
1
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Graph Representation for
Obsolescence Issues and
Vulnerabilities

Michael S. Bandor

2
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Document Markings

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other
documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM21-0623

3
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Agenda

Problem Space

Property Graph Representation

Modeling the Problem

Possible Scenarios

An Approach Using Neo4j

4
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Problem Space

Graph Representation for Obsolescence Issues &

Vulnerabilities

5
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Problem Space

Problem: Tracking COTS, GOTS and FOSS obsolescence issues

and vulnerabilities in software intensive systems

Questions that need to be asked:

• What is affected?

• When is the product no longer supported?

• What is the immediate impact?

• What are the secondary and tertiary dependencies?

• Where are the products located/used in the system and

environments?

• What are the impacts of identified vulnerabilities (CVEs)?

• How do we track this?

6
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Problem Space

Organizations tend to use whatever is available (typically a spreadsheet)

to identify and track the issues

Tracking relationships and impacts gets to be a very complicated situation

at best

Visualization of the impacts is extremely difficult if even possible

A Design Structure Matrix (DSM)1 approach would show clusters but not

secondary and tertiary dependencies.

1 This is sometimes also referred to as dependency structure matrix, dependency structure method, dependency source

matrix, etc. “ https://dsmweb.org/ , https://en.wikipedia.org/wiki/Design_structure_matrix

https://dsmweb.org/
https://en.wikipedia.org/wiki/Design_structure_matrix

7
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Property Graph

Representation

Graph Representation for Obsolescence Issues &

Vulnerabilities

8
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Property Graph Representation

Why a graph representation?

• Everything is naturally connected, networks of people, transactions,

supply chains

• “Graphs form the foundation of modern data and analytics

techniques, with capabilities to enhance and improve user

collaboration, Machine Learning models, and explainable Artificial

Intelligence.” – Gartner, “Top 10 Tech Trends in Data and Analytics”,

16 Feb 2021

A property graph lets the problem be represented through Nodes

and Relationships of the nodes to each other

9
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Property Graph Representation

Nodes* are the entities in the graph.

• They represent objects (nouns)

• They can hold any number of attributes (key-value pairs) called

properties.

• Nodes can be tagged with labels, representing their different roles in

your domain.

• Node labels may also serve to attach metadata (such as index or

constraint information) to certain nodes.

* The Property Graph Model, https://neo4j.com/developer/graph-database/

10
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Property Graph Representation

Relationships* provide directed, named, semantically-relevant

connections between two node entities (e.g., Employee

WORKS_FOR Company).

• Relationships connect nodes and represent actions (verbs)

• A relationship always has a direction, a type, a start node, and an

end node.

• Like nodes, relationships can also have properties. In most cases,

relationships have quantitative properties, such as weights, costs,

distances, ratings, time intervals, or strengths.

• Due to the efficient way relationships are stored, two nodes can

share any number or type of relationships without sacrificing

performance.

• Although they are stored in a specific direction, relationships can

always be navigated efficiently in either direction.

* The Property Graph Model, https://neo4j.com/developer/graph-database/

11
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Property Graph Representation

* The Property Graph Model, https://neo4j.com/developer/graph-database/

12
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Modeling the Problem

Graph Representation for Obsolescence Issues &

Vulnerabilities

13
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Modeling the Problem

Using a product centric approach, what information needs to be

tracked?

A product has:

• Name & Version

• Manufacturer

• End of Support Date (EOS)

• End of Extended Support Date (EEOS)

• End of Life Date (EOL)

• Category (COTS/GOTS/FOSS)

• Possible dependency on another software product

• Runs on an operating system

• May have one or more vulnerabilities

14
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Modeling the Problem

An operating system has:

• Name & Version

• Manufacturer

• End of Support Date (EOS)

• End of Extended Support Date (EEOS)

• End of Life Date (EOL)

Operating Systems tend to have a different impact on

obsolescence issues and vulnerabilities than other software

products

• Recommend tracking as separate entity (node) from other software

products

15
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Modeling the Problem

Defining the nodes (Product, OS, etc.) and the relationships:

A Product:
• Runs on an OS (RUNS_ON relationship)

• May depend on another product (DEPENDS_ON relationship where it

exists)

• Is created by a manufacturer (represented as a node; CREATED_BY

relationship)

• Has an obsolescence issue (represented as a node; HAS relationship

where an obsolescence issue has been identified and is being tracked

externally, i.e., Jiratm ticket)

• Contains one or more vulnerabilities (represented as nodes;

CONTAINS relationship where it exists)

• Is installed in one or more environments (represented as nodes;

INSTALLED_IN relationship)

Jira is a trademark of Atlassian

16
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Modeling the Problem

An OS:
• Is created by a manufacturer (represented as a node; CREATED_BY

relationship)

• Has an obsolescence issue (represented as a node; HAS relationship

where an obsolescence issue has been identified and is being tracked

externally, i.e., Jiratm ticket)

• Contains one or more vulnerabilities (represented as nodes;

CONTAINS relationship where it exists)

• Is installed in one or more environments (represented as nodes;

INSTALLED_IN relationship)

Obsolescence issue is intentionally modeled as a separate node
• Contains a link to a Jiratm ticket

• There may be more than one product covered under a ticket

• Also contains risk information

17
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Modeling the Problem

18
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Possible Scenarios

Graph Representation for Obsolescence Issues &

Vulnerabilities

19
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Possible Scenarios

1. A manufacturer announces their software product will no longer

be supported next year. What are the impacts to the system?

2. A vulnerability has been identified in a software product. Where

is it installed in the system in order to determine the risk?

3. A manufacturer sells a product line to a foreign company.

Where is this product in the system and what is the impact?

4. A new environment is going to be established to support

product testing. What products need to be on that

environment?

5. A newer version of a product is now available. Is there

anything keeping the upgrade from happening (dependencies)?

20
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

An Approach Using Neo4j

Graph Representation for Obsolescence Issues &

Vulnerabilities

21
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

An Approach Using Neo4j

What is Neo4j?

Neo4j is an open-source, NoSQL, native graph database that provides an

ACID-compliant1 transactional backend for your applications. Initial

development began in 2003, but it has been publicly available since 2007.

Neo4j is referred to as a native graph database because it efficiently

implements the property graph model down to the storage level. This

means that the data is stored exactly as you whiteboard it, and the

database uses pointers to navigate and traverse the graph.

What is Neo4j https://neo4j.com/developer/graph-database/

1 In computer science, ACID (atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee
data validity despite errors, power failures, and other mishaps. In the context of databases, a sequence of database operatio ns that satisfies

the ACID properties (which can be perceived as a single logical operation on the data) is called a transaction. For example, a transfer of funds

from one bank account to another, even involving multiple changes such as debiting one account and crediting another, is a single transaction.

https://en.wikipedia.org/wiki/ACID.

22
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

An Approach Using Neo4j

Who is using Neo4j?

• MITRE: Cybersecurity Situational awareness (https://neo4j.com/case-

studies/mitre/)

• NASA: Lessons learned and knowledge management

(https://neo4j.com/users/nasa/)

• Lyft: Data discovery (https://neo4j.com/case-studies/lyft/)

• Lockheed Martin Space: Lifecycle data and parts management

(https://neo4j.com/case-studies/lockheed-martin-space/)

• CAST Software: IT architecture visibility (https://neo4j.com/case-studies/cast-

software/)

• US Army: Equipment maintenance tracking (https://neo4j.com/case-

studies/us-army/)

https://neo4j.com/case-studies/mitre/
https://neo4j.com/users/nasa/
https://neo4j.com/case-studies/lyft/
https://neo4j.com/case-studies/lockheed-martin-space/
https://neo4j.com/case-studies/cast-software/
https://neo4j.com/case-studies/us-army/

23
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

An Approach Using Neo4j

Working Demo

• Based on existing information captured elsewhere

• Built in about 4 hours including errors and correction of errors

without prior knowledge of the tool

• Expanded the input method to natively import the Excel

spreadsheets using the built-in APOC1 library

1 Drawing from the unlucky technician in The Matrix movie and the historic Neo4j acronym “A Package Of

Components,” the name APOC was an obvious choice, which also stands for “Awesome Procedures On

Cypher”. https://neo4j.com/blog/intro-user-defined-procedures-apoc/

https://neo4j.com/blog/intro-user-defined-procedures-apoc/

24
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Questions?

25
Graph Representation for Obsolescence Issues and Vulnerabilities
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A: Approved for public release
and unlimited distribution.]

Contact Information

Michael S. Bandor
Senior Software Engineer

Software Engineering Institute (SEI)

Carnegie Mellon University (CMU)

mbandor@sei.cmu.edu

210-380-5563 (work/cell)

mailto:mbandor@sei.cmu.edu

