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EXECUTIVE SUMMARY 

The Center for Bio/Molecular Science and Engineering at the Naval Research Laboratory (NRL) 
initiated a program in May 2021 to expand the capabilities of NRL-developed chemical and biological 
monitoring approaches and prototypes.  This specific effort describes testing of alternate detection 
algorithms including evaluating the applicability of deep learning methods such as the application of 
Multivariate Long Short-Term Memory – Fully Convolutional Network (MLSTM-FCN) approaches. The 
work is specifically intended to generate additional capabilities for these prototype devices allowing for 
their utilization in providing enhanced monitoring of chemical threats to the health of personnel in confined 
spaces both during a critical exposure event and as a result of long duration low level exposures 
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ENHANCED DETECTION ALGORITHM FOR NAVY RELEVANT CHEMICAL 
SENSING 

INTRODUCTION 

This effort seeks to develop new detection algorithms intended to accelerate the crossover 
application of an NRL developed chemical sensing device for use in air quality monitoring within 
confined spaces, such as those of naval vessels and facilities. The existing prototype device, the 
ABEAM, was developed for outdoor perimeter monitoring with a focus on changes in the content 
of chemical or biological compounds found in environmental air samples.[1-17] Targets utilized 
during development included both chemical and biological threats and those targets identified by 
the TIC/TIM Task Force (toxic industrial chemicals/ toxic industrial materials). The CONOPS for 
this original application imposes limitations on size, weight and power (SWAP) that would 
preclude the use of computationally intensive detection methodologies such as deep learning. In a 
confined space application, on the other hand, power needs are not limited to battery support for 
long durations. This opens a broader range of options to the application and provides the potential 
to expand the utility of the prototype devices. More specifically, the effort is designed keeping in 
mind shortfalls identified in current approaches to monitoring confined atmospheres. “U.S. Navy 
submarine atmosphere monitoring has remained largely unchanged since the 1970’s” currently 
using a combination of mass spectrometry and IR spectrophotometry. This approach is costly to 
maintain and not flexible enough to meet needed future capabilities. Systems that minimize 
mechanical parts and maintenance while offering the capability for measurement of new targets as 
they become required are needed. For applications in these types of confined spaces, a compliant 
system including a display must occupy restricted space and allow for mounting in differing 
orientations. 

Beyond space utilization and adaptability, it is desirable to provide continuous monitoring of 
the chemical composition of the air in a confined space. This offers the potential for earliest 
warning and minimization of negative effects due to leaks or long term exposure. Currently utilized 
systems do not provide this capability; however, the NRL ABEAM prototype devices were 
designed with precisely this type of application in mind. The devices incorporate an array of 
colorimetric indicators that are continuously interrogated. The combined response of the individual 
array elements can be used for indication of a change in chemical air composition, identification 
of the presence of a known threat, and classification of unknown changes as similar or dissimilar 
to known threat compounds. In other words, the devices provide the potential for identification of 
known threats and for anomaly detection. Achieving this potential, however, requires a different 
approach to that previously taken in development of detection algorithms. 

The NRL ABEAM prototype device utilizes a unique type of colorimetric sensing approach to 
enable capabilities not offered by traditional approaches.  Other colorimetric sensing approaches 
rely on image analysis prior to and following exposure of a coupon using the differences between 
the images for target identification.  This is a one-off type of coupon use analogous to the use of 
M8 Chemical Detection Paper without the option for visual inspection.  Other types of traditional 
approaches include handheld and similar devices that require user intervention for discrete 
sampling, devices such as those incorporated into the Central Atmosphere Monitor System 
(CAMS) and those types of chemical sensing that require collection of samples at the point of 
interest and return to a central laboratory.  Each of these types of approaches involved collection 
of a sample followed by processing time that depends on the technique utilized.   

______________
Manuscript approved December 13, 2021.
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The coupons of the ABEAM prototype have been developed for continuous utilization over 
periods of weeks to months.[12, 16]  The devices were developed in response to the introduction 
of the distributed microsensor paradigm.  The idea is to develop inexpensive sensors that are small, 
low power, and autonomous that would be considered inexpensive enough to be disposable and 
would be suitable to unattended operation.  The concept of use involves a population of sensors 
distributed across an area of interest.  While no single device would match the sensitivity of central 
laboratory equipment, at least one of the sensors would be expected to be closer to the point of a 
chemical release than manned personnel or central detection facilities.  As such, the exposure 
concentration would be proportionally larger and would compensate for the loss of sensitivity.  
Furthermore, with sensors spread out over an area, spatial and temporal information can be 
obtained regarding the movement of the chemicals throughout the area of interest.  A 
demonstration of this function was completed in October 2019.[3] 

Figure 1. Images of the ABEAM prototype (left) and the prototype during field trials (right). The device 
includes fifteen surface-mounted RGB color sensors, eight cool white LEDs, and three printed circuit 
boards.  This prototype currently supports utilization as an autonomous device for post-collection data 
analysis or through wireless tethering to a laptop for real-time detection. 

Current and ongoing efforts have focused on operational usage where limitations to power 
would be of significant concern.  Software and algorithm development to date, as a result, has been 
focused on methods that can be used with low power devices, reducing the computational load as 
much as possible. [1, 16] The resulting approaches use three tiers.  The first two are incorporated 
on the sensor devices: an initial data pass that evaluates and discards any electronic noise that 
could contribute to false responses and initial event detection algorithm that utilizes sliding 
windows and knowledge of the physics of the detection events to require the minimum amount of 
onboard memory and number of computations. This approach also allows for minimization of 
network communications except during event detection. A centralized control node is required for 
the third tier of the detection algorithm.  This tier uses more computational capabilities and would 
be used to resolve the identification of the change in chemical composition. 
This approach overall helped to achieve the lowest per unit cost for the sensor devices.  Early 
prototype versions of the sensor devices have been utilized for collection of more than 30,000 
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hours of data in both indoor and outdoor environments on the NRL campus.[12, 16]  Figure 2 
shows representative data from sensors deployed outdoors. The devices have been independently 
evaluated by CCDC-CBC against both nerve agents and simulant compounds at a range of 
concentrations,[4, 5] and they have been utilized in field trials in collaboration with National 
Center for Spectator Sports Safety and Security (NCS4).[3]  This work included exposures to many 
different chemicals under lab conditions as well as exposures to a limited number of approved for 
use chemicals in outdoor environments. This represents a large and diverse training set to be used 
with the selected deep learning technique. 

The developed sliding window detection algorithm was selected to meet constrained SWAP 
requirements and during initial development of the ABEAM platform there was not time to explore 
other methods. With the SWAP constraints relaxed, a number of other algorithms can be 
considered for use. Many examples of algorithms that incorporate deep learning and general 
machine learning methods have been developed for other applications and could potentially be 
adapted for this application. In measuring a relationship between a sensor measurement and 
sensing target, one could employ various statistical-based models such as basic regression-based 
techniques to include linear, multivariate, partial least squares, or random forests. In a 
classification-based machine learning model, one application could be implemented as identifying 
and separating sensory data with discrete class labels.[18] In a model training scenario, its 
development is comprised of two phases: data preprocessing and model training. Application-
specific sensor data are usually compiled into unprocessed raw datasets and then processed by 
standardization, elimination or imputation of null values, and encoding class labels. Additionally, 
feature extraction is an important pre-processing step before applying the pattern recognition 
methods since the extracted features could help characterize a system from a user’s 
perspective.[19] At the end-process of model training, the resulting output model’s performance 
is evaluated against a set of validation and test datasets. 

 
 

 
Figure 2.  Red, green, and 
blue (RGB) time 
dependent profiles for 
data collected in an 
outdoor environment: 
indicator Zn N4TPP (a) 
and Ag DIX (b).  The 
temperature (black) and 
humidity (gray) as 
reported by a co-located 
device are also provided 
(c). 
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METHODS 
 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test or peak detection are applied to the set of 
recorded values on a given window. The steps of the algorithm processing can be represented as 
five distinct steps as shown in Figure 3 for the use of the KPSS test. 

 
Figure 3. Schematic of the KPSS-based detection for ABEAM data. 
 
1. Data preprocessing  
 

To fully utilize the different magnitude of RGB values in the data stream, it is a common 
practice to scale the features into a manageable range. This process is essential in algorithms that 
uses Euclidean or Manhattan distances between data points to assure their individual 
proportionality. Additionally, this step helps to suppress the effects of having extreme low and 
high magnitudes of a data point. Figure 4 shows the preliminary data for processing after scaling 
into a common logarithm of base 10. 

 

 
Figure 4. A) Sample raw RGB values from four sensor indicators. Values per reading (y-axis) exhibit varying 
magnitudes depending on sensor indicator used. Original RGB values were recorded every 30-second interval which 
are condensed into time in minutes. B) Transformation of RGB values into log10 scale from four sensor indicators. All 
values per reading (y-axis) range from 2.0 to 2.6 after processing. 
 

On the other hand, scaled RGB values need to be transformed again into a univariate time-
series data to account for the collective contribution of RGB intensities received by the six 
indicators. Moreover, processing this data into a univariate data stream is a convenient setup of  

A B 
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statistical hypothesis testing for stationarity per sliding window. The chosen scale is the common 
logarithm of 𝑙𝑙𝑙𝑙𝑙𝑙10 and the proportional averaging factor is 255. We apply this as, 

 

𝑥𝑥𝑖𝑖 =  
log10 𝑅𝑅𝑖𝑖 + log10 𝐺𝐺𝑖𝑖 + log10 𝐵𝐵𝑖𝑖

log10(255)
 

 
Each RGB channel is a bit of information, and a bit is an 8 binary number string. Within a bit, 

256 variations can be represented with each value either 0 or 1. The colors red, green, and blue are 
8-bit each, hence the 28  =  256 range. Each RGB color has a range of 0-255 with 0 considered as 
a value and has the same fundamental meaning as light intensity.[20] 

 
2. KPSS test 
 

This assessment pertains to the null hypothesis that an observable series is stationary around a 
deterministic trend wherein the series is expressed as the sum of deterministic trend, random walk, 
and stationary error. [21] The actual test is the Lagrange-Multiplier diagnostic test of the 
hypothesis that the random walk has zero variance which stems from a spectral regression 
framework more often used in econometric work.[22] It is suggested that the Lagrange multiplier 
statistic may be a particularly useful formulation for testing for model misspecification and its 
more computational-saving than considering likelihood ratios and Wald tests for analyzing spectral 
regression residuals.[23, 24] 

First, we describe a continuous time-series data stream with elements 𝑥𝑥𝑖𝑖 at times 𝑡𝑡𝑖𝑖, with 𝑖𝑖 
representing a specific point in time (𝑖𝑖 ∈  ℕ). For a sampling period within the series, we define 
the window length as, 
 

∆𝑇𝑇 = 𝑡𝑡𝑖𝑖+𝑘𝑘 − 𝑡𝑡𝑖𝑖 
 
where ∆𝑇𝑇 represents the length between timepoints 𝑖𝑖 and 𝑖𝑖 + 𝑘𝑘, and with 𝑘𝑘 as the desired 

length of samples in a window. 
In this specific sensor data, various combinations of RGB values are contained in elements 𝑥𝑥𝑖𝑖. 

Additionally, we can divide the collective red, green, and blue signals into sequential epochs or 
non-overlapping windows to account for possible non-stationarities in the chemically sensed 
recordings. Hence, for any time-series data stream with 𝑛𝑛 possible partitions containing elements 
𝑥𝑥𝑖𝑖, it can be denoted into a set of multiple, non-overlapping window sets as, 

 
𝑊𝑊 = �𝑥𝑥𝑝𝑝, 𝑥𝑥𝑝𝑝+1, … , 𝑥𝑥𝑝𝑝+𝑛𝑛−1�, (𝑛𝑛 ∈ ℕ) 

 
where 𝑝𝑝 is the set index until the last partition at 𝑛𝑛 − 1. 

 
The chemical sensor data consists of red, green, and blue (RGB) readings from six specific 

TCS3200-DB color sensing breakout board indicators. The text files produced by TCS3200-DB 
have data structures of six simultaneously recorded RGB readings registered every 30 seconds. 
Each element inside a sliding window, denoted by 𝑥𝑥𝑖𝑖, contains a set of RGB values, 𝑥𝑥𝑖𝑖 =
 {𝑅𝑅𝑖𝑖,𝐺𝐺𝑖𝑖 ,𝐵𝐵𝑖𝑖}, (𝑅𝑅,𝐺𝐺,𝐵𝐵 ∈ ℝ) through real-time, but with a varying difference in magnitude.  
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The overall process starts by data acquisition from the ABEAM box. The text files extracted 
from the device are preprocessed by parsing relevant data. And then data are normalized into a 
manageable set of values for denoising. Detection of anomalous readings by KPSS tests is 
conducted within the set of data on a given sliding window length. Finally, test results are evaluated 
by recording the anomalous behavior of a dataset with respect to their time of exposure. Figure 3 
shows the summary of the overall process. 
 

 
 

3. Peak detection technique 
 

Peak detection algorithms have been used in several studies that leverage a certain data’s 
behavior such as epidemiological studies, exposure assessments, or tactile sensors. [21-23] Here, 
we explore the possibility of utilizing the data’s z-scores. Processing it through similar measures, 
sensor data is converted to a smoothed z-score peak detection setup which uses a moving mean 
and standard deviation that will select the peaks that are outside a set threshold. The algorithm is 
based on dispersion: if a new data point is a specific number of standard deviations away from a 
moving mean, the algorithm classifies this point as a peak.[24] 

 
 
 

RESULTS 
 

Deep learning (DL) technologies have been implemented in recent literature for the collection, 
analysis, and interpretation of a considerably large amount of information. For example, DL 
methods using convolutional neural networks have been used in medical image analysis and real-
time human action recognition captured by a low-cost RGB camera. [18, 25] With a higher data 
throughput, the challenge of effective management in systematic labelling and processing of data 
collection could be achieved by computationally inexpensive object detection. The advantage of 
machine learning  techniques is its adaptability to learn and automate the extraction of patterns and 
features from a given dataset. Overall, the versatility and robustness of machine learning 
techniques can easily adapt to various applications that have an existing dataset with properly 
allocated data structures.  

 
In reviewing the data so far generated for the ABEAM system, it was determined that the data 

itself currently represents very sparse data with few features and in addition while many hours of 
negative data have been generated the number of annotated positive events are too few to 
adequately train deep learning methods. As more data is generated, it may be possible to apply 
such methods but currently it is not practical, and thus methods with lower data requirements were 
used in this study. 

 
Two traditional machine learning methods, the KPSS test and peak detection, developed for 

different applications were evaluated for use with the ABEAM 6 sensor prototype data. The data 
output from the ABEAM sensor platform also contain metadata of exposure times which are used 
as a reference point for accuracy measures. Figure 5 depicts an example of these exposure times 
with three hours of assumed exposure over a 3-day period, and the data transformation by 
𝑙𝑙𝑙𝑙𝑙𝑙10(255) proportional averaging with applied data segmentation. 
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Figure 5. Sample exposure times from a specific TCS3200-DB sensor (Sensor 3 – ZnN4TPP). The exposure times 
are represented by vertical dashed lines with the assumed 3-hour exposure duration to chemical represented by red 
shade (left). RGB readings are transformed into 𝑙𝑙𝑙𝑙𝑙𝑙10 scale which are then averaged by 𝑙𝑙𝑙𝑙𝑙𝑙10(255) to render as a 
univariate time-series data (right). 
 
 In testing either method, all data output from six indicators are processed and tested 
successively in multiple looping functions as cascaded algorithms. The application of a non-
overlapping sliding window is successively applied after the six data streams have been 
transformed into a univariate time-series data by 60-point increments or 30-minute segments. 
Within a 30-minute window, KPSS stationarity testing or peak detection method is applied. Figure 
6 illustrates this procedure using the KPSS test on one specific sensor. 

 

 
Figure 6. Detected exposures by KPSS stationarity testing (sample: Sensor 3 – ZnN4TPP). The transformed data 
partitioned by 30-minute window increments were subjected to KPSS testing per test window (left). Purple highlights 
depict the detected exposures as an occurrence of an event. The zoomed window (right) provides a closer look of the 
detected exposures between 5400 to 6000 seconds of recorded data. 
 

In reviewing the results from all data gathered for the sensor platform, depending on the results 
of a single sensor seat yields a significant number of false positives. In further evaluation and fine-
tuning from the readings from a sensor platform, using the results of more than one type of 
porphyrin-induced sensor is equally applicable to depending on the results from a single sensor 
material. The reason for this is that several of the different porphyrin materials may respond to the 
different exposure chemicals. The data was also analyzed using a 30-minute sliding window with 
recursive test readings where it was required that more than three sensors detect the same event. 
Moreover, this is to consider the performance of the six TCS3200-DB breakout boards as a whole. 
Since there are slight differences in the behavior of the data per different sensor, the results of the 
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testing are further evaluated to account for the robustness and ability of all the six sensors to detect 
a sample. Figure 7 shows the summary of all the six sensors combined with a total run time of 2-
3 days. 
 

  
Figure 7. A) Individual readings of six TCS3200-DB sensors with purple highlighted windows as detected events. 
B) Aggregate readings of all six TCS3200-DB sensors with >3 sensors detecting an event. C) Zoomed-in detected 
readings between 5400-6000 showing varying fluctuations of recorded exposures. 
 
 
4. Effects of sliding window sizes in testing accuracy 
 

Several techniques for data segmentation that divide sensor signals into manageable smaller 
parts are widely implemented for research purposes. [26-28] This includes the sliding window 
technique and selecting the window length directly affects the amount of information that could 
be extracted from a series of data points. There also exists variations of this technique using 50% 
overlap between adjacent windows to avoid information loss.[29] 

 
In exploring the effects of various sliding window sizes, Table 1 shows the accuracy 

measurements with multiple sliding window sizes applied on all six TCS3200-DB sensor 
indicators. 
 
Table 1. Accuracy measurements from varied sliding window sizes. 

 
 
Window Size 

Individual Aggregate 

Sensitivity Specificity Sensitivity Specificity 
5 minutes 100% 86.94% 66.67% 99.74% 
10 minutes 83.78% 95.92% 50% 100% 
20 minutes 95.45% 94.86% 100% 98.95% 
30 minutes 100% 92.14% 100% 100% 
60 minutes 94.59% 86.39% 83.33% 95.08% 

 
Using a relatively small window could increase recognition rate, but this also could negatively 

impact recognition performance due to a decreased amount of information extracted. Increased 
false positives results with a 5-minute window size could mean that the behavior of the univariate 
data stream was not fully understood due to the scarcity of information. As such, a compensation 
between performance and dormancy must be carefully considered during the algorithm design. 

A 
C 

B 
C 
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User-defined requirements should also be considered in the design that depend on either excellent 
classification performance regardless of speed or aimed to create speed-critical applications such 
as a continuous real-time data stream. Thus, understanding the effect of window length can help 
select the suitable window size during the algorithm design. 
 
 
5. Peak detection technique 
 

There are three parameters that have to be set for a working algorithm: the 1) lag, which dictates 
how many data points will be used to recalculate the moving mean and standard deviation – which 
could be also inferred as the size of the sliding window; 2) threshold, which is how many standard 
deviations away from the mean a new data point has to be in order to be classified as a peak; and 
3) influence determines the future behavior of signals on the algorithm's detection threshold.[24] 
The future signals have no influence based on a threshold that is calculated with a mean and 
standard deviation if the influence is set as 0 (i.e., assuming data stationarity). If this is the case, it 
is expected that the time series data has to return to the same average over the set lag parameter, 
depending to which signals can effectively influence the trend of the data. However, the overall 
complications of tuning the aforementioned parameters have exhibited varying results on the 
sensors’ signals which are shown on Figure 8. 
 

 
Figure 8. Sample peak detections – blue line as sensor data, purple lines as z-scores, and red line as signals. Parameters 
are set as: 1) lag – similar to the KPSS test sliding window of 30 minutes; 2) threshold – 3.5 standard deviations, and 
3) influence – set on 0.5. A) Peak detection for Sensor 1 (N4TPP) – signal lines indicate readings close to assumed 
exposures. B) Peak detection for Sensor 5 (YtDIx) – failure detection of exposure. Due to varying results of peak 
detection techniques, further fine-tuning is required. 

 
 

CONCLUSIONS  
 

Having explored several different machine learning methods, it has been confirmed that the 
initial sliding window slope method developed to meet SWAP considerations is as accurate as 
other statistical methods, such as the KPSS test.  The KPSS test method has a reduced number of 
parameters relative to the original slope method resulting in a simple process to configure the 
algorithm for new conditions. Peak detection was not as successful in screening out false positives. 
The work on developing the new methods has even provided improvements in the methodology 
used to better tune the slope based method parameters. Deep learning remains an attractive 
possibility but requires more curated data before it can be used in this application.  

A B 
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