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Naira Hovakimyan
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Abstract

During the last three years, we further developed the time-critical cooperative control framework,
initiated under our prior AFOSR grants, to enable novel distributed trajectory-planning and online coor-
dination capabilities for a fleet of cooperating vehicles that communicate over a lossy wireless network.
In the field of trajectory planning, the main advances of this research include a distributed algorithm
that balances the trajectory-planning workload among all agents in the fleet. The resulting algorithms
combine tools from non-linear optimization and distributed programming methods, and leverage the
polynomial structure of the trajectories and differential flatness properties of the system dynamics to
compute the entire subdifferential analytically. Hence, reducing the computational cost as compared to
existing bundle methods. Regarding time-critical coordination, the temporal specification and coordination
capabilities of the framework have broadened significantly to accommodate the diversity of constraints
required in realistic missions of interest to AFOSR. The distributed time-critical coordination law lets
the vehicles adjust their speed in real time to meet the desired temporal and coordination constraints
even in the presence of external disturbances. This research introduced a new classification of these
constraints that has lead to unprecedented levels of flexibility and adaptability. Moreover, tools from
Lyapunov stability, switched systems, and algebraic graph theory were leveraged to derive transient and
steady-state performance bounds for some of the new time-critical coordination strategies.

We also initiated new directions of research over the last two years on certified trajectory tracking for
nonlinear and uncertain systems on a single-agent level. The certificates are amenable to incorporation
within the results as mentioned earlier. Leveraging the L1 architecture, the work in [1] developed a new
architecture for the safe incorporation of machine learning in the form of Bayesian Gaussian process
regression within robust adaptive control. A major issue for nonlinear control is the synthesis of control
certificates which enable the synthesis of feedback laws. Departing from difficult to synthesize Lyapunov
functions for nonlinear systems, the work in [2] developed a new direction of using control contraction
metric based control with L1 adaptation. The main advantage of this work is the quantification of
tubes around any desired trajectory, which is a highly desirable feature for systems attempting to track
trajectories in the presence of uncertainties. The work in [3] further developed on contraction L1 in [2] by
incorporating Gaussian process learning leading to an improvement in both optimality and performance
while guaranteeing persistent safety. The robustification of reinforcement learning policies using L1

control was demonstrated in [4]. The work in [5] shows how barrier function-based control can be made
robust to uncertainties. On the level of multi-agent systems, the work in [6] and [7] presents efficient
distributed algorithms for stochastic agents aiming to optimize global cost-functions using only local
observations. The work in [8] investigates the compositionality of control laws for teams of stochastic
agents. These new directions of research were further expanded in our renewal proposal for AFOSR,
and hence we will not summarize those preliminary results in this final report.
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I. INTRODUCTION

The research developed for this grant addressed theoretical topics of practical importance in the field
of autonomy for multi-agent systems. This effort aimed to expand the capabilities of the system ar-
chitecture [9], [10], depicted in Figure 1, to bridge the gap between theory and application, expand
the flexibility of the framework to a larger class of missions, and adapt to the growing complexity
demanded of cooperating agents [11], [12]. This framework is based on two fundamental ideas. First,
decoupling space and time to ensure vehicles can track their path regardless of their speed profile, as
long as it is physically feasible [13]. Second, the compartmentalization of each task within the framework
— trajectory-generation, path-following, time coordination, and vehicle stabilization — so that different
algorithms and technologies can be swapped with ease [13]. This compartmentalization and space-time
decoupling allows the higher-level algorithms, such as time-coordination, to abstract away from the
vehicle dynamics, which allows for the design of more elaborate time-coordination laws that adapt to
the demanding complexity with known guarantees [14], [15]. In particular, this effort sought to advance
the state-of-the-art in motion control of distributed systems through two different thrusts: the interaction
with switched dynamics that arise when attempting to implement certain types of temporal constraints,
and the propagation of perturbations through networked systems with this switching dynamics. The next
section contains a brief summary of the problem formulation.

II. PROBLEM FORMULATION

A. Path Following

As described in [9], [16], the key idea of the path-following algorithm is to use the control effectors of
the UAS to follow a virtual target that slides along the path. To this effect, a moving frame is attached
to the virtual target, and a generalized error vector that characterizes the distance between this moving
coordinate system and a frame attached to the UAS is defined, as shown in Figure 13. To control the
movement of the virtual target along the path, we introduce a virtual time ξi(t) that defines the position
of the virtual target

pT ,i(t) := pd,i(ξi(t)), (1)

and define the position error
ep,i(t) := pi(t)− pT ,i(t),

where pi(t) denotes the actual position of the ith vehicle at time t. Then, the dynamics of the position
error are

ėp,i(t) = vi(t)− vT ,i(t), (2)

Supervisory control authority Inter-vehicle communication network

Trajectory

replanning

Perception

sensor suite
Guidance outer loop

Time critical

coordination

Path

following

speed
command

attitude
command

Stabilization
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generation

desired 
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speed
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Fig. 1: Architecture of the time-critical coordination framework.
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where vi(t) is the velocity vector of the UAS, and vT ,i(t) is the velocity vector of the virtual target, as
depicted in Figure 13. The velocity of the virtual target can be expressed in terms of the desired velocity

vT ,i(t) = ξ̇i(t)vd,i(ξi(t)). (3)

Now, define the velocity-tracking error

ev,i(t) = vi(t)− vcmd,i(t),

where vcmd,i(t) is the velocity command generated by the guidance outer loop, and choose the following
control law for the velocity command:

vcmd,i(t) := vT ,i(t)− kPF ,i ep,i(t), (4)

Fig. 2: Multirotor tracking the virtual target.

where kPF ,i > 0 is a control gain. Note
that vehicles within the cooperative fleet
can implement different gains kPF ,i. This
offers the possibility of fine tuning this algo-
rithm for each UAS if the fleet is composed
of heterogeneous multirotors. The following
assumption considers that the stabilization
loop can only track the velocity command
vcmd,i(t) with known precision ēv,i, as long
as the norm of the velocity command is
bounded by the true speed limit vmax,i.

Assumption 1: If ‖vcmd,i(t)‖ ≤ vmax,i, the
inner-loop velocity-tracking controller can
track the velocity command vcmd,i(t) with
known precision ēv,i, and thus

sup
t≥t0
‖ev,i(t)‖ ≤ ēv,i, ∀i ∈ I.

The following lemma uses Assumption 1, the
position error dynamics, and Lyapunov theory to prove that the origin of the system in (2) is Input-to-State
Stable (ISS) with respect to the velocity-tracking precision.

Lemma 1: If Assumption 1 is met, then the velocity command in Equation (4) with control gain
kPF ,i > 0 ensures that the origin of the position error dynamics in Equation (2) is ISS, and the position
error is bounded by

‖ep,i(t)‖ ≤ ‖ep0 ,i
‖e−kPF,i(t−t0) +

ēv,i
kPF ,i

(
1− e−kPF,i(t−t0)

)
, ep0 ,i

= ep,i(t0).

Remark 1: Given ēv,i, the ultimate bound on the position error can be made arbitrarily small by
increasing the value of the control gain kPF ,i. However, besides the well-known drawbacks of high-
gain controllers, if the velocity command is limited by ‖vcmd,i(t)‖ < vmaxi , then a large kPF ,i reduces
the allowable position error and mission rate that yield a feasible command

‖vcmd,i(t)‖ ≤ ξ̇i(t) ‖vd,i(ξi(t))‖+ kPF ,i ‖ep,i(t)‖ < vmaxi .

The following section addresses the synchronization of the virtual targets to ensure the vehicles have
a shared notion of the mission time, and maintain safe separation constraints during mission execution
when their trajectories are temporally separated.
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B. Time-Critical Coordination

The time-critical coordination algorithm governs the movement of the virtual targets along their paths,
which is leveraged—together with the path-following error—to compute a speed command, as described
in Section II-A. The objective of the time-critical coordination algorithm is to enforce coordination and
temporal constraints. In this respect, previous synchronized path-following algorithms do not clearly
distinguish between coordination and temporal constraints. Here, coordination refers to the agreement
in the virtual times ξi(t), and implies that agents meet desired relative position constraints such as
simultaneous or sequential arrivals, specific formation patterns, or inter-agent spacing constraints as
outlined in the trajectory generation phase. However, coordination constraints do not impose the time a
vehicle must fly past a particular point along its path. These are temporal constraints1. To enforce them,
a virtual entity that runs independently of all other agents is introduced, the reference agent. It imparts
the cooperating team with the notion of a global time, and serves as a mechanism to speed up or slow
down the entire mission schedule, if necessary. In pursuit of a more general architecture, only a subset
of vehicles has access to the reference information—the link peers; whereas the remaining agents—the
end peers—must learn that information, as depicted in Figure 3. Link and end peers are often referred to
as leaders and followers in the literature. However, here we use this notation to highlight the information
flow in Figure 3. Note that link peers serve as the nexus between the reference and the end peers, located
at both extremes of the graph in Figure 3.

 

Fig. 3: Structure of the communication network and agent hierarchy.

To achieve the goal of the time-critical coordination algorithm, the UASs exchange their virtual times
ξi(t) over the network. This provides a measure of how far along the mission a vehicle is to its neighboring
agents. Then, the cooperating fleet engages in a negotiation process to reach consensus on the evolution
of these virtual times, which synchronizes the virtual targets. As a result, if a few UASs move ahead in
the mission due to favorable winds the group in advance will slow down, whereas the group that has
fallen behind will increase its pace until they catch up with their neighbors. Since the virtual times ξi(t)
define the coordination mechanism, they are also referred to as the coordination states. Now, to formally
define the time-critical coordination problem, consider a network of n integrator agents

ξ̇i(t) = uc,i(t) + uT�,i(t), i ∈ I , (5)

with dynamic information flow G(t) := (V, E), where V represents the vertices and E(t) the edges of
the communication graph, ξi(t) ∈ R is the coordination state of the ith agent, uc,i(t) is a coordination
control input, and uT�,i(t) is the long-track target-tracking error feedback2

uT�,i(t) = kepep,i(t) · t̂i(ξi(t)), (6)

where kep > 0 is a control gain, ep,i(t) ∈ R3 is the position error, and t̂i(t) ∈ R3 is the unit
tangent vector depicted in Figure 4. The target-tracking feedback is particularly relevant in cluttered

1Another way to understand these constraints is to think of coordination constraints as relative temporal constraints; and what
is referred here as temporal constraints can be understood as absolute temporal constraints, like a desired arrival time or an
arrival window.

2To aid in the interpretation of this nomenclature, all long-track errors include the subscript �, as opposed to the cross-track
errors that would include the subscript .
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Fig. 4: Collision caused by corner rounding.

scenarios. It established a negotiation process
between each vehicle and its virtual target that
mitigates corner rounding when the vehicle has
difficulty tracking its virtual target. As shown in
Figure 4, rounding corners in narrow passages can
be be safety critical. Next, to enforce temporal
constraints the reference agent is introduced with
the following dynamics:

ξ̇R = ρ, ξR(0) = ξR0
, (7)

where ξR(t) ∈ R is the reference state, and
ρ is a constant reference rate. This agent does
not attempt coordination, but provides a global
reference value so that, if desired, each ξi(t) can
be forced to converge to a neighborhood of ξR(t).
As shown in Figure 3, agents are classified by
their informational needs as:

1) the reference who shares its state and rate with the link peers;
2) a group of n` link peers that have access to the reference information, but also exchange their

coordination states and rates with a set of neighboring agents; and
3) the end peers that can only exchange their coordination states and rates with a set of neighboring

agents.

Without loss of generatlity, the vehicle identification numbers are organized so that I` := {1, . . . , n`}
and Ie := {n` + 1, . . . , n} represent the set of link and end peers, respectively. These restrictions on the
flow of information aim to capture a rather general scenario, where data from the reference may not be
available to some agents. In this context, the control objective is to design a coordination control law
that solves the following problem.

Definition 1 (Time-Critical Coordination Problem): Design a distributed protocol that guides the coor-
dination, temporal, and rate errors to a neighborhood of the origin

ξi(t)− ξj(t)
t→∞−→ [−∆c , ∆c] , ∀i, j ∈ I, (8a)

ξi(t)− ξR(t)
t→∞−→ [−∆t , ∆t] , ∀i ∈ I, (8b)

ξ̇i(t)− ξ̇R ∈ [−∆r , ∆r] , ∀i ∈ I, (8c)

where ∆c(t), ∆t(t), and ∆r(t) ≥ 0 define the width of the coordination, temporal, and rate windows,
respectively.

In the problem definition above, Equation (8a) defines the coordination constraints; Equation (8b)
imposes temporal specifications, and Equation (8c) enforces bounds on the desired mission rate, which
in turn defines bounds on the velocity command according to Equations (3) and (4). Two types of
coordination constraints are defined, depending on the value of ∆c:

1) Tight coordination denotes the system specifications when ∆c ≡ 0. This is typical of scenarios
where accurately observing the desired inter-agent spacing constraints is safety-critical, such as in
close proximity operations.

2) Loose coordination is used when ∆c(t) is bounded and away from 0. In this case, ∆c(t) defines
an allowable coordination error, which is useful in mid and far-proximity operations.

Similarly, three types of temporal specifications are defined as a function of ∆t:

DISTRIBUTION A: Distribution approved for public release.
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1) Unenforced temporal constraints do not impose additional requirements, ∆t →∞. Thus, they are
used in missions that do not require the specification of an arrival time or arrival window at any
point along the path of the vehicles.

2) Relaxed temporal specifications encompass all ∆t ≤ ∆t(t) ≤ ∆t bounded and away from 0, and
are used to impose a desired arrival window for one or more points along the vehicle paths.

3) Strict temporal constraints force each ξi(t) to track ξR(t), ∆t ≡ 0, specifying a flyover time for
each point along the vehicle path.

The spectrum of coordination and temporal specifications introduced defines six generic time-critical
coordination strategies, organized according to the values of ∆c and ∆t. Note also that Equation (8c)
indicates that the coordination rate of the ith vehicle should remain within a neighborhood of ρ. Given a
mission design, the following assumption constrains the acceptable values of ρ to ensure that if everything
goes as planned the norm of the speed command is smaller than the true speed limit of the vehicle.

Assumption 2: The choice of mission rate satisfies

max
td∈[tdinit,i,tdend,i]

ρ‖vd,i(td)‖ < vmax,i, ∀i ∈ I.

The following section addresses the assumptions on the communication network to develop a solution
to the time-critical coordination problem.

C. Communication Network

For the sake of generality, we do not wish to impose any specific structure on the topology of the peer
network, or assume any apriori knowledge about the amount of data exchanged among group members.
Accordingly, the peer communication network satisfies the following general assumptions:

Assumption 3: The ith peer exchanges information with a time-varying set of peers, denoted byNi(t) ⊆ I.

Assumption 4: Communications are bidirectional and ξi(t) is transmitted continuously with no delays.

Assumption 5: The graph G(t) that models the communication network satisfies the condition

1

n

1

T

∫ t+T

t
L̄ (τ)dτ ≥ µ In−1 , ∀ t ≥ T , (9)

where L̄ (t) := QL (t) Q>, L ∈ Rn×n is the piecewise-constant Laplacian of G(t), and Q ∈ R(n−1)×n

satisfies Q1n = 0, and QQ> = In−1, where 1n ∈ Rn is a vector of all ones.

Parameters T > 0 and µ ∈ (0, 1] characterize the Quality of Service (QoS) of the network. To aid in the
interpretation of Equation (9), define and order the eigenvalues of L (t) such that

0 ≡ λ1(t) ≤ λ2(t) ≤ . . . ≤ λn(t) ≤ n.

Then, the eigenspectrum of L̄ (t) is spec
(
L̄ (t)

)
= {λ2(t), . . . , λn(t)}. The Fiedler eigenvalue λ2(t)

is a measure of the algebraic connectivity, and λ2(t) > 0 if and only if G(t) is connected at time t.
Consequently, µ is an integral measure of the connectivity of graph G(t) over a sliding temporal window
of width T . Equation (9) captures dynamic communication topologies arising from temporary loss of
communication and switching communication links. In fact, under this condition G(t) may even fail to
be connected pointwise in time at all times.

III. DISTRIBUTED COORDINATION CONTROL LAW

To solve the multi-objective problem for tight coordination defined in (8), the following distributed
protocol is developed for the link peers:

uc,i(t) = −kP
∑
j ∈Ni

(ξi(t)− ξj(t))− kR ωRi (ξi(t)− ξR(t)) + ξ̇R, i ∈ I`, (10)

DISTRIBUTION A: Distribution approved for public release.
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TABLE I: Link-weight logic for different types of temporal constraints.

Unenforced Relaxed Strict

ωRi(t) ≡ 0 ωRi(t) =


1, if |ξi(t)− ξR(t)| ≥ ∆t(t) ∧ t− tis > τR0

0, if |ξi(t)− ξR(t)| < ∆t(t) ∧ t− tis > τR1

ω+
Ri

(tis), otherwise

ωRi(t) ≡ 1

while the control law for the end peers is

uc,i(t) = −kP
∑
j ∈Ni

(ξi(t)− ξj(t)) + χi(t), i ∈ Ie,

χ̇i(t) = −kI
∑
j ∈Ni

(ξi(t)− ξj(t)) , χi(0) = χi0 , i ∈ Ie,
(11)

where kR, kP , and kI are control gains, ωRi is a link weight that implements the different types of
temporal constraints, and χi(t) is an integral state responsible for learning the mission rate ξ̇R. As shown
in Table I, for unenforced or strict temporal constraints ωRi are identically equal to 0 or 1, respectively,
thus permanently “ignoring” or “listening” to the information provided by the reference agent. However,
for relaxed temporal constrains Table I defines a state-dependent switching logic that selectively “listens”
to the reference agent. In this context, tis denotes the last time the ith link peer switched the value of ωRi ,
and ω+

Ri
(tis) is the limit from the right at tis. To avoid Zeno behavior, changes in the link-weight values

are subject to slow switching constraints, where dwell times τR0
and τR1

define the minimum times ωRi
will be set to 0 or 1, respectively.

IV. STATUS OF THE EFFORT

This section utilizes the distributed protocols above, to extend previous theorems that derived conclusions
for ideal target-tracking capabilities—uT�,i(t) ≡ 0 for all i ∈ I. Assuming a fleet of heterogeneous
cooperating vehicles equipped with realistic speed-tracking controllers, this section analyzes the structure
of the collective target-tracking feedback. This feedback structure is then propagated through the system
dynamics as a perturbation to infer transient and steady-state guarantees under non-ideal target-tracking
conditions.

A. Collective Target-Tracking Feedback

To characterize the system performance with realistic and heterogeneous speed-tracking controllers, this
section considers Assumption 1 and analyzes the effects of the initial position errors ep,i0 and speed-
tracking precision ēv,i on uT�

(t). To this end, Lemma 1, and the fact that t̂i is a unit vector yield the
following bound for target-tracking feedback:

‖uT�
(t)‖ ≤ ūT �(t) := kep‖ep0

‖e−k¯PF t +
kep
k
¯PF
‖ēv‖

(
1− e−k̄PF t

)
, ∀t ≥ 0, (12)

where ep0
:=
[
e>p0,1 , e

>
p0,2 , . . . , e

>
p0,n

]>, ēv := [ēv,1 , ēv,2 , . . . , ēv,n]>, k
¯PF

:= min∀i∈I kPF ,i, and
k̄PF := max∀i∈I kPF ,i. Note that the coordination control law in Equations (10) and (11) uses the same
gains for all cooperating agents. However, the target-tracking feedback bound above includes individ-
ual gains kPF ,i, and speed-tracking precision bounds ēv,i for each agent, thus acknowledging that the

DISTRIBUTION A: Distribution approved for public release.
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Fig. 5: Target-tracking feedback bound.

algorithms and vehicle dynamics beneath the coordina-
tion layer can be heterogeneous. Notice also, that the
bound in Equation (12) has two components, depicted
in Figure 5:

1) An exponentially decaying term, proportional
to ‖ep0

‖, shown in orange, and induced by the
speed command in (4).

2) A uniformly bounded term, proportional to ‖ēv‖,
shown in yellow, and caused by the underlying
non-ideal speed-tracking controllers.

The following section explores how the perturbation in
Equation (12) propagates through the system dynamics
for unenforced, relaxed, and strict temporal constraints under tight coordination.

B. Stability with Non-Ideal Target Tracking

Next, previous theorems are extended to account for non-ideal speed-tracking controllers, and infer
conditions that ensure the maximum speed command for each UAS is not exceeded.

1) Unenforced Temporal Constraints: building upon previous results, the link-weight logic for unen-
forced temporal specifications (ωRi(t) ≡ 0) decouples the collective coordination and rate errors ζu(t)
from the temporal error ζt(t), and yields

ζ̇t(t) = Atζu(t) +BtuT�
(t), ζt(0) = ζt0 , (13a)

ζ̇u(t) = Au(t)ζu(t) +BuuT�
(t), ζu(0) = ζu0

, (13b)

where At, Au(t), Bt, and Bu are known matrices. The following theorem uses the proof of a previous
theorem and perturbation theory to conclude that the temporal error in (13a) is integral Input-to-State
Stable (iISS) and can grow at most linearly with time, whereas the coordination and rate errors in (13b)
are λu-weighted iISS with respect to uT�

(t).

Theorem 1: Assume the underlying speed-tracking controller for all agents satisfies Assumption 1, the
information flow G(t) satisfies Assumptions 3 through 5, and the speed profiles assigned to each agent
by the trajectory generation algorithms satisfy Assumption 2. If the collective speed-tracking precision
satisfies

‖ēv‖ < min
i∈I

vmax,i − ρvdmax,i
1 +

(
κr,uv +

kep
k
¯PF

)
vdmax,i

,

then there exist known control gains kP , kI , and kPF ,i > 0 for all i ∈ I, such that for all initial conditions
(ζu0

, ep0
) ∈ Ωu0

, the speed command in (4), with the protocol for unenforced temporal constraints in (10)
and (11), ensures that

‖vcmd,i(t)‖ ≤ vmax,i, ∀t ≥ 0, ∀i ∈ I,

and the individual temporal, coordination, and rate errors satisfy |ξi(t)− ξR(t)|
|ξi(t)− ξj(t)|
|ξ̇i(t)− ρ|

 ≤Ku(t)


|ζt0 |
‖ζu0
‖

‖ep0
‖

‖ēv‖

 , ∀t ≥ 0, ∀i, j ∈ I,
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where Ku(t) ∈ R3×4 is defined as

Ku :=



1 κt,u1
e−λut + κt,u2

κt,up1

λu−k¯PF

(
e−k¯PF

t − e−λut
)

+ κt,up2
κt,uv1 + κt,uv2 t

0 κc,ue
−λut κc,up

λu−k¯PF

(
e−k¯PF

t − e−λut
)

κc,uv

0 κr,ue
−λut κr,up

λu−k¯PF

(
e−k¯PF

t − e−λut
)

+ kepe
−k

¯PF
t κr,uv +

kep
k
¯PF


,

Ωu0
is a known non-empty set, κt,u1

, κt,u2
, κt,up1

, κt,up2
, κt,uv1 , κt,uv2 , κc,u, κc,up , κc,uv , κr,u, κr,up ,

and κr,uv are known constants, and λu = νλ
¯u

is the guaranteed rate of convergence with ν = 1.

To help in the interpretation of Theorem 1, the elements in matrix Ku(t) have been color coded and
organized into groups with similar behavior and origin:

1) The elements in blue are exponentially decaying.

2) The block in purple represents the interaction between the dynamics of ζu(t) in Equation (13)

with the position error dynamics in Equation (2). Note that these terms are always positive semidef-
inite for all t ≥ 0.

3) The terms in orange define ultimate bounds that are proportional to ‖ēv‖, whereas the terms

in yellow denote ultimate bounds that are proportional to ‖ζu0
‖ and ‖ep0

‖. Two important

conclusions follow:
• Tight coordination cannot be attained unless the speed tracking error of each agent converges

to the origin, ‖ev,i(t)‖ → 0 as t→∞ for all i ∈ I.
• The coordinating agents cannot accurately learn the mission rate unless the speed tracking error

of each agent converges to the origin, ‖ev,i(t)‖ → 0 as t→∞ for all i ∈ I.
This emphasizes the importance of the control laws underneath the coordination layer. The im-
plementation of a control law that tracks the speed command in Equation (4) with accuracy will
tighten the ultimate bounds for |ξi(t)− ξj(t)| and |ξ̇i(t)− ρ|.

4) The element in red indicates that the temporal error can drift away over time, and this drift is

proportional to ‖ēv‖.
5) The terms in green are a direct effect of uT�

(t), and can be easily identified with the elements
in Equatiom (12).

The following section derives transient and steady-state performance guarantees for relaxed temporal
constraints with non-ideal target tracking capabilities.

2) Relaxed Temporal Constraints: again building upon previous results, the dynamics for relaxed
temporal constraints can be rewritten as a system that switches between modes Ø and , with switching
signal γ(t) : [0,∞) 7→ S, and S := {Ø, }

ζ̇(t) = Aγ(t)ζ(t) +BuT�
(t), ζ(0) = ζ0, γ ∈ S, (14)

where AØ, A , and B are known. The system is in empty mode Ø when the set of link peers that
decide to listen to the reference agent is empty. The cloud mode encompasses all cases where at
least one link peer listens to the reference agent. The discontinuities in γ(t) occur at the switching times
tm, with m ∈ N. Recall Theorem 1 proves |ξi(t)− ξR(t)| can drift away in mode Ø. Then, anticipating
that τR1

may be a function of the time spent in mode Ø, a subtle change in the link-weight logic is

DISTRIBUTION A: Distribution approved for public release.



10

introduced

ωRi(t) =


1, if |ξi(t)− ξR(t)| ≥ ∆t(t) ∧ t− tis > τR0

,
0, if |ξi(t)− ξR(t)| < ∆t(t) ∧ t− tis > τ i

R1
(∆ti0(t)),

ω+
Ri

(tis), otherwise,
(15)

where ∆ti0(t) is defined as follows:

∆ti0(t) :=

{
tis − tis−1, if ωRi(t) = 1,
0, if ωRi(t) = 0.

As depicted in Figure 6, tis and tis−1 respectively denote the last and second to last times the ith link peer
switched the value of ωRi(t). Part of the challenge is that link peers ignore the time spent in mode Ø, and
hence can only use ∆ti0(t) to counteract the drift of the collective system. Then, assuming γ(t0) = Ø

Fig. 6: Consecutive weight switches.

and expressing m in terms of the number of
Ø- cycles completed k, the logic above
can only enforce the following slow switching
constraints for the system dynamics:

t2k − t2k−1 > τR1,k
,

t2k−1 − t2k−2 ≥ 0,

}
(16)

where τR1,k
:= maxi∈I` τ

i
R1

(t2k−1). Note that
each agent implements a different dwell time
τ i
R1

(t), and the collective dwell time τR1,k

varies with each Ø- cycle.

The following lemma uses previous results
and perturbation theory to analyze the system
in mode , and concludes that the dynamics
in (14) are λr-weighted iISS with respect to
uT�

(t).

Lemma 2: Assume the underlying speed-tracking controller for all agents satisfies Assumption 1, the
information flow G(t) satisfies Assumptions 3 through 5, and ω̃(t) ≥ 1. Then, there exist known control
gains kR, kP , kI , and kPF ,i > 0 for all i ∈ I such that |ξi(t)− ξR(t)|

|ξi(t)− ξj(t)|
|ξ̇i(t)− ρ|

 ≤Kr(t)

 ‖ζ0‖‖ep0
‖

‖ēv‖

 , ∀t ≥ 0, ∀i, j ∈ I,

where Kr(t) ∈ R3×3 is defined as

Kr(t) :=



κt,re
−λrt κt,rp

λr−k¯PF

(
e−k¯PF

t − e−λrt
)

κt,rv

κc,re
−λrt κc,rp

λr−k¯PF

(
e−k¯PF

t − e−λrt
)

κc,rv

κr,re
−λrt κr,rp

λr−k¯PF

(
e−k¯PF

t − e−λrt
)

+ kepe
−k

¯PF
t κr,rv +

kep
k
¯PF


,

κt,r, κt,rp , κt,rv , κc,r, κc,rp , κc,rv , κr,r, κr,rp , κr,rv are known constants, and λr is the guaranteed rate of
convergence.

The elements in matrix Kr(t) have been color coded using the same criteria as in Section IV-B1.
The most notable differences between Ku(t) and Kr(t) are that in matrix Kr(t) the ultimate bounds
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in yellow, and the drifting term in red have vanished. As a result, the steady-state value of the

temporal error |ξi(t)− ξR(t)| in mode is proportional to ‖ēv‖. The next corollary follows from this
analysis.

Corollary 1: Given the assumptions in Lemma 2, if the collective speed-tracking error satisfies

‖ēv‖ ≤
∆t

κt,rv
,

then there exists a time t∆t
≥ 0 such that

|ξi(t)− ξR(t)| ≤ ∆t(t), ∀t ≥ t∆t
, ∀i ∈ I.

So far, modes Ø and have been analyzed separately in Theorem 1 and Lemma 2, respectively. The
following theorem combines these results, perturbation and switched systems theory, and convergence
properties of infinite series to find τ i

R1
(t). The theorem indicates that the switched system dynamics

in (14) are Lyapunov stable and can persistently switch between modes Ø and .

Theorem 2: Assume the underlying speed-tracking controller for all agents satisfies Assumption 1, the
information flow G(t) satisfies Assumptions 3 through 5, and the speed profiles assigned to each agent
by the trajectory generation algorithms satisfy Assumption 2. If the desired temporal window satisfies

∆t < min
i∈I

1

κr,r

(
vmax,i

vdmax,i
− ρ
)
,

and the collective speed-tracking error satisfies

‖ev‖ < min
i∈I

{
vmax,i − ρvdmax,i

κ̃Ωuv,i

,
vmax,i −

(
ρ+ κr,r∆t

)
vdmax,i

κ̃Ωrv,i

}
,

then there exist known control gains kR, kP , kI , and kPF ,i > 0 for all i ∈ I, and individual dwell times

τ i
R1

(t) = max

{
ετ ,

1

λr
ln ∆ti0(t)

}
+ max

{
0,

1

λr
lnκWr

}
, ∀ ∈ I`,

such that for all initial conditions (ζ0, ep0
) ∈ Ω̃0, the speed command in (4), with the protocol in (10)

and (11), and the switching logic in (15) ensure that

‖vcmd,i(t)‖ ≤ vmax,i, ∀t ≥ 0, ∀i ∈ I,

and γ(t) can switch between Ø and finitely many times in every bounded time interval. The temporal,
coordination, and rate errors at the switching times from mode to Ø satisfy|ξi(t2k)− ξR(t2k)|

|ξi(t2k)− ξj(t2k)|
|ξ̇i(t2k)− ρ|

 ≤ K̃(k)

 ‖ζ0‖‖ep0
‖

‖ēv‖

 , ∀i, j ∈ I, k ∈ N.

In mode Ø, the temporal, coordination, and rate errors satisfy |ξi(t)− ξR(t)|
|ξi(t)− ξj(t)|
|ξ̇i(t)− ρ|

 ≤Ku(t− t2k−2)


|ζt(t2k−2)|
‖ζu(t2k−2)‖
‖ep(t2k−2)‖
‖ēv‖

 , ∀ t2k−2 ≤ t < t2k−1, ∀i, j ∈ I, k ∈ N,

whereas in mode the temporal, coordination, and rate errors satisfy |ξi(t)− ξR(t)|
|ξi(t)− ξj(t)|
|ξ̇i(t)− ρ|

 ≤Kr(t− t2k−1)

 ‖ζ(t2k−1)‖
‖ep(t2k−1)‖
‖ēv‖

 , ∀ t2k−1 ≤ t ≤ t2k, ∀i, j ∈ I, k ∈ N,
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where Ku(t) and Kr(t) are defined in Theorem 1 and Lemma 2, respectively, and K̃(k) ∈ R3×3 is

K̃(k) :=



κt,re
−kλrετ κ̃t,p k e

−kλ̃ετ
(
κ̃t,v1

+ κ̃t,v2
eλrετ

)∑k
m=1 e

−mλrετ

κc,re
−kλrετ κ̃c,p k e

−kλ̃ετ
(
κ̃c,v1

+ κ̃c,v2
eλrετ

)∑k
m=1 e

−mλrετ

κr,re
−kλrετ κ̃r,p k e

−kλ̃ετ + kepe
−k k

¯PF
ετ

(
κ̃r,v1

+ κ̃r,v2
eλrετ

)∑k
m=1 e

−mλrετ +
kep
k
¯PF


,

ετ > 0 is a design parameter, Ω̃0 is a known non-empty set, κ̃Ωuv,i
, κ̃Ωrv,i

, κWr , κt,r, κ̃t,p, κ̃t,v1
, κ̃t,v2

,
κc,r, κ̃c,p, κ̃c,v1

, κ̃c,v2
, κr,r, κ̃r,p, κ̃r,v1

, and κ̃r,v2
, λ̃ := min {k

¯PF
, λr}, and λr is the guaranteed rate of

convergence in mode .

The elements in matrix K̃(k) have been color coded using the same criteria as in Section IV-B1. Note
that the propagation of the perturbation in (12) through the switched system presents structural similarities
with the results in mode . This becomes clear if one compares matricesKr(t) and K̃(k). They contain
the same-color blocks in the same locations. As shown in Figure 7, the elements in K̃(k) behave as
follows:

1) The blocks in blue decrease exponentially with k, the number of Ø- cycles.

2) The elements in purple are dominated by a linear growth for small k, and an exponential decay

for large k.
3) The terms in orange are ultimately bounded. Application of D’Alembert’s criterion proves

convergence of this infinite series.
4) The terms in green are a direct effect of uT�

(t) as it propagates through the switched system,
and can be easily identified with the elements in Equatiom (12).

In all cases, we observe a similar behavior as their continuous counter parts in Kr(t).

The following corollary follows from Lemma 2 and Theorem 2, and concludes that if the collective
speed-tracking error satisfies certain conditions, then two possible behaviors may emerge from the

1 3 5 7 9 11 13 15

Fig. 7: Response of the terms in K̃.

switching logic in Equation (15) either

1) After some time t∆t
the switched system (14)

stays in mode Ø, |ξi(t) − ξR(t)| remains
within ∆t(t) for all link peers, and |ξi(t)−ξR(t)|
is bounded for all end peers but may lie outside
∆t(t); or

2) The switched system (14) persistently switches
between modes Ø and . In this case, there ex-
ists a number of Ø- cycles k∆t

beyond which
the temporal error |ξi(t2k)− ξR(t2k)| falls inside
∆t(t2k) for all agents. Between switching times
t2k and t2k+2, |ξi(t) − ξR(t)| remains bounded,
but some agents will depart the desired temporal
window ∆t(t).

Corollary 2: Given the assumptions in Theorem 2, if the collective speed-tracking error satisfies

‖ēv‖ ≤ ∆t min

{
1

κt,rv
,

eλrετ − 1

κ̃t,v1
+ κ̃t,v2

eλrετ

}
,

then two behaviors may emerge for the switched system (14) either
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1) There exists a time t∆t
such that γ(t) = Ø for all t ≥ t∆t

, and

|ξi(t)− ξR(t)| < ∆t(t), ∀t ≥ t∆t
, ∀i ∈ I`,

|ξi(t)− ξR(t)| < ∆t(t) + κc,u‖ζu(t∆t
)‖e−λu(t−t∆t ) + . . .

+
κc,up

k
¯PF
− λu

‖ep(t∆t
)‖
(
e−λu(t−t∆t ) − e−k¯PF (t−t∆t )

)
+ . . .

+ κc,uv‖ēv‖, ∀t ≥ t∆t
, ∀i ∈ Ie; or

2) γ(t) persistently switches between modes Ø and , and there exists a k∆t
∈ N such that

|ξi(t2k)− ξR(t2k)| ≤ ∆t(t2k), ∀k ≥ k∆t
, ∀i ∈ I,

and the temporal errors |ξi(t)− ξR(t)| between t2k and t2k+2 in modes Ø and are bounded for
all agents.

According to Theorem 1 the temporal error can drift away from the origin in mode Ø. However, Theo-
rem 1 only provides an upper bound for the evolution of |ξi(t)− ξR(t)|, and therefore does not guarantee
that the temporal errors will indeed drift. This is relevant in the interpretation of Corollary 2 because if
|ξi(t)−ξR(t)| indeed drifts, then the only compatible behavior is item ii). The real implementation of this
cooperative system will drift in mode Ø, because the vehicle speed-tracking controllers will invariably
incur in small tracking errors. Hence, the real system will exhibit persistent switches between modes Ø
and . Therefore, item i) in the corollary is a result of the formality of this proof. One may attempt
to remove it assuming the following PE-like conditions involving the speed-tracking error:

1

Tv

∫ t+Tv

t
e>v,i(τ)ev,i(τ)dτ ≥ µv, ∀t ≥ Tv, i ∈ I,

with Tv > 0 and µv > 0, and the QoS of the communication network:

1

n

1

T

∫ t+T

t
L̄ (τ)dτ ≤ µ̄ In−1 , ∀ t ≥ T ,

with T > 0 and µ ≤ µ̄ ∈ (0, 1]. In accordance with the expected behavior, the following remark analyzes
the performance guarantees as the number of Ø- cycles increases.

Remark 2: As the number of Ø- cycles increases, the switched system (14) successfully cancels
out the effects of the initial error ‖ζ0‖ and position-tracking errors ‖ep0

‖ as shown next

lim
k→∞

|ξi(t2k)− ξR(t2k)|
|ξi(t2k)− ξj(t2k)|
|ξ̇i(t2k)− ρ|

 ≤
κ̃t,v1

+ κ̃t,v2
eλrετ

κ̃c,v1
+ κ̃c,v2

eλrετ

κ̃r,v1
+ κ̃r,v2

eλrετ

 1

eλrετ − 1
‖ēv‖.

Thus, increasing the value of ετ cannot completely eliminate the error induced by ‖ēv‖, but can reduce
it to some extent, since 1

eλrετ−1 and eλrετ
eλrετ−1 are monotonically decreasing, and

lim
ετ→∞

1

eλrετ − 1
= 0, and lim

ετ→∞

eλrετ

eλrετ − 1
= 1.

When the value of ετ is increased the contributions of mode Ø to the temporal, coordination, and rate
errors diminish, since the system stays in mode for longer periods of time.

The following section derives transient and steady-state performance guarantees for strict temporal
constraints with non-ideal target tracking capabilities.
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3) Strict Temporal Constraints: the link-weight logic in Table I for strict temporal specifications
(ωRi(t) ≡ 1) can be leveraged to simplify the system dynamics, and yields the following theorem,
which uses previous results and perturbation theory to prove that the origin of the system dynamics is
λs-weighted iISS with respect to uT�

(t).

Theorem 3: Assume the underlying speed tracking-controller for all agents satisfies Assumption 1, the
information flow G(t) satisfies Assumptions 3 through 5, and the speed profiles assigned to each agent
by the trajectory generation algorithms satisfy Assumption 2. If the collective speed-tracking precision
satisfies

‖ēv‖ < min
i∈I

vmax,i − ρvdmax,i
1 +

(
κr,sv +

kep
k
¯PF

)
vdmax,i

,

then there exist known control gains kR, kP , kI , and kPF ,i > 0 for all i ∈ I, such that for all initial
conditions (ζ0, ep0

) ∈ Ωs0
, the speed command in (4), with the protocol for strict temporal constraints

in (10) and (11) ensure that
‖vcmd,i(t)‖ ≤ vmax,i, ∀t ≥ 0, ∀i ∈ I,

and the individual temporal, coordination, and rate errors satisfy |ξi(t)− ξR(t)|
|ξi(t)− ξj(t)|
|ξ̇i(t)− ρ|

 ≤Ks(t)

 ‖ζ0‖‖ep0
‖

‖ēv‖


where Ks(t) ∈ R3×3 is defined as

Ks(t) :=



κt,se
−λst κt,sp

λs−k¯PF

(
e−k¯PF

t − e−λst
)

κt,sv

κc,se
−λst κc,sp

λs−k¯PF

(
e−k¯PF

t − e−λst
)

κc,sv

κr,se
−λst κr,sp

λs−k¯PF

(
e−k¯PF

t − e−λst
)

+ kepe
−k

¯PF
t κr,sv +

kep
k
¯PF


.

Ωs0
is a known non-empty set, κt,s, κt,sp , κt,sv , κc,s, κc,sp , κc,sv , κr,s, κr,sp , and κr,sv are known constants,

and λs is the guaranteed rate of convergence.

The elements in matrix Ks(t) have been color coded using the same criteria as in Section IV-B1. Notice
also that Ks(t) has the same structure as Kr(t), but with different constants and rate of convergence.
The reason for this resemblance is that strict temporal constraints are a particular case of mode ,
where all link peers listen to the reference agent at all times.

C. Safety Criticality of the Coordination Protocols

Consider now a pair of UAS with identification numbers i and j, equipped with the coordinated path-
following algorithms described so far. The time-critical coordination algorithm has two feedback terms,
both of importance for the safety of the cooperating peers: the coordination feedback uc(t) attempts
to synchronize the virtual targets to ensure safe separation among the UAS; and the target-tracking
feedback uT�

(t) slows or expedites the progress of the virtual targets along their trajectories if the actual
vehicles are behind or ahead their targets. This establishes a negotiation process between the agents and
their virtual targets that prevents vehicles from “cutting corners”, and thus avoids potential collisions with
nearby obstacles, particularly in cluttered environments. These vehicles are also assigned time-deconflicted
trajectories, as illustrated in Figure 8, that is

‖pd,i(td)− pd,j(td)‖ ≥ ds, ∀td ∈ [tdinit , tdend ], i, j ∈ I, i 6= j.
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Fig. 8: Time-deconflicted trajectories.

Generally, the initial and final times of a pair of trajectories may not coincide. As a result, trajectories
represented as a sequence of Bézier curves can be clipped accordingly using de Casteljau’s algorithm
so that the initial and final times of the trajectory segments being compared coincide, as in the equation
above. The safety distance used to deconflict these trajectories in the trajectory generation phase

ds = cs (dp,i + dp,j) ,

is informed with the uncertainty distances dp,i and dp,j , which account for the dimensions of the vehicle
frames, and expected target-tracking errors under nominal conditions. The safety factor cs > 1 provides
an additional safety buffer for unmodeled errors. The desired trajectories and the coordination states of
the UASs at time t determine the position of the virtual targets

pT ,i(t) := pd,i(ξi(t)), pT ,j(t) := pd,j , (ξj(t)).

In addition, Lemma 1 provides a bound for the target-tracking errors as a function of time, which can
be further simplified as follows:

‖ep,i(t)‖ ≤ ‖ep,i0‖e−kPF,i(t−tdinit ) +
ēv,i
kPF ,i

, ‖ep,j(t)‖ ≤ ‖ep,j0‖e−kPF,j(t−tdinit ) +
ēv,j
kPF ,j

. (17)

These expressions define two balls centered at each of the virtual targets with a monotonically decreasing
radius over time, which serve as bounding regions for the center of mass of each agent. As the virtual
targets move, these balls define a pair of shrinking tubes, as illustrated in Figure 9. Consequently, the
distance between the centers of mass of vehicles i and j can be bounded by

‖pi(t)− pj(t)‖ = ‖pT ,i(t) + ep,i(t)− pT ,j(t)− ep,j(t)‖
≥ ‖pd,i(ξi(t))− pd,j(ξj(t))‖ − ‖ep,i(t)‖ − ‖ep,j(t)‖. (18)

If the virtual targets were perfectly coordinated, that is ξi(t) ≡ ξj(t), then the distance between the virtual
targets would be ‖pd,i(ξi(t))− pd,j(ξj(t))‖ ≥ ds for all ξi, ξj ∈ [tdinit , tdend ]. However, Theorems 1, 2,
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Fig. 9: Bounding tubes.

and 3 provide bounds for the individual coordination errors. For simplicity, these bounds will be expressed
within this section as

|ξi(t)− ξj(t)| < δξi,j(‖ζ0‖, ‖ep0
‖, ‖ēv‖, t),

for all the coordination strategies presented within this chapter. Henceforth, the arguments of δξi,j will
be dropped for brevity. Moreover, the trajectories used within this thesis are uniformly continuous by
construction, and thus for any δpi > 0 there exists a δξi,j > 0 such that for all ξi, ξj ∈ [tdinit , tdend ]
satisfying

|ξi − ξj | < δξi,j =⇒ ‖pd,i(ξi)− pd,i(ξj)‖ < δpi, i, j ∈ I, i 6= j. (19)

Therefore, for every value of ξj(t) ∈ [tdinit , tdend ] there exists a bounded time interval where the coordina-
tion state of the ith peer lies ξi(t) ∈ [ξj(t)−δξi,j(t), ξj(t)+δξi,j(t)]. This bounded interval, the trajectory
pd,i, and Equation (17) define a moving tube segment, illustrated in Figure 10 for times t1 and t2. Hence,
to ensure safe separation between the coordinating agents, for every value of ξj(t) ∈ [tdinit , tdend ] the
virtual target pd,j(ξj(t)) and the tube associated with the ith coordinating peer must be sufficiently
separated, as depicted in Figure 10. To this end, Equation (19) yields

‖pd,i(ξi(t))− pd,j(ξj(t))‖ ≥ ‖pd,i(ξj(t))− pd,j(ξj(t))‖ − ‖pd,i(ξi(t))− pd,i(ξj(t))‖ > ds − δpi(t).

Then, applying the same argument as in Equation (19) to pd,j , choosing the least conservative bound,
and plugging the result in Equation (18) yields

‖pi(t)− pj(t)‖ > ds −min {δpi(t), δpj(t)} − ‖ep,i(t)‖ − ‖ep,j(t)‖.

Assume that the speed-tracking precisions under nominal conditions ēv,i and ēv,j are known in the
trajectory generation phase, that the gains kPF ,i and kPF ,j used to compute the speed command in (4)
are also known in the trajectory generation phase, and that the frames for vehicles i and j are bounded
by a ball of radius rf,i and rf,j centered at the center of mass of each UAS. Then, choosing

dp,i = rf,i +
ēv,i
kPF ,i

, dp,j = rf,j +
ēv,j
kPF ,j

for the trajectory generation algorithm yields

‖pi(t)−pj(t)‖ > rf,i+rf,j +(cs − 1)

(
rf,i + rf,j +

ēv,i
kPF ,i

+
ēv,j
kPF ,j

)
−min {δpi(t), δpj(t)}−‖ep,i0‖−‖ep,j0‖.
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(a) Snapshot at time t1 (b) Snapshot at time t2 > t1

Fig. 10: Trajectories, virtual target pT ,j , and tube for the ith UAS at times t1 and t2.

Consequently, choosing a sufficiently large cs ensures that vehicles i and j do not collide during the
mission

cs ≥ 1 +

sup
t

(min {δpi(t), δpj(t)}) + ‖ep,i0‖+ ‖ep,j0‖

rf,i + rf,j +
ēv,i
kPF ,i

+
ēv,j
kPF ,j

=⇒ ‖pi(t)− pj(t)‖ > rf,i + rf,j .

In the fraction above, the numerator contains all the errors that are not modeled in the trajectory generation
phase, while the denominator contains all the errors accounted in the time-critical coordination phase.

V. TECHNOLOGY TRANSITIONS AT NASA LARC

The Advanced Controls Research Laboratory has continuously pursued the transition of the system
architecture shown in Figure 1, and the theoretical guarantees of the algorithms developed to various
applications, leveraging additional funding sources for that. Among the different technology transitions
accomplished in the past three years, the following efforts at NASA LaRC are of special relevance to
AFOSR.

A. Online Monitoring of Coordination and Temporal Errors

Consider a human operator in charge of supervising a fleet of n UAS subject to coordination and
temporal constraints. Estimating the coordination and temporal errors from the location of the vehicles,
as well as the implications that these may have for the success of a mission, can be challenging for a
single person. Hence, to aid human operators interpret and visualize abidance to the coordination and
temporal constraints during the execution of a mission, two spider charts, shown in Figures 11 and 12,
are developed.

Figure 11 presents the coordination constraints plot, which compares the coordination state of each
vehicle with all its cooperating peers. This is represented in n(n− 1) axes that are joined at the center
of the chart. Each axis represents the coordination error ξi − ξj with i 6= j, where i can be identified by
the color of the filled circular marker, and j is defined by the number at the outermost end of the axis.
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Fig. 11: Online plot for coordination errors.

For tight coordination constraints, the vehicles are
tasked to drive the coordination errors to zero. This
coordination goal is represented by the zero polygon,
highlighted in black. As a result, if the marker asso-
ciated with the coordination error ξi − ξj lies outside
the zero polygon, then the ith vehicle is ahead of the
jth vehicle; whereas a marker inside the zero polygon
indicates that the ith UAS is running behind when
compared to the jth agent. For instance, in Figure 11
agent 1 is ahead agent 2, but perfectly coordinated with
vehicle 3. Likewise, one can infer at a glance that agent
4 is behind all of its peers.

Figure 12 shows the temporal constraint plots for
unenforced, relaxed, and strict temporal constraints. In
these charts, the coordination state of each vehicle is compared with the reference state. This is represented
in n axes that are joined at the center of the chart. Each axis represents the temporal error ξi− ξR, where
i can be identified either by the color of the marker, or the number at the outermost end of the axis.
Note that the temporal goals are represented differently depending on the type of temporal constraints
imposed:

1) Unenforced: since the vehicles are not asked to observe ξR, the vertices of the zero polygon are
represented by empty circular markers in light gray just for reference, see Figure 12a.

2) Relaxed: since the temporal goal is to maintain ξi−ξR within the interval [−∆t,+∆t], an outer and
an inner polygon are used to delimit the boundaries of the desired temporal window, see Figure 12b.
The figure illustrates a mission with four agents and thus the inner and outer polygons are squares.

3) Strict: the zero polygon is highlighted in black to denote that the temporal goal is to drive all
ξi − ξR to zero, see Figure 12c.
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Fig. 12: Online plot for temporal errors.

B. High Fidelity 4D Simulation

This section presents simulation results for a time-critical cooperative mission through a cluttered urban-
like environment with tight coordination constraints and relaxed temporal constraints. However, simulation
results were developed for the six main types of time-critical coordination strategies in [17]. The results
in [17] compare six simulation runs with the same mission design, initial conditions, control gains, and
time-varying network topology, but different coordination and temporal constraints. Here, a group of
eight UASs is tasked to converge to and follow their time-deconflicted trajectories while coordinating, to
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ensure that vehicles maintain a safe separation throughout the mission. The sequential arrival of all the
UASs to their final destination in the center plaza, see Figure 20, marks the completion of the mission.
In this scenario, coordination is safety-critical since there are multiple narrow passages through which
the UASs must pass sequentially. In fact, all vehicles must fly underneath a single arch to successfully
complete the mission. Consequently, a lack of coordination in bottlenecks like this could lead to vehicle
collisions. Figures 15 through 20 show snapshots of the mission, and online monitoring plots for the
coordination and temporal errors at different times throughout the simulation.

The cooperating fleet is composed of eight heterogeneous multirotors: four quadcopters, two hexa-
copters, and two octocopters. The underlying dynamical model for each of the UAS is based on the work
developed in [18], [19], [20]. It includes non-linear translational and rotational dynamics that are coupled
as follows:

ṗi(t) = vi(t),

miv̇i(t) = −fT,i(t)RI
B,i(t)e3 +mige3 + fD,i(t),

ṘI
B,i(t) = RI

B,i(t)
(
ωB
i (t)

)∧
,

Jiω̇
B
i (t) = −ωB

i (t)× JiωB
i (t) + τB

T,i(t) + τB
D,i(t) + τB

G,i(t),

where the subindex i ∈ I denotes the agent identification number; pi ∈ R3 is the position of the center of
mass of the UAS expressed in the inertial frame {I} (North-East-Down); vi ∈ R3 is the inertial velocity;
mi ∈ R is the mass; fT,i ∈ R is the total thrust generated by the rotors;RI

B,i ∈ R3×3 is the rotation matrix
from the body frame {B} (Forward-Right-Down) to the inertial frame {I}, see Figure 13; e3 := [0, 0, 1]>;
the gravitational acceleration is g = 9.81 m/s2; fD,i ∈ R3 is the aerodynamic drag force expressed in {I};
ωB
i ∈ R3 is the angular rate of the frame {B} with respect to {I} expressed in {B}; (·)∧ denotes the

hat map Ji ∈ R3×3 is the moment of inertia of the ith UAS expressed in {B}; τB
T,i ∈ R3 is the total

torque generated by the rotors expressed in {B}; τB
D,i ∈ R3 is the aerodynamic drag torque expressed

in {B}; and τB
G,i ∈ R3 is the gyroscopic torque generated by the rotation of the rotors. The model used

here includes rotational and translational drag, gyroscopic effects due to the rotation of the rotors, and
coriolis effects. The blade flapping model proposed in [18] is not included for the sake of simplicity.

Fig. 13: Multirotor tracking the virtual target.

To track the speed command generated
by the cooperative path-following algo-
rithm in Equation (4), each UAS im-
plements a cascaded non-linear speed-
tracking controller whose design leverages
control strategies from [21], [22], [23],
[24], [25], [26], [27], [28].

The QoS of the communication network
that supports the time-critical coordination
algorithms is estimated using the following
expression:

µ̂(t) =
1

n

1

T

∫ t+T

t
QL (τ) Q>dτ, (20)

with a fixed T = 2.00 s. To ensure the
graph G(t) that represents the network
satisfies Assumption 5, a pseudo-random
sequence of Laplacian matrices that switches every 0.50 s was generated to maintain µ̂ within the range
shown in Figure 14.

The simulation run includes three events that significantly perturb the individual coordination and
temporal errors. These events are introduced intentionally to evaluate how the time-critical coordination
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and path-following algorithms perform under realistic disturbances. The following list describes the nature
and timing of these disturbances, as well as the effects on the cooperating fleet:

1) Initial position error: the cooperative path-following algorithm is engaged at t = 5 s. At that
time, the actual positions of the UASs present an offset with respect to the desired positions on
the trajectory. This can also be observed in the norm of the position error, shown in Figure 21.
Figure 15 shows a snapshot of the mission shortly after the cooperative path-following algorithm is
engaged. In this figure the vehicles are already tilted towards the desired position in an attempt to
converge to the path. Note also that the initial position error has propagated through the coordination
dynamics, leading to coordination and temporal errors in all simulation runs. Figure 16 illustrates
how, after some time, the path-following algorithm makes the vehicles converge to their virtual
targets. Simultaneously, the time-critical coordination algorithm synchronizes the virtual targets
and enforces the desired temporal constraints. Three relevant symbols are visible in the 3D plot in
Figures 15 and 16:
• an empty circular marker © denotes the position of the virtual target pT ,i(t) = pd,i(ξi(t));
• a filled star F represents the desired position given by the planned trajectory pd,i(ξR(t));
• and two × symbols are used to delimit the trajectory segment that meets the relaxed tem-

poral constraints at time t. Therefore, the trailing and leading × markers are located at
pd,i(ξR(t)−∆t(t)) and pd,i(ξR(t) + ∆t(t)), respectively.

2) Wind gust engaged: a rectangular pulse with a magnitude of 8m/s is used to simulate a sudden
wind gust. As depicted in Figure 28, the wind is engaged at t = 20 s. This disturbance is applied
to all the UASs at the same time. However, the individual vehicle responses to the wind vary since
the fleet is heterogeneous. Figure 17 shows a snapshot of the mission shortly after the wind gust is
engaged. The arrows that appear next to each UAS icon denote the wind direction, which coincides
with the direction of the drag force that pulls from each of the vehicles. This disturbance creates
a position error that is clearly visible in Figure 21. As a result, Figure 17 shows an increase in
the coordination and temporal errors. Notice that the overall effect of this wind gust is to push the
fleet further behind the planned schedule. This can be inferred from the comparison of the temporal
errors in Figures 16 and 17, or simply by looking at Figure 25. Note that while the wind is engaged
the vehicles have difficulty tracking the virtual target and speed command with the same precision
as with no wind, see Figures 21 and 22. However, as the speed-tracking controller of each UAS
learns to compensate for the wind, the position errors converge to a relatively small neighborhood
of the origin. As a result, Figure 18 shows how the coordination errors return to a reasonably small
neighborhood of the zero polygon, as expected for tight coordination constraints. Note also that in
Figure 18 the temporal errors remain within the desired temporal window.

3) Wind gust disengaged: the sudden removal of the wind gust at t = 80 s causes the speed-tracking
controller of every vehicle to overcompensate for a non-existent disturbance. As a result, the UASs
overshoot their virtual targets, incurring in a position error shown in Figure 21. Figure 19 provides
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Fig. 14: QoS of the communication network.
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Fig. 15: Simulation results 1 s after the time-critical coordination algorithm is engaged.

Fig. 16: Simulation results 1 s before the wind gust is engaged.

a snapshot of the mission shortly after the wind gust is removed. Again, the position error has
propagated through the coordination dynamics, leading to an increase in the coordination errors.
As for the temporal error, the overall effect of this disturbance is to advance the fleet forward along
the mission, see Figure 25. After some time, the speed-tracking controllers learn that the wind has
ceased. Then, the path-following algorithms are able to reduce the position errors. The time-critical
coordination algorithm cancels out the effects of this disturbance on the coordination errors, which
converge to a small neighborhood of the zero polygon, as shown in Figure 20.

Figure 24 shows the coordination errors, which converge to a neighborhood of the origin as anticipated
in Theorem 2. Figure 25 shows the temporal errors. Note the effects of engaging and disengaging
the wind gust at t = 20 s and t = 80 s, respectively. As predicted in Theorem 2, the temporal error
drifts linearly until the link peers reach the boundary of the temporal window, see Figure 25 between
t = 90 s and t = 130 s. During that time the switched system is in mode Ø. Then, the link weights ωRi(t)
switch persistently between 0 and 1 to prevent the drift of the temporal errors. Consequently, the system
alternates between modes Ø and , ensuring that all temporal errors remain within a neighborhood of
the temporal window, as anticipated in Corollary 2. Notice that the temporal window is set to a constant
value ∆t(t) ≡ 3 s.

Figure 26 shows the integral states of the end peers. Note that the integral states do not exactly learn
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Fig. 17: Simulation results 3 s after the wind gust is engaged.

Fig. 18: Simulation results 25 s after the wind gust is engaged.

the mission rate when the system is in mode Ø, see Figure 26 between t = 90 s and t = 130 s. However,
when the link peers reach the boundary of the temporal window the end peers are forced to persistently
correct their integral states as the the weights ωRi(t) are set to 1.

Figure 27 shows the norm of the desired velocity as computed during the trajectory generation phase,
the norm of the velocity command, and the norm of the actual vehicle velocity. There is a noticeable lag
between the desired velocity and the velocity command. This is expected and caused by the delays in
the progress of the mission, which are bounded for relaxed temporal constraints.

Figure 23 shows the temporal evolution of the distance among the centers of mass of the cooperating
agents. Note that the distance among vehicles is always greater than 0.50 m, which was established as
the safe separation threshold and is marked by a dashed red line.
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Fig. 19: Simulation results 3 s after the wind gust is disengaged.

Fig. 20: Results at the conclusion of the simulation.
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Fig. 21: Position error.
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Fig. 22: Speed error.
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Fig. 23: Separation distance.
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