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1. INTRODUCTION:  
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3. ACCOMPLISHMENTS:  

What were the major goals of the project? 
 

• Sensor Acquisition & Calibration: 100% Complete
• Electric Vehicle Environmental Sensor Integration: 100% Complete
• Environmental Measurement Campaigns: 90% Complete
• Low-cost sensor calibration and deployment: 100% Complete
• Publication/Conference Presentation. 1 publication appeared, 3 presentations
• Machine Learning Analysis: 25% Complete
• Survey with participants: 30% Complete
• Machine learning analysis linking biometric responses to environmental triggers: 30% Complete
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How were the results disseminated to communities of interest?    
 

What do you plan to do during the next reporting period to accomplish the goals?   
   



4. IMPACT: 

What was the impact on the development of the principal discipline(s) of the project?    

What was the impact on other disciplines?    



What was the impact on technology transfer?    

What was the impact on society beyond science and technology? 
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Changes in approach and reasons for change  

Actual or anticipated problems or delays and actions or plans to resolve them 

Changes that had a significant impact on expenditures 



Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or 
select agents 

Significant changes in use or care of human subjects 

Significant changes in use or care of vertebrate animals 

Significant changes in use of biohazards and/or select agents 

Not applicable 
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What individuals have worked on the project? 



Has there been a change in the active other support of the PD/PI(s) or senior/key 
personnel since the last reporting period?  
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Shawhin Talebi, David J Lary, Lakitha OH Wijerante, Tatiana Lary, Modeling Autonomic Pupillary Responses 
from External Stimuli using Machine Learning, Biomedical Journal of Scientific & Technical Research, 
20 (3), 14,999-15,009, (2019) 

Which also won a Dean’s award when it was presented as a poster.

Nothing to Report



What other organizations were involved as partners?    

• Other. 
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9. APPENDICES: 

Dense Urban Environment Dosimetry for Actionable Information and 
Recording Exposure (DUE DARE) 
BA170483

Award Amount: $558,235

Study Aims
In dense urban environments there is currently a lack of accurate 
actionable information on atmospheric composition (gaseous and 
particulate) on fine spatial and temporal scales. By simultaneously 
measuring both the environmental state and the human biometric 
response we propose a holistic sensing environment and methodology for 
providing accurate actionable information.

Approach
A state of the art sensor network involving fixed and mobile sensors using 

machine learning calibration and uncertainty estimation. 
Comprehensive wearable biometric sensors are used to characterize 
the real-time human response to the composition of the air, making the 
human response an integral part of the sensor network. The holistic 
sensor network incorporates embedded real time machine learning to 
increase functionality in providing actionable insights for active human 
participants.
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ARTICLE INFO Abstract

The human body exhibits a variety of autonomic responses. For ex-ample, changing 
light intensity provokes a change in the pupil dilation. In the past, formulae for pupil size 
based on luminance have been de-rived using traditional empirical approaches. In this 
paper, we present a different approach to a similar task by using machine learning to ex-
amine the multivariate non-linear autonomic response of pupil dilation as a function of a 
comprehensive suite of more than four hundred environmental parameters leading to the 
provision of quantitative empirical models. The objectively optimized empirical machine 
learning models use a multivariate non-linear non-parametric supervised regression 
algorithm employing an ensemble of regression trees which receive input data from both 
spectral and biometric data. The models for predicting the participant’s pupil diameters 
from the input data had a delity of at least 96.9% for both the training and independent 
validation data sets. The most important inputs were the light levels (illuminance) of 
the wavelengths near 562 nm. This coincides with the peak sensitivity of the longwave 
photosensitive cones in the retina, which exhibit a maximum absorbance around max = 
562.8 4.7 nm.

Introduction
This study is part of a broader investigation into the role of 

performance. The main purpose of this paper is to provide a 
baseline which accurately describes how changing illuminace a ects 
pupil dilation, so that when emotional or cognitive factors are also 
involved, we can start to discern the relative roles of illumnance and 
cognitive load in a ecting the pupil dilation [1-3]. The ranking of the 
importance of the predictor variables used in our empirical machine 
learning models provides a useful metric of which variables are the 
key drivers, providing us with valuable insights. The Autonomic 
Nervous System (ANT) is responsible for changes in pupil dilation. 
The changes in pupil dilation may occur due to changing light 
intensity, cognitive load and emotional load [4]. While the light 
intensity allows an immediate response at the retinal level, an 
emotional and especially cognitive response, require some higher 
level processing. So, when the visual input is sent from the eye to the 
visual cortex via the optic nerve, it rst goes through the thalamus. If 
at this point an imminent threat is detected, it responds mobilizing 
the body for a ` ght or ight’ response, which is then re ected in the  

changes in the pupil size. As the visual information is relayed to the 
visual center of the brain in the occipital lobe, it is further sent for 
processing via various routes to different parts of the brain. In a fast 
paced changing environment, executive function in the prefrontal 
lobes make decisions in a fraction of a second. This process also 
e ects changes in pupil dilation. Some areas of the brain involved 
in the processing of cognitive and emotional load are deep seated 
structures and can only be observed by expensive equipment such 

starting to address in this study is how can we tell the difference to 
which stimuli the pupil is responding? This study begins to answer 
this question using non-invasive methods that can be used in a 
natural setting by providing a methodology to accurately model the 
change in pupil size as a function of key environmental variables, so 
that when other changes are also occurring simultaneously (such 
as emotional and cognitive load) we can start to examine how these 
factors modify the pupil dilation response that occurs.

In addition to changes in pupil dilation, other autonomic 
responses include changes in heart rate variability, galvanic skin 
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response (or sweating), and core temperature [5-7]. Each of these 

11], age [12], pain level [13], and emotional state [14]. In several 
previous studies formulae for pupil size utilized a single variable, 
luminance [15-19]. A major shortcoming of these models is their 
lack of generality. This is illustrated in Figure 1, where the true 
pupil diameter is plotted against the estimated pupil diameter 
provided by each of the models enumerated in the legend. There 
is a clear contrast between the di use cloud of data points from 
previous model predictions and the high delity predictions of 
the machine learning model developed here, shown by the green 
(training points) and the red (independent validation points) in 
the foreground. Of the ve previous models, Holladay’s formula 
[15] performed the best, with a delity of 25%. The substantial
error of these previous models is a likely re ection of both missing

parameters being missing and the challenge of ending the exact 
functional form required for predicting the pupil diameter. Later 
models added variables such as adaptation eld, age, and monocular 
adaptation [2,16-21]. All of the earlier models considered ambient 
light levels by way of the total luminance as opposed to the ne 
wavelength resolution of the UV/visible spectrum that was used 
in this study. The ne wavelength resolution allows one to identify 
the wavelengths to which the pupil dilation is most sensitive, it is 
noteworthy that there are some small variations from eye to eye 
in the key wavelengths for determining the pupil diameter. In this 
study we have utilized recent technological developments, the full 
visible spectrum and pupil size can be measured with high accuracy 
and in large volume combined with machine learning, this provides 
new opportunities for the development of much more robust higher 
delity empirical models.

Figure 1: Evaluation and comparison of previous pupil diameter models which utilized a single variable, luminance, showing 

In this rst demonstration case study, with just one participant, 
we examined the eject of both light intensity and the orientation/
motion of the head on the diameter of a participant’s pupils. Different 
illumination environments can be characterized by their spectra. 
This light consisting of various wavelengths which can interact with 
different photo-receptors (light sensitive cones) in the retina. This 
interaction produces electrical signals that are sent to the brain 

and interpreted as color [22]. These cones are disproportionately 
sensitive to particular wavelengths with absorbance peaks around 
420 nm (violet), 534 nm (green), and 564 nm (yellow-green) [3]. 
An illustration of these sensitivities can be shown by a plot of the 
mean absorbance of the three classes of photo-receptors (short-
wave, middle-wave, and long-wave cones) vs wavelength (Figure 2).
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Figure 2: 

New predictive empirical models of the pupil diameter can be 
derived using supervised multivariate non-linear non-parametric 
machine learning regression. The accuracy of the models can be 
evaluated using an independent validation (or testing) dataset 
whose data records were not utilized in the model training. This 
machine learning approach can also provide insights on the relative 
importance of the inputs (i.e. predictors). In this case we had a 
few hundred inputs, including the light intensities for every nm of 
wavelengths from 360-780 nm (ultra-violet to near infrared).

Materials and Methods
Data was collected during 3 outdoor/indoor walks where 

spectral and biometric data were recorded. The walks took place 
in the morning (8:30 AM) and late afternoons (4 PM), each lasting 

approximately every 3 seconds using a NIST calibrated Konica 
Minolta CL-500A Illuminance Spectrophotometer, which measures 

the illumi-nance and spectral irradiance of wavelengths from 360-
780 nm with 1 0.3 nm resolution. Pupil diameters, head orientation, 
and the proper acceleration of the head were recorded 100 times a 
second using Tobii Pro Glasses 2. The glasses use an infrared grid 
projected onto each eye to estimate the position and size of the 
pupils. The orientation and acceleration of the head are estimated 
using a Microelectromechanical System (MEMS) gyroscope and 
MEMS accelerometer located in the glasses. Data was prepared and 
analyzed using Matlab 2019a.

The data preparation involved six steps:

1. Collection - Recording of the raw data. Data was written
to 6 separate les corresponding to the 2 devices for each of the 3 
trials.

2. Formatting - Converting raw data les to Matlab timetable 
objects. 6 timetables were created from the raw data les.



Copyright@ Shawhin Talebi | Biomed J Sci & Tech Res | BJSTR. MS.ID.003446.

Volume 20- Issue 3 DOI: 10.26717/BJSTR.2019.20.003446

15002

3. Synchronizing - The sampling frequencies differed for
each device. 1 record every 3 seconds for the spectral data, versus 
100 records every second for the biometric data. To account for 
this, the 2 timetables for a particular trial were recon gured to share 
the same time steps using Matlab’s retime function with a linear 
interpolation. The timetables for each trial could then combined us-
ing the synchronize function. Resulting in 3 timetables, one for each 
of the 3 trials.

4. Merging - Concatenating all 3 timetables into a single
timetable.

5. Cleaning - Removing records with device error ags, NaN
elements, and zero values for pupil diameter. The latter case is ad-
dressed below.

6. Generating - Creating new variables such as the average
pupil diameter and inter-eye pupil diameter difference.

A major challenge was introduced in step 5 (cleaning) of the 

records taking values of 0. This was a non-physical consequence 
of the mechanism with which the pupil diameters were measured. 
When there is a high intensity of ambient infrared light from 
bright sunshine the glasses can no longer readily discern the 
pupil diameter, this is re ected in Figure 3 where pupil diameter 
dropouts coincide with time intervals of high spectral irradiance. 
These records were removed from the data, reducing the number 
of records from 380,000 to 80,000 records.

Figure 3: 
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From the recorded data we sought to estimate 5 different 
parameters, namely the: average of the left and Right Pupil 
Diameters (APD), Left Pupil Diameter (LPD), Right Pupil Diameter 
(RPD), magnitude of the difference between the Left and Right 
Pupil Diameters (PDD), and the illuminance. These parameters 
can be estimated by constructing objectively optimized empirical 
machine learning models. The hyperparameters (i.e. the 
parameters that de ne options associated with the training process) 
of an ensemble of regression trees able to use both boosting and 

the Optimize Hyperparameters option set to all). More information 
on this function is available in the Matlab documentation [23]. 
We have done many previous machine learning studies [24-56]. 
The data was split into 2 subsets: one for training and one for the 
independent testing of each empirical machine learning model. 
With 90% of the data used for training the multivariate non-linear 
non-parametric regression models and 10% of the data used for 
independent testing of the models.

Results and Discussion
In the following subsections we discuss the results of the 5 di 

erent empirical machine learning models. The accuracy of each 
model was assessed via a scatter plot of the true vs estimated 
response variable values (see Figures 4a, 5a, 6a, 7a, & 9a). If the 
true and estimated values are identical, the resulting scatter plot 
will be a straight line with a slope of one and an intercept of zero, 
i.e. a perfect one to one plot with a correlation coe cient, r2, equal
to 1. This ideal is indicated by a black line in each scatter plot. The

and testing (plotted as red pluses) datasets were computed using 
Matlab’s corrcoef function.

The relative predictor importance ranking of each model was 
derived using the predictor Importance function. The relative 
rankings are visualized as bar plots (see Figures 4b, 5b, 6b, 7b, & 
9b). The importance estimates are plotted on a log scale with the 
most important predictors shown toward the top. In the pupil 
diameter models (i.e. models for the APD, LPD, RPD, and PDD), the 
top 20 out of 427 predictors are shown. For the illuminance model, 
all 7 predictors are given in the ranking. The top 3 predictors are 
indicated by red bars, the next 2 important predictors by yellow 
bars, and the remaining predictors by blue bars.

The Average Pupil Diameter Model

Figure 4 shows the results of the Average Pupil Diameter (APD) 
model. The APD was estimated using the spectral irradiance at every 
nm between 360-780 nm, the gyroscope, and the accelerometer 
data as predictor variables. The scatter plot of the true vs the 
estimated average pupil diameter values is shown in Figure 4a. The 

and testing data subsets. Thus, the empirical machine learning 
model was successful in predicting the average pupil diameter. 
Figure 3.1 shows the ranking of the relative importance of the 
inputs in predicting the APD, the top 3 predictors are the irradiance 
values at 561, 563, and 562 nm, which coincides with the maximum 
absorbance of the long-wave cones at around 563 nm [3]. This 

than the short- or middle-wave receptors in controlling the average 
size of the pupils for the participant.

Figure 4: 
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The Left Pupil Diameter Model

The results for the Left Pupil Diameter (LPD) model are shown 
in Figure 5. The LPD was estimated using the same predictors as 
the APD, the spectral irradi-ance from 360-780 nm, the gyroscope, 
and the accelerometer data. The model was successful in predicting 

and validation data subsets. The top predictor (567 nm) is again 
near the maximum absorbance of the long-wave photo-receptors 
(563 nm). The next top 6 predictors are the irradiance values at 
528, 568, 564, 527, 668 and 570 nm, which seem to coincide with 
both the middle and long-wave photo-receptors with maximum 
absorbance values near 533.8 3.7 nm and 563 nm, respectively, 
with the exception of the irradiance at 668 nm [3].

Figure 5: 

The Right Pupil Diameter Model

The results for the Right Pupil Diameter (RPD) model are shown 
in Figure 6. The RPD was estimated using the same predictors as 
the APD and LPD. For the RPD model there is a strong correlation 

The top 2 predictors are 563 nm and 562 nm, which again coincide 
with the maximum absorbance of the long-wave cones near 563 
nm. The next most important predictor was the irradiance at 776 
nm corresponding to near infrared light. This and the appearance 

of near infrared predictors in all the importance rankings may be a 
consequence of the infrared noise in the environment, resulting in 
the measured pupil diameters to be smaller than the actual values. 
An interesting result from the importance ranking in Figure 6b, 
is the appearance of a non-spectral predictor (Accelerometer Z) 
which denotes the proper acceleration in the direction in front of 
the glasses. This may be correlated to the participant looking down 
to navigate obstacles in the walking path such as stairs, inclines, 

or object may cause an increase in cognitive load, resulting in a 
pupillary response [10,11].

Figure 6: 
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The Pupil Diameter Difference Model and Pupil Asym-
metry

The results for the left and right pupil diameter models are no-
ticeably different (see Figures 5 and 6), which may suggest an asym-
metry in the behavior of each pupil. One measure of this asymmetry 
is the magnitude of the difference between the left and right pupil 

diameters. This is shown by the results of the Pupil Diameter Dif-
ference (PDD) model given in Figure 7. The same predictors were 
used for the PDD model as in the APD, LPD, and RPD models. This 
empirical model was not successful in predicting the PDD, since 

shown in 3.4. Clearly the most important predictors for modeling 
this asymmetry were not available in the training dataset.

Figure 7: 

Another metric of the pupil asymmetry can be the accuracy of 
the LPD model in estimating the RPD and vice versa. The resulting 
scatter plots are given in Figure 8. Despite the differences in the 
importance rankings and failures of the PDD model, the estimates 

the testing and training datasets. This accuracy may suggest that 

although there is an asymmetry in the importance rankings for the 
left and right pupil models, the functioning of each pupil is very 
similar. A possible cause of this asymmetry is ocular dominance 
(i.e. the input for one eye is preferred over the other) [57,58]. It has 
been suggested that ocular dominance is not a static phenomenon, 
but will vary with changing horizontal gaze angle [59].

Figure 8: 
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The Illuminance Model

Figure 9 shows the results of the illuminance model. We just 
saw above that if we know the light intensity we can accurately 
predict the pupil diameter, so now we `invert’ the experiment and 
ask the question, if we know the pupil diameter can we accurately 
estimate the light intensity? The model used the pupil diameters, 
gyroscope, and accelerometer data as the predictors. The estimates 

0.71 for the training and testing datasets, respectively. The top 2 
predictors are the left and right pupil diameters, which agrees with 
rst order considerations of the relationship between pupil diameters 
and external light levels. The next most important predictor was 
the acceleration in the z-direction (forward direction). Which may 
again be correlated with participant focus on obstacle navigation.

Figure 9: 

Pupil Diameter and Illuminance

In a rst order consideration, we can expect the pupil diameter 
to be inversely proportional to the illuminance. This is depicted 
in Figure 10, which gives 3 scatter plots of the average, left, and 

right, pupil diameters vs illuminance. At low illuminance values, the 
expected inverse relationship is apparent. At higher values (& 4000 
lux) this expectation fails. The lack of a clear relationship between 
the two variables in all situations is likely the main contributor to 
the failure of previous models (Figure 1).

Figure 10: 
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The Environment

The normalized spectral irradiance at every time step for each 
trial is given in Figure 3. Normalized values were computed by di-
viding all irradiance values by the largest irradiance within each 
trial. Spectral lines are plotted for 528, 563, 567, and 776 nm, based 
on the top 3 most important predictors across all pupil diameter 
models (see Figures 4b, 5b, 6b, & 7b). Where predictors of the spec-
tral irradiance at 561, 562, and 568 nm were disregarded in lieu of 

the irradiance at 563 and 567 nm.

Temporal discontinuities in the spectra are due to those time 
intervals in which the participant walked in and out of shaded areas 
and/or away from the sun, which resulted in orders of magnitude 
differences in the spectral irradiance. Figure 11 depicts the nor-
malized spectral irradiance plotted on a log scale. Time intervals 
colored predominately red represent outdoor spectra, while more 
colorful intervals are indoor.

Figure 11: 
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Limitations

in the data analysis. Further developments may require light 
intensities and spectra to be within a non-disruptive range. Another 
solution may be to utilize an eye tracking instrument which uses 
visible light to estimate the pupil diameters.

Future Directions
Pupil size along with other autonomic responses such as heart 

rate variability, galvanic skin response, and core temperature 
changes have been associated with cognitive load and performance 

provocation of these responses, in a dynamic outdoor environment 
and while performing a physical activity (such as walking or 
cycling) it is not always clear which responses were due to external 
stimuli or cognitive status. Using a similar approach to the one used 
here, future data collection will expand the number of participants, 
environments, cognitive tasks, and biometric sensors.

Looking forward, multiple participants will allow for the as-
sessment of the inter-person variability of the models, including 
parameters such as age and body composition. Different environ-
ments will vary in light intensity, air qual-ity, elevation, and tem-
perature. Environmental variables can be measured using mobile 
weather stations mounted on a participant or bicycle. Other envi-
ronmental sensors such as a video camera, microphone, and LIDAR 
can indicate dynamic eld situations and track events. Tasks such 
as walking, and cycling will be per-formed. Cyclist performance 
can be assessed via bicycle speed and biometric data. Biometrics 
such as Electroencephalography (EEG), Heart Rate (ECG), Gal-Vanic 
Skin Response (GSR), body temperature, Electromyography (EMG), 
blood oxygen level, and respiration will be considered and mod-
eled. The ranking of predictor importance for these biometric mod-
els can help identify important relationships between environmen-
tal stimuli and different autonomic response.

Conclusion
Past formulae for predicting pupil diameter mainly considered 

total ambient light levels via luminance [2,15-21], these models 
could not capture the fully multi-variate and non-linear dependence 
of pupil diameter on the environmental state, and consequently had 
poor generalization. When considering the spectrum of light from 
360-780 nm (ultra-violet to near infrared) in lieu of the luminance, 
we were able to derive a very accurate empirical machine learning
model which can predict pupil diameters with a minimum delity
of 96.9%. The machine learning also allowed us to identify that
the most important wavelengths in predicting the pupil diameters
were around 562 nm (green), which is near the peak absorbance of 
the long-wave photo-receptive cones (562.8 4.7 nm) [3].
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Abstract: This paper describes and demonstrates an autonomous robotic team that can rapidly1

learn the characteristics of environments that it has never seen before. The flexible paradigm2

is easily scalable to multi-robot, multi-sensor autonomous teams, and is relevant to satellite3

calibration/validation and the creation of new remote sensing data products. A case study is4

described for the rapid characterisation of the aquatic environment, over a period of just a few5

minutes we acquired thousands of training data points. This training data allowed our machine6

learning algorithms to rapidly learn by example and provide wide area maps of the composition7

of the environment. Along side these larger autonomous robots two smaller robots that can be8

deployed by a single individual were also deployed (a walking robot and a robotic hover-board),9

observing significant small scale spatial variability.10

Keywords: Machine Learning; Hyper-spectral Imaging; Robot Team; Autonomous; UAV; Robotic11

Boat12

1. Introduction13

This paper describes a robotic team that can rapidly learn new environments.14

The system described here demonstrates a flexible paradigm that is easily scalable to15

multi-robot, multi-sensor autonomous teams. A case study is described for the rapid16

characterisation of the aquatic environment.17

The aquatic environment was chosen, as it includes extra challenges with regards18

to ease of access, further demonstrating the value of the approach. When considering19

the usefulness of being able to conduct such rapid surveys, it is worth noting that, for20

just the oil spill response use case alone, the National Academy of Sciences estimates21

that the annual oil spill quantities range from 1.7 million tons to 8.8 million tons. Over22

70% of this release is due to human activities. The result of these spills include dead23

wildlife, contaminated water and oil-covered marshlands [1–4]. So being able to rapidly24

survey such areas to guide clean-up operations is of considerable use. It is also of use in25

Figure 1. Photographs of the robot team during a Fall 2020 deployment in North Texas.
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a wide variety of contexts, from general environmental surveys, to studying harmful26

algal blooms, to the clean-up operations after natural disasters, such as huricanes, etc.27

In the example described in this paper, the fully autonomous team includes a robotic28

boat that carries a suite of sensors to measure water composition in real time as well as a29

sonar, and an autonomous UAV equipped with a down-welling irradiance spectrometer,30

hyper-spectral and thermal imagers, together with an on-board Machine Learning (ML)31

capability. Figure 1 shows photographs of the robot team during a December 202032

deployment in North Texas.33

Besides this capability being useful by itself, there is a wider significance for earth34

observing satellite missions. A key component to each and every space agency earth ob-35

servation mission is the delivery of a suite of data products and the calibration/validation36

of these products. The paradigm demonstrated can reduce the time and cost of produc-37

ing new remote sensing data products, while increasing functionality and data quality38

and providing new real-time automated calibration/validation capabilities.39

The approach also provides enhanced capabilities for real-time on-board data40

product creation, reducing product delivery latency. The end-to-end demonstration uses41

all off-the-shelf components, representing a reduction in costs and risk when prototyping42

new mission concepts. A key element is the use of embedded machine learning, so we43

will refer to the approach as Rapid Embedded Prototyping for Advanced Applications44

(REPAA).45

1.1. Hyper-Spectral Imaging46

The human eye perceives the color of visible light in three bands using the cones,47

the photoreceptor cells in the retina (Figure 2). These three broad bands are red (centered48

on 564 nm), green (centered on 534 nm), and blue (centered on 420 nm). By contrast,49

instead of using just three broad bands, hyper-spectral cameras divide the spectrum50

into a very large number of narrow bands, in our case 463 bands from 391-1,011 nm.51

A hyper-cube is a three-dimensional dataset consisting of a stack of two-dimensional52

image layers each for a different wavelength. So for each pixel in the image we have a53

multi-wavelength spectra (spectral signature). This is shown schematically in the lower54

left of Figure 2. On the right we see a conventional RGB color images with only three55

bands, images for red, green and blue wavelengths.56

Chemicals absorb light in a characteristic way. Their absorption spectra is a func-57

tion of their chemical structure. Figure 3a shows the structure of chlorophyll and the58

associated absorption spectra. So that we can accurately calculate the reflectivity at each59

wavelength our autonomous UAV measures both the incident down-welling irradiance60

of incident solar radiation and a hyper-spectral imager pointed directly down at the61

earth’s surface below the UAV. For every pixel we measure an entire spectrum with a62

hyper-spectral camera so we can identify chemicals within the scene.63

An example reflectivity hyper-spectral data cube collected during a robot team64

deployment in North Texas during November 2020 is shown in Figure 3b. This data cube65

includes the area where an inert dye was released to test the system. The dye used was66

Rhodamine WT, a fluorescent, xanthene dye, that has long been used as a hydrologic67

tracer in surface water systems. The spectral signature of the dye is clearly visible in68

the hyper-spectral data cube. The top layer of the hyper-spectral data cube shows the69

regular RGB image, the 463 stacked layers below show the reflectivity (on a log-scale)70

for each wavelength band between 391 and 1,011 nm.71

2. Materials and Methods72

All the data for the machine learning data product creation was collected in a73

coordinated automated manner using the autonomous robotic team. An overview of the74

robotic team members and their sensor payloads is as follows.75
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2.1. Robotic Vehicles76

A Maritime Robotics Otter (https://www.maritimerobotics.com/otter) autonomous77

boat was used. With a footprint of only 200 x 108 x 81.5 cm, a weight of 55 kg, and dual78

electrical fixed thrusters, it is an easily deployable asset that can be transported in a van79

or even within normal airliners to a survey site. With a cruise speed of 2 knots it has a80

duration of 20 hours from one charge of the batteries. It can use WiFi, cellular and an81

optional AIS receiver for communication to the control station.82

A Freefly Alta-X (https://freeflysystems.com/alta-x) autonomous professional83

quad-copter was used. It was specifically designed to carry cameras, with a pay-84

load capacity of up to 35 lb, a long range data link, and autonomy provided by the85

Open PX4 flight stack. The open source QGroundControl software was used to control86

the autonomous operations (https://freeflysystems.com/support/alta-pro-support).87

QGroundControl is available for Mac, Windows, iOS and Android.88

All of the robotic team members carry a high-accuracy GPS and INS so that every89

data point can be geo-located and time stamped. Each of the robots can also join the same90

network which connects the robots and their ground-control stations. Our robots use91

long-range Ubiquiti 5 GHz LiteBeam airMAX WiFi (https://www.ui.com). The airMAX92

Time Division Multiple Access (TDMA) protocol allows each client to send and receive93

data using pre-designated time slots managed by an intelligent AP controller. This94

Figure 2. Panel (a) Trichromatic cone cells in the eye respond to one of three wavelength ranges
(RGB). Panel (b) shows a comparison between a hyper-spectral data-cube and RGB images.
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time slot method eliminates hidden node collisions and maximizes airtime efficiency.95

This WiFi network is connected to the internet using a Cradlepoint cellular modem96

(https://cradlepoint.com).97

This network also includes a local Synology network-attached storage (NAS)98

(https://www.synology.com) device in the robot team control trailer, which in real-time99

syncs the data collected to the NAS in our home laboratory in the university.100

2.2. Boat Sensors101

The robotic boat payload included a BioSonics MX Aquatic Habitat Echosounder102

sonar for rapid assessment and mapping of aquatic vegetation, substrate and bathymetry103

(https://www.biosonicsinc.com/products/mx-aquatic-habitat-echosounder/). Three104

Eureka Manta-40 multi-probes (https://www.waterprobes.com/multiprobes-and-sondes-105

for-monitori), a Sequoia Scientific LISST-ABS acoustic backscatter sediment sensor (106

https://www.sequoiasci.com/product/lisst-abs/), and a Airmar Technology Corpora-107

tion 220WX ultra-sonic weather monitoring sensor (https://www.airmar.com/weather-108

description.html?id=153).109

The first Manta-40 multi-probe included sensors for temperature and turbidity110

and Turner Designs Cyclops-7 submersible Titanium body fluorometers (https://www.111

turnerdesigns.com/cyclops-7f-submersible-fluorometer) for Chlorophyll A, Chlorophyll112

A with Red Excitation, Blue-Green Algae for fresh water (Phycocyanin), Blue-Green113

Algae for salt water (Phycoerythrin), and CDOM/FDOM. The second Manta-40 multi-114

(a)

(b)

Figure 3. Panel (a) Chemicals absorb light in a characteristic way. Their absorption spectra is
a function of their chemical structure. For every pixel we measure an entire spectrum with a
hyper-spectral camera so we can identify chemicals within the scene. Panel (b) shows an example
hyper-spectral data cube collected in North Texas on November 23, 2020. This particular data cube
includes a simulant release, Rhodamine WT. The top layer of the hyper-spectral data cube shows
the regular RGB image, the 463 stacked layers below show the reflectivity (on a log-scale) for each
wavelength band between 391 and 1,011 nm.
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probe included sensors for temperature, conductivity (with specific conductance, salinity,115

and total dissolved solids, TDS), pH (with separate reference electrode), optical dissolved-116

oxygen, turbidity and Ion Selective Electrodes by Analytical Sensors and Instruments (117

http://www.asi-sensors.com/) for ammonium (NH+
4 ), bromide (Br−), calcium (Ca++),118

chloride (Cl−), nitrate (NO−
3 ), and sodium (Na+). The third Manta-40 multi-probe119

included sensors for temperature, turbidity, a total dissolved gas sensor, and Turner120

Designs Cyclops-7 submersible Titanium body fluorometers for optical brighteners,121

crude oil, refined fuels, and tryptophan.122

In addition, a portable Membrane Inlet Mass Spectrometer (MIMS) designed and123

built by Prof. Verbeck of the University of North Texas is available (but not used in these124

deployments) to switch every 3 seconds between sampling the water composition and125

the air composition.126

2.3. Aerial Sensors127

The aerial vehicle used a Gremsy H16 gimbal (https://gremsy.com/gremsy-h16)128

made with aircraft grade aluminum and carbon fiber to carry a Resonon Visible+Near-129

Infrared (VNIR) Pika XC2 (https://resonon.com/Pika-XC2) hyper-spectral camera (391–130

1,011 nm) with a Schneider Xenoplan 1.4/17 mm lens, and a FLIR Duo Pro R, (640x512, 25131

mm, 30 Hz) combining a high resolution, radiometric thermal imager, 4K color camera,132

and a full suite of on-board sensors (https://www.flir.com/products/duo-pro-r/). On133

the top of the quad copter there is a sky facing Ocean Optics UV-Vis-NIR spectrometers134

measuring the incident down-welling irradiance allowing us to calculate reflectance.135

2.4. Geo-rectification136

The hyper-spectral data cubes collected are very large and are written in real time137

to the solid-state disk (SSD) attached to the Resonon Pika XC2. To facilitate the real-time138

processing of these files the Camera SSD is exported as a Network File System (NFS)139

mount so that a second onboard computer can geo-rectify the hyper-spectral data cubes140

as they are created. These hyper-spectral data cubes provide a visible and near infrared141

spectrum (391–1,011 nm) for each pixel. Once these data cubes are geo-rectified in real-142

time they are available for onboard machine learning using edge computing onboard143

the aerial vehicle.144

2.5. Machine Learning145

The accurate geo-tagging and time stamping of all data from all members of the146

robot team allows automation of the machine learning data product creation. For every147

location at which the robotic boat sampled the in-situ water composition we associate a148

VNIR remotely sensed spectrum (391–1,011 nm) provided by the hyper-spectral data149

cubes collected by the aerial-vehicle. This data is then be used for multi-variate non-linear150

non-parametric machine learning, where the inputs are the spectrum, in this case 462151

values from the 391–1,011 nm spectra, and the outputs are each of the values measured152

in-situ by the robotic boat. A variety of machine learning approaches were used. These153

approaches included, shallow neural networks with hyper-parameter optimization,154

ensembles of hyper-parameter optimized decision trees, gaussian process regression155

with hyper-parameter optimization, and a super-learner including all of the previously156

mentioned approaches. Each empirical non-linear non-parametric fit is evaluated by157

constructing both a scatter diagram and a quantile-quantile plot of the values estimated158

by the machine learning model plotted against the actual values in the independent159

validation dataset.160

The use of machine learning in this study builds on our heritage of using machine161

learning for sensing applications over the last two decades [5–22].162
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Figure 4. Machine learning performance quantified by both scatter diagrams and quantile-quantile
plots utilizing data collected autonomously by the robot team during three exercises during
November and December 2020 in North Texas. The three examples shown here are for CDOM,
Na+ and Cl−. The scatter diagrams show the actual observations (mg/l) on the x-axis and the
machine learning estimate on the y-axis. The green curves are for the training data, the red
for the independent validation. The legend shows the number of points in the training and
validation datasets and their associated correlation coefficients. The quantile-quantile plots show
the observation quantiles on the x-axis and the machine learning estimate quantiles on the y-axis.

3. Results163

Over a period of just a few minutes we acquire thousands of training data points.164

This training data allows our machine learning algorithms to rapidly learn by exam-165

ple. The machine learning fit used here is a gaussian process regression [23] with166
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Figure 5. Example crude oil and colored dissolved organic mater (CDOM) data collected au-
tonomously by the robot team on November 23, 2020 in North Texas. The maps show the CDOM
and crude oil estimated from the hyper-spectral imager using machine learning as the background
colors and the actual in-situ boat observations as the overlaid color filled squares. Note that the
isolated part of the pond which has now fresh water in-flux has higher levels of CDOM and crude
oil with a sharp gradient across the inlet in both the estimates using the hyper-spectral image and
the boat observations.

Figure 4 shows an example of the colored dissolved organic mater (CDOM) data175

collected autonomously by the robot team on November 23, 2020 in North Texas, along176

with some of the aqueous ion data. The panel shows a scatter diagram of the actual177

observations on the x-axis and the machine learning estimate on the y-axis. The green178

curves are for the training data, the red for the independent validation. On each axis we179

also show the associated PDFs. The ideal result is shown in blue (a slope of 1 and an180

intercept of zero for the scatter diagram).181

Figure 5 shows maps of the CDOM and crude oil concentration estimated using the182

machine learning as the background colors and the actual in-situ boat observations as183

the overlaid color filled squares. Note that the isolated part of the pond which has now184

fresh water in-flux has higher levels of CDOM and crude oil with a sharp gradient across185

the inlet in both the estimates using the hyper-spectral image and the boat observations.186

We note that there is good agreement between the machine learning estimate and the187

actual in-situ boat observations.188

4. Discussion189

4.1. Automating Data Product Creation190

A key factor in providing remotely sensed water composition products is providing191

a comprehensive database of water composition (e.g. SeaBASS, the publicly shared192

archive of in-situ oceanographic and atmospheric data maintained by the NASA Ocean193

Biology Processing Group https://seabass.gsfc.nasa.gov). The cost of making the mea-194

surements of ocean composition can be substantial because it involves significant ship195

time as well as a large support team. Secondly, since the satellites are in a fixed orbit196

with a fixed viewing geometry, the number of coincidences between the shipboard water197

observations and the orbiting satellite observations are, by definition, limited. Typically198

several thousand coincident observations are used in the tuning and creation of a NASA199

ocean data product. In the REPAA approach, the entire system can automated and200

objectively optimized. Thus, with a data rate of one observation every second, in a201
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matter of hours we can gather tens of thousands of observations in a totally automated,202

fully coordinated manner, as was demonstrated in North Texas during November and203

December 2020 (Figure 1). There is explicit coordination between the water observations204

taken from the robotic boat and the continuous aerial observations made by the robotic205

aerial vehicle carrying a hyper-spectral imager. The system can be deployed to very206

diverse environments across a matter of just weeks to months, so over a matter of just207

weeks to months, millions of coordinated, precisely coincident records can be made.208

Furthermore, we have previously demonstrated, the data can be randomly partitioned209

into training and independent validation sets, and using the on-board machine learn-210

ing, transformed into optimal water composition data products, using many orders of211

magnitude more observations than before at a fraction of the cost and in a fraction of the212

time.213

Aurin et al. [25] provides one of the most comprehensive training datasets to214

date for Chromophoric Dissolved Organic Matter (CDOM). Their Global Ocean Carbon215

Algorithm Database (GOCAD) for Chromophoric Dissolved Organic Matter (CDOM)216

encompasses 20,000–100,000+ records (depending on the variable considered) and it is217

based on oceanographic campaigns conducted across the world over the past 30 years218

at great expense. In contrast, the autonomous robotic team can collect around 20,000+219

precisely coordinated training records per hour. By design, the robotic team makes220

precisely coordinated overpasses of exactly the same locations, this leads to providing a221

training dataset with a high data rate. By deploying the team on multiple occasions at a222

diversity of locations one can rapidly build a comprehensive training dataset.223

The traditional approach for creating remote sensing data products, as shown on224

the left of Figure 6, is compared with the approach used in this study, shown on the right.225

Using the REPAA approach, data collection and the creation of derivative data products226

can be carried out on the same day, for example in the December 2020 exercises in North227

Texas (Figure 1).228

4.2. Improving Product Quality & Automating Cal/Val229

Critical in improving product quality is the comprehensive training data set, which230

spans as much parameter space and variability that is actually found in the real world.231

This necessitates making observations in a large number of diverse contexts. Being able232

to make these observations with such a highly automated platform is a tremendous233

step forward and costs less. In summary, our robotic platform can address the issue234

of small scale variability encountered across a satellite pixel. These capabilities assist235

continuing validation/quality control and can help optimize the waveband selection for236

future satellite instruments and missions.237

Figure 6. Schematics illustrating the traditional approach to creating remote sensing data products
(left) and that used in this study (right).
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Figure 7. Photographs of the smaller walking robot (from Ghost Robotics) and a robotic hover-
board (conceived and built by Aaron Barbosa) that for illustrative purposes both carried exactly
the same payload of sensors measuring the size spectrum of airborne particulates in the size range
0.3–43 microns and the abundance of a selection of gases. The laser scanner onboad the walking
robot acquired a map of the vicinity while also measuring in-situ the atmospheric composition,
finding very localized changes in the abundance of the airborne particulates of various sizes.

4.3. Reducing Latency for Product Delivery as well as Mission Risk, Cost, Weight and Size238

Utilizing new embedded on-board processing (1 TeraFlop weighing just 88 g with a239

size of only 87 mm x 50 mm) for real-time on-board processing leads to reducing the240

latency in product delivery from hours/days to just the downlink time. The product241

delivery latency can be critical for decision support applications, such as oil spills, or242

other disaster response applications, and for routine forecasting and data assimilation243

applications. A risk reduction is also realized, by the ability to first deploy an end to end244

demonstrator, using entirely commercial off the shelf components and low cost aerial245

vehicles, with all software made Open Source.246

4.4. Onboard App Store247

There is currently a rapid enhancement in both observing capabilities and the em-248

bedded computing power from miniaturized low power devices. As these enhanced249

observing capabilities become routinely available on small cubesats (like hyperspectral250

imaging), the number of possible uses and applications for societal benefit grows. How-251

ever, so does the bandwidth required for the downlink of the hyperspectral datacubes.252

So the possibility of onboard processing, for example using embedded machine learning,253

means that product creation can occur directly onboard the cubesats and then streamed254

live via the downlink. This reduces the latency of product creation and the bandwidth255

needed for the downlink. The next logical step, then, of a rapid prototyping and agile256

workflow, is an onboard app store, where new data products can be deployed to the257

remote sensing platform for seamless use onboard. A formalized development, testing,258

and deployment workflow with an app store facilitates an Earth-observing system that259

responds to the rapidly changing societal needs while maintaining a rigorous approach260

to validation. This onboard app store can leverage the smart automated code generation261
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that already exists off the shelf and is now routinely used for automobiles and aircraft262

across the world. The time has come for this to be the standard paradigm for earth263

observation as well.264

4.5. Smaller Robots265

There is also value in smaller robots that are easy to transport by a single individual.266

Figure 7 shows photographs of the smaller walking robot (from Ghost Robotics) and a267

robotic hover-board (conceived and built by Aaron Barbosa) that we deployed along size268

the larger autonomous robotic team for illustrative purposes. Both the walking robot269

and the robotic hover-board carried exactly the same payload of sensors that could be270

rapidly switched between the robots. The sensing payload measured every few seconds271

the full size spectrum of airborne particulates in the size range 0.3–43 microns and the272

abundance of a selection of gases. The laser scanner onboad the walking robot acquired273

a map of the vicinity while also measuring in-situ the atmospheric composition, finding274

very localized changes in the abundance of the airborne particulates of various sizes.275

5. Conclusions276

This paper described and demonstrated an autonomous robotic team that can277

rapidly learn the characteristics of environments that it has never seen before. The278

flexible paradigm is easily scalable to multi-robot, multi-sensor autonomous teams, and279

is relevant to satellite calibration/validation and the creation of new remote sensing280

data products. A case study was described for the rapid characterisation of the aquatic281

environment, over a period of just a few minutes we acquired thousands of training282

data points. This training data allowed our machine learning algorithms to rapidly283

learn by example and provide wide area maps of the composition of the environment.284

Along side these larger autonomous robots two smaller robots that can be deployed by a285

single individual were also deployed, a walking robot and a robotic hover-board, each286

measuring the full size spectrum of airborne particulates in the size range 0.3–43 microns287

and the abundance of a selection of gases, significant small scale spatial variability with288

evident in these hyper-localized observations.289
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The following abbreviations are used in this manuscript:312

313

CDOM Chromophoric Dissolved Organic Matter
GOCAD Global Ocean Carbon Algorithm Database
GPS Global Positioning System
INS Inertial Navigation System
MIMS Membrane Inlet Mass Spectrometer
ML Machine Learning
NASA The National Aeronautics and Space Administration
NFS Network File System
REPAA Rapid Embedded Prototyping for Advanced Applications
SeaBASS SeaWiFS Bio-optical Archive and Storage System
SSD Solid State Disk
UAV Unmanned Aerial Vehicle
VNIR Visible and Near-Infrared
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Abstract: Remote sensing imagery, such as that provided by the United States Geological Survey
(USGS) Landsat satellites, has been widely used to study environmental protection, hazard analysis,
and urban planning for decades. Clouds are a constant challenge for such imagery and, if not handled
correctly, can cause a variety of issues for a wide range of remote sensing analyses. Typically, cloud
mask algorithms use the entire image; in this study we present an ensemble of different pixel-based
approaches to cloud pixel modeling. Based on four training subsets with a selection of different input
features, 12 machine learning models were created. We evaluated these models using the cropped
LC8-Biome cloud validation dataset. As a comparison, Fmask was also applied to the cropped scene
Biome dataset. One goal of this research is to explore a machine learning modeling approach that
uses as small a training data sample as possible but still provides an accurate model. Overall, the
model trained on the sample subset (1.3% of the total training samples) that includes unsupervised
Self-Organizing Map classification results as an input feature has the best performance. The approach
achieves 98.57% overall accuracy, 1.18% cloud omission error, and 0.93% cloud commission error on
the 88 cropped test images. By comparison to Fmask 4.0, this model improves the accuracy by 10.12%
and reduces the cloud omission error by 6.39%. Furthermore, using an additional eight independent
validation images that were not sampled in model training, the model trained on the second largest
subset with an additional five features has the highest overall accuracy at 86.35%, with 12.48% cloud
omission error and 7.96% cloud commission error. This model’s overall correctness increased by
3.26%, and the cloud omission error decreased by 1.28% compared to Fmask 4.0. The machine
learning cloud classification models discussed in this paper could achieve very good performance
utilizing only a small portion of the total training pixels available. We showed that a pixel-based
cloud classification model, and that as each scene obviously has unique spectral characteristics, and
having a small portion of example pixels from each of the sub-regions in a scene can improve the
model accuracy significantly.

Keywords: landsat 8; machine learning; cloud detection; ensemble approaches; self organizing maps
(SOM); NDSI; NDVI; whitness; HOT

1. Introduction

Remote sensing imagery, such as that provided by the United States Geological Survey
(USGS) Landsat satellites, has been widely used to study environmental protection, hazard
analysis, and urban planning for decades. The usefulness and applications of remote
sensing imagery continue to expand as more image-based models and algorithms have
emerged so that we can derive more knowledge and information from satellite images.
Due to the ubiquity of clouds, cloud pixels are a persistent presence in such imagery,
especially in tropical areas. A study estimates that about 67% of the earth’s surface is
typically covered by cloud based on satellite data from July 2002 to April 2015 [1]. The
presence of cloud has a serious impact on the use of remote sensing images. Cloud areas
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Remote Sens. 2021, 13, 3289 2 of 22

appear as extremely bright pixels in the images. These pixels can cause issues in various
remote sensing imagery analyses, including incorrect land surface classification, inaccurate
atmosphere correction, low quality Aerosol Optical Depth (AOD) retrieval and false land
surface change detection [2]. As a result, clouds are considered noise in most situations
and are typically removed prior to further analysis, which makes cloud detection a crucial
step for remote sensing image preprocessing.

Over the last few decades, a variety of methods have been developed for cloud
detection. Let us briefly consider a few examples.

1.1. An Overview of Cloud Detection Approaches

Automated Cloud Cover Assessment (ACCA) [3], a scene specific cloud detection
method was developed for Landsat 7. It employs two pass through ETM+s to establish the
the reflective and thermal features of the cloud and non-cloud area in a scene, and then to
identify the cloud in the rest area of the whole scene. This approach experiences difficulty
in identifying cloud areas with snow and brightly illuminated desert areas.

Zhu et al. [4] proposed Function of Mask (Fmask) which is an objected-based cloud
and cloud shadow approach for Landsat images, which has a 96.41% reported accuracy.
The author of Fmask further improved Fmask in terms of increasing the performance for
Landsat 4–7, making it suitable for Landsat 8 and Sentinel 2 imagery [5].

Foga et al. [6] compared the performance of ACCA, LEDAPS CCA, and CFmask
(C version of Fmask) on three cloud validation dataset including IRISH, SPARCS, and
Biome. Among these three algorithms, CFmask is reported with the best overall accuracy.

Hughes et al. [7] proposed a machine learning approach for automated cloud and
cloud shadow detection by using neural network and spatial post-processing techniques,
which achieves lower cloud shadow omission error and cloud commission error compared
to Fmask.

A multi-feature combined (MFC) approach is proposed for the Chinese GaoFren1
cloud detection by using spectral features in combination with geometric and texture
features, which has a 96.8% accuracy [8].

All these aforementioned approaches are single temporal approaches, which only
require one scene for implementation. In contrast to the single temporal approach, a multi-
temporal approach (Tmask) is proposed for cloud, shadow, and snow by using multiple
images at the same location [9]. It generates a time series model which is used to predict
the TOA reflectance surface. These surfaces are then compared with Landsat images to
differentiate clouds, shadows, and snow. However, this approach requires at least 15 clear
observations in each pixel to generate a robust time series model, which makes it less
applicable in places that have long been covered by snow or cloud.

Candra et al. [10] proposed an automated cloud and cloud shadow detection method
by using multi temporal Lansat8 images, which is named MCM. This approach makes use
of the reflectance differences between two images at the same location to identify cloud
and cloud shadows, which is especially effective in tropical areas.

The use of deep learning techniques including CNN, RNN and GCN have recently
garnered much attention for remote sensing image classification tasks because they are
capable of extracting high-level features from images. Zhu et al. [11] reviewed the major
advances of deep learning in remote sensing. Xie et al. [12] proposed a multilevel cloud
detection method based on simple linear iterative clustering (SLIC) and a deep convolutions
neural network (CNN). This method achieves a better result compared with a scene
learning-based approach proposed by Zhenyu [13] and progressive refinement scheme
approach proposed by Zhang et al. [14]. Authors of [15] proposed a cloud detection
method (MSCN) based on Fully Convectional Networks (FCN) [16] by fusing multi-scale
convolutional features for cloud detection, which is effective in snow and areas covered by
non-cloud bright objects.

Another CNN-based cloud detection method is trained on high resolution WV-2
satellite images, which not rely on SWIR or IR bands and can be applied to Sentinel
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imagery [17]. Zi et al. [18] proposed a novel cloud detection method for Landsat 8 images
by using Simple Linear Iterative Cluster (SLIC), PCA Network (PCANet), Support Vector
Machine (SVM), and Conditional Random Field (CRF). This approach combines statistical
models, classical machine learning methods, and a deep learning network to generate a
robust model for cloud detection and achieves an accurate result. Yang et al. [19] proposed a
CNN-Based cloud detection method by using thumbnails of remote sensing images instead
of the original remote sensing images. To handle the coarse resolution of thumbnail images,
a cloud detection neural network feature pyramid module, and boundary refinement block
techniques are employed to generate accurate cloud prediction results. This work has been
further extend by Guo [20] for cloud and snow coexistence scenarios by proposing a new
model DSnetV2.

In addition to cloud detection, deep learning-based techniques have been extensively
applied to remote sensing image classification problems, especially for hyper-spectral
images. Graph convolutional networks (GCNs) are a new emerging network architecture
that can handle and model long-range spatial relations. Shahraki and Prasad [21] pro-
posed a cascade framework of 1-D CNNs and GCNs for a hyper-spectral classification
problem. Qin et al. [22] extended the GCNs by considering spatial and spectral neighbors.
Pu et al. [23] proposed a localized graph convolutional filtering-based GCNs method for
hyper-spectral image classification. Traditional GCNs are computationally expensive be-
cause the spatial matrices are constructed. Hong et al. [24] showed that miniGCNS can be
trained in minibatch fashion for classification problems. The miniGCNs are more robust,
and are capable of handling out-of-samples with lower computation cost compared to
traditional GCNs.

Based on the data required, these cloud detection methods can be divided into single
temporal and multi-temporal approaches. The single temporal approach seeks to identify
cloud pixels based on imagery at a single time, while a multi-temporal approach makes
use of imagery from multiple comparable timeframes for a same area to identify cloud
pixels by comparing the pixel differences between cloud free images and cloudy ones [25].
Depending on the algorithm used, cloud detection can be categorized into a classical
algorithm-based approach and machine learning approach [26]. The classical algorithm
refers to methods which have specific steps to be followed for input imagery and to generate
the output mask like the FMask [4]. On the other hand, machine learning approaches take
the advantage of existing data and learn from a training set without human interference to
generate an output [18].

Cloud detection is still challenging in these aspects. First, cloud pixels are hard to
identify from “bright” areas such as snow by traditional rule-based approaches. The
multi-temporal approach requires more than one image at the same location, which is less
applicable for low temporal resolution satellites, such as Landsat. While deep learning-
based approaches generally enable better cloud detection accuracy, they require a high
performance GPU which may not be available. Some other approaches require additional
information in combination with the spectral features to improve the performance, which
requires extra labor efforts.

1.2. A Pixel-Based Approach Using an Ensemble of Learners

This paper has four distinct goals. (1) Propose a cloud detection modeling approach
for cloud detection by only using the 10 wavelength bands available at a single pixel as an
information source without the need of any other ancillary data. (2) Engineer important
predictor features that could increase the model accuracy. (3) Investigate the influence of
the training sample size on the model accuracy, thus finding the smallest possible training
sample size that could balance the training time and machine learning model accuracy.
(4) Explore the importance rank of predictors and the optimal hyper-parameter settings for
cloud mask prediction.

In contrast to the whole image-based approaches just described, and to mitigate the
challenges just enumerated, in this study we have taken a pixel-based approach that only
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requires a single image. We have used an ensemble machine learning approach that has
been tested with Landsat 8 imagery.

Compared with the multi-temporal approaches [25], this single-temporal approach is
more feasible because of the mono-temporal feature of Landsat data in nature. Unlike other
classical approaches that need auxiliary data [4], this approach only requires the informa-
tion on the 10 wavelength bands for a single pixel of Landsat 8 imagery. In comparison
to machine learning approaches under a deep learning frame work, the computational
facility is not as demanding as deep learning, so a GPU is not needed in this research.
This proposed machine learning model uses an ensemble approach which simultaneously
employs multiple decision tree learners for cloud detection. The input parameters are
tuned in two ways. On the one hand we optionally include unsupervised classification
results from the application of a self-organizing map (SOM) as one of the input features for
the ensemble model training. On the other hand, 5 indices that are calculated from the 10
wavelength bands signal are included as input features for model training.

Four distinct training subsets were generated from the Biome cloud validation dataset
for model training [6]. Models are generated based on different sets of input parameters
and different training samples. Then, their performance is compared against Fmask 4.0.

2. Materials and Methods

2.1. Data Sources

This study uses the L8 cloud cover assessment validation dataset as the source for
model training and validation [6,27]. The L8 Biome dataset includes 96 Landsat 8 images
sampled across the world, and with a manually generated cloud mask for each image. The
name Biome is given because the target scenes are sampled based on biome types. The
path/row of the scenes covering the land are sampled across the world on the basis of
biome types which include urban, forest, shrubland, grass/cropland, snow/ice, wetlands,
and water. In order to create a heterogeneous dataset, path/rows with obviously clustering
patterns are discarded and will be re-sampled from their biome types. Then scenes within
the final set of path/rows will be labeled as clear, mid-cloudy, and cloudy manually based
on the cloud coverage percentage within each scene. A total of 96 scenes are prepared
covering 8 biome types in 3 cloud coverage levels as shown in Figure 1.

Figure 1. Global distribution of the 96 unique Landsat 8 Cloud Cover Assessment scenes, adopted
from [6].
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2.2. Data Pre-Processing: The Intra-Group and the Ultra-Group

Validation masks and all spectrum band layers from the Biome dataset are cropped
to 4000 × 4000 pixels for model training and validation (Figure 2). These 96 cropped
Biome images are then divided into two groups, the intra-group and the ultra-group.
The intra-group includes 88 images from which we sub-sample to provide our training
pixels. The name “intra-group” rather than “training-group” was given, because only a
tiny portion (up to 1.3%) of the intra-group are used as the model training source to show
the effectiveness of our pixel based approach. Therefore, more than 98% of the data in
the intra-group are “new” to the models, which also makes the intra-group qualified for
model performance evaluation. On the other hand, the ultra-group contain 8 images that
our models have never seen, which means the ultra-group are 100% “new” to the models.
Images in both groups will be used for model performance evaluation.

Figure 2. Lansat8 scenes are centre-cropped into 4000 × 4000 pixel images.

For each biome type, eleven cropped images are selected as the intra-group, and we
hold the one remaining image as the ultra-group (See Table 1). Then the 10 wavelength
bands of each scene are stacked as a TIFF file for model training and validation. However,
band 8 has a 15 m resolution which is higher than other bands. We downgrade the
resolution for band 8 to make the imagery resolution the same as the other bands.

Table 1. Number of Scenes included in the Intra-Group and the Ultra-Group.

Intra-Group Ultra-Group Land Types

11 1 Barren
11 1 Forest
11 1 Grass/Crops
11 1 Shrubland
11 1 Snow/Ice
11 1 Water
11 1 Urban
11 1 Wetlands

88 8 Total

2.3. Ensemble Machine Learning Classification Approach

Ensemble learning is a machine learning paradigm where multiple weak learners are
combined to improve the training performance. Various types of learner aggregation can be
employed, including Bootstrap Aggregation (Bagging), Boosting and random space. In this
paper, all three of these tree ensemble approaches are used, and the particular approach
that will be employed in the tree-based ensemble model will be determined at the Bayesian
Optimization stage.

Bagging aggregates trained weak learners by creating many bootstrap replicas and
training each weak learner on one replica. Typically, the number of bootstrap replicas
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can vary from just a few up to several hundred. Each replica is generated by drawing
N samples out of N observations with replacement (see Figure 3a). Drawing samples
with replacement omits an average of 37% of the total observations which decreases the
correlation between each weak learner to avoid over-fitting. Each weak learner is trained
on a single replica by randomly extracting features for each split node which is called the
random forest technique. Then the ensemble model makes a prediction on new data by
taking the most voted predictions from individual learners for use in the classification.

(a)

(b)

Figure 3. Schematics illustrating the various ensemble model approaches. (a) Bagging, (b) Boosting.

Boosting trains learners sequentially (see Figure 3b). It maintains a weight distribution
for all training observations and each observation is assigned a weight indicating its
importance. By decreasing the weight for correctly classified observations and increasing
the weight for misclassified observations at each round, trained learners are able to focus
more on hard observations that have been misclassified by previous learners. Distinct from
bagging which generates replicas for individual learner training, boosting trains all models
with the same dataset but with different weight. Instead of taking the most votes of the
predictions from individual learners, boosting combines the predictions from individual
learners with weights. As a result, boosting is able to make individual learners focus more
on hard observation points round by round, thus to obtain a premium result from weak
learners. In this paper, AdaBoost, RUSboost, and LSBoost are candidate boosting methods
employed for our ensemble models.

2.4. Representative Sampling

There are a total of 88 4000 × 4000 pixel images in the intra-group, a total of 1.408 bil-
lion pixels. A small portion of the samples will be drawn from the intra-group and used
for model training. Generally, the more training data we use, the better machine learning
model performance we achieve. However, for the task of cloud detection, the cloud label is
very labor intensive to generate and is not widely available. One goal of this research is to
explore a machine learning modeling approach that uses as small a fraction of the intra-
group dataset as possible but can still fit the data well. In order to compare the performance
of models trained on different sizes of training subsets, a representative random sampling
approach is proposed to sample four subsets from the 88 cropped images. Each of the 88
images has 10 wavelength bands. After stacking the 10 wavelength bands together, each
stacked image becomes a 4000 × 4000 × 10 matrix. Then a validation label is attached to the
stacked matrix thus forms a 4000 × 4000 × 11 matrix for each image. These 3-dimensional
images are converted to 2-dimension image tables, which are then concatenated along the
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horizontal direction and form an image pool table (Figure 4a). The next step is to draw
representative samples from this image pool table (Figure 4b). One column of the image
pool table is sorted and divided into n bins. These bins have an uniform width covering
the range of pixel values of the column, which could potentially reveal the distribution of
values in the column. Then m samples are randomly drawn from each bin of the column
and this sampling process is repeated for all columns in the image pool table. Duplicated
rows could be drawn when repeating the sampling process across each column, which
could lead to an unbalanced sampling subset. Any duplicated samples are removed after
the sampling process complete, and a sample subset that covers the value range of each
column is obtained without any duplication. The bin number n and the sample number m
are adjusted to obtain different training samples from the whole dataset. In this research,
4 training samples subsets are generated for model training (see Table 2).

(a) 2D layer stacking and merging procedure

(b) Representative sampling procedure

Figure 4. Flow chart illustrating the image stacking and representative sampling procedures. In the
stacking and merging procedure (a), the 10 wavelength bands as well as the label mask for each of
the 88 images are stacked as an image table. Then, the 88 image tables are merged into one image
pool table. The B1–B10 and Label in the headers represent the spectral band number and the pixels
class labels. DN in tables represent the digital value. In the representative sampling procedure (b),
the image pool table is sorted on a certain column (in green), then n bins are selected from the sorted
column and m pixels are drawn from each bin. A final training sample is generated after repeating
this process over all columns.
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Table 2. Representative Training Samples. n represents the number of bins, m represents the number
of pixels sampled in each bin, and the Total represents the total pixels sampled for each subset.

Subset Name Bins (n) Observations in Bin (m) Total Percentage

Sample 1 256 100 185,841 0.01%
Sample 2 512 200 714,972 0.05%
Sample 3 1024 300 2,063,945 0.15%
Sample 4 5120 600 18,722,275 1.30%

2.5. Feature Selection
2.5.1. Indices for Cloud Differentiating

A set of 5 indices is derived from the 10 wavelength bands and used as input features.
These include NDSI, NDV I, Whiteness, HOT, and B5/B6 ratio (See Equations (1)–(4)).
These indices are sensitive to cloud pixels and often have a threshold that are able to differ-
entiate cloud pixels from others [4]. Instead of testing these indices with a threshold value,
they are integrated as part of input parameters into the proposed machine learning model.

NDSI = (Band 3 − Band 6)/(Band 3 + Band 6)

NDV I = (Band 5 − Band 4)/(Band 5 + Band 4)
(1)

NDSI and NDVI represent the normalized difference snow index and the normalized
difference vegetation index, respectively. Both indices usually have a value near zero for
clouds. Sometimes they could be larger for thin cloud over highly vegetated areas but
should be less than 0.8.

MeanVis = (Band 2 + Band 3 + Band 4)/3

Whitness =
4

∑
i=2

∣∣∣∣ (Band i − MeanVis)
MeanVis

∣∣∣∣ (2)

The Whiteness index was first proposed by Gomez-Chova et al. [28] for Environmental
SATellite (ENVISAT) and was modified as in Equation (2) later [4] for Landsat satellite
images. The modified whiteness is effective in excluding non-cloud pixels due to their
“non-flat” reflectance feature compared to the “flat” reflectance of cloud pixels.

HOT = Band 2 − 0.5 × Band 4 − 0.08 (3)

The Haze Optimized Transformation (HOT) index was first proposed by
Zhang et al. [29] and was modified by Zhu et al. [4], which is useful to separate haze
and thin cloud from clear-sky pixels.

B5/B6 Ratio =
B5
B6

(4)

The B5/B6 ratio is able to separate “bright” rocks from cloud pixels as “bright” rocks
usually have a higher Band 5 value than Band 4 while cloud has a higher Band 4 value than
Band 5.

2.5.2. Self Organizing Map

A self-organizing map (SOM) is an unsupervised clustering method that uses a neural
network to represent training data in a low-dimensional space [30]. The 10-dimensional
input vectors are grouped into 100 clusters with 100 neurons. Each neuron has a weight
vector which will be updated based on competitive learning approach at iterations. At
each iteration, all neurons will be compared with a random selected training vector, and
the one that is the closest in distance to the training point will be the winner and rewarded
for moving closer to the training point by updating the weights. A neighborhood function
is used to update the weights of the neighbors of a winning neuron in order to preserve
the topological properties of the input space. Each cluster links to those image pixels
sharing similar features. Although the SOM clustering results may not be able to directly
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differentiate cloud pixels from others pixels, it can provide useful information for the pixel
type that can be utilized as an input feature for the training of the ensemble models. The
SOM learning process can be represented by the neuron weight update process that is
defined by (5).

ΔWj,i = η(t) · Tj,I(x)(t) · (xi − wi, j)

η(t) = η0 exp
(
− t

τη

)

Tj,I(x)(t) = exp

(
−

S2
j,I(x)

2σ(t)2

)

Sj,i = ||wj − wi||
σ(t) = σ0 exp

(
− t

τ0

)
(5)

where ΔWj,i denotes the updated weight value, t is the epoch, i and j are neuron indices,
and I(x) is the winning neuron. η(t) refers to the learning rate which controls the neuron
learning speed. Tj,I(x)(t) denotes the neighborhood function which defines the extent of
neighbor neurons of a winning neuron. Sj,i is the distance between neurons, and the Sj,i is
the neighborhood size.

2.6. Model Training and Hyper-Parameter Optimization
2.6.1. Model Training

A total of twelve tree-based ensemble models were trained on the four subsets sampled
from the 88 cropped Landsat 8 images. Depending on the selection of input features, these
machine learning models could be divided into three groups. Each model group consists
of four models with the same specifications but trained on four different sizes of training
samples.

The features used to train the first model group were the 10 wavelength bands from
the 88 cropped images. For the second model group, in addition to the 10 wavelength
bands, the 5 derived indices discussed in Equations (1)–(4) were also included as input
features. The training process of the third model group consists of two steps. The first step
is to build an SOM model on the training sample and use the SOM model to classify all
the pixels from the training sample into clusters. The second step is to then include the
SOM cluster label as an extra input feature in addition to the 10 wavelength bands. Then
an ensemble learning model will be trained by employing the 10 wavelength bands and
the SOM labels as the input features. The target variables for each subset are the pixel class
which consists of cloud, clear, thin cloud, and cloud shadow. Models are summarized in
Table 3 and the sample sizes are summarized in Table 2.

Table 3. Model names and features.

Model Name Input Features Training Subset

88Mdl_Sample 1 10 bands Sample 1
88Mdl_Sample 2 10 bands Sample 2
88Mdl_Sample 3 10 bands Sample 3
88Mdl_Sample 4 10 bands Sample 4

88Mdl_SOM_Sample 1 10 bands; SOM Class Sample 1
88Mdl_SOM_Sample 2 10 bands; SOM Class Sample 2
88Mdl_SOM_Sample 3 10 bands; SOM Class Sample 3
88Mdl_SOM_Sample 4 10 bands; SOM Class Sample 4

88Mdl_5Index_Sample 1 10 bands; 5 Derived Indices Sample 1
88Mdl_5Index_Sample 2 10 bands; 5 Derived Indices Sample 2
88Mdl_5Index_Sample 3 10 bands; 5 Derived Indices Sample 3
88Mdl_5Index_Sample 4 10 bands; 5 Derived Indices Sample 4
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2.6.2. Hyper-Parameters Optimization

Hyper-parameters are the parameters that control the model training process, and
they are parameters that can be optimized. Different combinations of hyper-parameters can
lead to different model performance. Hyper-parameter optimization refers to the process
used to find a set of hyper-parameters that yields an optimal model which minimizes the
loss function on the given validation dataset. Grid search, random search, and Bayesian
optimization are three of the most common approaches to perform hyper-parameter opti-
mization. Grid search exhaustively searches all the combinations from a manually defined
hyper-parameter space of a model and is the most expensive approach especially when
feature space is large. Random search is a slight modification of grid search where hyper-
parameter combinations are randomly selected from a manually defined hyper-parameter
space instead of exhaustively enumerating of all combinations. This search method is faster
than grid search, but both of them are limited to prior knowledge of hyper-parameter distri-
bution specifications. Bayesian optimization, on the other hand, attempts to find the global
optimum in minimum steps without the need to manually define each hyper-parameter
sample points. Bayesian optimization builds a probabilistic model on the hyper-parameter
values and the objective function, the surrogate model. A Gaussian process (GP)-based
surrogate model is a popular one for Bayesian optimization because it is cheap to evaluate.
The function to propose hyper-parameters combinations is referred to as the acquisition
function, which is an important part of a surrogate model. The Bayesian optimization
algorithm can be defined by Equation (6).

Xt = argmaxXu(X|D1:t−1)

D1:t−1 = (X1, y1), . . . , (Xt−1, yt−1)
(6)

where u is the acquisition function, Xt is the hyper-parameter sampling point at iteration
t, D1:t−1 is the objective function values and hyper-parameters samples from previous
t − 1 iterations. Bayesian optimization tries to find the hyper-parameter combinations
at step t that is able to maximize the acquisition function u. Then the evaluation results
from the objective function at step t which will be added to previous results to update
the GP. Hyper-parameters for the tree-based ensemble models are optimized by Bayesian
optimization. Tuned parameters includes the number of learners, the ensemble approach,
the learning rate, the minimum leaf number, split criteria, the number of variables used in
each node, and evaluation times.

2.7. Cloud Mask Prediction and Accuracy Evaluation

There are 4 training subsets sampled from the 88 images in the intra-group. Based
on Table 2, each training subset accounts for only a very small portion of the total pixels
present in the 88 images. The portion is not direly set but determined by the bin number
n and the sample number m in the representative sampling stage. The portions range
from 0.01% to 1.30% as shown in Table 2. Once the training processes are complete, these
models are applied to the 88 images in the intra-group and the 8 images in the ultra-group
to generate the predicted cloud masks. Fmask 4.0 is also applied to the 88 images in the
intra-group and the 8 images in the ultra-group. The masks generated using the Fmask 4.0
algorithm include five classes which are clear land, clear water, cloud shadow, snow, and
cloud. These classes are grouped into cloud, clear, and shadow to match the output of the
machine learning models.

Each of the LC8 Biome images has an associated manually generated mask created
by an analyst for validation purposes [6]. Previous cloud masking studies reveal that the
differences due to the analyst’s interpretation is about 7% [31]. To avoid this difference, all
these cloud masks are digitized by a single analyst. Then, image-based confusion matrices
are generated for each model and Fmask. For each image, there will be 13 confusion
matrices generated, 12 of which are for the 12 model predictions, and the thirteenth
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for Fmask. These confusion matrices furnish the foundation of the accuracy measure
calculations discussed in the next section.

3. Results

3.1. Accuracy Measurements Establish

Confusion matrices of the entire intra-group and ultra-group are generated for each
of the machine learning models and the Fmask algorithm. These confusion matrices
are then used to calculate the performance metrics including the correctness, the cloud
commission error, and the cloud omission error at the image level and the group level.
These measurements are defined in Equations (7)–(9):

Correctness =
Cloud as Cloud + Clear as Clear + Shadow as Shadow

Total pixel
(7)

Cloud Commission Error =
Clear as Cloud + Shadow as Cloud

Total Clear + Total Shadow
(8)

Cloud Omission Error =
Total Cloud − Cloud as Cloud

Total Cloud
(9)

where correctness measures the overall model correctness for all three classes, cloud
commission error measures the portion of pixels that are estimated as cloud but are actually
not, cloud omission error measures the portion of cloud pixels that failed to be detected.
Because those non-cloud pixels that are labeled as cloud will be removed in most remote
sensing image analysis, cloud commission error could cause information loss. Compared to
information lost, a failure of detecting cloud pixels will have a more severe negative impact
on the image analysis. Therefore, controlling cloud omission error is the first priority of
this research. Among all of the 88 intra-group images, only 32 images have a shadow class
labeled. Limited by the training and validation size, shadow detection is not the goal of
this research. Therefore, the commission error and omission error were built for cloud pixel
identification.

3.2. Visual Comparison and Accuracy Assessment

For each of the 88 images we produced 14 predicted cloud masks, 12 of which are from
our 12 machine learning models, one from Fmask, and one from the ground truth mask.
Figure 5 illustrates four sample images with their associated ground truth image, ground
truth mask, model prediction mask from model 88Mdl_5index_sample4, and Fmask. For
these four sample images, both from the machine learning models and Fmask, we see that
they perform well on cloud detection. However, higher commission and omission errors
can be observed compared to the machine learning model prediction mask. For the forest
image in the first row in Figure 5, both the prediction mask and Fmask show some degree
of omission error, but Fmask has more missed cloud pixels. For the shrub image in the
second row, Fmask mis-classified a large water zone as cloud. For the grass/crops image in
the third row, Fmask missed some cloud pixels again in the thick cloud mixture zone. For
the image in the fourth row, both masks provide a good fit based on a visual comparison.

To better explore the performance of machine learning model and Fmask, the accuracy
assessment Table 4 is summarized for the four images in Figure 5. Both machine learn-
ing models and Fmask have good overall correctness (above 85%); however, Fmask has
significant omission error in the first and third image, and has high commission error in
the second image. This quantitative result agrees with the visual comparison result. The
machine learning model has good consistent performance on the four sample images.

To provide a more comprehensive accuracy assessment, accuracy assessment tables
are summarized for both the entire intra-group (Table 5) and the ultra-group (Table 6) for
each of the machine learning models and for the Fmask algorithm. Tables 5 and 6 are
sorted on cloud omission error in ascending order. From Table 5, the 88Mdl_SOM_sample4
performs the best on all measurements on the 88 intra-group. As can be seen in Table 6, the



Remote Sens. 2021, 13, 3289 12 of 22

88Mdl_5index_sample3 has the lowest cloud omission error and the model 88Mdl_sample3
has the best correctness performance in the ultra-group. Fmask 4.0 has the second lowest
cloud omission error.

Ground truth Ground truth mask Prediction mask Fmask
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Figure 5. Sample image comparison between the validation mask, 88Mdl_5index_sample4 model predicted mask and
Fmask. Each row displays an image with a certain type. The first column represents the ground truth image and the second
column represents the ground truth mask, which is manually generated by expert. The third column represents the model
prediction results and the fourth column displays the Fmask application result.
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Table 4. Model predicted mask and Fmask accuracy comparison at image level for Figure 5. OE
refers to omission error and CE refers to commission error.

Source Scene ID Mask Type Correct Cloud OE Cloud CE Land Type

LC81750622013304LGN00 Predicted 90.30% 24.50% 0.12% ForestFmask 86.52% 33.94% 0.62%

LC80010732013109LGN00 Predicted 97.47% 3.78% 0.62% ShrubFmask 85.39% 0.26% 8.73%

LC80290372013257LGN00 Predicted 95.82% 3.86% 0.77% Grass/CropsFmask 86.65% 27.78% 0.66%

LC80640452014041LGN00 Predicted 99.57% 5.18% 0.11% UrbanFmask 98.22% 0.55% 0.80%

Table 5. Intra-group accuracy assessment for machine learning models and the Fmask.

Model Names Correct Cloud OE Cloud CE

88Mdl_SOM_sample4 98.57% 1.18% 0.93%
88Mdl_sample4 98.35% 1.19% 1.08%
88Mdl_5index_sample4 98.45% 1.33% 0.98%
88Mdl_5index_sample3 97.30% 1.37% 2.12%
88Mdl_sample3 98.00% 1.68% 1.38%
88Mdl_sample2 97.59% 2.15% 1.61%
88Mdl_5index_sample2 97.62% 2.16% 1.57%
88Mdl_5index_sample1 97.13% 2.50% 1.43%
88Mdl_sample1 96.76% 2.60% 1.65%
88Mdl_SOM_sample3 96.10% 3.76% 2.26%
88Mdl_SOM_sample2 95.06% 5.03% 2.87%
88Mdl_SOM_sample1 94.46% 5.22% 3.31%
Fmask 4.0 88.45% 7.57% 10.82%

Table 6. Ultra-group accuracy assessment for machine learning models and the Fmask.

Model Names Correct Cloud OE Cloud CE

88Mdl_5index_sample3 86.35% 12.48% 7.96%
Fmask 4.0 83.09% 13.76% 10.69%
88Mdl_sample3 87.00% 14.78% 5.80%
88Mdl_sample2 86.81% 15.23% 5.23%
88Mdl_sample4 85.53% 15.60% 7.00%
88Mdl_SOM_sample1 86.15% 15.61% 5.84%
88Mdl_SOM_sample3 86.31% 15.67% 6.19%
88Mdl_5index_sample2 86.85% 15.72% 5.04%
88Mdl_SOM_sample4 86.00% 15.95% 6.38%
88Mdl_SOM_sample2 86.25% 15.99% 5.74%
88Mdl_5index_sample4 86.05% 16.68% 5.30%
88Mdl_sample1 84.77% 17.28% 5.06%
88Mdl_5index_sample1 85.61% 17.60% 3.99%

As can be seen in Table 6, Fmask has the lowest performance for all metrics when
compared to the machine learning models. To have a in-depth exploration on the factors
influencing the Fmask performance, the eight images with the lowest performance are
summarized (Table 7). Four of the eight images are plotted in Figure 6. The accuracy
measurements are summarized at image level for the the Fmask and the five indices
machine learning model trained on sample4 for comparison. The machine learning model
performed well on all images, while the Fmask has high variability across the images. The
overall correctness could decrease to as low as 7.47% for the Ice/Snow images. Four out of
the eight images are for the ice/snow land type. These images have the common features
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that the background reflectance is “bright”. This feature causes trouble for Fmask in two
ways. In some images, Fmask mis-classifies ice/snow as cloud, while in some images
Fmask mis-classifies cloud as clear pixels. This quantitative finding conforms with what
one can see by visual inspection of the results in Figure 6, where we see that Fmask has
difficulty in detecting cloud in images in the first and third row. In the first row, Fmask
mis-classifies the cloud pixels as snow/ice-covered clear pixel. In the third row, Fmask
mis-classifies snow/ice-covered clear pixels as cloud. As can be seen in the fourth row of
Figure 6, water is another case with "bright" background, where Fmask mis-classifies large
water regions as cloud pixels.

The other three images types listed in Table 7 are grass/crops, forest, and shrubland.
The grass/crops, forest and shrub images are similar in that they absorb a large fraction of
the visible bands and make the images “dark”. This effect could influence the performance
of Fmask. As can be seen in the Table 7, Fmask has high cloud omission error over these
three land types. The machine learning model, on the other hand, has a stable performance
across the different land types. The cloud commission errors are NaN in the table because
this image is 100% covered by thin cloud; thus, by definition, no cloud commission error
can be calculated. For the shrubland image, Fmask mis-classifies large thin cloud zones as
clear pixels (second row of Figure 6).

Table 7. Model predicted mask and Fmask accuracy comparison for low Fmask accuracy images.

Source Scene ID Mask Type Correct Cloud OE Cloud CE Land Type

LC80060102014147LGN00 Predicted 98.35% 0.00% 0.00% Ice/SnowFmask 69.67% 57.33% 6.54%

LC80211222013361LGN00 Predicted 97.65% 2.70% 1.90% Ice/SnowFmask 55.15% 73.21% 5.99%

LC80290372013257LGN00 Predicted 95.82% 3.86% 0.77% Grass/CropsFmask 86.65% 27.78% 0.66%

LC81720192013331LGN00 Predicted 100.00% 0.00% nan ForestFmask 64.92% 35.08% nan

LC82271192014287LGN00 Predicted 99.90% 0.92% 0.04% Ice/SnowFmask 7.47% 26.71% 97.04%

LC81490122013218LGN00 Predicted 99.27% 0.35% 5.45% ShrublandFmask 18.49% 87.72% 0.74%

LC80200462014005LGN00 Predicted 96.88% 8.71% 0.09% Ice/SnowFmask 90.03% 15.42% 0.81%

LC80210072014236LGN00 Predicted 98.21% 8.35% 0.83% WaterFmask 79.96% 15.79% 16.80%
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Figure 6. Fmask miss-classified images. Each row displays an image with a certain type. The first column represents the
ground truth image and the second column represents the ground truth mask. The third column represents the model
prediction results and the fourth column displays the Fmask application result.

3.3. Feature Importance and Topology Analysis

Machine learning has been traditionally treated as a “black box”, because most of the
machine learning algorithms focus on solving problems based on training data but do not
readily give interpretations on how the input variables influence the prediction outcome.
The unsupervised SOM classification method and the supervised tree-based ensemble
classification method provides ways to explore these influences of the input variables on
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the prediction outcomes. As in Figure 7, a 10-by-10 network is constructed, which includes
100 neurons. There is a weight vector associate with each neuron and the weight vector has
the same dimension as input vectors. As the training process goes, these weight vectors
move to the center of input vector clusters. Once the training process completes, the SOM
model is applied to the training dataset to explore the variable characteristics. Each neuron
represents a cluster, and each input vector will be assigned to one of the 100 neurons. A
useful feature of SOMs is topology preservation, which means those close vectors in the
input space remain close together after being projected to 2D planes [32]. Therefore, a high
dimensional vectors can be visualized in a 2D plane.

(a) Connection Map (b) Hits Map (c) Distances Map

(d) Weight Planes Map

Figure 7. The four SOM plots. A total of 100 neurons are plotted on a 10 by 10 gridded plane. Axis x
and axis y are the neuron location indices. (a) The connection map displays the neuron topology, (b)
the hits map represents the number of vectors associated with each neuron, (c) the SOM neighbor
weight distance map displays the distance between each neuron, and (d) displays the weight of each
input component (spectral bands) in a 2D plane.



Remote Sens. 2021, 13, 3289 17 of 22

Figure 7a illustrates the SOM neuron structure in a 2D gridded plane. As can be seen
in Figure 7b, the SOM hits map displays how many input vectors fall within each SOM
class. There are several large clusters of vectors annotated with red circles which have hit
numbers of greater than 300,000. The Figure 7c indicates the feature space distance between
each node. Black and dark red represent longer inter-SOM class separation distances while
yellow and orange represent shorter inter-SOM class separation distances. Several red and
black connections marked with blue ovals segment the whole input vectors into different
zones. Each zone shares some degree of similarity with the adjacent classes. The black
regions indicate the longest inter-class separations. Figure 7d displays the weights of each
input spectral bands on the neuron plane. Similar patterns in weight planes indicate high
correlation between the different bands. As can be seen, band 1, band 2, band 3, band 4,
band 5 and band 8 indicate a strong correlation pattern in the 2D topology. Band 6 and
band 7 share some degree of similarly. On the other hand, band 9 and band 10 give unique
information to the SOM model. These plots give information of how the input variables
influence the unsupervised classification and the similarity between classes. The SOM
model is able to integrate these many input variables and provide new insights into the
data, which can be used as an additional input feature for the tree-based models to enhance
their performance.

One advantage of tree-based models is that they are easy to interpret. The decision
tree algorithms internally select the variable which can most reduce the entropy at each
decision tree splitting node. The variable that can most reduce the entropy will be put in
the root node, and the second most important variable will be placed next after the root
node. Thus, variables are sorted based on their capability to reduce the entropy. As a
result, the importance and contribution of each variable to the model can be easily traced
and explained. Split nodes are determined by their capability to reduce the entropy of the
leaf node. Therefore, the importance rank of input variables in differentiating clusters can
be traced and visualized. Figure 8 displays the importance rank plot for the three best
performing ensemble models, which are the SOM model trained with sample 4, the five
indices model trained on sample 3, and the base model with only 10 wavelength bands
trained on sample 3. Among these tree models, band 7, band 1, band 5 and HOT have
the most influence on the predicted model class. For the model incorporating the SOM
classification, the SOM class is the fifth most important input feature.

(a) Plot for 88Mdl_SOM_sample4 (b) Plot for 88Mdl_5index_sample3 (c) Plot for 88Mdl_sample3

Figure 8. The importance plot for three best models, which are (a) the model trained on sample 4 with SOM as input, (b)
the model with 5 indices trained on sample 3 and (c) the base model with 10 wavelength bands trained on sample 3. Model
(a) has the best performance on all metrics in the intra-group, while model (b,c) has the best performance on omission
error and correctness, respectively. Red and yellow bars represent the top 5 important features and blue bars represent the
importance of the rest variables.

3.4. Algorithm Complexity and Running Time Analysis

The proposed ensemble method is based on a decision tree model; thus, the algorithm
complexity of decision tree is the conceptual base for the ensemble algorithm complexity
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analysis. The depth complexity of a fully developed tree would be in O(log(n)) for a
balanced tree, and O(n) for a extremely unbalanced tree, where n is the number of training
samples. In practice, decision trees are rarely fully developed or extremely unbalanced.
As a result, O(log(n)) is a good approximation for the tree depth complexity. A quality
function is calculated for every node for each feature at all levels. The algorithm complexity
for a decision tree would be O(m × n × log(n)), where m is the number of features. For
bagging ensemble methods, random forest techniques are applied, where only the square
root number of features are considered on each node for each tree. Thus, the training
complexity is O(k × m

1
2 × n × log(n)) where k is the number of trees in the ensemble

method. For Boosting ensemble methods, all the features are considered for model training,
thus the complexity is O(k×m×n× log(n)). Selection of the Boosting or Bagging approach
are two of the ensemble hyperparameters which are determined by the hyperparameter
optimization. Once the the model is trained and ready for running, the run time complexity
for ensemble types are O(k × m).

The running time is summarized in Table 8. Training time is the total elapsed time
for all the steps to generate a model including representative training subsets sampling,
model training, hyper-parameter optimization, plotting and model saving under Intel(R)
Xeon(R) CPU E7-4850 v3 @ 2.20 GHz. The Running time is the average elapsed time to
make a cloud mask prediction and to plot the prediction masks under Intel(R) Xeon(R)
CPU X5650 @ 2.67 GHz.

Table 8. The model training and running time.

Model Name Training Time (s) Running Time (s)

88Mdl_Sample1 971 836
88Mdl_Sample2 3037 133
88Mdl_Sample3 42,279 346
88Mdl_Sample4 694,051 1037

88Mdl_SOM_sample1 1587 268
88Mdl_SOM_sample2 5099 268
88Mdl_SOM_sample3 33,839 303
88Mdl_SOM_sample4 524,561 371

88Mdl_5Index_sample1 2162 326
88Mdl_5Index_sample2 4348 251
88Mdl_5Index_sample3 20,334 547
88Mdl_5Index_sample4 355,966 167

3.5. Hyperparameter Sensitivity Analysis

Hyperparameters are important parameters that control the behavior of empirical
machine learning models. The hyperparameter optimization seeks to suppress the variance
and bias of a model by finding a set of global optimal hyperparameters that minimize
the objective function value. We proposed the Bayesian hyperparameters optimization
which minimizes the cross-validation classification error with 30 iterations for each model.
Optimized hyperparameters as well as the five-fold cross-validation objective function
values measuring the model errors are summarized for each model. Hyperparameters at
the initial iteration and at the best iteration are listed in the Table 9 to demonstrate how the
optimization process improves the objective function value. Each model has two iterations
result listed. The first iteration with the value one is the initial round of hyperparameter
optimization, while the second number refers to the iteration where the best optimization
results are achieved among the total 30 iterations. Ensemble column refers to the ensemble
method including Bagging and Boosting two categories. Trees represents the number of
single decision trees included in each model. LearnRate is a hyperparameter controlling
the learning speed for the Boosting method only. MinLeafSize is the minimum number
of samples required to be at a leaf node. The MaxNumSplits is the maximal number of
decision splits for each tree. The MinLeafSize and MaxNumSplits together control the
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depth of tree models. As in Table 9, the objective function values decreased significantly
after hyperparameter optimization for all the 12 ensemble models. Compared to the initial
model, the optimized models are dominated by employing the Boosting method, with
larger numbers for the MinLeafSize and more MaxNumSplits.

Table 9. Hyperparameters sensitivity analysis.

Model Name Iteration Objective Ensemble Trees LearnRate MinLeafSize MaxNumSplits

88Mdl_Sample1 1 0.99 RUSBoost 91 0.07 8435 1741
25 0.03 Bag 31 NA 1 124,550

88Mdl_Sample2 1 0.99 RUSBoost 25 0.00 153,080 19
28 0.02 AdaBoostM2 25 0.40 39 3153

88Mdl_Sample3 1 0.99 RUSBoost 13 0.02 51,723 61,518
11 0.02 RUSBoost 12 0.02 7 647,140

88Mdl_Sample4 1 0.13 RUSBoost 17 0.05 5433 37,578
19 0.02 RUSBoost 145 0.02 1 1.77 × 107

88Mdl_SOM_sample1 1 0.23 RUSBoost 12 0.71 13 2
27 0.03 Bag 15 NA 10 177,740

88Mdl_SOM_sample2 1 0.16 RUSBoost 13 0.02 4 9
24 0.03 AdaBoostM2 27 0.00 11 7937

88Mdl_SOM_sample3 1 0.06 RUSBoost 19 0.01 4 446,920
21 0.02 RUSBoost 218 0.05 1 28,364

88Mdl_SOM_sample4 1 0.09 RUSBoost 23 0.01 369 3.07 × 106

23 0.02 RUSBoost 88 0.13 1 1.32 × 107

88Mdl_5Index_sample1 1 0.22 Bag 14 NA 62,299 65,065
26 0.03 Bag 29 NA 22 2138

88Mdl_5Index_sample2 1 0.99 RUSBoost 28 0.04 542,860 95
26 0.02 AdaBoostM2 12 0.80 16 418,850

88Mdl_5Index_sample3 1 0.99 RUSBoost 28 0.04 542,860 95
30 0.02 RUSBoost 412 0.11 2 255,040

88Mdl_5Index_sample4 1 0.99 RUSBoost 18 0.27 1.78 × 106 2.89 × 106

16 0.01 RUSBoost 276 0.60 7 420,910

4. Discussion

This paper established and evaluated 12 ensemble machine learning models for pixel-
based cloud classification trained and tested using the labeled Landsat 8 Biome dataset. In
addition to the information from the ten Landsat bands some additional input features were
used, including an unsupervised self-organizing map classification and five indices derived
from various band combinations. This feature engineering improved the performance of
the machine learning cloud pixel classification.

Typically, training a machine learning model by using as much data as possible enables
a better model performance. However, when it comes to supervised cloud classification, we
are often constrained by the availability of labeled images and sometimes by the available
computing power. We therefore designed a strategy to use only a tiny subset of the total
number of pixels available for model training.

The objective of this research is three-fold. First, we described, implemented and
validated an ensemble approach to build supervised classification model for cloud de-
tection, including model selection, selection of representative training data, and feature
engineering. Second, we explored the importance of the input features. Last but not least,
we investigated how the size of the training subsets influenced the model performance.

Generally, a larger number of training samples enables better model performance
when using the intra-group, while the training size has less influence on the model perfor-
mance of the ultra-group. In addition, our ensemble models had consistent performance
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on all land types in contrast to Fmask which had trouble in differentiating cloud pixels in
some “bright” and “dark” area such as snow/ice, shrub, and some forest area. The fact that
the overall model performances on the intra-group are better than the performance on the
ultra-group is reasonable because all the training data are sampled from the intra-group,
even though just a small fraction of the total available pixels were used. As shown in
the Tables 2 and 5, models trained on subsets that only accounted for 1.3% of the total
pixels available could achieve an accuracy as high as 98.57% when applied to the whole
88 intra-group images. For the independent validation dataset that our machine learning
models had never previously seen, even though the performance decreased, they still
out-performed Fmask.

Landsat 8 images could suffer from various degradation, noise, or variability during
the image processing. The generation capability of the machine learning models have
been largely determined by the representatives of the training samples. In this study, the
LC8Biome cloud validation data are designed to cover the geographical scope of the world
and the eight biome types, and includes three levels of cloud coverage (clear, mid, cloudy).
This approach makes the training set representative enough to allow a model with good
generalization for the normal radiance variability of LC8 data. However, the LC8 Biome
dataset is free from severe noise, which is caused by such as equipment failure, which
makes the cloud detection on images with severe noise out of the scope of the proposed
machine learning models. Nevertheless, the only well-known issue so far for LC8 is the
thermal band failure. Although the lack of cloud validation masks for severely distorted
image stops us from doing an accuracy assessment; the incorporation of 10 wavelength
bands as predictors in the machine learning models allows some degree of resistance to
certain band failure. In addition, the proposed machine learning method is also suitable to
establish a cloud detection model for images with high noise once the training samples
with severe noise are available.

5. Conclusions

Overall, the tree-based ensemble machine learning models with Bayesian optimization
achieved better performance than Fmask for all metrics over the 88 images in the intra-
group. On the eight images in the ultra-group, 88Mdl_5index_sample3 has the lowest
cloud omission error and the 88Mdl_sample3 has the best correctness. The base model
with 10 wavelength bands as the input variable could achieve good performance for both
the intra-group and ultra-group. Fmask had issues in differentiating cloud pixels mainly in
ice/snow images, and some in the water, forest, and shrub images.

The empirical pixel-based machine learning models discussed in this paper could
achieve very good and consistent performance when using only a tiny portion of the total
available training data. This result indicates that a pixel-based method can perform well,
and that each scene obviously has unique spectral characteristics, and having a small
portion of example pixels from each of the sub-regions in a scene can improve the model
accuracy significantly. Integrating the self-organizing map results and five band derived
indices as a part of input variables could further help to reduce the cloud commission
error and cloud omission error compared to the base models. Based on hyperparameter
sensitivity analysis, the Boosting ensemble method with a small MinLeafSize and large
MaxNumSplits are effective settings for high accuracy model training. Among all the input
variables investigated in this research, band 1, band 5, band 7, and HOT are the five most
important variables for the best three models; Band 10, band 6, and SOM are in the second
tier; band 4, band 6, band 9, NDVI, whitness, B5/B6 ratio are in the third tier which also
contributes to the model performance.
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Abstract: Airborne particulates are of particular significance for their human health impacts and their
roles in both atmospheric radiative transfer and atmospheric chemistry. Observations of airborne
particulates are typically made by environmental agencies using rather expensive instruments. Due to
the expense of the instruments usually used by environment agencies, the number of sensors that
can be deployed is limited. In this study we show that machine learning can be used to effectively
calibrate lower cost optical particle counters. For this calibration it is critical that measurements of
the atmospheric pressure, humidity, and temperature are also made.

Keywords: optical particle counter; airborne particulates; machine learning

1. Introduction

Airborne atmospheric aerosols are an assortment of solid or liquid particles suspended in
air [1]. Aerosols, also referred to as particulate matter (PM), are associated with a suite of issues
relevant to the global environment [2–8], atmospheric photolysis, and a range of adverse health
effects [9–15]. Atmospheric aerosols are usually formed either by direct emission from a specific source
(e.g., combustion) or from gaseous precursors [16]. Although individual aerosols are typically invisible
to the naked eye, due to their small size, their presence in the atmosphere in substantial quantities
means that their presence is usually visible as fog, mist, haze, smoke, dust plumes, etc. [17]. Airborne
aerosols vary in size, composition, origin, and spatial and temporal distributions [14,18]. As a result,
the study of atmospheric aerosols has numerous challenges.

1.1. Motivation for This Study

Low cost sensors that can also be accurately calibrated are of particular value. For the last two
decades we have pioneered the use of machine learning to cross-calibrate sensors of all kinds. This was
initially done for very expensive orbital instruments onboard satellites (awarded an IEEE paper prize,
and specially commended by the NASA MODIS team) [19]. We are now using this approach operationally
for low-cost sensors distributed at scale across dense urban environments as part of our smart city
sentinels. The approach can be used for very diverse sensors, but as a useful illustrative example that
has operational utility, we describe here a case for accurately calibrated, low-cost sensors measuring the
abundance and size distribution of airborne particulates, with the implicit understanding that many
other sensor types could easily be substituted. These sensors can be readily deployed at scale at fixed
locations; be mobile on various robotic platforms (walking, flying, etc) or vehicles; be carried; or deployed
autonomously as a mesh network, either by operatives or by robots (walking, flying, etc.).

Building in calibration will enable consistent data to retrieved from all the low-cost nodes
deployed/thrown. Otherwise the data will always be under some suspicion as the inter-sensor
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variability among low-cost nodes can be substantial. While much effort has been recently placed on
providing the connectivity of large disbursed low-cost networks, little to no effort has been spent
on the automated calibration, bias-detection, and uncertainty estimation necessary to make sure the
information collected is sound. A case study of providing this critical calibration using machine
learning is the focus of this paper.

Any sensor system benefits from calibration, but low-cost sensors are typically in particular need
of calibration. The inter-sensor variability among low-cost nodes can be substantial. In addition, to the
pre-deployment calibration, once the sensors have been deployed, the paradigm we first developed for
satellite validation of constructing probability distribution functions of each sensor’s observation streams,
can be used to both monitor the real-time calibration of each sensor in the network by comparing its
readings to those of its neighbors, but also to answer the question “how representative is an instantaneous
reading of the conditions seen over some temporal and spatial window within which the sensor is placed?”.

1.2. Using Probability Distribution Functions to Monitor Calibration and Representativeness in Real-Time

It is useful to be able to answer the question, “How representative is an instantaneous reading
of the conditions seen over some temporal and spatial window within which the sensor is placed?”.
We can answer this question by considering a probability distribution functions (PDFs) of all the
observations made by a sensor over some temporal and spatial window [20]. The width of this
probability distribution is termed the representativeness uncertainty for that temporal and spatial
window. The PDFs of all observations made by each sensor are automatically compared in real time to
the PDFs from the neighboring sensors within a neighborhood radius. These neighborhood sensors
can include measurements from primary reference sensors that may be available. This comparison
is used to estimate the measurement uncertainty and inter-instrument bias for the last hour, day, etc.
We continuously accumulate the PDFs for each sensor over a variety of time scales and compare
it to its nearest neighbors within a neighborhood radius. Any calibration drift in a sensor will be
quickly identified as part of the fully automated, real-time workflow, wherein we will automatically be
comparing each sensor’s PDFs to its neighbor’s PDFs, and to the reference instrument’s PDFs. As each
sensor is in a slightly different local environment, the sensor bias drift for each sensor will be different.

1.3. Characterizing the Temporal and Spatial Scales of Urban Air Pollution

This study focused on the calibration of low cost sensors is part of a larger endeavor with the goal
of characterizing the temporal and spatial scales of urban pollution. The temporal and spatial scales of
each atmospheric component are intimately connected. The resolution used in atmospheric chemistry
modeling tools is often driven by the computational resources available. The spatial resolution of
observational networks is often determined by the fiscal resources available. It is worth taking a
step back and characterizing what the actual spatial scales are for each chemical component of urban
atmospheric chemistry. Based on our street level surveys providing data at resolution higher than
one meter, it is clear that the spatial scales are dependent on several factors—the synoptic situation,
the distribution of sources, the terrain, etc. In the larger study we characterized the spatial scales of
multi-specie urban pollution by using a hierarchy of measurement capabilities that include: (1) A zero
emission electric survey vehicle with comprehensive gas, particulate, irradiance, and ionizing radiation
sensing. (2) An ensemble of more than one hundred street level sensors making measurements every
few seconds of a variety of gases, and of particulates, light levels, temperature, pressure, and humidity.
Each sensor is accurately calibrated against a reference standard using machine learning. This paper
documents an example of low-cost sensor calibration for airborne particulate observations.

1.4. Societal Relevance

What are the characteristic spatial scales of each chemical species and how does this depend on
issues such as the synoptic situation? These are basic questions that are helpful to quantify when
considering atmospheric chemistry; when looking forward to the next generation of modeling tools and
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observing systems (whether from space or ground-based networks); and when evaluating mitigation
strategies, especially with regard to co-benefits for air pollution and greenhouse gas reduction and
investigating the evolution of urban air composition in a warming climate. To be able to quantify these
spatial and temporal scales we need a comprehensive observing system, so being able to use low cost
sensors is of great assistance to achieving this goal.

The Dallas–Fort Worth (DFW) metroplex (where our study was conducted) is the largest inland
urban area in the United States and the nation’s fourth largest metropolitan area. Nearly a third of Texans,
more than seven million inhabitants, live in the DFW area. A population which is growing by a thousand
people every day. DFW is an area with an interesting variety of specific pollution sources with unique
signatures that can provide a useful testbed for generalizing a measurement strategy for dense urban
environments. For more than two decades the DFW area has been in continuous violation of the Clean Air
Act. DFW will be one of only ten non-California metropolitan areas still in violation of the Clean Air Act in
2025 unless major changes take place. This has already had a detrimental health impact; e.g., even though
the average childhood asthma rate is 7% in Texas, and the national average is 9%, the DFW childhood
asthma rate is 20%–25%. Second only to the Northeast, DFW ranks second in the number of annual
deaths due to smog. Further, a leading factor in poor learning outcomes in high-schools is absenteeism,
a leading cause of absenteeism is asthma, and key trigger for asthma is airborne pollution [21]. Physical
exertion in the presence of high pollution levels is more likely to lead to an asthmatic event. The sensors
calibrated in this study were provided to high schools and high school coaches so that simple, practical
decisions can be made to reduce adverse health outcomes; e.g., given the levels of pollen/pollution today,
should physical education/practice be outside or inside?

2. The Datasets Used

All of the measurements were made at our own field calibration station in an ambient environment.
The calibration of the low cost AphaSense OPC occurred prior to their deployment across the dense
urban environment of DFW. In this study we used machine learning to bring together two distinct types
of data. First, we used accurate in-situ observations made by a research grade particulate spectrometer.
Second, we used observations from inexpensive optical particle counters. The inexpensive sensors are
particularly useful as they can be readily deployed at scale.

2.1. Research Grade Optical Particle Counter

The particulate spectrometer is a laser based Optical Particle Counter (OPC). In this study we
used a GRIMM Laser Aerosol Spectrometer and Dust Monitor Model 1.109 (Germany). The sensor
has the capability of measuring particulates of diameters between 0.25 and 32 μm distributed within
32 size channels. Such a wide range of diameter space is made possible due to intensity modulation of
the laser source. Particulates pumped into the sensor are detected through scattering a laser beam of
655 nm into a light trap. The laser beam is aimed at particulates coming through a sensing chamber
at a flow-rate of 1.21 L/min. The device classifies particulates into specific size classes subject to its
intensity [22]. The optical arrangement of the sensor is staged such that a curved optical mirror placed
at an average scattering angle of 90◦ collects and redirects the scattered light towards a photo sensor.
The wide angle of the optical mirror (120◦) is meant to increase the light intensity redirected towards
the photo sensor within the Rayleigh scattering domain which decreases the minimum detectable
particle size. Furthermore, it compensates for Mie Scattering undulations caused by monochromatic
illumination. The sensing period of the GRIMM sensor was set to 6 s, and for each time window
provided three standardized mass fractions; namely, based on occupational health (repairable, thoracic,
and alveolic) according to EN 481, and PM1, PM2.5, and PM10.

2.2. Low Cost Optical Particle Counters

There are several readily available optical particle counters (OPC) which are useful, but much
less accurate compared to research grade sensors. In this study, we focus on using such sensors,
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together with machine learning, to get as close as possible to the accuracy of research grade PM
sensors. After the application of the machine learning calibration, these lower cost sensors perform
admirably. In order for low cost sensors to provide an improved picture of PM levels, a careful
calibration is required. The current study used an Alpha Sense OPC-N3 (http://www.alphasense.
com/) together with a cheaper environmental sensor (Bosch BME280) as data collectors. The OPC-N3
is compact (75 mm × 60 mm × 65 mm) in size and weighs under 105 g, but uses similar technology
to the conventional OPCs where particle size is determined via a calibration based on Mie scattering.
Unlike most OPCs the OPC-N3 does not include a pump and a replaceable particle filter in order to
pump aerosol samples through a narrow inlet tube; hence, avoiding the need for regular maintenance.
A sufficient airflow through the sensor is made possible with a low powered micro fan producing a
sample flow rate of 280 mL/min. The OPC-N3 is capable of on-board data logging and measuring
particulates with diameters up to 40 μm. This enables the OPC-N3 to measure pollen and other
biological particulates. The on-board data is saved within an SD card which can be accessed through
micro-USB cable connected to the OPC. Furthermore, the OPC-N3’s lower sensing diameter is 0.35 μm,
as opposed to its predecessor’s (OPC-N2) limit of 0.38 μm. The wider range of sensing is made possible
via the OPC switching between high and low gain modes automatically. The OPC-N3 calculates its
PM values using the method defined by the European Standard EN 481 [23].

2.3. Caveat: Particulate Refractive Index

The observations made by optical particle counters are sensitive to the refractive index of
the particulates and their light absorbing properties. The retrieved size distributions and the
mass-concentrations can be biased, depending on the nature of the particulates. The current study
did not explore the accuracy implications of this. A future study is underway which includes direct
measurements of black carbon that will allow us to begin to explore these aspects. The machine learning
paradigm is readily extensible to include these aspects, even though not explicitly addressed in this study.
Machine learning is an ideal approach for the calibration of lower cost optical particle counters.

3. Machine Learning

Machine learning has already proved useful in a wide variety of applications in science, business,
health care, and engineering. Machine learning allows us to learn by example, and to give our data
a voice. It is particularly useful for those applications for which we do not have a complete theory,
yet which are of significance. Machine learning is an automated implementation of the scientific
method [24], following the same process of generating, testing, and discarding or refining hypotheses.
While a scientist or engineer may spend their entire career coming up with and testing a few hundred
hypotheses, a machine-learning system can do the same in a fraction of a second. Machine learning
provides an objective set of tools for automating discovery. It is therefore not surprising that machine
learning is currently revolutionizing many areas of science, technology, business, and medicine [25,26].

Machine learning is now being routinely used to work with large volumes of data in a variety
of formats, such as images, videos, sensors, health records, etc. Machine learning can be used in
understanding this data and create predictive and classification tools. When machine learning is used
for regression, empirical models are built to predict continuous data, facilitating the prediction of future
data points, e.g., algorithmic trading and electricity load forecasting. When machine learning is used for
classification, empirical models are built to classify the data into different categories, aiding in the more
accurate analysis and visualization of the data. Applications of classification include facial recognition,
credit scoring, and cancer detection. When machine learning is used for clustering, or unsupervised
classification, it aids in finding the natural groupings and patterns in data. Applications of clustering
include medical imaging, object recognition, and pattern mining. Object recognition is a process for
identifying a specific object in a digital image or video. Object recognition algorithms rely on matching,
learning, or pattern recognition algorithms using appearance-based or feature-based techniques.
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These technologies are being used for applications such as driver-less cars, automated skin cancer
detection, etc.

Machine learning is an automated approach to building empirical models from the data alone. A key
advantage of this is that we make no a priori assumptions about the data, its functional form, or its
probability distributions. It is an empirical approach. However, it also means that for machine learning to
provide the best performance we do need a comprehensive, representative set of examples, that spans
as much of the parameter space as possible. This comprehensive set of examples is referred to as the
‘training data’.

So, for a successful application of machine learning we have two key ingredients, both of which
are essential, a machine learning algorithm, and a comprehensive training data set. Then, once the
training has been performed, we should test its efficacy using an independent validation data set to
see how well it performs when presented with data that the algorithm has not previously seen; i.e.,
test its ‘generalization’. This can be, for example, a randomly selected subset of the training data that
was held back and then utilized for independent validation.

It should be noted, that with a given machine learning algorithm, the performance can go from
poor to outstanding with the provision of a progressively more complete training data set. Machine
learning really is learning by example, so it is critical to provide as complete a training data set as
possible. At times, this can be a labor intensive endeavor.

We have used machine learning in many previous studies [19,21,25–56]. In this study
we used machine learning for multivariate non-linear non-parametric regression. Some of
the commonly used regression algorithms include neural networks [57–62], support vector
machines [63–67], decision trees [68], and ensembles of trees such as random forests [69–71].
Previously we used a similar approach to cross-calibrate satellite instruments [19,25–28]. Recently
other studies also used machine learning to calibrate low cost sensors [72,73].

Ensemble Machine Learning

Multiple approaches for non-linear non-parametric machine learning were tried, including neural
networks, support vector regression, and ensembles of decision trees. The best performance was
found using an ensemble of decision trees with hyper-parameter optimization [68–71]. The specific
implementation used was that provided by the Mathworks in the fitrensemble function which is part
of the Matlab Statistics and Machine Learning Toolbox. Hyperparameter optimization was used so
that the optimal choice was made for the following attributes: learning method (bagging or boosting),
maximum number of learning cycles, learning rate, minimum leaf size, maximum number of splits,
and the number of variables to sample.

There were 72 inputs to our multivariate non-linear non-parametric machine learning regression;
these included the particle counts for each of the 24 size bins measured by the OPC-N3; the OPC-N3
estimates of PM1, PM2.5, and PM10; a suite of OPC performance variables, including the reject
ratio; and particularly importantly, the ambient atmospheric pressure, temperature, and humidity.
The OPC-N3 sensor includes two photo diodes that record voltages which are eventually translated
into particle count data. However, particles which are not entirely in the OPC-N3 laser beam, or are
passing down the edge, are rejected and this is recorded in the “reject ratio” parameter. This leads to
better sizing of particles, and hence plays an important role within the machine learning calibration.

Each of the six outputs we wished to estimate had its own empirical model. The performances of
each of these six models in their independent validations are shown in Figures 1 and 2. The outputs
we estimated were the six variables measured by the reference instrument, the research grade optical
particle counts, namely, of PM1, PM2.5, and PM10; and the standardized occupational health repairable,
thoracic, and alveolic mass fractions. The alveolic fraction is the mass fraction of inhaled particles
penetrating to the alveolar region (maximum deposition of particles with a size ≈2 μm). The Thoracic
fraction is the mass fraction of inhaled particles penetrating beyond the larynx (<10 μm). The respirable
fraction is the mass fraction of inhaled particles penetrating to the unciliated airways (<4 μm).
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The inhalable fraction is the mass fraction of total airborne particles which is inhaled through the nose
and mouth (<20 μm). For each of these six parameters we created an empirical multivariate non-linear
non-parametric machine learning regression model with hyper-parameter optimization.

PM1

(a) (b) (c)

PM2.5

(d) (e) (f)

PM10

(g) (h) (i)

Figure 1. This figure shows the results of the multivariate non-linear non-parametric machine learning
regression for particulate matter PM1 (panels (a)–(c)), PM2.5 (panels (d)–(f)), and PM10 (panels (g)–(i)).
The left hand column of plots shows the log–log axis scatter diagrams with the x-axis showing the
PM abundance from the expensive reference instrument and the y-axis showing the PM abundance
provided by calibrating the low-cost instrument using machine learning. The green circles are the
training data; the red pluses are the independent validation dataset. The blue line shows the ideal
response. The middle column of plots shows the quantile–quantile plots for the machine learning
validation data, with the x-axis showing the percentiles from the probability distribution function of
the PM abundance from the expensive reference instrument and the y-axis showing the percentiles
from the probability distribution function of the estimated PM abundance provided by calibrating the
low-cost instrument using machine learning. The dotted red line shows the ideal response. The right
hand column of plots shows the relative importance of the input variables for calibrating the low-cost
optical particle counters using machine learning.
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Alveolic

(a) (b) (c)

Thoracic

(d) (e) (f)

Inhalable

(g) (h) (i)

Figure 2. This figure shows the results of the multivariate non-linear non-parametric machine learning
regression for the alveolic (panels (a)–(c)), thoracic (panels (d)–(f)), and inhalable size fractions
(panels (g–i)). The left hand column of plots shows the log–log axis scatter diagrams with the x-axis
showing the PM abundance from the expensive reference instrument and the y-axis showing the PM
abundance provided by calibrating the low-cost instrument using machine learning. The green circles
are the training data; the red pluses are the independent validation dataset. The blue line shows the
ideal response. The middle column of plots shows the quantile–quantile plots for the machine learning
validation data, with the x-axis showing the percentiles from the probability distribution function of
the PM abundance from the expensive reference instrument and the y-axis showing the percentiles
from the probability distribution function of the estimated PM abundance provided by calibrating the
low-cost instrument using machine learning. The dotted red line shows the ideal response. The right
hand column of plots shows the relative importance of the input variables for calibrating the low-cost
optical particle counters using machine learning.

4. Results

Calibrating the Low Cost Optical Particle Counters Using Machine Learning

Figure 1 shows the the results of the multivariate non-linear non-parametric machine learning
regression for PM1 (panels a to c), PM2.5 (panels d to f), and PM10 (panels g to i). The left hand column
of plots shows the log–log axis scatter diagrams with the x-axis showing the PM abundance from the
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expensive reference instrument and the y-axis showing the PM abundance provided by calibrating the
low-cost instrument using machine learning.

For the left hand column of plots in Figure 1 (the scatter diagrams), for a perfect calibration, the
scatter plot would be a straight line with a slope of one and a y-axis intercept of zero; the blue line
shows the ideal response. We can see that multivariate non-linear non-parametric machine learning
regression that we used in this study employing an ensemble of decision trees with hyper-parameter
optimization performed very well (panels a, d, and g). In each scatter diagram the green circles are the
data used to train the ensemble of decision trees; the red pluses are the independent validation data
used to test the generalization of the machine learning model.

We can see that the performance is best for the smaller particles that stay lofted in the air for a long
period and do not rapidly sediment, so when comparing the scatter diagram correlation coefficients, r,
for the independent validation test data (red-points) we see that rPM1 > rPM2.5 > rPM10 .

For the middle column of plots in Figure 1 (the quantile–quantile plots), we are comparing the
shape of the probability distribution (PDF) of all the PM abundance data collected by the expensive
reference instrument to that of the the PM abundance provided by calibrating the low-cost instrument
using machine learning. A log10 scale is used with a tick mark every decade. The dotted red line in
each quantile–quantile plot shows the ideal response. The red numbers indicate the percentiles (0,
25, 50, 75, 100). If the quantile–quantile plot is a straight line, that means both PDFs have exactly the
same shape, as we are plotting the percentiles of one PDF against the percentiles of the other PDF.
Usually, we would like to see a straight line at least between the 25th and 75th percentiles; in this case,
we have a straight line over the entire PDF, which demonstrates that the machine learning calibration
performed well.

The right hand column of plots shows the relative importance of the input variables for calibrating
the low-cost optical particle counters using machine learning. The relative importance metric is a
measure of the error that results if that input variable is omitted. In the right hand column of bar
plots we have sorted the importance metrics into descending order, so the variable represented by
the uppermost bar in each each case was the most important variable for performing the calibration;
the second bar was the second most important; etc. We note that along with the number of particles
counted in each size bin, it is important to measure the temperature, pressure, and humidity to be
able to accurately calibrate the low cost OPC against the reference instrument. The data also suggests
that the parameter “reject ratio” carries a greater deal of importance with respect to the calibration.
OPC-N3 comprises two photo diodes which records voltages which are eventually translated into
particle count data. However, particles which are not entirely in the beam or are passing down the
edge are rejected and that is reflected on the parameter “reject ratio”. This leads to better sizing of
particles, and hence plays a vital role within the ML calibration.

Another division of occupational health based size-selective sampling is defined by assessing the
subset of particles that can reach a selective region of the respiratory system. On this basis three main
fractions were defined: inhalable, thoracic, and respirable [74–76]. Studies have shown that exposure
of excess particulate matter has alarming negative health effects [77]. The smallest sizes of particulate
matter are capable of penetrating through to the lungs or even to one’s blood stream.

Figure 2 is similar to Figure 1 and shows the results of the multivariate non-linear non-parametric
machine learning regression for the alveolic, thoracic, and inhalable size fractions. As would be
expected, we see that the performance is best for the smaller particles that stay lofted in the air for a long
period and do not rapidly sediment, so when comparing the scatter diagram correlation coefficients, r,
for the independent validation test data (red-points) we see that rAlveolic > rThoracic > rInhalable.

5. Operational Use of the Calibration and Periodic Validation Updates

The calibration just described occurred pre-deployment of the sensors into the dense urban
environment. Once these initial field calibration measurements were made over a period of several
months, in the manner described above, the multi-variate non-linear non-parametric empirical machine
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learning model was applied in real time to the live stream of observations coming from each of our
air quality sensors deployed across the dense urban environment of the Dallas Fort Worth metroplex.
These corrected measurements were then made publicly available as open data and depicted on a live
map and dashboard.

Building in continual calibration to a network of sensors will enable long-term, consistent,
and reliable data. While much effort has been recently placed on the connectivity of large disbursed IoT
networks, little to no effort has been spent on the automated calibration, bias-detection, and uncertainty
estimation necessary to make sure the information collected is sound. This is one of our primary goals.
This is based on extensive previous work funded by NASA for satellite validation.

After deployment, a zero emission electric car carrying our reference was used, to routinely
drive past all the deployed sensors to provide ongoing routine calibration and validation. An electric
vehicle does not contribute any ambient emissions, and so, is an ideal mobile platform for our
reference instruments.

For optimal performance, the implementation combines edge and cloud computing. Each sensor
node takes a measurement at least every 10 s. The observations are continually time-stamped at the
nodes and streamed to our cloud server, the central server aggregating all the data from the nodes,
and managing them. To prevent data loss, the sensor nodes store any values that have not been
transmitted to the cloud server for reasons, including communication interruptions, in a persistent
buffer. The local buffer is emptied to the cloud server at the next available opportunity.

Data from all sensors are archived and serve as an open dataset that can be publicly accessed.
The observed probability distribution functions (PDFs) from each sensor are automatically compared in
real time to the PDFs from the neighboring sensors within a neighborhood radius. These neighborhood
sensors include measurements from the electric car/mobile validation sensors. This comparison was
used to estimate the size resolved measurement uncertainty and size resolved inter-instrument bias for
the last hour, day, week, month, and year. We continuously accumulated the PDF for each sensor over
a variety of time scales (h, day, week, month, and year) and compare it to its nearest neighbors within
a neighborhood radius.

Any calibration drift in a sensor will be quickly identified as part of a fully automated real-time
workflow, where we will automatically be comparing each sensor’s PDFs to its neighbor’s PDFs, and to
the reference instruments’ PDFs. As each sensor is in a slightly different local environment, the sensor
bias drift for each sensor will be different. We have previously shown that machine learning can be
used to effectively correct these inter-sensor biases [19]. As a result, the overall distributed sensing
system will not just be better characterized in terms of its uncertainty and bias, but provide improved
measurement stability over time.

6. Conclusions

We have shown that machine learning can be used to effectively calibrate lower cost optical
particle counters. For this calibration it is critical that measurements of the atmospheric pressure,
humidity, and temperature are included. Once the machine learning calibration was applied to the
low cost sensors, independent validation using scatter diagrams and quantile–quantile plots showed
that, not only was the calibration effective, but the shape of the resulting probability distribution of
observations was very well preserved.

These low cost sensors are being deployed at scale across the dense urban environment of the
Dallas Fort Worth metroplex for characterizing both the temporal and spatial scales of urban air
pollution and for providing high schools and high school coaches a tool to assist in making better
decisions to reduce adverse health outcomes; e.g., given the levels of pollen/pollution today should
physical education/practice be outside or inside?
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