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Problem Space

Problem:  Tracking COTS, GOTS and FOSS obsolescence issues 

and vulnerabilities in software intensive systems

Questions that need to be asked:

• What is affected?

• When is the product no longer supported?

• What is the immediate impact?

• What are the secondary and tertiary dependencies?

• Where are the products located/used in the system and 

environments?

• What are the impacts of identified vulnerabilities (CVEs)?

• How do we track this?
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Problem Space

Organizations tend to use whatever is available (typically a spreadsheet) 

to identify and track the issues

Tracking relationships and impacts gets to be a very complicated situation 

at best

Visualization of the impacts is extremely difficult if even possible

A Design Structure Matrix (DSM)1 approach would show clusters but not 

secondary and tertiary dependencies.

1 This is sometimes also referred to as dependency structure matrix, dependency structure method, dependency source 

matrix, etc. “ https://dsmweb.org/ , https://en.wikipedia.org/wiki/Design_structure_matrix

https://dsmweb.org/
https://en.wikipedia.org/wiki/Design_structure_matrix


7
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release 
and unlimited distribution.]

Property Graph 

Representation

Graph Representation for Obsolescence Issues & 

Vulnerabilities 



8
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release 
and unlimited distribution.]

Property Graph Representation

Why a graph representation?

• Everything is naturally connected, networks of people, transactions, 

supply chains

• “Graphs form the foundation of modern data and analytics 

techniques, with capabilities to enhance and improve user 

collaboration, Machine Learning models, and explainable Artificial 

Intelligence.” – Gartner, “Top 10 Tech Trends in Data and Analytics”, 

16 Feb 2021

A property graph lets the problem be represented through Nodes 

and Relationships of the nodes to each other
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Property Graph Representation

Nodes* are the entities in the graph. 

• They represent objects (nouns)

• They can hold any number of attributes (key-value pairs) called 

properties. 

• Nodes can be tagged with labels, representing their different roles in 

your domain. 

• Node labels may also serve to attach metadata (such as index or 

constraint information) to certain nodes.

* The Property Graph Model, https://neo4j.com/developer/graph-database/
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Property Graph Representation

Relationships* provide directed, named, semantically-relevant 

connections between two node entities (e.g., Employee 

WORKS_FOR Company). 

• Relationships connect nodes and represent actions (verbs)

• A relationship always has a direction, a type, a start node, and an 

end node. 

• Like nodes, relationships can also have properties. In most cases, 

relationships have quantitative properties, such as weights, costs, 

distances, ratings, time intervals, or strengths. 

• Due to the efficient way relationships are stored, two nodes can 

share any number or type of relationships without sacrificing 

performance. 

• Although they are stored in a specific direction, relationships can 

always be navigated efficiently in either direction.

* The Property Graph Model, https://neo4j.com/developer/graph-database/
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Property Graph Representation

* The Property Graph Model, https://neo4j.com/developer/graph-database/
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Modeling the Problem

Using a product centric approach, what information needs to be 

tracked?

A product has:

• Name & Version

• Manufacturer

• End of Support Date (EOS)

• End of Extended Support Date (EEOS)

• End of Life Date (EOL)

• Category (COTS/GOTS/FOSS)

• Possible dependency on another software product

• Runs on an operating system

• May have one or more vulnerabilities
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Modeling the Problem

An operating system has:

• Name & Version

• Manufacturer

• End of Support Date (EOS)

• End of Extended Support Date (EEOS)

• End of Life Date (EOL)

Operating Systems tend to have a different impact on 

obsolescence issues and vulnerabilities than other software 

products

• Recommend tracking as separate entity (node) from other software 

products
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Modeling the Problem

Defining the nodes (Product, OS, etc.) and the relationships:

A Product:
• Runs on an OS (RUNS_ON relationship)

• May depend on another product (DEPENDS_ON relationship where it 

exists)

• Is created by a manufacturer (represented as a node; CREATED_BY 

relationship)

• Has an obsolescence issue (represented as a node; HAS relationship 

where an obsolescence issue has been identified and is being tracked 

externally, i.e., Jiratm ticket)

• Contains one or more vulnerabilities (represented as nodes; 

CONTAINS relationship where it exists)

• Is installed in one or more environments (represented as nodes; 

INSTALLED_IN relationship)

Jira is a trademark of Atlassian
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Modeling the Problem

An OS:
• Is created by a manufacturer (represented as a node; CREATED_BY 

relationship)

• Has an obsolescence issue (represented as a node; HAS relationship 

where an obsolescence issue has been identified and is being tracked 

externally, i.e., Jiratm ticket)

• Contains one or more vulnerabilities (represented as nodes; 

CONTAINS relationship where it exists)

• Is installed in one or more environments (represented as nodes; 

INSTALLED_IN relationship)

Obsolescence issue is intentionally modeled as a separate node
• Contains a link to a Jiratm ticket

• There may be more than one product covered under a ticket

• Also contains risk information
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Modeling the Problem
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Possible Scenarios
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Possible Scenarios

1. A manufacturer announces their software product will no longer 

be supported next year.  What are the impacts to the system?

2. A vulnerability has been identified in a software product.  Where 

is it installed in the system in order to determine the risk?

3. A manufacturer sells a product line to a foreign company. 

Where is this product in the system and what is the impact?

4. A new environment is going to be established to support 

product testing. What products need to be on that 

environment?

5. A newer version of a product is now available.  Is there 

anything keeping the upgrade from happening (dependencies)?
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An Approach Using Neo4j
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An Approach Using Neo4j

What is Neo4j?

Neo4j is an open-source, NoSQL, native graph database that provides an 

ACID-compliant1 transactional backend for your applications. Initial 

development began in 2003, but it has been publicly available since 2007.

Neo4j is referred to as a native graph database because it efficiently 

implements the property graph model down to the storage level. This 

means that the data is stored exactly as you whiteboard it, and the 

database uses pointers to navigate and traverse the graph. 

What is Neo4j https://neo4j.com/developer/graph-database/

1 In computer science, ACID (atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee 
data validity despite errors, power failures, and other mishaps. In the context of databases, a sequence of database operatio ns that satisfies 

the ACID properties (which can be perceived as a single logical operation on the data) is called a transaction. For example, a transfer of funds 

from one bank account to another, even involving multiple changes such as debiting one account and crediting another, is a single transaction. 

https://en.wikipedia.org/wiki/ACID. 
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An Approach Using Neo4j

Who is using Neo4j?

• MITRE: Cybersecurity Situational awareness (https://neo4j.com/case-

studies/mitre/)

• NASA: Lessons learned and knowledge management 

(https://neo4j.com/users/nasa/)

• Lyft: Data discovery (https://neo4j.com/case-studies/lyft/)

• Lockheed Martin Space: Lifecycle data and parts management 

(https://neo4j.com/case-studies/lockheed-martin-space/)

• CAST Software: IT architecture visibility (https://neo4j.com/case-studies/cast-

software/)

• US Army:  Equipment maintenance tracking (https://neo4j.com/case-

studies/us-army/)

https://neo4j.com/case-studies/mitre/
https://neo4j.com/users/nasa/
https://neo4j.com/case-studies/lyft/
https://neo4j.com/case-studies/lockheed-martin-space/
https://neo4j.com/case-studies/cast-software/
https://neo4j.com/case-studies/us-army/
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An Approach Using Neo4j

Working Demo

• Based on existing information captured elsewhere

• Built in about 4 hours including errors and correction of errors 

without prior knowledge of the tool

• Expanded the input method to natively import the Excel 

spreadsheets using the built-in APOC1 library

1 Drawing from the unlucky technician in The Matrix movie and the historic Neo4j acronym “A Package Of 

Components,” the name APOC was an obvious choice, which also stands for “Awesome Procedures On 

Cypher”. https://neo4j.com/blog/intro-user-defined-procedures-apoc/

https://neo4j.com/blog/intro-user-defined-procedures-apoc/
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Questions?
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