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Abstract 

Trees occur in many land cover classes and provide significant ecosystem 
services. Remotely sensed multispectral images are often used to create 
thematic maps of land cover, but accurately identifying trees in mixed 
land-use scenes is challenging. We developed two forest cover indices and 
protocols that reliably identified trees in WorldView-2 multispectral 
images. The study site in Maryland included coniferous and deciduous 
trees associated with agricultural fields and pastures, residential and 
commercial buildings, roads, parking lots, wetlands, and forests. The 
forest cover indices exploited the product of either the reflectance in red 
(630 to 690 nm) and red edge (705 to 745 nm) bands or the product of 
reflectance in red and near infrared (770 to 895 nm) bands. For two 
classes (trees versus other), overall classification accuracy was >77 percent 
for the four images that were acquired in each season of the year. 
Additional research is required to evaluate these indices for other scenes 
and sensors. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

Trees occur in forest and non-forest land cover classes and provide 
significant ecosystem services, including microclimate regulation, 
watershed protection, wildlife habitat, and recreational uses. Trees and 
their locations within a landscape are also important for such diverse 
applications as planning routes for utilities, roads, and trails, 
monitoring land cover changes, and modeling environmental quality 
and quality of life. Remotely sensed images are often used to create 
thematic maps of land cover at a range of spatial and temporal scales 
(Foody, 2002), but accurately identifying trees in mixed land-use 
scenes is often challenging because tree cover is easily conflated with 
other types of vegetative covers in multispectral data. The focus of this 
research is to address this challenge with a methodology for 
distinguishing forest cover from other land covers (including vegetative 
covers) using multispectral data. 

The remainder of this section reviews spectral properties of vegetation 
and remote sensing approaches for detecting trees to support 
understanding how forest cover differs spectrally from other land 
covers. The next section details the materials and methods used to 
conduct this research, including a description of the indices developed 
to distinguish forest cover from other land covers and how accuracy 
was measured, followed by a section that describes results from testing 
the new indices, leading to a discussion and suggestions for future 
research, and a final section with conclusions. 

1.1 Spectral Properties of Vegetation 

Multiple factors influence the spectral properties of forest and other 
vegetation matter, creating a challenge for distinguishing between them in 
satellite imagery. When solar radiation interacts with matter, it may be 
reflected, transmitted, or absorbed. The spectral reflectance of vegetation 
canopies is determined by: (1) spectral properties of the canopy elements; 
(2) canopy structure; (3) background reflectance; (4) illumination and 
view directions; and (5) atmospheric transmittance (Bauer, 1985). When 
vegetation density is high, leaves are often the primary scattering elements 
and the background contributes little to overall canopy reflectance. 
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However, when vegetation density is low, background reflectance 
significantly influences canopy reflectance. 

1. The spectral properties of canopy elements (i.e., leaves, stems, 
inflorescences) are determined primarily by the concentrations of 
chlorophyll and other pigments in the visible (400 to 700 nm), leaf 
structure in the near infrared (700 to 1,200 nm), and amount of water in 
the shortwave infrared (1,200 to 2,000 nm) wavelength regions (Knipling, 
1970). Physiological and morphological changes occur as leaves expand, 
mature, and senesce, which significantly affect leaf spectral properties 
(Roberts et al., 1998) and could aid in distinguishing between trees and 
other vegetation. Nutrient deficiencies, water deficits, and damage by 
insects and diseases also affect the spectral properties of leaves (van 
Leeuwen, 2009). 

2. Although the spectral properties of most healthy green leaves are roughly 
similar, canopy structure describes how individual canopy elements 
(leaves, stems, etc.) are positioned throughout the canopy and determines 
how radiation is transferred within and from the canopy. Differences in 
canopy structure could aid in distinguishing between forest and other 
vegetative covers. The geometrical arrangement of these canopy elements 
in space varies with species, age, and environmental conditions, such as 
nutrient and water stresses, disease, or insect damage, and wind. 
Characterizations of the structure of vegetation canopies often include leaf 
area index, fraction vegetation cover, biomass, and leaf angle distribution 
(Bunnik, 1978; Daughtry, 1990). 

3. The lower boundary layer or background for vegetation canopies is 
typically soil, rock, litter, water, or understory vegetation, which impact 
reflectance depending on the canopy structure and density and can differ 
between forest and other vegetative covers. Physical factors quite different 
from those of green vegetation determine the reflectance of these 
backgrounds and are more likely to influence reflectance in less dense 
vegetation canopies. Five general types of soil reflectance spectra based on 
organic matter content, texture, and ferric iron absorption have been 
identified (Stoner and Baumgardner, 1981). Rocks often have unique 
spectral features associated with their mineral composition. Reflectance 
spectra of litter (non-photosynthetic vegetation) and soils are often similar 
and differ only in amplitude in the visible and near infrared wavelengths 
(Biard and Baret, 1997; Daughtry et al., 2004). In the shortwave infrared, 
the spectra of dry litter have absorption features associated with cellulose 
and lignin that are absent in spectra of soils and green vegetation (Nagler 
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et al., 2000). Soils and rocks have absorption features associated with 
minerals that are absent in green vegetation and litter (Kokaly and Clark, 
1999; Serbin et al., 2009). 

4. With changing sun or view directions, the proportions of sunlit vegetation, 
shadowed vegetation, sunlit background, and shadowed background 
viewed by the sensor will vary, which could aid in distinguishing between 
forest and other vegetative land covers. Canopy radiance as measured by 
the sensor will change even when the spectral properties of canopy 
elements, canopy structure, and background are constant (Ranson et al., 
1985). Several satellite sensors, e.g. WorldView-2 and -3, Hyperion, and 
SPOT, provide options for off-nadir view angles which must be considered 
when analyzing their images. 

5. Solar radiation is partially absorbed or scattered by molecules and aerosols 
as it passes through the Earth’s atmosphere affecting the quality of 
remotely sensed images of the surface. Atmospheric corrections are 
necessary to quantitatively analyze multi-date images, which could also aid 
in distinguishing between forest and other vegetative covers. For example, 
the Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) 
algorithm provides a physics-based approach to atmospheric correction 
(Adler-Golden et al., 1998). 

1.2 Detecting Tree Cover in Multispectral Imagery 

Conventional forest inventory methods often include field measurements 
(e.g., diameter at breast height, crown diameter, and crown height) of 
many trees within the regions of interest. Manual interpretation of aerial 
imagery has also been used extensively for forest inventory (Wang et al., 
2004). However, both techniques are labor intensive. Advances in the 
spatial resolution of remotely sensed images and pattern recognition 
algorithms have provided new opportunities for automated detection of 
trees. 

Hyperspectral imagery (HSI) and Light Detection and Ranging (lidar) data 
have been used successfully for tree detection, species identification, and 
tree crown delineation (Ke and Quackenbush, 2011; Graves et al., 2016; 
Chen et al., 2006). Unfortunately, both HSI and lidar data are not widely 
available and are often costly to acquire for large areas. Recently, advanced 
multispectral imagery (MSI) with fine spatial resolution has become 
available commercially and may provide a low-cost alternative to HSI and 
lidar. 
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Prior research has tested identification of trees in MSI in mixed land cover 
areas and while results have been promising, confusion between forest 
cover, including individual trees, and select land covers persists. Yuan et 
al. (2005), Ye et al. (2014), Fu et al. (2014), and Gonzalez-Alonso and 
Cuevas (1993) included forest in testing with Landsat to map different 
land covers, while Wu et al. (2017) and Akar et al. (2017) used WorldView-
2, as explained in the following paragraphs. 

Yuan et al. (2005) used a combined supervised-unsupervised training 
approach to map land covers in Minneapolis-St. Paul, MN using Landsat 
Thematic Mapper and Landsat Enhanced Thematic Mapper imagery and 
reported forest  cover user’s and producer’s accuracies of 90 percent and 
above during their time series. While accuracies were high, they found that 
forest cover was most commonly confused with agriculture followed by 
wetland and urban land covers and less commonly confused with water 
and grass. They also did not identify individual trees, as the resolution of 
Landsat is inadequate for this purpose. 

Ye et al. (2014) developed a forest index using Landsat Thematic Mapper 
and Landsat Enhanced Thematic Mapper comparing forested to non-
forested lands and the user’s and producer’s accuracies were over 95 
percent accurate, but they did not identify individual trees. Fu et al. (2014) 
used Landsat 5 and 7 to map urban, agriculture, rangeland, barren, 
ice/snow, and forest area using a supervised classification. User’s and 
producer’s accuracies for forest cover across the time series were between 
77 percent and 95 percent. Most of the confusion occurred between forest 
and rangeland with no ability to identify individual trees. 

Gonzalez-Alonso and Cuevas (1993) applied regression methods to 
Landsat to examine conifers, green oak trees, various crop covers, fallow, 
and river. Their tree cover results were highly accurate at over 95 percent 
correctly classified, but they did not identify individual trees. 

Wu et al. (2017) and Akar et al. (2017) used WorldView-2 to classify land 
covers and included forest in their land cover testing. Wu et al. (2017) 
applied a support vector machine to WorldView-2 and WorldView-2 fused 
with lidar to classify an image that contained buildings, trees, 
road/parking lots, grasslands, and bare soils. User’s and producer’s 
accuracies were between 83 percent and 85 percent for trees for 
WorldView-2 alone, which increased when fused with lidar. Confusion 
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with WorldView-2 alone happened between trees and most land covers. 
Individual trees were often confused with grassland. 

Akar et al. (2017) merged WorldView-2 MSI with panchromatic imagery 
and used a support vector machine to classify an image that contained 
forest, rangeland, and other land covers. They found that user’s and 
producer’s accuracies for forest were 86 percent and 89 percent and with 
the most confusion being with rangeland. Individual trees were among the 
pixels misclassified as rangeland. 

1.3 Overview of Automated Tree Detection Methods 

Ke and Quackenbush (2011) defined tree detection algorithms as 
procedures for finding treetops or locating trees without necessarily 
delineating tree-crown outlines. They also identified four broad categories 
of automatic tree detection methods: (1) local maximum filtering, (2) 
image binarization, (3) scale analysis, and (4) template matching. Many of 
these methods rely on imagery from aerial sensors or cameras, which is 
usually higher in spatial resolution but more difficult to acquire on a 
repeat basis than satellite imagery. The methods varied in their ability to 
correctly identify trees and reliably differentiate between trees and other 
vegetation. 

For the local maximum filtering method, the maximum pixel value within 
a moving window is assumed to represent the sunlit treetop. First, 
vegetative land covers are identified using a supervised or unsupervised 
classification and then local maxima of various combinations of visible and 
near infrared bands within the vegetative land cover are used to delineate 
trees. Pouliot et al. (2005) used color infrared imagery with pixel sizes of 6 
cm. The percent correct in the color infrared imagery ranged from 40.6 to 
90.4 percent for regenerating cutover trees depending on the tree cover 
(Pouliot et al., 2005). 

Image binarization is a straightforward thresholding approach where 
grayscale is converted into black-and-white imagery and pixels on one side 
of the threshold represent pixels of interest, while pixels on the other side 
of the threshold are background. When used to separate trees from other 
land covers, the contrast between trees and background can vary within an 
image, which can cause only partial success when one threshold value is 
applied throughout the image (Ke and Quackenbush, 2011). Pitkanen 
(2001) performed image smoothing on grayscale digital imagery (0.5 m 



ERDC/GRL MP-19-1 6 

 

pixel size) and separated trees from the rest of the image using a 
binarization to keep the maximum values in the image. He achieved 
overall accuracies of 50 to 96 percent depending on the threshold method. 

Other studies combined local maximum filtering and binarization. Pouliot 
et al. (2002) took the absolute difference of the near infrared and red 
bands in color infrared imagery (5 cm pixel size) and thresholded trees 
using a local maximum filter on the image with accuracies that ranged 
from 39.4 to 88.9 percent for detecting trees. Following earlier work by 
Carter (1994), Bunting and Lucas (2006) applied red edge and red band 
ratios and selected the maximum value in hyperspectral imagery with a 
pixel size of 1 m and achieved an accuracy of 19.2 to 91.6 percent in 
delineating tree crowns depending on the stem diameter at breast height. 
Wang et al. (2004) performed a principal components analysis on a 
hyperspectral image to create a single band and applied image maxima 
techniques to extract forest cover with an accuracy of 75.6 percent. 

Image scale issues influence accuracy of tree detection and arise when 
trees are of different sizes, as small trees can be missed. Pouliot and King 
(2005) used a local smoothing factor and incremental Gaussian smoothing 
on color infrared digital imagery to examine tree detection when trees 
were large compared to the ground pixel size. They performed their testing 
on imagery ranging from 5 to 15 cm pixels and found that smaller pixel 
sizes brought the overall accuracy up to 96.4 percent from 58.5 percent 
depending on the tree cover and smoothing algorithm. 

Template matching is an object-based image processing technique where 
parts of an image match a template. Quackenbush et al. (2000) developed 
templates by selecting typical trees in 1.0 m digital imagery and applied 
those templates to different areas in an image. User accuracies were 
between 86.5 and 94.8 percent depending on which template matching 
technique they used. 

Local maximum filtering, image binarization, scale analysis, and template 
matching generally work best when the spatial structure of the trees is 
relatively uniform (i.e., evenly spaced and similarly aged) and consists 
primarily of bright tree crowns and dark shaded gaps. Tree detection often 
degrades significantly when tree size and shape vary greatly (Ke and 
Quackenbush, 2011). 
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In addition to spectral-based methods to identify trees, image type and 
pixel size are relevant to image-based tree detection. If pixels are too 
small, tree trunks or branches and spacing between rows of agriculture 
could become visible causing problems with classifications. If pixels are 
too large, individual trees are not discernible. Ke and Quackenbush (2011) 
reviewed 40 applications of tree crown detection and delineation research 
and found that a ground surface distance (GSD) of 0.5 to 0.7 m was most 
commonly used. This was partially due to the extensive use of Compact 
Airborne Spectrographic Imager, an airborne sensor that has a GSD of 0.6 
m, and also due to the diameter of tree crowns, which were around a few 
meters in diameter, allowing multiple pixels to fit within each crown so 
that it becomes distinguishable (Ke and Quackenbush, 2011). 

In summary, the methods described in the literature above do not provide 
a reliable way to distinguish trees associated with agricultural fields and 
pastures, residential and commercial buildings, roads, parking lots, and 
wetlands using commercial satellite imagery. This study’s objective is to 
develop and test forest cover indices that can reliably distinguish forest 
cover from other land covers using WorldView-2 imagery, which is coarser 
in spatial resolution than the imagery types discussed in this section. 
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2 Materials and Methods 

2.1 Study Site 

The U.S. Department of Agriculture (USDA) Henry A. Wallace Beltsville 
Agricultural Research Center (BARC) is near Beltsville, MD (39.025° N, 
76.850° W) and includes >2500 hectares of agricultural fields and 
pastures; conifer and deciduous woodlands; wetlands; and some urban 
features, such as buildings, roads, and parking lots. Surrounding the BARC 
are additional urban features including residential and commercial 
buildings and infrastructures (Figure 1). Typical soil has a sandy-textured 
surface layer and a taxonomic classification of coarse-loamy, siliceous, 
mesic Typic (or Aquic) Hapludults (Soil Survey Staff, 2018). The climate is 
humid subtropical with precipitation occurring throughout the year 
(Weatherbase, 2017). The study site is located in the coastal plain and 
consists of fairly flat to gently sloping uplands. 

2.2 Data 

The Worldview-2 satellite hosts an 8-band multispectral sensor that 
measures reflectance in the visible and near infrared regions of the 
electromagnetic spectrum from 400 to 1,040 nm with 1.85 m spatial 
resolution at nadir (Table 1). Although WorldView-2 can collect images up 
to 40-degrees off-nadir (eoPortal Directory, 2017), the images analyzed 
were acquired between 11.5 and 31.5 degrees off-nadir. A total of 13 World 
View-2 images acquired between May 2012 and May 2015 were 
analyzed. Four images were selected that represented each season and 
the major phenological changes in vegetation during a year. The spring 
image was from 27 May 2012, summer was from 05 August 2012, fall 
was from 26 October 2014, and winter was from 18 January 2013. 
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Figure 1.  WorldView-2 image of Beltsville Agricultural Research Center (BARC) in 
Beltsville,  MD from 05 August 2012.  

 

Table 1.  WorldView-2 multispectral bands. 

Band Name Band # *FWHM (nm) Band Center (nm) 
Coastal blue 1 400-450 425 

Blue 2 450-510 480 

Green 3 510-580 545 

Yellow 4 585-625 605 

Red 5 630-690 660 

Red Edge 6 705-745 725 

Near Infrared-1 7 770-895 835 

Near Infrared-2 8 860-1,040 950 

*FWHM = full width at half maximum. 

The Worldview-2 images were orthorectified to the Universal Transverse 
Mercator coordinate system, calibrated to at-sensor radiance values, and 
atmospherically corrected to surface reflectance using the FLAASH 
module in the commercial software, Environment for Visualizing Images 
(ENVI) (Harris Corporation, Melbourne, Florida). All remote sensing 
analyses were performed in ENVI. 
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2.3 Methodology 

2.3.1 Forest Cover Indices and the Normalized Difference Vegetation 
Index 

The Forest Cover Index 1 (FCI1) and Forest Cover Index 2 (FCI2) were 
developed to separate forest from other land covers using the following 
equations: 

FCI1 = R660 * R725     (1) 

FCI2 = R660 * R835     (2) 

where R660, R725, and R835 are reflectance in Red, Red Edge, and Near 
Infrared-1 bands, respectively (Table 1). These equations were 
developed after visually comparing spectra of tree cover to those of 
other vegetation. While spectral profiles for trees were similar to 
spectral profiles for other vegetative cover, the red, red edge, and near 
infrared reflectance values for trees were consistently lower. 
Traditional vegetation indices, simple ratios, and normalized 
difference indices do not exploit the difference between trees and other 
land covers. We found that multiplying reflectance in the pairs of 
bands emphasized the difference between trees and other vegetative 
land covers. 

The Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974) 
provides a measure for vegetative vigor and is frequently used to delineate 
green vegetation from non-vegetation and occasionally used to delineate 
trees from other land covers (Peters et al., 2002; White et al., 2016; 
Bandyopadhyay et al., 2013). NDVI was calculated using the following 
equation: 

NDVI = (R835 – R660)/(R835 + R660)   (3) 

Where, R660 and R835 are reflectance in Red and Near Infrared-1 bands, 
respectively (Table 1). 

In the FCI1 and FCI2 images, darker areas corresponded to trees and 
dense vegetation while brighter areas corresponded to other vegetative 
features, including agriculture and grasses. With this knowledge, a binary 
system was created to mask out forest cover while retaining other land 
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covers in the FCI1 and FCI2 images using the steps below. The same steps 
were also applied to the NDVI images. 

1. Different land covers in the image were examined to determine a user-
defined threshold value that separated trees from other vegetation covers. 

2. A mask was built to separate out trees below the threshold value. 
3. A 200-pixel (800 m2) group minimum and 8-neighbor sieve were applied 

to the resulting image to remove small clusters of other land cover pixels 
that should have been identified as trees. The group minimum is the 
smallest size grouping to keep. After reviewing the distribution of land 
covers in the test site, a group minimum of 200 pixels was chosen. An 8-
neighbor sieve consists of all of the pixels immediately adjacent to the 
original pixel and it removes the entire group if the pixels are grouped in 
the same class. 

4. A 3 × 3 pixel clump was executed to fill in small areas of other land cover 
pixels that were incorrectly identified as trees. This clump size was large 
enough to fill in erroneously identified pixels while retaining many 
individual trees and most small tree groups. 

5. The resulting output from Step 4 was used to apply a mask to the original 
image, which resulted in an image that masked all of the trees. 

2.3.2 Accuracy Assessment 

We selected 66 regions of interest (ROI) of various sizes within the study 
area to assess the accuracy of these indices for classifying trees from a 
broad range of other vegetative land covers for each season of the year 
(Table 2). Approximately 100,000 pixels were included in these 66 ROIs; 
however the number varied slightly from date to date due to view angles 
and clouds. The ‘Tree’ category included 10 conifer and 10 deciduous 
ROIs. The ‘Not-Tree’ category included 30 ROIs of annual crops (alfalfa, 
barley, corn, orchardgrass, rye, ryegrass, soybean, turf grass, triticale, and 
wheat), 10 perennial grass pastures, and 6 golf courses.  
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Table 2.  Categories and number of ROIs selected for each tree type and other vegetative land 
cover. 

Pixels in ROI 

ROI 27-May-12 5-Aug-12 26-Oct-14 18-Jan-13 

Tree 
Evergreen1 4,513 3,992 4,301 2,790 

Deciduous2
 34,492 31,106 32,900 21,350 

Not Tree 
Perennial3

 16,628 14,368 15,510 9,946 

Annual4
 46,002 41,267 43,644 28,494 

1 Evergreen trees are primarily coniferous trees including shortleaf pines and Virginia pines. 
2 Deciduous trees are primarily broadleaf trees including oaks, maples, hickory, poplars, and 

sweetgums. 
3 Perennial vegetation class included cool season grass pastures, alfalfa, and turf grasses. 

4 Annual crop class included corn, soybeans, and small grains (barley, oats, rye, triticale, wheat). 

The accuracy assessment consisted of a comparison of tree pixels to other 
vegetation pixels, which were recoded to “Not Tree.” The USDA maintains 
records of land uses in the BARC, which provided ground truth for the 
other vegetation pixels. Error was calculated for FCI1, FCI2, and NDVI by 
using the 66 ROIs for the four dates. User’s accuracy is a measure of the 
probability that a pixel classified in an image represents that category on 
the ground. Producer’s accuracy is the probability a reference pixel is 
correctly classified. Overall accuracy looks at the total number of correctly 
identified pixels compared to the total number of reference pixels. KHAT 
is a comparison of actual agreement between the computer classification 
of land cover and reference data and chance agreement between the 
computer classification and reference data (Congalton et al., 1983). The 
KHAT statistic, its variance, and Z-statistic for a single error matrix were 
computed to determine if agreement between the remote sensing 
classification and the surface reference data was significantly better than 
random (Congalton and Green, 2008). Non-vegetative ROIs were not 
selected. 

The error matrices of three indices were also tested to determine if they 
differed significantly and to determine which was most accurate. The Z-
statistic for testing pairs of error matrices was calculated as: 

var( ) var( )
KHAT KHATz
KHAT KHAT






1 2

1 2
    (4) 
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Where KHAT1 and KHAT2 are estimates of the Kappa statistic and 
var(KHAT1) and var(KHAT2) are estimates of the variance for index #1 
and index #2, respectively (Congalton and Green, 2008). We compared 
FCI1 to FCI2, FCI1 to NDVI, and FCI2 to NDVI and used 
Z  ≥  1.96  (p  ≤  0.05) to determine which ones were significantly 
different. 
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3 Results 

3.1 Overview of Spectral Distinctions Between Trees and Other Land 
Covers 

All healthy green vegetation follows roughly the same shaped spectral 
curve with variations based on factors such as health, water content, and 
structure of the mesophyll layer (Figure 2; Knipling, 1970). In Figure 2, 
green vegetation has low reflectance in the visible (400 to 700 nm) portion 
in the electromagnetic spectrum, before increasing sharply into the near 
infrared (700 to 1,100 nm) portion making it distinct from other land 
covers (Dozier, 1989; Huete and Jackson, 1987; and Nagler et al., 2000). 
The red edge band (Table 1) captures the transition between the red and 
near infrared bands and provides additional information about plant 
chlorophyll status (Horler et al., 1983), which may help distinguish 
between vegetation covers. Pu and Landry (2012) used WordView-2 to 
map urban tree species and found that the presence of the red edge band 
improved the results. Heenkenda et al. (2014) substituted the red edge for 
the red band in the NDVI and differentiated between home gardens and 
other vegetation. These variations are unique enough to discriminate 
forest cover from other vegetation types and can be exploited with the 
development of a spectral index. 

Figure 2.  WorldView-2 spectral profiles of land covers taken from an average of multiple 
pixels in the study area from 05 August 2012 imagery. 
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Figure 3.  This figure illustrates the steps in each part of the FCI workflow in a 
05  August  2012 image. 

 

Figure 4.  This figure shows the result of the FCI1. 

 

Table 3.  Producer's, user's, and overall accuracy for Tree versus Not Tree 
classifications using FCI1, FCI2, and NDVI on four dates. 

Date Class Producer’s Accuracy (%) User’s Accuracy (%) Overall Accuracy (%) 
  FCI1 FCI2 NDVI FCI1 FCI2 NDVI FCI1 FCI2 NDVI 

27  May 
2012 

Tree 95.1 99.4 88.1 99.1 74.1 94.7 97.8 86.4 95.2 

Not Tree 99.5 78.2 99.7 97.0 99.5 93.0  

05 Aug 
2012 

Tree 99.9 99.9 99.4 89.2 92.1 54.3 95.3 96.7 67.3 

Not Tree 92.4 94.6 47.1 99.9 99.9 99.3  

26  Oct 
2014 

Tree 99.8 99.9 99.9 72.0 62.8 61.2 84.9 77.1 75.9 

Not Tree 75.6 62.7 60.1 99.8 99.9 99.9  

18 Jan 
2013 

Tree 99.9 99.9 99.9 89.9 99.4 41.8 95.7 99.8 46.3 

Not Tree 93.0 99.6 12.5 99.9 99.9 99.9  

3.2 Forest Cover Index Output 

The workflow to apply the FCI1 and FCI2 to imagery yielded raster images 
in which pixels containing trees were successfully masked while pixels 
containing other vegetative land covers remained visible (Figures 3 and 4). 
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Tree pixels were among the darkest pixels in the imagery with the majority 
of other pixels yielding brighter values. Overall accuracies for the FCI1 
were over 95 percent in late May, including when agriculture was pre-
harvest and less dense than surrounding forest cover, and in December 
and January, when there was little agriculture to confuse with forest cover. 
Results for the FCI2 were similar to FCI1 in August, December, and 
January imagery and were somewhat lower in late-May (Table 3). Trees 
were the majority of the darkest pixels in the FCI outputs for each scene, 
which allowed the user to reliably set a threshold separating trees from 
other vegetative covers. Dark vegetation features that were present in the 
imagery in small amounts, such as dense agriculture, in some instances 
were confused with forest cover in the FCI1 and FCI2 outputs. These pixel 
values were low, similar to those of tree pixels. 

Forest cover identification using the NDVI yielded low accuracy in 
three of the four images. In the 27 May image, NDVI was roughly as 
accurate as the FCI1 output. Upon further inspection of the output 
image, this was because most agricultural fields were not yet planted 
or freshly planted with little crop emergence, while leaves were already 
growing on trees. These factors created a difference between the NDVI 
values of trees and other vegetative land covers. 

The Z test of statistically significantly different KHAT values indicated the 
NDVI and FCI tests were statistically significantly different from each 
other (Table 4) and in almost all comparisons, the FCI tests outperformed 
NDVI (Table 5).  
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Table 4.  Individual error matrix KHAT analysis results. 

Date  KHAT Variance Z-statistic p-value 
 FCI1 0.95 0.97E-06 969.2 <0.001 

27 May 2012 FCI2 0.73 4.48E-06 344.6 <0.001 

 NDVI 0.90 2.08E-06 622.1 <0.001 

 FCI1 0.90 2.08E-06 627.0 <0.001 

05 Aug 2012 FCI2 0.93 1.52E-06 753.7 <0.001 

 NDVI 0.40 10.7E-06 123.1 <0.001 

 FCI1 0.71 4.95E-06 317.2 <0.001 

26 Oct 2014 FCI2 0.57 6.85E-06 215.9 <0.001 

 NDVI 0.54 7.16E-06 203.5 <0.001 

 FCI1 0.91 2.81E-06 543.6 <0.001 

18 Jan 2013 FCI2 0.99 0.16E-06 2500.1 <0.001 

 NDVI 0.10 44.1E-06 15.0 <0.001 

Table 5.  Pairwise comparison of the error matrices. 

Date FCI1 vs FCI2  FCI1 vs NDVI FCI2 vs NDVI 
 Z p Better 

index 
Z p Better 

index 
Z p Better 

index 

27  May 2012 95.9 <0.001 FCI1 32.1 <0.001 FCI1 -65.5 <0.001 NDVI 
05 Aug 2012 -14.4 <0.001 FCI2 139.7 <0.001 FCI1 150.6 <0.001 FCI2 
26  Oct 2014 41.0 <0.001 FCI1 46.3 <0.001 FCI1 5.5 <0.001 FCI2 
18 Jan 2013 -49.2 <0.001 FCI2 118.4 <0.001 FCI1 134.6 <0.001 FCI2 
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4 Discussion 

In this study, methods were created and tested to differentiate forest from 
other vegetative land covers in a diverse land-use scene. Forest delineation 
was possible by creating new vegetation indices that exploited the product 
of the red and red edge bands (FCI1), and the red and first near infrared 
bands (FCI2) of the WorldView-2 satellite. In this study, FCI1 and FCI2 
delineated forest cover throughout the year, including during times when 
forest is spectrally similar to other vegetation covers. NDVI was less 
successful than the FCI1 for all imagery dates, and less successful than the 
FCI2 in the August, October, and January imagery. The results give an 
added value over previous studies that mask out forest cover in imagery by 
offering a method that does not require HSI or lidar data and can use 
archived MSI. 

4.1 Potential Causes of Spectral Separability Between Trees and 
Other Leafy Vegetation Cover 

With FCI1 and FCI2, forest cover was consistently separable from other 
vegetation cover as shown in Tables 3, 4, and 5. Prior research comparing 
a canopy to an individual leaf has shown that trees have lower overall 
reflectance than that of an individual leaf because of radiation variations 
caused by illumination angle, differing leaf orientations within the canopy, 
shadows, and non-foliage backgrounds (Knipling, 1970). 

Shadowing decreases the overall spectral curve (Zhang et al., 2015) and 
foliage within trees and entire tree canopies creates more shadows within 
trees than in agricultural crops, which have less height and foliage. Zhang 
and Hu (2012) used high spatial resolution imagery but found problems 
with identifying trees because of shadows when using NDVI to identify 
trees. For this research, shadowing within tree canopies was used to 
distinguish between trees and other vegetation cover types. Even in the 
winter when deciduous trees had lost their leaves, shadowing among 
branches remained, allowing trees to remain distinguishable from other 
land covers. NDVI accuracy was low for almost all imagery dates because 
NDVI values for tree and other vegetative covers were similar. In the late 
May image, NDVI accuracy was higher than the rest of the year, because 
foliage had returned to trees but many agricultural fields remained 
unplanted or were newly planted and crops were immature. 
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Additionally, soil is typically more visible in agriculture than forest 
cover, especially before crops reach maturity, and both wet and dry soil 
typically are higher in the red region of the electromagnetic spectrum 
(Roberts et al., 1993; Huete, 1986) than is green vegetation. 

Therefore, a pixel that contains soil and green vegetation has a higher red 
reflectance value, which was evident in the spectral profiles of agricultural 
and other non-tree vegetative pixels throughout the imagery (see Figure 2 
for a comparison of a tree spectral profile to a profile of other vegetative 
spectra). This could have been another factor that led agriculture to be 
spectrally separable from forest cover. 

4.2 Limitations and Future Research Directions 

Our study site was predominately conifer and deciduous trees with closed 
canopies, and agricultural fields with annual and perennial crops, which 
contributed to the high level of accuracy of the FCI1 and FCI2. 
Additionally, the study site had little topographic relief which minimized 
variations in reflectance caused by the presence of both sunlit and shaded 
slopes. Since the success of FCI1 and FCI2 in separating tree cover from 
other vegetative covers is partially due to shadowing, it is possible that 
topographic shadowing would complicate this in a less flat environment. 
This research tested WorldView-2 imagery that was between 11.5 and 31.5 
degrees off-nadir, and did not examine how increasing the off-nadir view 
angle beyond 31.5 would impact the ability of the FCI1 and FCI2 to detect 
forest and individual tree cover, as a larger off-nadir view angle increases 
the pixel size and makes shadowing more extreme. 

Future research will examine other environments with variation in terrain, 
locations that contain a variety of vegetative land covers that could be 
misclassified as trees, and areas with a less dense tree canopy and wider 
variety of tree species. Additional research will explore optimizing 
threshold derivation without user input to automatically identify the ideal 
threshold, and a comparison of the FCI1 and FCI2 to other vegetation 
indices beyond NDVI. Histograms have been used in prior research to 
threshold imagery (Kittler and Illingworth, 1986). 

Future research will also include testing of the FCI2 with other sensors 
that contain bands in the red and near infrared regions of the 
electromagnetic spectrum, such as Landsat. 
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Since Landsat imagery is lower in spatial resolution than WorldView-2, it 
could be useful in identifying forest cover but not for locating individual 
trees. Landsat also provides open access to an archive with global 
coverage, which WorldView-2 does not. 
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5 Conclusions 

A methodology was developed to identify trees to mask out forest cover in 
commercial MSI. The method is a straightforward binary approach using 
two newly developed indices, FCI1 and FCI2, where the user applies the 
indices to WorldView-2 imagery and defines a threshold to separate forest 
from other vegetative land covers. The results indicate FCI1 and FCI2 are 
more effective than using a traditional vegetation index, like NDVI, and 
are accurate throughout the year in differentiating between trees and other 
vegetative land covers. FCI1 and FCI2 are also effective in identifying 
individual trees. Previous research in tree detection has been less 
successful in doing so due to spectral overlap between trees and other 
vegetative covers or spatial resolution limitations. This methodology 
circumvents the need for HSI and lidar data to identify trees and will aid in 
efforts to map agriculture and deforestation, identify trees in an urban 
environment, and assist in vehicular route modeling. Future research will 
focus on testing FCI1 and FCI2 on diverse land covers and locations, 
employing lower resolution but freely available Landsat imagery, and 
using histograms to optimize threshold derivation between tree and other 
land covers without user input. 
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