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An Interactive Machine Learning Approach to 3D Geographical Region Annotation 

1. INTRODUCTION

The study of geographical features is an inherently 3D problem. Heights, depths, slopes, and volumes are 

integral in studying such natural phenomena as coastal dune morphology and glaciology [2]. These 

quantities can be extracted from satellite imagery, IR- or LiDAR-based measurements, etc., where digital 

elevation models are also available; however, this requires either significant manual labor or reliance on 

error-prone fully-automated approaches that also require significant amounts of training data. By utilizing 

the human-in-the-loop approach of previous work [1], we can enable an analyst to work as a team with 

the machine from cold start (if necessary) to teach it which geographical features are important. In return, 

the machine will rapidly locate these features, segment them out, and create a full 3D visualization for the 

analyst. 

In this report we describe a new interactive machine learning methodology to 3D geographic region 

segmentation which allows analysts to identify, locate, segment, and visualize 3D- geographical regions 

where imagery is available alongside a digital elevation model. We also demonstrate the use of the tool, 

its human-machine interface for segmentation, as well as the current state of its visualization features. We 

also discuss the current and future directions for this tool. 

2. BACKGROUND

2.1 Binary Classification and Supervised Learning 

Binary classification as applied to image segmentation involves every pixel of an image being labeled 

as either having full membership to the class, denoted as a positive label, or no membership to the class, 

denoted as a negative label. Binary classification is a subset of the supervised learning methods, which 

means that some amount of previously-labelled data is required in order to make predictions on future 

data. This predictive capability is given in the form of function estimation done by the classifier after 

being exposed to the training data. The classifier is the mapping from input data to label class, i.e., a pixel 

within an image and its associated color channel data will be predicted as belonging to the “positive” 

label class or the “negative” label class, based on previously-encountered data. In the way, we can make 

predictions about where in the image our important geographical features might lie. For more information 

on general supervised learning and classification, see reference [9]. 

2.2 k Nearest Neighbors 

k nearest neighbors turns a labelled data point into a corresponding feature vector in n 

dimensional space, where n is the number of features in the data set. A feature is any degree of freedom in 

the data set, such as the “redness” or “height” associated with any given point in the feature space. Our 

tool operates on pixels in a raster, where each pixel has a value for at least four different features: red, 

green, blue, and height or depth.  

The feature vectors in KNN form the classifier model: when a new, unknown pixel and its associated 

features are passed to the KNN classifier, it simply compares the new feature vector with all of its 

previously-labelled feature vectors, and performs Euclidean distance measurements. The k nearest feature 

vectors decide the label class of the new pixel, giving the KNN classifier its name.  

In general, it is not a trivial task to locate the nearest members in feature space and use that information to 

make a mathematical prediction of the label. Our implementation employs an uncertainty model where 

_____________
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we obtain a quantity that reflects how strongly the classifier believes in its predictions. This quantity is 

normalized between zero and one, with zero corresponding to a prediction with no certainty whatsoever 

(essentially, a coin-toss) and one corresponding to a prediction with absolute certainty. Specifically, the 

uncertainty 𝑈𝑎(𝑝𝑗) for some pixel j with feature vector 𝑝𝑗 is the same as that in [1] and is given by

𝑈𝑎(𝑝𝑗) = 1 −

|∑
2𝐶𝑎(�⃗�𝑘) − 1

(1 + ∆(𝑝𝑗 , 𝑝𝑘))
𝑛

𝐾
𝑘=0 |

𝐾

where ∆(𝑝𝑗, 𝑝𝑘) is the Euclidean distance between the feature vectors for pixels j and k, 𝐶𝑎(�⃗�𝑘) is the

previously labelled classification value of 0 (negative class) or 1 (positive class) of the kth pixel and is 

provided as the user works through an image, n is the dimensionality of the feature set, and K is the 

number of nearest neighbors to consider and is specified on startup. This chosen form for uncertainty aids 

us in reducing bias towards strongly-confident and conversely very unconfident predictions, based on 

experimentation.  

2.3 Image Segmentation 

The problem of image segmentation is one of separating the important parts of an image from the 

background. For example, identifying all of the pixels which make up an individual’s face in a 

photograph taken of a crowd. Perhaps known most commonly in the medical imaging field [3] or 

autonomous vehicle technology [4], image segmentation is also commonly used in geographic 

information systems [5]. This process can be done completely manually [6], completely automatically [7], 

or somewhere in between as in our case. The KNN classifier is utilized alongside the user to accomplish 

this approach. Since the KNN is a pixel-based classifier, individual pixels along with their associated 

feature vectors are given to the KNN and it will then indicate whether it thinks that pixel is positively or 

negatively labeled with respect to the class. By performing this pixel-based classification for each pixel in 

an image, we are able to clearly locate and label larger-scale geographical regions of importance. From 

there, we may conduct further analysis on the labelled objects within the image such as visualization and 

measurement. 

2.4 Interactive Machine Learning 

Interactive machine learning (IML) [8] is a subset of human-in-the-loop methodology that 

necessitates a user actively confirmed or correcting the machine implementation’s actions, while the 

machine immediately learns and applies those confirmations and corrections. To assist an analyst in 

performing the task of locating and labelling interesting geographical features from imagery, we employ a 

KNN pixel-based classifier; this will make up the “machine” portion of the human-machine team. This 

team-based approach is what gives us the flexibility to operate from cold start: no previous training data is 

available, but the task is not entirely manual labor either. In an IML approach, we provide labelled 

training data to the machine as we work with the dataset, in small chunks at a time. The machine then 

takes what it knows about the system and gives to the user a suggestion for what it thinks is the correct 

answer. The user can then accept or correct the machine’s suggestion, and the corresponding response 

from the user will generate new ground-truth data for the machine to process and learn from. Over time, 

the machine’s confidence in labelling new data will grow more in line with the data that has previously 

been given to it by the user’s interactions. 

3. IMPLEMENTATION
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Our approach to semi-automatic segmentation of 3D geographical regions is a multiple-step process 

which involves the analyst in each step to ensure accuracy and enforce the learning of the machine 

partner. For this report, we assume that the imagery contains at least one instance of the region or object 

to segment and analyze. With that assumption, the process can be summarized as follows: 

1. Locate a region of interest – be it a dune formation, mountain, or other 3D object within the 

raster. 

2. Determine the 2D spatial extent of the region. 

3. Generate additional points within the segmented area to aid in the 3D visualization of the 

geographical region. 

4. Visualize and/or process the now-segmented region for analysis. 

5. Either look for more instances within the raster to process or save the results. 

Between and during each of these steps, the user is given opportunity to interact with the machine’s 

segmentation process by verifying or correcting it as needed. 

 

3.1 Locating the Region 

 

In the cold-start case, our KNN implementation has no model with which to classify each pixel. In 

such a circumstance, the analyst will give the machine partner a head start by manually identifying the 

general region of interest. 

 

If the classifier has already been trained, be it from previous images or previous segmentations within the 

same image, a search for a candidate insertion point will be performed. For simplicity, this search is 

currently a column-based approach that utilizes the confidence model in [1], though any instance-based 

classification model that yields a confidence metric may be used. The insertion point is then determined 

by the following process: first, the classifier performs a raster-wide classification of each pixel and then 

searches for which three adjacent columns has the largest total confidence value. Then, the insertion point 

is simply the point within those three columns with the largest or smallest value in the height map. This 

behavior can be set by the user at startup, depending on the expected properties of the feature of interest. 

Finally, once the insertion point is found the user can correct the initial insertion point before proceeding 

by simply dragging the center or “peak” vertex to the preferred location. This manual correction may or 

may not be needed depending on the 3D shape of the region in question, as well as the underlying 

resolution of the elevation model. If there exist many points within the region that have equal or roughly-

equal elevations, the physical peak of the object might not be located at the suggested insertion point. For 

example, the user may want the insertion point to be in the center of a plateau rather than on the outer 

edge of a region where all of the height values are equal to the maximum height of the segmented region. 

 

3.2 Determining the 2D Spatial Extent of the Region 

 

Once the location of the region has been specified, an initial set of three vertices forming a polygon 

will then be overlaid onto the raster within the training window centered at the insertion point found in the 

previous step. It is now up to the human-machine team to add additional vertices to this polygon, which 

will form the 2D spatial extent of the region.  

 

When the user identifies an edge to place a new vertex upon, a one-dimensional signal search space is 

created perpendicular to that edge both inside and outside of the existing polygon, terminating on the 

interior of the polygon when the opposing edge is reached. The signal search space consists of the pixels 

and their associated feature vectors, which will be each be given to the classifier for classification. The 
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classifier will compute a confidence value for each pixel and a placement algorithm will determine the 

location for initial insertion. This vertex placement algorithm can be chosen from a set of several, based 

on the user’s needs. Different vertex placement algorithms’ performance will vary based on the context. 

The current choices for vertex placement algorithms are given in Table 1, and are the same as those in [1]. 

 

Table 1 — Vertex placement algorithms 

 

Type Description 

Best Edge 
The vertex is placed at the largest change in projected classification between 

neighboring pixels along the search signal space. 

Split Point 

Places the vertex at the location which maximizes the number of “label” pixels 

on one side while also maximizing the number of “non-label” pixels on the other 

side. 

Near 

Continuous 

Attempts to find the mid-point of the “phase transition” from “label” to “non-

label” by identifying a region with several minimally-certain pixels lie along the 

search signal space. 

 

 

After the initial insertion, the user can accept the machine-generated insertion point for the new vertex, or 

they can drag it to another location as necessary for accuracy. By accepting a newly-placed vertex, the 

user is creating a new set of labelled feature vectors along the signal search space. The KNN 

implementation uses these new feature vectors as ground truth data and incorporates them into its 

classification model each time a vertex is accepted. 

 

This process of vertex insertion and correction (if necessary) is performed until the region is fully 

segmented from its surroundings. 

 

3.3 Generation of Interior Vertices 

 

The size of an object and the location and shape of its exterior boundaries is insufficient information 

to visualize it in 3D. Its elevation distribution is also required; or in other words, the digital elevation 

model must be sampled. There are two basic problems to solve here: how many samples of the elevation 

data are needed, and how are those samples distributed? In solving the “how frequent” problem, there is a 

balance to strike based context and user preference: too many samples of the height map will result in a 

cluttered 3D display and may cause performance issues on slower machines, but too few samples can 

result in reduced visibility of important 3D features. The distribution of the inner vertices ought to be 

context-specific. For example, organic shapes such as coastal dunes curve slowly and often have well-

defined peaks and troughs. By comparison, synthetic structures such as buildings can curve quite sharply 

and may have many points at the same elevation which make defining a singular “peak” pixel 

problematic. 

 

For now, the current implementation of the tool uses a fully-automatic approach to generating vertices 

that lie within the boundaries of the segmentation polygon once the user accepts the outer vertices. These 

vertices are placed within the geometry, and the distribution of these interior vertices is determined by an 

interior vertex generation algorithm (from those listed in Table 2, which is specified by the user at 

startup). The user should take care to choose which algorithm works best with their data set.  

 

Note that there is currently no adjusting or correction of these vertices once they are placed, as they are 

for 3D visualization purposes only and do not contribute to the classifier. Future implementations may 

intelligently place interior vertices which the user can adjust to improve placement. 
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Table 2 — Interior vertex generation algorithms 

 

Type Description 

Linear 

Points are evenly spaced along a line connecting the outer geometry vertices to 

the initial insertion point. Generally results in a “spider web” appearance. The 

number of vertices placed along these lines is set by the user. 

Grid 
Points are evenly spaced on an x-y grid within the geometry. The spacing is set 

by the user. 

Contour 
Points are placed along contour lines according to the underlying digital 

elevation model. The number of contour lines to generate is set by the user. 

 

 

3.4 Visualization 

 

At any time, the user can choose to visualize all existing vertices in 3D. The tool uses JavaFX to 

generate a point cloud of the vertices along with their associated connecting line segments to form a mesh 

which aids in visualization. The spacing of the points in 3D is determined by their pixel locations within 

the annotated raster along with the height map data associated with each pixel location. 

 

Within the visualization window, the user is able to freely move, scale, and rotate the point cloud in order 

to view the object from any angle or scale. The controls for this operation involve mouse movements 

similar to those used commonly in other 3D manipulation programs. Specifically, the user can click and 

drag the “front”-facing features to either rotate the object or translate it across the screen, depending on 

which mouse button is held. Additionally, the user can zoom in and out of the point cloud via the mouse 

wheel. 

 

When the visualization is no longer needed, the visualization window can be exited and further annotation 

or data export can be performed. 

 

 

3.5 Locating Additional Features and Saving Results 
 

When a geometry is fully accepted, the user can then search the image for another, similar region. For 

example, if the user wanted to find and segment a second mountain peak or dune formation. But first, the 

classifier must train on the already-labelled geometries. Care must be taken here, because by previously 

training on search signals that extended out to the end of the image, the tool may have inadvertently 

mislabeled pixels which should be part of the next geometry’s positive label class. For that reason, a 

rectangular area is defined around the previous geometries and the tool re-trains from scratch on all of (or 

a sample of) the feature vectors within that area. Then the tool can proceed to locating the new geometry. 

The search for the second feature is performed similarly to the first, using a column-based approach that 

utilizes pixel-based classification. The primary differences in this case are two-fold: first, the classifier 

will never be cold-start here, since it has the first geometry’s input as training data. Secondly, care must 

be taken to avoid considering pixels of the first region, or pixels too close to the first region, as 

constituting an entirely new region of interest. Since the goal is to find a distinct additional region, the 

user’s previously-specified training distance threshold is used to determine how far away a pixel must be 

from the first region in order to be considered for an additional insertion location. 

When the user is fully satisfied with their current imagery and that there are no more remaining features 

to segment, the user is able to train the classifier on all pixels of the image or just a sampling of them, as 
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desired. Then the user can move on to another image and use the now-trained KNN classifier to quickly 

locate a feature and repeat the segmentation process from there.  

In the future, the user will be able to save and export their segmented 3D regions for analysis and 

comparison; this is discussed in Section 6. 

 

4. EXAMPLE DATA SET 
 

 

Figure 1: Satellite imagery (left) and digital elevation model (right) of the “Dog Knobs” formation in northeastern Arizona 

A data set which would be well suited for analysis with this tool is one that has at least four 

available channels within its feature set: red, green, blue, and height or depth. This requirement is fulfilled 

any time satellite imagery is available alongside a digital elevation model of the same region. One can 

also use RGBD point cloud data generated by commercial LiDAR tools such as the X-Box Kinect.  The 

dataset can be processed by our tool as image files, or given as a set of .csv files where each file 

represents a data channel and each value corresponds to a pixel value for that channel. 

 

As an example of such a data set, we will use USGS imagery of a desert formation in northeastern 

Arizona named “Dog Knobs”, located at 35.6599° N, -111.9250° E. A satellite image of this area is 

shown in Figure 1 (left). This area contains several distinct hill formations, as is apparent from the height 

map data (also provided by USGS) presented in Figure 1 (right). 

 

5. DEMONSTRATION 
 

Upon loading the raster data into the tool, the user will be presented with a “Training Window” which 

is where all of the steps described in Section 3 will take place. With the “Dog Knobs” data loaded in, the 

training windows looks as such:  
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Figure 2: The example data set loaded into the training window 

 

 

 

 

From here, the user has the option of viewing all of the underlying feature layers of the raster by opening 

the “Layers” button in the upper right hand corner of the window. This is what the user would see if they 

were to enable the height map data (in our example, the layer named “depth”): 
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Figure 3: Toggling the elevation map data layer from the training window’s “Layers” menu 

 

 

Returning back to the normal view by unchecking the “depth” channel and re-enabling the “Training 

Image”, the user can then begin segmenting the “Dog Knobs” formation by right-clicking somewhere in 

the general vicinity of its peak. The user will then be presented by an initially three-sided polygon 

geometry as such: 
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Figure 4: Initial insertion of the annotation geometry 

 

 

The user will drag these pink (unaccepted) vertices to the desired location to fully contain the physical 

feature within, and then new vertices can be placed by right clicking again somewhere along the edges of 

the polygon. If the user were to return to the “Layers” menu and enable the “Classification Signals” layer, 

the user will see the following feature when adding new vertices: 
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Figure 5: Classification signal for vertex placement is made visible 

 

In Figure 5, a faint blue/red line is displayed along the line that the current unaccepted vertex is restricted 

to. This reflects the per-pixel confidence based on the current state of the KNN classifier model. Blue 

pixels denote confidence that the pixel is a positive label pixel, red pixels denote confidence that the pixel 

is a negative pixel, and the opacity of the signal corresponds to how confident the classifier is in its 

prediction. From Figure 5 it is clear that, currently, the classifier is quite confident that the pixels inside 

the polygon are positive pixels. Further, the classifier is identifying pixels within the search space outside 

of the polygon are negative pixels, but it is less certain about this region of the raster. 

 

Once the user has fully segmented the region in 2D, the user will accept the current geometry and then 

interstitial vertices will be placed for the purpose of 3D visualization. The completed 3D geometry 

including interstitial vertices is shown in Figure 6. The distribution of these interstitial vertices will be 

based upon the user’s settings within the Visualization Options menu. 
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Figure 6: Interstitial vertices are placed prior to 3D visualization 

 

To view the now-segmented 3D geometry, the user can access the visualization tool by opening the 

“Point Cloud” menu in the top menu bar as shown in Figure 7. 
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Figure 7: At any point, the user can visualize the currently-placed vertices in 3D by accessing the “Point Cloud” menu 

 

 

The visualization window will then pull the vertices from the training window and generate an interactive 

geometric mesh as shown in Figure 8. 
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Figure 8: The 3D visualization window. The colored boxes correspond to previously placed vertices from the segmentation 

process, and the connecting lines form a mesh which serves as a visual aid. Note this view can be rotated, translated, and scaled 

by the user as they see fit. 

 

 

 

6. CURRENT AND FUTURE WORK 

 

This work is currently under rapid, fulltime development and features are added, refined and 

expanded upon frequently. As such, there are a few choice features on the near horizon that are not quite 

ready for highlight within this report but present a road map to a more feature rich analysis suite. 

 

6.1 Save and export 3D geometries 

To aid in longitudinal studies of geographic features such as the changing morphology of coastal dune 

formations, analysts should be able to make meaningful, direct comparisons of the shapes and volumes of 

such features extracted from imagery. To make this possible, the user should have the ability to save and 

export 3D geometries for future comparison. Currently, we do not have an implementation for this feature 

but we are investigating which of the various 3D geometry file formats lend themselves most to this task. 

  

6.2 Measurements and analysis 

 

Because the geometry represents real-world geographical features we seek to study, it’s critical that 

we enable the analyst to extract real, physical measurements from the regions segmented by the human-

machine team. Under current development is a prototype of an analysis suite which will allow the analyst 

to, once a region is segmented, view various statistics and measurements about the region. Since pixel 

spacing is related to real-world distances, and the height map values are also related to real-world heights 

and depths, one can specify a simple mapping that can for example display areas, volumes, heights, 

slopes, etc. Another example under development is the ability to select 2D slices of the region for 

plotting. 

 

7. CONCLUSION 
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We have described the operation of a human-in-the-loop 3D geographic region segmentation tool 

which allows the user to import imagery alongside height map data to locate, segment, and visualize 

important 3D features.  

 

We have also described the types of input data currently accepted, and shown an example data set which 

highlights the features described by the rest of this manuscript. 

  

A demonstration of the current tool was provided with our example dataset as input. The complete 

process of locating the feature of interest, segmenting it from the rest of the image, and visualizing it in 

3D space was stepped through. 

 

Lastly, we discussed the features currently under development, and given the respective motivations for 

each proposed addition.  
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