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1 Introduction 

1.1 Background 
There has been a growing demand in the Department of Defense (DoD) in developing optical 
systems capable of operating over long distances (path lengths up to and over 100 km) in the 
atmosphere. These systems may be a part of land-, airborne- or space-based weapon, sensing and 
surveillance platforms operating at different altitudes ranging from the ground and atmospheric 
boundary layer to the upper troposphere, stratosphere, and even space. To optimally design, build, 
and evaluate the performance of these new systems requires fundamental scientific knowledge of 
atmospheric effects along paths that may cross several extended regions with distinctive refractive 
index spatial structures and temporal dynamics, as well as deep understanding of impact of the 
extended-range atmospheric phenomena on optical wave characteristics.  

 

1.2 Knowledge Gaps Addressed 
Prior to this MURI project, analyses of optical wave propagation in the atmosphere were 
performed in the framework of classical “fully developed” Kolmogorov optical turbulence theory 
describing the atmosphere as statistically homogeneous and isotropic random fields of refractive 
index fluctuations and thus neglecting the impact of various large-scale meteorological factors 
including terrain, hydro-thermodynamic processes, gravity and solar radiation induced buoyancy 
and friction forces that lead to formation of distinct, nearly horizontally aligned atmospheric 
turbulent and refractive layers. All these global-scale factors can severely impact optical wave 
propagation over long distances.  

The existing fundamental scientific understanding and knowledge necessary to enable accurate 
prediction of the impact of atmospheric effects on laser beam propagation and image formation 
over long distances was either insufficient or even absent. This was clearly indicated by strong 
mismatches between theoretical predictions and measurement results obtained in several long-
range laser beam propagation experiments.    

This insufficient level of scientific understanding of optical wave propagation over extended-
length distances could be partially explained by the absence of atmospheric sensing techniques for 
operation over long-range propagation paths that provide sufficiently accurate information on the 
complex (4D) spatio-temporal structures of refractive index and absorption/scattering fields. The 
lack of such information prevented development and verification of models that account for the 
complexity of atmospheric processes along various long-range paths.  

Another missing segment of fundamental knowledge was related to the lack of mathematical 
models and numerical simulation techniques that can accurately describe optical wave propagation 
over extended ranges in volume atmosphere with presence of turbulent and refractive layers. The 
commonly used wave-optics and ray tracing techniques accounted for the impact of either 
atmospheric turbulence or refractivity, but could not be applied when optical wave propagation 
occurs along the path with complicated layered structures of the refractive index field, containing 
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inversed temperature, stratified and unstable (turbulent) layers. This lack of generalized models 
describing laser beam propagation and image formation in the layered atmosphere that includes 
both refractivity and turbulence effects prevented deep understanding and accurate predictive 
numerical simulation of such phenomena as optical ducting and guiding, mirage image formation, 
super-focusing and super-resolution effects 

 

1.3 Research Objectives 
The major objective of the program was to develop a rigorous scientific theoretical and 
mathematical basis for understanding of atmospheric optics effects over extended-range 
propagation distances and in deep turbulence. The program objectives also included development 
of new approaches and optical system architectures for atmospheric effects sensing, mitigation and 
exploitation. 

An overarching goal was to facilitate the development of long-range optical systems where there 
is a need for understanding and performance assessment of optical wave propagation and image 
formation along extended distances in atmosphere. 

 

1.4 Scientific Approach 
The research was focused on elaborating a foundation for the physics of atmospheric optics effects 
in deep turbulence by building bridges between meteorology, computational fluid dynamics, and 
statistical wave optics.  

Along this general theoretical approach, the research team developed a theoretical framework and 
the corresponding mathematical and numerical simulation tools that allow computation of 3D 
refractive index Reynolds-averaged fields, also referred to as optical refractivity, and atmospheric 
turbulence structure parameter 2

nC  along optical wave propagation paths using computational fluid 
dynamics. The obtained refractive index and 2

nC  fields were used for analysis of optical wave and 
image formation. This analysis was performed through high-resolution nested simulations by 
merging refractive and wave-optics propagation models.   

For atmospheric refractivity and turbulence sensing over long-range propagation paths the team 
used several approaches including: (a) weather radar data processing, (b) analysis of image motion 
and degradation, (c) sensing of polychromatic (multi-wavelength) laser beacon characteristics, and 
(d) the target-in-the-loop atmospheric sensing based on optical reciprocity. The scientific approach 
included theoretical analyses, numerical simulations, and atmospheric experiments and data 
collection, in part using the atmospheric sensing suite that was developed under both this MURI 
and the AFRL STTR Phase II “Complex field atmospheric sensing suite for deep turbulence 
research” (contract Number: FA9451-14-C-0015; Gov. TPOC: Dr. Rao Gudimetla, AFRL/DE). 

For mitigation of atmospheric effects several new approaches were investigated, including 
engineering of unconventional optical fields (e.g., optical fields with controllable space-varying 
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coherence or dynamically changing phase and polarization patterns) that have reduced sensitivity 
to atmospheric distortions, and adaptive turbulence effects mitigation with coherent fiber-array 
techniques. 

The team also studied several approaches for exploitation of deep turbulence effects for directed 
energy, atmospheric imaging and laser communications. The most promising is the developed 
approach for turbulence effects exploitation based on utilization of optical invariants such as the 
interference and speckle metrics that remains constant along the wave propagation path.   

 

1.5 Research Strategy 
The MURI team’s general approach included the following major research efforts: 
• Building bridges between meteorology, computational fluid dynamics and statistical wave-

optics. 
• Development of extended-range atmospheric optics sensors, mathematical wave propagation 

models and predictive computer simulation tools. 
• Development of atmospheric optics effects mitigation techniques via engineering of non-

conventional optical waves and systems 
• Development of a scientific foundation for atmospheric optics effects exploitation. 
An important aspect of the research strategy was its focus on the development of theoretical 
models, computer simulation capabilities, sensing and data analysis tools that were used in the 
extended-range comprehensive atmospheric optics sensing (ERCAOS) experimental campaign, 
which took place in April 2019. The experiments included laser beam projection over 149 km 
between two Hawaiian Islands with a specifically developed laser beacon and a comprehensive set 
of sensors for evaluation of beam characteristics. It led to the discovery of a previously undescribed 
phenomena – laser "beam mirages". The obtained experimental data provided unique information 
for evaluation of the mathematical models, numerical simulation and sensing techniques 
developed under this MURI project.   

 

 

2 Accomplishments 

2.1 Significant Results and Key Outcomes 
2.1.1 Building Bridges between Meteorology, Computational Fluid Dynamics and 

Statistical Wave-optics 
2.1.1.1 Computational meteorology based modeling 
The key scientific objective of the MURI team in this research direction was to investigate how 
the framework of modern computational atmospheric fluid dynamics, also referred to as 
computational meteorology, can be applied for analysis of the 3D refractive index field in the 
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Earth’s atmospheric boundary layer and low stratosphere for selected geographical areas of interest 
and time period.  

Computation of the 3D refractive index field along am extended (on the order of 100 km or more) 
optical wave propagation path encounters two major problems. First, although the computational 
fluid dynamics methods can be in principle used for refractive index field analysis with up to sub-
centimeter spatial resolution, even with currently available supercomputing resources it takes 
many hours computation even with significantly low (~ 0.5 km – 1.0 km) spatial resolution. Thus, 
the realistically achievable spatial resolution in the refractive index 3D field is not sufficient for 
analyses of optical wave propagation, which often require accounting for millimeter-scale 
refractive index features.  

In the approach developed by the team, the refractive index is considered as a sum of two major 
components: one is associated with atmospheric refractivity and the second with optical 
turbulence. The refractivity component describes slowly evolving (in comparison to the time-scale 
of turbulence) large-scale refractive field variations caused by synoptic-scale and mesoscale 
atmospheric processes. This refractivity field can be defined by ensemble averaging (Reynolds 
averaging) performed over relatively small-scale random and rapidly changing turbulence-induced 
refractive index inhomogeneities (eddies). The characteristic spatial scales of these refractive 
index eddies are associated with turbulence inner and outer scales (ranging from a few mm to tens 
of meters), and their life-time associated with a characteristic turbulent “frozen time” (on the order 
of a few msec). The computational meteorology approach can be used for computation of the 
turbulence-averaged atmospheric refractivity that describes far-reaching changes in the refractive 
index which occur at spatial scales from a few to hundreds of kilometers and over a timeframe 
from several minutes to several hours.  

For better understanding of the spatio-temporal variability and characteristic structures of 
atmospheric refractivity, the team performed extensive mesoscale analysis of refractivity fields for 
different geographical locations including Hawaiian Islands, Canary Islands, US East Coast, and 
for different meteorological conditions. These mesoscale simulations clearly demonstrated a great 
variability and spatial complexity of the atmospheric refractivity, including the presence of various 
coherent structures, inverse gradients, wave ducting, and stratified layers.   

The findings from these simulations challenge the approach currently used in optics for accounting 
atmospheric refractivity using “formula-based” general models such as the standard US76 
refractivity model. From this view point the proposed approach of atmospheric refractivity 
predictive modeling using computational fluid dynamic and weather forecasting techniques 
represents a major paradigm shift for the computational atmospheric optics.  

The second challenge the team encountered is related to the adequate representation of the 
stochastic refractive index component that is associated with atmospheric turbulence. The problem 
is that computational meteorology even with highest realistically possible numerical simulation 
grid resolution cannot capture refractive index random perturbations on turbulence scales (from 
millimeters to tens of meters). At the same time, it is possible with mesoscale modeling to identify 
areas where air flows are unstable and even compute the refractive index structure parameter, Cn2. 

DISTRIBUTION A: Distribution approved for public release.



This suggests that using computational fluid dynamics one can both simulate the atmospheric 
refractivity field and also quantify the corresponding field of the refractive index structure 
parameter Cn2. This allows to simply add the turbulent component to the refractivity field using 
the conventional statistical atmospheric optics approach based on computer generation of a set of 
thin turbulent layers (phase screens) that are distributed along the optical wave propagation path. 
These turbulent phase screens are generated using the refractive index structure parameter values 
obtained from the mesoscale modelling.  

The approach developed by the MURI team represents a major shift from the conventional 
representation of atmospheric effects in optics and allows fusion of refractive (ray-tracing based) 
and diffractive (wave-optics) methods. 

By developing this new concept the team devoted a significant effort on the key problem of 
quantification of the refractive index structure parameter Cn2 in the framework of computational 
meteorology. Given the complexity of this fundamental problem, the team explored several 
research avenues:  
(i) Higher-order turbulence closure-based approach;  
(ii) Regression approach using an artificial neural network;  
(iii) Gradient Richardson number-based approach utilizing an extensive direct and large-eddy 

simulation dataset; and  
(iv) Scaling-based approach.  
The strengths and weaknesses of all these competing approaches were identified using 
observational data from various field campaigns such as the Hawaii 2002 thermosonde field 
campaign by AFRL. All these approaches were also combined with a coupled mesoscale model-
ray tracing technique. With the exception of the higher-order turbulence closure-based approach, 
all other 2

nC  prediction approaches are original and have been developed under the MURI grant.  

In addition, the team performed idealized large-eddy simulations (LES) and coupled mesoscale-
large-eddy simulations for several atmospheric flows. The simulated datasets enabled to complete 
the development and advancement of the novel atmospheric optics modelling approaches that 
merges computational fluid dynamics and weather forecasting simulation techniques with 
refractive and statistical atmospheric optics and allows for the first time accurate prediction of 
optical waves and image characteristics over long-range propagation paths.  

2.1.1.2 Software packages for prediction of atmospheric conditions 
The MURI team actively contributed to the development of physics-based modeling package, 
PITBUL, for tracking airborne targets for HEL applications, including atmospheric and sensor 
effects and active illumination as well as to the development of the LEEDR package, which defines 
the atmospheric boundary layer with a worldwide, probabilistic surface climatology based on 
season and time of day. Under the MURI effort, for instance, the capability of the LEEDR package 
for characterization of meteorological parameters and radiative transfer effects of the atmospheric 
boundary layer using surface observations or climatological values of temperature, pressure, and 
humidity was evaluated.  
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It was demonstrated that well-mixed atmospheric boundary layers produce elevated aerosol 
extinction layers that are critical to cloud formation, energy propagation, and may produce elevated 
turbulence layers. The combining of meteorological observations, surface-based particle counts, 
and a validated atmospheric radiative transfer code was demonstrated to yield multispectral 
quantifications of aerosol optical depth, transmission, and vertical extinction regardless of clouds, 
weather or sun position. In order to improve the quality of the prediction of atmospheric 
characteristics, large atmospheric volumes, the Weather Cubes, were defined with numerical 
weather prediction data and coupled to a radiative transfer code to define extinction and 
propagation characteristics at any wavelength of interest for visualization and analysis.  

 

2.1.2 Extended-range Atmospheric Optics Effects Sensing Techniques 
The effort was focused on development of basic principles and techniques for atmospheric 
refractivity and turbulence sensing over extended-range distances. Characterization of turbulence 
and refractivity over long distances encounters several key challenges: 

• Existing electro-optics sensors such as optical scintillometers – the most commonly used 
sensors for measurements of the atmospheric turbulence structure parameter Cn2 – have limited 
operational ranges that typically do not exceed a few kilometers (~ 10 km). Besides, these 
sensors are designed for operation at fixed-point settings, and cannot perform measurements 
in dynamically changing conditions or a moving/flying sensing platform or target.  

• Over long distances, atmospheric dynamics is influenced by a variety of factors including 
large-scale terrain elements, local weather conditions, slow variation of temperature causing 
optical refraction, etc. All these factors cannot be quantified by the existing electro-optics 
sensors developed under the assumption that optical wave propagation in the atmosphere is 
only influenced by fully developed statistically isotropic and homogeneous turbulence 
described in the framework of Kolmogorov turbulence theory.  

The dependence of optical wave characteristics on a diverse set of atmospheric phenomena 
represents one of the most serious challenges for atmospheric sensing techniques. To address this 
problem the MURI team considered several new approaches for atmospheric sensing over long-
range distances.    

2.1.2.1 Mesoscale estimations of Cn2 profiles based on satellite and weather radar 
measurements  

The idea is based on utilization of information that is available from the continuously operating 
weather satellites and radar systems for atmospheric turbulence sensing over mesoscale size areas. 
The team also considered the possibility for sensing of the refractive structure parameter 2

nC  based 
on a combined analysis of data obtained from weather radars and satellites, and numerical weather 
prediction simulations. It was shown that the temperature field data from satellite measurements 
can be used to derive vertical index of refraction structure parameter profiles, while numerical 
weather prediction data can be used to enhance the accuracy of the satellite-derived 2

nC  values. 
The ultimate goal was to facilitate estimations of structure parameters of temperature, 2

TC , 
refractive index, 2

nC , and wind velocity, 2
vC  over large volumes and to obtain cloud location and 
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aerosol extinction fields. The numerical weather forecasting results were compared to the 
corresponding atmospheric characteristics obtained using ground-based LIDAR measurements. 
This research enhanced the capabilities for atmospheric optical characteristics estimation over 
mesoscale size regions of interest, which include long-range laser beam propagation or optical 
imaging paths.    

2.1.2.2 Line-of-site, in-situ measurements of atmospheric turbulence and laser beam 
characteristics  

The MURI team developed a new target-in-the-loop atmospheric sensing (TILAS) concept for in-
situ remote sensing of laser beam and turbulence characteristics along the target line of sight, 
including scintillation index and refractive index structure parameter. The TILAS concept is based 
on the integral invariant (interference metric) derived by the team, which couples the complex 
amplitudes of counter-propagating optical fields in the refractive and turbulent atmosphere. It was 
shown that the interference metric can be measured using a single-mode fiber based laser 
transceiver system. These measurements allow remote evaluation of intensity scintillations of the 
laser beam that is scattered off a small size retro-reflector at the other-end of a laser beam 
propagation path, as well as retrieval of the path integrated refractive index structure parameter 
from these measurements. The TILAS concept may be also used to examine the validity of the 
Kolmogorov turbulence theory as well as to develop physics-based models of the atmosphere.  

Together with the development of the TILAS concept and its evaluation through wave-optics 
numerical simulations, the underlying reciprocity principle of counter-propagating waves was 
demonstrated experimentally using the atmospheric test range at UD. The team then developed the 
TILAS sensor using existing components, which included a single-mode fiber based laser beam 
transceiver that was equipped with a fiber circulator for separation of the outgoing and target-
returned received waves, and photo-detector connected to the receiver path. The system was 
integrated into the UD atmospheric testbed and a retro-reflector was used as target on the other 
end of the 7 km propagation path. The retro-reflector was set up in such way that measurements 
of the fluctuations of the incident laser power were possible simultaneously with the measurements 
of the received laser power fluctuations at the TILAS transceiver. This allowed for experimental 
demonstration of the concept underlying the TILAS approach. The setup was then used for direct 
atmospheric measurements of laser beam intensity scintillation characteristics and the 
corresponding refractive index structure parameter 2

nC  over the 7 km propagation path to validate 
the approach through a comparison with data obtained with a commercial scintillometer installed 
at the UD testbed, where measurement results from both sensors correlated well.  

The developed TILAS sensor has a considerable advantage over scintillometers, which need 
powered transmitters/receivers at both ends of the propagation path. In contrast, the TILAS 
approach requires only a powered transceiver on one end of the propagation path, while a passive 
device suffices at the other end (for instance a retro-reflector, but a glint of an object or a rough 
scattering surface may work as well).  

Furthermore, numerical analyses demonstrated the application of the approach for identification 
of localized atmospheric turbulence layers using laser light backscattered off a moving target. It 
was shown that for this case the autocorrelation function of the laser power received by the TILAS 
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system strongly depends on the turbulence distribution and is weakly sensitive to the turbulence 
strength, while the variance of the received power equally depends on these parameters, enabling 
a novel technique for turbulence profiling. Numerical simulations demonstrated the accurate 
recognition of the location along the propagation path and strength of a turbulence layer. The 
estimation errors were furthermore reduced by developing and implementing an iterative algorithm 
for the processing of the data from the laser power signal received by the TILAS system.   

2.1.2.3 Polychromatic atmospheric turbulence and refractivity sensing  
Additional opportunities for characterization of the atmosphere are opening with the 
polychromatic atmospheric sensing technique developed by the MURI team. Using a 
polychromatic laser beacon that operates with different wavelengths (λ1 = 0.53 μm, λ2 = 1.06 μm, 
and λ3 = 1.55 μm), one can simultaneously measure the scintillation indexes corresponding to each 
wavelength. This information may be utilized for estimation of the refraction structure parameter 
distribution along the propagation path, 2 ( )nC z . Besides the retrieval of the 2 ( )nC z  profile, the 
polychromatic sensing technique can be used to measure the strength of optical refraction along 
the target line of sight. The polychromatic atmospheric sensing system was implemented using the 
photonic crystal fiber based laser beacon system that was developed under an AFRL/AFOSR 
ERASS STTR project and this MURI program. 

The MURI team showed through numerical simulations that the impact of optical refraction can 
be characterized via measurement of shifts in laser beam centroids that occur at different 
wavelengths. The proposed polychromatic atmospheric sensing technique allows thus 
simultaneous sensing of both turbulence and optical refraction characteristics. The experimental 
validation of the polychromatic atmospheric sensing system was performed by the MURI team at 
UD's 7-km test range. It was then integrated into the sensing suite for the ERCAOS experimental 
campaign and used for extensive measurements at the 149 km propagation path between the 
Mauna Loa Observatory on Hawaii (Big Island) and the site of the Haleakala Observatories on 
Maui.   

2.1.2.4 Atmospheric refractivity and turbulence sensing with time-lapse imagery 
Refractive effects of the atmosphere can range from something as subtle as an apparent shift in 
target position to something as spectacular as mirages and the green flash. Although the physics 
behind these phenomena are well known, their characteristics such as strength, frequency of 
occurrence, and correlation to meteorological data are lacking. These characteristics can be of 
value to different tactical mission planning.  

In order to examine the potential of predicting the refractive behavior of the atmosphere at a 
particular location from meteorological measurements and modeling, the MURI team pioneered a 
low-cost time-lapse imaging system consisting of a commercial camera with a zoom lens for the 
purpose of sensing the guiding and optical ray bending phenomena caused by atmospheric 
refraction.  

A significant advantage of the time-lapse imaging system is that long duration monitoring of image 
dynamics (weeks or months) is possible with the camera operated in a time-lapse mode. 
Experiments have been performed with this type of system over a 12.8 km path in Dayton, OH 
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and a 15.3 km path in Las Cruces, NM. Due to changes in the refractive index gradient during the 
course of a day, a corresponding slow vertical drift in the images was observed. An estimate of the 
gradient variations during the daytime was obtained from this image motion. The path averaged 
refractive index gradient variations derived from the time-lapse imagery were compared with those 
derived from a coupled mesoscale model, ray tracing and brightness function imaging frameworks 
developed by the team. The daytime gradient variations from the imaging experiment were in good 
agreement with those predicted from the mesoscale-ray tracing and brightness function models. 
These first results are a good indication for the possibility to predict refractive index gradient 
variations from both numerical weather models and time-lapse imaging.  

After the initial experimental evaluation of the time-lapse imaging approach, the team extended 
processing codes to detect geometrical distortions of the target image rather than just the apparent 
target shift. These distortions can be interpreted in terms of refraction and an inversion of this data 
allows for an improved estimation of temperature profiles. Longer term measurement campaigns 
were performed, e.g., over a 15.3-km path in Las Cruces, NM. Here, the recorded imagery clearly 
demonstrated the presence of a strong refractivity layer. The comparison of simulations with 
different refractivity layer models with the experimental data showed best agreement when the 
strong refractivity layer was described by the Webster duct model.  

The time-lapse imagery showed two distinguished components of image motion: the slow vertical 
motion due to changes in refractive index gradient and a faster, random motion, which can be 
attributed to turbulence-induced wavefront tilts. Since statistics of wavefront tilts depends on the 
turbulence strength, the random image motion sensing can be used for estimating the path averaged 
refractive index structure constant, Cn2. Since this technique is phase based, it may be applied to 
strong turbulence paths where traditional irradiance based methods fail to work due to saturation 
effects.  

The team also used the time-lapse imagery to estimate turbulence strength and turbulence profiles 
along the propagation path. Features of different sizes and separations were identified in the time-
lapse images and their individual and differential motion was studied. The 2

nC  estimation 
technique uses a set of weighting functions that depend on the size of the imaging aperture and the 
patch size in the image whose motion is being tracked. Weighting functions for different patch 
sizes and separations can be linearly combined to form any desired weighting function, such as 
that of Fried’s coherence diameter 0r  or that of a scintillometer. The time-lapse measurements can 
thus mimic the measurements by a scintillometer or other instruments. The technique was applied 
to synthetic and experimentally obtained imagery recorded, for instance, over test ranges at 
WPAFB and UD with success. The path-averaged estimates of 2

nC  from the experimental data 
agreed very well with scintillometer measurements over a horizontal path. A scheme to use the 
time-lapse measurements to profile turbulence along the path was also investigated and showed 
promising results for certain system parameters and propagation path ranges, but limitations exist 
due to stronger errors for 2

nC  estimates on one side of the propagation path. An experimental setup 
for turbulence characterization with differential image motion utilizing a set of distributed LED 
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beacons and two cameras was developed by the AFIT team members and used for atmospheric 
characterization during the ERCAOS experimental campaign. 

2.1.2.5 Development of general use atmospheric data collection and sharing capabilities 
During the MURI effort, the team has significantly extended capabilities of the unique atmospheric 
propagation testbed at UD. This testbed includes a 7 km long path between a lab installation on 
the roof of the VA Medical Center (VAMC) in downtown Dayton and the Intelligent Optics 
Laboratory (IOL) located on the 5th floor of the UD Fitz Hall building. The testbed contains 
various laser beacon sources, imaging targets, meteorological sensors and laser beam and image 
characterization sensors. The laser beams are launched through the installation window, and after 
propagation enter optical receiver systems at the IOL through a special window. Alignment and 
power control of the beacon beams is performed remotely from the IOL using a microwave link. 
The installation at the VAMC also has several targets used for evaluation of the atmospheric optics 
system operating in target-in-the-loop propagation scenario. Available capabilities include sensors 
for continuous measurements of wind speed and direction, temperature, humidity, atmospheric 
pressure, 2

nC , Fried parameter, Rytov number, and scintillation index.  

The atmospheric sensing suite and software developed by the MURI team offer unique capabilities 
for long-term (24/7) monitoring of major atmospheric characteristics important for understanding 
of laser beam propagation and image formation in deep turbulence conditions. The testbed was 
used by the MURI team and other researchers for evaluation of different atmospheric sensing 
techniques, and mathematical and numerical models, including a set of measurements performed 
jointly with researchers from DoD labs, academia and the NATO SET-226 study group. Further 
development of the testbed included installation of a polychromatic beacon, set up and evaluation 
of complex field sensors, and the installation of a time-lapse imaging sensor. In addition, the team 
developed software to share data measured that the testbed through the internet. 

Besides atmospheric optical turbulence measurements at the UD testbed, the team also conducted 
the ERCAOS experimental campaign described below and a multi-month field campaign near the 
North Carolina coast to understand the effects of various coastal phenomena on optical turbulence. 
The obtained datasets helped for parameterization development and model validation. 

2.1.3 The Extended-range Comprehensive Atmospheric Optics Sensing (ERCAOS) 
Experimental Campaign 

A major objective for the MURI effort was to prepare for and conduct a comprehensive 
propagation/sensing field experiment between Mauna Loa on the Big Island of Hawaii and the 
Haleakala Observatories site on Maui. These experiments were performed under the two-year 
MURI extension period that began in January 2019. The campaign enabled: 

a. Validation of the MURI-developed theoretical, mathematical and predictive numerical 
simulation framework for understanding of atmospheric optics effects over extended-range 
(>100 km) propagation distances and in presence of deep turbulence and strong refractive 
effects; 

b. Validation of theoretical findings, hypotheses, and evaluate accuracy of predictive numerical 
simulation methods developed by the MURI team for forecasting atmospheric optical effects 
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(refractivity and turbulence) and their impact on laser beam and image propagation over 
extended (>100 km) distances;  

c. Evaluation of the performance of advanced atmospheric sensing systems that have been 
developed for long-range applications under the MURI project and a related STTR Phase II 
contract; and 

d. Collection of a large set of experimental data on long-range atmospheric dynamics and their 
effects on laser beam and image characteristics.    

An overarching goal of the experimental campaign was to facilitate the ongoing development of 
long-range military optical weapons, communications, and surveillance platforms including HEL 
directed energy, ground-to-space and space-to-ground laser communications, airborne imaging, 
and deep-space surveillance.    

 

 
Figure 1. Aerial view of the propagation path between the beacon site at the Mauna Loa Observatory on the 
Big Island of Hawaii and the receiver site at the Haleakala Observatories on the island of Maui. 

 

The experimental setting included a 149 km propagation path between the polychromatic laser 
beacon in a building of NOAA's Mauna Loa Observatory on the Big Island of Hawaii and receiver 
instrumentation located inside an instrumentation trailer located at the Haleakala Observatories 
(which include the AMOS facilities and telescopes operated by the University of Hawaii) near the 
Haleakala summit on Maui. The experimental setting not only offered the rich dynamics of the 
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unique Mauna Loa to Haleakala path, but also potential synergies with data from nearby NEXRAD 
weather radar, the Keck Observatory, and NOAA aerosol measurements. The presence of NOAA’s 
Mauna Loa Observatory on one end of the propagation path and the AMOS/University of Hawaii 
facilities  on the other end enabled the logistical support regarding electrical power and 
communication resources (phone and internet), sheltering of equipment, and support by AMOS 
personnel so that experiments over an extended period  became possible.  

 

 
Figure 2, ERCAOS experimental setting at the Mauna Loa site 

 

The extended range comprehensive atmospheric optics sensing (ERCAOS) experimental 
campaign was performed from March 29, 2019 through April 19, 2019 by scientist and engineers 
from UD, AFIT, and II-VI Optonicus (through a related STTR project) with support from AFRL, 
Boeing, the University of Hawaii, and NOAA. Data collection for optical propagation over the 
149 km propagation distance between beacons located at about 3400 m elevation at the Mauna 
Loa Observatory and receivers located at about 3030 m elevation in front of the solar observatories 
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at the Haleakala Observatories site (Figure 1) was performed under clear weather conditions 
during several hours after sunset on April 3 through 6, April 9, April 14 and April 15. The details 
of the experimental systems at both sites are shown in Figure 2 and Figure 3. 

 

 
Figure 3. ERCAOS experimental setting at the Haleakala site: receiver system inside the mobile lab (left), view 
of the mobile lab at Haleakala site during experiments (top, right), and a characteristic image of laser beam 
seen at the mobile lab side wall (bottom right). 

 

The team utilized the unique polychromatic laser beacon system based on photonic crystal fiber 
(Figure 2), and the optical receiver system specifically developed for these experiments under 
AFOSR Phase II STTR and Navy Phase II SBIR contracts as well as this MURI project by 
Optonicus LLC (now part of II-VI Aerospace and Defense) and UD (Figure 3). The measurements 
included simultaneous recording of pupil and focal plane short-exposure intensity distributions at 
laser wavelengths of 532 nm and 1064 nm using two Schmidt-Cassegrain receiver telescopes with 
30 cm aperture that were equipped with multi-aperture phase reconstruction (MAPR) sensors 
[Figure 3(left)]. An additional 30 cm-aperture telescope (power-in-the-bucket polychromatic 
receiver) was used for recording of received power simultaneously for laser beams wavelengths 
of 532 nm, 1064 nm, and 1550 nm. The polychromatic beacon (Figure 3) also provided 
capabilities for 1-D and 2-D scanning of all three beams which allowed measurements of: (a) 
turbulence-induced beam widening (laser beam footprint sizes) for all three wavelengths, (b) 
displacements of beam centroids caused by refractivity, (c) power-in-the-bucket (PIB) signal 
fluctuations at different offset distances from the center of the beam footprint. An example of 
intensity scintillation pattern at the ERCAOS mobile lab side is shown in Figure 3(bottom right). 
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Recording of these laser beam characteristics were accompanied by simultaneous measurements 
of local meteorological data with weather stations and the atmospheric turbulence refractive index 
structure parameter ( 2

nC ) with scintillometers locally positioned at each site (approx. 800 feet local 
path length length). 

 

 
Figure 4. Characteristic pupil-plane short-exposure laser beam intensity patterns observed during the ERCAOS 
experiments. The intensity distributions received by the 30 cm Cassegrain telescopes resulted from propagation 
of 532 nm (top row) and 1064 nm laser beams (bottom row) transmitted by the polychromatic beacon located 
at the Mauna Loa site. 

 

Significant discoveries include the following: 

a) Discovery of coherent laser beam “mirages” [Figure 4(left row)] – a fringe-type pupil-
plane laser beam intensity pattern never observed before and two well-defined focal spots 
at the receiver telescope. The hypothesis is that the transmitted laser beam was subdivided 
at a strong stratified refractive layer into two sub-beams that propagated along slightly 
different optical paths and enter the receiver telescope at different angles, thus producing 
interference fringes at the receiver pupil and two well-defined spots at the telescope focal 
plane. At long-range HEL DE system engagement scenarios, the coherent laser beam 
mirage effect could potentially negatively impact the ability to focus HEL beam into a 
single hit spot. These pattern were repeatedly observed over several hours with varying 
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characteristics such as distance between fringes. More research is needed for better 
understanding of this new phenomenon. 

b) Discovery of giant enhancement of turbulence strength and its impact on laser beam 
characteristics in the vicinity of clouds. Receiver pupil-plane intensity patterns in Figure 4 
(second row) demonstrate the giant enhancement of scintillations in the conditions of laser 
beam propagation at relatively short distances from clouds (setting shown in the bottom 
photo in Figure 2). Note nearly identical size intensity speckles in Figure 4 (second row 
photos). The observed “cloud-enhanced” turbulence effect should be considered in HEL 
DE missions planning and should be further investigated. 

c) Discovery of high variability of atmospheric refractivity and strong coupling of refractivity 
and turbulence-induced effects on laser beam propagation characteristics. Both, the 
observed vertical elongation of laser beam footprint, its size and centroid displacement 
magnitude were continuously changing during experiments within a characteristic time 
scale of a few minutes. These changes occurred even when both local meteorological and 
scintillometer data did not show any significant change (compare pupil-plane intensity 
patterns in Figure 4 that were obtained at quite similar local 2

nC  values). This suggests that 
the refractivity (US76) and turbulence models (Hufnagel-Valley HV 5/7, Maui 3, HV 
night, etc.) that are currently used for predictive efficiency evaluation of HEL DE systems 
cannot be applied for long-range engagements and should be revised. 

d) First observation and quantitative measurements of the horizontal and vertical anisotropy 
of laser beam widening over long range atmospheric propagation in presence of both 
turbulence and refractivity. These measurements were performed via one- and two-
dimensional scanning of the transmitted polychromatic beam with simultaneous 
measurements of the PIB signal by the polychromatic receiver. The vertical profiles of the 
beam footprint at different wavelengths in Figure 5(left) obtained via 1-D beam scanning 
illustrate both the refractivity-induced beam centroid shift and the turbulence-induced 
beam widening at different wavelengths. The corresponding images obtained with 2-D 
beam scanning in Figure 5(right) show the ellipticity of the beam footprints (i.e., the 
stronger beam spread in vertical direction). The performed measurements provided 
information on the variability of laser beam characteristics over long propagation paths – 
the information that was previously not available. The recorded data have been a valuable 
source for evaluation and for further development of the theoretical framework for better 
understanding large-scale atmospheric effects and their impact on laser beam and image 
characteristics. The unique data set provides also the opportunity for evaluation of 
numerical weather prediction models. 

e) First qualitative measurements of laser beam intensity scintillations and frequency of giant 
spikes appearance. Laser beam scanning capabilities allowed repositioning position of the 
polychromatic beam footprint in respect to the polychromatic receiver and measuring PIB 
fluctuations at different sections of the beam footprint. 

f) First simultaneous recording of both meteorological and 2
nC  data at both ends of the long-

range path in conjunction with laser beam propagation experiments. This data can be 
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utilized for numerical weather prediction simulations of turbulence and refractivity effects 
followed by numerical analysis of polychromatic laser beam propagation to compare the 
measured and simulated results. This side-by-side comparison can provide a basis for 
development of modeling and simulation tools in support of long-range laser weapon and 
optical surveillance platforms to the DoD. 

 

 
Figure 5. Characteristic beam profiles obtained using polychromatic beam vertical (left) and two-dimensional 
(right) scanning for different wavelengths. 

 

Figure 6 shows two examples for the spatio-temporal distribution of turbulence strengths, as 
described by the refractive index structure constant, 2

nC , obtained through mesoscale simulation 
of atmospheric conditions using the techniques developed under this MURI effort. The graphs 
show the color-coded predicted 2

nC  values in a vertical plane that contains the ERCAOS 149 km 
propagation path for the same time (22:18 local time) at two different days of the campaign. The 
beam path is indicated by lines near the top of each panel. The lines are curved, because the beam 
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height above sea level changes along the propagation path due to the curvature of the Earth's 
surface. As can be seen from Figure 6, the 2

nC values along the beam path are in general lower on 
April 5 (top panel) than on April 9 (bottom panel). The simulation results therefore corroborate 
the much stronger turbulence impact on the projected beams observed on April 9, 2019 in 
comparison to the impact measured on April 5, 2019.  

 

 

 

Figure 6. Refractive index structure constant ( 2
nC ) distributions along the ERCAOS propagation path between 

a transmitter at Hawaii (Big Island) and receivers at Maui obtained from WRF simulations for April 5 and 9, 
2019 (top and bottom panels, respectively. The line near the top indicates the optical propagation path, which 
is shown curved because its height above sea level varies, mainly due to the Earth's curvature. The simulations 
confirm the much stronger turbulence observed on April 9 in comparison to conditions on April 5. 

 

Figure 7 depicts the spatio-temporal distribution of the vertical gradient of refractivity ( / )dn dh  
for the same times and dates as the turbulence strengths shown in Figure 6. They were obtained 
through the same mesoscale simulation of atmospheric conditions. The modeling results indicate 
that the vertical gradient of refractivity was generally stronger on April 9 in comparison to April 
5.  However, the conditions on April 5 apparently favored horizontal refractivity layers, which 
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made the occurrence of laser beam mirages more likely – a result that sustains the experimental 
observations. 

 

 
Figure 7. Distributions of the vertical gradient of refractivity ( / )dn dh  in the vertical plane containing the 
ERCAOS propagation for April 5 and 9, 2019 (top and bottom panels, respectively. The simulations indicate 
that the general refractivity gradient may have been generally stronger on April 9, but horizontal refractivity 
layers were more prominent on April 5.  

 

2.1.4 New Atmospheric Wave Propagation Models and Computer Simulation Tools 
2.1.4.1 Modeling of wave propagation in non-Kolmogorov and anisotropic turbulence 
The MURI team modeled light propagation through coherent atmospheric structures created by a 
temperature inversion in the manner of a pseudo-guided wave. By processing large data bases of 
vertical temperature profiles measured with weather balloons, it was discovered that temperature 
inversions that can support this type of propagation are quite common and geographically 
widespread. Because the character of the wind in the vicinity of the inversions must be such that 
the vertical component of the wind is essentially zero, the team conjectured that the turbulent 
mixing in the vicinity of inversions could be non-Kolmogorov by virtue of being anisotropic, and 
very likely having a non -11/3 power law for the power spectral density. To model this effect the 
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team developed a technique of simulating non-Kolomogorov turbulence by generating phase 
screens with different non-Kolmogorov power spectra.   

Using both theoretical analyses and laboratory simulations, the MURI group analyzed optical wave 
propagation in non-Kolmogorov and anisotropic turbulence. It was shown that a deviation from 
Kolmogorov’s assumptions and a strong anisotropy of the turbulence power spectrum can 
significantly impact laser beam characteristics. The team has also performed a predictive analysis 
of optical communication systems operating in anisotropic and non-Kolmogorov turbulence and 
found that such link characteristics as scintillation index, probability of fade, and bit-error-rate are 
reduced as the degree of turbulence anisotropy is increased.  

Besides numerical simulations the team members conducted a set of laboratory experiments in 
which various non-Kolmogorov and/or anisotropic regimes of turbulence have been simulated 
using phase-only spatial light modulators. The simulation results are in a good agreement with 
theory. 

2.1.4.2 Coupling of mesoscale atmospheric refractivity modeling with ray-tracing simulations  
For realistic predictive modeling of optical refraction effects over long-range propagation 
distances, the MURI team used mesoscale computations of the atmospheric refractive index field 
and ray tracing to simulate propagation of optical rays through strongly stratified refractive layers. 
In these numerical simulations, a range of effects were observed, such as optical rays guiding 
inside and scattering off refractive layers, focusing and defocusing of bundles of rays, temporal 
variation in ray trajectories and their strong dependence on initial conditions (light source elevation 
and angular orientation). With the aid of the imaging data collected in the field, the MURI team 
performed validation of the developed theoretical framework. Specifically, the vertical drift in the 
time-lapse imagery of a distant object was well captured in the ray-tracing simulations. To the best 
of our knowledge, no other similar model-based framework that couples mesoscale refractivity 
modeling with ray-tracing computations was described in the literature prior to the MURI effort.   

The developed technique enabled to characterize and understand the effects of various coherent 
meteorological phenomena on optical wave propagation. For example, the team found that the von 
Kármán vortices are capable of diverting optical ray trajectories by tens of meters at a range of 
approximately 50 km. Anomalous ray trajectories were also found during the nighttime hours in a 
coastal region due to the presence of low-level jets. Based on observations and anecdotal 
evidences, the existence of anomalous ray trajectories was known in the literature. However, the 
newly developed modeling framework can simulate and forecast such atmospheric phenomena in 
a reliable manner.  

The path the team chose for the initial studies was from Isle Royale National Park, in Lake 
Superior, to the northwestern edge of the Keweenaw Peninsula, in Upper Michigan, due to 
circumstantial, but credible reports that, while these two geographic structures are well over the 
horizon from each other, they are occasionally mutually visible. The team was able to merge 
meteorological predictions with detailed optical modeling to verify that these circumstantial claims 
are predicted by modeling.   
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2.1.4.3 Development of a theoretical framework for analysis of the joint impact of atmospheric 
turbulence and refractivity on laser beam propagation  

In the Fresnel approximation of the diffraction theory, also known as wave-optics approximation, 
which was exclusively used in atmospheric optics prior to this MURI effort, propagation of a 
monochromatic (or quasi-monochromatic) optical wave is described in terms of the evolution of 
the optical field complex amplitude along a straight line direction. On the other hand over long 
distances, atmospheric refractivity may result in significant deviations of the optical wave 
propagation trajectory from a straight line, thus posing a significant problem for direct accounting 
of refractive effects in the framework of the wave-optics approximation.   

The refractive effects were described in the past using the geometrical optics approximation by 
representing laser beam as a bundle of rays connecting the transmitter and receiver planes. The 
bundle of ray trajectories is described by ray equations that do not account for diffraction effects. 
For this reason the ray equations cannot be used for evaluation of laser beam characteristics that 
are strongly effected by turbulence, including short- and long-exposure beam width, centroid 
wander, scintillations, etc. Since the turbulence characteristics vary along the laser beam trajectory 
(e.g., they depend on trajectory elevation), atmospheric refractivity may also result in significant 
changes in turbulence-dependent laser beam parameters (beam spread, scintillations, etc.). The 
turbulence-induced random variation in the refractive index gradient may also impact the laser 
beam propagation trajectory. This implies that in long-range laser beam propagation scenarios both 
atmospheric refractivity and turbulence effects can be strongly coupled and should be considered 
jointly.  

The MURI team addressed this important problem by developing a theoretical framework and the 
corresponding mathematical models and numerical techniques (generalized split operator), which 
allow analysis of long-range laser beam propagation in the presence of both atmospheric 
turbulence and refractivity layered structures. The physics-based model includes new coupled 
wave-optics and modified ray-tracing equations. It was shown that numerical integration of this 
system of equations can be performed using a generalized split-operator technique also developed 
by the team.  

Using these techniques the team performed extensive numerical simulation of Gaussian laser beam 
propagation over long distances in a turbulent atmosphere in the presence of inverse temperature 
layers. The obtained results show a strong potential impact of refractive gradient layers on the laser 
beam characteristics, including a break of symmetry in the long-exposure laser beam intensity 
distribution and beam wander. It should be noted that such asymmetries were in the past often 
misinterpreted as presence of anisotropic turbulence. The research under this MURI project 
demonstrated that this is not necessarily the case. 

2.1.4.4 Theoretical framework for analysis of image formation in presence of atmospheric 
turbulence and refractive gradient layers 

Optical mirages – well known and frequently observed atmospheric optics phenomena – are 
commonly explained in the framework of geometrical optics as optical rays bending occurring due 
to propagation through an atmospheric layer with strong refractive index gradient. This simplified 
explanation is quite limited since it doesn’t take into account such factors important for image 
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formation as diffraction on the imaging system’s aperture and presence of atmospheric turbulence 
along the propagation path from an observed object to an imaging system aperture. These factors, 
neglected in the currently used geometrical optics approach, may significantly impact image 
formation. Correspondingly, the conventional approach doesn’t provide adequate tools for 
predictive numerical simulations of mirage images as well as for analysis of the more general 
problem of image formation in atmospheric conditions that are characterized by the presence of 
both strong refractivity and turbulence.  

The MURI team has addressed this challenging problem by generalizing the brightness function 
technique recently developed by the MURI PI and his collaborators. The proposed approach has 
allowed the first predictive simulations of turbulence- and refractivity-degraded images, including 
mirage images. The developed technique has been applied for analysis of the experimental data 
obtained with time-lapse imaging sensor as well as for simulation of the mirage imagery data 
provided by Dr. Steve Hammel (SPAWAR Systems Center).  

Due to implementation of both the generalized brightness function technique and GPU-based 
computational algorithms, the team was able to achieve a hundred- to a thousand-fold computation 
acceleration in analysis of incoherent and anisoplanatic imaging systems in volume turbulent and  
refractivity fields. This new imaging technique was transitioned to AFRL/RV (POC Dr. Dan 
LeMaster). 

 

2.1.5 Mitigation of Atmospheric Optics Effects: Creating a Foundation for Intelligent 
Engineering of Optical Waves and Systems  

Research in this area was focused on: (a) non-conventional atmospheric mitigation techniques 
based on generation of new type of laser beams with controllable spatial coherence properties 
which are more robust in respect to atmospheric turbulence-induced aberrations; (b) development 
of speckle mitigation techniques for active imaging and beam projection (directed energy) 
systems; (c) development of new wavefront sensor types, which can operate in strong scintillation 
conditions typical for propagation in deep turbulence, for advanced adaptive optics systems. 

2.1.5.1 Generation of exotic laser beams with fiber-array based laser beam transmitter systems 
The team proposed a new approach for engineering a variety of unconventional (exotic) laser 
beams with complex spatio-temporal characteristics using coherent (coherently combinable) fiber-
array laser transmitter systems. These laser beams, referred to here as exotic beams, include beams 
with periodic, quasi-periodic, and stochastic spatio-temporal phase modulation. Using numerical 
simulations, the MURI team showed that exotic laser beams can be generated in fiber-array 
transmitters using feedback control systems of different architectures based on a network of beam-
tail interference sensors and fiber-integrated phase shifters. Due to extremely short (nanosecond 
time scale) response time of these phase shifting elements, the proposed technique permits 
generation of laser beams with controllable spatial coherence which can be used for mitigation of 
speckle effects in various applications including directed energy, laser communications, active 
imaging, and wavefront sensing.  

DISTRIBUTION A: Distribution approved for public release.



The research team simulated and studied the performance of multi-beam systems such as the 
University of Dayton adaptive fiber-collimator array when operating with randomization of piston 
phases of the transmitted multiple beams. It was shown that controllable phase randomization can 
result in scintillation reduction in all turbulence cases. Analysis with a performance metric 
indicates that partial coherence is helpful for medium to strong turbulence. However, if the 
fluctuation regime is weak, the fully coherent beam can still yield the best performance.  

The team for the first time experimentally demonstrated a laser illuminator system with 
controllable spatial coherence using randomization of piston phases in the coherent fiber-array 
beam director. In these experiments they used the coherent fiber-array system with 21 sub-
apertures and electronic phase controller developed under the DARPA Excalibur program. It 
provided randomization of piston phases with 80 MHz bandwidth. The fiber-array was used to 
illuminate an extended target over 7 km propagation path. The experiments successfully 
demonstrated a significant decrease of atmospheric turbulence induced scintillations and image 
quality improvement. These results clearly demonstrated advantages of the new fiber-array 
systems for active imaging and may lead to a paradigm shift in active imaging technology.  

2.1.5.2 Computational approaches for generating electromagnetic Gaussian Schell-model 
sources 

Another approach to turbulence effects mitigation is related to generation of electromagnetic 
Gaussian-Schell model (EGSM) laser sources. The team developed two different methodologies 
for generating EGSM laser sources. One approach uses a sequence of random phase screens at the 
source plane and the other uses a sequence of random complex transmittance screens. The 
relationships between the screen parameters and the desired electromagnetic Gaussian-Schell 
model source parameters have been derived. The approaches have been verified by comparing 
numerical simulation results with theory. This work enables one to design an electromagnetic 
Gaussian-Schell model source with pre-defined characteristics for wave optics simulations or 
laboratory experiments. The same ideas can be used in the field to generate EGSM beams for laser 
communications and other laser systems applications where mitigation of turbulence induced 
scintillation is of utmost importance. 

2.1.5.3 Laser beams with pre-defined far-field mean irradiance patterns  
The team used a partially-coherent Schell-model source and phase-only control for generation of 
pre-defined far-field intensity distribution for optimal illumination of remotely located target and 
increase of signal-to-noise ratio (SNR) in active imaging. It was found in both simulation and 
proof-of-concept experiments that the phase-only control method can produce a variety of mean 
far-field irradiance patterns and can be used to improve SNR.  

2.1.5.4 Development of speckle mitigation techniques for active imaging and beam projection 
The research was focused on the analysis of laser beam projection in deep turbulence onto an 
extended (resolved) target with randomly rough surface. Coherent beam scattering off the target’s 
rough surface leads to strong speckle modulation at transceiver plane, which represents a long-
standing challenge for adaptive optics (known from the late 70’s as the speckle problem in adaptive 
optics). The team addressed this problem by utilizing the recently developed speckle-metric-
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optimization adaptive optics technique. This research enabled the first successful demonstration 
of target-in-the-loop adaptive laser beam projection onto an extended target with randomly rough 
surface. The team also extensively analyzed, both experimentally and through numerical 
simulations, the impact of turbulence on the statistics of speckle field. The team showed an 
excellent match between the experimental and numerical simulation results for speckle field 
propagation over 7 km distance in deep turbulence. Besides adaptive optics, this research is 
important for understanding of speckle-noise effects in various active imaging systems.  

2.1.5.5 Scintillation resistant wavefront sensing techniques for advanced adaptive optics 
systems 

Operational principles of wavefront sensors used in conventional adaptive optics (AO) systems, 
such as Shack-Hartmann wavefront sensors, curvature sensors or lateral shearing interferometers, 
are based on the assumption of weak scintillations. These sensors do not perform well in the 
conditions of optical wave propagation over near-horizontal or slant atmospheric paths, which are 
commonly characterized by moderate to strong intensity scintillations. This drawback significantly 
limits utilization of these wavefront sensing and AO techniques for a number of rapidly growing 
atmospheric optics applications. 

Under the MURI effort, the team introduced and analyzed the performance of the multi-aperture 
phase reconstruction techniques specifically developed for simultaneous high-resolution sensing 
of the optical field wavefront phase and intensity distributions under conditions of strong intensity 
scintillations. In general terms, the proposed wavefront sensing technique integrates both zonal 
(aperture division) and modal (phase retrieval over the entire aperture) approaches, combining an 
array of Zernike type wavefront sensors. The first results were quite promising – the team showed 
that the multi-aperture Zernike wavefront sensor can operate in strong intensity scintillation regime 
(Rytov number exceeding 1.5). A major focus of the subsequent work was the development of 
efficient phase reconstruction algorithms and finding the optimal phase mask in order to provide 
rapid convergence. A performance analysis of the resulting multi-aperture phase contrast 
(MAPCO) sensing concept demonstrated the capability to reach phase retrieval or complex field 
sensing for a resolution of 256×256 pixels with processing times in the order of a millisecond or 
even faster.  

 

2.1.6 Development of a Scientific Foundation for Atmospheric Optics Effects Exploitation 
2.1.6.1 Exploitation of the strong correlation between counter propagating waves in deep 

turbulence 
The team discovered, first in numerical simulations and then through experimental validation, a 
new effect related to counter-propagating waves in atmospheric turbulence: there is an ideal 
correlation (theoretically 100%) between the power signals received on both ends of bidirectional 
optical links with monostatic transceivers based on single-mode fiber collimators.  

One of the most obvious applications of this effect is related with mitigation of atmospheric 
turbulence-induced signal fading in bidirectional laser communication links. Although the existing 
turbulence mitigation techniques can provide some performance improvements of optical free-
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space communication systems, they nevertheless require either installation of additional quite 
complicated, bulky and expensive opto-electronic hardware, as in the case of adaptive optics and 
diversity based techniques, or setting up an additional link (optical or RF) for real-time channel-
state information transmission, as in the case of adaptive data-rate, and adaptive modulation and 
coding methods. 

The discovered strong correlation between received power signals in bidirectional optical links of 
different architectures opens attractive opportunities for combination of optical and electronic 
(signal processing) tools for efficient mitigation of atmospheric turbulence effects. Indeed, with 
nearly 100% correlation of received power-signals that can be achieved in optical links based on 
single-mode fiber collimator transceivers, the data can be transmitted and received only during 
time intervals (fading-free time windows) when the received signal level exceeds a predefined 
threshold and can be buffered during fade times intervals (fading time windows). In the case of 
ideal correlation between received signals, these fading-free time windows occur at both ends of 
communication link synchronously. This allows opening and closing the optical communication 
channel simultaneously for both laser communication transceivers without the need for sending 
channel-state (link availability) information back and forth between both transceivers.  

This turbulence-induced “cooperation” between remotely located laser communication 
transceivers can also be used to enhance communication link security without data encryption key 
distribution through the communication link. Different characteristics of simultaneously measured 
randomly varying power-signals can be used to generate and/or change the encryption key at both 
ends of the communication link. For example, by setting a certain threshold value for the received 
power-signals and having identical devices that can generate a new encryption key at both ends of 
communication link each time when the received power-signals exceed this threshold, one can use 
the ideal correlation between independently measured received power-signals to synchronously 
change the data encryption key at the same random set of times at both transceivers. Due to the 
rapid decay in the correlation coefficient with a lateral shift of the receiver aperture any attempt to 
use an optical receiver to intercept the data encryption key will fail even if the used threshold 
power level is known, since decorrelation of signals results in a different set of key change times. 
This turbulence-enhanced (physics based) communication link security provides an attractive 
alternative to technically complicated quantum communication techniques. 

2.1.6.2 New atmospheric wave propagation phenomena: giant intensity spikes in deep 
turbulence  

During numerical wave-optics simulation of laser beam propagation in deep turbulence conditions 
the team observed for the first time irregular appearance of giant intensity spikes with amplitudes 
exceeding the diffraction-limited intensity value by a factor of ten or even more. The spikes in the 
form of narrow spots emerge after propagation of a collimated Gaussian beam over an 
approximately 5-km path in homogeneous volume (deep) turbulence with 2 14 2/310  mnC − −= . The 
formation of spikes is observed only in deep turbulence conditions, when the distributed turbulence 
along the propagation path is strong enough to occasionally generate focusing lenses with 
relatively short focal distance, which focus the laser beam into a small spot (smaller than the 
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diffraction-limited beam). The spikes can propagate with relatively small changes in their profile 
over several kilometers distance.  

Besides the interesting new physics, the occurrence of giant spikes may offer new opportunities to 
deliver laser radiation of high irradiance to a remote target through deep turbulence where 
conventional approaches currently considered for maximizing the irradiance at a target, such as 
adaptive optics wavefront control techniques, do not work or are very limited in their efficiencies. 

The discovery of giant spikes may also challenge the currently used laser eye safety regulations 
and standards that should be reconsidered by accounting for giant spikes. Another aspect of this 
phenomenon is related to the potential need for reevaluation of the laser damage threshold for 
military electro-optics systems. The giant spikes also strongly impact the intensity scintillation 
index value and their presence can explain a strong mismatch between theoretical prediction of the 
scintillation index and its values obtained in wave-optics simulations and in experimental 
measurements.    

2.1.7 Atmospheric Optics Sensors Integration and Networking for Predictive Modeling, 
Artificial Intelligence and Exploitation 

This section describes the work on atmospheric optics sensors integration and networking as well 
as the research on artificial intelligence-based analysis of sensing information that were performed 
under the two-year extension of the MURI project beginning from January 2019. 

2.1.7.1 Development of a theoretical, numerical simulation, and experimental basis for 
atmospheric optics sensors integration and networking  

This research supported the ERCAOS sensing hardware integration and atmospheric evaluation.  
Using the available atmospheric sensors, the team integrated two sensing clusters.  These clusters 
were interconnected via Internet, RF to provide real-time data and imagery transfer between the 
sensing clusters.  

 
Figure 8. Notional schematic of the experimental setting used for collection of short-exposure laser beam 
intensity scintillation images and the corresponding values of the refractive index structure parameter 2

nC  
(ATM datasets) under different atmospheric turbulence conditions. The insert shows the propagation path 
altitude profile. 
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The developed integrated sensing clusters were validated in comprehensive laser beam 
propagation and imaging experimental trials over the 7 km path at the UD testbed and over the 
149 km propagation path between atmospheric optics sensing clusters located near the AFRL 
AMOS facilities on the Haleakala summit (Maui, HI) and at the NOAA Observatory at the Mauna 
Loa summit (Big Island, HI) as described in Section 2.1.3.  

During these field trials, the sensing clusters were utilized to address the following research 
objectives:  

(a) Validation (or contest) of the theoretical, mathematical, and predictive numerical 
simulation frameworks developed under the MURI program for understanding of atmospheric 
optics effects over tactical and extended-range propagation distances and in presence of deep 
turbulence and strong refractive effects; 

(b)  Evaluation of predictive numerical simulation methods developed by the MURI team for 
forecasting of atmospheric optical effects (refractivity and turbulence) and analysis of their impact 
on laser beam and image propagation;  

(c) Performance evaluation of advanced atmospheric sensing systems that have been 
developed under the MURI grant and STTR contracts;  

(d) Collection and processing of a large set of experimental data on atmospheric variability 
and its impact on laser beam and image characteristics;    

(e) Performance evaluation of coherent beam combining and active imaging with partially 
coherent illumination generated by fiber array-based laser illuminator.  

Short-term forecasting of the atmospheric conditions along the propagation path was performed 
using the processed sensing data and weather research forecasting (WRF) simulations. 

2.1.7.2 Development of new approaches for artificial intelligence-based analysis of sensing 
information  

A new paradigm for machine learning-inspired atmospheric turbulence sensing was developed and 
applied to predict the atmospheric turbulence refractive index structure parameter using deep 
neural network (DNN)-based processing of short-exposure laser beam intensity scintillation 
patterns obtained with both: experimental measurement trials conducted over a 7 km propagation 
path and imitation of these trials using wave-optics numerical simulations as illustrated in Figure 8. 
The developed DNN model was optimized and evaluated in a set of machine learning experiments. 
The results obtained demonstrate both good accuracy and high temporal resolution in sensing. The 
machine learning approach was also employed to challenge the validity of several eminent 
atmospheric turbulence theoretical models and to evaluate them against the experimentally 
measured data. In the machine learning experiments the MURI team utilized datasets comprised 
of a large number (up to 1.2×105) of data instances consisting of 2

nC  values and laser beam intensity 
scintillation images either computed (SIM datasets) or measured during the experimental trials 
(ATM datasets). A description of the developed DNN architecture (referred to as the Cn^2Net 
model), major performance characteristics and testing results were outlined in the recently 
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published paper “Atmospheric turbulence study with deep machine learning of intensity 
scintillation patterns” by A. M. Vorontsov et al. 

The possibility for DNNs to be the core element of a new 2
nC  sensor type was evaluated in the 

machine learning experiments. In these experiments the ATM datasets were subdivided on two 
non-overlapping segments (subsets), each containing data representing the full range of 2

nC  values 
observed in the experimental trials. One data sub-set was used for the Cn^2Net training while the 
second was applied for evaluation of the DNN efficiency in prediction of the true (measured) 2

nC  
values based on scintillation images that had never been utilized (never “seen”) during the DNN 
training. The obtained results demonstrated a high accuracy in 2

nC  value predictions within the 
entire range of 2

nC  measurements as illustrated in Figure 9. 

 

 
Figure 9. Results of the 2

nC  prediction with deep machine learning performed for ATM#1-V (a, b) and ATM#2-
V (c, d) datasets using preliminary trained Cn^2Net models (Nmodel =20). The plots (a) and (c) compare 
measured (solid lines) and predicted (dots) 2

nC  values dependent on the frame stamp number m in the 
corresponding datasets. The scatter plots in (b) and (d) characterize the standard deviation of prediction error 
for the entire range of 2

nC  values in the corresponding ATM datasets ( 2 2 2
,0/n n nc C C= and 2 14 2/3

,0 1 10 mnC − −= ⋅ ). 

 

This suggests that an optical sensing system with DNN-based signal processing that is side-by-
side trained with a “trusted” scintillometer could further be independently used as a 2

nC  sensor 
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(DNN-based scintillometer). It was shown that the Cn^2Net- scintillometer provides capabilities 
for significantly higher temporal resolution in 2

nC  sensing. 

In other machine learning experiments, the MURI team investigated the possibility for the 
Cn^2Net to challenge the validity of several eminent theoretical atmospheric turbulence models 
and evaluated them against experimentally measured data. The Cn^2Net was trained using SIM 
datasets corresponding to spatially homogeneous turbulence described by the Kolmogorov power 
spectrum model. The SIM-trained DNN was used to predict the true (i.e., measured with a 
scintillometer) 2

nC  values via processing of the scintillation images obtained during atmospheric 
sensing trials (images from the ATM dataset).  

The Cn^2Net model was also applied for cross-evaluation of various atmospheric turbulence 
models. In the computer simulation experiments the MURI team utilized SIM datasets 
corresponding to the classical Kolmogorov turbulence model and its most known modifications 
(Von Karman and Andrews models). These models were evaluated in several “cross-dataset” 
modeling and simulation experiments in which a DNN trained at one SIM dataset was challenged 
to predict the true 2

nC  values based on scintillation images computed for a different turbulence 
spectrum model. The results obtained demonstrated high 2

nC  prediction accuracy and its relatively 
weak dependence on the examined turbulence models and their major parameters (turbulence inner 
l0 and outer L0 scales), unless these parameters were artificially altered beyond a range reasonable 
from a physics viewpoint. This suggests that intensity scintillation patterns corresponding to the 
examined turbulence spectrum models have nearly identical (undistinguished by the DNN) spatial 
structures. 

At the same time, DNN processing of scintillation images obtained using a recently developed 
turbulence model with noticeable deviation from the Kolmogorov two-thirds power law (non-
Kolmogorov turbulence) resulted in large 2

nC  prediction errors. Similarly, large errors were 
observed when the DNN trained using non-Kolmogorov turbulence models was contested by the 
experimental sensing data. 

 

2.2 Dissemination of Results 
Results of this MURI program were published in 136 papers in peer-reviewed scientific journals, 
plus four papers currently under review or in preparation. In addition, the MURI team published 
111 papers in archived conference proceedings. Oral presentation were given in over fifty 
scientific conferences, AFOSR review meetings and other government briefings (see lists in 
Sections 2.2.1 and 2.2.2 below). 

 

2.2.1 MURI Team Participation in Scientific Conferences 
Papers resulting from research performed under this MURI project were presented in the following 
scientific conferences: 
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• SPIE Optical Systems Design, 2012, Barcelona, Spain, 26-29 November 2012 
• 2012 Annual Directed Energy Symposium, Albuquerque, NM, 26-30 November 2012 
• SPIE LASE, 2013, San Francisco, CA, United States, 2-7 February 2013 
• 2013 IEEE Aerospace Conference, Big Sky, MT, March 2-9, 2013 
• SPIE Defense, Security, and Sensing, 2013, Baltimore, MD, United States, 29 April - 3 May 

2013 
• OSA Imaging and Applied Optics Congress 2013, Arlington, VA, 23-27 June 2013 
• SPIE Optical Engineering + Applications, 2013, San Diego, CA, 25-29 August 2013 
• 2013 Directed Energy Systems Symposium, Monterey, CA, 26 - 29 August 2013 
• 2014 IEEE Aerospace Conference, Big Sky, MT, USA, 1-8 March 2014 
• OSA Imaging and Applied Optics 2014, Seattle, WA, 13–17 July 2014 
• SPIE Optical Engineering + Applications 2014, San Diego, CA, 17-21 August 2014 
• 2014 Directed Energy Systems Symposium, Monterey, CA,  25-28 August 2014 
• OSA Frontiers in Optics 2014, Tucson, AZ, 19-23 October 2014, Environmental Sensing 

Invited Special Talk: “AFOSR Program on Imaging and Beam Control through Deep 
Turbulence” by Dr. M. Roggemann (MTU) 

• 2015 IEEE Aerospace Conference, Big Sky, MT, USA, March 7-14, 2015 
• SPIE Defense + Security, 2015, Baltimore, MD, 20-24 April 2015 
• OSA Imaging and Applied Optics 2015, Arlington, VA, 7-11 June 2015 
• SPIE Optical Engineering + Applications, 2015, San Diego, CA, 9-13 August 2015 
• SPIE Defense + Security, 2016, Baltimore, MD, 17-21 April 2016 
• OSA Propagation Through and Characterization of Atmospheric and Oceanic Phenomena 

2016, Washington, DC, 27–29 June 2016 
• SPIE Optical Engineering + Applications, 2016, San Diego, CA, 28 August - 1 September 2016 
• SPIE Remote Sensing, 2016, Edinburgh, United Kingdom, 26-29 September 2016 
• 2017 IEEE Aerospace Conference, Big Sky, MT, March 4-11, 2017 
• SPIE Defense + Security, 2017, Anaheim, CA, 9-13 April 2017 
• OSA Imaging and Applied Optics 2017, San Francisco, CA, 26–29 June 2017 
• SPIE Optical Engineering + Applications, 2017, San Diego, CA, 6-10 August 2017 
• SPIE Defense + Security, 2018, Orlando, FL, 15-19 April 2018 
• OSA Imaging and Applied Optics 2018, Orlando, FL, 25–28 June 2018 
• 2019 Annual Directed Energy Science & Technology Symposium, Destin, FL, 8-12 April 2019 
• OSA Imaging and Applied Optics 2019, Munich, Germany 24-27 June 2019 
• OSA Imaging and Applied Optics Congress, Washington DC, 22-26 June 2020 
• OSA Optical Sensors and Sensing Congress, Washington DC, 22-26 June 2020 
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• OSA Imaging and Applied Optics Congress, Virtual Event, 19-23 July 2021  
• SPIE Optics and Photonics 2021, San Diego, CA and Virtual Event, 1-5 August 2021 
 

2.2.2 Government Reviews and Briefings  
Research performed under this MURI project was reviewed by and briefed to government officials 
in a number of meetings, including the following: 

• MURI Kickoff Meeting, Dayton, Ohio, 4-5 October 2012 
• MURI overview presentation at ARL/Adelphi, June, 2013 
• MURI review with AFOSR, Dayton, OH, June 26-27, 2013 
• Atmospheric characterization workshop, MIT/LL, Lexington, MA, September 2013  
• MURI overview presentation at AFRL/DE, SOR, Albuquerque, NM, October 2013 
• MURI team workshop, Miami, FL, November 2013 
• MURI overview presentation at AFRL/AMOS, Kihei, HI, February 2014 
• Navy atmospheric sensing workshop, San Diego, CA, February 2014 
• MURI overview presentation for NATO SET-165 study group at ONERA, Paris, France, May 

2014 
• MURI review with AFOSR, Dayton, OH, July 23, 2014 
• Technical presentation for Dr. Lemaster (AFRL/RV), WPAFB, Dayton, OH, August 14, 2014 
• Technical presentation for Dr. Eismann (AFRL/RV), WPAFB, Dayton, OH, September 11, 

2014 
• MURI overview presentation for George Duchak (AFRL/Rome), Dayton, OH, October 29, 

2014 
• MURI overview for Dr. Matson (AFOSR), Dayton, OH, October 30, 2014 
• NATO SET-165 study group meeting, Dayton, OH, November 2014 
• AFOSR program review meeting, Albuquerque, NM, November 17, 2014 
• Technical presentation at NSF (Dr. Abed), Arlington, VA, November 25, 2014 
• MURI overview presentation at AFRL/AMOS, Kihei, HI, December 17, 2014 
• Technical presentation for John Malowicki (AFRL/Rome), Dayton, OH, January 29, 2015 
• MURI team technical exchange meeting, Miami, FL, March 16-17, 2015 
• MURI overview presentation for NATO SET-226 study group, Paris, France, April 16-18, 2015 
• MURI review with AFOSR, Arlington, VA, June 11, 2015 
• MURI technical exchange meeting, Dayton, OH, April 29, 2016 
• MURI review with AFOSR, Arlington, VA, June 29, 2016 
• MURI review with AFOSR, Arlington, VA, October 23, 2017 
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• AFOSR remote sensing portfolio review, Albuquerque, NM, September 4-6, 2018 
• MURI review with AFOSR, Dayton, OH, November 1, 2018 
 

2.2.3 Government Participants 
The list of government participants in MURI review meetings and briefings includes:

• Lawrence Barnes (AFRL/RYNMB) 
• Elizabeth Beecher (AFRL/RYMW) 
• Patrick Carrick (AFOSR) 
• George Duchak (AFRL/RI) 
• Tom Defelice (ARL/CISD) 
• Matt Dierking (AFRL/RYM) 
• Michael Eismann (AFRL/RY) 
• Thomas Farrell (AFRL/RDSA) 
• Venkata S. Rao Gudimetla (AFRL/DE) 
• Steve Hammel (SPAWAR Systems) 
• Byron Knight (NRO) 
• Daniel LeMaster (AFRL/RYMT) 
• Arun Majumdar (NAWCWD) 
• Peter Marasco (AFRL/RYMT) 
• Dan Marker (AFRL/RD) 

• Chuck Matson (AFOSR) 
• Nicholas Miller (AFRL/RY) 
• Kent Miller (AFOSR) 
• Saba Mudaliar (AFRL/RY) 
• Julie Moses (AFOSR) 
• Arje Nachman (AFOSR) 
• David Newton (NSWC Dahlgren) 
• Kathy Ragsdale (AFOSR) 
• Darryl Sanchez (AFRL/RDSS) 
• Bryce Schumm (AFRL/RY) 
• Don Seeley (HEL-JTO) 
• David Tofsted (ARL/CISD) 
• Mark Williams (NRO) 
• Stacie Williams (AFOSR) 

 

 

3 Impacts 

3.1 Development of the Principal Disciplines of the Project 
The following results obtained by the team can be regarded as breakthroughs or new discoveries: 

 Developed a physics-based framework and the corresponding mathematical models (system of 
equations) and numerical techniques (generalized split operator) for analysis of long-range 
laser beam propagation in presence of both atmospheric turbulence and refractivity layered 
structures.  

 Theoretical prediction of atmospheric refractivity-induced spatial anisotropy of laser beam 
characteristics in presence of volume turbulence and strong refractive index gradient layers. 
The predicted spatial anisotropy in laser beam centroid wander and widening has been 
confirmed in numerical simulations.   
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 A new approach and numerical simulation framework for analysis of image formation in 
presence of atmospheric turbulence and refractive gradient layers. This approach has allowed 
first predictive simulations of the turbulence-degraded mirage images.  

 Through numerical wave-optics simulations discovery of deep turbulence-induced irregular 
giant intensity spikes in laser beam intensity distributions. The giant spikes’ physics-based 
origin, probability of appearance, and their impact on scintillation index are analyzed. 

 Discovery in numerical simulation and further experimental validation of the possibility of an 
ideal (theoretically 100%) power-signal correlation in optical links with monostatic 
transceivers based on single-mode fiber collimators. Promising applications include signal 
fading mitigation and turbulence-enhanced security in optical communication links.  

 A new target-in-the-loop (TIL) atmospheric sensing concept for in-situ remote measurements 
of key turbulence characteristics along the target line of sight.  

 A new (brightness function based) approach and computational algorithms for predictive 
numerical performance analysis of incoherent and anisoplanatic imaging systems in volume 
turbulence, which provides a 100 to 1000-fold computation acceleration. 

 First successful experimental demonstration of multiple (21) beams phasing and deep 
turbulence effects adaptive mitigation with a coherent fiber-array system over a 7 km 
propagation path. 

 A novel concept of a scintillation resistant wavefront sensor (multi-aperture Zernike filter) for 
deep turbulence characterization under strong scintillations.  

 A new approach for engineering a variety of unconventional (exotic) laser beams with complex 
spatio-temporal characteristics using, for instance, coherent fiber-array laser transmitter 
systems. 

 Discovery of laser beam mirages in long-range laser beam projection over an 149 km 
atmospheric propagation path. 

 First measurements of atmospheric refractivity effects on polychromatic laser beam 
propagation over 149 km, demonstrating the wide variability of refractivity and the, at times, 
considerable difference to predictions using standard atmospheric models (such as US1976). 

 Experimental evidence of strong turbulence enhancement for atmospheric laser propagation 
paths near clouds. 

 A novel technique based on a deep neural network (DNN) model was developed for fast 
prediction of 2

nC  values from pupil-plane scintillation pattern. The approach was validated 
with both computer-generated scintillation pattern and measurements at UD's test range.  

 

3.2 Impact on Teaching and Educational Experiences 
Working together, the MURI team developed a unique interdisciplinary course “Introduction to 
Atmospheric Optics” that covers the educational topics most relevant for this MURI. The course 
elaborates on a foundation for the physics of atmospheric optics effects by building bridges 
between meteorology, computational fluid dynamics, and statistical wave optics. It provides solid 
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theoretical knowledge of optical wave propagation in the atmosphere, and practical computational 
tools for realistic characterization assessment and prediction of laser beam projection and imaging 
in the atmosphere. The course includes the following major topics that were taught by the MURI 
PI and co-PIs:  

• Fundamentals of atmospheric physics, global and macro-optical effects  
• Atmospheric optical turbulence and its impact on imaging systems  
• Atmospheric optical systems modeling and performance analysis  
• Laser beams propagation in atmosphere  
• Mitigation and exploitation of atmospheric effects 
The course has been offered by the University of Dayton since the spring semester 2014 and is 
offered for distant learning. The lectures were also video-logged for a distant learning course 
offered by AFIT. In addition to this 3-credit hour course, the MURI team, offered a week-long 
short course in summer 2015 (1 credit hour). Besides these university-based educational efforts, 
Dr. Italo Toselli, a MURI team member from UM, presented a short course “Introduction to laser 
beam propagation through atmospheric turbulence with applications” at the SPIE Annual Meeting, 
San Diego, CA, August 2015. 

Besides development and teaching of special courses, more than twenty graduate students (Ph.D. 
and Master level) and six post-doctoral researchers have been supported through the MURI effort 
and have been actively involved in the research. Collaboration among graduate students and post-
doctoral researchers working under the MURI grant was facilitated through a number of visits.  

 

 

4 Changes 

The three-year Base period for the MURI project was originally awarded for the period September 
15, 2012 through September 14, 2015. Due to funding issues on the government side, an 
intermediate no-cost extension was awarded that extended the Base period through January 14, 
2016. Exercising the two-year Option extended the project's period of performance through 
January 14, 2018. A no-cost extension of one year was approved in September 2017 and extended 
the period of performance through January 14, 2019. Additional funding for the University of 
Dayton in response to a supplemental proposal was awarded in September 2018 with a two-
extension of the period of performance through January 14, 2021. During this extension, the long-
range (149 km) laser beam propagation experiments (ERCAOS campaign) was prepared, which 
included the development of the sensor network used in the trials. The campaign took place in 
April 2019 and the corresponding data processing, including fluid dynamic simulations of 
atmospheric conditions on the days of the experiments, was performed subsequently. During the 
extension period, the target-in-the-loop atmospheric sensing concepts was expanded to identify 
turbulence layers with a moving target. An additional six-month no-cost extension was granted in 
December 2020, shifting the end of the period of performance to July 14, 2021.  
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5 List of Archived Publications by the MURI Team 

5.1 Publications in Peer-reviewed Scientific Journals 
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