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Abstract

The aim of this contract was to explore advanced data mining techniques for seismic data
processing. More specifically, we developed seismic signal discovery, classification and mon-
itoring algorithms. The objective was to improve upon the state-of-the-art techniques in
accuracy, novelty, and efficiency.

Signal Discovery: We start with research on a semi-supervised motif discovery algorithm
for signal detection. Unlike semi-supervised clustering, classification, and rule discovery;
semi-supervised motif discovery is a surprisingly unexplored area in data mining. Semi-
supervised Motif Discovery finds hidden patterns in long time series (i.e. seismic signals) when
a few arbitrarily known patterns are given. A naive approach is to exploit the known patterns
and perform similarity search (i.e. template matching) within a radius of the patterns (i.e.
correlation threshold). However, this method would find only similar shapes and would be
limited in discovering new shapes. In contrast, traditional unsupervised motif discovery
algorithms detect new shapes, while missing some patterns because the given information is
not utilized. We developed a semi-supervised motif discovery algorithm (SeiSMo) that forms
a nearest neighbor graph to identify chains of nearest neighbors from the given events. We
demonstrate that the chains are likely to identify hidden patterns in the data.

Signal Classification: Automated seismic phase identification is an integrated component
of large scale seismic monitoring applications, including earthquake warning systems and
underground explosion monitoring. Accurate, fast, and fine-grained phase identification is
instrumental for earthquake location estimation, understanding Earth’s crustal and mantle
structure for predictive modeling, etc. However, existing operational systems utilize multiple
nearby stations for precise identification, which delays response time with added complexity
and manual interventions. Moreover, single-station systems mostly perform coarse phase
identification. In this project, we revisit seismic phase classification as an integrated part of a
seismic processing pipeline. We develop a machine-learned model FASER ,
that takes input from a signal detector and produces phase types as output for a signal
associator. The model is a combination of convolutional and long short-term memory
networks. Our method identifies finer wave types, including crustal and mantle phases. We
conduct comprehensive experiments on real datasets to show that FASERoutperforms existing
baselines. We eval-uate FASER holding out sources and stations across the world to
demonstrate consistent performance for novel sources and stations.

Signal Monitoring: Seismic monitoring systems have hundreds or thousands of distributed
sensors gathering and transmitting real-time streaming data. To detect seismic events early,
one might want to compute pairwise correlation across the disparate signals generated by the
sensors. Since the data sources (e.g., sensors) are spatially separated, it is essential to consider
the lagged correlation between the signals. Besides, many applications require processing
a specific band of frequencies depending on the event’s type, demanding a pre-processing
step of filtering before computing correlations. Due to the high-speed of data generation
and a large number of sensors in these systems, the operations of filtering and lagged cross-
correlation need to be efficient to provide real-time responses without data losses. In this
project, we propose a technique named FilCorr that efficiently computes both operations
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in one single step. We achieve an order of magnitude speed-up by maintaining frequency
transforms over sliding windows. Our method is exact, devoid of sensitive parameters, and
easily parallelizable. Besides our algorithm, we also provide a publicly available real-time
system named SeisViz that employs FilCorr for monitoring a seismic network.
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Chapter 1

SeiSMo: Semi-supervised Seismic Signal
Discovery

1.1 Summary: Signal Discovery
Unlike semi-supervised clustering, classification, and rule discovery; semi-supervised motif
discovery is a surprisingly unexplored area in data mining. Semi-supervised Motif Discovery
finds hidden patterns in long time series when a few arbitrarily known patterns are given.
A naive approach is to exploit the known patterns and perform a similarity search within
a radius of the patterns. However, this method would find only similar shapes and would
be limited in discovering new shapes. In contrast, traditional unsupervised motif discovery
algorithms detect new shapes, while missing some patterns because the given information is
not utilized.

We propose a semi-supervised motif discovery algorithm that forms a nearest neighbor
graph to identify chains of nearest neighbors from the given events. We demonstrate that
the chains are likely to identify hidden patterns in the data. We have applied the method to
find novel events in several geoscientific datasets more accurately than existing methods.

1.2 Introduction: Signal Discovery
Motif discovery from time series data is a well studied problem in data mining. The typical
objective in motif discovery is to identify approximately repeating segments in a time series.
Each pattern that repeats significantly, either with high number of occurrences or with high
similarity among the occurrences, is called a motif. For example, in Figure 1, there are four
occurrences of a sinusoidal motif.

Existing motif discovery algorithms perform unsupervised searches for the most similar
occurrences of a motif and, expand the motif set by identifying relatively less similar occur-
rences [42][81]. However, it may be possible that some occurrences of a motif are known.
Such information can lead us to semi-supervised motif discovery algorithms, which would be
faster than the completely unsupervised algorithms and, more robust than simple similarity
search with a domain dependent parameter.

Semi-supervised motif discovery has the potential to enable data mining in domains where

1
Approved for public release; distribution is unlimited.



Figure 1. A time series with a sinusoidal motif appearing four times. The arrows below show 
the nearest neighbor and correlation coe cients  If the red(left) and blue(right) sinusoids are 
given as example occurrences of the motif, it is intuitive that pure/middle sinusoids should 
also be occurrences  Traditional unsupervised motif discovery algorithms can nd the pure/ 
middle sinusoids at the cost of expensive because computation of quadratic time complexity  
Moreover, recognizing the middle/green sinusoids as motifs does not help in selecting a 
threshold for further similarity searches  
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most of the data unclustered. In semi-supervised motif discovery, we define that one or
more subsequences from one or more motifs are labeled; and the goal is to find all of the
motifs. Most of the current work on semi-supervised algorithms for time series data focus
on classification and clustering [9][14], in general. We provide an efficient semi-supervised
motif discovery algorithm with applications to seismic data analysis.

To elaborate this idea, consider a set of points in two dimensional space in Figure 2(a).
Note that time series segments are points in very high dimensional space. We consider two
dimensional points for better illustration. The dense lump is a motif with five occurrences
or repetitions. State-of-the-art motif discovery algorithms will find the closest pair of points
(marked in red color) in Figure 2(a), and then search the region within a radius/threshold,
typically proportional to the closest pair distance. In the Figure 2(a), all of the five occur-
rences can be identified by existing techniques for the illustrated radius/threshold.

Now consider the same set of points, along with the star-marked points showing the given
occurrences representing some physical events (e.g. earthquakes). In Figure 2(b), all of the
points in the dense lump are closer to the stars, hence, they are very well detectable by
similarity search [81] based on the same radius as in 2(a). In Figure 2(c), no point is closer
to the stars, hence, no motif would be found. In Figure 2(d), two of the five points will be
found by the same search radius. Thus, the number of similar points detected by similarity
search depends on the position of the stars and the radius/threshold value.

Figure 2. A set of two-dimensional points. Unsupervised radial search at the closest-pair (a). 
Successful (b), failed (c) and partially successful (d) similarity search at given (i.e., star) 
points. 2(e) is an enlarged version of 2(d). Nearest neighbor chains starting from the stars 
contains all the five points (e).

To draw a quick contrast and build intuition, we enlarge Figure 2(d) in 2(e), where 
SeiSMo can find all five occurrences in all of the scenarios (b-d). An arrow in Figure 2(e) 
connects a point to its nearest neighbor. If we follow the chain of nearest neighbors starting 
at the star points, we reach the same pair of points, which we call a sink, that are the nearest 
neighbors of each other. If we label all nodes on these chains as occurrences of the given 
motif, we correctly identify the five points without any threshold parameter.

3
Approved for public release; distribution is unlimited.



1.3 Methods, Assumptions, and Procedures: 
Signal Discovery

1.3.1 Background and Notation

We define time series as a sequence of real numbers measuring a quantity at a fixed sampling 
rate. A time series subsequence is a continuous segment of a time series. We can extract 
n − m + 1  time series subsequences of length m from a long time series of length n >> m. 
Time series subsequences are not independent of each other. Overlapping subsequences are 
trivially close in the high dimensional space, however, they are not interesting for  
mining purposes.

To elaborate on this fact, in Figure 3, we show a toy time series and all the subsequences 
of length three as points in three dimensional space. The points are not independently 
scattered, instead, the points form a trail where the nearest neighbor of a point (i.e. a 
window) is the next point on the trail (i.e. next slide of the window). To avoid such trivial 
nearest neighbors, we define a threshold Ot (typically 50%) to set the minimum overlap 
between two subsequences required to identify them as trivial matches. In other words, if two 
subsequences share more than half of their observations we consider them trivial because 
almost all computational properties (moments, frequency distribution, etc.) of two half-
overlapping subsequences are governed by the overlapping segments and the lost information 
is at the Nyquist frequency. The choice of Ot = 50% has been empirically validated in related 
work in the literature [81][87]. In Figure 3(right), we connect a point with its non-overlapping 
(< Ot) nearest neighbor. Clearly, the nearest neighbors now contain more information, hence 
are non-trivial.

Figure 3. (left) A toy time series. (middle) The subsequences of length three in a 3D space 
form a trail. The nearest neighbor of a point/subsequence is trivially the next point on the 
trail. (right) The nearest non-overlapping neighbors are not trivial and, can possibly be in 
anywhere on the trail.
Nearest Neighbor: Given a subsequence Si,m, that starts at the ith index in the time series 
and is of length m, we define the nearest neighbor of Si,m as below,

min
|j−i|≥m

d(zNorm(Si,m), zNorm(Sj,m)) (1)

4
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Here, d can be any distance function defined to calculate distance between two equi-
length time series. Typical distance functions are Euclidean distance [44], Dynamic Time
Warping distance [53], Longest Common Subsequences distance [70], and Move-Split-Merge
distance [69]. zNorm is the standard z-normalization defined as zNorm(x) = x−μ

σ
, where

μ and σ are estimates of mean and standard deviation of the observations in the vector x.
Searching for the nearest neighbor of a query subsequence is extensively studied under all
of these distance measures. In this work, we search for nearest neighbors under Euclidean
distance using MASS [44] and DTW using UCR_Suite [53].

Nearest Neighbor Graph (NNG): An NNG is a graph (V,E) where V is the set of all
subsequences of length m from a time series of length n. (u → v) ∈ E if v is the nearest
neighbor of u as defined above. The length of an edge (u → v) ∈ E is the z-normalized
distance between u and v.

Properties of NNG:

• The NNG is a collection of paths.

• Only cycles of size two are possible, which are called sinks in this work.

• The edges along the paths are non-increasing in length. Every path ends in a sink.

The above properties of an NNG are invariant to the distance measure used to find
the nearest neighbors. Multiple unique paths can lead to a sink. We define such paths as
Confocal Paths highlighting the fact that they all end in the same sink. We define the
support of a sink, P , by the number of given occurrences of a motif (i.e. star points in
Figure 2 and Figure 4) on any confocal path leading to the sink. The support of the sinks
in Figure 2(e) are zero and two. See Figure 4 for more examples.

Figure 4. Three sinks (A,B and C) and their sets of Confocal Paths. The supports of A,B 
and C are zero, three and two, respectively

The intuition behind SeiSMo is that, if there are several paths from several labeled 
nodes/subsequences that lead to the same sink, the likelihood of the paths containing more 
unlabeled nodes (i.e., motif) is high. The reason is that the distances are progressively 
shorter as we follow paths from the labeled nodes/subsequences towards the sink. Since 
every node leads to a sink, we do not consider sinks with support P = 1. We only label  
sinks with P ≥ 2 and, all nodes on paths from the labeled nodes to that sink. The enclosed 
region in Figure 2(e) shows the labeled nodes by SeiSMo. The advantage of this method is 
that there is no domain dependent parameter to tune. One may simply perform more strict 
motif discovery by choosing a higher threshold of support, e.g. P ≥ 3. Note that the value 
of P is a design choice for the practitioners and not a parameter to the algorithm.

5
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1.3.2 Related Work

Searching for the nearest neighbor of a query subsequence is done under Euclidean [44] or
Dynamic Time Warping [53] distance. Both of these techniques are efficient and suitable
for our algorithmic optimizations. SeiSMo is not limited to any specific distance measure,
moreover an ensembling effect is observed when we combine outputs from SeiSMo using
Euclidean and DTW distances.

Existing time series motif discovery algorithms are all unsupervised [42][40][39], focusing
on various operational aspects of the tasks such as exact motifs [42], online motifs [40],
variable length motifs [39], multi-dimensional motifs [80] and rare motifs [10]. Domain
knowledge has been incorporated in motif discovery in the form of annotation vectors [16];
however, such annotation denotes preferred regions of the time series to guide the search for
motifs, as opposed to providing instances/occurrences of a motif.

Semi-supervised approaches have been developed for time series classification extensively
[72][14]. Classification tasks propagate labels to all unlabeled instances of the training data,
while semi-supervised motif discovery algorithms are not required to label all subsequences
of a time series. Time series classification, in general, works on a set of independent time
series. SeiSMo works on subsequences of a long time series.

The proposed method is very relevant to classic density based techniques for unsuper-
vised clustering (e.g., DBSCAN [20]) and outlier detection (e.g., Local Outlier Factor [11]).
However, the concept of density connectedness has never been applied to motif discovery. To
be more specific, SeiSMo has prefixed the two parameters in those algorithms, minPts(= 1)
and ε(= ∞), that most density based techniques require tuning.

NNGs on independent data points have been studied in computational geometry for
decades [52]. However, our problem definition requires careful handling of overlapping sub-
sequences in a time series to avoid trivial matches, and our optimization techniques greatly
improve the construction of NNG on high dimensional data.

One important point of distinction is worth noting. Motif discovery from time series
data is fundamentally different from motif discovery from discrete sequences such as DNA
or protein sequences. To elaborate on the distinction, consider the query matching problem.
Exactly matching a query string takes O(n) time using the KMP (Knuth-Morris-Pratt) algo-
rithm. Exact matching is not defined for real sequences, while approximate matching takes
at least O(n log n) time [44]. Similarly, motif discovery from time series data faces several
challenges because of normalization, trivial matches and diverse distance functions, while
motif discovery from discrete sequence data enjoys simple match/no-match relationships
between observations.

A recent practice in Seismology is to apply machine learning algorithms to learn from
a vast amount of labeled data collected over many decades. As shown later in this report,
SeiSMo can detect events that well-trained deep models cannot detect[50]. For the sake of
argument, if we assume the nearest neighbor search for all subsequences can be modeled by
a convolutional and a pooling layer, the recursive search for the nearest neighbors in SeiSMo
would need a variable number of layers. With a sufficiently large number of layers and units
in each layer, it should be possible to model SeiSMo, however, that is beyond the scope of
this report.

6
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1.3.3 SeiSMo: Semi-supervised Motif

In Algorithm 1, we describe SeiSMo. The algorithm requires the positions of the known/seed
subsequences in the time series as input. The output of the algorithm is a set of positions of
newly detected events. We assume there is a maximum length for all the given and output
occurrences of motifs. Such a length, that can contain most events, can be identified in
most domains. For example, in local and near regional seismology, a 10-second window is
generally enough for mine blasts and 20-second window is good for earthquakes.

The algorithm computes the nearest neighbors (NN), recursively, from each seed subse-
quence (Line 3-9). The iterative search ends when the current subsequence and the nearest of
the nearest neighbor subsequence are more than Ot overlapped. Thus, we identify sinks us-
ing overlapping subsequences, as opposed to matching the exact locations of a subsequence.
This is a necessary deviation from an exact location-based sink identification. To explain
why, consider S1,100. If the nearest neighbor of S1,100 is S501,100 and the nearest neighbor of
S501,100 is S2,100, the algorithm will terminate iterating at Line 5, which would not be the
case if the algorithm checked for NN(NN(currentNode) = currentNode in Line 5.

Since the algorithm stops on a condition that uses overlap between subsequences, our
algorithm is dependent on the order of the data, as many other data mining algorithms are
[54][41]. In addition, in SeiSMo, several sinks with large overlaps are considered as one sink.
All of the sinks reachable from all of the seed events are collected in a list, SinkList.

The second half of the algorithm counts the support of each sink (Line 10-13). Again, two
sinks, (u, v) and (p, q), are considered the same or equivalent (i.e. (u, v) ≡ (p, q)) if overlap
between p and u, and q and v, both are more than Ot, without losing generality. The sink
equivalence relation has the following properties.

• If (u, v) is a sink, then u and v are guaranteed to be non-overlapping by the NN
operation. The order of u and v can be swapped without loosing generality.

• sink equivalence is not transitive; (u, v) ≡ (p, q) and (u, v) ≡ (s, t) do not entail
(u, v) ≡ (s, t).

• Sink equivalence is symmetric. (u, v) ≡ (p, q) entails (p, q) ≡ (u, v).

Since we count support for one sink at a time, the lack of transitivity does not impact the 
counting process because of the symmetric property. Once high enough support is gathered, 
all nodes on the path from any seed event to the highly supported sink are added to the set 
of newEvents.

In the final stage, SeiSMo performs a deduplication operation to ensure non-overlapping 
events are output (Line 14). The deduplication operation is a self-join of the set of newEvents 
on overlap of more than Ot. One may consider a more restrictive overlap threshold to limit 
the number of output patterns, however, we use the same overlap threshold Ot           
for consistency.

The Algorithm 1 does not require the seed events to be identical in length. If seeds 
are of different lengths, their chains of nearest neighbors will be of different lengths. When 
counting support, the algorithm considers Ot along with the length of the longer time series. 
More precisely, (u, v) ≡ (p, q) if overlap between p and u, and q and v, both are more than 
�Otm�, where  m is the maximum of the lengths of u, v, p and q.
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Algorithm 1 SeiSMo(TS, SP )

Require: TS ← a continuous time-series, SP ← positions of seed events
Ensure: Output of newly detected seismic events from the time-series TS using the given

seeds SP
1: for every seed s ∈ SP do
2: currentNode ← s
3: neighborNode ← NN(currentNode)
4: neighborOfNeighbor ← NN(neighborNode)
5: while Overlap between neighborOfNeighbor and currentNode < Ot do
6: currentNode ← neighborNode
7: neighborNode ← neighborOfNeighbor
8: neighborOfNeighbor ← NN(neighborNode)
9: Insert (currentNode, neighborNode) in the SinkList

10: for each sink in SinkList do
11: Count support of sink
12: if support of sink ≥ 2 then
13: newEvents ← newEvents ∪ Nodes from all seeds to sink
14: deduplicate newEvents using Ot

15: return newEvents

Optimizations to SeiSMo

The most time critical part of SeiSMo is searching for the nearest neighbors in an iterative
manner. The properties of NNGs allow us to develop two optimization techniques to speed
up the search process.

Recursive Search Initialization: The nearest neighbor search algorithm [53] uses
an initial best-so-far value to begin the search. If no prior knowledge exists, best-so-far is
set to ∞. Since the distances along a path on NNGs are always non-increasing, we can
initialize the search in Line 8 by the last nearest neighbor distance on the path. More pre-
cisely, neighborOfNeighbor ← NN(neighborNode, d(currentNode, neighborNode)) This
helps the early-abandoning process greatly to stop calculating unpromising distances.

Path Pruning: The in-degree of a node on NNG can be zero or more; however, the
out-degree of a node is exactly one. If a nearest neighbor discovered in Line 8 is a repeated
discovery; we can prune the path by breaking the loop in Line 5. At the implementation level,
we keep a hash of all visited nodes on the NNG and check for repeated visits in constant time.
This approach ensures no node is visited more than once. Note that SeiSMo must increase
the support of the sink the path was heading to before pruning any path. This requires some
additional bookkeeping to maintain the support count for each sink dynamically.

Complexity of SeiSMo

Time complexity of SeiSMo algorithm is dominated by the iterative nearest neighbor search.
If we use DTW distance, the cost of an NN search is O(nm2) where n is the length of the
time series and m is the length of the motifs. The number of NN searches is proportional

8
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to the number of seeds S and lengths of the paths from seed to sink, P . Hence, the total 
complexity is O(SP nm2). In most applications, S and P are on the order of tens, while n 
is in millions. Hence, the complexity of the algorithm is largely dominated by the length of 
the time series.

Our pruning approaches do not reduce the asymptotic complexity of the algorithm. How-
ever, recursive search initialization reduces the effective value of n and path pruning reduces 
the effective value  of P . The memory requirement for these optimization techniques is pro-
portional to the number of sinks and average path size. These quantities are much smaller 
than the data size (n), hence, the algorithm is effectively in-situ.

1.4 Results and Discussion: Signal Discovery

1.4.1 Experimental Evaluation

All our experiments are reproducible. The code, data, spreadsheet and figures are available in 
[4]. We use six datasets for experiments including four real, one synthetic, and one       
simulated datasets:

• Synthetic white noise with implanted sinusoids containing 100,000 observations.

• California seismograms from station NC.CCOB between January 8, 2011 (00:00:00)
and January 15, 2011 (00:00:00). The dataset contains 12,096,000 observations recorded
at the rate of 20 samples per second.

• Oklahoma seismograms from station GS.OK029 between April 1, 2014 (00:00:00) and
April 8, 2014 (00:00:00). The dataset contains 12,096,000 observations recorded at the
rate of 20 samples per second.

• Wyoming seismograms from station ZH.RPCE between July 19, 2010 (00:00:00) and
July 21, 2010 (00:00:00). The dataset contains 3,456,000 observations recorded at the
rate of 20 samples per second.

• LabQuake or LabQ seismic data [75] generated by a frictional experiment in the
Pennsylvania State University Rock and Sediment Mechanics Laboratory. This dataset
is very well labeled and specifically suited for precision and recall analysis because of
the known ground truth. Also, this data is suited for testing precision and recall on
different SNR values. The dataset is publicly available in [1]. The dataset contains
125,000 observations.

• Southern California seismograms from station CI.DRE between April 3, 2010 (00:00:00)
and April 10, 2010 (00:00:00). The dataset contains 12,096,000 observations recorded
at the rate of 20 samples per second.

We define Precision and Recall for motif discovery in the following way. Let us assume
the number of occurrences of a motif is N . Let us assume a motif discovery algorithm finds
Q occurrences of the motif and, P of them are from the set of known occurrences. The
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Dataset LabQuake Synthetic
Length 125K 100K

Number of Seed Events 82 59
Total Number of Events 130 150
SeiSMo- New Detections 33 36

RS - New Detections 0 88
SeiSMo- Precision 96.97% 100%

RS - Precision 0% 100%
SeiSMo- Recall 66.67% 39.56%

RS - Recall 0% 96.70%

California and Oklahoma are taken from existing work on hidden event discovery. We com-
pare to both of them to check if SeiSMo adds any novel detections. The results are shown in  
Figure 5. All of our novel detections are manually verified.

In  California  data,  we  observe  that  SeiSMo  adds  few  more  (18)  unique  events  to  the  
events  detected  by  an  existing  technique  (ConvnetQuake),  while  radial  search  adds  no  
value. We  show  the  events  in  the  subsequent  sections,  however,  the  fact  that  SeiSMo  is  
precisely  detecting  more  events  in  two  independent  real  datasets  from  two  states  is  
showing the gen-eralizability of our technique.

In Oklahoma data, we observe the interesting fact that all methods are detecting a large  
number  of  unique  events.  This  suggests  that  the  dataset  is  rich  in  number  of  events  and,  
the  methods  are  capturing  unique  aspects  of  the  events  so  should  be  able  to   
work  collaboratively.

ConvNetQ
(291)

Radial 
Search
(102)

SeiSMo
(39)

84

6

FAST
(87)

Radial 
Search

(5)

SeiSMo
(18)

3

2FAST
(87)

Radadial ad
Searchhh

(5)

((

.

Figure 5. (left) Comparison to ConvNetQuake [50] and similarity search within a radius 
(RS) on Oklahoma dataset. (right) Comparison to FAST [82] and similarity search within a 
radius (RS) on California dataset.

Comparison to Semi-supervised Data Mining Method

Historically, semi-supervised methods have been developed to perform supervised learning 
in the absence of labeling. SeiSMo focuses on exploiting labels in performing unsupervised
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motif discovery. Although this key difference makes SeiSMo unique, we consider an existing 
semi-supervised learning algorithm for time series data, DTW-D [14] to detect hidden events.

Our approach is to train a semi-supervised classifier on the seed events (i.e. control) and 
on a mix of seed and SeiSMo events (i.e. treatment). In both of the scenarios, we consider 
the seismic events as positive instances and add an equal number of non-event segments as 
negative instances to balance the datasets. If the SeiSMo events are all detectable by DTW-
D classifier, we expect to see an increase in classifier performance. If the SeiSMo events 
contain same amount of confusion as the seed events, the classifier accuracy should stay       
the same.

Figure  6.  Applying  the  semi-supervised  classification  (DTW-D)  algorithm  to  detect       
new  events.

In  Figure  6,  we  show  the  results  on  two  of  our  datasets:  California  and  Oklahoma.  We  
see  no  significant  difference  between  control  and  treatment  on  California  dataset,  which  
ideally  implies  that  DTW-D  classifier  finds  SeiSMo  events  very  similar  to  the  seed  events.  
However,  the  accuracy  of  the  DTW-D  classifier  is  at  most  equal  to  the  default  accuracy  
(50%)  on  California  dataset.  Therefore,  no  conclusion  can  be  made  for  this  dataset.  We  
see  a  significant  decrease  in  accuracy  once  we  add  SeiSMo  events  to  the  seed  events  in  the  
training dataset (Figure 6(right)).  We conclude that DTW-D failed to learn about the unique  
SeiSMo events.

Note  that  DTW-D  is  not  an  event  discovery  algorithm.  Hence,  our  demonstration  of  
DTW-D classifier failing in event detection should not undermine its goodness as a classifier.

Efficiency

SeiSMo  recursively  searches  for  the  nearest  neighbors.  The  number  of  searches  is  generally  
more  than  the  number  of  searches  in  radial  search  based  methods.  In  Figure  7  (left),  we  
show the execution time in seconds as we increase the data size up to a million observations.  
We  use  the  synthetic  data  with  14  seeds.  The  optimization  techniques     

      .  The  growth  in  execution  time  is  roughly  linear,  
suggesting  scalability  to  even hundreds of millions of observations.

Unsupervised  motif  discovery  algorithms  using  the  recent  Matrix  Profile  technique  [81]  
requires  an  order  of  magnitude  more  time  to  identify  the  seed  motif  and  expand  to  more  
occurrences.  To  find  motifs  in  a  106  long  time  series,  Matrix  Profile  runs  for  a  day,  while  
SeiSMo finishes in 25 seconds.

Execution speed grows with the number of seed events.  Figure 7(right) shows the change  
in execution time as we implant more events and use more seeds.  Similarity Search within a
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Figure 7.  (left) Linear scalability and speedup by Optimization techniques.  (right) Scalabil-
ity with respect to number of seeds.

radius is generally faster, however, the optimized SeiSMo grows almost linearly with respect  
to n, without any sensitive parameter such as the radius.

Parameter  Sensitivity

We have one parameter in SeiSMo.  The support of the sink, P , is set to 2 for all of the exper-
iments.  However,  to  develop  a  reasoning  about  this  parameter,  we  perform  an  experiment  
by varying the parameter P , and recording the precision and recall.  In Figure 8 (right), we  
show the result.  For both synthetic and LabQuake (LabQ) data, precision is generally insen-
sitive to increasing support, while recall decreases with increasing support.  This is intuitive  
because,  increasing  support  restricts  SeiSMo  to  detect  only  patterns  with  high  confidence.  
Since  precision  is  the  key  metric  for  automated  signal  detection,  we  claim  insensitivity  to  
the parameter P .

To evaluate the effect of noise, we incrementally add noise to LabQuake data and measure  
precision and recall.  The results are shown in Figure 8(left).  We see a drop in precision and  
recall  when  SNR  is  decreased.  We  calculate  the  SNR  by  taking  the ratio  of  the  absolute  
amplitudes of the signal and and noise.

SNR =
mean of absolute signal amplitude

mean of absolute noise amplitude
(2)

Effect of Distance Measure

We find that Euclidean and Dynamic Time Warping distances can produce unique
hidden events from the same data. Hence, we suggest parallel execution of SeiSMo under all
available distance measures and taking a union of the outputs as the final output. We
empirically observe, on average in all our experiments, DTW contributes 60% to the newly
detected events, while Euclidean distance contributes 40%. We hypothesize that more
distance mea-sures will add more detections at a diminishing rate. We leave it for future work
to validate the hypothesis.
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Figure 8. Parameter sensitivity of SeiSMo. (left) Precision and recall graph of SeiSMo with 
different noise level. Both precision and recall decrease when noise level is increased. (right) 
Precision and recall for varying support count, P.

Evaluation

It is very important to ensure that the events we detect are not caused by any electri-
cal/mechanical malfunction; or by any minor incident (i.e. a vehicle passing by). We can 
ensure this by examining the signals from all three (horizontal North-South, horizontal East-
West, and vertical) components, and from all of the components of nearby stations. There-
fore, once detected, we evaluate if the detected signal is a real seismic event by visual ex-
amination of the other channels/components of the same stations and all channels of nearby 
stations. If more than one station records the same event within a reasonable delay, we 
confirm the signal as a real event. To illustrate, in Figure 9, we show the detected signal in 
the HH1 channel of OK029 station. We see that the other two channels, HH2 and HHZ, have 
strong signals. For further validation, we inspect a nearby station, in this case OK027, in the 
same time window. We see the presence of strong signals in all channels of OK027, which 
confirm that the detected signal represents a real event. Note that the signals in OK027 are 
consistently ahead of the signals in OK029 for all channels. This further validates that the 
seismic source is closer to OK029.

The challenges associated with such a visual validation technique are the possible absence 
of all the channels and absence of a nearby station. If none are available, we pessimistically 
consider the signal as a false detection.

1.4.2 Natural Seismic Events in California

Northern California Seismic Network

We present a motivating case study to demonstrate the utility of semi-supervised motif 
discovery from time series data. Seismic events are observable in seismographs, especially 
when the events are of high magnitude. However, low magnitude events are more frequent 
than higher ones, and often escape expert attention. Such events are not found in IRIS 
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Figure 9: Example of validation using additional channels from the same and an additional 
station. SeiSMo  detects  the  signal  at  OK029-HH1.  In  this  figure,  We  have  other  components  
(HH2, HH3)  of  OK029  station  on  the  first  row.  Moreover,  we  picked  another  station,  OK027  
which is  13  miles  from  OK029  (exact  position  is  shown  in  the  map).  We  have  shown  wave-
forms from  all  three  components  from  OK027  in  the  second  raw.  We  observe  the  presence  of  
the event in all six waveforms, thus, validating the detection.

We apply our SeiSMo algorithm to discover hidden seismic events using existing cataloged 
events as labeled data. The Calaveras Fault in central California is known to have repeating 
earthquakes [62]. We have collected seven days (from January 8, 2011 to January 15, 2011) of 
single channel (horizontal north-south component) seismic data from a station (NC.CCOB) in 
the Northern California Seismic Network from the NCEDC [3]. We have collected 24 cataloged 
events that originated within 100 miles of the station. FAST [82] is a hash based method, which, 
in principle, is a radial search technique under a specific distance measure. We have augmented 
the catalog events with 87 events detected by FAST to create the seed set. Seismograms for 
each event were 20 seconds long, which is good enough to fit a single event and had a sampling 
rate of 20 samples per second. We applied a 4- to 10-Hz bandpass filter to remove any unwanted
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Figure  10.  Randomly  picked  results  of  California  dataset.  Top row of events is cataloged.  
Middle row of events is detected by FAST [82]. Bottom row of events is detected by SeiSMo.

noise.  We have discovered 18 new events that have neither been cataloged in IRIS nor been  
detected  by  FAST.  We  use  only  one  channel  (EHN)  of  data  for  detection.  The  events  we  
have  discovered  are  all  confirmed  by  manually  checking  the  other  two  channels  as  well  as  
other nearby stations.

In  Figure  10,  we  show  some  random  events  for  further  discussion.  All  the  events  show  
the presence of significant signals.  The catalog events are generally high magnitude events.  
FAST detects higher magnitude events than those SeiSMo detects.  Northern California is a  
very active region.  Automated seismic signal discovery is the first step towards data driven  
understanding of seismic activity over time and space.  Thus, SeiSMo contributes significantly  
towards that objective.

Southern  California  Seismic  Network

S recorded a good number of seismic activities after a 7.2 magnitude earthquake at Baja  
California,  Mexico  in  April,  2010.  We  apply  SeiSMo  algo-rithm  to  discover  hidden  seismic  
events in a dataset collected from the S using existing cataloged events as labeled data. We  
have collected seven days (from April 3, 2010 (00:00:00) to April 10, 2010 (00:00:00)) of single  
channel (vertical component, BHZ) seismic data from a station (CI.DRE) in the S from  
the Southern California Earthquake Data Center (SCEDC) [5]. Unlike the Northern California  
experiment in the previous section, we perform a study on the effect of event magnitudes in the  
seed set using this dataset.

We have collected 60 cataloged events recorded at this station with a range of magnitudes  
from  0.3  to  7.2  in  Richter  scale.  We  order  the  events  in  increasing  order  of  magnitudes  and  
take  sets  of  30  consecutive  seeds  from  the  ordered  list  of  events.  For  each  of  these  sets  of  
seeds,  we  run  SeiSMo  to  detect  new  events  and  chart  the  performance  in  Table  2.  We  see  
an  increase  in  detection  performance  as  the  magnitude  of  the  seed  events  increases.  High  
magnitude events show better contrast with respect to the baselines around them compared
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to low magnitude events. This corroborates to the observations in Table 2.

Table 2: Increasing performance with seed quality.
Maximum Magnitude 4.10 4.20 4.40 7.20
Minimum Magnitude 0.30 1.66 2.50 4.10
Number of Detection 2 17 30 35

1.4.3 Induced Seismic Events in Oklahoma
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Figure 11. Results of Oklahoma dataset shows that, SeiSMo detects lower magnitude events 
than those in the IRIS catalog.
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Figure  12.  Some  randomly  picked  events  from  the  Wyoming  dataset  results.  Top row of  
events is known.  Bottom row of events is detected by SeiSMo.

Human-induced  seismicity  includes  seismic  activities  that  are  not  directly  initiated  by  
humans  (e.g.  nuclear  tests),  but  rather  are  indirect  outcomes  of  human  activity,  such  as  
seismic activity due to waste water injection [71] [73].  In ConvNetQuake [50], authors have  
identified a recent increase in induced seismicity in Guthrie county of central Oklahoma.

We  have  applied  SeiSMo  to  a  single  channel  (HH1)  dataset  from  the  same  station  and  
for  the  same  time  duration  of  7  days  (April  1,  2014  (00:00:00)  to  April  8,  2014  (00:00:00)).
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We have collected 77 seed seismograms from IRIS [2]; each of the those was 20 seconds long 
with a sampling rate of 20 samples per second, just like the previous experiment. Also, we 
applied a 4- to 10-Hz bandpass filter to remove any unwanted noise. We run SeiSMo on this 
dataset and using these seeds we detect 39 more events. All of these 39 events are confirmed 
by manually checking all of the channels and few neighboring stations. Figure 11 shows five 
random cataloged and newly detected events on a time line. The cataloged events are higher 
in magnitude than those detected by SeiSMo.

1.4.4 Seismicity due to Controlled Explosions in Wyoming
The mining industry in Wyoming uses ripple fired mining technology [74], which creates 
a very low energy yet significant seismic footprint at nearby stations across the Bighorn 
Mountain [79] [46]. We collected a dataset from the experiment of [47], which contains 
24 active source borehole events that were labeled by the authors. We used 16 borehole 
shot events over two consecutive days, on July 19 and July 20, 2010. SeiSMo identified 12 
new signals (that do not include the eight remaining borehole shots that happened outside of 
these two days). We manually confirm that the signals look like arrival waveforms. Randomly 
picked SeiSMo detections and seeds are shown in Figure 12.

Consistent with the previous cases, the detected events are significantly lower in magni-
tude compared to catalog events. This suggest that SeiSMo is capable of discovering hidden 
low-magnitude seismic events.

1.5 Conclusion: Signal Discovery
We propose a semi-supervised motif discovery algorithm to discover motifs or hidden events 
in a time series when a small number of arbitrarily similar events are known a priori. Using 
six different datasets, We show that our method is more accurate and robust than a naive 
similarity search on large datasets. We apply the algorithm on four seismic datasets and 
discover novel seismic events that were unknown to experts. All of our code, data, and 
results used in this report are available [4] for reproducibility.

SeiSMo is good at spotting unique low magnitude events, which were not cataloged  
because analysts were not certain about their origin and characteristics. We plan on 
analyzing SeiSMo events to produce high quality information towards a fully automated 
cataloging system.
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Chapter 2 

Filtered Lagged Correlation (FilCorr): 
Filtering, Correlating and 
Visualizing Seismic Waves in Real Time 

2.1 Summary: Signal Monitoring 
Monitoring systems have hundreds or thousands of distributed sensors gathering and trans- 
mitting real-time streaming data. The early detection of events in these systems, such as an 
earthquake in a seismic monitoring system, is the base for essential tasks as warning genera- 
tions. To detect such events it is usual to compute pairwise correlation across the disparate 
signals recorded by the sensors. Since the data sources (e.g., sensors) are spatially separated, 
it is essential to consider the lagged correlation between the signals. Besides, many 

nd of frequencies depending on the event’s type, 
demanding a pre- - 
speed of data generation and large number of sensors in these systems, the operations of 

- -time responses 
without data losses. In this part of the project, we propose a technique named FilCorr that 

 
speed-up by maintaining frequency transforms over sliding windows. Our method is exact, 
devoid of sensitive parameters, and easily parallelizable. Besides our algorithm, we also pro- 
vide a publicly available real-time system named Seisviz that employs FilCorr in its core 

 
suitable for several monitoring applications as seismic signal monitoring, motion monitoring, 
and neural activity monitoring. 

2.2 Introduction: Signal Monitoring 
- 

tems typically have hundreds of distributed sensors gathering and transmitting real-time and 
streaming data. An event in these systems, like an earthquake or an abnormal higher 
temperature, creates dynamic responses at these sensors. The responses can be arbitrarily 

 
depending on the type of event. For these systems, real-time event detection is an essen- 
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tial task for decision making or alert generation. We demonstrate an algorithm to correlate
streaming data generated from distributed sensors in real-time in order to detect events.

A concrete application where our algorithm can be employed is seismic monitoring. In
this application, when an earthquake happens, seismometers (i.e., seismic sensors) across the
region of the earthquake observe the wave at varying times for varying duration, while the
signals recorded at these sensors are often correlated. For better understanding, in Figure 13,
we show a magnitude 3.1 event in Yellowstone on May 29, 2020. Three waveforms recorded
at three stations show a high correlation when the lag due to propagation delay is considered.

Figure 13: (left) A M3.1 earthquake in Yellowstone, on May-29, 2020. (right) The signals
recorded at three different stations at different times due to the spatial separation of sensors.
Data collected from IRIS [2].

In addition, filtering is a mandatory operation in seismic signal processing to remove
undesired noise from data and extract the right frequencies for desired events. For many
applications, mainly those involving digital signal processing, certain properties of data are
made explicit when the signal is represented in the frequency domain [67]. Thus, filtering is
also an essential task to extract descriptive features for machine learning models.

In a monitoring system that consumes streaming data from hundreds of sensors, com-
puting lagged correlation (or asynchronous correlation) can be challenging because of the fast
data-rate, a large number of stations, and the necessity for accurate correlation values.
Although the problem has been studied for decades, none of the existing methods such as
BRAID [60], COLR-tree [7], or StatStream [86]), can monitor one hundred seismometers at a
10Hz rate on a single workstation, a usual setting for many systems. The main reason for the
failure of these methods is the data-dependent pruning, projection, or indexing technique.
Seismic traces are mostly white noise (except when events happen), stressing the algorithms
to fall behind the stream quickly. In contrast, none of these algorithms are amenable to data
pre-processing requirements, such as filtering. Hence, pre-processing must always be done
before correlation computation, resulting in a loss of efficiency.

We propose an algorithm, FilCorr, to merge filtering and lagged correlation computation
in order to extract data-independent efficiency. Our algorithm efficiently maintains frequency
information over the stream and calculates correlation in the frequency domain. The
technique is exact, devoid of sensitive parameters, and easily
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parallelizable. This report gives a comprehensive technical description of its properties,
implementation, and performance on various real-world problems. We experimentally show
that our technique is suitable for monitoring applications where the lagged correlation of
filtered time series is required, such as seismic event monitoring, motion monitoring, and
neural activity monitoring. Specifically, for the seismic event application, we developed a
real-time system named Seisviz that employs FilCorr in its core mechanism for monitoring
a seismometer network in the Yellowstone region. Our implementation can monitor one
hundred seismic stations at a 10Hz rate without any delay. A demonstration of Seisviz
capturing past earthquakes is available on our website [84], and the system for real-time
monitoring is available at www.seisviz.com.

The main contributions of this work are summarized below:

• We demonstrate a working system to cross-correlate hundreds of high speed streams
in real-time at 10Hz speed using a conventional workstation;

• We merge digital filters and correlation computation in one combined step to achieve
time and space efficiency;

• We show three case studies where such high-speed lagged correlation helps detect events
of interest.

2.3 Methods, Assumptions, and Procedures: 
Signal Monitoring

2.3.1 Background and Notation

We define time series as a sequence of observations, and they are in the form of real numbers
measuring a quantity at a fixed sampling rate. A streaming time series is an unbounded
sequence of observations generated at a fixed rate. We use sx to represent a particular
streaming time series x. We define the basic window as a continuous segment of a time
series. A basic window of size m from time series sx at time t is denoted by wx

t which
contains observations from sx[t −m + 1] to sx[t]. We can extract at most n −m + 1 basic
windows of length m from a long time series of length n >> m. Adjacent basic windows
are not independent of each other, overlapping basic windows are trivially close in the high
dimensional space.

Filtering: An essential pre-processing task for time series required by many applications,
filters are most commonly used to remove undesirable components from a time series. There
are many kinds of filters useful in various domains. All filters have response functions
that are convolved with a signal to apply the filter. Such response functions contain relative
weights for each frequency. In an analytical form, the weights are non-zero for all frequencies.
However, practically, many weights are significantly smaller than the rest, allowing us to cut
off and keep only the essential frequencies. Most applications employ a band that focuses on
the needs of the application. For example, seismic monitoring uses up to 10Hz [63], and EEG
monitoring uses a gamma activity band between 30Hz-50Hz [12]. In this work, we assume
that the given filter band is a contiguous set of frequencies, and all frequencies are equally
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important. This is also known as a box filter or ideal bandpass filter. Our proposed method
is extendable to a non-contiguous set of frequencies with varying weights, i.e., other types of
filters. We define frequency window W x

t that contains all the frequency components of the
basic window wx

t , and each W x
t [k] where k = 0, 1, 2, . . . ,m − 1 are defined in Equation 3.

Note i =
√−1, W x

t [k] is a complex number.

W x
t [k] =

m−1∑
j=0

wx
t [j]e

−i2π
m

kj (3)

We use fx in Hz to represent the sampling rate of the streaming time series sx and the
filtered basic window wx

t ′ to denote the filtered version of wx
t . If we apply a box filter with a

band from fs to ft in Hz (0 < fs ≤ ft), then wx
t ′ can be derived from Equation 4:

wx
t ′[j] =

1

m

( � ft
f
m�∑

k=� fs
f
m�

W x
t [k]e

i2π
m

kj +

m−� fs
f
m�∑

k=m−� ft
f
m�

W x
t [k]e

i2π
m

kj
)
; (4)

There is a corner case when m is even and ft =
f
2

then wx
t ′[j] equals 1

m
(
∑k=m−�mfs/f�

k=�mfs/f� W x
t [k]e

i2π
m

kj).
The Fourier transform of wx

t ′ will only contain non-zero components that correspond to
frequency from fs to ft in W x

t . If fs = 0 and ft =
f
2

(Nyquist frequency), then wx
t ′ is identical

to the basic window wx
t .

Correlation computation in the frequency domain: If we are given two basic
windows wx

t1
and wy

t2 , Pearson’s correlation coefficient between them is defined in the time
domain as Equation 5:

corrxyt1t2 =

∑m−1
j=0 wx

t1
[j]wy

t2 [j]−mμ(wx
t1
)μ(wy

t2)

mσ(wx
t1)σ(w

y
t2)

(5)

To compute the correlation in the frequency domain, we can exploit Parseval’s theo-
rem [49, 45], which is expressed as Equation 6 for the discrete Fourier transformation:

m−1∑
j=0

|wx
t [j]|2 =

1

m

m−1∑
k=0

|W x
t [k]|2 (6)

Based on Equation 6, we can compute Equation 5 in the frequency domain: μ(wx
t ) equals

Wx
t [0]

m
since W x

t [0] =
∑

wx
t [j]. σ(wx

t ) equals
√∑

wx
t [j]

2

m
− [μ(wx

t )]
2 in the time domain and the∑

wx
t [j]

2 term can be computed in the frequency domain by directly applying Equation 6.
Since the discrete Fourier transform is a linear operation, Parseval’s theorem can also be
expressed as Equation 7 with two signals.

m−1∑
j=0

|wx
t [j]− wy

t [j]|2 =
1

m

m−1∑
k=0

|W x
t [k]−W y

t [k]|2 (7)

Based on Equation 7, We can get Equation 8 to compute
∑m−1

j=0 wx
t [j]w

y
t [j]. Thus we

show how to compute each term in Equation 5 in the frequency domain.

22
Approved for public release; distribution is unlimited.



1

2m

(m−1∑
k=0

|W x
t [k]|2 +

m−1∑
k=0

|W y
t [k]|2 −

m−1∑
k=0

|W x
t [k]−W y

t [k]|2
)

(8)

Intuition: Computing correlation values in the frequency domain is more efficient when
we have a bandpass filter. Based on Equation 4, the computation of correlation in the
frequency domain only takes time O(B), where B is the bandwidth in a number of    
frequency components.

Problem Statement: Given N streaming time series, a frequency band (fs, ft), and  
a maximum allowable lag l, compute the Pearson’s correlation coefficients for all pairs of 
streaming time series over a sliding window up to the given lag l.

We argue with the empirical case study, this problem is very practical. In most domains, 
filtering can get rid of unwanted signals to compute correlation on right signals; and a 
reasonable maximum lag always exists, beyond which no correlation coefficient is meaningful.

2.3.2 Related Work
Lagged correlation is a problem that has been studied for decades [86, 60, 7]. However, 
none of the existing methods consider a set of features required by modern applications that 
monitor hundred of sensors in real-time. Based on these requirements and FilCorr properties, 
we categorize the related works to our proposal according to four groups, as follows.

Lagged Correlation Computation: Computing lagged correlation, or cross-correlation, 
on offline data is a fundamental operation that benefits from the Fast Fourier Transform. 
Researchers have proposed an online algorithm for lagged correlation computation named 
BRAID [60]. However, the method samples frequency coefficients in a logarithmic manner 
to approximate the correlation value. Moreover, the method computes correlations over the 
entire stream, unlike our method that computes over a sliding window in real-time. One 
may consider offline indexing methods such as iSAX [65] and COLR-tree [7], for lagged cor-
relation computation. However, such offline indexes suffer from many modification (insert 
or delete) operations over correlation computation.

Real-time Correlation Computation: Efficient all-pair correlation computation for 
streaming data is no longer an active research problem. StatStream [86] is a technique 
that exploits a few Fourier coefficients to prune improbable pairs quickly. ParCorr [78] 
performs random projections to similarly prune improbable pairs without redundancy due 
to the sliding window. Hardware-based techniques are often used for computation at MHz to 
GHz rate [26]. However, it is important to note that none of these methods consider lagged 
correlation after filtering.

Frequency Domain Correlation Computation: It is very common in many applica-
tion areas to calculate correlations in the frequency domain. However, most works consider 
the offline nature of computation [43, 63].

Filtered Correlation Computation: In this category, our method is unique. To the 
best of our knowledge, no work exploits filtering operations to extract efficiency in correlation 
computation. It is somewhat surprising considering the widespread usage of filtering in 
processing real-time data captures. The novelty in our technique is that the speedup is not 
data-dependent, unlike any of the aforementioned work.
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In Table 3, we present a comparison of the main capabilities of FilCorr concerning state-
of-the-art  algorithms  for  cross-correlation  computation  over  multiple  streaming  time  series.  
Some  capabilities  are  not  demonstrated  but  trivially  achievable  with  simple  extensions  of  
the  algorithms.  FilCorr  comprehensively  covers  capabilities  across  several  existing  works,  
making it unique in the suite of correlation computing algorithms.

Table  3.  Capabilities  of  FilCorr  and  related  work.  � represents  a  claimed  capability;  –
represents extendable capability, and × represents unknown.

FilCorr ParCorr [78] BRAID [60] COLR-Tree [7] StatStream [86]
Data-independent � × � × ×
Filtering � – × × –
Lagged correlation � × � × ×
Real-time � � – � �

Exact � � × – �

Parallel – � – – –

2.3.3 FilCorr: Filtered Lagged Correlation

The primary motivation of FilCorr is the need for systems to compute lagged correlation of
filtered high frequency streaming time series from distributed sensors, such as seismic event
monitoring. These systems require monitoring hundreds of sensors responsible for generating
data at high-speed. Surprisingly, none of the existing methods from literature can deal with
all of these requirements.

In this section, we present our solution in detail. Table 4 shows the symbols and defi-
nitions considered in our discussions. The main variables are also illustrated in Figure 14.
For simplicity but without loss of generality, we assume all streams have the same sampling
rate f , no discontinuity (no data loss during the transmission) and the observations are all
aligned, which means they all have timestamps in set {1, ..., t− 2, t− 1, t, ...}.

Figure 14. Examples of various windows on a stream, where m = 4, l  = 3, and  step = 2.

Lagged Correlation

We use lcorrxyt to denote the lagged correlation value at time t between sx and sy. It is
defined in Equation 9.

lcorrxyt = Max(corrxytti , corr
xy
tit); ti ∈ [t− l, t] (9)
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Table 4. Symbols and definitions.

Symbol Definition
sx Streaming time series with ID x
N Total number of streams that a system is processing
sx[t] The observation value of stream sx at time t
fx Sampling rate of stream sx

fs Lower bound frequency of the bandpass filter in Hz
ft Upper bound frequency of the bandpass filter in Hz
m Length of basic windows in number of observations
l Lag size in number of observations

wx
t

The basic window in sx at time t, includes m observations:
{sx[t−m+ 1] . . . sx[t]}

w′xt The filtered basic window, filtered version of wx
t in the time domain

W x
t The frequency window, discrete Fourier transformed version of wx

t

W x
t |ftfs

The filtered frequency window of W x
t which only con-

tains coefficients
corresponding to frequencies from fs to ft

sxt

The sliding window in sx at time t, covers observations
in range
{sx[t − l − m + 1]..sx[t]} includes (l + 1) basic windows:
{wx

t−l..w
x
t }

wx
t [j] jth element of the basic window wx

t , wx
t [j] = sx[t−m+1+j]

lcorrxyt Lagged correlation value between sxt and syt at time t
corrxyt1t2 Correlation value of wx

t1 and wy
t2

step
Gap between two successive correlation computation in
number of observations. If step = 10 and the first output
is lcorrxy1 then the next output is lcorrxy11

lcorrxyt is the largest Pearson’s correlation coefficient value among the correlations be-
tween the most recent basic windows at time t and all the previous basic windows from time
t − l to t. Such a strategy can cover all possible cases when an event appears in different
streams at different times.

Case 1: No lag. The event appears in both streams at the same time. lcorrxyt equals to
corrxytt which is the correlation value between basic window wx

t and wy
t .

Case 2: The event appears in sy first then in sx at time t, such scenario will be captured
by computing correlation between wx

t and wy
ti . ti ∈ [t− l, t− 1].

Case 3: Similar to case 2, the event appears in sx first then in sy at time t. Then lcorrxyt
will be located among correlations between wy

t and wx
ti
. ti ∈ [t− l, t− 1].

To combine all cases, we define the sliding window sxt and syt . Each sliding window will
cover all (l + 1) basic windows that are necessary to compute lcorrxyt . The relations are
shown in Figure 14.

To represent this process with code, we have line 3 to line 10 in Algorithm 2 and line 5 to
line 11 in Algorithm 3. It takes the last basic window from one sliding window and computes
correlation with all basic windows in another sliding window and vice versa. It returns the
largest value as the result of the lagged correlation between the two sliding windows.
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Lagged Correlation with Filtering

The following discussions are based on the ideal bandpass filter, which has frequency response
values equal to 1 for frequencies in the band, and 0 for frequencies outside the band. For
any other known frequency response, we can apply FilCorr trivially.

Naive approach: A straightforward approach to filter time series and compute lagged
correlation. For the filtering, the naive approach will transform each basic window to the
frequency domain, remove frequency components outside the filter band, and finally trans-
form back to the time domain. This process shows up in the filter function with lower cutoff
frequency as fs and higher cutoff frequency as ft in Algorithm 2.

We define the filtered basic window w′xt , as the filtered version of wx
t . w′xt and wx

t have
the same length. Unlike two successive basic windows, w′xt and w′xt+1 are independent with
each other and no overlapping observations.

Once all the filtered windows in sxt and syt are calculated, we can compute lcorrxyt by
calling the function LagFilterCorr in Algorithm 2 with parameters (sxt , s

y
t , l, m, f , fs, ft).

The oneCorr function is based on Equation 10 derived from Equation 5 by substituting w′xt
for wx.

corrxyt1t2 =

∑m−1
j=0 w′xt1 [j]w′yt2 [j]−mμ(w′xt1)μ(w′yt2)

mσ(w′xt1)σ(w′yt2)
(10)

We can avoid some redundant computation by storing sums, means and standard de-
viations of all filtered windows which can be computed from Equation 11, 12, 13. Thus
only

∑m−1
j=0 w′xt1 [j]w′yt2 [j] needs to be computed for each pair of filtered windows. For our

implementation, only one copy of a filtered window w′xt and its statistics exist in the system.

∑
w′xt =

m−1∑
j=0

w′xt [j] (11)

μ(w′xt ) =
∑

w′xt
m

(12)

σ(w′xt ) =
√∑

w′xt [j]2
m

− [μ(w′xt )]2 (13)

Proposed approach: To speed-up the computation of lagged correlation on filtered
time series, we propose combining the filtering and correlation computation in one step.
Such an approach can bring both time and space efficiency.

We define the frequency window W x
t , which is the Fourier transformed version of basic

window wx
t . W x

t |ftfs as the filtered frequency window which only contains half coefficients
corresponding to frequencies from fs to ft in W x

t . W x
t |ftfs will only keep one half of elements

to save memory space since elements in W x
t are complex conjugate symmetric. The main

idea of our approach is to incrementally update the filtered frequency window W x
t |ftfs from the

previous filtered frequency window W x
t−1|ftfs instead of calculating it from the basic window

wx
t . If all filtered frequency windows in a pair of sliding windows are computed then the

lagged correlation coefficients can be directly computed using frequency components based on
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Algorithm 2 Naive
Function LagFilterCorr(sxt , s

y
t , l, m, f , fs, ft)

1 wx
t ′ ← filter(wx

t , f , fs, ft)2 wy
t ′ ← filter(wy

t , f , fs, ft)
3 curMax ← oneCorr(wx

t ′, wy
t ′, m) //case 1

4 for ti = t− l : t− 1 do
5 wx

ti ′ ← filter(wx
ti , f , fs, ft)

6 wy
ti
′ ← filter(wy

ti
, f , fs, ft)

7 tmp1 ← oneCorr(wx
t ′, wy

ti
′, m) //case 2

8 tmp2 ← oneCorr(wx
ti ′, wy

t ′, m) //case 3
9 curMax = max(curMax, tmp1, tmp2)

end
10 return curMax

end
Function filter(wx

t , f , fs, ft)
11 LB = �mfs/f�
12 UB = �mft/f�

13 W x
t ′ ← FFT (wx

t )
14 W x

t ′[0 : LB − 1] ← 0
15 W x

t ′[UB + 1 : m− UB − 1] ← 0
16 W x

t ′[m− LB + 1 : m− 1] ← 0
17 return IFFT (W x

t ′)
end
Function oneCorr(wx

t1 , w
y
t2
, m)

18 return [
∑

j w
x
t1 [j]w

y
t2
[j]−mμ(wx

t1)μ(w
y
t2
)]/[mσ(wx

t1)σ(w
y
t2
)]

end
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Equations 6 and 8. Thus, our proposed method avoids computing repeated Fourier transforms
and inverse Fourier transforms on every basic window and performs correlation computations
directly in the frequency domain on fewer data. The length of W x

t |ftfs is �ft−fs
f

m� +1, where
f is the sampling rate of the streams.

To maintain frequency components upon receiving a new observation, the algorithm
removes the quantities for each frequency that contributed by the first observation wx

t−1[0]
of basic window wx

t−1 and adds the quantities for each frequency that are brought by the
new observation wx

t [m − 1] of basic window wx
t . To account for the sliding of the window,

the algorithm updates the kth coefficient by multiplying ei
2πk
m , for �fs

f
m� ≤ k ≤ �ft

f
m�. This

process is applied to each of the frequencies from fs to ft. The steps are precisely represented
by the function filter in Algorithm 3.

Once filtered frequency windows {W x
t−l|ftfs , ... ,W x

t |ftfs} and {W y
t−l|ftfs , ... ,W y

t |ftfs} are ready,
then the lagged correlation lcorrxyt can be computed by calling Algorithm 3. The function
oneCorr in Algorithm 3 will be called to compute each corrxyt1t2 . Note that the correlation
coefficients calculated from filtered frequency windows are exactly the same as the coefficients
calculated from filtered windows in the naive algorithm. The exactness of our algorithm is
directly derived from Parseval’s theorem described earlier in Section 2.3.1.

To explain the function oneCorr in Algorithm 3, we describe how Equation 10 is evaluated
using a filtered frequency window instead of a filtered basic window. In the following we
show how each term from Equation 10 can be expressed using frequency terms in detail.

Based on Equation 12, we can calculate the mean of the filtered basic window with
Equation 14.

μ(w′xt ) =
{

Wx
t [0]

m
if fs = 0

0 if fs > 0 (DC term is filtered)
(14)

Based on Parseval’s theorem in Equation 6, we can compute
∑

w′xt [j]2 in Equation 15.
We multiply a constant 2 to include the symmetric part of W x

t |ftfs . This also applies to
Equation 16 and 17. There are two special cases, one case is when the fs = 0 and another
case is when the length of a basic window is an even number and the ft equals to the Nyquist
frequency which is one half of the sampling rate f . For both cases, W x

t [�m
2
�] or W x

t [0] need
to be subtracted after we multiply 2 since there is no symmetric value to them. Both values
need to be subtracted if conditions for both cases hold.

m−1∑
j=0

w′xt [j]2 =
2

m

∑
|W x

t |ftfs [k]|2 (15)

Then the standard deviations can be calculated as below if fs > 0.

σ(w′xt ) =
√

2

m2

∑
|W x

t |ftfs [k]|2 (16)

Lastly, the product term
∑

(w′xt1 [j]w′yt2 [j]) can be expressed in Equation 17 based on
Equation 8.

2

2m

(∑
|W x

t1
|ftfs [k]|2 +

∑
|W y

t2 |ftfs [k]|2 −
∑

|W x
t1
|ftfs [k]−W y

t2 |ftfs [k]|2
)

(17)
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Finally, we can derive the equation that appears in line 16 of Algorithm 3 when fs > 0.
For the case when fs = 0, it only needs to include the μ(w′xt ) term in the computations since
it no longer equals zero.

Algorithm 3 FilCorr
Function LagFilterCorr(sxt , s

y
t , l, m, f , fs, ft)

19 LB ← m�fs/f�
20 UB ← m�ft/f�
21 W x

t |ftfs ← filter(W x
t−1|ftfs , m, LB, UB, wx

t−1[0], w
x
t [m− 1])

22 W y
t |ftfs ← filter(W y

t−1|ftfs , m, LB, UB, wy
t−1[0], w

y
t [m− 1])

23 curMax ← oneCorr(W x
t |ftfs , W

y
t |ftfs , m) //case 1

for ti = t− l : t− 1 do
24 W x

ti |ftfs ← filter(W x
ti−1|ftfs , m, LB, UB, wx

ti−1[0], w
x
ti [m− 1])

25 W y
ti
|ftfs ← filter(W y

ti−1|ftfs , m, LB, UB, wy
ti−1[0], w

y
ti
[m− 1])

26 tmp1 ← oneCorr(W x
t |ftfs , W

y
ti
|ftfs , m) //case 2

27 tmp2 ← oneCorr(W x
ti |ftfs , W

y
t |ftfs , m) //case 3

28 curMax = max(curMax, tmp1, tmp2)

end
29 return curMax

end
Function filter(W x

t |ftfs , m, LB, UB, d, a)
//d is the element that will be deleted
//a is the element that will be added

30 for q from 0 : UB − LB do
31 k ← q + LB //k is the index of W x

t

32 W x
t+1|ftfs [q] = ei

2πk
m (W x

t |ftfs [q]− d · e−i 2π0k
m + a · e−i 2πmk

m )

end
33 return W x

t+1|ftfs
end
Function oneCorr(W x

t1 , W
y
t2
, m)

//Assume 0 < fs < ft < f/2

34 return
∑

q |Wx
t1
[q]|2+∑

q |W y
t2
[q]|2−∑

q |Wx
t1
[q]−W y

t2
[q]|2

2
√∑

q |Wx
t1
[q]|2 ∑q |W y

t2
[q]|2

end

We use the parameter step to control the output rate. FilCorr can output all-pair corre-
lations upon receiving the next set of observations in the streams. However, the output rate 
does not necessarily have to be the same as the input rate. If the current sliding window is 
st
x,  we can  slide to  stx+step, where step is the number of observations in a stream the algo-

rithm gathers before outputting the next set of pairwise correlations. When step = 1, the 
algorithm outputs at the same rate as the input. The larger the step, the slower the    
output rate.
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Computational Complexity

The time complexity of computing filtered and lagged correlation at any given time is com-
posed of two parts: i) filtering and ii) correlation computation. For the filtering, FilCorr only
takes O(B) time based on the filter function in Algorithm 3, B is the number of elements
within the filter band, which is 1 + �ft−fs

f
m�. So the worst case is O(m) for FilCorr when

all the frequency components are kept. However, the filter function in the naive algorithm
will take O(m logm) due to the FFT algorithm.

As for the cost of computing lagged correlation coefficients, the for loop in both algorithms
will be executed l times. Each iteration of the naive algorithm will take O(m) based on the
equation in line 18, while FilCorr only takes O(B) time.

The final time complexity to compute one lagged correlation value is not the simple
addition of the above two parts. It depends on how many pairs that a time series involves.
Here we assume a time series will form a pair with all the other time series. Then the time to
filter one basic window should be amortized among O(N) pairs, N is the number of streaming
time series in the system. Thus the time complexity to compute one lagged correlation value
for the naive algorithm is O(m logm

N
+ lm), and O(B

N
+ lB) for FilCorr, O(m

N
+ lm) in the

worst case. In practice, the speedup is greater because the number of possible lags is much
less than the window size, and the frequency band is much smaller than the number of
observations in the signal. Finally, the total cost of the whole system has two factors; one is
the number of computing units and the other is O(N2), which is the maximum number of
pairs that N streaming time series can form.

The naive algorithm’s space complexity is O(Nlm) to maintain all the filtered basic
windows in the most recent sliding window for all streams. The space complexity of FilCorr
is O(NlB).

Extensions to Our Implementation

Our proposal can be easily extended to execute in parallel and to employ different digital
filters. In this section, we discuss the properties of FilCorr that provide such flexibility.

Parallelization: Since lagged correlation computation for one pair of streams is inde-
pendent of other pairs, we can utilize multiple processing units (i.e., thread, core, processor,
etc.) to expand the capacity to calculate multiple pairs in parallel. Each pair will maintain its
own sliding windows for the streams sx and sy. In order to achieve the best real-time
performance, one filtered frequency window with its statistics can be accessed by all pairs to
save more memory and avoid redundant computation.

Different filters: Our method can adapt to other kinds of digital filters; for instance, the
Butterworth filter in Figure 15. We can directly apply this filter on top of the box filter by
changing each frequency weight. This way, we can still save time by not computing
unnecessary frequencies and keep the filter property within the bandwidth. This operation
will not change the overall time complexity since it is a linear operation to factor the weights
in all frequencies. Note that incrementally updating DFT coefficients is also a linear time
operation. Our method is not limited to the digital frequency-domain filters. A time-domain
digital or analog filter can also be applied for streams passing through as pre-processing then
passing into our method for correlation computation on the targeted frequencies.
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Figure 15. Butterworth second order bandpass filter 3-7Hz.

Discussion on Data Independence

The general idea of FilCorr is to exploit the use of digital filters to achieve faster pairwise 
correlation computation. Besides removing undesired noise, filters allow computing of the 
correlation between time series in a reduced dimensional space provided by the frequency 
domain. It turns the time cost of our method data-independent and will be affected by 
neither the sparsity nor the similarity. This cost is related to the lag and the bandwidth 
assumed by the filter, typically much smaller than the original series. It is also important 
to note that unlike other methods that speed up the correlation computation by pruning 
improbable pairs and provide approximate results, our approach efficiently calculates all 
possible lagged pairs and provides exact results.

Managing Spurious Correlation

Filtered correlation can occasionally be spurious because of the Ringing effect. It occurs due 
to spectral leakage when the length of the basic window is mutually prime with the period 
of the signal. For instance, in Figure 16(a), we show two uncorrelated signals (correlation 
= 0.14) obtained from different seismometers. If we filter such signals by a box filter, we 
obtain a false high correlation of 0.70 in the resulting signals, as illustrated in Figure 16(d). 
This high correlation is mainly caused by similar oscillations at the edges of both signals. 
This effect can be addressed by “windowing” (i.e., multiplying with a window function) the 
time series before converting them to the frequency domain. The resulting signals after the 
process of windowing using a Hamming window (Figure 16(b)) are illustrated in Figure 16(c). 
Finally, the filtered signals after the windowing process are illustrated in Figure 16(e). We 
note that the correlation of the original signals is reduced to 0.13, eliminating the previously 
observed false high correlation.

Windowing on each basic window data will change the filter process since we couldn’t 
incrementally maintain the filtered frequency window. Here we need to apply the filter 
function from the naive algorithm.

2.4 Results and Discussion: Signal Monitoring

2.4.1 Experimental Evaluation

All our experiments are reproducible. The code, data, and additional results are available 
in our supporting website [84]. FilCorr is exact and deterministic, and the efficiency is not 
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Figure 16: Example of the Ringing effect on two uncorrelated seismic signals and how the
multiplication by a Hamming window can address the false high correlation between them.

Sanity Check

Before the experimental evaluation and comparisons with existing methods, we show a sanity
check to demonstrate that our approach is fast enough to be employed in a real-time system
that is capable of monitoring hundreds of sensors with a high sampling rate. To demonstrate
this claim, we develop a system named Seisviz (www.seisviz.com) that will render the
lagged correlation values computed by FilCorr in real-time. It has been used successfully
for monitoring a seismic network at Yellowstone, WY, USA. This network has 30 stations,
where each station has up to six channels. Each channel represents an individual stream of
observations at 100Hz. We obtain 670 pairs if we pair the streams from different stations
by the same channel type. We demonstrate videos of detected earthquakes in real-time by
Seisviz on our website [84]. In Section 2.4.2, we return to the discussion about our findings
on seismic data and a detailed system implementation description.

Setup

All experiments are performed on a desktop computer with an Intel i9-9900k (8 cores) pro-
cessor, 32GB of memory, running a Linux operating system. As FilCorr is data-independent,
we use synthetic data for various experiments. The performance on real-world data will be
discussed in the case studies presented in Section 2.4.2.

We create two testing scenarios to evaluate the performance of naive and FilCorr algo-
rithm: offline and online. In the offline scenario, all observations are available beforehand,
so the system will use its full power to compute until it finishes computation on all data. For
the online scenario, the observations are generated in a streaming fashion with the speed of
sampling rate.

In the offline scenario, we measure the total execution time, including I/O operations. In
the online scenario, we seek to find the maximum number of streams for which the system
can compute their pair-wise lagged correlation without any delay. To measure this, we create
an ideal environment where all the streams have an equal length and the same sampling rate
specified by the parameter f . We consider the system capable of processing this number of
streams if the finish time is ahead of the expected next computation time. There is no need
to measure at each step because if the number of streams exceeds the system capability, then
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the extra time to finish the computation will accumulate at each step and be reflected in the
finish time.

For both offline and online, we run ten trials to confirm an algorithm’s capability on a
certain number of streams to account for random events in the operating system.

Efficiency

In Figure 17, we show the execution time of FilCorr and the naive algorithm in the offline
scenario. We consider three filter bandwidths 5Hz, 25Hz, and 50Hz, and five sampling rates
between 100Hz to 300Hz with increments of 50Hz. The naive algorithm’s execution time
remains the same for the same sampling rate no matter the bandwidth size. This is because
the number of observations used for correlation computation of the naive algorithm does not
change along with the filter bandwidth in the time domain. On the contrary, the narrower the
band the fewer frequency components for FilCorr to compute, so the less the execution time.
The exact number of observations used for the correlation computation can be calculated
by 1 + �ft−fs

f
m�. Another conclusion we can draw from the figure is that the growth rate

for FilCorr is much slower than for the naive algorithm for a fixed bandwidth when the
sampling rate is increasing. This is because the basic window length is calculated based on
the time, which is 10 seconds here. For FilCorr, the number of frequency components in the
filter band remains the same since B is defined as 1 + �ft−fs

f
m�, m equals 10f so B equals

1+�10(ft−fs)�, The only extra cost for FilCorr is coming from the longer lag. However, for
the naive algorithm, it is affected by both longer lag and more observations for computing
the correlation; thus, it increases at a much higher rate than FilCorr.

Figure 17. Offline performance of FilCorr and the naive algorithm.
In Figure 18, we show the number of pairs that each algorithm can process without delay 

in the online scenario. We vary the input sampling rate and output rate for both algorithms. 
In all experimental settings, FilCorr can process (up to 4×) more sensors than the naive 
algorithm. The performance gap increases with higher input or output rate. For other filter 
bands, the general performance trends hold.

Comparison to Existing Method

Based on our previous comparison shown in Table 3, we argue that FilCorr is a comprehen-
sive method for streaming correlation computation. However, although not an ideal match 
in capabilities, we identify ParCorr [78] as the most recent baseline with state-of-the-art per-
formance. ParCorr calculates pairwise correlation in parallel with the Apache Spark system
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Figure 18. Online performance of FilCorr and naive algorithm.

based on randomly projected sketches. Note that ParCorr does not compute lagged correla-
tion. The following experiments are conducted on the same setup as previous experiments.

In order to favor ParCorr’s implementation in our comparison, we perform all the ex-
periments in the offline scenario. To offset the Spark system’s costs, we conduct another 
set of experiments as offsets. Each offset experiment will only process one time series with 
window size as 1,  step size as 1,  and  the length of this time series depends on  the actual  
corresponding experiment parameters. Our goal is to make sure the sliding window in both 
offset experiments and actual corresponding experiments move the same number of times. All 
the experiment results here are adjusted based on the results of the corresponding                
offset experiment.

Since the ParCorr algorithm is data-dependent, we use two sets of synthetic data with 
2,000 observations in each targeted to emulate the best-case and worst-case scenarios for 
ParCorr. The cost of ParCorr depends on the number of pairs it can prune without comput-
ing the correlation coefficients. Our first synthetic dataset contains sequences of uniformly 
distributed random numbers, which is expected to contain only uncorrelated pairs. Thus, a 
random noise dataset is the best data for ParCorr where it can prune all possible pairs. To 
further boost ParCorr’s performance, we use a high correlation threshold (candT hreshold) 
for better pruning. The purpose of this is to guarantee that no two series will lead to actual 
correlation computation for ParCorr. Besides, we also set the parameter candT hreshold 
with a high value in ParCorr as double insurance. On the contrary, the second dataset is a 
sinusoid that is expected to have all possible pairs of streams be highly correlated. In this 
case, ParCorr computes correlations for all possible pairs, failing to prune and demonstrating 
the worst-case performance. For FilCorr and the naive algorithm, the pairs are generated 
based on all possible combinations from all the streams.

We show the performance comparison in Figure 19. The light grey shaded area represents 
the range of performance by ParCorr. The worst-case performance (on sinusoid data) is 
illustrated by the superior grey line with solid circles, and the best-case (on random data) 
by ParCorr is illustrated by the inferior grey line with solid boxes. The actual performance 
of ParCorr on any other dataset should be in between the worst-case and best-case lines. 
Figure 19(zoom-out) shows that the time spent by FilCorr for various lags is well inside the 
shaded area. To be fair to ParCorr, when we consider the synchronous correlation (lag = 0), 
FilCorr is more efficient than the best-case of ParCorr up to around 700 streams as shown in 
Figure 19(zoom-in). Therefore, we recommend FilCorr on a single desktop computer when 
the number of streams is less than 700, instead of using a parallel system.

In the second experiment, we fix the total number of streams at 800 and vary the step 
from 5 to 20 observations, which correspond to output rates of 20Hz to 5Hz, respectively.
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Figure 19: Comparison with ParCorr fixing step = 20. The vertical red line shows the crossing
point between ParCorr and FilCorr with lag = 0, and the vertical blue line shows the crossing
point between ParCorr and naive algorithm with lag = 0.

We note in the results shown in Figure 20 that the execution time for all methods increases
when the step is getting smaller to compute more correlation coefficients for a higher output
rate. However, ParCorr increases at a higher rate compared to FilCorr. The zoom-in figure
shows that FilCorr with lag = 0 has better performance than the best-case of ParCorr when
the output rate is higher than 6Hz.

Figure 20.  Comparison with ParCorr varying the step from 5 to 20 observations. The vertical  
red line shows the crossing point between ParCorr and FilCorr with lag = 0; the arrow points  
to where the output rate is 6Hz.  The vertical blue line shows the crossing point between  
ParCorr and the naive algorithm with lag = 0, and the arrow points to the output rate      
as  7Hz.

Parameter  Sensitivity

In  this  section,  we  discuss  the  algorithms’  sensitivity  to  three  design  parameters:  i)  lag,  
ii) filter  bandwidth,  and  iii)  window  size.  We  consider  the  online  scenario  and  measure 
the  performance  between  the  naive  algorithm  and  FilCorr.  We  fix  the  sampling  rate  at 
f  =  100Hz  and  step  = 10 observations  for  all  experiments.  The  results  are  presented  in

21.
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Figure 21: Results for the parameter sensitivity test considering the online scenario.
The results show that doubling either the window size or the lag size has similar effects,

where the number of pairs the algorithm can handle shrinks by half for both FilCorr and the
naive algorithm. The performance of FilCorr approaches the naive algorithm’s when the
bandwidth increases.

2.4.2 Case Studies
In this section, we present three case studies from diverse domains. We demonstrate that
our technique is suitable for different monitoring tasks, such as seismic, body interactions,
and patient monitoring through lagged correlation of filtered data.

Seismic Event Monitoring

We have deployed a system for monitoring seismic events in which FilCorr is one of the core
components. We designed such a system, named Seisviz www.seisviz.com, by following
the separation of concerns design principle (SoC) [48]. The main components of Seisviz are
illustrated in Figure 22.

Figure 22. Main components of Seisviz, a real-time system for seismic event monitoring.
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The system has four modules: i) data collector, ii) the Kafka cluster, iii) the FilCorr
computing unit, and iv) the Seisviz web server. Such a modular design is useful for developing
and maintaining the system, while robustness and scalability are improved because failures
can easily be tracked to one of the modules, and scaling each module is easier than scaling the
whole system. There are two data pipelines in the system, one path originates at the seismic
sensors and ends in the FilCorr computing unit. The other path originates at the FilCorr
computing unit and ends in the Seisviz server. The seismic observations are fetched from
the Incorporated Research Institutions for Seismology - IRIS data center [2] to the Kafka
cluster, then consumed by the FilCorr computing unit. The correlation values are computed
by the FilCorr computing unit and saved in the Kafka cluster, and finally consumed by the
Seisviz web server.

The Kafka cluster was used for temporary data storage and data distribution. Kafka has
essential features that meet our requirements, such as processing streaming data in real-time,
storing a certain amount of historical data in a durable way, and allowing multiple consump-
tions by several applications and systems. Besides, it provides extra benefits, including fault
tolerance and high availability [61], which can enhance the reliability and the scalability of
our system.

A few key points are worth discussing when using Kafka for time series data. The first
thing is the order of observations since it is natural to keep each observation in a timely
order or index-based order for time series; however, no such order can be maintained if we
use multiple Kafka topics with one partition or one topic with multiple partitions to store
observations from a time series. In other words, there is no guarantee that the order for each
observation arriving at the consumer is the same order when they are generated. So the
downstream services need to restore the order. This is because Kafka can only guarantee the
records from the same topic partition will arrive at the consumer in the same order as they
were appended to the partition but not for the records across many partitions. This leads
to another approach that uses a topic with only one partition to store observations from a
time series. Such an approach can bring time efficiency to the downstream services as they
no longer need to restore each observation order. However, this may cause a performance
penalty when consuming a large number of records at a time compared with the approach
using a topic with multiple partitions on several nodes in a cluster. We choose the latter
approach for simplicity, and our system scale is not reaching that performance bottleneck.

Secondly, Kafka only supports millisecond precision for timestamps, generating losses
when the period of a stream is less than a millisecond. To solve this, we first look at the
structure of the Kafka record. Each record has three attributes: key, value, and timestamp.
The key attribute is free in our case, so we can combine timestamp and key attributes to
store the time information of an observation; time components after milliseconds can be
saved in the key attribute. This approach can support the precision level up to nanoseconds,
which is sufficient for virtually any streaming time series problem.

As previously stated, our system considers IRIS as a data source. IRIS provides a protocol
called SeedLink1 for users to receive real-time data. The streams of time series from IRIS
are sent out in the form of batches containing a certain number of observations. Although
the SeedLink is based on the TCP/IP protocol that guarantees packets transmission in order

1https://ds.iris.edu/ds/nodes/dmc/services/seedlink/
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and without any loss, the packets’ order may not be consistent with observations’ time order.
To address this, we develop a collector module to save the streams in the Kafka cluster and,
most importantly, recover the original data streams in time order. This process will encounter
three different scenarios: 1) There is a time gap between data batches; in other words, a
segment of observations of a time range is missing. 2) Two batches are overlapping. 3) There
is a time shift among observations; if the time of one observation is shifted, then the time
duration between this observation and the previous observation is no longer consistent with
the sampling rate. This time shift has to be smaller than the sampling period to distinguish
this scenario from the first scenario. Once we have all the necessary observations, we can
start computing the filtered lagged correlation values using the FilCorr algorithm.

The back-end server will read the computed correlation value from the Kafka cluster,
group the results based on the timestamp, and then send the results in a streaming manner
to the front end. The front-end website will render the correlation value on a colored line
between two points on the map, as illustrated in Figure 23. The points represent the locations
of stations, which consist of various seismometers. The correlation value is depicted by the
color and transparency of the line between two stations. Since there are usually multiple
seismometers at one station, if there are multiple pairs of streams between two stations, then
only the correlation with the highest value will be rendered at the moment.

Figure 23. Pairwise correlation among 29 stations at Yellowstone, WY over different times 
given an M6.5 earthquake that occurred in Challis, Idaho, at 23:52:30 2020-03-31(UTC).

In Figure 23, we illustrate the propagation of a seismic event of magnitude 6.5 that 
occurred at Challis, Idaho, on March 03, 20202 and which was observed by our system about 
300 miles away at the stations at Yellowstone. In this representation, each red location 
symbol represents a station, and a colored line represents the lagged correlation between 
two stations. Different colors and levels of alpha reflect the lagged correlation value. The 
correlation values from 0 to 0.5 to 0.9 are mapped from green to yellow to red. A black 
edge represents a correlation value greater than 0.9. We notice that the correlated edges 
are appearing between station pairs as the earthquake wave reaches them. Similarly, edges 
become uncorrelated when the wave has passed through.

In summary, our system is monitoring a seismic network with 30 stations in Yellowstone, 
Wyoming. There is a total of 98 streams, which can form a total of 670 pairs. Our system 
is computing the correlation of these 670 pairs at a 10Hz rate. Correlation coefficients can

2https://earthquake.usgs.gov/earthquakes/eventpage/us70008jr5/executive
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capture earthquake propagation through a region in real-time, which can easily be converted 
to a detector with the rule: “If more than Q% of pairs of stations are highly correlated 
(> 0.8), an earthquake is propagating.” The utility of such a detector is massive for early 
warning systems because seismic waves propagate at 8 km/s or slower, which is much slower 
than electronic signals carrying the warning.

As we previously have shown filtering is essential for seismic data in order to remove 
noise and obtain a representation in the frequency domain that better describes the signals. 
For this case study, we consider a 20 seconds window size, a box bandpass filter with a cutoff 
frequency of 3Hz and 7Hz, and a lag of 10 seconds.

Although Seisviz website shows the results with a few minutes lag, we still claim our 
system is real-time since the delay occurs before the data arrive at our system. The delay is 
typically caused at the origin (i.e., seismometer) and during the transmission process. The 
delay time varies, and is beyond our control. Seisviz waits initially to accumulate enough 
data to be able to calculate the first set of correlations. After that, the system processes 
(i.e., flows data through the modules and computes the correlations) at a faster rate than 
the rate of streams.

2.5 Conclusion: Signal Monitoring
This part of the project demonstrates an algorithm, FilCorr, to compute filtered and lagged 
correlation over streaming time series. FilCorr combines filtering and cross-correlation com-
puting operations in one step to obtain the lagged correlation between streaming time series 
efficiently. FilCorr is faster than the state-of-the-art ParCorr algorithm that computes          
correlation in parallel. We show three case studies where the algorithm achieves 
promising results towards greater societal impacts. We also provide a publicly available 
real-time system named Seisviz that employs FilCorr in its core mechanism for monitoring a 
seismometer network.
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Chapter 3

FASER: Seismic Phase Identifier for
Automated Monitoring

3.1 Summary: Signal Classification
Seismic phase identification classifies the type of seismic wave received at a station based
on the waveform (i.e., time series) recorded by a seismometer. Automated phase identifi-
cation is an integrated component of large scale seismic monitoring applications, including
earthquake warning systems and underground explosion monitoring. Accurate, fast, and
fine-grained phase identification is instrumental for earthquake location estimation, under-
standing Earth’s crustal and mantle structure for predictive modeling, etc. However, existing
operational systems utilize multiple nearby stations for precise identification, which delays
response time with added complexity and manual interventions. Moreover, single-station
systems mostly perform coarse phase identification.

In this part of the project, we revisit seismic phase classification as an integrated part
of a seismic processing pipeline. We develop a machine-learned model FASER, that takes
input from a signal detector and produces phase types as output for a signal associator. The
model is a combination of convolutional and long short-term memory networks. Our method
identifies finer wave types, including crustal and mantle phases. We conduct comprehensive
experiments on real datasets to show that FASER outperforms existing baselines. We eval-
uate FASER holding out sources and stations across the world to demonstrate consistent
performance for novel sources and stations.

3.2 Introduction: Signal Classification
Real-time seismic signal processing is a key element of the geophysical monitoring required
for early warning systems for earthquakes, underground mineral exploration and mining, and
nuclear explosion monitoring. Seismic signal processing pipelines involve several sequential
steps that start with signal (e.g., from an earthquake) detection from raw seismic signals
recorded at a seismic station, and in the end, produce a formalized event bulletin for real-
time alarm generation as well as future analysis. Figure 24 shows a typical pipeline. Phase
identification is a key step in this pipeline subsequent to the signal detection step, which can
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be framed as a classification problem that takes a detected seismic signal as input, and out-
puts the phase label. Phase identification is required for proper utilization of the downstream
steps of the pipeline, for example, earthquake location estimation, tomographic studies, and
understanding of the Earth’s crustal and upper mantle structure [21]. A successful phase
classifier must classify a detected seismic waveform into transverse waves (ending with S in
Figure 24.right) and compressional or longitudinal waves (ending with P in Figure 24.right),
and all their subtypes.
Single Station vs. Array. At present, in operational systems, seismic phase identification
is heavily dependent on the use of multiple close-by seismic monitoring stations, forming an
array of stations [35]. High-quality arrays enable better detection and improved signal-to-
noise-ratio, and estimation of phase velocity and direction of arrival; which greatly benefit
both phase identification and association. Relative arrival times of seismic phases at different
arrays and of different detections at the same array, together with their directions of arrival,
are used to accurately classify and associate phases [64]. Unfortunately, most new stations
added in dynamic response to changing monitoring needs, such as in oil fields or novel
seismic sources, will be individual stations rather than arrays. This reduces the processing
pipeline’s performance because phase identification is less accurate for single stations than
it is for arrays. In this work, we consider automated phase classification on data collected
at a single station to enable rapid deployment addressing dynamic needs.
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Figure 24. (left) Typical seismic data processing pipeline. Our objective is to develop a Ma-
chine Learning model for phase identification. (right) Travel times with respect to distance 
for various seismic phases. Phases ending with P can commonly be categorized as P, and 
phases ending with S can commonly be categorized as S.
Fine vs. Coarse Classification. In addition, most existing research work on automated 
seismic phase classification considers only the two high-level categories, while most monitor-
ing applications require finer classification [58, 18]. For global monitoring, seismic signals are 
initially classified as teleseismic P (including more complex phases such as PkP and PkikP) 
or regional P or S (i.e., Pn or Sn). Refinements to the phase identification to add teleseismic 
S and crustal P and S phases (i.e., S, Pg, and Lg) are made much later in the processing 
pipeline. In this work, we consider classifying into finer phases at the initial identification 
step. In addition, phase detection and phase classification are usually sequential steps. Seis-
mic signal detection algorithms are very well developed [51, 38, 66], and signal detection is 
a key module in the processing pipeline. In this work, we consider phase classification only 
after detection, unlike some recent works that address detection and classification jointly 
[57, 58].
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Global vs. Regional: Lastly, most existing research work focuses on local and near
regional methods that only observe two major phases (local P and S, or occasionally regional
P and S), and uses these phases to determine source location and origin times, mostly due
to constrained focus. However, in a global monitoring application, all kinds of teleseismic
(>1000km), regional (>200km), and local waves can arrive at various degrees of temporal
overlap with arbitrary arrival order.

Figure 24 (right) illustrates some of the complexity of global seismic arrivals. Identi-
fying the correct phase from a complex waveform containing multiple arrivals is difficult
for global monitoring applications. In this work, we consider a global monitoring network,
the International Monitoring System (IMS) network, that was established as part of the
verification regime of the Comprehensive Nuclear-Test-Ban Treaty. IMS data are processed
in near real-time at the International Data Centre (IDC) in Vienna, with initial detection,
phase identification, and association performed automatically and then curated by human
analysts. Our method can achieve significant classification accuracy even in such a complex
application as presented by a global seismic network data.
Challenges to this research. First, there is no publicly available dataset of seismic
signals categorized into six-phase classes. The main hindrance of curating such a dataset is
the relative rarity of some phases compared to others. For example, in a continuous one-year
time frame of the IMS catalog, 128K seismic waveforms are classified as P, and only 1300
are classified as S. Also, the manual labeling of these distinct phase-types requires a depth of
knowledge and rigorous training. Second, the phases within broader hierarchical categories
share highly similar spectral and amplitude properties. Also, seismic signals originating
at different geolocations exhibit different propagation effects, resulting in dissimilar signal
properties for the same phase-type. There are also differences among waveforms of a single
type at different distances. The current bottleneck in processing is the association of seismic
phases with their most likely sources, which could be improved by more accurate initial
phase classification.
This work. To tackle these challenges, we focus on a few different aspects. First, we
have curated a small-scale yet balanced seismic phase dataset collected from IMS network
data. From an imbalanced collection of more than 200K seismic events, we have narrowed
down to 16K events with finer and balanced phase labeling. We use Continuous Wavelet
Transforms (CWT) to obtain a time-frequency representation from raw seismic time-series
to utilize both temporal and spectral information. The CWT representation has been shown
to be resilient to dynamic noise in waveforms [37]. We design an end-to-end deep neural
network to perform phase identification using these CWT representations. We leverage the
power of Convolutional Neural Network (CNN) to capture low-level features from the CWT
representations that are invariant to frequency, scale, and position [59]. However, due to
locally constrained receptive fields, CNNs are inadequate in modeling long-term temporal
dependency, whereas seismic signals contain distinctive temporal patterns across different
phase-types [57]. To mitigate this limitation, we incorporate Long-Short Term Memory
networks (LSTM) on top of the CNN as LSTM can effectively model long term temporal
patterns and dependencies.

Our proposed method FASER can perform fine-grained phase identification using single-
station data from the global seismic network. Due to minimal preprocessing requirements
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and instantaneous output generation, it can be readily integrated into the existing real-
time seismic signal monitoring pipeline. We show a comprehensive experimental evaluation
of FASER using a real dataset in comparison with existing methods to validate improved
performance. We justify the generalizability of FASER by demonstrating case studies for
applications in novel operating conditions. To the best of our knowledge, this is the first
attempt to perform fine-grained phase identification using single-station seismic signal data.

3.3 Methods, Assumptions, and Procedures: Signal Clas-
sification

3.3.1 Related Work

In general, the methods for seismic phase identification can be broadly categorized into two
types, (1) heuristic template matching and statistical analysis based methods, and (2) deep
learning based methods.
Statistical and Heuristic Methods. Since the early inception and development of seismic
signal monitoring, several rule-based and physics-driven methods have been proposed for
seismic phase identification. In [56], data-adaptive polarization filtering methods have been
used for the phase detection task. In [8], the difference between the short-term average
(STA) and the long-term average (LTA) of the seismic signal has been used for automated
detection. Several methods have used higher-order statistics like kurtosis and skewness
[33, 32]. Also, few methods have used frequency domain information [83, 37]. However,
these methods perform poorly in the presence of noise and when the seismic events are
of low magnitude. A few other works have proposed a similarity search based template
matching method [55, 22]. But, such methods are heavily dependent on a prior collection
of sample signal templates and often fail to generalize when used for phase detection at
novel stations. Also, the pairwise similarity search with each sample template renders these
methods computationally intensive and inefficient for real-time monitoring.
Deep Learning based Methods. Recently, multiple deep learning methods have been
proposed to address the aforementioned shortcomings in the context of phase detection and
identification [51, 38, 35, 17]. A deep learning based grid-free phase association method
for phase identification has been proposed in [58]. In [57], a CNN based architecture has
been used for phase identification from one-dimensional seismic signals. More recently in
[18], the use of time-frequency representation and CNN has been explored. These methods
have shown promising results compared to previously used statistical and heuristic-based
methods as CNNs can effectively model low-level structured patterns into high-dimensional
embedding. However, due to locally constrained receptive fields, CNN cannot capture the
long-term temporal patterns. Thus, these models cannot fully exploit the higher-order tem-
poral structures in seismic signals, distinctive across different phase-types. Moreover, none
of these methods perform fine-grained phase identification.
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Figure 25. Input images of waveforms are created by taking Continuous Wavelet Transforms 
(CWT) of individual channels (i.e. BHZ, BHN, BHE).

Figure  26.  Continuous  wavelet  transforms  of  pairs  of  examples  from  all  phase  types.  Com-
pressional or longitudinal waves (P, Pn, Pg) are dominantly red due to high vertical com-
ponent  amplitudes.  Transverse  waves  (S,  Sn,  Lg)  are  dominantly  green/blue  due  to  high  
horizontal component amplitudes.

3.3.2  Methods
In  practice,  the  seismic  phases  are  manually  labeled  by  experienced  analysts  using  multi-
modal  information,  i.e.,  signal  amplitude,  frequency  components  in  the  signal,  the  distance  
between  event  origin  and  monitoring  station,  depth  of  the  event  origin,  etc.  However,  for  
generalized and real-time phase classification, there exist a few challenges to producing such  
information a priori.  Depth and source location estimation are intricate regression problems  
requiring  complex  analysis.  Previously,  the  effectiveness  of  time-frequency  representations  
has been demonstrated in a multitude of seismic signal processing tasks [68, 37].  Therefore,  
we use the Continuous Wavelet Transform (CWT) to obtain spectral-temporal features, as it  
produces higher spectral-resolution and more precise temporal-localization than other time-
frequency  transformations  (e.g.,  Short-Fourier  Transformation)  [37].  We  use  a  composite  
CWT image, where the vertical component CWT coefficients are represented by red bright-
ness, and the two horizontal components are represented by the brightness of green and blue  
(See Figure 25).

The time-frequency representation of seismic events contains distinct structured features  
based  on  their  phase-type.  However,  at  a  low-level,  these  features  are  highly  overlapping.
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Convolutional Neural Networks (CNN) have been widely used in the domain of Computer
Vision [31, 25], Natural Language Processing [19, 28], Speech recognition, [6] and other
related domains to learn high-level features from raw structured input for better contrastive
representation learning. As CNN’s can model the local correlation of spatial and temporal
patterns, it is highly suitable for our two-dimensional CWT feature maps, which contain
incremental time information on one axis and frequency information on the other.

CNN’s, however, are inadequate in learning long-range temporal dependencies due to
their locally constrained receptive fields [59]. Nevertheless, the long-term temporal patterns
in the seismic signals, which are well preserved in CWTs, are vital distinctive features across
different phase types as showcased in Figure 26. To circumvent this limitation, Recurrent
Neural Networks (RNN) have been instrumental in modeling the temporal dependencies
by using the cyclic feedback mechanism from previous time-step inputs. Long Short-Term
Memory networks (LSTM), an improved variant of vanilla RNNs, are capable of learning and
modeling long-term temporal patterns and dependencies [29, 36]. It has been shown that
higher-level features can be helpful in learning the underlying factors of variations within
the input, which should make it easier to learn temporal structures between successive time-
steps [77]. Thus, oftentimes CNNs have been successfully used as preceding layers before
more complex sequential models to reduce the local temporal and frequency variations [59].

Motivated by these aforementioned successful use-cases, we use a combination of CNN
and LSTM in an end-to-end network. First, we utilize CNN to identify low-level spectral-
temporal features that are invariant to frequency, scale, and position. Afterward, we organize
the output features obtained from CNN into sequential features preserving the temporal or-
dering. We feed these higher-level sequential representations of low-level structured patterns
as input into the LSTM. By utilizing the cyclic feedback mechanism in between consecutive
time steps, LSTM can better model the long-term temporal correlation in the seismic signal.
Finally, we feed the output from each time-step into dense layers to make the final output
prediction.

Convolutional Neural Network

Convolutional Neural Networks (CNNs) [31] perform convolution operations on the input
feature map using fixed-size kernels (learned during the training step) to produce higher-
order representations. Convolution operations are usually followed by a non-linear activation
function and max-pooling layers. The use of an activation function introduces non-linearity,
and the max-pooling reduces sensitivity to temporal or spatial variation. CNN’s are adept
at learning local structural relationships and are invariant to feature scaling, which reduces
the dependency on heavy data preprocessing and feature engineering [85].

Long Short-Term Memory Network.

Long Short-Term Memory (LSTM) networks are an improved variant of traditional Recurrent
Neural Networks (RNNs) [27]. RNNs can model temporal dependencies in the data by
utilizing feedback connections by considering both input at the current time step as well as
output of the last time step’s hidden state. However, vanilla RNNs suffer from the vanishing
gradient problem, which prevents the model from learning long range dependencies. LSTM
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Figure 27. Proposed model architecture.
tackles this problem by introducing three gating mechanisms to update the memory cell ct 
and hidden state ht at each step t based on the current time step input xt and the previous 
time step’s hidden state output ht−1. Each LSTM unit is composed of a memory cell and 
three main gates: input, output and forget. The input gate it, forget gate ft, output gate 
ot, memory cell ct and hidden state ht at step t are computed as follows:

it = σ(Wi · [ht−1, xt] + bi (18)
ft = σ(Wf · [ht−1, xt] + bf (19)
ot = σ(Wo · [ht−1, xt] + bo (20)
ct = ft � ct−1 + it � tanh(Wc · [ht−1, xt] + bc) (21)
ht = ot � tanh(ct) (22)

Here, σ is the logistic sigmoid function, tanh is the hyperbolic tangent function, and
� denotes the element wise multiplication. By this architecture, the LSTM manages to
create a controlled information flow by deciding which information it must forget and which
information to remember. To understand the mechanism behind the architecture, we can
view ft as the function that controls to what extent the information from the old memory
cell is going to be thrown away, it controls how much new information is going to be stored
in the current memory cell, and ot controls what to output based on the memory cell ct.

Proposed Architecture

Our proposed architecture is comprised of four convolutional layers, followed by two LSTM
layers and three fully connected dense layers. In Figure 27, we present our proposed archi-
tecture. The input to the networks is the Continuous Wavelet Transform (CWT) represen-
tations obtained from the bandpass filtered seismic signal waveforms. A detailed description
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of data preprocessing is presented in the following section. In each of the four convolutional
layers, we use kernels of size 3×3 with a stride of 1×1 and zero paddings. Each convolu-
tion layer is followed by a Batchnormalization layer, a Rectified Linear Unit (ReLU), and
a two-dimensional max-pool layer. In the first two max-pool layers, we use a kernel size of
2×2 with a stride of 2×2. However, in the last convolution layer, we perform max-pooling
only along the temporal dimension with a kernel of size 1×2 and stride of 1×2. The first
convolutional layer has eight filters, and we double the filter number on each subsequent
convolutional layer to keep the number of parameters in each convolutional layer the same
as we reduce the input image size by half after each convolution layer due to max-pooling.

The output from the final convolution layer is then passed into the LSTM layers preserv-
ing the temporal order. The first LSTM layer consists of 32 hidden units and the second
LSTM layer consists of 16 hidden units. We use sigmoid and tanh as the recurrent and
output activation function of the LSTM correspondingly. We use a 50% recurrent dropout
in the LSTM layers. Both LSTM layers are unrolled for 15 steps as the input feature map
to the LSTM has a temporal dimension of fifteen. Both LSTM layers return sequences in
each unrolling step. These sequences are flattened before feeding into the dense layers. We
stack three dense layers, each with 64, 32, and 6 hidden units consecutively. Each of the
dense layers are preceded by Batchnormalization and ReLU activation functions with a 20%
dropout rate. We use the softmax activation function in the final dense layer to obtain
output probabilities for each phase-type.

3.4 Results and Discussion: Signal Classification

3.4.1 Dataset Description

The dataset is curated from 10 years of continuous seismic data collected at the 155 stations
of the IMS. These consist of 46 primary stations, 24 of them were arrays, and 105 auxiliary
stations, 98 of which are 3-component stations. These data, 80TB uncompressed, were ob-
tained directly from the United States National Data Center at the U.S. Air Force Technical
Applications Center (AFTAC). This dataset includes the comprehensive IMS catalog, with
arrival times and phase labels curated by human analysts for over 8 million seismic event
detections. From these 8M seismic events, we filtered out 175K fine-grained seismic phase
labeled data. However, among these, the P-phase was predominant, with 128,120 occur-
rences, while the S-phase had only 1,306 occurrences. To ensure a balanced dataset between
crustal, regional, and teleseismic compressional and shear phase (i.e., Pg, Lg, Pn, Sn, P, and
S), we used all labeled S-phases and randomly sampled around 2,500 waveforms from each
of the other phases, for a total of 16,304 phases. As the spectro-temporal features of all the
phases are highly nuanced, no data augmentation was performed to maintain integrity for
practical application scenarios.

3.4.2 Data Prepossessing.

Our raw input data are 60 seconds long three-channel time-series, sampled at 40Hz. Fol-
lowing conventional seismic signal pre-processing techniques, we filter the waveform from
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each channel (0.4Hz to 10Hz). As these seismic signals were generated by events of different
magnitude and recorded at stations spread across the globe, the amplitude is not relevant
to phase identification in this first step. We first detrend each sample and remove the mean.
We then max-normalize the data across each-channel, thus retaining the relative amplitudes
among components of a station. Afterward, use the Continuous Wavelet Transform (CWT)
to obtain spectral-temporal features representation.

Baseline Methods.

In order to validate the performance of our method we have compared our method with the
following baseline methods.

• XGBoost (XGB) [13]: XGBoost is an optimized ensemble based model that has
produced state-of-the-art methods for many classification tasks. We convert the multi-
dimensional CWT representations into one-dimensional features as input for XGB.
Afterward, we perform standardization across each feature dimension.

• MLP [24]: Multi Layer Perception (MLP) is a feed-forward neural network. We use a
two-layer MLP with the same input features as XGB.

• CNN [18]: CNN based methods have been previously used in related seismic signal
classification tasks. In [18], a CNN based method has been used for two-class phase
classification. We use the same CNN architecture used in this paper to compare against
our method.

• LSTM [27]: LSTM methods are highly suitable for temporal data modeling and have
produced state of the art accuracy in many time series classification tasks. We use the
most popular stacked LSTM architecture for comparison. The final output is fed into
a fully connected layer to generate output labels.

• CRED [38]: In [38], a ResNet-BiLSTM architecture has been proposed for seismic
event detection where it achieved state-of-the-art performance. We use the same ar-
chitecture for our phase identification task.

3.4.3 Experimental Settings.

The hyper-parameters of the model were selected empirically by grid-search on the validation
set. We use the Adam optimizer [30] with an initial learning rate of 0.01 and with parameters
β1 = 0.9, β2 = 0.999, and ε = 10−8. We apply L2 regularization with λ = 0.001, and we
use categorical cross-entropy [23] as the loss function with a training batch size of 256. The
XGBoost model was trained until convergence. The neural network models were trained for
a maximum of 200 epochs with early stopping on the validation set.

We use 10-fold cross validation to measure the performance of our method, and report
the average. In each fold, we use 80% of the data for training, 10% for validation and 10% for
testing. We perform random stratification to ensure class balance in the training-validation-
test split. All the experiments were performed on a core i5 2.70 GHz desktop computer with
8GB NVIDIA GeForce GTX-1070 GPU.
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Method PR RL F1 ACC

XGB 68.4 67.2 67.2 67.2
MLP 76.2 75.6 75.3 75.6
CNN 75.2 75.2 75.2 75.2
LSTM 75.7 74.3 75.0 75.3
CRED 81.3 80.2 80.7 81.5
FASER 84.6 81.6 83.1 82.8

FASER outperforms existing baseline methods in all four metrics: Precision(PR), Recall (RL),
F1-Score(F1) and Accuracy (ACC).

Evaluation Metrics.

In our experiments, following conventional practices for classification tasks, we use accuracy
as the primary performance metric. However, as there are minor class imbalances in the
dataset, we also calculate macro (calculated individually for each class and averaged after-
ward) precision, recall, and F1-score [15]. Precision, recall, and f1-score are calculated based
on true-positive(TP), false-positive(FP), and false-negative(FN) values using the following
formulas.

precision =
TP

TP + FP
, recall =

TP

TP + FN

F1− score = 2 · precision · recall
precision+ recall

3.4.4 Results.

In Table 5, we report the performance of our method in comparison with the baseline meth-
ods. We observe that FASER consistently outperforms all the baseline methods across all
performance metrics. To closely probe the performance of FASER across each class, in Figure
29(left), we show the confusion matrix for the test cases of a randomly split 80-10-10 train-
validation-test scenario. It is noticeable that the majority of classification error is within the
sub-classes of compressional (P, Pg, Pn) and transverse (S, Sn, Sg) waves. This performance
is in coherence with the intuitive notion of similar spectral-temporal features within both
broader classes.

In Figure 29(right), we plot the t-SNE visualization [34] of the same 10% test cases con-
sidering the activation values of the last layer before the prediction layer as deep embedding
[76]. The compressional and transverse wave signal samples are well separated in the deep
embedding space with high-margin with only a few mispositioned overlaps. However, as the
spectral-temporal features within the sub-classes of translation and compressional waves are
often overlapping, we notice soft-boundaries among the intra-sub-classes along with higher
overlaps among the samples. Although the separation among finer-phase types is not well-
established, it is evident from this embedding projection that our proposed method is adept
at learning higher-order separable representations.
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Figure 28. Confusion matrix for the test cases of a randomly split 80-10-10 train-validation 
test scenario.

3.4.5 Case Study: Novel Operating Conditions
In this section, we demonstrate practical use cases for our developed method in real-world 
applications when various novel scenarios emerge. In particular, we consider the following 
two novel scenarios: (1) If a monitoring agency adds a new station at a new location, will 
our method work without any calibration? (2) If new seismic sources occur in historically 
aseismic regions, will our method identify novel arrivals from a new source?

Performance at Novel Station

In our dataset, we have phase arrival signals recorded at 125 different stations across the 
world. To test how our method would perform at a novel station, we hold out signals at 
one station while training on signals at all other stations. We show empirical Cumulative 
distribution function (CDF) of stations for various accuracy levels in Figure 30. We compare 
two classifiers in this experiment. The nearest neighbor classifier that compares a test image 
with all training images to find the best match under the Euclidean norm, and labels the 
test image with the phase of the best match. The classifier achieves approximately default 
classification accuracy of 17% for the majority of the stations. This suggests that the nearest 
neighbor classifier cannot classify signals at a new station based on historical data at other 
stations. In contrast, FASER achieves an approximately 72% accuracy for the majority of 
the stations, suggesting single station analyses of seismic data may be useful in response to 
dynamically changing monitoring needs. The convolutional layers in our architecture extract 
local features from the images, unlike relying on a global one-to-one alignment of the images 
in the Euclidean space, as in the case of the nearest neighbor classifier.

The achieved accuracy of 72% for the majority of the station is significant for the IMS 
processing pipeline, as IDC analysts relabel 62% of the initial phases detected by the current
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Figure 29. t-SNE visualization of the same 10% test cases considering the activation values 
of the last layer before the prediction layer as deep embedding [76]. The compressional and 
transverse wave signal samples are well separated.

automated algorithm. Moreover, only 38% of the initial phases remain the same, indicating 
that the initial phases are correct with 38% accuracy. FASER almost doubles the accuracy for 
a novel station of the current system’s phase identification accuracy for an existing station. 
We show the held-out performance at each station in Figure 31(left). Most stations achieve 
higher accuracy (>0.7) when there are several closer stations. In contrast, isolated stations 
such as the one in the South Pacific suffer from a poorer performance.

Performance on Novel Sources

Most earthquakes originate along fault lines, while the rest of the earth is quieter. Novel 
seismicity in previously undocumented areas is intriguing. Hence, we evaluate our model by 
holding out regions of the earth for testing. For each held-out region, we train our model 
with data from the rest of the world and test the performance of our model on seismic events 
in that region. For this experiment, we divide the earth into 12× 12-degree grids. If a grid 
cell is not seismically active (i.e., not enough data), we exclude the region from testing. In 
Figure 31(right), we show the world map where the shaded grid cells are held out, one at a 
time. The average hold-out accuracy is 77.27%, with a standard deviation of 4.13%. More 
importantly, this suggests that our model is well suited for novel seismicity with little or no 
prior recorded events. We test on 46 cells of the 12×12 degree grids, which cover most of 
the known seismic events recorded at the NEIC (National Earthquake Information Center) 
for a three year period.
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Figure  30.  Performance  comparison  of  FASER  with  naive  nearest  neighbor  classifier  for  
application  in  novel  stations.  The  plot  shows  cumulative  distribution  function  (CDF)  
for  percentage  of  stations  having  smaller  than  a  given  accuracy.  FASER achieves  an  
approxi-
mately 72% accuracy for the majority of the stations in contrast to 17% for nearest neighbor  
classifier.

3.5  Conclusion:  Signal  Classification
In this part of the project, we present amethod to perform fine-grained seismic phase identi-
fication, which can be readily integrated into existing seismic signal processing pipelines.  As  
seismology  evolves  into  a  big-data-driven  science,  deep  learning  methods  are  becoming  
an  indispensable part of next-generation seismic monitoring systems.  This work shows a prac-
tical  example  of  integrating  deep-learning  methods  in  an  existing  semi-autonomous  
system  to  achieve  complete  autonomy.  We  demonstrate  empirical  evaluation  of  our  
method  with  a  real-world  dataset  where  it  outperforms  existing  methods.  Our  method  
reduces  the  de-pendency on using array-
based methods, which inhibits precise monitoring for regions with  limited monitoring stations.  
It also reduces the dependency on large-collections of manually  curated  template  sets  and  
presents  the  opportunity  of  using  transfer-learning  for  stations  with limited labeled data.  
Due to the minimal preprocessing requirements and faster predic-
tion generation, it is highly suitable for a real-time monitoring pipeline.  In the future, with  
the  use  of  larger  datasets,  more  complex  models  would  produce  higher  accuracy  as  well  
as  better  generalizability.  Moreover,  the  introduction  of  interpretable  models  would  be  
highly  suitable for downstream analysis.
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Figure 31. (Left) Testing with held-out stations. Each dot is an IMS station. The color bar 
shows held-out accuracy for a station. (Right) Testing with held-out regions. Each red dot 
is an event recorded at the NEIC (National Earthquake Information Center). We hold out 
shaded regions. Average hold-out accuracy across shaded regions is 77.27%, with a standard 
deviation of 4.13%, suggesting model efficacy at novel source regions.
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Chapter 4

Seismic Depth Prediction Using
Attention Network

4.1 Summary: Depth Estimation
The depth of seismic events is an important feature to discriminate natural earthquakes
from events induced or caused by humans. Depth is best calculated when a seismic station
is located exactly above the event origin. However, estimating the depth of any event with
a sparse set of stations is a daunting task, and there is no globally viable method. In
this last part of the project, we focus on developing a not-so-deep machine learning model to
accurately estimate the depth of arbitrary events. The main advantage of not-so-deep models
as proposed in this work is the lower number of parameters to tune and better interpretability.
Our model is crafted to retain interpretability for geophysicists while exploiting machine
learning’s power in generalizing to unreachable locations on earth. We use the SCEDC
(Southern California Earthquake Data Center) catalog generated for events in California
and demonstrate performance on these local and near regional events.

4.2 Introduction: Depth Estimation
Accurate depth estimation of a seismic event is critical to discriminating between man-made
and natural seismic events, simply because nearly all man-made events are less than one
kilometer deep. Distinguishing man-made events from natural events has several applications
in nuclear non-proliferation, security of underground assets, such as optical fibre, among
many others.

Theoretically, the depth of a seismic event is estimated by inverting the travel time equa-
tions to individual stations. However, the correctness (or uncertainty) in depth estimation
largely depends on the locations of the stations and the number of them. In this project, we
consider estimating depths directly from the wave form with the help of modern machine
learning techniques.

54
Approved for public release; distribution is unlimited.



4.3 Methods, Assumptions, and Procedures: Depth Es-
timation

CNN-LSTM model

Convolutional Neural Networks (CNNs) are widely used deep networks. CNNs perform
convolutions on input images with multiple fixed sized kernels. A convolution operation can
be seen as sliding the kernel over the image and computing the dot product at each step.
Each convolution extracts different higher order representations and form a feature map. A
convolutional layer is usually followed by a nonlinear activation function (such as ReLU) and
a max-pooling function. Long-Short Term Memory (LSTM) networks resolve vanishing and
exploding gradient problems of vanilla RNNs and are able to capture long range temporal
dependencies by introducing input and forget gates.

it = σ(Wi · [ht−1, xt] + bi (23)
ft = σ(Wf · [ht−1, xt] + bf (24)
ot = σ(Wo · [ht−1, xt] + bo (25)
ct = ft � ct−1 + it � tanh(Wc · [ht−1, xt] + bc) (26)
ht = ot � tanh(ct) (27)

Our CNN-LSTM network consists of four CNN layers followed by two LSTM layers
followed by three dense layers. Each of the CNN layers is followed by a batch normalization
layer and a ReLU activation layer. 30% dropout is applied after ReLU activation layers. We
used 8, 16, 32 and 64 3×3-size kernels for convolution layers and the output from the fourth
convolution layer is fed to the first LSTM layer after a time preserving transformation.

Attention Network with Hierarchy

Attention networks are widely used in Natural Language Processing to identify important
regions of the input data. Such networks assign a many-to-many attention mapping on input
and output sequences.

hit = tanh(Wacit + ba) (28)

αit =
exp(hT

itva)∑
t exp(h

T
itva)

(29)

oi =
∑
t

αitcit (30)

Here, cit is a time preserving input sequence which is fed through a single-layer perceptron
with a hyperbolic tangent function to get hidden representation hit. αit is the normalized
attention weight which denotes the weight of the current time-step, and oit is the output
computed by multiplying the input and attention.
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Figure 32. Waveform encoder consists of three CNN and two LSTM layers.

Our proposed attention network has two levels of hierarchy and two attention layers in 
each hierarchy. The first hierarchy is waveform encoder. The input to this level is linearly 
spaced continuous wavelet transforms (CWT) generated from three-channel waveforms. Sim-
ilar to the CNN-LSTM model, four CNN layers followed by two LSTM layers are stacked 
in this level. Time preserved output from the last LSTM layer is fed into the attention 
layers. Output from multiple attention layers (each from a different station) are aggregated 
and fed into the station encoder which is second level in our hierarchical structure. Meta 
information for each corresponding station (i.e. station location, etc.) is aggregated to the 
attention vectors. The station encoder consists of one CNN layer, one LSTM layer, and an 
attention layer. The CNN layer in station encoder has 16 kernels of 3×3 size and is followed 
by a ReLU activation and a max pooling layer. Output from the CNN layer is fed into the 
LSTM layer which has 32 hidden units. The attention layer in station encoder captures the 
weights at each timestamp of the input data. The station encoder model ends with three 
dense layers with 64, 32 and 1 output units.
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Figure 33: Station encoder consists of a CNN and an LSTM layers. An attention layer is used 
to get weighted sequence. Three fully connected layers are used to get the final prediction.

4.3.1 Data Description

We use a relocated earthquake catalog from the Southern California Earthquake Data Cen-
ter (SCEDC). This earthquake catalog used 3D and Growclust algorithms for the relative 
relocation of earthquake hypocenters based on waveform cross-correlation data. The catalog 
includes uncertainty bounds for the depths and the reported median vertical uncertainty is 
only 0.4 km. Such uncertainty for depth is considered low, which makes this dataset a good 
candidate for our experimental evaluation. The catalog contains 75,000 earthquake events 
with magnitudes between 2.0 and 4.0 from the year 1981 to 2019. We collected more than 
650K multi-channel waveforms recorded by 423 densely located seismic stations in Southern 
California.

We filter out any earthquake event for which we did not find a station within 1.2 times the 
reported depth. This filtering was needed as the depth related information in a waveform 
starts to lose resolving power once the distance between the epicenter and the recording 
station is higher than 1.2 times of reported depth. We also filter out any earthquake event 
for which the SDEDC data center does not have waveforms from at least 10 different stations. 
We finalize a total of 6,560 earthquake events; each having waveforms from three broadband 
channels recorded at 10 or more stations.

We collect 230 seconds of waveform to accommodate all information of a regional earth-
quake event. We start at 30 seconds before the first P arrival time and end at 200 seconds 
after the P arrival time. At a 40Hz sampling rate, the length of each waveform is 9,200 data 
points.
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Figure 34. (left) Map of Broadband stations in Southern California shows a dense seismic 
network. (right) Distribution of earthquake depth of our dataset.

4.3.2 Waveform Preprocessing
Our raw input data are 230-second long three-channel time-series, sampled at 40 Hz. Follow-
ing conventional seismic signal preprocessing techniques, we remove any instrument response 
and convert the horizontal, vertical north-south, and vertical east-west components (Z, N, 
E) to horizontal, radial and tangential components (Z, R, T). We filter the waveform from
each channel (0.4Hz to 10Hz). We detrend each sample and remove the mean. We then
max-normalize the data across each-channel, thus retaining the relative amplitudes among
components of a station. We use the 64 scale Continuous Wavelet Transform (CWT) to
obtain spectral-temporal feature representation in an RGB image. Each RGB image is
64×920×3, where the vertical component is represented in red, the radial component by
green and the tangential component by blue. Figure 35 shows how a linearly spaced CWT
captures spectral and temporal features from the 3-channel waveforms.

4.4 Results and Discussion: Depth Estimation
We consider Root Mean Square Error (RMSE) as a loss function and Stochastic Gradient 
Descent (SGD) as the optimizer to train our model. The learning rate is set to 0.01 with 
a linear decay of 0.1 per epoch. Both dropout ratio and recurrent dropout ratio for LSTM 
layers are set to 0.3 for all models. These values are set based on preliminary evaluations on 
training sets. We consider a dataset split of 80/10/10 for training, validation, and testing 
after random shuffling inputs to all experiments. The results are generated by taking the 
average of five separate training sets using five-fold cross-validation after 300 epochs of 
training. For our evaluation, we consider the RMSE of the predicted depth. We also calculate 
Pearson’s correlation coefficient to show the relationship between the predicted and actual 
depth qualitatively. We use a GPU server with four Nvidia RTX2080 GPUs, 256 GB of 
RAM, and a 32-core CPU.

Our model achieves root mean squared error of 2.89km in predicting the depth of a
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Figure 35. (a) 3-channel raw waveform collected from station CI.PLM (b) vertical, tangential 
and radial components generated from the raw waveforms (c) linearly spaced CWT image 
from the ZRT channels

regional earthquake, which is lower than one standard deviation of 3.86km in the training 
data. Pearson’s correlation coefficient between predicted and actual depth is 0.62 which 
shows moderate positive correlation.

4.5 Conclusion: Depth Estimation
Depth estimation, even at regional level, is a difficult task. In this project, we have begun 
exploring machine learned models for depth estimation. Future work will involve extensive 
experiments by varying input conditions, model architectures, evaluation metrics and   
seismic networks.
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Figure 36. Linearly spaced continuous wavelet transforms and their corresponding waveform 
encoder attention vectors for a randomly picked earthquake
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