
GAO/IMTEC-91-30			August 1991	A
RESTRICTEDNot to be released outside the General Accounting Office unless specifically approved by the Office of Congressional Relations.	Image: Additional state of the state of	BSY-2 Development Risks Must Be Addressed and Production Schedule Reassessed	SUBMARINE COMBAT SYSTEM	United States General Accounting Office Report to the Chairman, Subcommittee on Projection Forces and Regional Defense, Committee on Armed Services, U.S. Senate

يحدودها موجات

GAO	United States General Accounting Office Washington, D.C. 20548	
	Information Management and Technology Division	
	B-242594	
	August 22, 1991	
	The Honorable Edward M. Kennedy Chairman, Subcommittee on Projection Forces and Regional Defense	
	Committee on Armed Services	
	United States Senate	
	Dear Mr. Chairman:	
	The Navy's SSN-21 Seawolf nuclear attack submarine is designed to be the world's most advanced attack submarine. To perform its mission, the Seawolf will depend on its AN/BSY-2 (BSY-2) automated combat system to detect, classify, track, and launch weapons at enemy subsurface, surface, and land targets. The BSY-2 combat system is the largest Navy Ada ¹ software development project ever undertaken, requiring over 2 million lines of new Ada computer code to be developed, integrated, and tested with another 1 million lines of code written in other programming languages. BSY-2 development is being driven by the Seawolf submarine schedule; the first Seawolf is to be delivered to the Navy in 1995. The Navy currently has three BSY-2 combat systems under development.	
	At your request, we identified technical risks in the combat system's software and hardware development, including design, testing and integration, and the use of independent verification and validation (IV&V). A detailed explanation of our objectives, scope, and methodology is contained in appendix I. Department of Defense comments are contained in appendix II and are discussed throughout the report.	
Results in Brief	The risks that the Navy has allowed in the development of its BSY-2 combat system are serious and must be addressed. This combat system, which will largely dictate the effectiveness of the SSN-21 Seawolf attack submarine, is a mammoth software engineering challenge, costing \$1.4 billion for development and production of just the first three systems and involving over 3 million lines of code.	
	In its endeavor to meet BSY-2 delivery schedules, tied closely to the sub- marine's delivery, the Navy is not following some sound management	

 $^{^{\}rm I}$ Ada is a relatively new computer language used by the Department of Defense that encourages the use of modern software development methods to reduce costs.

principles and practices, and is pushing forward not only with development of the first three systems but also for approval of three additional systems. By doing so, the Navy could find itself with combat systems that fall short of their promised capability and could cost millions to enhance.

In particular, the Navy has (1) allowed an already demanding BSY-2 development and testing schedule to be further compressed, (2) not ensured that important software design tasks are complete, (3) based system development and production approvals on incomplete test and evaluation results, (4) limited its visibility over a significant portion of software component testing, (5) not ensured that retesting of critical software components will be adequate, (6) not ensured that central guidance on unit-testing has been provided to programmers, (7) not addressed early indications of processor and capacity problems, and (8) just begun to assign IV&V the priority it deserves.

We believe that the Navy must address these risks and adjust the BSY-2 development approach as warranted. Further, the Congress should not fund any additional systems until the Secretary of Defense certifies that the BSY-2 combat system is sufficiently developed and tested.

This report and our recommendations specifically address the BSY-2 combat system for the Seawolf attack submarine. We are currently reviewing other aspects of the submarine.

Background

The successful development of a fully capable BSY-2 combat system is critical to the Seawolf achieving its mission requirements. The submarine is intended to counter the Soviet Union's new generation of quieter, more capable submarines by being quieter, deeper diving, and tactically faster than previous submarines while providing other enhanced capabilities. BSY-2 is being designed to (1) enable the submarine to detect and locate targets more quickly, (2) allow operators to perform multiple tasks and address multiple targets concurrently, and (3) ultimately reduce the time between detecting a threat and launching weapons. The BSY-2 combat system and the Seawolf submarine are being developed concurrently, but are managed by different Navy program offices and built by different contractors. Costs for development and production of the first three BSY-2 combat systems are estimated at \$1.4 billion.

> n an Alexandria. Na shini a ta ƙasarta

	The first Seawolf submarine is scheduled for delivery in May 1995. In order to meet this timetable, the Navy contracted with the General Elec- tric Company in March 1988 for full-scale development and low-rate ini- tial production of three BSY-2 combat systems. Under the Navy's approach, BSY-2 development and production of three systems will be accomplished concurrently. The first combat system will be delivered for installation on the first submarine in November 1993 with all of the computer hardware and 86 percent of the needed software. The remaining software is to be completed by November 1994 for installa- tion by January 1995. The second and third combat systems will be used to develop, test, and integrate this software and will eventually be installed on the second and third Seawolf submarines.
	Before all software and hardware are developed in November 1994, the Navy plans to contract for up to three additional BSY-2 combat systems at an estimated cost of about \$900 million. Navy officials stated it is neces- sary to procure these three additional systems before completed devel- opment of the first system, in order to field submarines as soon as possible to meet the advanced Soviet submarine threat.
Building BSY-2 Is a Very Difficult Software Engineering Challenge	Building BSY-2 is an inherently difficult job. Developing, integrating, and fully testing BSY-2's estimated 3.2 million lines of code is an immense undertaking, further complicated in that over 2 million lines of code will be written in the relatively new Ada programming language. According to the May 1990 Ada Joint Program Office survey of 529 Ada projects, the lines of code in the BSY-2 program are exceeded only by the Air Force's Advanced Tactical Fighter.
v	Because there are not many experienced Ada software engineers and programmers, contractor software personnel will need to be trained to obtain the skills necessary to develop the system. According to Defense and contractor officials, the shortage of Ada-experienced personnel is due to the relative newness of the language, which entails a new approach to software development. ² To offset this shortfall, contractor staff are receiving Ada training from commercial vendors. However, classroom training cannot substitute for the experience gained from building an Ada system. Even with classroom training, Ada experts have stated that becoming truly productive in the use of Ada can take 4 to 6 months of experience.

 2 Ada facilitates the use of software engineering principles intended to decrease maintenance costs and improve reliability of software.

	Defense recognizes that developing BSY-2 is a difficult software engi- neering challenge, but believes that the use of Ada does not require additional skills and experience. Defense cites the BSY-2 contractor's Ada training program and its development of detailed design documents as initial successes.
	In the area of training, for example, Defense notes that personnel com- pleting the contractor's Ada software training program consistently scored above the 75th percentile on a nationwide test. However, this is very misleading since these exam results reflect the third time the stu- dents took the <u>same</u> proficiency exam containing the <u>same</u> questions. Furthermore, the exam measures only the student's knowledge of coding programs in the Ada language, and not the student's knowledge of the software engineering principles supported by Ada. Expert software developers that we spoke with, including officials from the Navy's Ada Joint Program Office, stressed that Ada training requires instruction on the Ada programming language as well as the software engineering prin- ciples it supports. The wise use of these principles is key to the effective use of Ada.
	Even with training, developers will need substantial experience before they become proficient and productive in the use of Ada. Defense's Ada Adoption Handbook states that developing a large Ada system without Ada-experienced personnel represents a substantial risk to successful development.
Tight Development Schedule Is Compressed Further by Delay in Critical Design Review	Early in the program, Navy and BSY-2 contractor officials recognized that development, integration, and testing of a combat system with over a hundred processors and millions of lines of computer code within the original 4-year development schedule would be difficult. The challenge has been exacerbated by a 1-year delay in the Critical Design Review (CDR). ³ According to contract requirements, CDR must be completed to establish a detailed design baseline for all hardware and software prior to the full initiation of software coding. As a result of this delay, the amount of time available for developing and testing the system has decreased about 25 percent, from the original schedule of over 4 years to just over 3 years.

³The purpose of CDR is to review the detailed design, test description, and operation and support documents with the contracting agency and to demonstrate to the agency that the detailed design satisfies requirements.

	CDR was originally scheduled to be completed in August 1989, but was not considered complete by the Navy until over a year later, in Sep- tember 1990. Contractor officials attributed the delay to an overly opti- mistic schedule—the contractor needed more time to finish required system engineering.
Some Design Tasks Not Completed at CDR	Navy and contractor officials stated that CDR was completed in Sep- tember 1990, and subsequently the contractor began coding and hard- ware development. However, certain detailed design tasks, contained in Defense Standard 2167 ⁴ and incorporated into the contract, were to be completed prior to CDR, but were still ongoing in November 1990. For example, detailed design descriptions for the software that will control the Seawolf's weapons, or the data base management system that will store critical navigation and target data used for launching these weapons were not completed in September 1990. These descriptions are critical because they provide a blueprint for programmers to code the system. Coding done prior to completion of these tasks will have to be modified if the code does not conform to the eventual detailed design description.
	Standard 2167 also requires the review of component test descriptions at CDR, including test input data, expected output data and results, and criteria for evaluating test results. These reviews help provide assur- ance that the tests will be adequate and will meet Navy requirements. However, plans for reviewing test descriptions of software components at CDR, to ensure that they are consistent with the software test plan, have been dropped from the contractor's Master Test and Evaluation Plan. Contractor and BSY-2 program office officials could not explain to us why the planned reviews were dropped.
	Defense does not believe that the delay in completing BSY-2's CDR adds to system development risk. Defense states that CDR was not a one-time event, but consisted of incremental document submissions and reviews, which had minimal impact on the overall development schedule. Defense suggests that extending the amount of time to complete CDR reduces technical and schedule risk by establishing a better under- standing of design and implementation requirements.

⁴Department of Defense Standard 2167, <u>Defense System Software Development</u>, June 4, 1985.

We recognize that Defense needs to take whatever time necessary to complete CDR satisfactorily. However, the original schedule for developing, integrating, and testing the system, which Navy stated would have been difficult to meet, has been compressed. Since the original 6-1/2-year schedule for combined design and development of the combat system has not changed, but the design period has been extended, the amount of time allotted for development—coding, integrating, and testing the system—has decreased from the original 4 years to just over 3 years. Although Defense argues that CDR was conducted incrementally for various system components, the bulk of the design reviews were not completed until mid-1990 or later, instead of by August 1989 as originally scheduled. Furthermore, these reviews resulted in hundreds of comments on and revisions to the BSY-2 detailed design and support documents.

Finally, Defense commented that complete detail design descriptions and reviews of software test descriptions are not required at CDR, and that the BSY-2 data base design is considered on schedule with all required documentation delivered to the Navy. However, Defense's comments are not consistent with its agreements. The BSY-2 contract's statement of work requires the contractor, at CDR, to (1) establish "the complete, modular, lower-level design" for each software component, and (2) produce a software detailed design document for each software component.⁵ Further, the contract provides for a review of the software test descriptions for each software component. In its comments, Defense states that detailed design documents for the weapons system were redelivered, but did not state whether they have been reviewed, completed, and accepted. While we sought clarification of Defense's statement and requested documentation to ascertain the status of the detailed design documents, Defense has yet to provide either.

Shortcomings in Testing and Evaluation Could Jeopardize Successful System Development Adequate test plans and early system testing are critical for ensuring that problems are identified and corrected. However, in several areas testing and evaluation have either been reduced or will occur late. This significantly increases the risk that design flaws and errors will not be detected until very late in system development, when they will be considerably more difficult and expensive to correct.

⁵These provisions are contained in Defense Standard 2167, and are contractually required in appendix D of the statement of work.

Page 6

Navy BSY-2 Development and Production Decisions Not Supported by Thorough Evaluation

To reduce risk and uncertainty before resources are committed, Defense policy⁶ requires that systems undergo test and evaluation before moving into either full-scale development or low-rate initial production. To support these milestone decisions on BSY-2 the Navy used, as allowed by Defense policy, assessments to evaluate its potential operational effectiveness and suitability.⁷ These assessments consisted of analyses of (1) computer modeling and simulation of the system; (2) program documents such as system requirements, engineering proposals, and design specifications; and (3) available subsystem test results.

At the request of the Chief of Naval Operations, the Navy's Operational Test and Evaluation Force (OPTEVFOR) attempted, in October 1987, to perform an assessment on BSY-2 before it proceeded into full-scale devel opment and low-rate initial production. However, due to the lack of validated system models and simulations, OPTEVFOR was unable to estimate the potential operational effectiveness and suitability of BSY-2 against the threat for which it is being designed. Instead, OPTEVFOR was only able to determine that BSY-2 was potentially more effective than predecessor systems, but could not say how much more effective. Nonetheless, the Office of the Secretary of Defense and the Navy approved BSY-2 to proceed into full-scale development and low-rate initial production; the fullscale development contract was awarded and production of the first BSY-2 system authorized in 1988.

In March 1990, OPTEVFOR performed another assessment. The assessment consisted mainly of analyzing BSY-2 and the Seawolf in mission-representative scenarios using computer simulations to determine if the systems met the threat. OPTEVFOR reported that BSY-2 was potentially operationally effective, but was unable to project whether it would be potentially suitable for satisfactory use in the field. Nonetheless, this assessment was used to support the Navy's decision to request funding for producing the second and third BSY-2 systems in 1991.

The significance of proceeding with BSY-2 full-scale development and low-rate initial production without a complete assessment of potential operational effectiveness and suitability to support the milestone decisions cannot be overstated. Defense may spend hundreds of millions of

⁶Directive 5000.3, Test and Evaluation, Mar. 12, 1986.

⁷Operational effectiveness is the ability of a system to accomplish its mission when placed in the planned operational environment. Operational suitability is the degree to which a system can be used satisfactorily in the field, considering, among other factors, availability, maintainability, and logistical support.

	dollars on a system that may never work or does not perform any better than existing systems. At best, costly changes and retrofitting may be necessary, as has happened with other Defense systems. For example, due to insufficient information on the F/A-18 system, OPTEVFOR was unable to assess the potential operational effectiveness of the system prior to low-rate initial production. However, low-rate initial production was nonetheless approved, and problems found during subsequent testing have required millions of dollars in changes and retrofitting.
	Defense stated that BSY-2 testing performed to support development and production decisions is in full compliance with its established policies and procedures. Defense Directive 5000.3 requires "demonstration of a system's technical capabilities and its operational effectiveness and suitability" before advancing from one acquisition phase to another. To comply at this early stage of system design, the Chief of Naval Operations instructed OPTEVFOR to perform an assessment of BSY-2's potential operational effectiveness and suitability. But OPTEVFOR reported that it could not assess the system's potential operational effectiveness and suitability due to the lack of detailed information on the system. None-theless, the Navy proceeded into full-scale development and low-rate initial production.
Late Testing May Impair Navy's Early Visibility Into Contractor's Software Testing	For the BSY-2 effort, the Navy expressed its intentions to maintain early government visibility over the contractor's software component testing efforts. To achieve this early visibility and its benefits, the Navy included a contract requirement that government-witnessed tests of software components be conducted as early as possible, but no later than 3 months after the component's delivery to the contractor's test facility for integration. According to Navy officials, this visibility is intended to ensure that problems are identified and fixed as early in development as possible, when corrections are more cheaply and quickly made. Later changes are often difficult and expensive to make because hundreds of thousands of lines of code of different software components have already been integrated.
v	The Navy may not achieve its goal of early visibility over component testing. Eighteen, or about 15 percent, of the 121 major software compo- nents ⁸ will be integrated with other components before undergoing gov- ernment-witnessed testing late in development. Government-witnessed
	⁸ BSV-2's 3.2 million lines of code have been divided into 121 major software components. Each of

 $^8BSY-2's$ 3.2 million lines of code have been divided into 121 major software components. Each of these major components consists of many subcomponents.

Page 8

	testing for these components is not planned to occur until the last year of system development, right before the system is delivered to the Navy. At this stage, code has already been written and integrated, negating much of the benefit of government-witnessed testing. Government-wit- nessed testing at this late point leaves the Navy little time and flexibility to identify specific problems and bring them to the attention of the con- tractor for resolution without affecting the delivery of the system.
	Defense stated that the BSY-2 software development and testing approach has been developed to promote government visibility over contractor efforts. The Navy said the last 18 major software components will undergo lower-level testing (subcomponent) and will allow for Navy vis- ibility. However, while the contract requires government-witnessed component acceptance testing, ⁹ no contract requirement exists to ensure visibility into subcomponent testing. While contractor officials stated that they will allow the Navy to witness subcomponent tests, they stipu- lated that if time runs short or development becomes difficult, they will no longer allow Navy to witness testing. If this happens, Navy's dis- covery of serious problems may be delayed.
Navy's Software Testing Approach Does Not Ensure Adequate Retesting of Major Components After Changes	The Navy's contract with the system developer requires that if 5 per- cent or more of the lines of code in any software component are changed after government-witnessed testing, the entire component must be retested. Navy officials stated that this 5-percent threshold is intended to ensure that significant changes are retested to verify that the changes do not impair the functions of the component. However, under this approach, 49 of the 121 software components could each have changes to 1,000 or more lines of code and not be retested before being inte- grated with hundreds of thousands of lines of code from other software components. With a system as complex and important as BSY-2, prudent management dictates that the amount of retesting should be based on the criticality of the software component's size.
v	Contractor officials stated that the 5-percent threshold was negotiated with the Navy because of the time and expense required for retesting. The officials, however, recognized the need to do additional retesting and stated they would perform some retesting on changes under the 5- percent threshold, but that the decision to retest would be based on the

 $^{^9\}mathrm{The}$ software components are made up of several levels of subcomponents. A software component cannot undergo acceptance testing until all subcomponents have been tested and integrated.

	contractor's judgment and made on a case-by-case basis. Thus, the Navy lacks adequate assurance that the contractor's retest efforts are suffi- cient to ensure that changes do not introduce adverse effects.
	Our concern is not whether software changes will be tested, but whether the retesting is adequate to verify that other portions of the component are not adversely affected by the changes, particularly for those compo- nents that are critical to the performance of the BSY-2 system. Experience has shown that testing is frequently truncated when attempting to meet demanding schedules. BSY-2 has already had a 1-year slip in completing CDR. We are, therefore, concerned whether there will be sufficient time available for BSY-2 software integration and testing.
Central Guidance on Unit- Testing Lacking	Unit-testing of software is carried out by programmers as the code is developed to ensure that errors are identified as early as possible, when it is easiest and least expensive to correct them. According to software development experts, central guidance on unit-testing is important to ensure that programmers adequately test smaller software components before the components are integrated with others to form larger compo- nents with thousands of lines of code.
	For BSY-2, central guidance on unit-testing is even more important given the compressed development schedule resulting from the 1-year delay in completing the CDR and the fact that many of the programmers will be writing Ada code for the first time. However, the Navy lacks assurance that the integrated units will be adequately tested before integration, since neither the contractor's Software Standards and Procedures Manual nor the contractor's Ada training program provides detailed procedures to be followed in carrying out unit-testing. The contractor's Software Development Plan leaves unit-testing procedures up to the dis- cretion of the various development organizations. Without central guid- ance, the contractor and Navy lack assurance that unit-testing will be consistently and comprehensively conducted.
v	Defense recognizes the importance of unit-testing guidance, and stated that such guidance is provided in the Software Test Plan Style Guide and Software Development Plan. The guidance cited by Defense pro- vides general test objectives for software developers to follow, but does not provide detailed procedures to be followed in conducting unit- testing. The cited guidance states that these objectives are only to be used where applicable and that the tests are to be conducted informally. For example, the guidance states that testing should use expected, as

	well as extreme and erroneous values, but provides no detailed proce- dures on what specific tasks should be carried out during unit testing to test all such values. The objectives also state that each line of code in the unit should be executed during the test, but no tools and procedures for doing this are provided.
	In its 1990 assessment of BSY-2 software development, the Institute for Defense Analyses (IDA) also expressed concern about the lack of detailed unit-testing guidance. IDA found that the contractor's general test objec- tives provided little direction on what activities should be performed during unit testing, and recommended that tools and techniques be established to ensure that unit tests were adequately conducted to detect errors as early as possible.
	We maintain that detailed unit-testing guidance is needed to ensure that units will be appropriately and adequately tested prior to integration, especially since the amount of time remaining for coding, testing, and integration has been significantly reduced and many of the software developers will be newly trained in Ada. As IDA reported, without such detailed guidance there is a substantial risk that errors will be detected late in software development, will be costly to correct, and may severely affect BSY-2 development.
BSY-2 Could Experience System Performance Problems	Adequate system performance is critical to ensuring that the BSY-2 system provides all required functions and capabilities within time con- straints specified by the Navy. However, even though it is still early in system development, there are already indications of potential perform- ance problems. The contractor is experiencing problems in meeting start- up requirements in using a new standard Navy signal processor, and preliminary estimates indicate that processing capacity may be inadequate.
Enhanced Modular Signal Processor Does Not Meet Timing Requirements	The Enhanced Modular Signal Processor (EMSP) is one of the most critical components of the BSY-2 system in that it processes the bulk of the acoustic sensor data for transfer to other processors and operator displays. EMSP is being developed by another contractor as a standard signal processor for many Navy programs, and will be provided as government-furnished equipment to the BSY-2 contractor. EMSP is technologically complex. The Navy has recognized that EMSP poses considerable development risk, and stated in its 1988 Acquisition Plan that the risk would be mitigated in BSY-2 by using EMSP first in other Navy systems.

However, BSY-2 is now the first and only planned user of the initial version of EMSP, called SEM-B. A more advanced version of EMSP, called SEM-E, is scheduled for use in several Navy systems.

Currently, the SEM-B version of EMSP is experiencing development problems in meeting initialization (start-up) times for BSY-2 under several operational modes. For example, preliminary modeling estimates indicate that SEM-B takes at least 40 seconds to initialize, whereas Navy requires 20-second initialization. SEM-B's slow start-up time impairs BSY-2's ability to meet other critical system-wide initialization requirements. As a result, the start-up of the entire BSY-2 system under the self-protect mode¹⁰ takes about 3 times longer than the Navy requires.

According to BSY-2 program officials, the upgraded SEM-E version of EMSP is planned to provide faster start-up, but is still under development and has not been proven to meet all BSY-2 requirements. Since SEM-E will not be available, the first three BSY-2 systems will use SEM-B at a cost of \$45 million. The Navy plans to replace the SEM-B versions with SEM-E at the first three submarines' overhaul, about 6 years after they have been in operational use. The Navy plans to use SEM-E for additional BSY-2 systems.

Defense stated that use of EMSP in BSY-2 was required after the EMSP design was completed, and therefore the stringent BSY-2 start-up time requirements were not specified in the EMSP design. They added that through modifications the Navy has reduced the start-up times by a factor of four.

We recognize that various factors have contributed to this situation and that Navy has taken efforts to reduce the times, but we maintain that EMSP timing is a significant development risk. We reiterate, and the Navy does not dispute, that EMSP, even after modifications, still does not meet start-up requirements. This, in turn, could impair the ability of the entire BSY-2 system to meet critical system-wide start-up requirements. Due to the highly automated nature of the combat system, its ability to quickly restart after a failure is critical to accomplishing its mission.

¹⁰The self-protect mode consists of minimum defensive functions needed to protect the submarine from damage by hostile forces, but does not include all mission capabilities.

Estimates Show Processing Capacity Not Meeting Design Goals	The BSY-2 combat system needs sufficient spare processing capacity to facilitate growth to meet future work-load needs. The Navy has set stan dards ¹¹ on spare capacity and maximum system utilization to avoid past problems with systems that could not process growing work loads. To ensure that the system meets these standards when delivered to the Navy, the contractor is estimating software component size and performance during design, and is using analytical models to predict how the system will behave when delivered. However, based on the analytical results thus far, over one-half of the processors do not meet the contractor's goal of not exceeding 50-percent spare capacity.
	BSY-2 and the Seawolf submarine are intended to serve for decades, during which time multiple upgrades to the sensors and combat system will surely be developed and implemented. The Navy requires that delivered systems have at least 20-percent spare capacity (no more than 80-percent utilization), so that work-load growth can be accommodated. According to the Navy standards, failure to provide sufficient spare capacity can result in the delivery of systems that are too small or too slow, necessitating costly reprogramming or additional computer process sors or upgrades.
	To ensure that the system has sufficient capacity at the time BSY-2 is delivered to the Navy, the contractor's Systems Engineering Manage- ment Plan established as a design goal a 50-percent processor utilization limit throughout the development of BSY-2. Contractor officials stated this more stringent threshold reflects the uncertainty in early size and performance estimates, and in the results of analytical models. They explained that this conservative approach is a prudent way of ensuring adequate processing capacity at delivery. However, when CDR was com- pleted in September 1990, processor utilization estimates in the con- tractor's Software Development Plan showed that over one-half of the processors were already exceeding the 50-percent threshold.
v	Moreover, based on the stringent physical and timing constraints and the complexity of the BSY-2 system, 20-percent spare capacity at delivery may be inadequate to accommodate change and growth in work load. Officials in Navy's Space and Naval Warfare Systems Command, who issue the standards, emphasized that the 20-percent spare capacity stan dard was a minimum, and that greater spare capacity should be pro- vided under certain circumstances, such as when building particularly complex systems. BSY-2 is clearly an extremely complex system. Further,

¹¹Department of Navy, <u>Tactical Digital Standard (TADSTAND)</u>, July 2, 1980.

after the BSY-2 full-scale development contract was awarded, the Navy changed the standard to require 50-percent spare capacity at the time of delivery, instead of 20 percent. However, BSY-2 is subject to previous Navy standard to provide 20-percent spare capacity because the contract predated the change in standards, and the wisdom of requiring only 20-percent spare capacity has not been reassessed. If the delivered BSY-2 system contains processors with inadequate spare capacity, the Navy will be faced with expensive options, such as upgrading the processors or redesigning the system.

Defense stated that BSY-2 has sufficient spare capacity and that we have no basis to conclude that capacity may be insufficient, and that the current BSY-2 design will allow for 30 years of expected functional growth. Defense contends processing capacity is not a concern for BSY-2.

We do not conclude that BSY-2 reserve capacity will not meet expected requirements. Our concern is that even as early in the development process as CDR, processing capacity is not meeting the contractor's design goal to maintain 50-percent reserve capacity throughout system development—a goal that the contractor called prudent in light of uncertainties about the system's eventual size and performance when fully developed and the models used to project both. Documentation provided to us by the program office showed that at CDR completion, the majority of the BSY-2 data processors were below the contractor's goal of 50-percent estimated reserve capacity, bringing into question at this early stage of development the ability of each of the BSY-2's processors to achieve 20-percent reserve capacity at delivery. Further, since it is the contractor's goal to have capacity not exceed 50 percent throughout development, Defense's statement that it is expected and acceptable for loading limits to increase beyond this figure seems contradictory.

Defense claims an average of 63-percent overall spare capacity for all processors; it is unclear, however, how Defense computed this figure. Defense discusses extra spare processors, unused space in computer cabinets, and room for additional cabinets that could be used to provide extra capacity. However, Navy officials told us that not all of the processors may be able to use other processor's reserve capacity, since they may not be interconnected. Also, some processors may not be available to provide reserve capacity because they are already dedicated as back-up in case of processor failures in order to meet reliability requirements. Moreover, additional cabinets are intended to accommodate planned future functions and thus may not be available to provide spare capacity to handle system growth during development or other

Page 14

	unplanned growth. Our point was not to prove that capacity is insuffi- cient, since the system has not yet been built, but only to show that reserve capacity goals for individual processors were largely not being met, which is a cause for concern.
Independent Verification and Validation Plan Developed Late	Effective IV&V planning used throughout system design and development is intended to significantly decrease development risks. Verification tasks help ensure the accuracy of the specifications, requirements, and design, while validation tasks are later performed to confirm that the software products perform efficiently and effectively and comply with requirements. IV&V is commonly used to minimize risks on critically important large-scale system developments, where loss of life or other catastrophic events could occur. IV&V provides an independent, third- party analysis of potential software problems throughout development.
	Even though the BSY-2 program had been in full-scale development for 2- 1/2 years and passed through four of the eight major program review milestones, an IV&V management plan was only developed in June 1990. The Navy had developed prior preliminary IV&V plans, but they were discarded. Thus, early BSY-2 development activities did not benefit from effective IV&V oversight.
	The new management plan is a step in the right direction, as it describes an IV&V scope of effort consistent with federal IV&V guidance, such as the Federal Information Processing Standards and Air Force guidance. The effectiveness of the plan will depend on Navy's continued commitment to it and a willingness to act on the findings and recommendations of the IV&V effort. Further, as with any effort, adequate funding for the IV&V program is critical for its success. The level of IV&V funding is negotiated each year between the Naval Underwater Systems Center, which pro- vides technical support to the BSY-2 program, and the BSY-2 program office. The Navy needs to ensure that if BSY-2 funding becomes tight or is required for other system development needs, IV&V tasks are not reduced.
v	Defense concurred that in the past an IV&V agent was lacking, but stated that verification and validation activities that either met or exceeded Federal guidance were nonetheless performed. Defense stated that an IV&V plan has now been developed and implemented. Finally, Defense disagreed with our statement that prior IV&V plans were discarded, instead maintaining that they were revised.

The objective of IV&V is to conduct an independent third-party analysis of potential system problems throughout development. Without an independent organization performing this function—which the Navy acknowledges it lacked for the first 2-1/2 years of BSY-2 development—the Navy has only minimal assurance that all problems and risks were effectively identified and assessed.

Navy had no IV&V plan before March 1989. At that time, we reported the lack of IV&V efforts,¹² and the Navy wrote a one page outline of an IV&V plan. Subsequently, the BSY-2 Program Office wrote a preliminary IV&V plan that lacked sufficient detail on IV&V functions and tasks. However, the Navy never approved the plan, which according to BSY-2 program officials, was discarded in favor of a different, detailed IV&V plan that was developed in June 1990. The 1990 plan includes principles and specific tasks expected in a detailed IV&V plan, such as analyzing code to verify adherence to coding standards and independently testing code. Continued Navy commitment to the IV&V program will greatly enhance the likelihood of BSY-2 program success.

Despite difficulties and delays encountered in building BSY-2, the Navy has not substantively altered its original approach or schedule. We believe that the Navy's approach to developing BSY-2 is flawed, which could result in the BSY-2 combat system not meeting its development schedule or satisfying all the mission requirements that the Navy has specified. Should the delivered combat system fail to meet these requirements, significant cost increases could be required to acquire the missing capability.

We recognize that every system development effort entails some risk. However, the potential impact of these risks on system performance and costs warrants additional Navy actions to ensure that the contractor proceeds with a prudent development approach that acknowledges these risks and begins to resolve them. In the past, the military services have experienced significant cost overruns, delays, and sometimes delivery of systems that do not provide significant performance improvements over the system they are to replace. Worse yet, the systems sometimes do not work at all and must be scrapped. In our opinion, the Navy must take action to minimize the risks associated with the three combat systems already under contract. Follow-on combat systems

¹²Submarine Combat System: Technical Challenges Confronting Navy's Seawolf AN/BSY-2 Development (GAO/IMTEC-89-35, Mar. 13, 1989).

Page 16

GAO/IMTEC-91-30 BSY-2 Development Risks and Production Schedule

Conclusions

	should not be procured until the Secretary of Defense certifies that the initial BSY-2 system is sufficiently developed and tested.
Recommendations to the Secretary of Defense	We recommend that the Secretary of Defense direct the Secretary of Navy to (1) determine the impact of the risks we have identified on the performance, cost, and current delivery schedule for the combat system; (2) adjust its current development approach, as warranted; and (3) report the results of the assessment and planned actions to mitigate these risks to the House and Senate Armed Services and Appropriations Committees. We also recommend that the Secretary of Defense direct the Navy to ensure that central guidance on unit-testing is developed and issued for use by all BSY-2 programmers and software engineers.
Recommendation to the Congress	We recommend that the House and Senate Appropriations and Armed Services Committees not fund any additional systems beyond the first three until the Secretary of Defense certifies that the initial BSY-2 is suffi- ciently developed and tested and can provide assurance that the system will satisfy mission requirements.
Agency Comments and Our Evaluation	The Department of Defense disagreed with most of our findings and the recommendations contained in our draft report (see app. II). Defense stated that it understands the BSY-2 development risks, has taken strong action to counter any potential impact, and has conducted a thorough evaluation of the BSY-2 program and found the overall level of risk to be moderate.
	We recognize that Defense has taken some management actions to lessen development risk, but significant development risks still exist in several areas and specific actions are needed. Given the potential impact of these risks, we disagree that the overall development risk is moderate. In fact, as part of the Defense Acquisition Board's January 1991 evalua- tion of BSY-2, the Office of the Director of Defense Research and Engi- neering concluded that development of BSY-2's 3.2 million lines of software code represented high-schedule risk.
Defense Views on GAO's Recommendations to the Secretary of Defense	Defense disagreed with our recommendations to assess the impact of the various risks and take corrective action. Defense stated the recommended actions were not necessary since they periodically examine the BSY-2 development status and monitor the risk areas to ensure BSY-2 meets

.

GAO/IMTEC-91-30 BSY-2 Development Risks and Production Schedule

her

	baseline thresholds. Defense also states that it is in full compliance with policies and procedures, and will be reporting on the risks to the Con- gress as required by section 2400 of Title 10 U.S.C. in the Low-Rate Ini- tial Production report.
	Although Defense claims that it examines and monitors BSY-2 risks in its management functions, we have found several areas where significant risks exist and believe that Defense needs to assess the impact of these risks and adjust the development approach as warranted. Defense's Low-Rate Initial Production report may not adequately discuss how Navy plans to mitigate these risks, since the purpose of the report is not to assess risks. As required by section 2400, Defense only has to report on the rate and quantity prescribed for low-rate initial production and considerations in establishing it, a test and evaluation master plan, and an acquisition strategy that includes the procurement objectives in terms of total quantity to be procured and annual production rates. Further, as discussed in this report, unit-testing guidance is inadequate and more detailed guidance needs to be provided.
Defense Views on GAO's Recommendations to the Congress	Defense commented that development and testing is in full compliance with congressional guidance and Defense policies and procedures. Defense stated that completing operational testing before funding fur- ther procurement would result in cost growths so large it could greatly exceed the cost of correcting any deficiencies identified during testing.
	We have revised our recommendation that operational testing be com- pleted before funding further procurement because of the significant cost impacts Defense claims it could have on the Seawolf. However, we continue to believe funding additional BSY-2 combat systems before they are sufficiently developed and tested introduces considerable risk that cannot be overlooked. Therefore, we believe that BSY-2 production should not be funded until the combat system is sufficiently developed and tested and the Secretary of Defense can provide assurance to the Con- gress that the system will satisfy all mission requirements.
	As agreed with your office, unless you publicly announce the contents of this report earlier, we plan no further distribution until 15 days from the date of this letter. We will then send copies of this report to the Chairmen, Senate and House Committees on Appropriations; the Chairman, House Committee on Armed Services; and the Director, Office

GAO/IMTEC-91-30 BSY-2 Development Risks and Production Schedule

of Management and Budget. Copies will also be made available to others upon request.

This report was prepared under the direction of Samuel W. Bowlin, Director, Defense and Security Information Systems, who can be reached at (202) 275-4649. Other major contributors are listed in appendix III.

Sincerely yours,

alph Hailone_

Ralph V. Carlone Assistant Comptroller General

.

Contents

Letter	1
Appendix I Objectives, Scope, and Methodology	22
Appendix II Comments From the Department of Defense	24
Appendix III Major Contributors to This Report	43
Related GAO Products	44

Abbreviations

CDR	critical design review
EMSP	enhanced modular signal processor
GAO	General Accounting Office
IDA	Institute for Defense Analyses
IMTEC	Information Management and Technology Division
IV&V	independent verification and validation
NSIAD	National Security and International Affairs Division
OPTEVFOR	Navy's Operational Test and Evaluation Force
	• av

Page 20

v

Appendix I Objectives, Scope, and Methodology

In response to a request from the Chairman, Subcommittee on Projection Forces and Regional Defense, Senate Armed Services Committee, and as a result of subsequent discussions with the Chairman's office, we evaluated the Navy's development of the SSN-21 Seawolf attack submarine's BSY-2 combat system. Our work focused on the following aspects of AN/ BSY-2 software and hardware development: system design, testing and integration, and the use of independent verification and validation. We conducted our work at Navy, contractor, and subcontractor offices having responsibility for the BSY-2 program. Our primary work locations included the Naval Underwater Systems Center in Newport, Rhode Island; the Naval Sea Systems Command and the BSY-2 Program Office in Arlington, Virginia; and at the General Electric Company in Syracuse, New York.

We interviewed numerous Navy, contractor, and subcontractor officials and analyzed relevant BSY-2 documents, including the BSY-2 contract, critical design review data and reports, the System Design Document, the Software Development Plan, architecture modeling reports, the Master Test and Evaluation Plan, and various Navy and Defense policies and regulations. In addition, we interviewed recognized software development experts regarding technical issues associated with BSY-2 and the Ada programming language.

To obtain background information on BSY-2, we analyzed relevant Defense and GAO reports, including the January 1990 report by the Institute for Defense Analysis, Assessment of the Software Development Program for the AN/BSY-2 System; the March 1989 GAO report, Submarine Combat System: Technical Challenges Confronting Navy's Seawolf AN/ BSY-2 Development (GAO/IMTEC-89-35); and the January 1990 GAO report, Navy Acquisition: Cost, Schedule, and Performance of New Submarine Combat Systems (GAO/NSIAD-90-72). For information about software and hardware design, we interviewed technical and management officials at General Electric responsible for systems engineering, software development, and testing and integration. We also interviewed Navy Underwater Systems Command and Naval Sea System officials on Navy's oversight roles and responsibilities for the BSY-2 program.

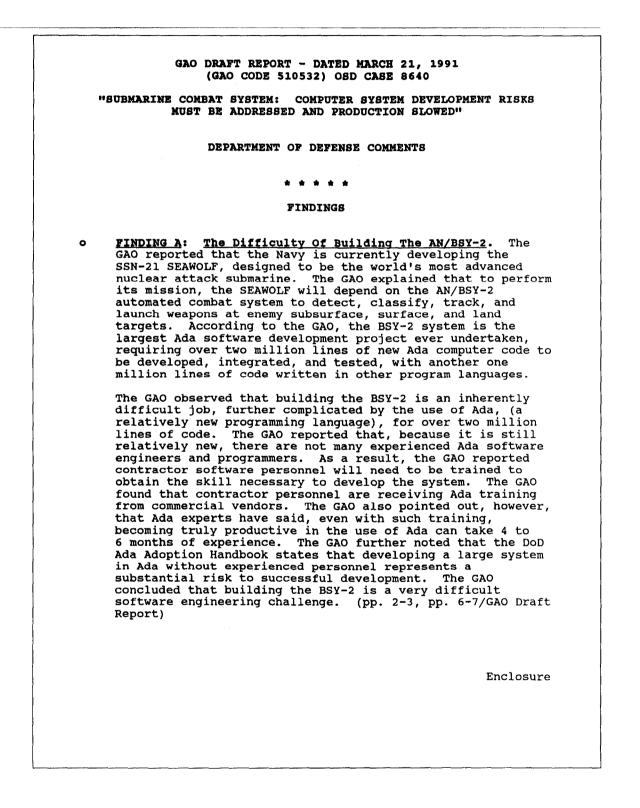
To obtain information on the Ada programming language, we interviewed various Ada experts; Ada training vendors; officials at Carnegie-Mellon University's Software Engineering Institute in Pittsburgh, Pennsylvania; and Defense's Ada Joint Program Office in Arlington, Virginia. We obtained guidelines on management of Ada-based systems from the

Armed Forces Communications and Electronics Association, and analyzed the prime contractor's Ada training program, the Ada Adoption Handbook, and case studies on Ada.

We discussed the use of IV&V and relevant Defense regulations with Defense officials, IV&V contractors, and the Naval Underwater Systems Center. We also analyzed BSY-2 IV&V plans. We conducted our review in accordance with generally accepted government auditing standards, between February 1990 and March 1991.

Comments From the Department of Defense

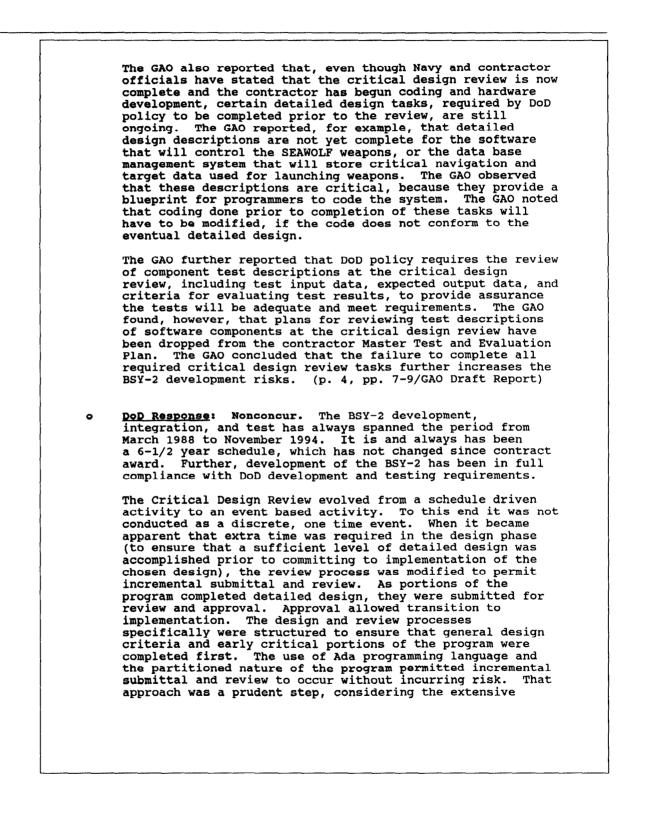
DIRECTOR OF DEFENSE RESEARCH AND ENGINEERING WASHINGTON, DC 20301-3010 3 0 APR 1991 Mr. Ralph V. Carlone Assistant Comptoller General Information Management and Technology Division U.S. General Accounting Office Washington, DC 20548 Dear Mr. Carlone: This is the Department of Defense (DoD) response to the General Accounting Office (GAO) draft report, "SUBMARINE COMBAT SYSTEM: Computer System Development Risks Must Be Addressed and Production Slowed," dated March 21, 1991 (GAO Code 510532/OSD Case 8640). The DoD only partially agrees with the report. The GAO stated that "the risks that the Navy has allowed in the development of its BSY-2 combat system (sic) are serious and must be addressed." In fact, all of the "risks" identified in the draft report were raised by the GAO several years ago. During the past two years, numerous oversight organizations have evaluated those same specific risks and reported that the Department understands them and has taken strong action to counter any potential impact. The oversight reviews endorsed the strong actions taken by the Program Manager to maintain control over the risks. As part of the process that led to a January 1991 Defense Acquisition Board review on the SEAWOLF submarine and the AN/BSY-2 Submarine Combat System, the Department of Defense conducted a thorough technical evaluation of the AN/BSY-2 program, focusing primarily on software development. The overall level of risk was determined to be moderate. The Defense Acquisition Board determined that the Navy was not "side-stepping some sound management principles and practices," but in fact is employing sound and prudent contractually-invoked risk management approaches in a disciplined software development environment incorporated in DoD-STD-2167. Further, the GAO voices objections to the program concurrency. Both the Office of the Secretary of Defense and the Congress have recognized the unique requirements in the development of naval vessels (and military satellites) which, by their very nature, involve a high degree of concurrency. As a direct result of that recognition, the Congress passed Section 2400 of Title 10, U.S.C. which permitted exceptions for naval vessels and military satellites in determining the number of ships to be procured during the Low Rate Initial Production period. The BSY-2 system is being developed in full compliance with that legislation.

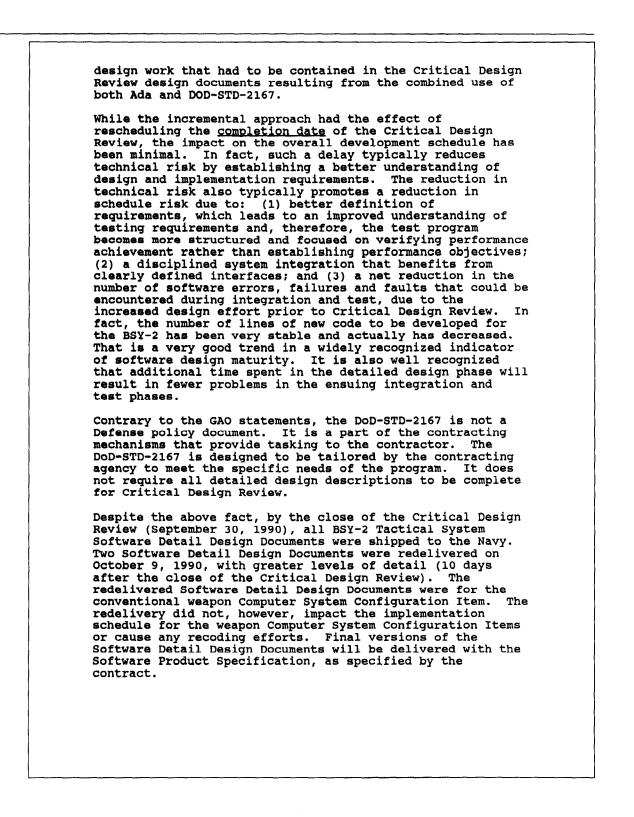

Page 24

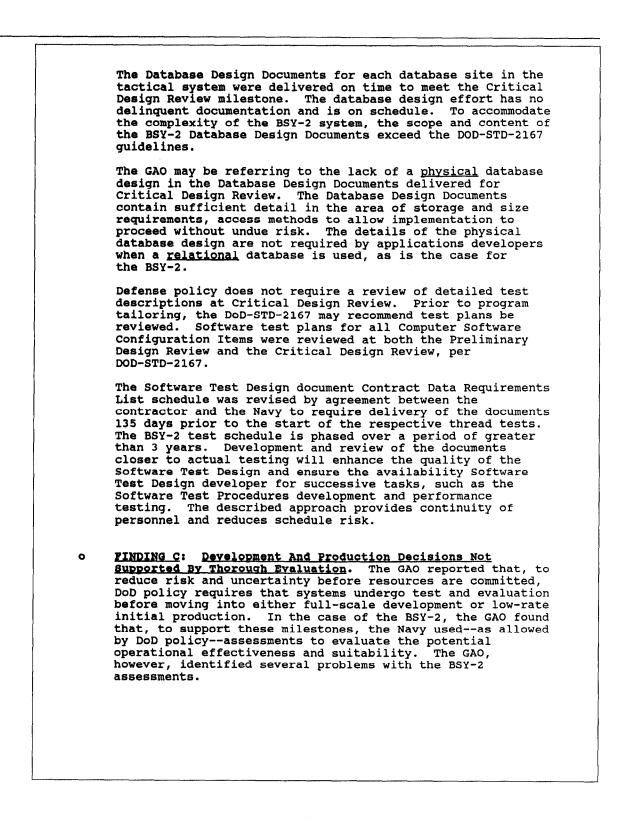
GAO/IMTEC-91-30 BSY-2 Development Risks and Production Schedule

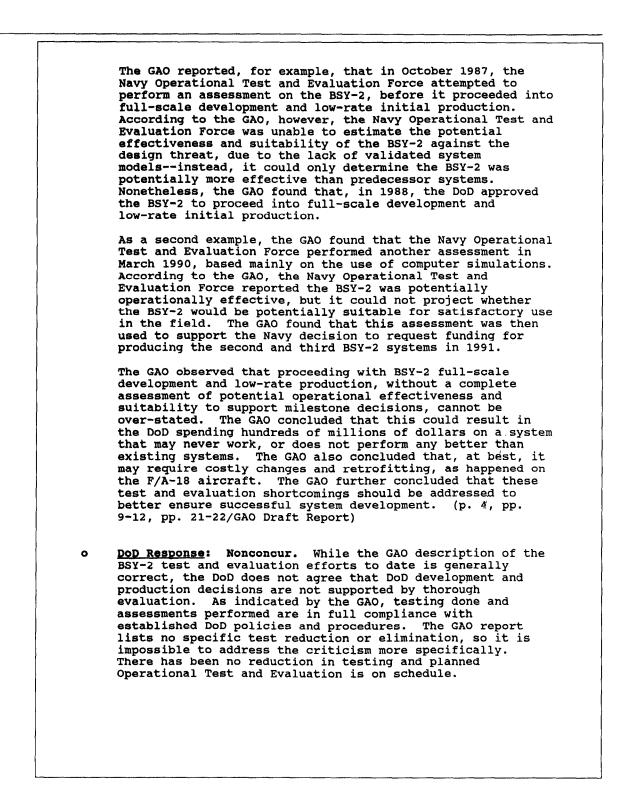
Appendix II Comments From the Department of Defense

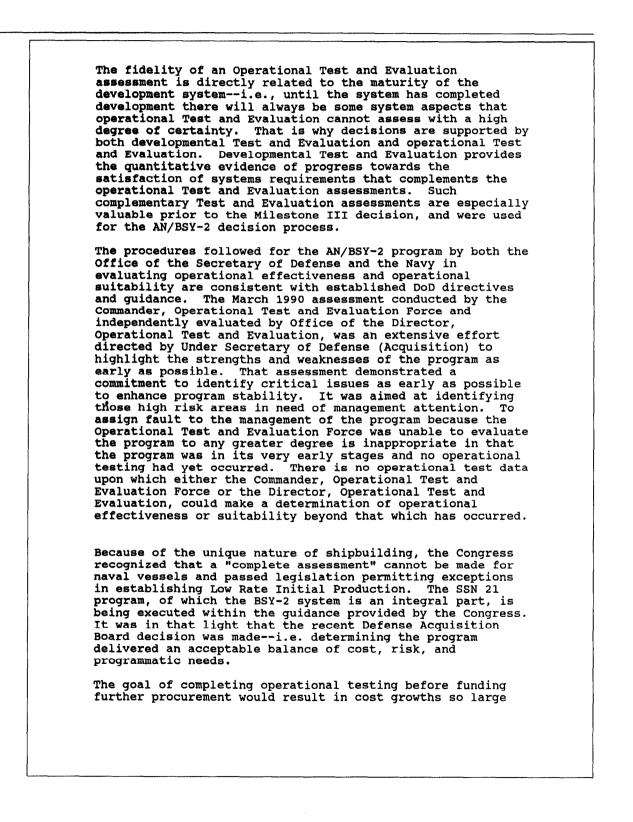
Detailed comments on the GAO findings and recommendations are enclosed. The DoD appreciates the opportunity to comment on the GAO draft report.
Sincerely, Wall A Kafeld Charles M. Herzfeld
Enclosure


Page 25



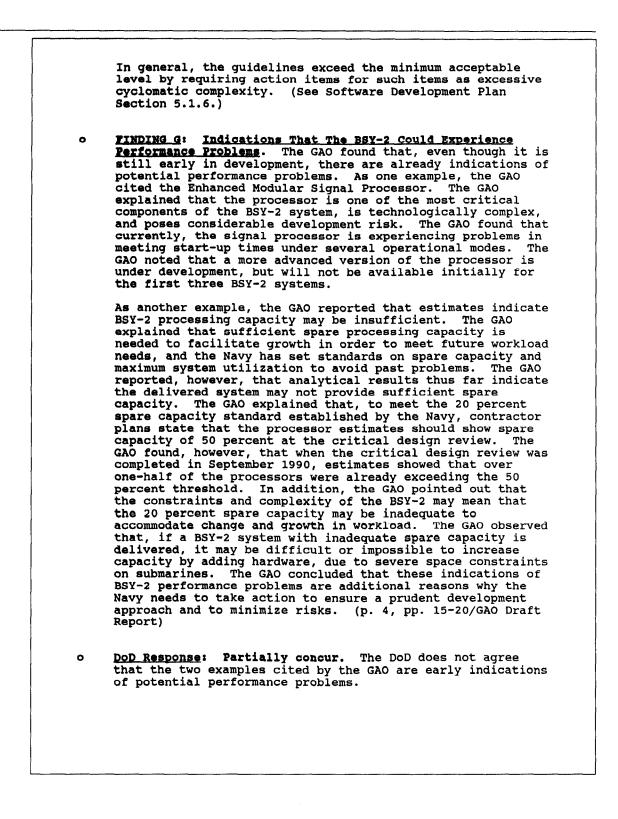

13


DOD Response: Partially concur. The DoD concurs that 0 developing the BSY-2 system is a difficult software engineering challenge. The DoD does not agree, however, with the GAO perception of the risk of using Ada, or the need for additional training. Ada does not entail a new approach to software development. It simply forces discipline in implementing recognized, sound software engineering principles. Personnel with previous programming experience can be expected to become quickly proficient in Ada. In fact, 25 to 30 percent of the BSY-2 software personnel actually had previous Ada programming experience. Moreover, the training program established for the BSY-2 has been complete since December 1989. A small number of new hires continue to be trained, as required, under the same training regimen. About 90 to 95 percent of the BSY-2 software engineers are now well past the 4 to 6 month experience point in using Ada mentioned by the GAO. (The Ada Adoption Handbook, cited by the GAO, is a technical publication of the Software Engineering Institute. It is not a formal DOD Military Handbook.) The training efforts to date have been successful. Strong points of the training program are that (1) the training included coding exercises derived from BSY-2 system examples, and (2) students consistently scored above the 75th national percentile on a widely administered test for programming proficiency (Psychometrics). The delivered software detail design documents consist almost exclusively of Ada or Ada Program Design Language. All Ada software detailed design documents submitted for Critical Design Review have been checked for syntactical correctness by automated tools and many have been compiled successfully, even though that is not required by the contract. FINDING B: Delay In The Critical Design Review Has Further 0 The GAO reported Impacted The Tight Development Schedule. that early in the program, both Navy and contractor officials recognized that development, integration, and testing of the BSY-2, within the original 4-year development schedule, would be difficult. The GAO found that this has been exacerbated by a one-year delay in the critical design review, from August 1989 to September 1990. The GAO explained that contract requirements indicate that this review must be completed to establish a detailed design baseline for all hardware and software, prior to the full initiation of software coding. The GAO observed that as a result of this delay, the amount of time available for developing and testing the system has decreased about 25 percent, from over 4 to over 3 years.


÷.

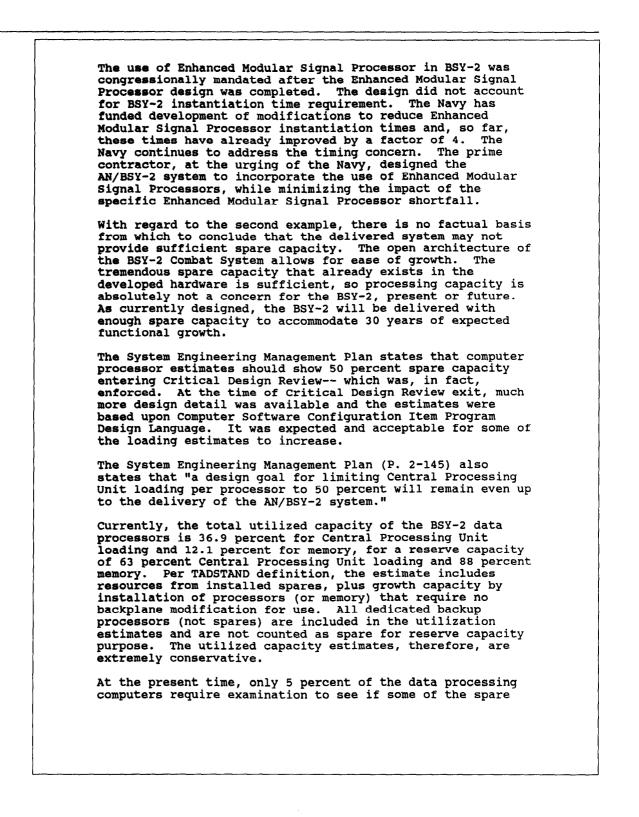
(due to the costs of shutting down and re-starting production lines being spread over so few systems), it could greatly exceed the cost of correcting any deficiencies identified during operational testing. To minimize the number of deficiencies that will not be identified until operational testing, the Navy conducted a vigorous program of critical component testing to ensure that key technologies will perform as required. In addition, the Navy will be conducting extensive preliminary testing to ensure subsystems will operate together, including a series of fully integrated shore based tests designed to stress both operators and machines. 0 FINDING D: Late Testing Of Many Software Components. The GAO reported that, to achieve early visibility over the contractor software component testing efforts, the Navy included a requirement in the contract for Government-witnessed tests of software components. According to the GAO, these tests were to be conducted as early as possible, but no later than three months after the delivery of components to the contractor test facility for integration. The GAO reported that the goal is to ensure that problems are identified and corrected as early in development as possible, when corrections are more cheaply and quickly made. The GAO observed, however, that the Navy may not be able to achieve its goal of early visibility over component testing. The GAO explained that about 18 of the 121 major software components will be integrated with other components, before undergoing Government-witnessed testing. According to the GAO, government-witnessed testing for these components is not planned until the last year of system development. GAO observed that by then, code will have already been written and integrated, negating much of the benefit of government-witnessed testing--little time will be left to identify problems and resolve them, without affecting the delivery of the system. The GAO concluded that such late testing of software components impairs the early visibility of the Navy into contractor software testing efforts. The GAO also concluded that this is another indication that additional Navy actions are needed to ensure the contractor proceeds with a prudent development approach. (p. 4, pp. 12-13, pp. 21-22/GAO Draft Report) 0 DoD Response: Nonconcur. The BSY-2 software development and testing approach has been developed to promote Government visibility of contractor efforts. The contract requirement for Government-witnessed software tests referred to by the GAO is for Computer Software Configuration Item acceptance testing. A Computer Software Configuration Item

is composed of many Computer Software Components--which, in turn, are composed of many units. Units are developed and tested prior to integration with other units to form Computer Software Components. Computer Software Components are tested and integrated incrementally to form a Computer Software Configuration Item. Thus, before a Computer Software Configuration Item is presented for acceptance testing, multiple levels of test and integration already have been performed. There are three to four levels of testing witnessed by the Navy prior to a Computer Software Configuration Item acceptance test. Although the contract calls for witnessing Computer Software Configuration Item, Critical Item, and System Design Certification testing, the prime contractor developed a Thread methodology to integrate and test the system on an incremental basis. The Navy has full access to the process. The Navy also has access to Software Development Files, which contain unit and component test results, and to the Program Trouble Reports, which define problems and resolution. System level requirements will be demonstrated for the Government early enough to allow sufficient time to correct any problems. A Computer Software Configuration Item cannot be presented for acceptance until its components (Units, Computer Software Components) have been tested and integrated. It is the formal acceptance of the last 18 Computer Software Configuration Items that occurs in 1994. All lower level tests will have occurred earlier and all allow for Navy visibility. The current approach represents a prudent and widely accepted method to schedule development and acceptance testing. 0 FINDING E: Navy's Software Testing Approach does not Ensure that Major Components are Adequately Retested After Changes. The GAO reported that the Navy contract with the system developer requires that, if five percent or more of lines of code in any software component is changed after government-witnessed testing, the entire component must be retested. The GAO noted that Navy officials said this is intended to ensure that significant changes are retested to verify that the changes do not impair functions of the component. The GAO observed, however, that with a system as complex and important as the BSY-2, prudent management dictates that the amount of retesting be based on the criticality of the software component being affected, rather than an arbitrary percentage of the component's size. According to the GAO, contractor officials said the five percent threshold was negotiated based on time and cost considerations for retesting. The GAO reported that the


Page 34

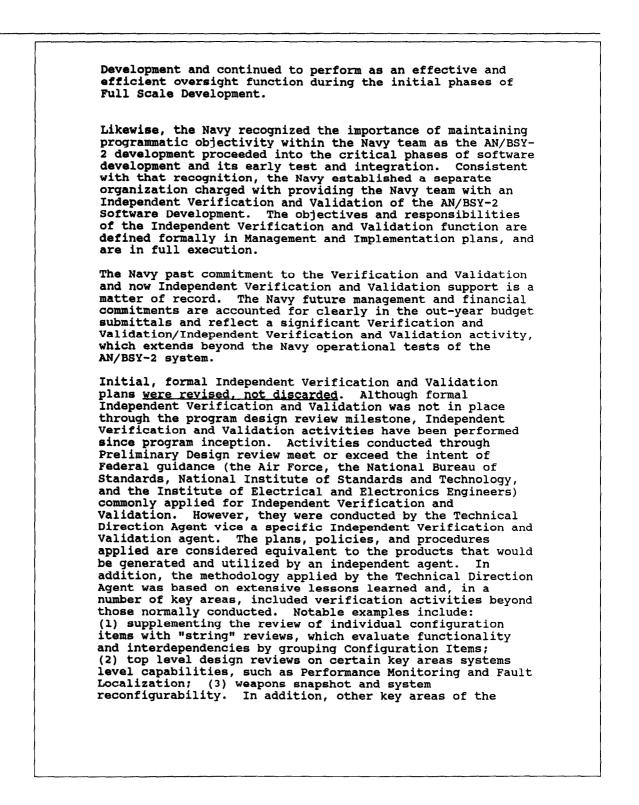
contractor officials also recognized the need to do additional retesting under the five percent threshold, but said the decision to retest would be based on contractor judgment and made on a case-by-case basis. The GAO concluded, therefore, that the Navy lacks adequate assurance that the contractor retest efforts are sufficient to ensure that significant changes do not introduce adverse effects. The GAO concluded that this is another indication that additional Navy actions are needed to ensure the contractor proceeds with a prudent development approach. (p. 4, pp. 13-14, pp. 21-22/GAO Draft Report) DoD Response: Nonconcur. The Navy has more than adequate 0 assurance that retest efforts are sufficient to ensure the effects of changes are both characterized fully and minimized. The 5 percent change threshold applies to Computer Software Configuration Items that have already undergone acceptance testing. (See the DoD response to Finding D.) The threshold was established during source selection in 1987, to establish an accurate, common basis for evaluating competitive proposals. This threshold requires retest of the entire Computer Software Configuration Item if the change is greater than 5 percent. All software changes, no matter how small, will be retested multiple times (from two to as many as 13) at various levels, prior to system acceptance. Both the Navy and the prime contractor use criticality analysis to determine the amount of regression needed to ensure confidence that a particular change introduces no adverse effects. That is prudent engineering practice. The software engineering principles inherent in the use of Ada (e.g., data abstraction, information hiding, strong typing) also serve to mitigate cascading effects of changes. The use of Navy test time provides another level of assurance that all changes will be evaluated fully for impact. The use of the test time is also prioritized by criticality analysis. FINDING F: <u>Central Guidance On Unit-Testing Lacking</u>. The GAO explained that unit-testing of software is carried out 0 by programmers as the code is developed to ensure errors are identified as early as possible. According to the GAO, software development experts said central guidance on unit-testing is important to ensure that programmers test smaller software components adequately and consistently, before they are integrated with others. The GAO observed that central guidance for the BSY-2 is even more important, given the compressed development schedule and the fact that many of the programmers will be using Ada for the first

Υ.


r

time. The GAO found, however, that contractor developed guidance lacks detailed procedures to be followed in carrying out unit-testing. The GAO concluded, therefore, that without central guidance, the Navy lacks assurance that unit-testing will be consistently and comprehensively conducted. The GAO also concluded that this is another indication that additional Navy actions are needed to ensure the contractor proceeds with a prudent development approach. (p. 4, pp. 14-15, pp. 21-22/GAO Draft Report) DOD Response: Nonconcur. While the GAO has correctly o identified the importance of unit testing guidance, the GAO has not accurately described the guidance developed for the BSY-2 system. Program level direction for Unit Testing exists in the following Program Level Documentation. Section 3.1 of the prime contractor Software Test Plan Style Guide states specific requirements of Unit testing to include: testing using nominal, upper and lower boundary, high and low out-of-bounds, and erroneous input values; 0 testing for error detection and proper error recovery, 0 including appropriate error messages; testing all executable statements and branches; and 0 0 testing each output option for correct formatting of output data and command signals. The Software Development Plan in Section 5.3 Table XXXII contains specific criteria to be verified by the Software Development and Software Quality Assurance organizations for both the Unit Test Cases and Unit Test Procedures/Test Results. These criteria include: ٥ coverage of the unit requirements; consistence with design documentation; ο 0 compliance with contractual requirements; adherence to required format/content; 0 traceability to Section 4.2 of the Software Test Plan; ο 0 internal consistency; understandability; and 0 ο completeness.

Page 37


GAO/IMTEC-91-30 BSY-2 Development Risks and Production Schedule

capacity needs to be allocated to provide extra utilization resources. In addition, spare (empty) slots in the major units represent 23 percent of all available module slots. That percentage does not include the fact that most units also have one or two empty (spare) drawers available; each of which represents 135 module slots. There are also four entire cabinet footprints allocated to the BSY-2 Combat System, which are currently reserved for growth (not being used). Utilization of the footprints would more than double the current BSY-2 data processing capabilities. FINDING H: Need For Management Commitment To Independent Verification And Validation. The GAO explained that ο independent verification and validation is a commonly used approach to minimize risks on large scale development efforts, and also provides an independent, third party analysis of potential software problems throughout development. The GAO found, however, that even though the BSY-2 program had been in full-scale development for two and one-half years and passed through four of the eight major program review milestones, an independent verification and validation plan was only developed in June 1990. The GAO concluded that the new BSY-2 management plan is a step in the right direction, since it describes an independent verification and validation effort that is consistent with Federal guidance. The GAO observed, however, that the effectiveness of the plan will depend on the commitment of Navy management to the plan, and the willingness of management to act on the findings and recommendations of the independent verification and validation effort. In addition, the GAO observed that the funding for independent verification and validation may not receive the priority it deserves. The GAO concluded that, without management and financial commitment to independent verification and validation (which has been lacking over the last two and one-half years), system development risks will be increased. (p. 4, pp. 20-21/GAO Draft Report) DoD Response: Partially concur. The Navy has always 0 recognized the importance of a Verification and Validation function that assures the quality and compliance of the AN/BSY-2 development with the Fleet requirements. That recognition has, in fact, been the driver in establishing and maintaining a well-funded Verification and Validation function from the inception of the AN/BSY-2 program. The Verification and Validation function was an integral component of the Navy team that established the contractual and technical requirements for the AN/BSY-2 Full Scale

an taon 1997. Ny INSEE dia mampiasa mampiasa mampiasa amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny

Page 39

Page 40

GAO/IMTEC-91-30 BSY-2 Development Risks and Production Schedule

0	database management;			
0	combat system services;			
0	non-development items;			
o	system level functions review; and			
0	man-machine interface operability.			
Vali plan for with of g mile resp crit	The Technical Direction Agent managed the Verification and Validation activities utilizing a comprehensive set of plans, policies, and procedures that provided an audit trail for each milestone. A detailed plan was developed mutually with the contractor for each milestone, which included a set of guidelines for implementation, handbooks for each milestone that identified Navy/Contractor roles and responsibilities, the products to be reviewed, entrance criteria, review criteria, and exit criteria for each product.			
* * * * *				
RECOMMENDATIONS TO THE DEPARTMENT OF DEFENSE				
	RECOMMENDATION 1: The GAO recommended that the Secretary of Defense direct the Secretary of the Navy to:			
(1)	assess the risks associated with the compressed schedule, incomplete critical design review tasks, testing and analysis shortcomings, early indications of potential system performance problems, and the delays			
	in developing an independent verification and validation program;			
(2)				
(2) (3)	 validation program; determine their collective impact on the performance, cost, and current delivery schedule for 			

Page 41

v

GAO/IMTEC-91-30 BSY-2 Development Risks and Production Schedule

DoD Response: Nonconcur. It is the DoD position the recommended actions are not necessary. In full compliance with congressional direction and DoD policies and procedures, the Department periodically examines development status of the BSY-2 system, and constantly monitors the risk areas to ensure the BSY-2 meets baseline thresholds (cost, schedule, and performance). Corrective action will be taken, as appropriate, to address any problem identified. With regard to item (4), the information will be transmitted to the Congress as required by Section 2400, Title 10 U.S.C. in the Low Rate Initial Production report.				
RECOMMENDATION 2: The GAO recommended that the Secretary of Defense direct the Navy to ensure that:				
central guidance on unit testing is developed and issued for use by all BSY-2 programmers and software engineers; and				
independent verification and validation is treated as a high priority task and adequate funding is provided. (p. 23/GAO Draft Report)				
DoD Response: Partially concur. While the DoD agrees with the importance of the cited principles, adequate unit testing guidance is already in place and priority has been assigned to independent verification and validation (see the DoD responses to Findings F and H). Accordingly, no additional action is required.				
* * * * *				
RECOMMENDATION TO THE CONGRESS				
RECOMMENDATION 3: The GAO recommended that the Congress withhold funding for any additional systems beyond the first three, until the BSY-2 is fully developed and thorough operational testing demonstrates that the system satisfies all mission requirements. (p. 23/GAO Draft Report)				
DoD Response: Nonconcur. Development and testing of the BSY-2 is in full compliance with congressional guidance and DoD policy and procedures. In January 1991, the Defense Acquisition Board reviewed the BSY-2 system and authorized the Navy to contract for the remaining ten SSN-21s and associated AN/BSY-2 systems for a total of 11 SSN-21's and 15 AN/BSY-2 systems to be procured during Low Rate Initial Production, as allowed by Section 2400 of Title 10 U.S.C. The decision will be reported to the Congress in the Low Rate Initial Production report.				

GAO/IMTEC-91-30 BSY-2 Development Risks and Production Schedule

Appendix III Major Contributors to This Report

Information Management and Technology Division, Washington, D.C.	Michael T. Blair Jr., Assistant Director Andrew Patchan Jr., Evaluator-in-Charge Dr. Rona B. Stillman, Chief Scientist Edward R. Tekeley, Technical Adviser Gwendolyn A. Dittmer, Computer Scientist Heather A. Winand, Computer Scientist	
Boston Regional Office	Jeffrey V. Rose, Regional Management Representative Edmund L. Kelley, Jr., Senior Evaluator	,

Related GAO Products

Submarine Combat System: Status of Selected Technical Risks in the BSY-2 Development (GAO/IMTEC-91-46BR, May 24, 1991).

Navy Ships: Concurrency Within the SSN-21 Program (GAO/NSIAD-90-297, Sept. 28, 1990).

Submarine Technology: Transition Plans Needed to Realize Gains From DOD Advanced Research (GAO/IMTEC-90-21, Feb. 14, 1990).

Navy Acquisition: Cost, Schedule, and Performance of New Submarine Combat Systems (GAO/NSIAD-90-72, Jan. 31, 1990).

Navy Weapons Testing: Defense Policy on Early Operational Testing (GAO/NSIAD-89-98, May 8, 1989).

Submarine Combat System: Technical Challenges Confronting Navy's Seawolf AN/BSY-2 Development (GAO/IMTEC-89-35, Mar. 13, 1989).

Production of Some Major Weapon Systems Began With Only Limited Operational Test and Evaluation Results (GAO/NSIAD-85-68, June 19, 1985).

Ordering Information

The first five copies of each GAO report are free. Additional copies are \$2 each. Orders should be sent to the following address, accompanied by a check or money order made out to the Superintendent of Documents, when necessary. Orders for 100 or more copies to be mailed to a single address are discounted 25 percent.

U.S. General Accounting Office P.O. Box 6015 Gaithersburg, MD 20877

Orders may also be placed by calling (202) 275-6241

Official Business Penalty for Private Use \$300 United States General Accounting Office Washington, D.C. 20548 First-Class Mail Postage & Fees Paid GAO Permit No. G100