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1. INTRODUCTION 

1.1 Smart Glass 

Object recognition has been exploited in a wide range of applications, including image annotation, 

vehicle counting and tracking, pedestrian detection, and facial detection and recognition. Artificial 

neural networks (ANNs) which are multi-layer machine learning models have achieved significant 

success in various object recognition tasks. Although ANNs have become ubiquitous for 

applications on a daily basis, concomitant challenges emerge as the demand for computational 

speed and power efficiency increases rapidly with the explosion of data volume and the availability 

of mobile devices with computer vision features. Endeavors have focused on developing electronic 

architectures that are faster and more energy-efficient, but the hardware performance is still limited 

by the electronic clock rate and ohmic loss. An alternative approach is optical neural networks 

(ONNs), which utilize photonic elements and networks to construct a layered feed-forward 

architecture following the network structure of digital ANNs. In an ONN, the optical signals are 

manipulated by layers of elements in the sequence that perform transformations and weighting 

along the light propagation direction. The transformations and weights are pre-trained to enable 

the network to perform device-specific computation tasks. The computational speed of ONNs is 

primarily characterized by the speed of light propagating in the system and the passive nature of 

most optical operations introduces no additional power consumption after optical input is 

generated. Furthermore, digital ANNs are vulnerable to cyberattacks, while ONNs have 

computational algorithms hardcoded in the system so that security is guaranteed.  

Most of the reported ONNs [1]–[3] follow the conventional layered architecture and utilize light 

propagation through the network. Here we propose a platform that compresses the series of 

transformations into a single layer of computational operation using metasurface. A 

metasurface[4], [5] is an engineered two-dimensional structure with millions of subwavelength 

scatterers called “meta-units” as its building block and can offer complete and precise control of 

the wavefront of light. Meta-units can scatter light with designed modulations to optical phase and 

amplitude depending on their morphology. The collective interference of scattered light from 

millions of meta-units results in an optical wavefront as designed. This technology has shown 

exciting potential in various applications such as flat lenses and planer holograms in the recent 

decade. For example, a meta-lens can condense the bulky compound lens system of conventional 

objects or camera lenses into a flat device and still minimize optical aberrations in the system. 

Furthermore, metasurfaces composed of birefringent meta-units with asymmetric cross-sectional 

shapes can modify optical wavefronts of incident light with different orthogonal polarization states 

in a complete and independent manner, a technique known as polarization multiplexing.  

Our ONN is a transmissive metasurface, dubbed “smart glass”, with its 2D phase distribution 

trained for object recognition. We demonstrated object recognition using the smart glass with 

phase-only modulation. We also demonstrated a polarization-multiplexing smart glass that 
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performs distinct recognition tasks using light linearly polarized in two orthogonal directions. This 

smart glass alone acts as a passive computer that operates at the speed of light and without 

consuming any energy. The compression of multiple computational layers into a singlet largely 

reduces the number of weight parameters to train. The subwavelength dimensions of meta-units 

enable efficient parallel computing of high-resolution data. Moreover, physics-based computing 

that relies on intrinsic and engineered material properties could offer security beyond digital 

encryption. 

1.2 Resonant recurrent neural network 

Larger and deeper neural networks require new and high-efficiency computing architectures. The 

search for alternative computing has recently intensified. One interesting candidate is to use 

physical waves such as light to perform analog computing. Such analogy computing enjoys the 

benefits of intrinsic parallelism, and it can be extremely energy efficient. The great promise also 

comes with great challenges. The very fact that gives rise to the lightning speed of wave computing 

also leads to one major challenge: the transient nature of propagating waves makes it difficult to 

construct a memory in the wave domain. Since memory is indispensable for computing temporal 

data, today researchers must resort to other means to realize the effect of memory such as 

optoelectronic conversion, routing through long waveguides, and random internal feedback. 

As a natural memory, resonance is well suited as the building block for scalable recurrent neural 

networks (RNNs). RNNs have been widely used for speech recognition[6] and synthesis[7], and 

machine translation[8]. In digital RNNs, memory has been realized by constructing digital 

feedbacks [9], and the same feedback can be realized by wave reflection at the boundaries of 

resonators. Different types of analog RNNs have been previously investigated. One strategy is to 

faithfully follow digital feedbacks in RNNs by routing the output of a computing device back to 

its input. For example, one can feed the output of optical networks back to the input via long optical 

waveguides or electro-optical conversion. By merely functioning as a mirror copy of digital RNNs, 

this strategy does not take advantage of intrinsic feedback mechanisms in wave physics. 

Recently,[3]. proposed to use the intrinsic feedback in disorder structures to increase the expressive 

power and reduce the size of analog neural computing. (Hughes et al., 2019)showed that such 

internal feedback mechanism can be used to realize RNNs. For a long time, reservoir computing 

in the optical domain has also explored complex temporal dynamics to realize the memory effect. 

In all these works, the memory is implicitly built into the complex structures. One cannot easily 

identify the spatial distribution or the temporal characteristics of memory. While in principle these 

analog systems can perform certain temporal computation, physical intuition and interpretation are 

lacking. RNNs have the vanishing gradient problem in nature: the gradient of the loss function 

decays exponentially with time. As a result, it is difficult for vanilla RNNs to keep track of arbitrary 

long-term dependencies in the input sequences. Long short-term memory (LSTM) is designed to 

solve the problem of learning long-term temporal dependencies. It incorporates cell states and 

gates such that events from the remote past can have current impacts. It is difficult to construct 

and interpret LSTM in existing wave computing systems because their temporal characteristics are 
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buried in a black box. However, in the resonance system, we can include resonators with different 

lifetimes to realize short-term and long-term memory. This explicit form of memory makes it easy 

to construct scalable RNNs and advanced recurrent models such as LSTM. As the quest for the 

new computing intensifies, resonance could play an important role in emerging wave-based analog 

computing in general. 

We demonstrate that resonance can be used to construct stable and scalable recurrent neural 

networks. By including resonators with different lifetimes, the computing system develops both 

short-term and long-term memory simultaneously. 
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2 METHODS, ASSUMPTIONS, AND PROCEDURES 

2.1 Smart Glass 

2.1.1 ONNs for object recognition 

Figure 2.1 shows a schematic that illustrates the configuration of the ONN system in this study. It 

is composed of three components: an input, the smart glass, and an output. The input comprises an 

object to be recognized (e.g., a digit, a letter) and is placed at a distance (object distance) in front 

of the smart glass. The far-field diffraction pattern of the input is incident upon the smart glass and 

exits with a modulated wavefront. The modulated light then propagates over another distance 

(imaging distance) and arrives at the output layer, producing a diffraction pattern. Object 

recognition is accomplished by concentrating optical intensity to a specific location on the output 

plane, depending on the classification label of the input object. 

The ONN system is designed for near-infrared light at λ=1,550 nm. The input objects are binary 

images of handwritten numerical digits in the MNIST dataset, or typed letters in several fonts, with 

a size of 500 λ  500 λ (Figure 2.1). The object and imaging distances where light propagates in 

the air (n=1) are both 2000 λ. The smart glass is composed of a single layer of metasurface on a 

glass substrate, which has a thickness of 322.58 λ (500 µm) and a refractive index of 1.44. The 

metasurface is patterned on the backside of the substrate and is circular with a radius of 250 λ. A 
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circular aperture with the same size as the metasurface is positioned on the front surface of the 

substrate to block stray light in the experiment (Figure 2.1).  

An ANN simulating the above system on a digital computer is used for training the smart glass. In 

the training process, both the object and the metasurface are digitalized into 1000  1000 pixels, 

with a spatial resolution of 750 nm. The input image can be considered as a collection of uniformly 

 

Figure 2.1 Operation of a smart glass for object recognition. Schematics illustrating that a smart glass 

channels light from an input image preferentially onto one of several detection domains in the output 

plane. The yellow arrows indicate the direction of light propagation. The red squares in the output plane 

define the detection domains. Note that in experiments the metasurface smart glass is defined on the 

back surface of a transparent substrate and the aperture is placed on the front surface of the substrate. 
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distributed dipoles, all assumed to lay in the same direction parallel to the input plane. The 

propagation of the image for a distance of 𝑑 can be calculated as the sum of dipole radiations, 

given by 

𝐸(𝒓𝒋, 𝑑) = ∑ 𝐸(𝒑𝒊, 𝒓𝒊, 𝒓𝒋, 𝑑)

𝑖

 

 = ∑
1

4𝜋𝜖0
𝑖 {𝑘2(𝒏𝒊𝒋 × 𝒑𝒊) × 𝒏𝒊𝒋

𝑒𝑖𝑘𝑟

𝑟
+ [3𝒏𝒊𝒋(𝒏𝒊𝒋 ∙ 𝒑𝒊 ) − 𝒑𝒊] (

1

𝑟3 −
𝑖𝑘

𝑟2) 𝑒𝑖𝑘𝑟}, Eq 2.1 

 

where 𝑖 and 𝑗 denote the 𝑖th and 𝑗th locations in the input and output planes, respectively; 𝒓 is the 

coordinate of a location; 𝒑 is the electric dipole moment; 𝒏𝒊𝒋 is the unit vector in the direction of 

𝒓𝒋 − 𝒓𝒊; 𝜖0 is the permittivity of free space; 𝑘 = 2𝜋/𝜆 is the wavenumber. For a binary image, the 

magnitude of dipole moment 𝒑 is 1 in the digit or letter, and 0 in the background. 

To accelerate computation, a 3FFT method is implemented following the Huygens-Fresnel 

principle. Consider waves propagate from a plane to another, separated by a distance 𝑑, the relation 

between the phasor distributions of the wave on the two planes is given by 

 𝑢(𝑑) = 𝑢(0) ⊗ 𝑘 Eq 2.2 

where 𝑢(0) and 𝑢(𝑑) are the phasor profiles on the two planes, and 𝑘 is the propagator kernel of 

the aspherical wave modulated by an inclination factor. By applying Fourier transform on both 

sides, the relation becomes 

 𝑈(𝑑) = 𝑈(0) ⋅ 𝐾 Eq 2.3 

here the upper case denotes the Fourier transforms of each term. The phasor profile 𝑢(𝑑) can be 

quickly obtained by numerically calculating the product of the Fast-Fourier-transforms (FFTs) of 

𝑢(0) and 𝑘, followed by calculating inverse FFT of the product, to avoid the computationally 

inefficient summation or convolution over pixels of the planes.  

In this manner, the binary optical input is first propagated over the object distance, to the 

metasurface plane. Modulations are subsequently applied to the calculated fields on the 

metasurface plane (Figure 2.1). In this study, we only design the metasurface based on its 

modulation of the optical phase. The modulated field propagates for the image distance and the 

resulting output field is used to evaluate the loss function. 

In the experiment, the output optical intensity is captured by cameras or photodetectors. Detection 

domains are designated on the output plane representing the classification labels (Figure 2.1). The 

loss function evaluates the cross-entropy between the measured intensity distribution and the target 

intensity distribution, given by  
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𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑ 𝑝𝑖 ∙ log(𝑞𝑖) ,

 

𝑖

 Eq 2.4 

where 𝑞𝑖 is the proportion of intensity in the ith domain to the total intensity and 𝑝𝑖 is the target 

value, which is 1 if the domain matches with the label of the input and 0 if not. The phase responses 

of the 1000  1000 pixels of the metasurface smart glass are trained to minimize the loss function 

using the “Adam” optimization algorithm adapted from the stochastic gradient-based optimization 

method.  

Measures are taken to increase the robustness of the trained ONN against experimental errors. For 

example, to increase the tolerance to minor mispositioning of the optical components, the detection 

domains are designed to have a separation between each other (Figure 2.1)). An auxiliary loss 

term, given by the proportion of intensity in the detection domains to the total intensity, is 

subtracted from the loss function, to increase the contrast between the domains of interest and 

 

Figure 2.2 Measures to increase robustness of smart glasses against experimental errors. (a) 

Simulated recognition accuracies of a smart glass as a function of the deviation of object/imaging 

distances, showing that the robustness of the smart glass is improved by taking the measures described 

in the text. Solid lines: accuracies with the measures taken. Dashed lines: accuracies without taking any 

measure. (b) An example of introducing a nonuniform background (‘noise’) during the training of the 

smart glass. From left to right: a randomly generated nonuniform background, a binary input image, the 

product of input and ‘noise’ used in the training process, a real input in the experiment. 
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background via the minimization of the loss function. Besides, the input images are randomly 

displaced along with their in-plane directions by a maximum of 10% of the image size in the 

training process to ensure the tolerance of the trained ONN to the error in input positions. By taking 

the above measures, the trained ONN also shows robustness against the errors in the positions of 

the components along the optical axis. Figure 2.2 (a) shows that with the smart glass fixed, the 

recognition accuracy is highly robust against the object distance. Although more sensitive to the 

imaging distance, the accuracy remains high when the imaging distance deviates by up to 15%. 

Furthermore, a spatially slowly varying background noise, with a gaussian intensity profile and its 

size, position, and magnitude randomly designated, is applied to the input images that are used in 

the training, to take account of the experimental non-uniformity of input optical intensity. Figure 

2.2 (b) depicts a specific example of such a background intensity variation. 

2.1.2 Design and Fabrication of metasurface 

The metasurface is made of amorphous silicon for its transparency in the near-infrared and is 

composed of meta-units situated in a square lattice with a periodicity of 750 nm. The height of the 

meta-units is 1 µm. A library of meta-units is generated with individual phase responses 

 

Figure 2.3 Isotropic and birefringent meta-unit libraries. (a) Phase responses, Φ(𝑚), of meta-units 

in the polarization-independent library, where m denotes the index of the meta-unit geometry. (b) Phase 

response, Φ(𝑚, 𝜃), of meta-units in the birefringent library, where θ denotes polarization direction 

measured from the x axis. Each blue circle represents one meta-unit. Red solid circles represent a few 

examples of meta-units illustrated below. 
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determined by Rigorous Coupled Wave Analysis (RCWA). Here, the meta-units have two cross-

sectional archetypes, square and cross-shaped; their phase responses can be either polarization-

independent or birefringent. In the latter case, the meta-unit pillars have a non-unity aspect ratio 

in the cross-section, and such meta-units are used for polarization-multiplexing smart glasses. 

Figure 2.3 (a) and (b) show the calculated phase responses, Φ(𝑚, 𝜃) (m denotes the meta-unit 

geometry and θ is the polarization direction of light), of the meta-units used in the polarization-

independent and birefringent libraries, respectively. 

Note that the library is discrete in its phase responses because the minimal increment of meta-unit 

dimensions is limited by the fabrication resolution of electron-beam lithography. We use a 

customary error-minimization algorithm that sweeps the entire parameter space of the library to 

find the optimal meta-unit for each position of the meta-surface. The figure of merit used is the 

average phase error over the entire meta-surface lattice. Suppose at position (x, y) we have the 

desired phase response for a certain polarization, Φ(𝑥, 𝑦, 𝜃). For each position, the meta-unit with 

a phase response that deviates the least from the desired phase response is found. By sweeping 

over all the lattice positions, we can generate an optimal meta-surface layout with a collective 

phase profile that replicates the desired profile of phase modulation. 

In the fabrication process, amorphous silicon films of thickness 1 μm are deposited by plasma-

enhanced chemical vapor deposition on 500-µm thick fused quartz substrates. An electron beam 

lithography system (Elionix ELS-G100) is used to define the metasurface pattern on a double-

layer electron-beam Resist (PMMA 495k A4 and 950A2) with a dose of 770 µC/cm2 at a current 

of 2 nA. A 20-nm thick layer of E-Spacer (DisCharge H2Ox2) is spun on top of the double-layer 

 

Figure 2.4 Fabrication of metasurface smart glasses. (a) Schematic illustrating the fabrication process. 

(b) SEM images showing meta-units with a variety of geometries used in a metasurface smart glass. 



 

10 
DISTRIBUTION STATEMENT A. 

Approved for public release:  distribution unlimited. 

resist to alleviate the electron charging effect during exposure. The exposed resist is subsequently 

developed in a solution of 3:1 IPA: DI Water for 2 minutes. After the development of the resist, a 

25-nm thick aluminum oxide layer is deposited on the top of the developed sample as an etching 

mask using electron-beam evaporation. Lift-off is performed by dissolving the remaining resist in 

acetone overnight and the meta-surface pattern is transferred from the aluminum oxide mask to 

the amorphous silicon film in an inductively coupled plasma (ICP) etcher (Oxford PlasmaPro 100 

Cobra), with a homebrew etching recipe. The aluminum oxide mask is left on the devices because 

its thinness and dielectric nature make the optical impact of its presence negligible. Removal could 

be achieved by dissolving it in ammonium hydroxide without affecting the silicon or fused silica 

wafer. Figure 2.4 (a) summarizes the above fabrication process. A Scanning electron microscope 

(SEM) image shows an array of meta-units of a fabricated smart glass in Figure 2.4 (b). 

2.1.3 Experimental configuration 

The experimental setup following the scheme of ANN is shown in Figure 2.5 (a). A telecom laser 

beam (λ = 1,550 nm) is incident on a photomask to create an input optical object. The photomask 

contains a 2D array of objects (numerical digits or letters) that are transparent within the object 

and opaque outside of it. The photomask is made of emulsion photo-plotted on a mylar (Bo-PET, 

Biaxially-oriented polyethylene terephthalate) sheet (Figure 2.5 (b)). The incident beam has a 

diameter of ~3 mm, which is much larger than the size of individual input objects (0.775 mm  

0.775 mm) to provide relatively uniform illumination. The input image is relayed by a telescope 

with a unity magnification and the relayed image is superimposed on a square aperture so that 

stray light from adjacent object images is blocked (Figure 2.5 (b)). The optical wave from a single 

object is thus allowed to propagate over the object's distance. The diffraction pattern of the object 

is filtered by the circular aperture (made of aluminum foil, Figure 2.1and Figure 2.5 (c)) and then 

processed by the meta-surface smart glass. The output image is collected by a microscope with an 

objective focused on the output plane and measured by an InGaAs near-infrared camera (Princeton 

Instrument NIRvana 640). The optical intensities in the detection domains are extracted from the 

image and the input object is categorized according to the domain receiving the highest intensity. 

To test the polarization-multiplexing devices, a linear polarizer is inserted in front of the object 

mask so that an object is tested twice, one with horizontally polarized incident light and the other 

with vertically polarized incident light. 

The experimental characterization of the ONN is conducted with at least 10 objects for each 

classification label to estimate the accuracy of object recognition. The tested objects are randomly 

chosen from a dataset that is not used in the training. 



 

11 
DISTRIBUTION STATEMENT A. 

Approved for public release:  distribution unlimited. 

 

2.2 Resonant Recurrent Neural network 

We demonstrate the mathematical equivalence between digital RNN and resonant system. A 

digital RNN consists of many artificial neurons with memories. One neuron often connects to 

many others. Similarly, one resonator can couple to many, providing a scalable way to construct a 

large-scale analog computing system with memory. The coupling between resonators can be 

mediated through free space or waveguides. The coupling coefficients (e.g., connection weights) 

determine the function of computing. They will be trained in a similar way that neural networks 

 

Figure 2.5 Experimental configurations for testing the smart glass. (a) Schematic of the 

experimental setup. BS: beam splitter. (b) An object plate contains an array of objects to be recognized 

(apertures defined on an opaque photomask). A square object aperture is placed on the input plane as 

shown in (a). The objects are reimaged on the input plane by a 1 telescope and filtered by the aperture 

to allow light from a single object to propagate to the smart glass. (c) Optical microscopic image of a 

metasurface smart glass defined on the back surface of a glass substrate. A circular aperture (a ~ 1mm 

hole in an aluminum foil) is placed on the front surface of the substrate to reduce stray light.  
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are trained. The trained coefficients can be physically implemented, for example, by adjusting the 

distance between resonators.  

Next, we demonstrate a specific example where we train acoustic resonators to recognize the 

vowels spoken by a human. All computing is in the acoustic domain. The computing device [Fig. 

10(a)] contains three parallel acoustic waveguides that couple to two rows of whispering gallery 

resonators Figure 2.6. Each row contains 60 resonators. The coupling between resonators is 

mediated through the waveguides. Depending on the identity of the sound, the computing device 

will route the energy of three different vowel sounds to three corresponding output waveguides. 

The input to the acoustic system is the replay of the audio recording of 10 vowel classes from 45 

different male speakers and 48 different female speakers. We use a subset of the original in Ref 

Figure 2.6, which includes 279 recordings corresponding to three vowel classes, represented by 

ae, ei, and iy. The training is performed by using 80% of these recordings while the rest 20% is 

used to test the trained system. In the training, we can adjust geometric parameters, including the 

resonator positions 𝑙, the resonator sizes 𝑟, and the distances between resonators and waveguides 

 

Figure 2.6 Conceptual equivalence between of a RNN and a resonance system. (a) General RNN 

architecture consisting of an input layer, hidden states with feedback loops and an output layer. The 

RNN can operate on discrete-time sequence. (b) Layout of a resonant recurrent network that can operate 

on continuous-time signal. 𝛺, 𝛤𝑒, and ℋ𝑖𝑛𝑡 represent resonance frequency, decay rate into channels, and 

coupling between resonators, respectively. (c) Diagram of a RNN cell composed of trainable parameters 

𝑊𝑥 , 𝑊ℎ , and 𝑊𝑦 . (d) Diagram of the recurrence relation for the resonance system composed of 

trainable parameters 𝑀𝑖, 𝑀𝑎, and 𝑀𝑜. 
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𝑑. The training goal is to minimize a loss function that is defined by the output of the three 

waveguides and ground-truth labels.  
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3 RESULTS AND DISCUSSION 

3.1 Smart Glass 

3.1.1 Recognition of 4 numerical digits 

The prototype of smart glass (with a phase modulation shown in Figure 3.1(a)) is to recognize 4 

numerical digits: {0, 1, 3, 4} from the MNIST[11]  handwritten digit database. The smart glass is 

trained to concentrate light scattered from the binary image of one digit into one of the four square 

domains on the output plane as depicted in Figure 3.1 (a). The measurements of 116 input digits 

(4 classes and N>25 for each class) result in recognition accuracy of 0.9828, while the training 

reports an accuracy reaching 0.9914. Figure 3.1 (b) shows a digit “4” on the input plane and the 

resulting intensity distribution on the output plane. Figure 3.1 (c) shows the confusion matrix 

summarizing the recognition results. 

 

Figure 3.1 Recognition of 4 types of handwritten numerical digits. (a) Trained phase modulation on 

the metasurface and arrangement of detection domains on the output layer. (b) An example showing the 

recognition of a handwritten digit ‘4’. Upper panel: Input image. Lower panel: Intensity distribution on 

the output plane showing that the lower right detection domain (the one with glow) has the highest 

integrated optical intensity. (c) Confusion matrix summarizing the result of recognizing116 handwritten 

‘0’, ‘1’, ‘3’ and ‘4’. Each row on the matrix shows the instances in a true class and each column shows 

the instances in a predicted class. The lower table reports the proportions of correct (upper row) and 

incorrect (lower row) recognition for each predicted class, while the right table reports the proportions 

of correct (left column) and incorrect (right column) recognition for each true class. 
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3.1.2 Recognition of 10 numerical digits 

We expanded the number of object classes to 10 digits, from 0 to 9, to further explore the capacity 

of our smart glass in object recognition. The trained optical phase profile of the meta-surface and 

10 circular detection domains in a circular array are depicted in Figure 3.2 (a). The measurements 

of 208 input digits (10 classes and N>10 for each class) result in recognition accuracy of 0.7837, 

while the training reports an accuracy reaching 0.865. Though much lower than that of the 4-digit 

 

Figure 3.2 Recognition of all 10 types of handwritten numerical digits. (a) Trained phase modulation 

on the metasurface and arrangement of detection domains on the output layer. (b) Three examples 

showing the recognition of handwritten digits ‘0’, ‘4’ and ‘7’. Upper panels: Input images. Lower 

panels: Intensity distributions on the output plane showing that the detection domain corresponding to 

the identity of a digit has the highest integrated optical intensity.  (c) Confusion matrix summarizing 

the result of recognizing 208 handwritten digits. 
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recognition device, the accuracy is still satisfactory. Figure 3.2 (c) shows the confusion matrix 

summarizing the recognition results. 

 

Figure 3.3 Recognition of all 10 handwritten numerical digits using a polarization-multiplexing 

smart glass. (a) Trained phase modulations at two orthogonal incident polarizations on the metasurface 

for recognizing two groups of digits: {1, 3, 4, 7, 8} and {0, 2, 5, 6, 9} and arrangement of detection 

domains on the output layer. (b) Two examples showing the recognition of handwritten digits ‘4’ and 

‘6’. Upper panels: Input images. Lower panels: Intensity distributions on the output plane showing that 

the detection domain corresponding to the identity of a digit has the highest integrated optical intensity. 

(c) and (d) Confusion matrices summarizing the result of recognizing the two groups of digits with 111 

and 97 handwritten digits, respectively. 
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Figure 3.4 Recognition of the identity and typographic styles of 4 letters using a polarization-

multiplexing smart glass. (a) Trained phase modulations at two orthogonal incident polarizations on 

the metasurface and arrangement of detection domains on the output layer. (b) Two examples showing 

the recognition of an italicized ‘A’ and a normal ‘C’. Upper panels: Input images. Lower panels: 

Intensity distributions on the output plane showing that the detection domains corresponding to the 

identity and typographic style of a letter have the highest integrated optical intensity. (c) and (d) 

Confusion matrices summarizing the results of recognizing 168 letters. 
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3.1.3 Recognition of 10 numerical digits using polarization multiplexing 

The 10-digit recognition is computationally a much more expensive task than categorizing only 4 

digits. As such, we devise a polarization multiplexing strategy to reduce the complexity of the task. 

The 10 numerical digits are divided into two groups and their recognition is performed using light 

polarized in two orthogonal directions: the horizontally polarized light for the recognition of digits: 

{1, 3, 4, 7, 8} and the vertically polarized light for the recognition of digits: {0, 2, 5, 6, 9}. The 

smart glass is constructed using the birefringent meta-unit library to provide distinct phase 

modulations for light polarized in orthogonal directions (Figure 3.3 (a)). Five detection domains 

for recognition of each group of five digits are defined on the output plane as shown in Figure 3.3  

(a). The measurements of 111 and 97 input digits result in recognition accuracies of 0.9099 and 

0.8144, for the two groups of digits, respectively, while the training reports accuracies reaching 

0.9820 and 0.9691, respectively. Figure 3.3 (c) and (d) show the confusion matrices summarizing 

the recognition results. Note that the coverage of the optical phase provided by the birefringent 

meta-unit library is more discrete than that of the polarization-independent meta-unit library so 

that the phase responses of the fabricated birefringent meta-surface deviate from the desired phase 

profiles more than the non-birefringent devices. This issue can be addressed by including more 

archetypes of meta-units in the library.  

3.1.4 Multiplexing & multitasking smart glass 

The smart glass is designed to accomplish two distinct tasks using light with orthogonal 

polarizations: the light polarized in one direction is used for the recognition of typed alphabet 

letters and the light polarized in the orthogonal direction is for the recognition of the typographic 

types of the letters, i.e., if a letter is normal or italic. Four square detection domains are defined on 

the output plane, corresponding to 4 letters: {A, B, C, D} (Figure 3.4 (a)), and the two domains 

in the upper row are used for recognizing if a letter is normal or italic. Limited by the number of 

fonts available, the training and testing processes used the same dataset of 21 fonts so the 

accuracies of the two types of recognitions are both 1 reported by the training. The measurements 

of 168 letter inputs (N=21 for each letter and N=84 for each typographic type) show accuracies of 

0.9281 and 1 for the letter recognition and typographic type recognition, respectively. Figure 3.4 

(c) and (d) show the confusion matrices summarizing the recognition results.   

3.1.5 Metasurface doublet for human face verication  

We designed a double layered metasurface stack (“doublet”) and theoretically demonstrated 

human face verication with high accuracy. This metasurface doublet can compare two distinct 

gray-scale images of human faces (light wave transmitted through the gray-scale photos) and 

verify whether the images represent the same person or not. To realize this function, the doublet 

maps the input light from an image into an array on the output plane (i.e., an intensity pattern on 

9 predefined regions on the camera plane) [Figure 3.5 (a)], and the similarity between two images 

is evaluated by calculating the Euclidean distance between two arrays corresponding to the two 

images (i.e., if the Euclidean distance is smaller than a threshold, there is a match between the two 

images) [Figure 3.5 (c)]. 
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We used a dataset of photos of 100 persons, each person with 14 distinct photos. The data of 90 

persons were used to train the metasurface doublet and the rest photos belonging to 10 persons 

were used as test. The result shows that when the threshold Euclidean distance is chosen to be ~0.8, 

we can have a small false acceptance rate of ~10% and a small false rejection rate of 10% [Figure 

3.5 (d)].  
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Figure 3.5 Metasurface doublet for human face verification. (a) Schematic illustrating the working 

mechanism of the metasurface doublet. An input gray-scale human face image is mapped into an array 

(intensity pattern over an array of predefined zones on the camera plane) and the similarity of two images 

is evaluated by comparing the Euclidean distance between their corresponding arrays to determine if they 

represent the same person or not. (b) Example human face photos used in designing and testing the doublet 

smart glass. Only photos without facial cover (e.g., images #1-7, and #14-20) were used. (c) Siamese neural 

network used for our human face verification task. (d) Results showing that when the threshold Euclidean 

distance was taken to be ~0.8, both the false rejection rate and false acceptance rate of our metasurface face 

verification system are reduced to ~10%. (e) Results showing that in a control digital ANN with 3 

convolutions and 2 fully connected layers, when the threshold Euclidean distance was taken to be ~1.8, 

both the false rejection rate and false acceptance rate are reduced to ~5%. (f) An example result showing 

that two photos were determined to not represent the same person because their Euclidean distance 

determined by the metasurface doublet is above the threshold. (g) An example result showing that two 

photos were determined to represent the same person because their Euclidean distance determined by the 

metasurface doublet is below the threshold. 

3.2 Resonant Recurrent Neural network 

3.2.1 Acoustic resonators to recognize vowel sound 

Figure 3. (b) and (c) show the results of the cross-entropy loss and the prediction accuracy, 

respectively. The trained resonance system can achieve an accuracy of 81.7% for the training 

dataset and 83.3% accuracy for the test dataset over 50 training epochs. The confusion matrix for 

the test data indicates that the resonance system can indeed perform vowel recognition [inset of 

Figure 3. (c)]. The time-integrated power at each waveguide demonstrates that the optimized 
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resonant architecture can route most of the energy of the object vowel class to the correct channel 

[Figure 3. (d)]. 

The classification of vowels requires memory in the temporal domain. Resonance provides an 

explicit form of analog memory, making it possible to directly interpret long and short-term 

memory effects. To demonstrate that, we consider a challenging case in RNNs: long short-term 

memory (LSTM). LSTM is designed to solve the problem of learning long-term temporal 

dependencies. The gradient of the loss function decays exponentially with time, causing the issue 

of vanishing gradient. LSTM is explicitly designed to include both short-term and long-term 

memory. A common LSTM architecture is shown in Fig. 11(a). It incorporates cell states and gates 

 

Figure 3.6 Acoustic resonators to recognize vowel sound in the wave domain. (a) Schematic 

of the vowel-recognition resonant recurrent network with three waveguides and two rows of 

resonators. (b) Cross-entropy loss and (c) prediction accuracy over 50 training epochs. Inset is 

confusion matrix for the test dataset. The correct predictions are in the diagonal of the table and 

prediction errors are located outside the diagonal. (d) Raw audio waveforms of three spoken 

vowel classes and time-integrated power at each output channel. 
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such that events from the remote past can have current impacts. It is difficult to construct and 

interpret LSTM in existing wave computing systems; however, in the resonance system, we can 

include resonators with different lifetimes to accomplish short-term and long-term memory. 

3.2.2 The task of long-term and short-term memory 

We now address a more challenging task by making the previous task of vowel classification more 

practical. Previously, the input signal consisted of a pure vowel without any quiet lapse of time 

preceding or following the vowel. This would be an unusual situation. In practice, we often take a 

temporal window of recorded sound and ask if there is a vowel in this window. The temporal 

window is often much longer than the duration of the vowel. Now we need relatively short-term 

memory to recognize the inner structure of the vowel sound, and at the same time, we also need 

long-term memory because the duration of the temporal window can be much longer than the 

length of the vowel sound.  

The specific case study considered here uses a temporal window of 600-time steps. A vowel sound 

only consists of 100-time steps. We position the vowel at different temporal locations as shown in 

Figure 3. (c-e). Here we use voices from three classes: ae(t), iy(t), and ei(t). In the first training 

case, we place a vowel sound at the end of the temporal window [Figure 3. (c)]. In the second 

case, we place it in the middle, starting at time step number 300 [Figure 3. (d)]. And lastly, we 

place it towards the beginning of the temporal window [Figure 3. (e)]. The neural network makes 

 

Figure 3.7 Task of long-term and short-term memory. (a) Diagram of LSTM architecture in a digital 

RNN. (b) Diagram of coupled resonators with different quality factors Q and lifetimes τ. (c-e) 

Schematics showing that the timing of vowel sound varies for three different training sets. The vowel 

signal contains three classes: ae(t), iy(t) and ei(t). (f) The lifetime distribution of resonators after training 

for three cases. Long-term and short-term memory arise spontaneously in response to different memory 

requirement in three different training settings. 
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its decision of the vowel class at the end of temporal window. For the first case, the vowel sound 

is located at the end of the temporal window. There is no time lag between the vowel sound and 

the output so that the network requires mostly short-term memory. For the last case, however, there 

is a long-time lag, and therefore long-term memory is needed. This setup allows us to see how 

short and long-term memories spontaneously arise from training.  

The three trained computing systems all function well with accuracies above 70%. It is interesting 

to examine the lifetimes of resonators in the three computing systems. Because of the coupling 

between resonators, it is more informative to look at the lifetimes of eigenmodes after modal 

hybridization. Eigenvalues of the matrix ℋ = 𝑖𝛺 − 𝛤𝑒 − ℋ𝑖𝑛𝑡 are calculated, where the imaginary 

and real parts are the resonant frequency ω and decay rate 1/τ of each eigenmode, respectively. 

The lifetime τ of each eigenmode can then be calculated. The histogram of eigenmodes shows 

distinct lifetime distributions for the three cases [Figure 3. (f)]. For the first case, the computing 

system consists of resonators mostly with short lifetimes. For the second case, the histogram shows 

a middle-range lifetime distribution. For the third case with the longest time lag, the resonance 

system evolves to possess the capability of long-term memory by including a significant portion 

of resonators with long lifetimes; in fact, the computing system develops both short-term and long-

term memory simultaneously, in a similar way as the memory cells in LSTM. Thus, we observe 

that the distribution of lifetime semi-quantitatively reflects the length of the memory required in 

each computing situation. 

We note that the resonance systems have many intrinsic advantages over digital RNNs. These 

include advantages associated with analog wave computing, such as fast speed, ultra-low energy 

consumption, and intrinsic parallelism. Moreover, the proposed system can process continuous 

temporal signals whereas digital RNNs have the risk of insufficient temporal resolution. Lastly, an 

important but subtle advantage is that it is much easier to train a resonance system than to train a 

digital RNN. Training a digital RNN has an inherent issue of instability known as the problem of 

 

Figure 3.8 Real and imaginary parts of the eigenvalues of matrix 𝓗. The training case we studied 

here is the same as the one in Figure 3. 
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exploding gradient, which is due to the great depth of RNNs. One has to take great care to address 

exploding gradient problems by using techniques such as gradient clipping and weight 

regularization. It has been shown that in a physical system, recurrent computing is fundamentally 

stable. We can quantify the advantage of training stability by treating the computing device as a 

dynamic system described by 𝑎̇(𝑡) = ℋ ∙ 𝑎(𝑡). This dynamic system is stable if all the eigenvalues 

of the matrix ℋ have negative real parts. As shown in Figure 3., all eigenvalues of the trained 

matrix ℋ  are in the left half the space; that is, the training of this computing system is 

fundamentally stable. 



 

25 
DISTRIBUTION STATEMENT A. 

Approved for public release:  distribution unlimited. 

4 CONCLUSION 

4.1 Smart Glass 

We have successfully demonstrated a novel approach to implement optical neural networks 

capable of recognizing simple objects with high accuracy. Optimization of the ONN configurations, 

for example, the size, shape, and arrangement of detection domains, can lead to higher accuracy 

in object recognition. By exploiting amplitude-phase modulation in metasurfaces, compound 

metasurface (e.g., doublets, triplets), and wavelength multiplexing, the smart glass can have more 

degrees of freedom in the control of network parameters to perform more complex recognition 

tasks. Our metasurface ONNs and ONNs based on integrated photonics have only implemented 

the linear transformation operation, not the nonlinear activation operation, and in this sense, they 

are not exact replicants of their biological counterparts. This fact limits the range of tasks they can 

perform and the accuracy they can achieve. Future work will realize nonlinear activation by 

introducing nonlinear materials (e.g., semiconductors with saturable absorption) into metasurfaces. 

To enhance optical nonlinearity, the inputs can take the form of short pulses and resonant structures 

can be incorporated into the ONN. 

Advanced sensors will be ubiquitous in future applications. These sensors are often deployed in 

areas or scenarios that lack infrastructure support. They require minimal service, resilience to 

influence, high energy efficiency, and information security. These requirements present a daunting 

challenge for existing technology. Today, collecting data in the physical domain involves a 

complex technology stack: a device that measures physical input, analog-to-digital conversion, 

and digital processors. The system ends up being vulnerable to influence, power-hungry, and 

reacting slowly due to the latency between modules. An ONN could fundamentally reshape the 

future of data collection and analysis by developing a new paradigm of “edge” perception devices. 

It computes directly upon the physical domain, effectively condensing measurement, A/D 

conversion, and computing in a single passive device. It uses no power or orders of magnitude less 

power, provides physics-guaranteed security, and comes in an extremely robust and ultra-compact 

form factor. Importantly, it can protect the privacy of the subject of interest because there is no 

representation of the subject in the digital domain. For example, we can envision, a standalone 

biometric lock composed of a customized smart glass with a few photodetectors and a coherent 

light source to recognize human fingerprints or facial profiles. 

4.2 Resonant Recurrent Neural network 

In conclusion, we have shown that resonance can be used to construct stable and scalable recurrent 

neural networks. Resonance provides an explicit form of memory. Short-term or long-term 

memories can be directly constructed and interpreted by the lifetime of resonators. This extends 

the analog computing capability into the complex neural network architecture such as LSTM. 

While we use acoustic as an example, the strategy can be broadly applied to other physical 

domains. Photonic analog computing has been used in several applications such as reservoir 

computing [12], photonic Ising machines [13], self-learning Machines [14], image edge detection 

[15], and analog signal processing [16]. 



 

26 
DISTRIBUTION STATEMENT A. 

Approved for public release:  distribution unlimited. 

REFERENCES  

[1] Y. Shen et al., “Deep learning with coherent nanophotonic circuits,” Nat. Photonics, vol. 11, 

no. 7, pp. 441–446, Jul. 2017, doi: 10.1038/nphoton.2017.93. 

[2] X. Lin et al., “All-optical machine learning using diffractive deep neural networks,” Science, 

vol. 361, no. 6406, pp. 1004–1008, Sep. 2018, doi: 10.1126/science.aat8084. 

[3] E. Khoram, A. Chen, D. Liu, Q. Wang, M. Yuan, and Z. Yu, “Optimization of Nonlinear 

Nanophotonic Media for Artificial Neural Inference,” in Conference on Lasers and Electro-

Optics (2019), paper JM3M.4, May 2019, p. JM3M.4. doi: 

10.1364/CLEO_AT.2019.JM3M.4. 

[4] N. Yu et al., “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection 

and Refraction,” Science, vol. 334, no. 6054, pp. 333–337, Oct. 2011, doi: 

10.1126/science.1210713. 

[5] R. J. Lin et al., “Achromatic metalens array for full-colour light-field imaging,” Nat. 

Nanotechnol., vol. 14, no. 3, pp. 227–231, Mar. 2019, doi: 10.1038/s41565-018-0347-0. 

[6] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidirectional LSTM 

and other neural network architectures,” Neural Netw., vol. 18, no. 5, pp. 602–610, Jul. 2005, 

doi: 10.1016/j.neunet.2005.06.042. 

[7] G. K. Anumanchipalli, J. Chartier, and E. F. Chang, “Speech synthesis from neural decoding 

of spoken sentences,” Nature, vol. 568, no. 7753, pp. 493–498, Apr. 2019, doi: 

10.1038/s41586-019-1119-1. 

[8] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural 

Networks,” in Advances in Neural Information Processing Systems, 2014, vol. 27. Accessed: 

Dec. 05, 2021. [Online]. Available: 

https://papers.nips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html 

[9] J. L. Elman, “Finding structure in time,” Cogn. Sci., vol. 14, no. 2, pp. 179–211, Apr. 1990, 

doi: 10.1016/0364-0213(90)90002-E. 

[10] T. W. Hughes, I. A. D. Williamson, M. Minkov, and S. Fan, “Wave physics as an analog 

recurrent neural network,” Sci. Adv., vol. 5, no. 12, p. eaay6946, doi: 

10.1126/sciadv.aay6946. 

[11] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to 

document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998, doi: 

10.1109/5.726791. 

[12] G. Marcucci, D. Pierangeli, and C. Conti, “Theory of neuromorphic computing by waves,” 

in OSA Nonlinear Optics 2021 (2021), paper NTh1A.7, Aug. 2021, p. NTh1A.7. Accessed: 

Dec. 05, 2021. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=NLO-

2021-NTh1A.7 

[13] C. Roques-Carmes et al., “Heuristic recurrent algorithms for photonic Ising machines,” Nat. 

Commun., vol. 11, no. 1, p. 249, Jan. 2020, doi: 10.1038/s41467-019-14096-z. 

[14] V. Lopez-Pastor and F. Marquardt, “Self-learning Machines based on Hamiltonian Echo 

Backpropagation,” ArXiv210304992 Nlin Physicsphysics, Mar. 2021, Accessed: Dec. 05, 

2021. [Online]. Available: http://arxiv.org/abs/2103.04992 

[15] T. Zhu et al., “Generalized Spatial Differentiation from the Spin Hall Effect of Light and Its 

Application in Image Processing of Edge Detection,” Phys. Rev. Appl., vol. 11, no. 3, p. 

034043, Mar. 2019, doi: 10.1103/PhysRevApplied.11.034043. 

[16] F. Zangeneh-Nejad and R. Fleury, “Topological analog signal processing,” Nat. Commun., 

vol. 10, no. 1, p. 2058, May 2019, doi: 10.1038/s41467-019-10086-3. 



 

27 
DISTRIBUTION STATEMENT A. 

Approved for public release:  distribution unlimited. 

 

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

 

AFRL  Air Force Research Laboratory 

ANNs  Artificial neural networks  

ICP  inductively coupled plasma  

LSTM  Long short-term memory  

ONNs  optical neural networks  

RCWA Rigorous Coupled Wave Analysis  

RNNs  recurrent neural networks  

RXAS  Soft Matter Materials Branch, Materials and Manufacturing Directorate 

SEM  Scanning electron microscope  
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