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EXECUTIVE SUMMARY  

Hurricane Maria struck Puerto Rico on 20 September 2017. This catastrophic storm devastated the 

island with sustained winds of 155 mph and more than 37 inches of rainfall. As the recovery progressed 

into early 2018, MIT Lincoln Laboratory (MIT LL) was requested to provide support utilizing the Airborne 

Optical Systems Testbed, a state-of-the-art Geiger-mode (GM) LIDAR remote sensing platform capable of 

creating a high-resolution, three-dimensional model of the entire island. 

In 30 days, MIT LL collected the vast majority of Puerto Rico’s 3,500 square miles, including the 

islands of Culebra and Vieques. Those data were then processed on the MIT Lincoln Laboratory Super 

Computer, generating three-dimensional data products that could be leveraged by FEMA to support site 

inspections.  

A significant level of effort was expended to establish methods for turning the amassed data into 

actionable products. For several months, MIT LL maintained a presence at the Joint Recovery Office (JRO), 

providing direct support to the Transportation Sector. Together, the Laboratory and FEMA JRO developed 

a workflow for using the collected GM-LIDAR data to conduct virtual site inspections of roadways 

damaged by flooding and landslides. MIT LL developed a training program for this workflow and delivered 

it to more than 100 staff at the JRO. Additional staff at MIT LL conducted virtual site inspections from the 

Laboratory in Lexington, MA.  

Efforts were made to leverage the collected data outside of the original scope, but a combination of 

factors led to mixed results. These factors included resistance on the part of FEMA staff and challenges 

with the actual data, such as horizontal georegistration and compatibility of the initially delivered data 

projections. Despite improvements made to the data, insertion of a vastly new technology into an already 

complex recovery proved very challenging.  

While developing the manual exploitation workflows and trainings, MIT LL was able to better 

understand the FEMA analysts’ needs and began the development of several artificial intelligence/machine-

learning (AI/ML) algorithms to automate the exploitation. The rate and volume of data collection for 

disasters has increased to the point where it is no longer human actionable, so the development of these 

automated exploitation algorithms is key to making use of emerging technologies. 

Through this work, MIT LL has identified numerous challenges that are inherent to using any sensor 

to support disaster response and recovery. Providing comprehensive analytical input to answer the questions 

required by FEMA will require different sensor packages with different resolutions, collection rates, and 

revisit time, and these sensor packages must be paired with corresponding algorithms for exploitation. By 

taking a systems-level approach, MIT LL has developed a framework to solve many of the identified 

challenges.  



 

 

iv 

The efforts in Puerto Rico have shown that the application of GM-LIDAR to virtual damage 

assessments can achieve an improvement in accuracy and efficiency, particularly in similarly wide-scale 

and catastrophic events. Even greater impact can be achieved with continued development of AI/ML 

algorithms to automate these virtual damage assessments. However, the success of any future remote 

sensing-based support of damage assessments will require both the continued adaptation of FEMA policies 

to leverage this technology and clearly articulated and understood characterization of sensor platforms and 

accompanying algorithms. 
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1. INTRODUCTION 

1.1 AOSTB CAPABILITY OVERVIEW  

The MIT Lincoln Laboratory (MIT LL) Airborne Optical System Testbed (AOSTB) is a Geiger-

mode LIDAR (GM-LIDAR) system capable of rolling on and off an aircraft. Similar to traditional LIDAR 

systems, the AOSTB sends pulses of laser light from an aircraft to the ground, and records the return time 

of the reflection of that laser light in order to determine the distance from the aircraft to points on the ground. 

These distance measurements are then combined with location data to generate a high-resolution, three-

dimensional (3D) model of the Earth’s surface. The AOSTB differs significantly from traditional LIDAR 

in that the sensor recording the returning laser light is an advanced avalanche photodiode (APD), which is 

capable of detecting single photons of light. The high sensitivity of the APD enables the 3D models that 

are created to be of much higher resolution than traditional LIDAR, and are created much faster than a 

traditional LIDAR system.  

Quickly acquired, high-resolution, accurately measurable 3D models of an area affected by disaster 

provide a rich dataset for emergency managers to leverage in support of the recovery efforts. Collecting 

those data shortly after a disaster establishes this rich dataset not only for response, but a permanent data 

record that can support long-term recovery and future mitigation or planning efforts. 
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Figure 1. Sample AOSTB data showing PR-770 road washout, annotated with damage measurements. 

1.1.1 Data Collection 

The roll-on/roll off capability allows the AOSTB to be coupled with the aircraft most appropriate to 

the mission. For smaller area collections, the AOSTB has been flown on a Twin Otter, and for large-scale 

collections such as Puerto Rico, a Basler BT-67 modified DC-3 has been used.  

The following table shows an overview of the typical data collection parameters.  
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TABLE 1 

Data Collection 

Point 

Spacing/ 

Resolution 

Point 

Density 

Aircraft  Collection 

Altitude 

Aircraft 

Speed 

Area Collection 

Rate 

25 cm >25 ppm2 BT-67 10k ft. msl 150 knots 40 mi2 /hour 

 

1.1.2 Data Processing 

Supporting these wide-area data collections is a custom data processing pipeline that runs on the MIT 

Lincoln Laboratory Super Computer (LLSC). This pipeline processes the raw collected data through the 

typical intermediate data associated with LIDAR, but adds additional data products that are specifically 

geared towards understanding human activity in a given area. The data are processed into tiles that are 

roughly 500 m2 in size. The table below shows the products produced by the MIT LL pipeline: 

TABLE 2 

Data Products 

Name Data 

Type 

File 

Type 

Ext Description 

HAG Point 

Cloud 

Binary 

Point 

Format 

BPF Height Above Ground: A point cloud where each point has X, Y, 

and Z values, plus an additional attribute (HAG), which is the 

point’s height above the bare earth/ground surface 

L3 Point 

Cloud 

LASer LAS LAS files are the typical point-cloud data associated with LIDAR; 

each point in the data has an X, Y, and Z attributes  

BE Point 

Cloud 

Binary 

Point 

Format 

BPF Bare Earth: A point cloud representing only those points 

determined to be the bare earth/ground surface  

DTM Raster GeoTiff TIF Digital Terrain Model: A rasterized version of the bare earth 

product 

DSM Raster GeoTiff TIF Digital Surface Model: A rasterized version of the LAS product 

RII Raster GeoTiff TIF Relative Intensity Image: A rasterized representation of the 

relative intensity of light reflections 
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1.1.3 Data Resolution 

AOSTB collects point cloud data with 25 cm point spacing. This 3D model of the collected area can 

be measured accurately to within that 25 cm point spacing, with a maximum error of 50 cm. One way to 

think of the data is creating a model of the Earth using basketball-sized spheres. 

Determining the relative quality of the resolution compared to traditional LIDAR collections requires 

some background on industry standards. The most traditional use of LIDAR is to establish a digital 

elevation model of an area. The U.S. Geological Survey (USGS) has established the 3D Elevation Program 

(3DEP), which sets standards for data collection and quality standards for LIDAR collected in support of 

the 3DEP. Those standards are codified in the USGS LIDAR Base Specification [1]. There are some 

requirements for LIDAR collected for the 3DEP that cannot be met by utilizing AOSTB in a disaster 

context. First, some requirements cannot be met due to the fundamental differences between GM-LIDAR 

and traditional LIDAR. Secondly, the USGS sets forth requirements about the acceptable environmental 

conditions for a 3DEP collection, specifically excluding the types of conditions most likely encountered in 

a disaster (e.g., flooding).  

Although GM-LIDAR may not currently be applicable to the USGS 3D Elevation Program, the 

LIDAR base specification does provide some indication of how the AOSTB data quality compares to 

traditional LIDAR collections in terms of point spacing and point density. The base specification provides 

“quality levels” for data, ranging from QL0 (highest quality) to QL3 (minimum quality). Two relevant 

USGS quality levels and corresponding AOSTB performance are shown in TABLE 3.  

TABLE 3 

USGS 3DEP Quality Levels 

Quality 

Level 

Aggregate Nominal 

Point Spacing (m) 

MIT LL AOSTB 

Point Spacing 

(m) 

Aggregate Nominal 

Pulse Density 

(pls/m2) 

MIT LL AOSTB point 

Density (pls/m2) 

QL0 ≤0.35 0.25 ≥8.0 ≥25 

 

1.1.4 Operational Timing 

The AOSTB can collect large areas of high-resolution data quickly, and the MIT LL Super Computer 

can process that data quickly. For planning purposes, the timeline below illustrates each phase in the typical 

mission and the associated timing for an area of 250 mi2.  
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TABLE 4 

Operational Timing for 250 mi2 

Aircraft 

Acquisition 

Sensor 

Installation 

Travel 

to 

Staging 

Flight 

Time 

(250 mi2) 

Data Transfer 

(ideal 

conditions) 

Data 

Processing 

LLSC 

Total 

Collection/Processing 

Timing (250 mi2) 

Varies 24 hours 24 hours 6 hours 3.5 hours 23.5 hours 33 hours 

 

As indicated in the table, if an aircraft were readily available, the AOSTB could be considered for 

pre-deployment to an impending disaster (e.g., hurricane) and be useful in the response timeframe by 

collecting and processing an area of 250 mi2 (about the size of Chicago) within the first 36 hours. 

After the initial data processing, subsequent analysis can be conducted to automate various damage 

assessment tasks such as road finding, road damage, and debris volume estimation.  

1.2 CAPABILITY SUMMARY 

The AOSTB provides a proof of concept, showing that GM-LIDAR can be used to quickly create a 

high-resolution, measurable 3D model of a wide area after a disaster impact and that those measurable data 

can be leveraged to support operational and financial decision making during the recovery process.  

The algorithms developed for GM-LIDAR provide a pathway towards automating analysis such as 

road identification and road damage detection at scale. These analytics could enable additional decision-

making inputs such as optimized routing for emergency vehicles and detection of isolated communities.  
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2. PUERTO RICO CAMPAIGN NARRATIVE 

To support the Federal Emergency Management Agency’s (FEMA), MIT Lincoln Laboratory agreed 

to provide advanced airborne 3D LIDAR sensing capabilities and associated data exploitation to generate 

data products directly relevant to FEMA’s recovery needs in post-Hurricane Maria Puerto Rico. The three 

goals below were central to this effort and encapsulate the purpose behind MIT LL’s support. 

1. Demonstrate remote inspection and damage assessment of high-interest target areas and assets 

through airborne GM-LIDAR remote sensing, as directed by FEMA decision makers. 

2. Create a high-resolution 3D baseline model of the Puerto Rico mainland and the islands of 

Vieques and Culebra to facilitate island-wide recovery planning and monitoring as well as 

preparedness activities for future disaster response activities. 

3. Develop and deliver user-accessible analytics tools and utilities to emergency management 

analysts and decision makers and provide technical training for these capabilities. 

To ensure that MIT LL’s efforts were pertinent and timely to FEMA’s needs, the MIT LL team 

worked closely with FEMA’s coordinating efforts, managed primarily from FEMA’s Joint Field Office in 

Puerto Rico. 

2.1 PUERTO RICO DATA COLLECTION 

MIT LL has a long history in the design and development of novel and highly capable airborne sensor 

systems and, in support of these efforts, operates the MIT Lincoln Laboratory Flight Test Facility (FTF). 

This FTF maintains and operates a small fleet of aircraft suitable for sensor hardware testing and data 

collection operations, and up through April 2018, AOSTB activities had utilized an FTF-operated Twin 

Otter aircraft, capable of ~4-hour sorties and air speeds between 100–150 knots. This type of aircraft is 

popular around the world, has seen extensive service within the Laboratory’s many airborne sensor 

development activities, and is well suited for small-scale and short-range aircraft needs. 

Natural disaster environments experienced by the U.S. routinely extend across thousands of square 

miles, however, and Hurricane Maria’s impact across the entirety of Puerto Rico was no exception. The 

land area impacted by Hurricane Maria was approximately 3,500 mi2, and FEMA requested a complete 3D 

map of the Commonwealth as best possible to facilitate task-oriented analytics for recovery activities. Were 

a Twin Otter-type aircraft to be used, realistic time estimates for a flight campaign with adequate sensor 

coverage overlap extended to several months in duration; this timeframe would have extended well in to 

the following rainy season, reducing the likelihood of completion or operational success. To mitigate this 

risk and reduce the expected flight campaign completion timeframe, alternative airframes were explored 

that might yield a sufficient net increase in daily area coverage. 3DEO Inc. (a Massachusetts-based small 

business that specializes in GM-LIDAR technology and that was created as a Lincoln Laboratory spinoff) 
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aided MIT LL in identifying and evaluating several candidate alternative airframes against anticipated 

performance, cost, and availability, and MIT LL ultimately selected a BT-67 operated by Airtec as an 

airframe for sensor installation and deployment to Puerto Rico. A re-manufactured DC-3 purpose-built by 

Basler Turbo Conversions for science missions, the BT-67 has been historically used on behalf of USG-

sponsored airborne sensing and LIDAR missions in glacier and ice research. MIT LL installed the AOSTB 

sensor aboard the BT-67 aircraft, conducted a short series of local checkout and calibration flights, and 

ferried down to Puerto Rico in a single nonstop flight.  

Figure 2.The BT-67 aircraft newly arrived in the MIT LL Flight Test Facility hangar, and Basler and Lincoln 
Laboratory technical staff performing the sensor installation. 

Figure 3.The AOSTB sensor instrument on board the BT-67 aircraft. 3DEO LIDAR engineers played an extensive 
role in flight planning, mission command, and sensor operation throughout the data collection campaign. 
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The AOSTB utilizes single-photon-sensitive, time-of-flight imaging technology to collect 

information about the surface characteristics of the land below; this advanced GM-LIDAR system is 10 to 

100 times more capable than commercial system available and can collect wide-area, high-resolution, 3D 

datasets very rapidly. When flown over a disaster site, the system sends out pulses of laser light that bounce 

off the land and structures below and are collected again by the instrument. The timing of each light pulse's 

return to the instrument is used to build what researchers call a "point-cloud map," a high-resolution 3D 

model of the scanned area that depicts the heights of structures and landscape features. GM-LIDAR is 

uniquely capable of balancing point density, area coverage rate, and foliage penetration, and in these efforts, 

the instrument and aircraft operating parameters were configured to balance these criteria across the flight 

campaign. 

TABLE 5 

Puerto Rico Campaign Summary 

Point 

Spacing/ 

Resolution 

Point 

Density 

Aircraft  Collection 

Altitude 

Aircraft 

Speed 

Area 

Collection 

Rate 

Sorties Collection 

Time 

25 cm 25 ppm2 BT-67 10k ft msl 150 kts 40 mi2/hour 23 30 days 

 

The effort’s first mission was flown the night of 30 May, and the broader campaign extended through 

June. A total of 23 sorties were flown over approximately 30 days. Throughout the flight campaign, Lincoln 

Laboratory staff were aided by LIDAR engineers and flight campaign data collection experts at 3DEO. 

Through the use of the long-endurance BT-67, MIT LL was able to double the per-flight data collection 

rates, with airtimes per sortie approaching eight hours. Coordination with FEMA’s transportation sector for 

flight mission priorities and status occurred at the FEMA Joint Field Office in Guaynabo, with primary 

flight and sensor operations based out of Isla Verde Airport near San Juan. This overall team was structured 

in to two components. 

Mission Planning and FEMA Coordination, focused on the FEMA Joint Recovery Office in 

Guaynabo, PR 

• Coordinated and negotiated FEMA priorities 

• Liaisoned with external organizations 

• Planned and coordinated collection campaign 

• Prepared task requests and delivered to flight planners 

• Guided analytics development, data products, and reported to FEMA 
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Flight and Sensor Operations, conducted out of Isla Verde Airport near San Juan 

• Refined task requests and translated to flight plans 

• Executed sorties 

• Quick-turned data quality assessment 

• Transfered data to Lexington for processing and local archive 

Flight and sensor personnel roles were carefully defined to ensure safe, consistent, and sustainable 

operations during the near constant level of activity throughout June 2018: 

TABLE 6 

Roles and Responsibilities 

Role Responsibility 

Collection Manager Liaison/coordination w/mission planning and data processing 

Flight tasking, planning, staffing, and site operations 

Mission Commander 

(flight crew) 

Plan flight and lead sensor flight team 

Coordinate with pilot 

Maintain flight log and lead flight debrief 

Draft and deliver situation report to Collection Manager 

Sensor Operator 

(flight crew) 

Ensure sensor scan modes, target details, etc., are loaded and ready 

Prepare and maintain sensor mission readiness 

Operate sensor and data recorder 

OBP Operator 

(flight crew) 

Monitor sensor and onboard processor (OBP) 

Trouble-shoot sensor as needed 

Standby Operator 

(flight crew) 

Support any flight crew role as needed 

Provide ground support as possible 

Data Manager Offload data 

Initiate and monitor data transfer 

Ground Support Debug sensor issues 

Generate quick-look reports from OBP data 

Support flight crews and data operations 

 

In addition to the above on-site roles, personnel on staff at MIT LL support the nightly sorties, 

particularly in advanced weather near- or now-casting. Given the time sensitivity of the response and data 
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collection, it was critical that each sortie be effectively planned and conducted, which required the best 

possible understanding of island-wide cloud cover. Meteorology specialists at MIT LL provided daily 

updates to the flight operations team in Puerto Rico, in some cases in the hours and minutes remaining 

before wheels-up, to ensure that the nightly collection area was well chosen for best visibility and 

atmospherics. 

At wheels-down after each nightly sortie, the collected data were retrieved from the aircraft, error-

checked, redundantly backed up locally, and a set of drives either shipped (or hand-carried by staff naturally 

rotating in and out) to Massachusetts for processing using intensive computational resources. Given the 

level of destruction in Puerto Rico, electronic means of data transfer were unacceptably slow and unreliable. 

Figure 4. The BT-67 with installed sensor at Isla Verde Airport. The islands of Culebra (shown) and Vieques were 
some of the first regions of Puerto Rico collected during the campaign. 

2.2 DATA PROCESSING 

The raw sensor data collected during an AOSTB collection sortie is a series of measurements from 

1) the Global Positioning System (GPS) and inertial measurement unit (IMU) to locate and orient the sensor 

in space, 2) the mirror’s direction pointing the laser, and 3) the sensor’s measurements of the laser’s returns. 

These various pieces of raw data must be combined, along with other inputs like sensor calibration, to create 

every point in the resulting GM-LIDAR point cloud. This multi-phased process of combining all these 

inputs is generally referred to as data processing and performed by our processing pipeline. 

The processing pipeline is a custom-built software suite developed by MIT Lincoln Laboratory. It 

uses a divide and conquer approach to break the collected area into equal-area geospatial buckets. This 

breaks the workload into tractable pieces and allows us to distribute the work across multiple computer 
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nodes for high-performance parallel processing. Each bucket in turn has multiple phases of processing, each 

further refining the resulting GM-LIDAR products. 

The general pipeline steps are: 

 Combine raw data streams (L0) and break into buckets of noisy point clouds (L05) 

 For each bucket: 

o Perform coincidence processing to produce a single-view point cloud (L2) 

o Intelligently aggregate point clouds from multiple line-of-sight-angles to produce 

aggregated point clouds (L3) 

o Run additional exploitation algorithms to extract data (L4) from aggregated point clouds. 

Some examples of these L4 products are: 

 Digital Surface Model 

 Digital Terrain Model 

 Bare Earth Model 

 Height Above Ground 

 Feature Extraction 

Each of the phases of processing mentioned has numerous parameters to optimize for different 

operational needs. One example is the software suite provides multiple coincidence processing algorithms, 

each optimized for different goals. Some algorithms are better suited to foliage penetration, others optimize 

for image quality and linear features like walls and power lines, and still others optimize for near real-time 

processing speed. These built-in capabilities are critical to meeting real-world processing requirements. 

For the Puerto Rico GM-LIDAR processing, 500 m2 buckets were used, resulting in ~38,000 buckets 

to cover the island. Each bucket produced 6 or more L4 products, resulting in more than 228,000 individual 

product tiles. This processing was performed on the LLSC, offering petaflop-scale processing with more 

than 41,000 processor cores available. This scale allowed us more flexibility iterating on various processing 

parameters and approaches. The flexibility of the processing pipeline means a supercomputer is not 

required. Processing has also been performed on small portable mini-clusters and Amazon Web Services 

for cloud processing to support various operational limitations and timing requirements. 

2.3 DATA DISTRIBUTION 

To enable distribution of processed GM-LIDAR data, MIT LL developed and deployed an externally 

facing web application called VIEWS. To protect against the unauthorized viewing of the data, VIEWS 

requires users to register for an account via the FEMA-RS-VIEWS-APPROVAL@ll.mit.edu email address. 

Separate accounts can be created for the three datasets served by the app (e.g., Puerto Rico, North Carolina, 

and South Carolina). When approved, the user is then granted access to VIEWS (https://fema-

rs.hadr.ll.mit.edu/) and can visualize and download GM-LIDAR data and associated data products. VIEWS 

is shown in Figure 5. 

mailto:FEMA-RS-VIEWS-APPROVAL@ll.mit.edu
https://fema-rs.hadr.ll.mit.edu/
https://fema-rs.hadr.ll.mit.edu/
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Figure 5. The VIEWS user interface. 

 

Figure 6. The VIEWS control bar. 

From left to right, the top control bar as highlighted in Figure 6 contains these controls: 

1. A menu that allows access to sortie flight data, map overlays such as live weather satellite 

data, GM-LIDAR data, the VIEWS help page, and a logout control 

2. A selector for the dataset to view (set here to Puerto Rico) 
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3. A search button that allows the user to search by name for places and landmarks, or by 

latitude–longitude coordinate 

4. A details button 

5. A map layers button that allows the user to select from map base layers, including 

OpenStreetMaps and satellite views 

6. A button to send email to the VIEWS team via FEMA-RS-VIEWS-FEEDBACK@ll.mit.edu 

to suggest features or report bugs 

VIEWS also allows the user to see the flight path for each collection sortie (see Figure 7). 

 

Figure 7. Flight path for one sortie over Culebra and Vieques, shown over a satellite base map. 

Through a grid-based interface, the user can select multiple processed tiles and download the 

corresponding GM-LIDAR point clouds and other generated data products (see Figure 8). Multiple files 

mailto:FEMA-RS-VIEWS-FEEDBACK@ll.mit.edu
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are collected into a ZIP archive and automatically downloaded through the web browser. The user can then 

apply their analytical tools to the local copy of the data. 

 

Figure 8. Downloading files for four selected tiles. 

2.4 DATA SOCIALIZATION AND REFINEMENT 

As use of the GM-LIDAR data extended into use cases beyond the transportation sector, MIT LL 

established a working group with approximately 25 individuals across 15 government, academic, and 

industry organizations. Representatives included FEMA, the U.S. Geological Survey (USGS), U.S. Army 

Corps of Engineers (USACE), and several companies working as contractors to FEMA for the Puerto Rico 

recovery. The working group provided valuable feedback and identified challenges related to the data that 

made exploitation to support their particular mission more difficult. MIT LL was able to address many of 

these challenges through the delivery of a reprocessed dataset for all of Puerto Rico. The major lines of 

effort are described below.  
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2.4.1 Horizontal Georegistration  

The initial data delivery had suboptimal horizontal georegistration. The spatial relationships of the 

data were highly accurate internally, but when projecting the GM-LIDAR points to geographic coordinates, 

the placement was off. The initial dataset was still completely usable for the intended purpose of measuring 

damage to transportation sector concerns, but it was less useful for correlation with other geographic 

datasets. This limited further exploitation opportunities.  

The discrepancies resulted from the rapid collection methodology over such a large area combined 

with hardware performance variations. The collection for Puerto Rico was a fast-paced effort, so there were 

no resources or time available to deploy or identify ground control points ahead of collection flights, a 

technique often used to achieve better horizontal georegistration accuracy.  

In order to improve the horizontal georegistration on a whole-island scale as quickly as possible, 

MIT LL developed a processing methodology that correlated, in three dimensions, the data collected by 

AOSTB with a pre-existing LIDAR data collection performed for the USGS. By programmatically 

correlating major features that were unchanged between the pre-existing LIDAR collection and the AOSTB 

collection, the geographic coordinates of the pre-existing LIDAR could be adopted. 

The end result of this effort was an island-wide dataset that has a horizontal georegistration accurate 

to within approximately three meters.  

2.4.2 Datum and Coordinate System 

The initial delivery of point cloud data was in BPF format, using the WGS 84/UTM datum and 

coordinate system. The vertical reference was in terms of height above ellipsoid. These are the default file 

formats and projections used for other MIT LL GM-LIDAR missions, but were not typical formats or 

projections consumed by FEMA analysts. Notable confusion arose around the elevation values, as some 

geographic features that are clearly above sea level would contain negative values since the ellipsoid 

approximating the Earth exceeded the actual surface in areas of Puerto Rico.  

Through discussions with the working group and the JRO GIS Unit Leader, it was determined that 

the reprocessed data that would be most digestible by FEMA analysts would be data in the LAS format 

projected to the NAD83/Puerto Rico State Plane horizontal coordinate system, with a vertical datum 

referenced to the Puerto Rico specific datum PRVD02 [2].  

The LAS format does not support the additional attributes present in the BPF format, such as “Height 

Above Ground” and “Relative Reflectivity”, both of which are very useful for algorithm development, so 

the revised dataset would still include the BPF format as well. 

These changes were all incorporated into Version 3 of the data delivery.  



 

 

17 

2.4.3 Data Delivery to US Army Corps of Engineers GRiD 

Working group participants included representatives from the USACE Geospatial Repository and 

Data (GRiD) Management System, which is a U.S. government platform for hosting and disseminating 

point cloud data [3]. A plan was devised to publish all of the MIT LL AOSTB GM-LIDAR data products 

for Puerto Rico to the USACE GRiD platform. As part of the iterative reprocessing tests used to solve the 

aforementioned challenges, the data were also delivered to GRiD to identify the compatibility of the data 

and the best transfer mechanisms.  

When Version 3 of the full island dataset was ready, MIT LL published it to its RS-VIEWS platform 

and provided a copy to the USACE GRiD team, and the full dataset was made publicly accessible on the 

USACE GRiD platform in June of 2019. 

2.4.4 Island-Wide In-Browser Visualization  

Both the RS-VIEWS and USACE GRiD systems provide distribution of dense point cloud data that 

spans large geographic areas by presenting the user with a map of the area containing data and then allowing 

the user to specify small areas to download. This approach works well for acquiring data for small study 

areas, but makes wide area exploration and visualization a challenge. The working group members also 

noted that the map interfaces were difficult for FEMA analysts to identify with and that a more direct, 

browser-based access to the point cloud data might make them more accessible and understandable. 

MIT LL investigated several open source methods for visualizing three-dimensional point clouds 

through a web browser. The system provided by Entwine and Potree was chosen for the serializable 

capability of the Entwine format and the existing visualization and analysis tools available with Potree.  

Entwine [4] organizes LIDAR point clouds (including GM-LIDAR) into an octree representation 

called Entwine Point Format (EPT). Similar to tiling two-dimensional imagery with different levels of 

resolutions to allow for smooth transition between large scale and small scale, this allows for sparse point 

clouds to be serialized at small scale (“zoomed out”), and more detail point data to be pulled in at larger 

scales (“zoomed in”). 

Potree [5] is a JavaScript-based web application that can ingest and visualize EPT data. This open 

source application also has many out of the box analysis tools. 

The entire Puerto Rico dataset, consisting of more than 181 billion points, was converted to EPT 

format and can be seamlessly explored via web browser. Data can be measured in three dimensions and 

subsections of data can be exported as standard LAS files.  
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Figure 9. Puerto Rico Entwine/Potree. 

There are challenges with the existing Potree application that could be addressed with further software 

development. For example, the most requested feature from the various users and partners that MIT LL 

shared the tool with was the ability to navigate to a known location (street address, point of interest name, 

etc.). Potree does allow for moving the location in view based on coordinates passed on the URL as 

parameters, but this is not a viable mechanism for most users.  

The other gap with Potree is volume calculation. The tool does provide the user with the ability to 

select a volume using a stretchable cube, but the volume calculated is the volume of that cube and not of 

any points or voids within the cube. Potree is open source, so both of these features could be added with 

additional development time. 
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Figure 10. Profile visualization and data export options for damaged roadway. 
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3. DATA EXPLOITATION 

3.1 EVALUATED USE CASES 

At the request of the JRO leadership, MIT LL created the “LIDAR Sector Fact Sheets” document. 

This document provides an assessment of how GM-LIDAR could be leveraged to satisfy the reporting 

requirements for each sector at the JRO.  

The fact sheets presented a list of each reporting requirement provided by FEMA and whether that 

requirement could be informed by GM-LIDAR. In some cases, the applicability of GM-LIDAR to that 

reporting requirement is very clear and could be described as a “yes” or “no” answer (e.g., measuring the 

volume of a washed-out roadway). For some reporting requirements, the applicability was unclear or 

nuanced.  

For each sector, the fact sheets include sample images successful use as well as documented 

limitations to the application of the technology to that sector reporting requirement.  

Fact sheets were created for the following sectors and are included as Appendix A: Transportation, 

Debris, Energy, Communications, Mitigation, Environment Historic Preservation (EHP), Water, Public 

Building/Housing, Commonwealth, and Natural Culture Resources. 

3.2 ROAD DAMAGE FOCUS 

The MIT LL program was sponsored by the Transportation Sector. Due to the significant damage 

sustained by roads and highways throughout Puerto Rico and the resulting impacts to the supply chain of 

commerce as well as the day-to-day life of Puerto Ricans, the Transportation Sector was keen to have 

MIT LL focus the algorithm development on road damage. Because the program manager was from the 

Transportation Sector, MIT LL was able to have more access to persons with domain expertise in the 

assessment processes and reports for road and bridge damage.  

3.2.1 Remote Sensing-Based Sight Inspection Workflow 

MIT LL worked collaboratively with FEMA JRO staff to develop a standard remote sensing-based 

sight inspection workflow using a combination of Google Earth Pro and Quick Terrain Modeler software 

with optical satellite imagery and 3D GM-LIDAR point cloud data. The virtual sight inspection begins with 

a reported set of geodetic coordinates, which are entered into RS-VIEWS so that analysts can identify and 

download the one or more corresponding 500 sq. mi GM-LIDAR tile. Once downloaded, the GM-LIDAR 

tile is loaded into the Quick Terrain Modeler software for initial assessment and visualization. In this initial 

assessment, parameters are set for the point cloud such as projection, vertical and horizontal datum, 

coordinate system, and measurement units to ensure maximum compatibility with FEMA reporting 

standards and it is visualized by altitude, height above ground, and intensity. Simultaneously, Google Earth 
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Pro is launched and linked to Quick Terrain Modeler to enable rapid visualization of current and historical 

optical satellite imagery of the reported location. In GM-LIDAR datasets where vegetation such as tree 

canopies obscure the reported damage, the 3D GM-LIDAR point cloud is processed to generate a bare-

earth digital terrain model, which is then substituted for subsequent measurements in place of the original 

point cloud. Depending on the type of damage, multiple measurements are made on both the GM-LIDAR 

and optical satellite data, including length and width of the damage; depth, height, and volume of cavity or 

debris pile; area; perimeter; and slope. Image chips and high-resolution measurement profiles are exported 

from both Google Earth and Quick Terrain Modeler into a power point presentation. Where available, pre- 

and post-disaster images of the damage location are included, and all slides are attributed with standard 

features such as compass bearing, legends, scale bars, image annotations, and all measurements performed 

on the GM-LIDAR data. The complete workflow remote sensing-based site inspection was captured in a 

final webinar made available to FEMA JRO staff along with a detailed field manual that also addressed site 

inspection edge cases.  

 

Figure 11. Remote sensing supported site inspection workflow overview. 

3.2.2 MIT LL Conducted Manual Exploitation  

At the request of the JRO leadership, MIT LL manually created data products including processed 

GM-LIDAR imagery and analysis of damage to support the damage dimensions and description (DDD) 

documents within the project worksheet (PW). The sites were chosen by the JRO and included roads, 

bridges, and park and recreation areas that had known damage. Many of the sites already had completed 

DDD through FEMA’s standard procedure. The MIT LL data products were a proof of concept to show the 

utility of the data, socialize the products with JRO staff, and to give MIT LL staff a better understanding of 

the requirements needed to satisfy the DDD. Program manager Travis Johnson identified a group of JRO 

staff to act as subject matter experts (SME). As the data products were created, MIT LL staff at the JRO 

would have individual and group meetings with the SMEs to gather feedback on the data products. Through 
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this iterative process, MIT LL was able to refine the style, annotation, and key data provided on the 

products. MIT LL provided the JRO with approximately 80 data products with completed manual analysis 

that could support the DDD in a PW.  

Upon receipt of the MIT LL data products, the program manager attempted to continue to socialize 

the products and solicit feedback from JRO staff. There was significant pushback on the use of GM-LIDAR 

data to create DDDs and support PWs as there was concern that the use of the data could displace FEMA 

staff and contractors since the DDDs could be created faster when using technology. There was also concern 

that few FEMA staff and contractors had experience with 3D point cloud data or the skills to conduct the 

analysis to create a DDD. MIT LL staff onsite at the JRO and the program manager had numerous 

conversations to clarify that FEMA staff and contractors would not be displaced because even with GM-

LIDAR data, there would still be humans in the process, including those making site visits, as well as 

training for people to conduct the GM-LIDAR analysis. These conversations were often ignored or met 

with the responses that working with GM-LIDAR data was not in the person’s job description or that the 

formal FEMA process did not cover the use of creating DDDs from remote sensing.  

3.2.3 GM-LIDAR-Based Training Developed and Delivered  

Understanding the need to have trained staff to ensure that the JRO could expedite the completion of 

PWs, MIT LL created a training program, and the initial training consisted of two parts. The first was a 

lecture-style training to explain GM-LIDAR, the data created, and how they could be used to aid in Puerto 

Rico’s response and recovery. The learning objectives of this two-hour lecture and discussion were to 

impart an understanding of the data, illustrate the benefits to each of the sectors, and answer questions. This 

introductory training was delivered to more than 250 staff at the JRO. In addition to offering the training 

course in Puerto Rico, MIT LL also delivered a series of online trainings to ensure a maximum number of 

participants, as well as allowing participants from FEMA offices across the island to attend. JRO staff were 

instructed on how to access GM-LIDAR data through RS-VIEWS and how to visualize, process, and 

analyze GM-LIDAR data in both ArcGIS and Quick Terrain Modeler. MIT LL created supplementary 

training material for the workshops, including 3 hours of webinars and a 107-page end-to-end GM-LIDAR 

processing in Quick Terrain Modeler field manual. Onsite weekly training sessions were conducted on six 

separate occasions, and webinars were conducted on three separate occasions.  

MIT LL ensured that for each class, at least one of the trainers conducting the training was a Spanish 

speaker. This was to ensure that there would not be a language barrier on the chance that one of the FEMA 

staff or contractors had a question or issue and preferred to ask or discuss in their native language.  

There were a series of challenges to training at the JRO. The first was identifying the appropriate 

FEMA staff. Because the classes were a significant investment in time, sector leaders were reluctant to 

release their staff for them. This challenge was amplified because some leaders and staff were unsure of 

how their respective sector would utilize the data, considering that it was not formally part of the standard 

FEMA practice. Another challenge with identifying appropriate staff is the transient workforce. Sector 

leaders would not want to send a person who only had a few months left on their rotation to the trainings 



 

 

24 

because it would be a sunk-cost investment. There was also the challenge of aptitude in the staff. Most 

disaster response and recovery professionals are familiar with GIS data products, but do not have a GIS or 

3D point cloud data background. Motivating a staff who were already exceptionally busy to learn a new 

skill proved difficult. There were also logistical challenges in terms of finding appropriate space.  

Once staff were identified and space was secured, there were then administrative challenges. This 

included people not doing the read-ahead work and not following instructions or the many reminders to 

download software on their computer. This led to a significant delay in getting a class started. There were 

also professional challenges in terms of people who were assigned but clearly had no interest in 

participating. Staff would miss large portions of the class or spend significant amounts of time texting and 

even talking on their phone. This lack of professionalism was demoralizing to the MIT LL instructors and 

the other participants.  

MIT LL would recommend that FEMA should invest in training staff from one of FEMA’s ongoing 

contractors to allow for persistence of the skillset in the work force, as well as formalizing how GM-LIDAR 

data could support DDDs, PWs, and other FEMA procedures.  

3.2.4 Roadside Embankment Failure/Landslide Road Use Case 

In spring 2020, MIT LL was asked to review the applicability of the AOSTB GM-LIDAR data to 

support the analysis of roadside embankment failures caused by landslides during Hurricane Maria. There 

were several challenges FEMA presented: the ongoing pandemic precluded site inspectors from traveling 

to sites, many of the sites were likely overgrown with vegetation since nearly three years had passed since 

the hurricane, and the FEMA-recorded locations of the landslides were known to have accuracy issues. The 

AOSTB GM-LIDAR data represented a high-resolution, volumetric dataset that captured the damage for 

review, even three years later. 

To address these challenges, MIT LL developed a course of action in coordination with the 

Transportation and Municipality sectors:  

1. Apply the MIT LL landslide prediction algorithm to the Orocovis area of Puerto Rico 

2. Analyze the correlation of predicted landslide locations with the FEMA-reported roadside 

embankment failure locations; this included a FEMA-provided scale for confidence in the 

coordinate’s accuracy 

3. If the analysis showed that the predicted landslide locations could be used as a cue to analysts to 

hone in on the damage, then MIT LL would develop a custom training program for analysts to 

generate a remote sensing-based DDD for the sites 

The results of the analysis to determine correlation of landslide prediction sites and FEMA-reported 

sites indicated that of the 50 sites provided by FEMA, only 4 sites were deemed potentially challenging. 

These sites were known to have uncertain coordinates recorded by FEMA, and the nearest predicted 
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landslide was site within 500 meters. The other 46 sites had predicted landslide locations within 100 meters 

or had coordinates that were known to be highly accurate.  

 

Figure 12. MIT LL landslide prediction, FEMA coordinate confidence, and spatial correlation  

Given the likelihood of success, MIT LL developed and delivered a custom training program for a 

cadre of site inspectors identified by the Municipality sector. The training consisted of self-paced video 

tutorials for using VIEWS to acquire the data and QT Modeler to analyze the data. The video training was 

combined with virtual meetings with the site inspectors to answer questions and provided feedback on their 

classroom practice DDDs.  
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Figure 13. Sample workflow: predicted locations provide cues to correlate a reported landslide with actual damage. 
Viewing the same data in the GM-LIDAR allows for a virtual site inspection.  

All of the predicted landslide locations and proximity buffers were provided to the site inspection 

team as a Google Earth KMZ file. 

3.3 EFFICIENCIES ANALYSIS  

Conducting virtual damage assessments using remote sensing data such as GM-LIDAR can increase 

efficiency in recovery operations in several ways. Each site inspection is unique and may take a variable 

amount of time, making it difficult to conduct a quantitative analysis. However, there are commonalities 

across site inspections that can be made more efficient by incorporating GM-LIDAR. For example, analysis 

of the data prior to conducting an in-person site inspection can inform the team of any obvious access issues, 

such as other landslides or road damage. Analysis of the data can also inform the team of potential 

measurement issues given the terrain and characteristics of the site. This pre-site awareness can help the 

team plan out their measurement strategy and possibly inform what specialized equipment they may need. 

For sites with particularly challenging measurements, such as very deep holes or steep grades, the team 

may choose to conduct those measurements using only the data. In some cases, site inspectors may return 

to the JRO and, while reviewing their data, determine that they need to revisit the site in order to confirm a 

measurement or record a measurement that was missed. In these cases, the GM-LIDAR analysis could be 

used to virtually revisit the site.  

A source for significant efficiency increase would be for analysts to conduct virtual assessments for 

most of the site and provide those results to a field team that travels to the site to quickly confirm key 

measurements. These virtual inspections could be done remotely by FEMA staff or contractors outside of 

the disaster impact area. Distributing the analysis outside of the disaster and across time zones allows for 
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near continuous work that is done by analysts who are not subjected to the physical and mental stress of a 

disaster environment. Such a remote team also allows the onsite inspectors to focus their efforts on safety 

and confirmation.  

For each step in the site inspection process, GM-LIDAR offers a tool for potentially increasing the 

efficiency. Table 7 outlines these steps and a qualitative interpretation of improvements through GM-

LIDAR incorporation. 

TABLE 7 

Inspection Efficiency Improvements 

Task/Type Traditional GM-LIDAR 

Supported 

GM-LIDAR  

Focused 

GM-LIDAR 

Complete 

Orient to site Map of location and 

coordinates 

Visualize the site in 

3D, looking for access 

or safety issues 

Virtual remote teams 

use GM-LIDAR to 

conduct initial 

assessments of 

several sites and 

provide to field tea 

Virtual remote 

or JRO teams 

use GM-

LIDAR to 

conduct full 

assessments 

of sites  

Travel to pick up 

FEMA vehicle 

Groups of 2–4 Groups of 2–4 Groups of 2 One analyst 

per site 

Travel to site Site access may be 

difficult or dangerous, 

delaying inspection 

Path is selected based 

on safety analysis 

from data 

Path is selected based 

on safety analysis 

from data 

Not required 

Inspect site Accurate 

measurements may 

not be possible due 

to physical 

constraints 

Measurement time is 

variable depending 

on site characteristics 

and site inspection 

team 

Dangerous 

measurements taken 

from data  

Measurement time is 

variable depending on 

site characteristics 

and site inspection 

team 

 

Quickly verify key 

measurements 

recorded in GM-

LIDAR assessment  

Measurement time is 

minimal, conducting 

only a small number of 

validating 

measurements 

Conduct total 

virtual site 

inspection and 

measurements 

for DDD 

Return to drop 

off FEMA vehicle 

Required Required Required Not Required 

Return to JRO Required Required Required Not Required 

Verify field 

observations  

Recording errors or 

missing 

measurements 

If needed, revisits can 

be done virtually by 

JRO teams or remote 

teams 

GM-LIDAR data 

validated by field 

measurements  

Quality 

assurance 

process 

involves 
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require revisiting the 

site  

If needed, revisits can 

be done virtually by 

JRO teams or remote 

teams 

analysts 

checking each 

other’s work 

Complete 

paperwork for 

PW 

Required Required Required Required 

Table Key:  

 

 

 

3.4 IMMERSIVE VISUALIZATION AND TOOLS 

Exploring 3D data through 2D interfaces can be a challenge for some users. In order to fully 

demonstrate the capability of a high-resolution, 3D dataset, MIT LL built a prototype virtual reality-based 

toolset for conducting virtual site inspections.  

Using the GM-LIDAR data collected by AOSTB, the team used the Unity [6] video game engine to 

construct an immersive and interactive virtual world surrounding a well-known road damage site. The site 

could be explored using commercial off-the-shelf VR headsets, and custom in-world tools were created to 

support a virtual site inspection. The colors and images of the virtual world are video game textures, but 

the underlying data for terrain, roads, and structures are entirely based on GM-LIDAR data from AOSTB. 

In the virtual environment, the site inspector is able to explore the entire area from any vantage point 

or height and conduct precise measurements using the provided tools. Geotagged photos can be displayed 

within the system, combining real-world imagery and perspective with the virtual rendering.  

In the sample images below, an MIT LL analyst familiar with the virtual reality system went through 

the site inspection measurement process using the virtual site. The simplicity of the interface allows for 

pointing at one location with a natural hand gesture, and then pointing to another location and recording 

that distance. All of the measurements are based on the underlying GM-LIDAR data and so are very 

accurate.  

Common/Baseline 

Efforts 
Improved Efficiency 

Greater Improved 

Efficiency 
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In the case of the sample area PR-770, an analyst familiar with using the virtual tools and somewhat familiar 

with the location and damage ahead of time was able to conduct the virtual site inspection in around three 

minutes. 

Figure 14. Virtual reality rendering of PR-770 damage area, showing a geotagged photo taken from the same 
perspective during an in-person site inspection. 
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Figure 15. Site inspection conducted in virtual reality in three minutes. 

3.5 EXAMPLE PARTNER USE CASES 

Over the course of the program, there were instances where other agencies took an interest in the data 

for uses that the initial collection had not foreseen. The richness of the dataset continues to provide new use 

cases and reinforces the value of collecting data soon after a disaster. Two examples are described here. 

3.5.1 NIST Wind Tunnel Modeling of Hospitals 

The National Institute of Standards (NIST) contacted MIT LL asking for the GM-LIDAR data 

surrounding the areas of a set of hospitals and antenna towers in Puerto Rico that are located at the top of a 

mountain ridge to support wind tunnel modeling [7]. The Laboratory was able to deliver data for two of the 

requested hospitals. Unfortunately, the other hospitals and radio antennas were located in an area that had 

data quality issues. Figure 17 shows the data provided for one of the hospitals. 
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Figure 16. Hilltop hospital for NIST study. 

3.5.2 Arecibo Observatory 

In December 2020, the Arecibo Observatory collapsed. As the second-largest radio telescope in the 

world, the loss of this scientific instrument was significant. MIT LL was able to provide the observatory 

the GM-LIDAR collected after Hurricane Maria, and it is the hope of both MIT LL and the Arecibo 

Observatory that the data will assist with the reconstruction efforts.  
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Figure 17. Arecibo Observatory shown with elevation and relative reflectivity color ramp. 
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4. AUTOMATED ANALYSIS 

Automated analysis of AOSTB data can provide significant time and cost savings after catastrophic 

events. In parallel with the manual data exploitation efforts, MIT LL has developed several algorithms to 

support disaster recovery. The top-level goals for the automation efforts in Puerto Rico were: 

1. Detect roads 

2. Detect damage in those roads 

3. Calculate point-to-point routing based on undamaged roads 

4. Detect structures  

The manual exploitation efforts provided invaluable input into the requirements for each of these 

automated analyses. This section provides a cursory overview of each of these lines of effort. It is intended 

to provide enough detail to understand the concept and operational applicability. Separate documents are 

provided that describe each of the algorithms in sufficient detail for them to be replicated.  

4.1 ROAD WIDTH ESTIMATION 

4.1.1 Overview 

The purpose of this algorithm is to identify the extent of roads with the intended extension that the 

output be used to find road damage and rubble on the road shoulder. Operationally, this algorithm provides 

a critical first step for automating transportation-related analyses. In addition to enabling the detection of 

road damage, complex operations could be developed by identifying an entire road network within the 

AOSTB GM-LIDAR over hundreds of square miles. Sample complex operations include, but are not 

limited to, point-to-point routing based on road damage and the detection of communities that are isolated 

due to surrounding road damage.  

4.1.2 Workflow  

As shown in the workflow overview in Figure 18, the input is a GM-LIDAR dataset consisting of x, 

y, and z coordinates, along with the relative reflectivity, signal-to-noise ratio, significance ratio, and 

confidence. From the coordinates, additional parameters are calculated for each point, specifically the 

height above ground and 11 attributes describing the geometry and reflectivity of the point cloud. This 

collection of values is operated on by a convolutional neural network with an output layer that produces 

probabilities of points being located on a road. These probabilities are noisy, so a follow-on step uses known 

road centerlines from Open Street Maps to remove false detections and estimate true road widths. 
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Figure 18. Road width estimation workflow overview. 

4.1.3 Output 

This algorithm produces two main outputs:  

1. A KML [7] file with information about each road segment location along with the segment width 

2. A BPF [8] GM-LIDAR tile with the points labeled according to their probability of being road 

points and our estimate of road extent 

4.1.4 Results 

To evaluate the performance of this algorithm, we used truthed tiles, but ones that were not part of 

the set used to train the neural network. In this case, a total of five truthed tiles were evaluated using the 

complete pipeline and the output compared to the truth. Since we have the ability to choose the threshold 

at which an edge is declared, we can look at the range of potential accuracies produced by varying this 

parameter. The ROC curve in Figure 19 shows how changing the cutoff alters the false positive and true 

positive rates. 
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Figure 19. Road width estimation ROC curve. 

This shows that if we are willing to accept a 10% false positive rate, then we will account for 80% of 

road points. Given that some of the point labeled as ‘NOT ROAD’ are likely crosswalks and cars on the 

road, this appears to be a sound method for determining road width. 

4.2 ROAD DAMAGE 

4.2.1 Overview 

The purpose of this algorithm is to detect sites of road surface damage. The algorithm utilizes the 

output of the road width estimation algorithm and reports sites with locally anomalous surface geometries. 

In lieu of an abundance of ground truth data for road damage in GM-LIDAR, this unsupervised algorithm 

is both explainable and relatively robust to variations in data quality and landscape characteristics. 

4.2.2 Workflow 

The input is a GM-LIDAR dataset consisting of x, y, and z coordinates, along with the relative 

reflectivity, signal-to-noise ratio, significance ratio, and confidence. Using these attributes, an additional 
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set of eigenvalue-based geometric features using k=6-point neighbors were calculated. A classification of 

whether a point was on a road was an additional feature, drawn from the aforementioned road detection 

algorithm output. Anomaly detection within the 500 m2 area point cloud tiles was performed and sites were 

attributed a damage score. This score is an estimate of damage volume weighted by an indication of how 

anomalous the site is relative to the remaining data in the tile.  

 

Figure 20. Road surface anomaly detection algorithm workflow overview. 

4.2.3 Output 

This algorithm produces a CSV or KML [7] file generated from the centroid of each cluster of points 

nominated as potential damage sites, along with the associated damage score. 

4.2.4 Results 

A visual comparison of the output of this algorithm with a known road damage site in Puerto Rico 

due to Hurricane Maria is detailed in Figure 21. As a proxy for output of the road detection algorithm, roads 

were manually labeled in this example. 

The leftmost images are pre-storm and post-storm imagery that show significant flooding and related 

road damage at the site. The output of the road damage detection algorithm for candidate damage locations 

is shown at the lower right, with yellow pushpins indicating potential damage. One can compare the output 

to the human-annotated image of GM-LIDAR at the top right. 

Tile point cloud data 
(Area=500m^2)

Classification of road and non-
road points using Road 

Detection Algorithm

Filter points with 
‘onRoad’==True and with 

‘HeightAboveGround’ < .75m

Gaussian fit; filter data above 
fixed Mahalanobis distance 

threshold
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damage score: 
∑HeightAboveGround*Mahala

nobis distance

Combine into final product: 
CSV or KML of detected 
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Figure 21. Road damage detection sample. 

There are insufficient data to calculate an algorithm performance ROC curve at this time.  

4.3 ROAD NAVIGABILITY 

In addition to identifying road damage for the purposes of repair efforts, the damage log can be used 

as an input to a program that finds routes for ingress/egress in the affected area. 

4.3.1 Overview 

The purpose of the road navigability method is to find paths from one set of points (sources) to another 

set of points (sinks) that avoid the damage identified through the road damage algorithm. This can mean 
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routing that simply takes parallel roads, which are slightly less efficient; routes that go through parking lots 

and other hard surfaces; or in the most extreme cases, through flat areas such as fields. Which routes are 

considered acceptable is dependent on the type of vehicles that are being considered and their specific 

capabilities. 

In the immediate aftermath of a disaster, there is a need for individuals to evacuate the area and for 

emergency responders to enter. However, the typical pathways they would have employed may have 

become damaged or blocked as part of the disaster. As such, a method that provides directions under the 

constraints of this damage is beneficial. 

4.3.2 Workflow 

This method uses both the road information from OSM and the GM-LIDAR point cloud 

characterization. These two datasets provide complimentary features that are needed to quickly find routes 

that are also efficient. The most rapid computation of routes is accomplished using the road definition 

because it has far fewer points than the GM-LIDAR that need to be considered. The GM-LIDAR point 

cloud, on the other hand, has information about the topology of the world that is needed for finding routes 

that do not strictly stick to roads. 

Before road navigability is computed, the roads and road damage need to be identified using the 

previously described methods. The road probability from the road-finding method is used in road 

navigability to identify areas that are similar to roads such as parking lots that should be considered during 

the routing process. 

All routing in this method is done using a weighted A* algorithm, though it will be applied to 

different graphs. This function is notated as 𝐴∗(𝑝, 𝑝′, 𝐺) and returns a list of points 𝑃 =
(𝑝1 = 𝑝, 𝑝2, 𝑝3, … , 𝑝𝑘 = 𝑝′). In this case, the weighting between points will be equal to their Euclidean 

distance. However, when routing on the GM-LIDAR point cloud, these weights will be multiplied by 

factors associated with their difference in elevation and probability of being a road. 

The algorithm starts by finding the path between a starting point and an ending point on the OSM 

data. This should be familiar to anyone who has used online driving directions. Once this route is 

established, we determine how reachable each of the waypoints on that route are using the GM-LIDAR 

point cloud. Some of the initial waypoints may prove to be unreachable and will be discarded. 

In order to perform routing on the GM-LIDAR point cloud, we have to provide it with a graph 

structure. This is accomplished by finding the nearest k points to each point and connecting them with an 

edge. 
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Figure 22. A point in the GM-LIDAR point cloud along with connections to the eight closest neighbors. Applying 
this methodology to all of the points in the set creates a graph. 

Consider the entire road graph from OSM as a weighted graph 𝐺𝑟 = (𝑉𝑟, 𝐸𝑟 ,𝑊𝑟) and the graph 

induced on the point cloud as 𝐺𝐿 = (𝑉𝐿 , 𝐸𝐿 ,𝑊𝐿), where V is a set of vertices, E is a set of edges and W is 

the set of weights on the edges. We will use a projection operator, 𝜋(∙), that takes a point in the set of OSM 

vertices and returns the nearest point in the GM-LIDAR point cloud set. The star projection operator 𝜋∗(∙) 

finds the nearest point, which is also a point identified as a road in the road detection method. 

One critical aspect of routing is the proper application of a weighting scheme. Weights on the OSM 

graph are calculated as the Euclidean length of the edges. The GM-LIDAR point cloud contains significant 

more information, so more can be done with the weights. For our purposes, we use the scheme 𝑊 = 𝑑 ∙

((1 − 𝑝) + 𝛿𝑟 + 𝐷 + 𝓏𝑐) where d is the Euclidean distance, p is the probability assigned by the road 

detection algorithm, 𝛿𝑟 is whether or not the points are identified as roads by the road detection algorithm, 

D is the cost associated with damage as identified in the road damage process (may be infinite), and 𝓏𝑐 is 

the difference in elevation between the points raised to some amplifying power. This scheme has the effect 

of making the weight on edges between points that are very likely roads to be close to zero. 

Start with the optimal path 𝑃 = 𝐴∗(𝑝, 𝑝′, 𝐺𝑟). Then, find the path 𝑃1 = 𝐴∗(𝜋∗(𝑝1), 𝜋
∗(𝑝2), 𝐺𝐿). If 

this path exists, then we can more to 𝑃2 = 𝐴∗(𝜋∗(𝑝2), 𝜋
∗(𝑝3), 𝐺𝐿). Otherwise, the point is not accessible 

and we have to check 𝑃1 = 𝐴∗(𝜋∗(𝑝1), 𝜋
∗(𝑝2+𝑖), 𝐺𝐿) for increasing 𝑖 until a path is found. As we move 

down the chain, this process has to be repeated for each segment. 

4.3.3 Output 

This process produces a list of points in the GM-LIDAR space that a traveler would take to get from 

one point to another. It is able to do this in an efficient manner by only looking at local points instead of 
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trying to route over the entire point cloud. It fuses the information from GM-LIDAR detection with the 

routes calculated on the more efficient OSM representation. 

4.3.4 Results 

The output can be visualized on the GM-LIDAR point cloud. These maps could be downloaded to 

personal devices of emergency workers entering the area. 

 

Figure 23. The most efficient route on the undamaged road (left), and routing around a damaged site placed in the 
path of the most efficient route (right). 

In Figure 23 above, the route is colored in green and roads are in red. The left image shows an efficient 

route, whereas the right image shows how a damage site is routed around using this process. As can be 

seen, there is a significant detour, but it tends to stay on the roads. This is the result of the weighting methods 

employed that makes the costs of roads very low. A different weighting scheme could potentially route 

through the front yards of the houses bordering the damage site. 

Further development should focus around developing the weighting scheme to meet the needs of 

responders. This would involve assessing the capabilities of response vehicles and matching them to the 

sensed differences in the environment. For example, curbs need to be weighted in a manner consummate 

with the ability for them to be climbed by the vehicles being employed in the response. 

Another direction for development that builds on this capability is the identification of isolated areas. 

Some remote cities are serviced only by a single or small number of roads, and if these become severed, 

there is no way in or out. Quickly identifying this condition is critical to the planning of response efforts, 

as it will take extra effort to reach these stranded communities. 

This capability can also be extended to efficient routing for the delivery of supplies. If the sources 

are ports and sinks are potential aid distribution points, then routes can be found to efficiently deliver the 

aid to where it is needed. Finding particularly long routes could also inform the need for the selection of a 

different distribution point. 
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4.4 STRUCTURE DETECTION 

The purpose of this algorithm is to determine the feasibility of identifying building structures in a 

GM-LIDAR point cloud for the future purpose of enabling building damage detection at scale for 

catastrophic disasters. Research was conducted into numerous existing methods of semantic segmentation 

of point cloud data, and the “Semantic Classification of 3D Point Clouds with Multiscale Spherical 

Neighborhoods” [9] was selected to be adapted to AOSTB data, and extended for structure detection.  

4.4.1 Workflow 

The input is a GM-LIDAR dataset consisting of x, y, and z coordinates, along with the relative 

reflectivity, signal-to-noise ratio, significance ratio, and confidence. Using these attributes, an additional 

set of geometric features are calculated using various neighborhood scales surrounding each point. This 

augmented point cloud is then classified utilizing a trained random forest model. The resulting labels suffer 

from a large false positive rate, which is addressed by post-processing the positive points with a K-nearest 

neighbors filter followed by an agglomerative clustering filter to remove unstructured noise in the labels. 

Only clusters with a sufficiently large number of points are retained. The process is illustrated in Figure 24. 

 

Figure 24. Building detection workflow overview. 
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4.4.2 Output 

The output of the algorithm is a BPF file of the original GM-LIDAR point cloud with an attribute 

representing the pointwise building label classification. 

4.4.3 Results 

The initial ROC curve of the unfiltered random forest classifier results show that the model is able to 

capture almost all building points below a false positive rate of 0.10; however, because of the large class 

imbalance in favor of non-building points, this still amounts to many misclassified points relative to the 

number of building points.  

 

Figure 25. ROC curve parameterized by random forest estimator vote threshold for classification. 

Provisional results of the post-filtered class assignments are contained to a qualitative analysis. 

Generally, it was found that the truth masks do not capture all buildings present in the GM-LIDAR scene 

and falsely label foliage above the building footprint as part of the building. The trained model can discern 

these points and, in some cases, performs better than the hand-truthed data. 
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Figure 26. Top view comparing truth mask with final building prediction. Circled in white are various buildings 
unmarked in the truth mask, but captured by the model. 

 

Figure 27. Oblique view of truth mask and final prediction. 

Although results are promising, there are significant challenges to expanding this methodology to 

identifying building damage. The first challenge is in collecting and annotating truth data. Earthquake 

damage is structurally different from hurricane damage and examples of each (or any other “type” of 

damage) should be collected before the model can be expected to identify such features. Another challenge 

lies in the nature of the data collected. GM-LIDAR alone is limiting in that the algorithm can only leverage 

the raw point cloud with limited reflectivity data. Current machine-learning algorithms on strict point clouds 

perform worse than those with color features. Therefore, it is recommended that for both building detection 
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and future damage detection, RGB data or even hyperspectral data should be co-collected with points to 

provide an additional discriminating feature. 
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5. OPERATIONAL CAPABILITY UPDATES (JUNE 2019 CAMPAIGN) 

Although the AOSTB GM-LIDAR system had been used previously for smaller-scale tests, the work 

in Puerto Rico was the first attempt to use this system at scale. In doing so, a number of specific shortcoming 

and opportunities for improvement were identified and addressed as part of the June campaign preparation. 

In doing so, we were able to perform an end-to-end workflow demonstration to provide predictable 

timelines from wheels-up to usable data products in hand. When selecting targets for our tests, we worked 

with the state of Rhode Island to select target areas that, while still meeting all of our test criteria, could 

also be used by them for urban planning, urban forest assessments, and coastline analysis. 

5.1 CAMPAIGN OVERVIEW 

A number of sensor hardware and software upgrades were performed to improve sensor stability and 

reliability, and to ultimately achieve predictable, timely, and actionable data product generation. The first 

hardware change was aimed at addressing image quality issues observed in the Puerto Rico data. Upon 

careful examination of the sensor hardware, a number of laboratory-grade optical mounts were found to be 

potentially responsible for image blurring and warping when used in high vibration environments, such as 

aircraft. These mounts, along with the IMU mount, were replaced with significantly more rigid elements. 

The next hardware change was the installation of a new transmitter (laser), which increased output 

power by 300%. The increase in output power allows for faster scanning at higher altitudes, increasing the 

area coverage rate as well as point density. With this increase in laser power came an opportunity to explore 

daytime operations. For this, an additional narrow bandpass spectral filter and oven assembly were installed 

into the system, which prevented most sunlight into making its way into our receiver system and 

significantly reduced noise attributable to sunlight. Although nighttime data collection is still preferred for 

optimal quality, daytime operations are now a viable option. 

During the flight campaigns, operators also observed the transmit beam would occasionally shift 

(likely due to thermal flexing of the mounts in a cabin without environmental controls) and sometimes 

nearly completely miss the receiver. To address this, we incorporated new opto-mechanical (piezo) control 

elements for the transmit optics, which allow the operator to physically move the transmit beam from a 

software control panel on the operator workstation. This was an important safety improvement, as fatigued 

operators no longer have to get out of their seats, walk over to the optical bench, unscrew and remove the 

optical enclosure cover, and physically twist knobs to move the beam back into view. 

Operating over mountainous terrain in Puerto Rico, sensor operators noted the difficulty in 

maintaining an optimal “range gate”, where the receiver system is told to start being sensitive to photons 

and when to stop. At the beginning of the range gate, each pixel is sensitized, or “armed”. Once armed, it 

is sensitive to any photon returns or other source of noise (e.g., thermal, spectral). Upon absorbing the 

energy from a surface-reflected photon or from a phonon or other source of noise, the pixel is said to have 
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“fired” and takes some amount of time before it can be re-armed. This period of time is called “dead time”. 

In an ideal world, pixels are all armed just before the terrain (range gate is opened), and the range gate is 

closed just after below the terrain, so that you reset and re-arm as fast as possible. The wider the range gate, 

the more potential you have for a noisy image. 

When an operator is manually adjusting range gating, as was the case for the Puerto Rico data 

collection, the gate must be kept wide enough to account for human reaction time, trying to keep up with a 

rapidly changing range histogram with its own software delays. Automatic range gating was added as a 

capability for the June test campaign and enables the AOSTB to collect cleaner, crisper, data over any types 

of terrain. It also alleviates a significant source of operator fatigue. 

Lastly, a long-wave infrared (LWIR) contextual imager was added, offering a nighttime thermal 

imaging capability that can provide an additional thermal contextual overlay to the 3D imagery. Beyond 

incorporating this as a standalone capability, the imagery has not yet been used for furthering exploitation 

of GM-LIDAR data or for the creation of fused products. 

All of the improvements and changes were thoroughly tested as part of the June campaign to ensure 

that the system would be ready for another data collection effort of at least similar scale to the Puerto Rico 

campaign.  

5.2 ROAD DAMAGE 

The road damage detection algorithm was run on the set of Massachusetts GM-LIDAR data from the 

campaign. As a proxy for the output of automated road detection, data that weren’t within parcel data and 

within water body boundaries were classified as road data. 

The resulting distribution of damage scores is shown in Figure 28. 
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Figure 28. Damage score distribution. 

Removing false positives due to errors in road classification in this early version of a road detection 

algorithm, we plot the lower graph of the distributions of damage scores. 

An investigation of the highest-scoring site in this set revealed that this location lined up with a road 

reclaiming site in Bedford, MA, at the time of the campaign.  
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Figure 29. Road construction detected by algorithm. 

The campaign thus provided not only early validation for this approach to road damage detection, but 

also demonstrated the reliance of the algorithm on accurate classification of roads. Several shortcomings of 

the parcel data-based approach were addressed by the current road detection algorithm. 

5.3 AIRPORT-BASED GEOREGISTRATION VALIDATION 

Determining and improving the horizontal georegistration accuracy of data collected in a disaster 

timeframe was a challenge during the Puerto Rico campaign. For the Operational Capability test campaign, 

MIT LL developed a methodology for consideration to address these challenges. 

Traditional LIDAR collections often rely on establishing a matrix of ground control points throughout 

the study area. The ground control points are features that will be clearly visible in the collected data that 

are surveyed to a high degree of accuracy prior to data collection. This approach does require time-

consuming field work ahead of the LIDAR collection, which is not likely possible during a disaster response 

or recovery, limited both by timeframe and access to the field. There are also existing control points 

established by USGS and the Continuously Operating Reference Stations (CORS) [10] established by 

NOAA; however, these points are not guaranteed to be located within the collection area or discernable in 

GM-LIDAR data.  
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MIT LL investigated using GIS vector data for road centerlines as a reference guide; however, there 

is significant variance in horizontal accuracy of road centerlines, making this approach not reliably scalable 

across the U.S. 

The proposed approach is to use airport centerlines as a quick reference for horizontal georegistration 

accuracy. Per FAA Advisory Circular 150-5300-18C [11], airport centerlines must be surveyed to within 

1 ft (~30 cm). This provides a defined reference that is clearly visible in GM-LIDAR due to the relative 

reflectivity data clearly depicting runway centerline paint. The ubiquity of even small airports indicates a 

high likelihood that one or more airport will be in the collection area. At minimum, the collecting aircraft 

will fly over one airport at the beginning and end of any given sortie (takeoff/landing).  

Automated scripts were developed that extract airport runway centerline data from a database of all 

airport GIS data, generate a vector data file that contained a centerline with additional lines spaced at 0.5 m 

from that centerline for those airports, and collect the processed GM-LIDAR tiles that spatially overlap the 

airports. This enables a very fast manual check of horizontal georegistration. A sample of this output is 

shown in Figure 30. 

 

Figure 30. Airport runway centerline with 0.5 m intervals shows roughly 0.5 m offset from GM-LIDAR. 
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Future development could use the relative reflectivity of the airport centerline to automate a 

calculation of variation from the georeferenced centerline vector data. Airports typically include more than 

one runway with differing orientations, which could theoretically provide a reasonable set of references 

across the AOI to determine transformation matrices to shift the data as needed to improve the registration.  

5.4 OPERATIONAL TIMING 

An effort was made during this capability test to establish a baseline for data collection and data 

processing. The sortie that was selected covered an area of 250 square miles, corresponding to the size of a 

study area in Puerto Rico being evaluated by other laboratories involved in FEMA’s Remote Sensing 

Innovation Working Group. A running time log was recorded for each step of the sortie, starting with 

aircraft engine start and ending with notification that road damage analytics had completed.  

Based on this sortie, the planning numbers for collecting, transferring and processing a 250 square 

mile AOI is roughly 33 hours, followed by 2–3 hours of additional algorithms, for a total of 36 hours. 

There are two caveats to these planning numbers:  

1. The data transfer was performed under ideal conditions with near co-location of the aircraft 

and a high-speed data transfer to the MIT Lincoln Laboratory Super Computer. Operational 

conditions may have longer data transfer times. 

2.  The road damage analytics that were executed for this sortie used an early version of the 

algorithm. Current versions perform substantially more analysis, so will take longer to 

complete.  

As shown in Figure 31, additional time should be allocated to acquiring the appropriate aircraft for 

the mission and installing the sensor onto that aircraft.  
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Figure 31. AOSTB execution timeline. 

5.5 RESULTS 

The operational capability test demonstrated successful corrections to several lessons learned during 

the Puerto Rico collection. For example, the horizontal georegistration was greatly improved and automatic 

range gating allows for collection of widely varied terrain.  
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6. FRAMEWORK FOR REMOTE SENSING BASED DISASTER RELIEF  

The work performed by MIT LL in support of FEMA’s recovery efforts in Puerto Rico after 

Hurricane Maria identified significant challenges to effective application of remotely sensed data to support 

disaster recovery needs. The challenges were both technical and organizational in nature. Further 

compounding these challenges, the landscape of remote sensing support for disaster response and recovery 

continues to expand rapidly, with numerous academic, government, and industry organizations developing 

both manual and automated exploitation systems using all available sensing modalities.  

A well-known standard process for leveraging remote sensing for information is the tasking, 

collection, processing, exploitation, and dissemination (TCPED) chain. Although this methodology works 

well for intelligence, surveillance, and reconnaissance (ISR), MIT LL recommends modifying the chain for 

use by the emergency management community in order to leverage the myriad sensing modalities and 

analytics under development. 

1. Determine Area of Impact/Interest (AOI)—Geographically bounding the disaster impact area 

helps to identify the best available remote sensing systems for the event. Additionally, by 

understanding what exists within the AOI, emergency managers can further refine mission 

requirements. For example, disasters occurring within dense urban areas will have different 

requirements than a disaster occurring in a less populated or concentrated industrial area.  

2. Mission Tasking—This step in the chain is similar to the tasking and collection phased of TCPED, 

but should be guided by emergency management requirements in the AOI. Determining which 

remote sensing platform should be tasked, given the AOI and the requirements is a substantial 

challenge. Satellite imagery can be slowed by orbit times and weather conditions, and aircraft-

based sensors can be slowed by proximity to the AOI and their area collection rate. With some 

exceptions, a typical approach is to simply collect any and all available imagery.  

3. Analysis and Distribution—In this proposed process chain, analysis refers to the automated or 

crowd-sourced damage detection within imagery by multiple teams and organizations. The 

distribution portion of this phase refers to each of the analyzing organizations sharing their results.  

4. Validate, Aggregate, and Disseminate—With numerous academic, government, and industry 

partners producing automated damage detections using artificial intelligence and machine learning 

(AI/ML), the volume of output easily overwhelms the emergency management analyst. 

Establishing a method for validating the results of experimental algorithms, aggregating those 

results with thematically similar analyses, and disseminating the combined data as authoritative is 

critical. For example, if there are several organizations conducting automated virtual building 

damage assessments using AI/ML, each using different algorithms that run against different 

imagery sources, and each covering partially overlapping geographic areas, there must be a 
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mechanism for combining and de-conflicting that data into a single stream of validated damage 

assessments.  

5. Feed Decisions—The final step of this analysis chain is to provide actionable data directly to the 

relevant emergency management analysts across federal, state, territory, tribal, county, and local 

governments.  

To enable the success for such a modified decision analysis chain, MIT LL has developed an open 

standards framework for remote sensing-based disaster response and recovery decision support. This 

framework provides a template for the emergency management community to engage with industry and the 

research and development community to best identify how remotely sensed data can support disaster 

information and analytical needs. The framework has five components. 

1. Define Requirements—Define quantitative requirements for each FEMA Lifeline component. 

2. Characterize Systems—Use a standardized method for characterizing remote sensing platforms 

and algorithms together as a system in terms of their applicability to the defined requirements.  

3. Mission Tasking Guidance—Developed by comparing the specifics of a disaster event with 

relevant requirements and spatiotemporally available systems that meet those requirements.  

4. ERSLA—Use a standard format for communicating analytical results. MIT LL has drafted the 

Emergency Remote Sensing Language (ERSLA) specification to meet this need.  

5. ERSAT—Provide a toolset for validating, aggregating, and disseminating analyses. MIT LL has 

developed the Emergency Remote Sensing Tool prototype to demonstrate this proof of concept.  

Each component is described in detail below. 

6.1 DEFINE QUANTITATIVE REQUIREMENTS 

Perhaps the most significant challenge encountered when applying remotely sensed imagery to the 

disaster recovery context is the lack of quantitative requirements. Requests from the emergency 

management community can lack the detail required, phrased such as “We need to find road damage”, 

whereas the quantitative details that can answer that question in the way that is most useful to the operation 

have not been defined.  

To illustrate what is meant by defining quantitative requirements, consider this road navigability 

example: 

Guided by roadway requirements [12] and significant interaction with JRO Transportation Sector site 

inspectors, we can describe road navigability as being a combination of damage to the roadway and 

impediments blocking the roadway. As shown in Figure 32, we define several levels of access to the road, 
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from fully passable to no access. Describing the level of access addresses the nuances to road damage post-

disaster; where a roadway may not be fully intact, but it can still be used for emergency use by first 

responders or with limited capacity by local residents. What dictates the level of navigability can be 

categorized into damage or impediment. The size of damage and the location or distribution of the damage 

within the roadway both affect the ability to traverse the road. Impediments may include debris such as 

fallen trees or flooding. Similar to damage the impediment size, depth, and location on the road determines 

whether the road can be navigated by vehicles.  

 

Figure 32. Road navigability detection requirements. 

To truly understand the navigability of a road network, the emergency manager needs to know the 

size, location, and distribution of damage sites; the size and location of debris blocking the road; and the 

size, location, and depth of floodwaters covering the roadway.  

MIT LL recommends that FEMA engage in a detailed requirements analysis that spans all 

components of the FEMA Community Lifelines.  

6.2 SYSTEM CHARACTERIZATION  

Remote sensing systems must be characterized in such a way that their applicability to emergency 

management requirements is clear. Such characterization allows for the emergency management 

community to determine the most applicable systems as part of mission tasking.  

In many other remote sensing-based information support contexts, the match of a sensor platform to 

the requirements can be articulated relatively easily as a single matrix in a spreadsheet. However, 

incorporating the combination of a sensor platform and one or more AI/ML algorithms for automating 

observations introduces a level of complexity that cannot be easily represented in two dimensions. MIT LL 
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reviewed numerous approaches to visualizing system capabilities across several disparate attributes, 

including multidimensional matrices, and determined that the spider chart is most appropriate.  

For illustration purposes, the following example breaks down each attribute recommended into five 

levels of performance. Each attribute has different values and scales, but are binned into these five levels 

for consistency and correlation to the requirements. The requirements described in the previous section 

would be specific ranges for each attribute.  

In TABLE 8, this example set of system performance characteristics are related to the corresponding 

requirements of a system that can collect 300 mi2 with an 85% probability of detection of the observation 

in question, process those data, and detect the damage type in question with 85% or better accuracy, meeting 

an operational need of a total of 96 hours or less. Note that the values are ordered differently so that the 

first value represents the least desirable/lowest performance, as though each attribute were rated on a scale 

from 1–5.  

TABLE 8 

System Performance and Requirements 

Attribute Description Range of Values  Required 

(samples) 

Probability 

of detection 

Can the sensor detect the observation 

required? Determination based on sensor 

resolution 

 0–50: None 

 51–75: Minimal 

 76–85: Low 

 86–90: Moderate 

 86–100: High 

85 or better 

Revisit Time How often this can sensor revisit a given 

AOI 
 96 hours 

 72 hours 

 48 hours 

 24 hours 

 12 hours 

48 hours  

Next 

Availability 

How soon the sensor can conduct the first 

collection over the AOI 
 96 hours 

 72 hours 

 48 hours 

 24 hours 

 12 hours 

48 hours 

Area 

Collection 

Rate 

Rate at which the AOI can be captured  100 mi2/day 

 200 mi2/day 

 300 mi2/day 

 400 mi2/day 

 500 mi2/day 

200 mi2/day 
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Data 

Processing 

Time 

Length of time required to process data; 

suggested units are hours per area 

collected; should include time required to 

run AI/ML algorithms and deliver output 

 96 hours/250 mi2 

 72 hours/250 mi2 

 48 hours/250 mi2 

 36 hours/250 mi2 

 24 hours/250 mi2 

48 hours/ 

250 mi2 

Algorithm 

Performance 

How well the AI/ML algorithm associated 

with the requirement performs; suggested 

units are a decimal representation of the 

AUC of a ROC curve; this metric shows 

an algorithms performance in terms of 

true positives vs. false positives 

 0–0.5: Not better than chance 

 0.51–0.75: Evolving 

 0.76–0.85: Good 

 0.85–0.9: Very Good 

 0.91–1.0: Exceptional 

Very good 

 

Tabular presentation of these requirements can be difficult to interpret quickly. Presenting the data in 

spider chart form allows for a quick visualization of the requirements. Furthermore, any given system of 

sensor and algorithm can be overlaid onto the requirements, and the appropriateness of that combination to 

the requirement at hand can be very quickly visualized.  

Shown in Figure 33, each of the attributes are a vertex of the spider chart. The values of each 

attribute’s requirement are depicted on a 1–5 scale, creating a shape. Overlaid as the dashed orange line are 

the performance values of the MIT LL AOSTB to show how well that particular system can meet the 

requirements.  

In this particular case, the example is showing the actual requirements and performance for “road 

finding”, extracting the road network from an AOSTB collected GM point cloud. Note that the AOSTB 

well exceeds all of these requirements except for availability. Until AOSTB transitions to an operational 

tool, there may be some delay in deploying the asset, and visualizing the performance vs. requirements in 

this way can bring that to the attention of mission tasking.  
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Figure 33. Spider chart depiction of requirements vs. system performance. 

6.3 MISSION TASKING GUIDANCE 

After quantitative requirements are clearly defined and systems comprised of sensors and algorithms 

are characterized in terms of their applicability to those requirements, sophisticated mission tasking can 

occur.  

Considering the road navigability example, the total answer to “are the roads passable?” is the 

composition of road damage, damage distribution, debris obstructions, and water inundation. Each of these 

observation requirements are satisfied with different systems of sensors combined with algorithms.  
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A notional example is shown in Figure 34. Each component observation that informs road 

navigability is satisfied with a different system of sensor and algorithm. The visual correlation of system 

performance to requirements provides an easily interpreted guide.  

 

Figure 34. Notional depiction of multi-system mission tasking to determine road navigability. 

The ultimate implementation of this framework would enable real-time mission tasking based on the 

observed or modeled conditions of the disaster. The first mission assigned could be to further scope the 

subsequent missions by identifying which FEMA Lifeline components exist within the AOI. The results of 

such missions could be the recommendation of which predetermined systems can meet the observation 

requirements, and furthermore identify which of those assets are most readily available and viable given 

the disaster location, environmental conditions such as cloud cover, and the day and time of the event.  

It is important to note that the solution for road navigability (as well as other FEMA Community 

Lifeline components) will likely require multiple systems. As such, the output from these systems must be 

in a standardized format so that they can be easily aggregated and ingested by the emergency management 

community. To meet this need, the Emergency Remote Sensing Language (ERSLA) is described in the 

next section. 

6.4 COMMON FORMAT FOR COMMUNICATING OBSERVATIONS (ERSLA) 

Appropriate disaster response relies on timely and accurate information to provide a clear picture of 

the current situation. This information may take many forms to include reports, graphics, and analysis 

products. Some may start as geospatial data collected from an imaging sensor, such as an airborne GM-

LIDAR platform. Regardless of the source, data analysis should only contain the information needed to 

develop a coherent picture of the current situation. Additionally, this analysis should be formatted to be 

easily integrated into the disaster response planning workflow.  



 

 

60 

After evaluating several existing message communication formats used in disaster response and 

management, military communications, and general network messaging technology, we found that no 

single format existed that adequately captured sensor analysis for use in disaster response. In response, we 

developed an extensible markup language (XML)-based hybrid of an existing format. We call this new 

message format Extended Remote Sensing Language (ERSLA). 

The ERSLA message format was derived largely from the cursor on target (CoT) message format 

[13]. The CoT was designed to succinctly convey information regarding a point, a volume associated with 

that point, and attributes associated with that combination. This type of terse description and its associated 

format is valuable for emergency management in order to convey information about locations or entities 

that have been affected or damaged.  

By using an XML format, this new message type can be inserted into other XML-based disaster 

response messages, such as the Emergency Data Exchange Language (EDXL) [14], where appropriate. Not 

only can ERSLA be used to communicate sensor analysis results from various remote sensing and analysis 

systems, it can also be used to capture information based on social media-sourced data and analysis. ERSLA 

can also be used to ingest the results of surveys, to include the type of geo-referenced information collected 

by the DDD or the CERT Damage Assessment Form. The extensible nature of ERSLA enables ingestion 

of future geo-referenced sensor and survey data.  

The lightweight, low bandwidth nature of ERSLA messages supports the potential for digitally 

communicating damage observations from sensing aircraft while still in flight. The standardized format 

enables partners developing AI/ML algorithms to adjust the schema of their output.  

6.4.1 General Format 

ERSLA’s XML format enables the message contents to be self-describing. This, in turn, enables other 

tools to generate or parse an ERSLA message. The message is designed to convey those aspects from 

imagery or other “sensor” analysis products that are relevant for Humanitarian Assistance and Disaster 

Relief (HADR). The ERSLA message will contain attributes from a base message schema specification 

and, if appropriate, from a details sub-schema specification. The sub-schema is used to elaborate on the 

information contained in the base schema. Additionally, the ERSLA message shall be populated with a 

required set of attributes; these will be denoted by the value of YES in the Required in Initial Message field 

portion of the Attribute specification. 

For example, if the message is only describing information about a point, the ERSLA message will 

only provide the location of that point in the base portion of the message, along with the other salient non-

spatial aspects of the message. If, however, the geometry associated with the ERSLA message is a line or 

a polygon, then the message organization becomes more complex. The base message still contains the point 

information associated with the center of the more complex geometry. Additional, geometry information 

held in the details sub-schema. Such message organization facilitates message parsing to support various 
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levels of analysis. The full draft specification for ERSLA, including message organization and definitions, 

can be found in Appendix B. 

6.5 VALIDATING AND AGGREGATING OBSERVATIONS (ERSAT) 

6.5.1 Overview 

As described in the first three steps of this framework, the solution for fully satisfying requirements 

will likely require observations derived from multiple modes of sensing. The ERSLA messaging approach 

enables these observations to be combined into a comprehensive representation of each observation. The 

explosion in AI/ML efforts to identifying damage in disaster contexts introduces the potential for powerful 

automation, but there is a need to validate the automated results and to aggregate them with the results from 

other systems.  

To accomplish this portion of the open standards framework, MIT LL has developed a prototype 

software toolset named the Emergency Remote Sensing Analysis Tool (ERSAT). The primary use case of 

this application is for analysts to view and validate damage observations from AI/ML algorithms that have 

been executed against remotely sensed data and communicated via ERSLA message. The tool is intended 

to give the analyst the ability to view an observation, not only in the context of the imagery originally used 

to generate the observation, but also with other imagery or data sources that may provide the analyst with 

the needed understanding of the observation to determine if it is valid or not.  

As ERSLA messages are ingested from multiple sources, the links to the original imagery sources 

are cataloged by ERSAT, building an internal library of imagery that could be leveraged to support 

observation validation. After a few observations, the analyst may develop a level of trust with the 

algorithm’s output and validate the remaining observations. The ERSAT system will allow analysts to 

validate the data based on the reported performance of an AI/ML algorithm if that performance falls within 

the agency’s acceptable risk threshold.  

The Entity attribute specified by the ERSLA messages correspond to the types of things observed, 

such as roads or structures. For any message that is validated by an analyst, those data is added to a GIS 

REST service published by ERSAT.  

ERSAT is designed to ingest ERSLA messages, but the architecture allows for the development of 

micro-services that could ingest data from other GIS data sources such as REST services, KML, or ESRI 

Shapefiles, so long as those data sources matched the ERSLA schema.  

Continuing with the road navigability example, if road damage is derived from MIT LL algorithms 

executed against GM-LIDAR data and road flooding is communicated via algorithms executed against 

synthetic aperture radar data, the valid output from those two data sources are published as a common “road 

status” service that can be ingest by emergency management analysts at any level of government. 
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Figure 35. ERSLA/ERSAT analysis workflow. 

6.5.2 Technical Implementation 

ERSAT is a robust, distributed system that uses the latest web technologies in order to enable users 

to visualizes and assess remote sensing data in a modern web browser. Through the use of open source 

applications, ERSAT is well equipped to handle all types of future software requirements. Components 

consist of: 

• Keycloak [15]: all communication channels and data access are behind this open source 

identity and access system; this will position ERSAT for future support for users with various 

levels of access and privileges  

• GeoServer [16]: the well-known open source geospatial data server allows GIS data to be 

shared across other web mapping services in a variety of industry standard formats, enabling 

distribution of data to all emergency managers involved in the disaster 

• PostgreSQL [17]: all data are saved and organized in the well-known open source relational 

database application PostgreSQL. 

• NGINX [18]: “Engine X” is an open source HTTP and reverse proxy server  

The architecture allows users to review all of the information gathered from analysis products and 

would provide a singular location for storing, viewing, and analysis. The communication between the 

components of ERSAT is via an application programming interface (API) that positions the tool well for 

expanded capabilities and potential integration with other systems.  
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All of these component applications are also able to be deployed on a multitude of software 

environments such as CentOS [19], Ubuntu [20], and even Amazon Elastic Compute Cloud (EC2) [21] 

instances. By doing so, FEMA could deploy ERSAT to Amazon EC2 and train partners or crowd source 

organizations on its use.  

ERSAT is a prototype application and a fully deployable enterprise system would require additional 

development.  

 

Figure 36. ERSAT architecture. 
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7. RECOMMENDATIONS 

This section presents a summary of MIT LL recommendations based on the laboratory’s experience 

supporting FEMA at the Joint Recovery Office in Puerto Rico in the context of extensive experience 

supporting federal agencies across numerous mission areas. 

7.1 NORMALIZE REMOTE SENSING-SUPPORTED DAMAGE ASSESSMENTS  

There are numerous benefits to using remotely sensed data to support damage assessments. MIT LL 

recommends that FEMA leadership continue to support the research and development of remote sensing 

support of disasters and continue to introduce the technology into FEMA program areas. 

When properly applied and exploited, remote sensing has the capacity to increase operational 

efficiencies by speeding response and recovery times while also reducing overall costs. By collecting 

imagery immediately after a disaster, including a high-resolution 3D model derived from GM-LIDAR, 

FEMA establishes a permanent record of the state of damage for an AOI. This permanent record can be 

used for to support response, long-term recovery, and mitigation against future disasters.  

Attempting to inject new technology into high-stress, time-sensitive operations can detract from the 

success of the technology. To alleviate this, MIT LL recommends that FEMA continue to explore remote 

sensing, including GM-LIDAR, during steady state. 

7.2 EXPAND TRAINING PROGRAMS TO FEMA CONTRACTORS  

The transient nature of the FEMA workforce presents significant challenges in terms of training staff 

on new technology and programs. One strategy that MIT LL recommends is to augment the training of 

FEMA staff by training additional analysts within the contract companies that support FEMA. Establishing 

a cadre of analysts who are familiar with a new technology exploitation methodology, such as the GM-

LIDAR remote sensing damage assessment workflow, provides continuity to the program effort that can 

better adapt to the turnover of FEMA personnel.  

7.3 ADOPT THE REMOTE SENSING FRAMEWORK  

FEMA Headquarters established the FEMA Remote Sensing Innovation Working Group in 2019, 

bringing together several national laboratories working on the broader challenge of incorporating 

observations from remote sensing into the FEMA mission space, including the exploitation of AI/ML 

assessments. This collaborative group is a great step towards effective use of remote sensing to support 

FEMA.  

MIT LL recommends that FEMA work with the other national laboratories within the Remote 

Sensing Innovation Working Group to adopt the remote sensing framework presented in this document in 
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order to establish a structured, end-to-end systems approach that will result in providing standards, tools, 

and techniques that support not only FEMA and its mission, but also state, tribal, territory, and local 

emergency management.  

7.3.1 Requirements Definition  

FEMA has been working towards defining requirements related to remote sensing. MIT LL 

recommends that those efforts continue, but be expanded to include quantitative representations of each 

FEMA Community Lifeline component. Given the interdependent nature for FEMA program requirements 

and overlap with state, tribal, territory, and local requirements, the remote sensing requirements definition 

effort should be done as an agency-wide, detailed systems analysis.  

7.3.2 Systems Characterization 

FEMA Headquarters has been cataloging the remote sensing assets available to them on a routine 

basis, such as the Civil Air Patrol (CAP). MIT LL recommends that the system cataloging efforts be 

extended to include a combination of the sensor and accompanying AI/ML exploitation algorithms.  

For example, an effort underway by FEMA that leverages the CAP using a camera system to collect 

3D imagery, and then uses an AI/ML algorithm to estimate structural damage presents an immediate 

opportunity to shift the system characterizations. MIT LL recommends that this system be characterized 

using the same methodology used to characterize the AOSTB GM-LIDAR system, as described in Section 

6.2.  

Establishing a standard way to characterize sensors coupled with AI/ML algorithms as combined 

systems will assist the emergency management community greatly in evaluating the most appropriate tools 

available to them.  

7.3.3 Mission Tasking Guidance 

MIT LL recommends that FEMA use the detailed requirements gathered and system characterizations 

to inform their current mission tasking plans. The systems characterization can be used to engage program 

areas within FEMA to focus conversations on requirements gathering, and during response or recovery 

operations to help guide collection priorities. 

Given the experimental nature of AI/ML exploitation algorithms and emerging sensor systems, the 

mission tasking guidance should also include experimental missions conducted by the laboratories involved 

in the FEMA Remote Sensing Innovation Working Group. 

7.3.4 ERSLA 

The explosion of AI/ML algorithms under development to support disaster relief generates a deluge 

of data during a disaster. MIT LL recommends that FEMA continue to work with MIT LL and the FEMA 
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Remote Sensing Innovation Working Group to evolve the draft Emergency Remote Sensing Language 

(ERSLA) and adopt this standard as the way for disparate AI/ML algorithms to communicate their results.  

7.3.5 ERSAT 

The effective and timely utilization of myriad data sources and AI/ML outputs that have varying 

degrees of accuracy and confidence requires a software toolset to validate, aggregate, and re-disseminate 

those data. To demonstrate the utility of such a toolset, MIT LL built ERSAT, a prototype system capable 

of displaying 2D imagery and 3D datasets such as GM-LIDAR and analytics resulting from exploiting those 

datasets.  

MIT LL recommends the FEMA continue developing such a capability, following a model similar to 

the CAP Imagery Uploader, that can be accessed by state or local emergency managers for events that do 

not result in a federal declaration. A fully capable enterprise system will require additional funding and 

development time.  
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8. AOSTB FUTURE  

Leveraging lessons learned from the work in support of Puerto Rico’s recovery from Hurricane 

Maria, MIT LL collaborated with Ohio State University’s Battelle Center for Science, Engineering, and 

Public Policy to develop a proposal for the establishment of a National Sensing Asset to more effectively 

anticipate, monitor, and respond to natural and manmade disasters. This program would establish a 

dedicated, airborne, remote sensing platform that would provide cutting-edge technology to all FEMA 

regions. The program would function as a network, ensuring efficient collection of the right information, at 

the right time, and in the right place. The program would be multi-agency and multi-sector: 

• Research and development related to sensing technology will leverage innovations from 

national labs, federally funded research and development centers (FFRDCs), academia, and 

the private sector; 

• Deployment will be conducted by the National Guard in coordination with FEMA and state 

Emergency Management Agencies (EMAs); 

• A robust data science operation will complement the technological backbone and will 

leverage organizations such as the Department of Defense’s Joint Artificial Intelligence 

Center (JAIC) and the National Geospatial Intelligence Agency (NGA). 

Importantly, the National Sensing Asset would be continuously operational. In periods without 

disaster scenarios, the program would conduct vulnerability assessments that can inform risk mitigation 

activities. This is critically important, as underserved communities often face disproportionate harm from 

natural disasters. During disasters, the National Sensing Asset would a trusted mechanism for collecting 

critical information and provide the data analytics required to sufficiently support decision makers. 

Following disaster scenarios, the program will reduce the time required to support communities that need 

supporting resources. 

The National Sensing Asset would constitute a structured mechanism through for stakeholders to 

collaborate, innovate, and prepare in advance of disasters. Similarly, it would present a streamlined process 

for the acquisition of data during and after disaster scenarios. However, perhaps the most important aspect 

of the program is that it would provide a dedicated mechanism for the translation of data into insights for 

decision makers. This will be conducted through a dedicated data science team that is coupled to each 

geographic node of the National Sensing Asset network. The data science team will integrate knowledge 

from across academic, private sector, and government agency partners, including cutting-edge 

advancements in AI/ML. These teams will also define common standards for geospatial data and ensure 

interoperability across the National Sensing Asset data and other sources such as satellites and unmanned 

aerial vehicles (UAVs). 

In addition to protecting our critical infrastructure, the National Sensing Asset would offer a 

significant workforce development opportunity. FEMA Corps is an example of service training through our 
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federal disaster response infrastructure, and has demonstrated a pathway for programs such as the National 

Sensing Asset. A specialized track of FEMA Corps could be established, focused specifically on geospatial 

intelligence that would be synergistic with programmatic elements discussed above such as interaction with 

the National Guard. Participants could conduct liaison activities between academic organizations, federal 

agencies, and the operational core of the National Sensing Asset, and develop highly transferable skills in 

data analytics, communication, and leadership. Engagement with the Corporation for National and 

Community Service in this manner is consistent with the concept of a National Service Reserve Corps, 

which has been proposed as a pathway to civic engagement, education opportunities, and economic stability 

for recent college graduates. As our nation recovers from the dual threat of a pandemic and an economic 

recession and looks ahead to the risks posed by disasters of increasing severity and frequency, this program 

would train the highly skilled, adaptive workforce needed to combat these challenges. 
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APPENDIX A. GM-LIDAR SECTOR FACT SHEETS 

The following fact sheets were produced to illustrate potential use cases for each sector at the Puerto 

Rico Joint Recovery Office (JRO). Some examples were derived from previous MIT LL GM-LIDAR 

missions and some samples were derived from the Puerto Rico AOSTB mission. The fact sheets cover 

sectors for: Transportation, Debris, Energy, Communications, Mitigation, Environment Historic 

Preservation (EHP), Water, Public Building/Housing, Commonwealth, and Natural Culture Resources. 

LIDAR Capabilities: Transportation 

• Road condition/damage assessment 

• Length, width, depth, and volume of damage areas 

• Bridge condition/damage assessment 

• Guard rails missing/damaged 

LIDAR Limitations: Transportation 

• Small or shallow damage areas such as cracks and potholes 

• Debris around bridges may not be apparent in GM-LIDAR data 

• Damaged or missing guard rails may be difficult to see in the data, but may be inferred from 

surrounding damage.  

• Damage assessments enhanced with cues from visual data (Vexcel, Google Earth) 

Reporting Requirements 

 

GM-LIDAR 

Applicable 

Notes 

Road condition/damage assessment Yes Visual detection and/or confirmation of road damage  

(Figure 37) 

Cracks in roads No Cracks and small potholes not detected in GM-LIDAR data 

Missing roads Yes Washouts easily detected from change in elevation of the road 

surface (Figure 38) 

Road shoulders missing Yes Shoulder damage detected from elevation change compared to 

main road surface 

Landslide Yes Road bed washout even with asphalt/concrete road surface 

remaining intact detected by elevation change  

(Figure 38) 

Bridge condition/damage assessment Yes Visual identification of missing or damaged bridges  

(Figure 39) 
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Debris around bridges Possible Larger debris piles resulting from washup on bridge pilings 

visually identified, volume measurements possible; debris under 

bridges cannot be seen 

Missing bridges or pieces of the bridge Yes Lengths of damaged sections measured directly from GM-LIDAR 

data (Figure 39) 

Missing guard rails Possible Not always obvious in GM-LIDAR data, but may be inferred from 

surrounding damage assessments 

Guard rails hanging off a road Possible Not always obvious in GM-LIDAR data, but may be inferred from 

surrounding damage assessments or additional imagery (Figure 

38) 
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PAST SUCCESSFUL USE CASES: TRANSPORTATION SECTOR 

 

Figure 37. Missing roadway. 
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Figure 38. Landslide/road slumped into canyon. Guard rail seen in GM-LIDAR data. 
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Figure 39. Bridge damage: LIDAR (top), Vexcel Visual (bottom). 
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Debris-Related GM-LIDAR Capabilities 

 Locating debris piles along roads, water’s edge 

 Quantity estimations of debris 

o Length 

o Height 

o Width 

o Volume 

 

Debris-Related GM-LIDAR Limitations 

 Cannot detect debris under surface of water 

 Small shrubs and non-debris objects may falsely be identified as debris piles, but these false 

positives may be mitigated using pre-event site data  

 

Reporting Requirements GM-LIDAR 

Applicable 

Notes 

Locations of debris piles along roads Yes  Visual identification  

 Measurements 

Debris piles around bridges (sides of 

bridges, along the water’s edge/around 

a bridge abutment or footings) 

Yes/ 

Possible 

 Visual identification 

 Measurements 

 Limitations: cannot penetrate water or 

detect debris under bridge 

 

 

  



 

 

77 

PAST SUCCESSFUL USE CASES: DEBRIS 

 

Figure 40. Identification of debris piles in Wilmington, NC. 
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Figure 41. Mensuration of debris piles for debris quantity (volumetric) estimation. 
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GM-LIDAR Capabilities: Energy 

• Infrastructure condition/damage assessment 

• Downed towers 

 

GM-LIDAR Limitations: Energy 

• Power lines on ground not visible in GM-LIDAR data 

• Some types of infrastructure damage may not appear in GM-LIDAR data, e.g., blown 

transformers or substations 

 

Reporting Requirements 

 

GM-LIDAR 

Applicable 

Notes 

Transmission lines Yes Visual identification of downed lines, if not fully on 

ground (See Figure 42) 

Power poles Possible Large support tower damage detected in GM-LIDAR 

data 

Substations Yes Major damage to substations visible 

(See Figure 42) 

Power lines on the 

ground/in a road 

No Completely downed lines have the same elevation as 

the ground and are not detectable 
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Figure 42. Power plant and lines. 
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GM-LIDAR Capabilities: Communications 

• Visual identification of pole, tower, or lines (see Figure 43) 

• Visualize cross section of pole, tower, or lines (see Figure 44)  

• Measurements: length, width, height, volume 

• Visual detection of major damage 

 

GM-LIDAR Limitations: Communications 

• Narrow vertical structures may have lower point density and be more difficult to see 

• Low point density could be misinterpreted as damage (e.g., missing tower)  

• Precise georegistration over broad areas is in progress 

 

Reporting Requirements 

 

GM-LIDAR 

Applicable 

Notes 

Telephone poles, lines Yes Use may be limited by low point density 

Communications towers Yes Use may be limited by low point density 
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PAST SUCCESSFUL USE CASES: COMMUNICATIONS SECTOR 

Figure 43. Visualization of communications tower. 
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Figure 44. Cross section of communications tower.  
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Mitigation Sector GM-LIDAR Fact Sheet 

GM-LIDAR Capabilities: Landslides 

 

 Visual identification of landslide (see Figure 45) 

 Measurements of landslide site (see Figure 46) 

o Length  

o Width 

o Height 

o Estimated volume of fill 

 Profile and cross section analysis of landslide 

 Slope analysis for landslide detection and potential landslides 

 

GM-LIDAR Limitations: Landslides 

 

 Landslides with small area of impact may not be easily detected 

 Significant foliage may obscure landslide site or prevent detection 

 

Reporting Requirements 
GM-LIDAR 

Applicable 
Notes 

Landslides—existing or recent Yes 

 Visual detection, confirmation and 

characterization of landslides 

 GM-LIDAR identification improved with 

supplementary satellite imagery 

Analysis for landslide 

detection/landslide analysis for 

potential landslides 

Yes 

 Measurements of landslide site 

 Slope analysis for landslide detection 

and potential landslides 

 

 

  



 

 

85 

PAST SUCCESSFUL USE CASES: MITIGATION SECTOR 

Figure 45. Visual detection, confirmation, and characterization of landslide. 
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Figure 46. Mensuration of landslides. 
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Environmental/Historic Preservation (EHP) Sector GM-LIDAR Fact Sheet 

GM-LIDAR Capabilities: Coastal 

 

 Visual identification of coastline/shoreline/beach (see Figure 47) 

 Measurements of coastal site and potential breakwater(s) sites 

o Length  

o Width 

o Height 

o Volume 

 Profile and cross-section analysis of coastline/shoreline/beach (see Figure 2) 

 Slope analysis 

 Change detection (depending on data availability) 

 

GM-LIDAR Limitations: Coastal 

 

 GM-LIDAR unable to penetrate water 

 Slope or height changes that are small may not easily be detected (<25cm)  

 Current data georegistration accuracy may not be high enough to compare with pre-event 

imagery, GM-LIDAR, or GIS vector data 

 

 

Reporting Requirements 
GM-LIDAR 

Applicable 
Notes 

Coastal/shoreline/beach Yes  Visual identification 

Change detection pre/post storm Yes  Depending on data availability 

Erosion Yes  Visual identification and measurements 

Locations for potentially building 

breakwater(s) 
Yes 

 Would require engineering input on 

construction 
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PAST SUCCESSFUL USE CASES: COASTAL 

 

Figure 47. Visual detection, confirmation and characterization of shoreline. 

 

 

  

 

Figure 48. Profile and cross section analysis. 
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Water Sector GM-LIDAR Fact Sheet 

GM-LIDAR Capabilities: Water Sector 

 

 Visual identification of water and wastewater related infrastructure  

 Visual identification of damage to water and wastewater related infrastructure  

 Measurements of infrastructure, damage, or water features 

o Length  

o Width 

o Height 

o Volume 

 Slope analysis for landslide detection and potential landslides 

 

GM-LIDAR Limitations: Water Sector 

 

 Cannot penetrate water 

 Precise georegistration over broad areas is in progress 

 

Reporting Requirements GM-LIDAR 

Applicable 

Notes 

Dam status Yes Damage detection and measurement 

demonstrated with Guajataca Lake Spillway 

damage assessment (Figure 49) 

Watershed update Yes  

Identify water features (lakes, ponds, 

rivers, streams) 

Yes Detection of water features would be based 

on visually identifying areas of data voids 

(black areas) that indicate standing water 

Landslides monitoring/density and 

location analysis.  

Possible Landslide detection and sizing is definitely 

possible, but continuous monitoring of 

landslides would require repeated data 

collections 

Effects of landslides on water/waste 

water infrastructure and water supplies. 

Possible Visual identification of where landslide 

intersects with waterways; best when 

combined with vector data for identifying 

locations of infrastructure and waterways 

Volume of landslide sediment impacting 

downstream water supply reservoirs 

Possible Can only measure volumes above water line 

Canal assessment: identify damage and 

sinkholes 

Yes Assessment limited to damage above 

waterline of a canal 

Effect of river meander’s lateral 

movement on water intakes 

Yes Best supported with combination of vector 

GIS data showing locations of water intakes 
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Above-ground pipeline damage Possible Cannot likely see damage on underside of 

pipeline 

Water flow detection for damaged 

above ground pipelines 

Possible If water flow is significant enough to be 

discernable from background  

Debris volume measurement on land Yes  

Volumetric measurement for debris 

floating in reservoirs 

Possible Volume could be calculated for debris above 

water line, but not debris below water line 

Exact coordinates per facility (water/ 

waste water, pump station, water tank, 

etc.) 

Possible Accuracy of coordinates would depend on 

overall georegistration accuracy and may 

vary by some number of meters 

Bathymetry/sedimentation rates at 

PRASA reservoirs 

No  

Water levels on systems served by 

DNRE or municipalities flood control 

pump stations 

No  

Identification of sewage water plumes in 

rivers and reservoirs 

No  
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PAST SUCCESSFUL USE CASES: WATER SECTOR 

 

Figure 49. Guajataca Lake spillway damage. 
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Figure 50. Water inundation visible. 
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Figure 51. Standing water visible. 
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Public Building/Housing Sector GM-LIDAR Fact Sheet 

Public Building-Related GM-LIDAR Capabilities 

 Locating damaged/missing roofs 

 Assessing damage to roofs 

o Length/width measurements of damage, height above ground of roof 

 Identifying and quantifying total number of damaged buildings  

 Measurement of buildings  

o Length, width, height measurements  

 

Public Building-Related GM-LIDAR Limitations 

 Cannot detect damage under (intact) roof 

 Cannot detect damage smaller than .25 m in area 

 Cannot detect damage under waterline in flooded area 

 

Reporting Requirements GM-LIDAR 

Applicable 

Notes 

Damaged/missing roofs Yes  Visual detection and/or confirmation  

 Measurements 

Destroyed buildings Yes  Visual identification 

 Measurements 

Total number of assets (buildings) Yes  Visual identification and quantification of 

damaged sites 

Parcel identification (tax assessment) No  Can provide location of damaged sites to 

later look up parcel identification number 

Measurements of buildings Yes  Height above ground, length/width/area 

of roof 

Measurement of flood-level damage No  Cannot sense objects under waterline or 

inside structures 
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USE CASES: PUBLIC BUILDING/ HOUSING SECTOR  

  

Figure 52. Identification of industrial building in Puerto Rico in post-hurricane GM-LIDAR point cloud (left). 
Comparing to Google Earth pre-disaster event imagery (right), we assess roof damage.  
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Figure 53. Example measurement of dimensions of intact roof. 
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Figure 54. Example identification of roof damage by changes in height-above-ground (shown here as a color-scale) 
of roof surface in leftmost building. Compare to intact building roof’s regular coloration on right. 
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Commonwealth Sector GM-LIDAR Fact Sheet 

GM-LIDAR Capabilities: Commonwealth Sector 

 

 Visualize structures correlated with GIS vector/point data  

 Visual identification of damage to structures and infrastructure 

 Measurements of damage: 

o Length  

o Width 

o Height 

o Volume 

 

GM-LIDAR Limitations: Commonwealth Sector 

 

 Precise georegistration over broad areas is in progress 

 The richness of GM-LIDAR data makes viewing very large geographic areas computationally 

challenging; data visualization at a municipality scale does not require excessive computation 

 

Reporting Requirements GM-LIDAR 

Applicable 

Notes 

Mapping of assets (fire, police, 

hospitals, etc.) 

Yes It would be possible to identify structures in GM-

LIDAR data based on importing GIS vector data, 

but there may be some georegistration required 

Mapping land parcels No There is no way to discern property boundaries 

from GM-LIDAR data. 

Evaluate accuracy of field 

measurements for Project 

Worksheets (see Figure 55 and 

Figure 56) 

Yes A user trained in the use of GM-LIDAR and the 

methodologies of site inspection can replicate field 

measurements using the data to validate those 

measurements based on visible damage. Some 

aspects of field measurements may not visible in 

the data (e.g., roadway depressions that are only 

a few inches); as such, discrepancies should take 

both sources into account 
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PAST SUCCESSFUL USE CASES: COMMONWEALTH SECTOR 

 

Figure 55. Documenting damage measurements. 
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Figure 56. Documenting repair measurements. 
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Natural Culture Resources Sector GM-LIDAR Fact Sheet 

GM-LIDAR Capabilities: Shoreline 

 

 Visual identification of shoreline (see Figure 57) 

 Measurements of shoreline and shoreline debris (see Figure 58) 

o Length  

o Width 

o Height 

o Volume 

 Profile and cross-section analysis of shoreline  

 Slope analysis 

 Erosion and change detection (depending on data availability) 

 

GM-LIDAR Limitations: Shoreline 

 

 GM-LIDAR unable to penetrate water 

 Slope or height changes that are small may not easily be detected (<25cm)  

 Current data georegistration accuracy may not be high enough to compare with pre-event 

imagery, GM-LIDAR, or GIS vector data 

 

 

Reporting Requirements 
GM-LIDAR 

Applicable 
Notes 

Shoreline erosion Yes 

 Visual detection, confirmation and 

characterization of change detection 

(depending on data availability) 

Shoreline debris Yes 

 Visual detection, confirmation and 

characterization 

 Volumetric measurements  
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PAST SUCCESSFUL USE CASES: NATURAL CULTURAL RESOURCES SECTOR  

 

Figure 57. Visual detection, confirmation, and characterization of the shoreline. 
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Figure 58. Measurements of shoreline features. 
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APPENDIX B. ERSLA MESSAGE SPECIFICATION 

Extended Remote Sensing Language (ERSLA) Message Specification  

Humanitarian Assistance and Disaster Relief Systems Group 

MIT Lincoln Laboratory 

Version 0.1 [DRAFT] 

 

BACKGROUND 

The ERSLA message format was derived from the cursor on target (CoT) message format [1]. The 

CoT was designed to succinctly convey information regarding a point, a volume associated with that point, 

and attributes associated with that combination. This type of terse description and its associated format is 

valuable for emergency management in order to convey information about locations or entities that have 

been affected or damaged. The CoT XML-based message format is modified to convey information from 

remote sensing sources or even crowd-sourced data.  

GENERAL FORMAT 

The ERSLA message uses the extensible markup language (XML). The XML format allows for the 

message contents to be self-describing, enabling other tools to generate or parse an ERSLA message. The 

message is designed to convey those aspects from imagery or other “sensor” analysis products that are 

relevant for Humanitarian Assistance and Disaster Relief (HADR). The ERSLA message will contain 

attributes from a Base Message Schema Specification and, if appropriate, from a Details Sub-Schema 

Specification. The sub-schema is used to elaborate on the information contained in the base schema. 

Additionally, the ERSLA message shall be populated with a required set of attributes; these will be denoted 

by the value of YES in the Required in Initial Message field portion of the Attribute specification. 

The general structure of an ERSLA Message follows:  

<ERSLA_message> 

<base_message> base message schema </base_message> 

details subschema 

</ERSLA_message> 

 

The remainder of this specification details the attributes in the Base message schema and Details 

subschema.  
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ERSLA BASE SCHEMA 

Attribute: Unique Source ID 

Required in Message: YES 

Default Value: None 

Required in Update Message: No 

Description: A unique ID generated by the Analytics Producer. This may be any alphanumeric string that 

uniquely describes the analysis product associated with this message. This string/ID will be used by ERSAT 

and the Analysis Producer in this and future messages to reference the Analysis Product that created the 

Initial ERSLA message. For example, if the MIT LL Airborne Optical Sensor platform collected GM-

LIDAR over North Carolina on 23 September 2018 in support of Hurricane Florence and then subsequently 

conducted road damage and debris analysis, the road damage and debris analysis results would be 

communicated via ERSLA message, using the Unique Source Id = 

“MITLLAOSTB_Florence_23_SEP_2018”. 

 

Attribute: Entity 

Required in Message: YES 

Default Value: None 

Required in Update Message: No 

Description: The observed entity type. One of the following entity types will be chosen from the dictionary 

below. Depending on the type of analysis product that is driving the report, certain pairs of Entity and 

Impact are generated. Depending on the Entity, an appropriate Impact and Magnitude dictionary will be 

selected to populate these attributes/elements of the point. The dictionary for Entity is currently limited to 

the high-level object types. For example, imagery may be able to inform that the damage is a “structure”, 

but a second analysis is required to determine if that structure is a police station, hospital, shelter, etc.  

Dictionary: {Unknown | Road | Structure | Debris | Dams | Energy | Water | Other} 

 

Attribute: Impact 

Required in Message: No 

Default Value: None 

Required in Update Message: No 

Description: The type or classification of the impact observed. One of the following entity types will be 

chosen from the dictionary below. Depending on the type of analysis product that is driving the report, 

certain pairs of Entity and Impact are generated. Depending on the Entity, an appropriate Impact and 

Magnitude dictionary will be selected to populate these attributes/elements of the point. 

Dictionary: {N/A | Damage | Washout | Debris} 

 

 

Attribute: Magnitude 

Required in Message: No 

Default Value: None 
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Required in Update Message: No 

Description: The amount or degree of damage. It may be listed in one of the following categories or a 

numerical value may point to a separate “Magnitude Dictionary”. 

Dictionary: {No Damage | Destroyed | Major | Minor | Affected | Low | Medium | High} 

 

Attribute: Collect Time 

Required in Message: YES 

Default Value: None 

Required in Update Message: No 

Description: Time of collection in UTC: YYYY-MM-DD HH:MM:SS. For example, “2009-10-12 

14:52:23” 

 

Attribute: Start Time 

Required in Message: YES 

Default Value: None 

Required in Update Message: No 

Description: Time of message delivery in UTC: YYYY-MM-DD HH:MM:SS 

 

Attribute: Stale Time 

Required in Message: No 

Default Value: None 

Required in Update Message: No 

Description: Optional, used for analytics with a cadence, i.e., flood extent UTC: YYYY-MM-DD 

HH:MM:SS 

 

Attribute: Point (lat/lon, [HAE, CE, LE]) 

Required in Message: YES 

Default Value: None 

Required in Update Message: No 

Description: Use the following set of “If statements” to determine how to populate this attribute. 

• If a point-for-point located damage, each point will be a unique message: 

o lat/lon 

o HAE – 0.0 ? 

o CE - non-zero buffer area – default 1.0 meter? 

o LE – 0.0? 

 

• If a Line segment: 

o lat/lon of segment center  
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o HAE – 0.0 

o CE – 0.0 

o LE – 0.0 

o The endpoints of the segment will be described in the “Details” subschema section 

 

• If a polygon: 

o lat/lon of complex hull surrounding the polygon centroid 

o HAE – 0.0 

o CE – 0.0 

o LE – 0.0 

o The polygon coordinates will be defined in the “Details” subschema section 

 

• If a raster: 

o lat/lon of complex hull centroid of the raster data’s footprint 

o HAE – 0.0 

o CE – 0.0  

o LE – 0.0 

o The polygon of the raster boundary will be defined in the “Details” subschema section 

 

ERSLA DETAILS SUB-SCHEMA 

Attribute: Geometry Extension Type 

Required in Message: Only if geometry is not a point type 

Default Value: None 

Required in Update Message: No 

Description: 

If the geometry is other than a point, then use the following guide to determine how to populate this 

attribute. 

• For a polyline 

o Two-element list containing the lat/lon of each of the endpoints 

• Polygon: stored as a geometric primitive or as a list containing the vertices coordinates 

 

EITHER 
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o A geometric primitive denoted with one of two keywords, followed by a list that 

describes the geometry 

 ellipse  

 [lat/lon, semi-minor len., semi-major len, angle] 

 rectangle 

 [lat/lon, lat/lon, lat/lon, lat/lon] 

OR 

o [lat/lon, lat/lon, … lat/lon] 

 Raster: list of the raster bounding box or vertices 

o [lat/lon, lat/lon, … lat/lon] 

 

Attribute: Incident  

Required in Message: No 

Default Value: None 

Required in Update Message: No 

Description: The event or incident name.  

 

Attribute: Sensor ID  

Required in Message: No 

Default Value: None 

Required in Update Message: No 

Description: A unique ID (an alphanumeric string) to identify the sensor, i.e., name – serial number.  

 

Attribute: Platform  

Required in Message: No 

Default Value: None 

Required in Update Message: No 

Description: A description of the platform that collected the initial data.  

Dictionary: {Airborne | Space | Ground | On Water | Under Water | Crowd-Sourced} 

 

Attribute: Analytics  

Required in Message: No 

Default Value: None 

Required in Update Message: No 

Description: How analysis was done.  

Dictionary: {Automated | Manual | Interferometry | Change Detection | Other: Specific} 
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Attribute: Confidence  

Required in Initial Message: No 

Default Value: None 

Required in Update Message: No 

Description: The percent certainty (numeric value 0–100), for example, the area under the ROC curve. 

Attribute: Confirmed  

Required in Initial Message: No 

Default Value: None 

Required in Update Message: No 

Description: Human-in-the-loop confirmation of detection; validated or not. When this flag is set, all of the 

other attributes remain the same.  

Dictionary: {True | False} 

 

Attribute: Format  

Required in Initial Message: No 

Default Value: None 

Required in Update Message: No 

Description: The original type of data that served as the source of the message. 

Dictionary: {las | ept | | tiff | jpg | obj | blend | fbx | gltf | dxf | stl | wrl | other } 

 

Attribute: Access  

Required in Initial Message: No 

Default Value: None 

Required in Update Message: No 

Description: URL/path to get source. Use Source/Access to determine where to get the remotely sensed 

data and which visualization tool to use to view/interact to allow user to set Confirmed value. NOTE: This 

may be the same as the Unique Source ID. This Attribute has the following Credentials sub-attribute and 

the supporting attributes. If credentials are required to access the resource, then the credentials are listed in 

this section. 

Credentials: This is the information required to access the source data at the URL/path in Access 

Credentials 

Username – To access the URL 

Password – Associated with the username 

Additional_Info – Any additional information that is needed to access the source URL 

 

Attribute: Additional Details  

Required in Initial Message: No 

Default Value: None 

Required in Update Message: No 

Description: These details will be based on the Type:Entity as defined in the ERSLA base schema.) 
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• Road – {Name, Width, Surface} 

• Bridge – {Name, Width, Type, Load Capacity, Surface} 

• Levee – {Name, Width, Height, Construction Material} 

• Runway – {Name, Width, Length, Surface, Heading, Lowest Elevation} 

• Railroad Tracks – {Name, Gauge/Width} 

• Utility Lines – {Name, Number(?), Power, Voltage, AC | DC, Type: Power | Telecom | Fiber} 

• Pipeline – {Name, Diameter, Type: Water | Sewer | Liquid Petroleum | Natural Gas | 

Unknown} 

• Debris Pile – {Name, Type: Landfill | Construction | Other | Unknown} 

• Structure – {Name, Height, Construction: Wood | Concrete | Steel | Unknown} 

Attribute: Notes 

Required in Message: No 

Default Value: None 

Required in Update Message: No 

Description: Free text field, but limited in size (255 chars) in order to minimize message size. 

 

SAMPLE MESSAGE  

The following is an example of a well-formed ERSLA message: 

<?xml version="1.0" standalone="yes"?> 

<ERSLA_message> 

<base_message collect_time="2020-02-20 12:00:00.00" entity="Debris" message_type="initial" 

start_time="2020-02-20 12:00:00.00" unique_source_id="AOSTB_2019-c3-

ma_sortie0127_tile_X689_Y873" /> 

<point ce="32" hae="2" lat="42.309734520499056" le="0" lon="-71.35983231328902" /> 

<geometry_extension description_list="42.30972394813766,-71.3598272387995 42.309726592661356,-

71.3598272387995 42.30972923718505,-71.3598272387995 42.30973188170874,-71.3598272387995 

42.30973452623244,-71.3598272387995 42.30973717075614,-71.3598272387995 

42.30973981527983,-71.3598272387995 42.30974245980353,-71.3598272387995 

42.30974510432723,-71.3598272387995 42.309747748850924,-71.3598272387995 

42.309747790333645,-71.35982728028223 42.309747790333645,-71.35982992480592 

42.309747790333645,-71.35983256932961 42.30974780045138,-71.35983521385332 

42.309747748850924,-71.35983542541521 42.30974753728903,-71.35983521385332 

42.30974510432723,-71.35983278089151 42.30974245980353,-71.35983267511057 

42.30973981527983,-71.3598326375754 42.30973717075614,-71.35983262093008 

42.30973452623244,-71.35983262093008 42.30973188170874,-71.3598326375754 

42.30972923718505,-71.35983267511057 42.309726592661356,-71.35983278089151 

42.309724159699556,-71.35983521385332 42.30972405391861,-71.359837858377 

42.30972394813766,-71.3598380699389 42.30972389653719,-71.359837858377 42.30972389653719,-
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71.35983521385332 42.30972390665493,-71.35983256932961 42.30972390665493,-

71.35982992480592 42.30972390665493,-71.35982728028223 42.30972394813766,-71.3598272387995 

" geom_type="polygon" primative="" /> 

<message_details access="access_1" additional_details="" analytics="CNN" confidence="-1" 

confirmed="False" impact="Damage" incident="Incident 1" magnitude="Affected" message_id="3129" 

platform="Airborne" published="False" sensor_id="1" source="Point Cloud" stale_time="2020-02-20 

12:00:00.00" /> 

<additional_details name="foo_pile" type="landfill" /> 

</ERSLA_message> 
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