Approved for Public Release; Distribution Unlimited. Public Release Case Number 21-3539

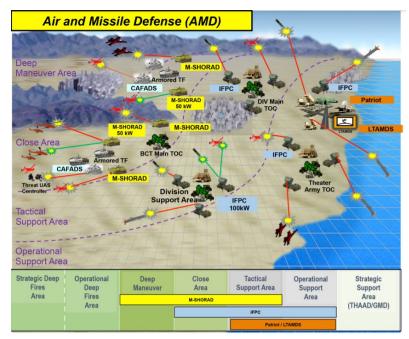
# Implementing a Digital Engineering Environment for Mission Engineering

Joint Staff J8 JIAMDO

Dr. Jeffrey C. Boulware

#### **MITRF**

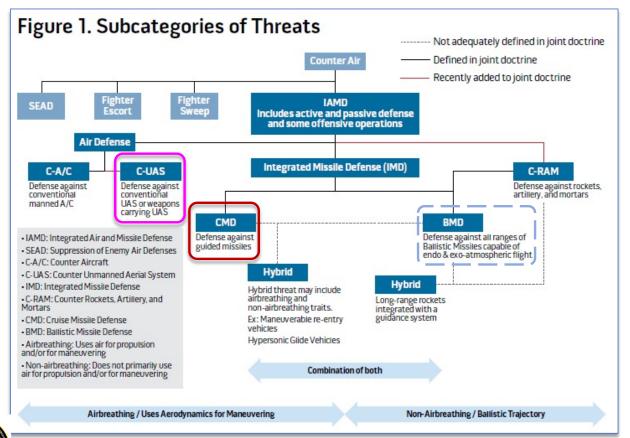
Eric Beene
Jonathan Kim
Matt Cotter
Nathan Norwood


This technical data deliverable was developed using contract funds under Basic Contract No. W56KGU-18-D-0004.





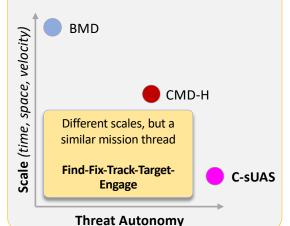
### Introduction


- The presentation describes the broad mission context driving the development and the approach used to creating a Digital Engineering Environment (DEE) for the Joint Staff J8's Joint Integrated Air and Missile Defense Organization (JIAMDO).
- This includes the development of top-level mission threads for IAMD which can be specialized to address different mission sets, including Counter Unmanned Aerial Systems (C-UAS) as well as Cruise Missile Defense (CMD).
- The presentation includes perspectives from the DEE team,
   MITRE, as well as the end user, JIAMDO.



Source: Army Air and Missile Defense Vision 2028, USASMDC/ARSTRAT




### **IAMD Mission Space**

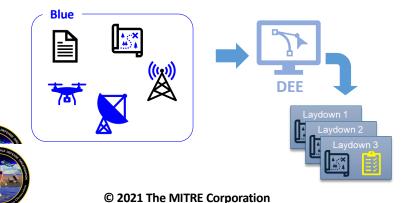


#### **Key Insight**

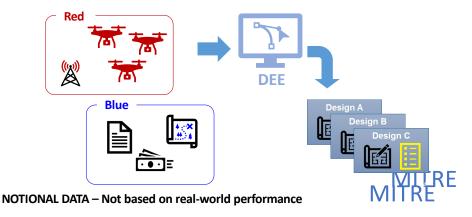
A Digital Engineering Environment developed for any IAMD mission can be easily re-factored to address the others.

Current work is focused on analysis of Countering Small Unmanned Aerial Systems (C-sUAS) – has been expanded to Cruise Missile Defense of the Homeland (CMD-H) in FY21, and will be expanded to support Ballistic Missile Defense (BMD) in FY22

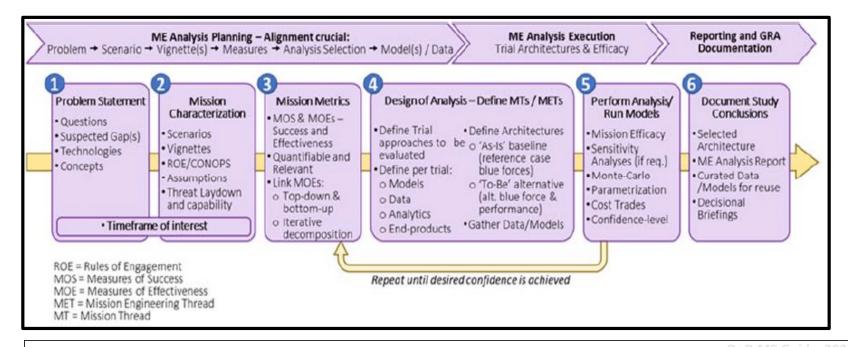



Credit: Gabriel Almodovar, Daniel P. Allmacher, Morgan P. Ames III, and Chad Davies, JFQ 88, 1st Quarter 2018






### Two Complementary Analytical Approaches

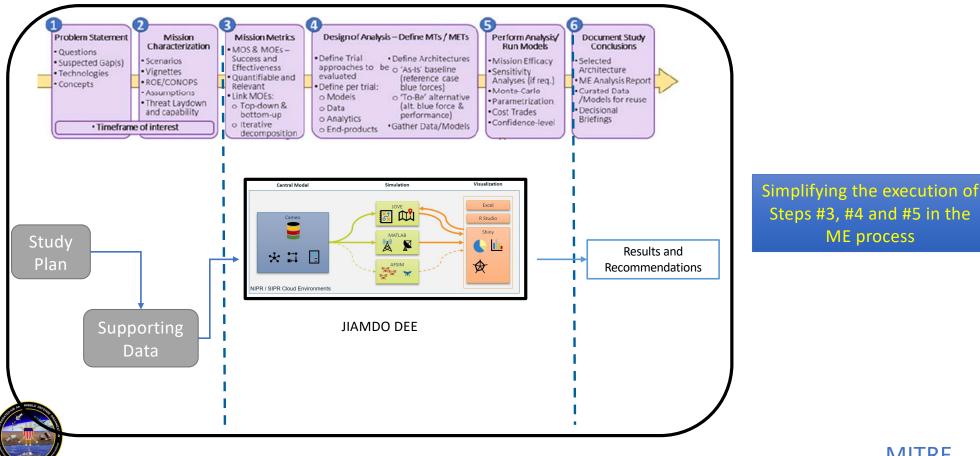

- Start with knowns "Make the most of what you have"
- Given existing C-sUAS system
   parameters, determine the optimal
   set of capabilities for a given
   scenario.



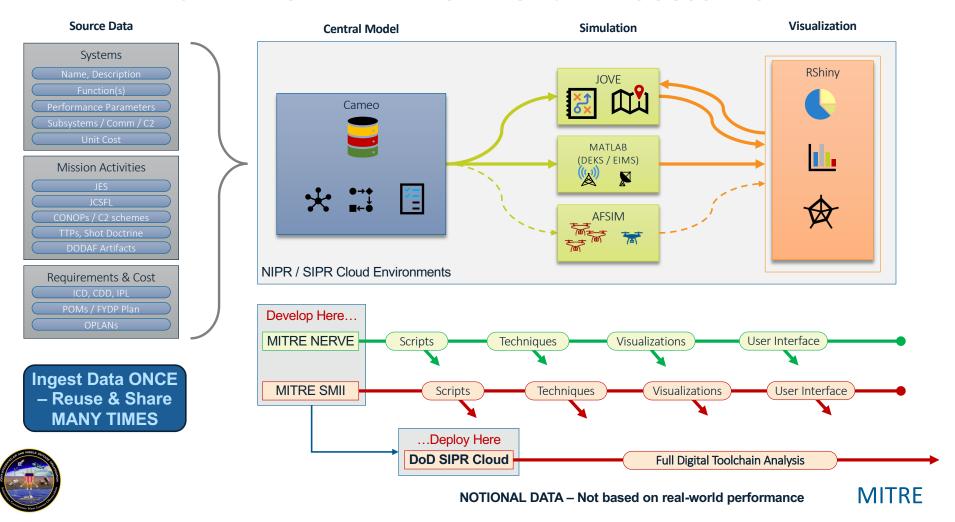
- Start with requirements "Buy the best of what you need"
- Given adversary capabilities and BF CONOPs, derive the required CsUAS capabilities and parameters that optimize performance for a given scenario.



#### ME Approach and Methodology




Was Nam Land


ME process <u>begins with the end in mind</u>, a carefully articulated problem statement, the characterization of the mission and identification of metrics, and working through the collection of data and models needed to analyze the mission and document the output results.

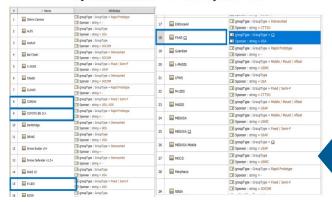


### DE Framework within Mission Engineering (ME)



### JIAMDO DE Environment – Process Flow




# **CUAS Digital Engineering Environment**

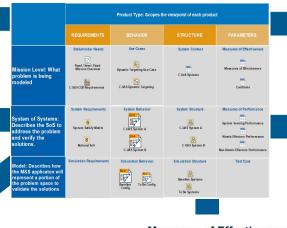
|                                                                                                                 | Product Type: Scopes the viewpoint of each product                              |                                                       |                                |                                                                                              |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------|
|                                                                                                                 | REQUIREMENTS                                                                    | BEHAVIOR                                              | STRUCTURE                      | PARAMETERS                                                                                   |
| Mission Level: What<br>problem is being<br>modeled                                                              | Stakeholder Needs  Fixed / Semi- Fixed Mission Overview  C-UAS CDD Requirements | Dynamic Targeting Us e Cas e  C-UAS Dynamic Targeting | System Context  C-UxS Systems  | Measures of Effectiveness  Measures of Effectiveness  Costltems                              |
| System of Systems:<br>Describes the SoS to<br>address the problem<br>and verify the<br>solutions.               | System Requirements  System Satisfy Matrix  Notional So S                       | System Behavior  SV-4  C-UAS System A  C-UAS System B | C-UAS System A                 | System Sensing Performance  Kinetic Effectors Performance  Non-Kinetic Effectors Performance |
| Model: Describes how the M&S applicaton will represent a portion of the problem space to validate the solutions | Simulation Requirements                                                         | Simulation Behavior  SV-4  Bas eline Config           | Baseline Systems To Be Systems | Test Case  X Shiruy                                                                          |





#### System Context - C-UAS System List

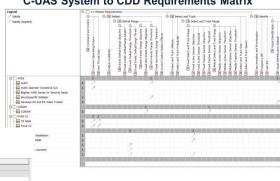



#### Measures of Performance Sensing Performance

| Name                        | Source             | Target | Range KM | PD   | False Alarm<br>Rate Per Hou |
|-----------------------------|--------------------|--------|----------|------|-----------------------------|
|                             |                    |        |          |      |                             |
| E BLUE                      |                    |        |          |      |                             |
| ☐ C-UAS System A            |                    |        |          |      |                             |
| 1                           | C-UAS System A Se. | 🔲 DJI  | 5        | 1    |                             |
| ☐ C-UAS System B            |                    |        |          |      |                             |
| ☐ Subsystems                |                    |        |          |      |                             |
| ☐ [iii] Radar B             |                    |        |          |      |                             |
| 7                           | Radar B            | II.O   | 25       | 0.75 |                             |
| □ [ Radar A                 |                    |        |          |      |                             |
| 7                           | Radar A            | II.O   | 15       | 0.75 | 10                          |
| ☐ Dismount Sensor           |                    |        |          |      |                             |
| 7                           | Dismount Sensor    | DJI    | 1.82     | 0.7  |                             |
| ☐ ☐ RED                     |                    |        |          |      |                             |
| ☐ [in Sensors               |                    |        |          |      |                             |
| 7                           | EO/IR Camera       | HVT    | 1.852    | 1    |                             |
| E 2.3.4 Placeholder Systems |                    |        |          |      |                             |

#### **System Costs**

| △ Name               | <ul><li>unitCost</li></ul> | <ul><li>expends</li></ul> |
|----------------------|----------------------------|---------------------------|
| C-UAS System A       | 150                        | <undefined></undefined>   |
| <u> </u>             | 50                         | <undefined></undefined>   |
| Dismount Effector    | 30                         | <undefined></undefined>   |
| Dismount Sensor      | 10                         | <undefined></undefined>   |
| EW Effector          | 100                        | <undefined></undefined>   |
| Interceptor          | 20                         | ✓ true                    |
| Interceptor Launcher | 1000                       | <undefined></undefined>   |
| Radar A              | 3416                       | <undefined></undefined>   |
| Radar B              | 5000                       | <undefined></undefined>   |


## **Analytic Elements**

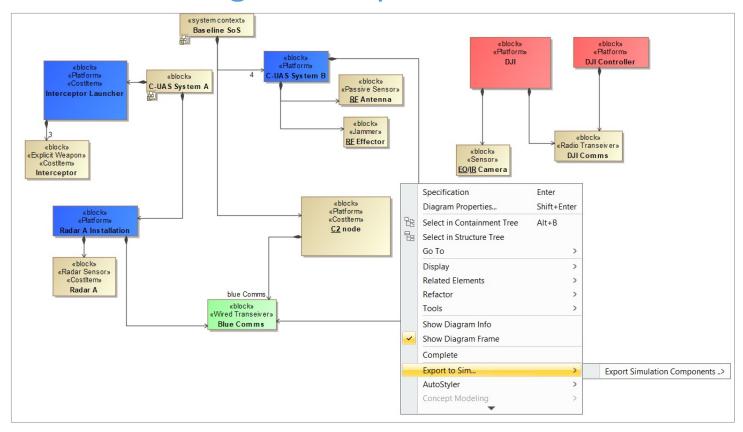


#### **Operational Requirements from JCO CDD**

| △ Name                                    | Text                                                                                                                                                                                                                                                                               |  |  |  |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| □ R 1 Detect and Track                    | (U) The Joint C-UAS capability shall detect and track multiple threat type /agent /multi-agent/swarm UASs simultaneously<br>(Group 1, 2 & 3) with 360 degree coverage in an operational electromagnetic environment prior to their effective range to<br>support C-UAS operations. |  |  |  |
| R 1.1 Detect and Track Size               | (W/FOUQ) Must detect and track UAS to include the Unmanned Aerial Vehicle (UAV) weighing less than or equal to X lbs. (group 1-2) which may include a ground control station (GCS), X km on the ground and UAVs weighing > X lbs. (Group 3). (Annex A)                             |  |  |  |
| R 1.2 Detect and Track Albitude           | ( <u>W/FQUO</u> ) Must detect and track UAS operating at an altitude of ≤ X ft. Mean Sea Level (MSL) (Groups 1-2) and UAV(Group 3) at ≤ X MSL.                                                                                                                                     |  |  |  |
| R 1.3 Detect and Track Speed              | ( <u>U//FQUX</u> ) Must detect and track UAS hovering and traveling ≤ X knots indicated airspeed (Groups 1-2) and UAV (Group 3) at ≤ X knots indicated airspeed.                                                                                                                   |  |  |  |
| ⊞ 1.4 Detect and Track Range              | (U//FOUQ) Must detect at ranges to prevent threat UAS from performing ISR missions and attack operations                                                                                                                                                                           |  |  |  |
| ⊞ 1.4.1 Fixed Detect and Track Range      | (U) The Joint C-UAS capability shall detect group 1, 2, & 3 UASs actively and passively                                                                                                                                                                                            |  |  |  |
| ■ 1.4.1.1 Fixed Active Sensor Threshold   | (U) The Joint C-UAS capability shall detect group 1, 2, & 3 UAS active at ranges up to > X km (Group 1), > X km (Group 2) and > X km (Group 3)                                                                                                                                     |  |  |  |
| R 1.4.1.2 Fixed Active Sensor Objective   | (U) The Joint C-UAS capability shall detect group 1, 2, & 3 UAS active at ranges up of > X km (Group 1), >X km (Group 2) and > X km (Group 3)                                                                                                                                      |  |  |  |
| R 1.4.1.3 Fixed Passive Sensor Threshold  | (U) The Joint C-UAS capability shall detect group 1, 2, & 3 UAS passive at ranges up to > X km                                                                                                                                                                                     |  |  |  |
| R 1.4.1.4 Fixed Passive Sensor Objective  | (U) The Joint C-UAS capability shall detect group 1, 2, & 3 UAS passive at ranges up to > X km                                                                                                                                                                                     |  |  |  |
| ⊞ 1.4.2 Mobile Detect and Track Range     | (U) Mobile C-UAS capability shall detect group 1 & 2 UAS while on the move or at halt                                                                                                                                                                                              |  |  |  |
| R 1.4.2.1 Mobile Active Sensor Threshold  | (U) Mobile C-UAS capability shall detect group 1 & 2 UAS active at > X km                                                                                                                                                                                                          |  |  |  |
| R 1.4.2.2 Mobile Active Sensor Objective  | (U) Mobile C-UAS capability shall detect group 1 & 2 UAS active at > X km                                                                                                                                                                                                          |  |  |  |
| R 1.4.2.3 Mobile Passive Sensor Threshold | (U) Mobile C-UAS capability shall detect group 1 & 2 UAS passive at > X km                                                                                                                                                                                                         |  |  |  |
| R 1.4.2.4 Mobile Passive Sensor Objective | (U) Mobile C-UAS capability shall detect group 1 & 2 UAS passive at > 8km                                                                                                                                                                                                          |  |  |  |
| I S Datast and Teach Doobability          | (U) Joint C-UAS Capability shall track with > X probability of error for tracking based on method used for tracking/geo-location                                                                                                                                                   |  |  |  |

#### System Requirements – C-UAS System to CDD Requirements Matrix




#### **Measures of Effectiveness**

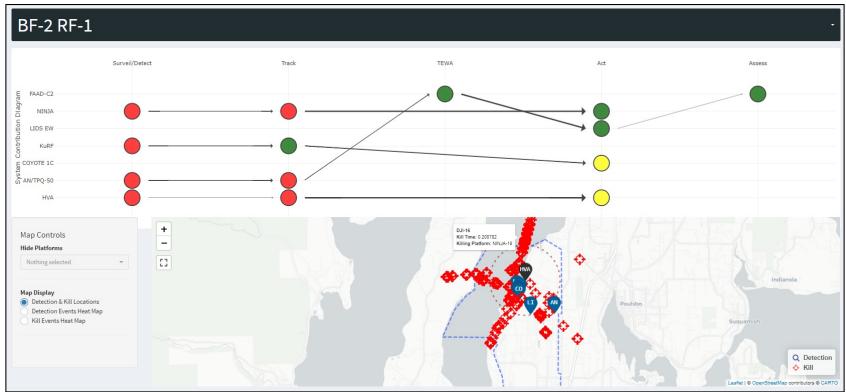
| ŧ  | Name                                                                          | Documentation                                                                                                                                                                                    | Specification                                                                    |
|----|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 1  | ☐ <u>ISR</u> Mission                                                          |                                                                                                                                                                                                  | 1000                                                                             |
| 2  | ☐ ☐ Spider Chart MOEs                                                         |                                                                                                                                                                                                  |                                                                                  |
| 3  | () % of Red threats killed before Threshold requirement Range from <u>HVT</u> | Of the total # of red threats flown, how many are killed<br>before they get to 8Km ~ 4.3 mm.<br>The <u>HVT</u> "Ground Truth" lost events will be good for this<br># threat is not killed, use 0 | # loot                                                                           |
| 4  | () % of Red threats killed before <u>HVT</u> detection                        | Of the total # of red threats flow in, how many can detect the<br>HVT at all, (do they get close enough to use their sensor?)                                                                    | # of red that make at least 1 sense of HVI/ # of total red (                     |
| 5  | ( ) % of Red Collects Prevented                                               | In comparison to the baseline - how many collects does the<br>blue defense prevent - good normalized metric                                                                                      | # average detects for architecture in single replication / # detects in baseline |
| 6  | ( ) % of Red threats killed                                                   | Of the total # of read threats flown in, what % are neutralized                                                                                                                                  | # killed / # of total red (5)                                                    |
| 7  | ☐ Cost Metrics                                                                |                                                                                                                                                                                                  |                                                                                  |
| 8  | ( ) % of Non-Kinetic vs Kinetic Kills                                         |                                                                                                                                                                                                  | # of Kills logged by a weapon that starts with EW / total kill                   |
| 9  | ( ) Average Cost of Config                                                    |                                                                                                                                                                                                  | Average total cost of config (use # of expended coyote for<br>Coyote costs)      |
| 10 | ( ) R(t) Collected                                                            | How long can the red platforms detect blue assets?                                                                                                                                               | for each red uas-><br>T_last_detect - T_first_detect                             |
| 11 | () R(t) Shared                                                                | How long can the red platforms share detections of blue<br>assets back to their controller?                                                                                                      | for each red uas -><br>T_last_report - T_first_report                            |
| 12 | () R # Collected                                                              | How many detects does the red platform have on the HVT                                                                                                                                           | for any red platform, total # of detects                                         |





# Data Exchange with Operational Simulation

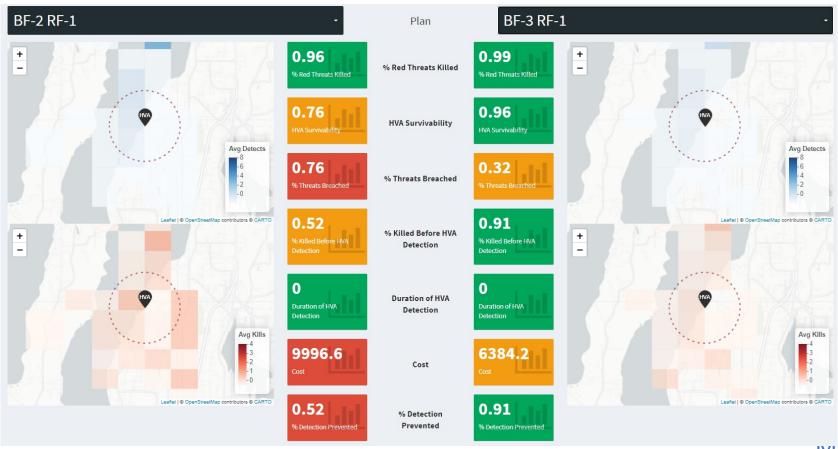





# Operational Simulations: A Comparison

| Operational Sim Feature                         | JOVE           | DEKS           | EIMS                         |
|-------------------------------------------------|----------------|----------------|------------------------------|
| Capable of Effects Chain Analysis               | ✓              | ✓              | ✓                            |
| Graphical User Interface                        | Yes            | In Progress    | No (Planned)                 |
| Simulation Type                                 | Discrete Event | Discrete Event | Batch Monte-Carlo            |
| Scenario Scale                                  | Scalable       | Single Base    | Single Base to Theatre Level |
| Fidelity                                        | Low-Med        | Low            | Med-High                     |
| Simulation Timeliness                           | Fast           | Med            | Slow                         |
| Real-Time Simulation View                       | ✓              | ✓              |                              |
| Applicable Missions                             | C-UAS, CMD     | C-UAS          | CMD, BMD                     |
| Base Laydown System                             |                | ✓              |                              |
| Defended Area Analysis                          |                | ✓              | ✓                            |
| Physics-Based Behaviors                         |                | ✓              | ✓                            |
| Blue C2 Modeling                                | ✓              |                | (In Progress)                |
| Red C2 Modeling                                 | ✓              | ✓              |                              |
| Terrain Specification                           | ✓              | ✓              | ✓                            |
| Engagement Metrics Calculated (Out of Box)      | ✓              | ✓              | ✓                            |
| Surveillance Metrics Calculated (Out of Box)    |                | ✓              | ✓                            |
| Threat Tracking Metrics Calculated (Out of Box) |                |                | ✓                            |

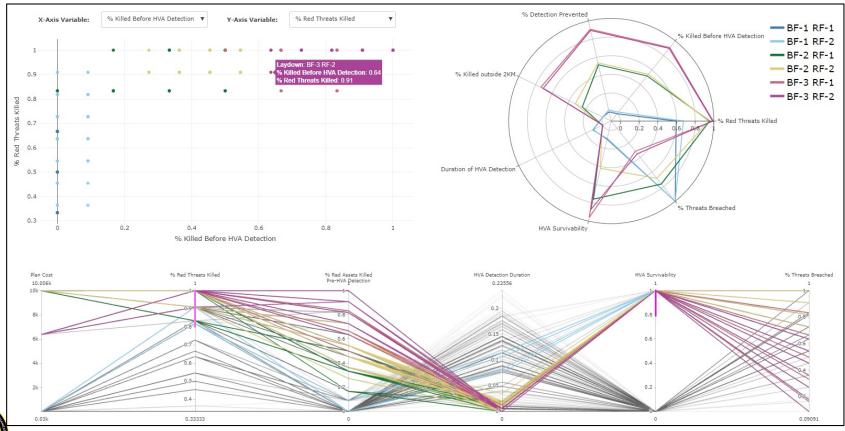



## Visualization Dashboard: System Summary








## Visualization Dashboard: Laydown Comparison





**IVIITRE** 

### Visualization Dashboard: MOE Analysis





#### Approved for Public Release; Distribution Unlimited. Public Release Case Number 21-3539

### Visualization Dashboard: Sensitivity Analysis



© 2021 The MITRE Corporation

NOTIONAL DATA – Not based on real-world performance



### **Summary And Future Plans**

- Digital Engineering Environment live and supporting C-UAS and CMD-H analytical exercises with <u>multiple M&S tools available</u>
  - Available at UNCLASS external to MITRE for JIAMDO
  - Available at SECRET internal to MITRE
- FY22 Next Steps
  - SIPR Deployment
  - AFSIM Integration
  - BMD Analysis Capability

Thank-You!

**MITRE Contacts:** 

Jon Kim (<u>jhckim@mitre.org</u>)
Matt Cotter (<u>mjcotter@mitre.org</u>)

