to a 

domain-specific tactic (T) 

Tt – Tactic selected 

Tt = FT(St) 

9 Communication A tactic causes one or more actions (A) 

to occur to the game environment (e.g., 

hints, changes in difficulty, etc.) 

At – Actions for time t 

FA – Map of tactics (T) to 

environment actions (A) 

At = FA(T) 

 


