DECLASSIFIED

REPORT NO. R=1356

DATE DATIL 1937

SUBJECT

Report on

ne-Test of Model ITAJ-6 hadio Transmitting

Equipment

by

John H. Cos Oscar C. Dresser R. F. Meyer

DECLASSIFIED by HRL Contract Declassification Teem Date: 28 APR 2010 Reviewer's names). H. Do, P. HAMM

De sificatio' another MARI DECAS MANUAL, IL DEC MALE, B3 SER IES

DECLASSIF

NAVAL RESEARCH LARGEATORY

BEELEVUS, D. O

DISTRIBUTION STATEMENT APPLIES Further distribution autonized by UNDIMITED only. 20 April 1937

DECLASSIFIE WRL Report No. R-1356 Bu. Eng. Prob. T4-3

00.

NAVY DEPARTMENT

BUREAU OF ENGINEERING

Report on

Re-Test of Model XTAJ-6 Radio Transmitting Equipment.

(Contractor: General Electric Co.)

NAVAL RESEARCH LABORATORY ANACOSTIA STATION WASHINGTON, D.C.

Number	of	pages:

Text - 19 Appendix B 3

Tables - 29 Plates - 6 Tables - 8 Plates - 9

Authorization:

Date of Tests:

March 8 to April 9, 1937 (main report) April 7 to

BuEng.ltr. C-NOs-47390(1-7-W8) of 18 Jan. 1937.

Tests conducted by:

John M. Coe, Asst. Radio Engineer.

Oscar C. Dresser, Assoc. Radio Engineer.

Report prepared by:

R. B. Meyer, Assoc. Radio Engineer, Chief of Section

Reviewed by:

A. Hoyt Taylor, Pr. Physicist, Superintendent Radio Division.

Approved by:

H. M. Cooley, Captain, U.S.Navy, Director.

MAY 5 - 1937

DECLASSIFIED

Distribution: BuEng. (10)

mbe

TABLE OF CONTENTS

CECLASSIFIED @

	SUBJECT															PAGE
1.	Authorization								•					•		1
2.	Object of Test		•		•											1
3.	Abstract of Test		•		•	•		•			•			•		1
	(a) Conclusions		•	•	•	•			•		•			•	•	28
	(b) Recommendations							•	•	•						25
4.	Material Under Test		•		•					•				•		3
5.	METHOD OF TEST		•		•		•			•	•					3
6.	Data Recorded					•										4
7.	Probable errors in Results .				•				•							4
8.	Results of Tests								•			•	•			4
9.	Conclusions												•			19

APPENDIX A

	Te	able
Locked key test, 18-1/2 hours duration		1
Antenna short circuited and open circuited		2
Determination of power output.		3
		4
и и и и		5
и и и и		6
Accuracy of re-set to previously calibrated frequency .'		7
Lost motion backlash and torque lash		8
Operation of adjust tune operate control.		a
Detuning of circuits	• •	10
Operation of power output control		11
Change of tubes 200 kes	•	10
		12
Veniction of welters emplied to the mention with	• •	13
Variation of voltage applied to transmitter unit		14
Variation of line voltage.	• •	15
Variation of amplent temperature, 200 kcs		16
		17
Variation in humidity, 200 kcs		18
" " " 600 kcs		19
Locked key operation for 2 hours, 200 Kc		20
" " " " 2 " 400 Kc		21
п п. п п 2 п 600 Кс		22
Change from key locked to intermittently keyed condition		23
" " continuously keyed to intermittently keyed condition.		24
Effect of vibration.		25
Shock test.		26
Determination of overlap,		27
Variation of resonant frequency.		28
Change in Company days of the of dial labor		20

DECLASSIFIED

MAY 5 - 1937

DECLASSIFIER Cont'd)

Variation	in	Ambien	t t	emper	ratu	re,	,	200	F	Kc.						•			•		•	•		•	•	1	
n	11	11			- 11			600	1	4C.		 										•				2	
Variation	in	humidi	ty,	200	kc.									•			•			6.9		•	•			3	
11	77	п		600	kc.				•									•	•							. 4	
Vibration	tes	st, 200	kc	s								•							•	•		•				. 5	
View of fi	ront	t panel	• •	• •	• •	•	•		•	•	•	•	•	•	•		÷	•		•	•		•			. 6	

Appendix B

(c) 3D 00. 117. 105-41082 nC Dec. 17, 1936.
(c) 3D Schwampingy 111. S-47780 53, no 13 Mar. 1937.

Additional test conducted from April 7 to April 9 inclusive.

																									TCOTC
Inclinatio	n tes	t, 20	0 kc	3.																				•	A-1
11	11	50	0 kc	3.																					A-2
Vibration	test,	500	kc.																						A-3
11		400	kc.																						A-4
8	11	200	kc																						A-5
n	п	600	kc.	1																					A-6
11	0	600	kc.																						A-7
11		200	kc.																						A-8
															1										Plate
View of mo	difie	d tub	e cr	rac	11	з.																			A-1
Inclinatio	n tes	t. 20	0 kc	2.																					A-2
n	n	50	0 kc	3.					10																A-3
Vibration	test.	500	kc.																						A-4
n	"	400	kc.	-																					A-5
π	11	200	kc.								1	-								1	Co				A-6
Ħ	=	600	kc.		1		-			-				-		-		-	-	-					A-7
11	11	600	kc.				1	1				Ľ.					1			1	0	1	1	-	A-8
п	11	200	kc.					1		1	1		Ľ,												A-9

- tot total transformer
 - a) Coulty of an time algority
- (d) Determination of frequency overlap and disiss per dividing of ansking of marter exclinitor tuning control.
- (a) thede to determine such of adjustment and flexibility of the warfout closed in.
- (2) Shall al protective direction
- (g) incertination of percentage additation, MON possi outpol
 - b) Prepassly stability and andurany under the following stability and andurany under the following

DECLASSIFIED

DECLASSIFIED @

AUTHORIZATION OF TEST

1. The tests herein reported were authorized by reference (a). Other pertinent data are listed as references (b) to (h), inclusive.

Reference: (a) BuEng. 1tr. C-NOs-47390 (1-7-W8) of 18 Jan. 1937.

- (b) BuEng. Specifications RE 13A 328J.
- (c) NRL Report No. R-1328, 8 December 1936.
- (d) GE Co. Memorandum of Dec. 31, 1936.
- (e) GE Co. 1tr. XRS-41482 of Dec. 17, 1936.
- (f) INM Schenectady 1tr. C-47390(53) of 12 Mar. 1937.
- (g) Re-test data on Model XTAJ-6 Equipment. .
- (h) Contract NOs-47390 of 28 February 1936.

OBJECT OF TEST

2. The object of the tests was to determine the efficacy of the changes incorporated by the Contractor in the preliminary Model XTAJ-6 equipment in order to correct the defects disclosed by the original tests, as detailed in reference (c), and to determine whether the modified equipment complied with the terms of the governing contract.

ABSTRACT OF TEST

3. Tests were conducted to determine the degree of compliance with the mechanical and electrical requirements as set forth in references (b) and (h), with special emphasis on those aspects of operation and construction which had previously failed to meet the contractural requirements.

- Specifically, tests were conducted to determine the following:
 - (a) Check of mechanical or physical construction and assembly; general workmanship, materials used and adequacy of electrical circuits to withstand operation under Naval service conditions.
 - (b) Power output.
 - (c) Quality of emitted signals.
 - (d) Determination of frequency overlap and cycles per division of marking of master oscillator tuning control.
 - (e) Check to determine ease of adjustment and flexibility of the various circuits.
 - (f) Check of protective circuits.
 - (g) Determination of percentage modulation, MCW power output and frequency of audio modulation.

-1-

---- 1027

(h) Frequency stability and accuracy under the following conditions:

© DECLASSIFIED ©

(1) Accuracy of reset.

- (2) Lost motion, backlash and torque lash.
- (3) Operation of Adjust-Tune-Operate control.
- (4) Detuning of circuits.
- (5) Operation of power output control.
- (6) Change of tubes.
 - (7) Variation of supply line voltage.
 - (8) Variation in ambient temperature.
 - (9) Variations in humidity.
- (10) Locked key operation for two hours, CW & MCW. (11) Key locked to intermittently keyed condition.

 - (12) Continuously keyed to intermittently keyed condition.
- (13) Vibration.
- (14) Shock.
 - (i) Determination of keying characteristics.

5. In general, tests were conducted at two frequencies within the range of the equipment, namely, 200 and 600 kilocycles. However, where conditions warranted, a greater number of points in the frequency range were investigated.

DECLASSIFIE

DECLASSIFIED

CONCLUSIONS

(a) A number of changes have been made in the re-submitted Model XTAJ-6 transmitting equipment which have resulted in greatly improved performance characteristics. Notably, the equipment lends itself readily to straight-forward tuning adjustments and the tendency of the frequency to drift for long periods of time which marred the performance of the original model has been eliminated.

Side shields and tube access door have been perforated permitting (b) a view of the interior of the transmitter unit. The frequency stability characteristics of the transmitter have been improved to the point where specification requirements are complied with, with the exception of the effects of humidity.

Power output is substantially the same as in the original model (c) and this output is obtainable without causing tubes to be worked to the point of adversely affecting filament emission. Standard 38161 tubes as well as the newer type of Tantalum anode tubes worked equally well in the power amplifier circuit.

As a result of the modifications incorporated into the original (d) model certain points have arisen which require correction in the re-submitted model. A number of the defects which were disclosed during the original tests have not been remedied in the re-submitted model, the Bureau of Engineering and the Contractor agreeing that these changes would be made in the production models only.

(e) The re-submitted equipment still fails to comply with the general requirement that safe and satisfactory operation under conditions encountered in the naval service be assured. This condition results from the fact that vibration causes tube and screen grid lamp failures. Certain factors, of lesser importance also require correction. Briefly, these consist of noisy relay operation, lack of symmetry in connection with certain controls, unsatisfactory overload protection and weakness in meter design. In view of the above, it must be concluded that the re-submitted XTAJ-6 equipment requires further modification and correction before it can be considered suitable for use in the Naval Service.

"attars of any part they had equipters is subjected to every viration."

DECLASSIFIED

-2a-

stal he sport that that he was at the

MAY 5 - 1937

O DECLASSIFIED O

RECOMMENDATIONS

It is recommended:

(a) That the use of 10 watt lamps as screen grid resistors be disapproved. (See par. 31.)

(b) That the modified form of interlock switch provided on the antenna band change switch be approved. (Par. 34).

(c) That the panel carrying the filament rheostat, bias field rheostat, plate field rheostat and tube life meter be re-arranged in the interest of symmetry. Equidistant spacing of the above mentioned items items will provide the desired effect. (Par. 35).

(d) That the bias field rheostats, to be furnished in production models, possess a satisfactory range of adjustment. (Par. 36).

(e) That the overload protective circuits be further modified. (Par. 40).

(f) That the tube protective relay (5-second drop out) be considered satisfactory with respect to the timing adjustment. (Par. 41).

(g) That the new design of overload reset device be approved. (Par. 42).

(h) That the perforation of tube access door and side shields be approved. (Par. 43).

(i) That the P.A. choke coil as supplied in the re-submitted model be approved. (Par. 44).

(j) That the operating characteristics of the XTAJ-6 equipment, in so far as the factor of tube emission is concerned, be approved. (Par. 45).

(k) That the Model XTAJ-6 equipment, in its present status, be considered as failing to meet the specification requirement that "safe ; and satisfactory performance are assured. (Par. 46).

(1) That the mounting pedestal as furnished with the re-submitted model be approved. (Par. 47).

(m) That the design of the equipment be so modified as to prevent the failure of any part when the equipment is subjected to severe vibration. (Par. 48).

(n) That the sample type of door latch submitted be approved; that the elimination of the backing strip from the lower compartment doors be approved. (Par. 49).

(o) That the Master Oscillator dial control be approved. (Par. 51).

-2b-

(p) That the improved design of flexible coupling as supplied on the antenna variometer control be approved, and that the use of Allen type set

DECLASSIFIED

screws be approved. (Par. 52).

(q) That the indicator lamps, using frosted color caps, as furnished with the re-submitted model, be approved. (Par. 56).

(r) That the frequency stability of the equipment with respect to variations in applied voltages be approved. (Par. 57).

(s) That the frequency stability of the equipment, when subjected to variations in ambient temperature, be approved. (Par. 58).

(t) That greater frequency stability be required from the equipment when subjected to variations in relative humidity. (Par. 59).

(u) That the frequency stability of the equipment with respect to 2-hour locked key operation be approved. (Par. 60).

(v) That the frequency stability of the equipment with respect to change from key locked to intermittently keyed condition be approved. (Par.61).

(w) That the frequency stability of the equipment with respect to change from continuously keyed to intermittently keyed condition, be approved. (Par. 62).

(x) That approved of the frequency stability of the equipment with respect to inclined operation be withheld pending such time as the transmitter can be subjected to the necessary tests. (Par. 63).

(y) That approval of the frequency stability of the equipment with respect to operation when subjected to vibration be withheld pending such time as the transmitter will function successfully when subjected to vibration. (Par. 64).

(z) That the frequency stability of the equipment, when subjected to shock, be approved, but that steps be taken to insure that all meters supplied will successfully withstand shock (Par. 65).

(aa) That the modification of the filament circuits, as incorporated in the re-submitted model, be approved. (Par. 66).

(bb) That the method provided in the re-submitted model to prevent key open oscillations in the master oscillator circuit be approved. (Par. 67).

(cc) That the overlap characteristics of the re-submitted model be approved. (Par. 68).

(dd) That the improvements incorporated in the re-submitted model to facilitate tuning adjustments, including the positioning of the IPA and PA plate ammeters in the high potential side of the circuits be approved. (Par. 69).

(ee) That the modified tuning control marker as submitted by the contractor be approved. (Par. 70).

DECLASSIFIED

(ff) That the dial locking mechanism on the master oscillator control

-2c-

OECLASSIFIED

be improved to provide more securing locking action with less effect upon frequency. (Par. 71).

(gg) That the modified method of securing the shield securing studs be approved and that proper precautions be taken to insure that all studs be of sufficient length to permit removal of lower shield sections without the necessity of removing the upper shield sections. (Par. 75).

(hh) That an improved type of "Remote-Local" switch be provided. (Par. 76).

(ii) that the magnetic interlock on the automatic controller be approved. (Par. 78).

(jj) That the modified key relay furnished with the re-submitted model be approved but that the marking of the remote control circuits on the terminal panel of the transmitter unit be modified to conform with standard practise as illustrated in Navy Drawing RE 43AA 216E. (Par. 81).

(kk) That proper steps be taken to insure quiet operation of audio drop out relay (RL-6) and 5-second drop out relay (RL-3). (Par. 84).

(11) That the Intermediate Amplifier plate current meter be changed from 0 to 300 milliampere range to 0 to 200 milliampere range. (Par. 85).

(mm) That the terminal board in the bottom compartment of the transmitter unit be made more accessible. (Par. 86).

(nn) That an improved method of mounting the test key and "Remote-Local" switch be provided to improve the appearance of these elements. (Par. 97).

(oo) That the re-submitted preliminary Model XTAJ-6 equipment, in its present form, be considered unsatisfactory for use in the Naval Service and that formal acceptance be held in abeyance until the Contractor has demonstrated that all deficient items have been corrected in a manner meeting the approval of the Bureau of Engineering.

DECLASSIFIED

DODER THE WORKS STORE

MAY 5 - 1937

-2d-

MATERIAL UNDER TEST

6. The material under test consisted of one preliminary model XTAJ-6 transmitting equipment, as modified by the contractor, complete with motor generator equipment designed to operate from a 440 volt, 3 phase line supply. The equipment was manufactured by the General Electric Company, Schenectady, New York, under contract NOS-47390. The transmitter is rated at a nominal output of 500 watts and covers the frequency range of 175 to 600 kilocycles. The equipment is capable of both CW and MCW emission.

DECLASSIFIED

7. The re-submitted model was received at the Naval Research Laboratory on March 8, 1937.

METHOD OF TEST

8. The equipment, when received, was carefully examined to determine whether adequate precautions had been observed in preparing the material for shipment and whether any damage had been incurred during the process of transportation.

9. The equipment was then wired up and placed into commission.

10. Power output measurements were made using dummy antennas of the characteristics outlined in the governing specifications, employing essentially non-inductive resistors and low loss capacitors. Resistors and capacitors of ample current carrying capacity were used in order to prevent overheating from influencing the results. A precision type radio frequency ammeter, connected in the ground side of the dummy antenna, was used for measuring the radio frequency current.

11. Frequency changes and drifts were checked by means of the Model LK frequency indicator, Serial No. 2, the transmitter being operated at full power output whenever the governing specifications required this type of operation.

12. Frequency range, overlap and kilocycles per division of dial marking were determined by means of a Model LD-3 Crystal Controlled Calibrator, Serial No. 2.

13. The transmitting equipment, including motor generator, were placed within a test chamber and subjected to variations in ambient temperature between the limits of -1° and plus 50° C. and variations in relative humidity between the limits of approximately 20% and 95%.

14. The percentage of modulation was determined by means of a Model OB audio analyzer.

15. A Model RAA Receiver was employed for determining the quality of emission.

DECLASSIFIED

16. The keying response of the transmitter was investigated by means of an automatic sender and a cathode ray oscillograph.

17. The ability of the equipment to withstand vibration was determined by mounting the entire equipment on a test stand capable of producing the necessary vibration.

O DECLASSIFIED O

18. Shock tests were conducted by subjecting the equipment to blows from a 20 pound weight suspended in the manner outlined in the governing specifications.

19. The operation of the equipment was checked with regular 38161 tubes in the amplifier stage, as well as with special Tantalum plate tubes.

20. All vacuum tubes employed during the tests were first checked to determine their emission and static characteristics to insure that they complied with Navy Tube Specifications.

DATA RECORDED

21. Complete data were recorded during all tests conducted and this information is appended hereto as Tables 1 to 29 and Plates 1 to 6, inclusive.

PROBABLE ERRORS IN RESULTS

22. Precautions were taken to minimize errors in the results obtained through the use of accurately calibrated instruments and by rechecking results when conditions warranted. Identical tests were conducted at different frequencies in order to determine the reliable average operation of the equipment.

23. The visual frequency indicating equipment employed is capable of measuring beat note frequencies to within one or two cycles.

24. Power output determinations are considered accurate to within plus or minus 5%.

25. All external meters employed in the measurements were of the precision type whose calibrations were verified previous to use to insure accuracy.

26. The measurement of modulation is considered accurate to within 5% at the levels involved.

RESULTS OF TESTS

27. The model XTAJ-6 equipment was received in undamaged condition. Transportation from the plant of the Manufacturer to the Naval Research Laboratory was effected by means of motor truck express.

28. The wiring diagrams submitted and the test cables provided by the manufacturer permitted the ready commissioning of the equipment.

29. Since this report covers the re-test of the model XTAJ-6 equipment, specific comment is not made on each individual paragraph of specifications RE 13A 328J. In many respects the re-submitted model does not differ from the original model, which was covered in detail in NRL Report No. R-1328. Hence, comment will be made in connection with the items listed under the summary of defects contained in paragraph 165 of NRL Report No. R-1328 and under the list of "Recommendations" set forth on pages 2-b, 2-c, 2-d and 2-e of the above mentioned report. However, the tests conducted in connection with the re-submitted model have revealed certain additional items requiring consideration

DECLASSIFIED

-4-

MAY 5- 1937

O DECLASSIFIED O

and corrective action and these will be discussed in detail with appropriate references to the particular paragraph of the governing specifications concerned. In addition, it was necessary to determine whether the various modifications made in the re-submitted model had affected the frequency stability or other operating characteristics of the equipment which had been satisfactory previous to the time these modifications were made. Therefore, all the tests required under the terms of paragraphs 3-7-1 to 3-7-15, inclusive, of Specifications RE 13A 328J were again conducted in connection with the re-submitted model. The results of these tests are described in detail in the following paragraphs of this report.

30. The following paragraphs, Nos. 31 to 83, inclusive, contain a discussion of the various items listed in paragraph 165 of Report R-1328 and under the list of "Recommendations" contained in the above mentioned report. The method of correction, the results obtained and compliance or non-compliance with the governing specifications are indicated.

31. (Reference: Par. 165 (a) & Par. (a) of page 2-b). Bureau of Engineering letter of 18 January 1937, Reference (a), authorized the continued use of 10 watt lamps as screen grid resistors provided that it was demonstrated in the re-submitted model that these lamps operated satisfactorily under the effects of vibration. The flexible mounting supporting these lamps has been modified by the manufacturer. During the vibration tests of the re-submitted model, in the course of which the equipment was subjected to vibration of varying frequencies and amplitudes for a total period of approximately two hours twelve (12) screen grid lamps failed. The majority of lamp failures consisted of filament breakages, although it is possible that a number of the lamps burned out due to vacuum tube failures. It must be concluded, therefore, that the use of 10 watt lamps as screen grid resistors in the re-submitted model XTAJ-6 is unsatisfactory and unsuitable for service requirements.

32. (Reference: Par. 165(b) & Par. (b) of page 2-b). Reference (a) authorizes the use of the original type of voltmeter multiplier resistors.

33. (Reference: Par. 165(c) & Par. (c) of page 2-b). No further galling of band change switches was noted in the re-submitted model and reference (a) authorized the use of the present type of switches provided that the modifications suggested by the contractor are incorporated into the production models.

34. (Reference: Par. 165(d) and Par. (d) of page 2-b). A modified form of interlock switch has been provided on the antenna band change switch which provides some degree of wiping or self-cleaning action. It is believed that this switch will prove satisfactory for service use.

35. (Reference: Par. 165(e) & Par. (e) of page 2-b). The master oscillator stand-by filament rheostat has been eliminated from the re-submitted model and the remaining filament rheostat operates at sufficient tension to preclude the possibility of accidental movement. With the elimination of the stand-by filament rheostat, steps should be taken to insure that the arrangement of the remaining filament rheostat, bias field rheostat, plate field rheostat and tube life meter are re-located in the production models to provide for a symmetrical and pleasing arrangement of

DECLASSIFIED

-5-

these controls. Equidistant spacing of the above mentioned controls will provide the desired effect. Plate No. 6 is a view of the front panel and illustrates the unsymmetrical appearance of the panel in question.

ECLASSIFIE

36. (Reference: Par. 165(f) and Par. (f) of page 2-b). No change has been made in the bias field rheostat in the re-submitted model. Reference (a) authorized the manufacturer to make this change in the production models but did not require the change to be made in the re-submitted preliminary model.

37. (Reference: Par. 165(g) and Par. (g) of page 2-b). No change has been made in the hinge pins since the contractor explained that the present hinge pins were of stainless steel but possessed some magnetic properties.

38. (Reference: Par. 165(i) and Par. (i) of page 2-b). The use of the present type of phenolic compounds is considered satisfactory.

39. (Reference: Par. 165(i) and Par. (i) of page 2-b). Fuses used in circuits operating at potentials of 440 volts or less are of the renewable type in the re-submitted model and hence conform with the requirements of the governing specifications.

(Reference: Par. 165(j) and Par. (j) of page 2-b). 40. An additional overload relay has been provided for the protection of the master oscillator and intermediate amplifier tubes. The coil of this relay is connected in series with the mid-taps of the M.O. and 1.P.A. filament windings. The relay may be adjusted to give adequate protection to the M.O. and I.P.A. tubes and this portion of the overload protective circuit is considered satisfactory. However, the original protective relay (RL-1) is connected into the circuit in the same manner as originally, i.e., the coil of the relay is in series with the negative lead of the 1500-3000 volt plate generator. Thus the plate and screen grid current of the I.P.A., P.A. and audio oscillator tubes, when the latter tube is in use, flows through the coil of this relay. Thus, it will be seen that the I.P.A. tube plate current flows through the coils of both overload relays. This condition is unnecessary and prevents, making the most effective adjustment of the relay provided for the protection of the P.A. Tube. It is recommended that the P.A. overload relay (RL-1) be connected into the midtap of the P.A. filement transformer secondary and that the current rating of the coil be reduced somewhat to permit a more accurate adjustment of the relay. At present it is necessary to turn the adjustment to the extreme minimum position before the relay will trip when P.A. plate current is in the region of 500 milliamperes.

41. (Reference: Par. 165(k) and Par. (k) of page 2-b). The tube protective relay (5 second drop out) is capable of accurate adjustment in the re-submitted model and this phase of its operation is considered to be satisfactory. (An unsatisfactory feature of this relay, namely, the noise produced during keying operations, is discussed in paragraph 84 below).

42. (Reference: Par. 165(1) and Par. (1) of page 2-b). Both of the overload relays provided in the re-submitted model are equipped with satisfactory re-set devices of rugged design. They are considered satisfactory for service use.

DECLASSIFIED

-6-

@ DECLASSIFIED @

43. (Reference: Par. 165(m) and Par. (m) of page 2-b). The tube access door of the re-submitted model has been provided with perforations through which the operation of the various tubes may be observed. In addition, the side and rear shields of the transmitter, as well as the top, have been perforated in a satisfactory manner.

44. (Reference: Par. 165(n) and Par. (n) of page 2-b). A redesigned choke coil has been incorporated in the Power Amplifier circuit. During locked key tests of two hours duration at frequencies of 200, 400 and 600 Kc. the maximum temperature rise in the plate choke was 29 degrees C. During the original tests of the XTAJ-6 equipment temperature rises as high as 86 degrees C. were noted in the plate choke. The present choke coil in the re-submitted model is considered satisfactory.

(Heference: Par. 165(o) and Par. (o) of page 2-c). 45. During the tests of the re-submitted model XTAJ-6 equipment no signs of tube failure due to loss of emission were noted. The 38161 tubes provided by the contractor were fitted with Tantalum plates and one of these tubes was operated in the Power Amplifier circuit for a total of 59 hours without any noticeable loss in output. It was the intention, at the completion of tests, to re-check the emission and plate current characteristics of this tube to determine definitely whether any loss in operating characteristics had been suffered by the tube. Unfortunately, the grid structure of this tube carried away during the first vibration test, destroying the tube. During the tests it was noted that the Tantalum anode operated at a high temperature causing the plate to assume a bright red color. However, this type of operation did not appear to injure the tube. In order to check the operation of the transmitter with standard tubes, CWL-38161 tube, Serial No. 27462, was subjected to locked key tests for a total of 18-1/2 hours. No falling off in power output was noted during this test. Table No. 1, appended hereto, includes the data collected during this test. During tests to determine the power output of the Model XTAJ-6 transmitter, standard 38161 tubes were substituted for the Tantalum anode tube. No appreciable difference in operation or power output could be noted with the exception that the standard (molybdenum anode) tube operated at a lower temperature. It was the original intention to operate a standard 38161 tube in the power amplifier circuit for a period of approximately 30 hours (key locked). However, due to the vibrational difficulties encountered orders were issued to abandon all further tests and the locked key test was terminated after 18-1/2 hours time. Emission checks conducted previous to and after the 18-1/2 hour locked key test showed that tube CWL-38161, Serial No. 27462, had suffered no loss in emission. It is concluded therefore, that the Model XTAJ-6 equipment, based upon the operation noted during the rather restricted tests herein reported upon, has been improved to the point where locked key operation has no deleterious effects upon the characteristics of the vacuum tubes employed.

46. (Reference: Par. 165(p) and Par. (p) of page 2-c). The Model XTAJ-6 equipment fails to comply with the requirement that safe and satisfactory operation be assured since 38161, and 38160 tubes, as well as screen grid resistor lamps, failed repeatedly under the influence of wibration. This matter is discussed in detail in paragraph No. 48 below.

47. (Reference: Par. 165(q) and Par. (q) of page 2-c). The re-submitted XTAJ-6 is provided with a solid mounting pedestal of

DECLASSIFIED

-7-

@DECLASSIFIED @

adequate strength and satisfactory dimensions, consisting of four inch steel channels, suitably braced. Three angle plates or washers for 1/2" mounting bolts are welded on each channel.

48. Reference: Par. 165(r) and Par. (r) of page 2-c).

(a) Vibration tests were conducted to determine whether the re-submitted model complied with the requirements of paragraphs 2-20 and 3-7-14 of Specifications RE 13A 328J. The entire equipment was securely bolted to the test stand illustrated in Plates 22, 23 and 24 of reference (c), and subjected to vibration of varying degrees of frequency and amplitude.

(b) The first test was conducted at a frequency of 200 Kc. After the test had proceeded for approximately 10 minutes the plate overload relay operated and shut the equipment down. Investigation revealed that the entire grid structure of the Power Amplifier tube (Serial No. 16153) had carried away. This tube was replaced by Serial No. 16149 and the test again attempted. Both of the foregoing tubes are of the Tantalum anode type. After approximately 15 minutes vibration, during which period the plate overload relays operated spasmodically, the P.A. amplifier tube failed. In this instance the failure was caused by the filament striking the center support and at times a short circuit would occur between the filament and grid.

(c) During the period of time which caused the failure of the 2nd 38161 tube (Ser. 16149), the 38160 tube in the IPA circuit failed after approximately 20 minutes of vibration, due to the screen grid and plate structures short circuiting. The vibration actually caused the plate structure to move sufficiently until it came in contact with the screen grid element. A second 38160 tube was substituted in the IPA circuit. After approximately 45 minutes of vibration this tube also failed, for the same reason. During this period a number of screen grid resistor lamps also failed due to filament breakage.

(d) Tests were then halted in order to permit representatives of the contractor to examine the equipment and attempt modifications in the tube cradle mounting in order to eliminate the difficulties encountered. "Lord" mountings of various types were tried and limiting washers were applied to the mountings. The action of the tube cradle was modified to some extent, although a number of screen grid lamps failed during this process. The contractor had supplied four additional 38161 tubes, two of the Tantalum plate type and two of the carbon plate type. A Tantalum tube was inserted in the P.A. circuit and attempts were made to conduct the standard vibration test called for under par. 3-7-14. After 20 minutes of vibration the P.A. tube jumped out of the upper (filament end) socket and three screen grid lamps burned out or were broken by vibration. The tube was replaced in the socket and new screen grid lamps installed. After 10 minutes of vibration the tube again left its upper socket and one screen grid lamp failed. A retainer was then secured to the upper P.A. socket to prevent the tube from leaving the clips and the defective screen grid lamps was replaced.

(e) On the next attempt the equipment withstood vibration for a period of thirty minutes without any definite tube or screen grid lamps failures and the permanent set in frequency did not exceed the specification requirements.

DECLASSIFIED

-8-

ODECLASSIFIED @

(f) The following morning, April 2nd, 1937, attempts were made to conduct a vibration test at 600 kilocycles. Before vibration was applied to the equipment it was discovered that another screen grid lamp had failed. The lamp was replaced and the test started. Almost immediately the plate of the 38160 tube in the audio oscillator circuit carried away from its supports. Since no more spare 38160 tubes were available, the audio oscillator tube was removed from the transmitter. It was found, however, that a number of screen grid lamps had again failed and the plate overload relays opened almost instantly upon applying vibration. During this test, on April 2nd, a carbon anode tube, Ser. 16150, was used in the power amplifier stage.

(g) At this point orders were received to discontinue all tests. Up to this time the set had been subjected to a total of approximately two hours of vibration, although it was possible to complete only one thirty minute test. Failures to date consisted of the following:

- 3 38160 tubes 2 - 38161 tubes
- 12 Screen Grid Lamps
- 4 Ground strips from tube cradle to frame broken off.

In addition, it is likely that the internal structures of the remaining 38160 tubes have been affected. As a result of the above tests it must be concluded that the re-submitted Model XTAJ-6 equipment fails to meet the requirements of the governing specifications with respect to vibration.

49. (Reference: Par. 165(s) and Par. (s) of page 2-c). The re-submitted model is still fitted with the same door latches furnished with the original model. However, the manufacturer has submitted, under separate cover, a sample door fitted with an improved type of door latch. This sample latch is rugged in design, is of good appearance, locks the door securely in place and such wear as may be expected to take place during the life of the equipment will automatically be compensated for by a spring tension arrangement. The latch is limited in its motion to an angle of 90 degrees and an arrow prominently marked on the knob indicates the position of the latch. The knob is of rectangular shape, affording a good grip. In general, the latch is of excellent design and construction and should prove to be entirely satisfactory under service conditions.

50. (Reference: Par. 165(t) and Par. (t) of page 2-c). Reference (a) authorizes the use of the main nameplate as originally submitted.

51. (Reference: Par. 165(u) and Par. (u) of page 2-c). The master oscillator dial on the re-submitted model has been adjusted so that the main and vernier markings line up suitably and the "spring" or "jump" effect previously noted when operating this dial has been eliminated. These characteristics of the master oscillator dial are now considered as satisfactory.

52. (Reference: Par. 165(v) and Par. (v) on page 2-c). A sample design of an improved flexible coupling was supplied with the re-submitted model in connection with the antenna variometer control. The shaft collar is fastened to a flexible strip by peening collar shoulder over

DECLASSIFIED

-9-

" DECLASSIFIED "

strip through flatted hole in the strip. This coupling operated satisfactorily during the course of the tests reported herein. Two wrenches for the "Allen" type set screws used in the equipment have been provided. The wrenches are clipped to the frame of the transmitter in accessible places in a manner proof against vibration.

53. (Reference: Par. 165(w) and Par. (w) on page 2-c). The various tube sockets in the re-submitted model have been marked to indicate the type of tube to be used in each socket.

54. (Reference: Par. 165(x) and Par. (x) on page 2-c). No change has been made in the lifting devices to permit ready replacement of the rubber washers used to prevent rattling. The Contractor states that provision for ready replacement will be made in the production models.

55. (Reference: Par. 165(y) and Par. (y) on page 2-c). No change has been made in the re-submitted model with respect to the finish of the shield securing screws. The contractor states that the shield securing screws used on the production models will be furnished with a dull finish to comply with the governing specifications.

56. (Reference: Par. 165(z) and Par. (z) on page 2-c). The neon type indicator lamps have been eliminated from the re-submitted model and in their place the manufacturer has substituted indicator lamps of the style used in the Model TAQ-4 equipments. These lamps give satisfactory indications. The frosted type of color cap is to be preferred since it gives a more prominent indication, particularly when viewed from the side. "Power" on is indicated by a red signal, "Bias" is indicated by a green signal and "Plate" voltage is indicated by a red signal.

(Reference: Par. 165(aa) and far. (aa) on page 2-c). 57. Variation of supply line voltage or variation of voltages applied to transmitter unit. Table No. 14 appended hereto illustrates the results of tests conducted at 200 and 600 kilocycles wherein the various voltages applied to the transmitter unit were varied independently and in unison from a value of 5% below normal to a value of 5% above normal. The frequency variations noted are less than those permitted by the governing specifications. Comparison with Table No. 17 of reference (c) reveals that the characteristics of the re-submitted model, in this respect, are superior to those of the original model. Table "o. 15 appended hereto covers the results obtained during an additional test wherein the line supply voltage was varied between the limits of minus 5% to plus 5% in a time of one minute and additionally in a time of five minutes. Only negligible frequency changes resulted from such variations in supply voltage. It is concluded, therefore, that the re-submitted model XTAJ-6 complies with the provisions of paragraphs 3-7-7 and 6-3 of the governing specifications.

58. (Reference: Par. 165(bb) and Par. (aa) on page 2-c). Variations in ambient temperature, Tables No. 16 and 17 and Plates No. 1 and 2, appended hereto, cover tests conducted to determine the effect of variations in ambient temperature between the limits of plus 51 degrees and minus 1 degree Centigrade. Furing these tests the relative humidity was maintained at a low value. Temperature changes were made in steps of 10 degrees. It will be noted that in all instances the frequency changes per degree change in ambient

DECLASSIFIED

-10-

ODECLASSIFIED

temperature are less than that permitted by the governing specifications. Comparison with tables No. 19, 20, 21 and 22 of Reference (c) reveals that the operation of the re-submitted model has been greatly improved over that of the original model.

(Reference: Par. 165(cc) and Par. (as) on page 2-c). 59. Variations in humidity. Tables No. 18 and 19 and Plates No. 3 and 4 appended hereto, cover tests conducted to determine the effect of variations in humidity. During these tests the ambient temperature was held constant at 41 degrees Centigrade. It will be noted that at 200 Kc and 600 Kc the frequency changes noted were 0.066%, whereas the specifications permit a maximum frequency change of only 0.05%. At 200 Kc the decrease in power output during the test was 15.4% and at 600 Kc. 3.0%; specifications limit power output changes to 5%. This decrease in power output is mainly due to the falling off of the motor generator voltages rather than the effect of humidity upon the transmitter unit. Comparison with Tables No. 23 and 24 of reference (c) shows that the re-submitted model is less affected by humidity than was the original model. However, the re-submitted model fails to comply with the requirements of paragraph 3-7-9 of the governing specifications. Attention is invited to the fact that the range of humidity was somewhat greater than that specified in the governing specifications. A low value of 10% was reached during the tests, while the specifications call for a low value of 30%. Thus the tests conducted may be considered of a somewhat more strenuous nature than definitely called for by the governing specifications. The vertical dashed lines on plates No. 3 and 4 are so drawn as to embrace the frequency changes occurring between the limits of 30% relative humidity and the top value of 93%. Re-estimating the frequency changes encountered on this basis supplies the following information:

> Plate 3. Variation of frequency with humidity between 30% and 93%. Maximum frequency variation; 200.585 to 200.463 Kc Change in cycles - 122 Change in percent - 0.061%

Plate 4. Variation of frequency with humidity between 30% and 93%. Maximum variation in frequency; 600.712 to 600.382 Kc Change in cycles - 330 Change in percent - 0.055

Thus it will be seen that altho the frequency change computed on this basis is somewhat less than that shown in Tables No. 18 and 19, the variations are still in excess of the specification requirements by a small margin.

60. (Reference: Par. 165(dd) and Par. (aa) on page 2-c). Tables No. 20, 21 and 22 cover two hour locked key tests conducted at 200, 400 and 600 Kc respectively. MCW transmission was employed during the test at 400 Kc. It will be noted that in all cases the specification requirements are complied with and that the results obtained are far superior to those obtained with the original model. No overheating of parts was noted that the undesirable drift which marred the operation of the original model is practically eliminated in the resubmitted model.

DECLASSIFIED

-11-

DECLASSIFIED

61. (Reference: Par. 165(ee) and Par. (as) on page 2-c). Table No. 23 covers tests conducted to determine the frequency changes resulting from change from key locked to intermittently keyed condition. Tests were conducted at 200 and 600 Kc. The results of these tests indicate that the operation of the re-submitted model is greatly improved in this respect and complies with the specification requirements.

62. (Reference: Par. 165(ff/ and Par. (aa) on page 2-c). Table No. 24 covers tests conducted to determine the frequency changes resulting from change from continuously keyed to intermittently keyed condition. Tests were conducted at 200 and 600 kc. The requirements of the governing specifications have been complied with and the re-submitted model shows a decided improvement over the original model in this respect.

63. (Reference: Par. 165(gg) and Par. (aa) on page 2-c). The effect of roll and pitch upon the re-submitted model was not determined due to the fact that orders were issued to discontinue all tests on account of the difficulties encountered during the vibration tests.

64. (Reference: Par. 165(hh) and Par. (sa) on page 2-c). Table No. 25 and Plate No. 5 cover the results of a vibration test conducted at a frequency of 200 Kc. As explained in paragraph 48 above, tube failures and the failure of screen grid lamps prevented the completion of tests. The maximum set in frequency noted at 200 Kc was 3 cycles or 0.0015%, whereas specifications permit a value of 0.005%. Reference to plate No. 5 reveals that at certain frequencies of vibration, notably 1500 RiP.M. or 25 cycles, the output frequency of the transmitter wavered over limits of approximately 40 cycles. Vibration frequencies of 900 R.P.M. and 1100 R.P.M. also affected the operation and most of the failures occurred while the frequency of vibration was either 15, 18 or 25 cycles, especially the latter.

(Reference: Par. 165(ii) and Par. (aa) on page 2-c). 65. Table No. 26 covers the results of tests conducted at 200 and 600 Kc during which the transmitter was subjected to shocks in accordance with the procedure outlined in paragraph 3-7-15 of specifications RE 13A 328J. The changes in frequency noted fall within the limits prescribed by the governing specifications. When the equipment was subjected to the first shock, however, the antenna anmeter suffered a casualty. The meter parts are secured in the bakelite case by means of three screws spaced around the barrel-like portion of the case. The bakelite at these three points carried away permitting the meter works to drop into the transmitter. It is believed that this method of securing the meter in the case constitutes a weakness which should be remedied. Investigation revealed that meters constructed by other manufacturers have a greater factor of safety in this respect. The following table lists meters of various makes and indicates the width of material between the screw hole and the rear edge of the case.

Manufacturer	screw hole and edge of
General Electric Company	0.085"
Weston Instrument Co.	0.1875"
Westinghouse Elec. & Mfg. Co.	

DECLASSIFIED

Roller Smith Co.

-12-

Thickness of material between

0.125"

OUECLASSIFIED O

66. (Reference: Par. 165(jj) and Par. (bb) on page 2-d). The filament circuits of the re-submitted model have been modified. The filament stand-by rheostat has been eliminated and in its place a fixed resistor of the proper value has been substituted. With a line voltage of 445 volts, the potential applied to the M.O. filament in the stand-by position was measured as 9.9 volts with a precision type meter. The voltmeter which was connected across the primary of the filament transformer in the original model has been eliminated and filament voltage adjustments are now governed by reference to a voltmeter connected across the secondary terminals of the filament transformer which supplies heating current for the power amplifier tube. It is believed that this modified arrangement is more satisfactory than the method employed in the original model. A check of the potentials applied to the various tubes with the filament voltmeter adjusted to 11 volts was made with the following results:

> Filament voltmeter set at 11 volts P.A. Ef - 10.85 volts I.P.A. Ef - 9.95 volts M.O. Ef - 9.85 volts Audio Osc. Ef - 9.90 volts

67. (Reference: Par. 165(kk) and Par. (cc) on page 2-d). The circuit arrangement of the re-submitted model has been so modified as to prevent oscillation of the master oscillator under key open conditions when the "Adjustment-Tune-Operate" switch is in the "Adjust" position. The modified arrangement is satisfactory and complies with the specification requirements.

68. (Reference: Par. 165(11) and Par. (dd) on page 2-d). The re-submitted model has been so modified that adequate overlap in all circuits of the transmitter is provided. This is illustrated in Table No.27 attached hereto. The percentage overlap varies between the limits of 3.1% and 6.0%. The overlap was calculated in accordance with the latest definition of the Eureau of Engineering as given in paragraph 103 of reference (c).

69. (Reference: Par. 165(mm) and Par. (ee) on page 2-d). The re-submitted model has been so modified that tuning adjustments may be made with ease and greater facility than was the **pherwithsthetor**iginal model. The I.P.A. and P.A. plate current meters are not connected in the high voltage side of the circuit and a well defined plate current dip is obtained at resonance. The almost constant drift which marred the performance of the original model has been practically eliminated in the re-submitted model. Undoubtedly the improved operation of the equipment when in the process of being tuned is partly attribute to improved choke coil and circuit design. The adjustment of the transmitter is now considered to be satisfactory.

70. (Reference: Par. 165(nn) and Par. (ff) on page 2-d). The letters designating the tuning controls have not been increased in size on the re-submitted model. However, the contractor has submitted, under separate cover, a tuning control marker upon which the engraving is more conspicuous and of larger size. this modified type of tuning control marker is satisfactory.

71. (Reference: Far. 165(00) and Par. (gg) of page 2-d). Apparently no change has been made in the master oscillator dial lock on the re-submitted model. The friction caused by application of the lock is

UCULASSIFIED

-1)-

MAY 5- 1937

insufficient and the dial may be rotated without any apparent resistance. The effect upon frequency of the dial lock is illustrated in Table No. 29 appended hereto. This table also illustrates the effect of the various dial locks operating on the other controls. It is believed that the variation in frequency caused by the application of the master oscillator dial lock can be minimized by a slight re-design of this lock. At present the lock tends to rotate the control slightly. The pressure should be applied perpendicular to the dial and any tendency to rotate the dial should be eliminated.

DECLASSIFIED @

72. (Reference: Par. 165 pp) and Par. (hh) on page 2-d). No change has been made in the design of the adjustable positioning devices in the re-submitted model. The contractor states that a redesigned positioning device will be provided on the production models.

73. (Reference: Par. 165(qq) and Par. (ii) on page 2-d). All wiring in the re-submitted model was securely anchored and no trouble was encountered from broken connections, other than the failure of the grounding strips on the flexible tube cradle.

74. (Reference: Par. 165(rr) and Par. (jj) on page 2-d). As authorized by reference (a), transformer markings will be applied to the units furnished in the production equipment.

75. (Reference: Par. (165(ss) and Par. (kk) on page 2-d). The contractor has submitted samples of two improved methods of anchoring the shield securing studs. One method is for use in locations where the studs are secured into the angle frame members while the other method is to be employed for securing the shields in locations where gusset plates exist. The proposed methods are satisfactory. In this connection attention is invited to the fact that in the production equipment care should be exercised to provide securing stude of adequate length to permit the removal of the bottom section of shielding without the necessity of removing the top section of shielding.

76. (Reference: Par. 165(tt) and Par. (11) on page 2-d). The resubmitted model has been equipped with a modified 2-position localremote switch in place of the 3-position switch furnished with the original model. In the opinion of the Laboratory the modified local-remote switch is still unsatisfactory. The switch is of the lever operated anti-capacity type and a light accidental touch may cause it to be thrown from the "Local" to the "Remote" position. This occurred unwittingly several times during the course of the tests, preventing the starting of the equipment. Under service conditions, with changing personnel, the insecure operation of this switch would undoubtedly be a source of annoyance if not actual trouble. Hence, it is recommended that a more positive type of switch be provided in the production models.

77. (Reference: Pars. 165(uu), (vv), (ww), (xx) and Pars. (mm), (nn), (oo), (pp) on pages 2-d and 2-e. Reference (a) authorized the manufacturer to make the necessary changes covered by the above references but these changes were not required in the re-submitted model.

78. (Reference: Far. 165(yy) and Par. (qq) on page 2-e). Furing the course of the tests herein reported the magnetic interlock with which the automatic controller is supplied functioned successfully whenever the line voltage was romoved.

DECLASSIFIED

-14-

@ DECLASSIFIED@

79. (Reference: Par. 165(zz) and Par. (rr) on page 2-e). No changes were made in the motor generator equipment accompanying the re-submitted model. It is understood that these changes will be accomplished in the production equipments.

80. (Reference: (Par. 165(aau) and Par. (ss) on page 2-e). The instruction books accompanying the re-submitted model were copies of the instructions accompanying the original model, with the exception of the wiring diagrams. Since the written text of the instruction books does not take cognizance of the various changes made in the re-submitted model they would not be satisfactory for use in connection with production models. The schematic diagram has been revised and is an improvement of the original diagram submitted.

81. (Reference: Par. 165(bbb) and Pap. (tt) on page 2-e). A new design of keying relay has been incorporated in the re-submitted model. The keying circuit is now required to break only approximately 125 M.A., d.c., where formerly the key was required to break approximately 500 M.A. No trouble was experienced when employing an automatic sender and the keying relay operated satisfactorily and consistently over the range of 20 to 100 words per minute. Aeying action was examined by means of a specially constructed circuit employing a cathode ray oscillograph. While the action of the keying and other remote control circuits is satisfactory, it is recommended that the manufacturer adhere to the standard method of marking the remote control terminals on the transmitter, as designated in BuEng Drawing RE 43AA 216E. In order to accomplish this, the numerical markings should be changed as indicated below:

Present Designation	Desired Designation
the re-minutered inc	a creat 4
2	3
3	sontreelor 1 a rees
te to 4 total boord	2

The following table lists the value of currents flowing in the various remote control circuits; the numerals enclosed in parentheses indicate the "standard" marking of the circuits, while the numerals not enclosed refer to the present marking in the re-submitted model XTAJ-6.

> 1 (4) - 87 M.A., a.c. 2 (3) - 277 M.A., a.c. 3 (1) - 277 M.A., a.c., and 123 M.A., d.c. 4 (2) - 123 M.A., d.c.

82. (Reference: Par. (uu) on page 2-e). Reference (a) indicated that gang operation of the range switches was not desired.

83. Certain characteristics of the transmitting equipment have been affected by the modifications incorporated in the re-submitted model. Such items as require correction are discussed in the following paragraphs, Nos. 84, 85 and 86. The parenthetical notations refer to the paragraphs of the governing specifications RE 13A 328J which cover the subjects in question.

DECLASSIFIED

84. (Par. 2-11). Luring keying operations it was noted that the audio time limit relay (RL-6) and the five second drop out relay (RL-3) were extremely noisy due to the intermittent action of the plungers and bellows. It is believed that the noise thus engendered is sufficient to interfere with the signalling systems in the radio rooms on board ship, such as buzzers, sounders or interphones. The effect of relay RL-6 could be eliminated, while the transmitter is adjusted for CW operation, by connecting the coil circuit of this relay through a pole on the CW-MCW switch. In order to obtain quiet operation of the five second drop out relay it appears that some modification of design or the application of buffers will be required. In this connection attention is invited to paragraph 5-25 of the governing specifications, which reads as follows: "All contactors, particularly those operated on A.C., shall be designed to operated throughout the service life with minimum production of noise due to chatter, hum or any other form of interference to reception of weak radio signals on Navy receiving equipment located within six feet of the transmitter. Attention is invited to the fact that a noise level which is not objectionable in a power plant or shop is decidedly objectionable where radio reception must be effected nearby".

85. (Par. 3-25). Jue to the fact that the I.P.A. plate current meter is now connected in the high potential side of the circuit, the current passing through this meter is considerably less than was the case in the original model. The scale of the present meter is 0 to 300 M.A., while the maximum current noted during full power operation was approximately 75 M.A. It is recommended, therefore, that a 0 to 200 M.A. meter be substituted for the 0 to 300 M.A. range. This change will have the additional advantage of reducing the number of types of meters used, since the present M.O. and Audio Oscillator plate current meters are of the 0 to 200 M.A. range.

66. (Par. 3-33-3). Due to the addition of the M.O. - I.P.A. plate overload relay in the re-submitted model, the left hand portion of the terminal board is inaccessible from the front of the transmitter. This condition can be remedied by a rearrangement of the terminal connecting strips. It is recommended therefore that the contractor be required to improve the accessibility of the terminal board.

87. As mentioned in paragraph 29 above, it was necessary to determine whether the various modifications made in the re-submitted model had affected the frequency stability or operating characteristics of the equipment which had been satisfactory previous to the time these modifications were made. Tests of this nature are discussed in paragraphs 88 to 96 below.

88. (Par. 2-16). As outlined in Table No. 2 appended hereto, tests were conducted to determine the effect of short circuiting and open circuiting the antenna. No damage was incurred from these tests and in all instances a decided reduction in plate current in the power amplifier tube was noted when the antenna was misadjusted. The re-submitted model complies with the specification requirements of paragraph 2-16.

89. (Pars. 3-2-1 & 3-2-2). The power output of the resubmitted model determined with the results outlined in Tables 40. 3, 4, 5 and 6. It will be noted that, in general, the power output is slightly less than that obtained with the original model. However, the specification requirements are complied with if a plus or minus 5% tolerance is applied to the accuracy of these

DECLASSIFIED

-16-

DECLASSIFIED @

measurements. It will further be noted that in some instances the percentage of modulation when the transmitter was adjusted for MCW operation is somewhat less than the specification requirements. It was noted that small variations in power amplifier tuning had a decided effect upon the percentage of modulation. In general, it was possible to obtain values of modulation ranging between 90% and 100% by readjustment of the P.A. Tuning control with some small decrease in the power output.

90. (Par. 3-7-1). The accuracy of reset of the resubmitted model complies with the requirements of the governing specifications and is approximately the same as that obtained with the original model, as is illustrated in Table 40. 7.

91. (Par. 3-7-2). The back-lash characteristics of the re-submitted model are superior to those of the original model. Reference to Table No. 8 reveals that the percent backlash is decidedly less than that required by the governing specifications.

92. (Par. 3-7-3). The effect upon frequency of the operation of the "Adjust-Tune-Operate" control is illustrated in Table No. 9. It will be noted that particularly at the high frequency end of the range somewhat greater variations in frequency are encountered than was the case with the original model. At 600 Kc the variation is slightly in excess of the specification requirements, however, this excess is of such minor proportions that it is recommended that the re-submitted model be approved in this respect.

93. (Par. 3-7-4). Table No. 10 illustrates the results of tests conducted at 200 and 600 Kc to determine the degree of frequency shift resulting from detuning circuits subsequently to the frequency establishing circuit. The largest shifts noted are essentially in agreement with the specification requirements.

94. (Par. 3-7-5). Table "o. 11 outlines the results of tests conducted at 200 and 600 kc for the purpose of determining the frequency shift incident to the operation of the power output control, i.e., the plate motor generator field rheostat. The results obtained comply with the requirements of the specifications and are in very close agreement with the results obtained with the original model.

95. (Par. 3-7-6). Tables wo. 12 and 13 cover tests conducted at 200 and 600 Kc respectively to determine the effect of changing vacuum tubes in the master oscillator, intermediate amplifier and power amplifier circuits. Comparison with the results obtained with the original model shows that the performance of the re-submitted model has been improved in this respect and the equipment complies with the requirements of the governing specifications.

96. (Par. 3-15). The variation of resonant frequency per division of dial marking of the master oscillator dial is illustrated in Table No. 28. The percentage per division of marking complies with the requirements of the governing specifications.

97. The local test key and the "Remote-Local" switch on the resubmitted model are secured to the panel by means of small plates applied over the front panel. This type of construction presents an unpleasing and unfinished appearance and steps should be taken to insure improvement of these

DECLASSIFIED

-17-

MAY 5 - 1937

CECLASSIFIED "

characteristics in the production models.

98. A summary of the defects noted and such items as fail to comply with the requirements of the governing specifications, together with such additional umendments as appear necessary to provide suitable operation for Naval use, are listed below. The numerals enclosed in parentheses refer to to the paragraph of this report under which these items are discussed in detail.

- (a) (31) A total of 12 screen grid lamps failed during the course of vibration tests.
- (b) (35) The panel carrying filement rheostat, bias field rheostat, plate field rheostat and tube life meter does not present a symmetrical appearance, now that the stand-by filement rheostat has been eliminated.
- (c) (40) The modified overload protective system should be improved by connecting the P.A. overload relay coil in the mid-tap of the P.A. filament transformer secondary; the coil of this relay should be changed to permit adjustment at lower values of current.
- (d) (46) Safe and satisfactory operation of the equipment is not assured, the greatest defect being the adverse influence of vibration.
- (e) (48) Vibration causes vacuum tube and screen grid lamp failures.
- (f) (59) Variations in humidity cause a greater frequency change than permitted by specifications.
- (g) (65) Antenna ammeter carried away during shock test.
- (h) (71) The locking device on the Master Oscillator dial is not sufficiently positive in action and tends to affect the frequency.
- (i) (75) Proper precautions should be taken to insure that the shield securing studs are of sufficient length to permit removal of the bottom sections of shielding without the necessity of removing the top sections of the shields.
 - (j) (76) The "Remote-Local" switch provided on the re-submitted model is unsatisfactory.
 - (k) (81) The remote control circuit designations fail to comply with standard pragtise.
- (1) (84) Audio drop-out relay (RL-6) and 5-second drop-out relay (RL-3) too noisy during keying operations.
 - (m) (85) 1PA plate current meter, range 0-300 MA should be replaced with meter of 0-200 MA range.

@ DECLASSIFIED @

- (n) (86) Left hand end of terminal board is inaccessible due to addition of MO-IPA plate overload relay.
- (o) (97) Plates on test key and "Remote-Local" switch are unsightly.

CONCLUSIONS

99. A number of changes have been made in the re-submitted Model XTAJ-6 transmitting equipment which have resulted in greatly improved performance characteristics. Motably, the equipment lends itself readily to straight-forward tuning adjustments and the tendency of the frequency to drift for long periods of time which marred the performance of the original model has been eliminated.

100. Side shields and tube access door have been perforated permitting a view of the interior of the transmitter unit. The frequency stability characteristics of the transmitter have been improved to the point where specification requirements are complied with, with the exception of the effects of humidity.

101. Power output is substantially the same as in the original model and this output is obtainable without causing tubes to be worked to the point of adversely affecting filament emission. Standard 38161 tubes as well as the newer type of Tantalum anode tubes worked equally well in the power amplifier circuit.

102. As a result of the modifications incorporated into the original model certain points have arisen which require correction in the re-submitted model. A number of the defects which were disclosed during the original tests have not been remedied in the re-submitted model, the Bureau of Engineering and the Contractor agreeing that these changes would be made in the production models only.

103. The re-submitted equipment still fails to comply with the general requirement that safe and satisfactory operation under conditions encountered in the Naval Pervice be assured. This condition results from the fact that vibration causes tube and screen grid lamp failures. Certain factors, of lesser importance also require correction. Briefly, these consist of noisy relay operation, lack of symmetry in connection with certain controls, unsatisfactory overload protection and weakness in meter design. In view of the above, it must be concluded that the re-submitted XTAJ-6 equipment requires further modification and correction before it can be considered suitable for use in the Naval Service.

25.53

DECLASSIFIED

-19-

DECLASSIFIED

0

Model XTAJ-6 Transmitting Equipment Locked Key Test Using CWL-38161 Tube, Serial No. 27462, in Power Amplifier Circuit.

Time	Frequency	M. 0.	I.P.A.	P. A.	PorA.	Amb.	Ant.	Watts	Line
3-29-	.37							Jun	VOLUS
0920	200.571	38	1.1.	350	3000	22.0	6.13	827	110
0950	551	37	12	340	2920	20.5	6.27	100	1.1.2
1020	550	36	12	339	2890	21.0	6.20	393	110
1050	555	38	1.1.	350	3000*	21.0	6.18	1.28	1.1.2
1120	560	38	1.1.	350	2990	21.5	6.15	1.21	115
1150	565	38	11	350	3000*	22.0	6.18	1.28	1.1.3
1220	569	38	13	350	3000	22.0	6.18	1.28	113
1250	57/	38	13	350	3000	21.0	6.18	1.28	110
1320	579	38	13	350	3000	21.0	6.16	126	1.36
1350	582	38	13	350	3000	21.5	6.16	1.26	112
1/20	586	38	13	350	3000	25.0	6.16	126	112
1/50	589	38	12	350	3000	25.0	6.13	1.21	110
1 520	590	38	12	350	3000	26.0	6.12	620	110
1550	59/	38	1.2	350	3000	27.0	6.11	120	136
1620	595	38	1.2	350	3000*	27.0	6.12	1.20	1.36
3-30-	-37	10	40	,,,,	2000	~/ **	~ ~ ~	400	4,10
0800	200.585	38	12	350	3000	25.5	6.41	1.20	430
0830	563	38	13	350	3000*	26.0	6.17	1.27	440
0900	563	38	13	350	3000*	27.0	6.14	123	432
0930	569	38	12	350	3000*	27.0	6.12	420	4.37
1000	573	38	12	3/9	3000	28.0	6.11	1.20	140
1030	579	38	12	3/9	3000	28.0	6.10	/18	435
1100	582	38	12	350	3000*	28.0	6.13	1.22	1.00
1130	590	38	1.2	350	3000	28.0	6.12	120	1.38
1200	597	38	12	350	3000	26.5	6.12	420	440
1230	598	38	12	350	3000	27.0	6.12	420	140
1 300	598	38	12	349	3000	27.0	6.38	415	436
1330	596	38	1.2	31.9	3000	27.5	6.36	114	131
1400	596	38	12	349	3000	26.5	6.37	415	433
1430	599	38	12	349	3000	26.5	6.38	415	437
1500	600	38	12	349	3000	27.0	6.39	118	439
1530	598	38	12	349	3000	28.5	6.39	418	440
1600	598	38	1.2	349	3000	29.0	6.37	415	432
1630	598	38	12	349	3000	28.5	6.35	412	430
3-31-	-37								
0800	200.574	38	42	349	3000	26.5	6.36	41.4	435
0830	550	38	13	350	3000*	27.0	6.41	420	440
0900	550	38	43	349	3000*	27.5	6.38	415	440
0930	557	38	43	349	3000	27.5	6.38	415	438
1000	561	38	43	349	3000	27.5	6.38	415	438
1030	565	38	43	349	3000	27.5	6.38	415	440
1100	570	38	43	349	3000	26.5	6.38	415	437

Note: * denotes that power amplifier plate voltage was readjusted.

C DECLASSIFIED

Table No. 2

Model XTAJ-6 Transmitting Equipment. ANTENNA SHORT CIRCUITED AND OPEN CIRCUITED Test as per paragraph 2-16 of Specifications RE 13A 328J

Frequency Kc	Antenna	Plate Current
200	Normal	350 MA
200	Shorted	165
200	Open	155
600	Normal	350
600	Shorted	100
600	Open	120

No damage was incurred by any portion of the equipment. For comparison see Table No. 1 of NRL Report No. R-1328.

dumey alternat resistor and ground.

For comparince one Table Mo. 3 of which Happert F-1926.

DECLASSIFIE

O DECLASSIFIED O

TIBLE No. 3

Model XTAJ-6 Transmitting Equipment

DETERMINATION OF POWER OUTPUT

Pest as per paragraph 3-2-1 of Specifications RE 13A 328J.

Control		175		300	10	0
or Neter		Kes	<u>_</u>	Kcs	Kc	5
A		1	1 2	3	5	
В		193	8	853	60	2
C		1		4	5	
D		30		34	7	4
E		1		4	5	
F		33		16	7	2
G		5		3	3	
H		6		12	ī	4
I		29		64	1	7
	CW	MCK	CW	MCW	CVI	LIOW
MO Ip	36	36	41	41	46	1.5
IPA Ip	40	20	69	30	72	32
PA Ip	340	260	347	271	341	295
Ant I ext*	6.18	4.61	7.81	6.2	8.52	6.85
Ant I set	6.2	5.0	8.4	7.0	. 8.8	8.0
MO Ep	1310	1320	1320	1320	1320	1320
Eg	115	115	115	115	115	115
PA Ep	3000	3000	3000	3000	3000	3000
Ant Res	12.4	12.4	8.2	8.2	6.4	6.4
ant.Cap	807	607	807	607	867	2012
ZECW-CW Pr		55.5		63.0		63.6
<i>klodulation</i>		85		69		67
Aud Ose Ip		140	in the second	140		139
natts Out	475	264	500	315	365	296
Specification				11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Requirements	475	238	475	238	460	230

Note: * denotes precision meter connected into circuit between base of dummy antenna resistor and ground.

DECLASSIFIE

For comparison see Table No. 3 of NRL Report R-1328.

BECLASSIFIED @

TABLE NO. 4

Model XTAJ-6 Transmitting Equipment

DETERMINATION OF POWER OUTPUT

Test as per paragraph 3-2-1 of Specifications RE 13A 328J

Control or Meter		500 <u>Kcs</u>		600 <u>Kcs</u>
A		6		7
В		680		671
C		6		7
D		86		81
E		6		7
F		82		72
G		3		3
H		14		15
1		64		33
	CW	MCW	CW	MCW
NO Ip	46	46	47	.6
IPA Ip	62	28	56	26
PA Ip	350	300	358	272
Ant I ext*	10.1	8.10	10.9	8.5
Ant I Det	10.5	9.0	11.5	9.2
MO Ep	1320	1320	1320	1320
Eg	115	115	115	115
PA Ep	3000	3000	3000	3000
Ant Res	4.5	4.5	3.74	3.7/
Ant Cap	852	852	957	957
Watts Out	460	295	445	271
% MCW-CW Pr		64	81	61.6
% Modulation		64		73
Aud Osc Ip		140	84 - 1 - 1	142
Specification				
Requirements	460	230	445	223

Note: * denotes precision meter connected into circuit between base of dummy antenna resistor and ground.

For comparison see Table No. 4 of NRL Report R-1328.

O DECLASSIFIEDO

TABLE NO. 5

Model XTAJ-6 Transmitting Equipment

DETERMINATION OF POWER OUTPUT

Test as per paragraph 3-2-2 of Specifications RE 13A 328J

Control or Meter		175 Kes		200 <u>Kes</u>	*	400 <u>Kes</u>
A B C D E F G H I		1 193 1 22 1 33 5 3 36		1 700 1 74 1 73 5 6 35		4 820 4 95 4 88 3 13 58
	CW	MCW	CW	MCW	CW	MCW
MO Ip IPA Ip PA Ip Ant I ext* Ant I set MO Ep Eg PA Ep Ant Aes Ant Cap Watts Out % MCW-CW Pr % Modulation Aud Osc Ip	36 40 350 7.1 7.4 1320 115 3000 6.2 600 312	36 19 230 5.0 5.5 1320 115 3000 6.2 600 155 50 84 140	37 42 350 7.4 7.8 1330 115 3000 6.2 600 338	37 20 260 5.4 6.0 1330 115 3000 6.2 600 181 53.6 84 140	44 70 350 10.2 10.5 1320 115 3000 6. 28 903 444	43 30 300 8.25 9.0 1320 115 3000 4.28 903 292 65.6 54 140
Specification Requirements	325	163	345	173	432	216

Note: * Denotes precision meter connected into circuit between base of dummy antenna resistor and ground.

DECLASSIFIED

For comparison see Table No. 5 of NRL Report No. R-1328.

O DECLASSIFIED @

TABLE NO. 6

Model XTAJ-6 Transmitting Equipment

DETERMINATION OF POWER OUTPUT

Test as per paragraph 3-2-2 of Specifications RE 13A 328J

Control or Meter		50 K	00 35	Desclorate b Réclina	600 Kcs
A B C D E F G H I		6 680 6 88 6 88 1 14 88			7 674 7 79 7 73 1 15 61
		CW	MCW	CW	MCW
MO Ip IPA Ip PA Ip Ant I ext* Ant I set MO Ep Eg PA Ep Ant Res Ant Cap Watts Out % MOW-CW Pr % Modulation Aud Osc Ip		46 62 360 12.5 13.0 1320 115 3000 2.56 1190 400	46 28 320 9.85 10.8 1320 115 3000 2.56 1190 249 62 69 140	46 355 350 15.0 16.2 1320 115 3000 1.62 1393 365	45 25 280 11.8 12.5 1320 115 3000 1.62 1393 216 59.2 75 140
Specification Requirements		405	203	334	167

Note: *demptes precision meter connected into circuit between base of dummy antenna resistor and ground.

For comparison see Table No. 6 of NRL Report R-1328.

DECLASSIFIED

MAY 5 - 1937

O DECLASSIFIED O

TABLE NO. 7

Model XTAJ-6 Transmitting Equipment

ACCURACY OF RESET TO PREVIOUSLY CALIBRATED FREQUENCIES Test as per paragraph 3-7-1 of Specifications RE 13A 328J

00.600 605 589 617 619	34 28 32	5 11 17	0.002
605 589 617 619	34 28 32	5 11 17	0.002
589 617 619	28 32	11	0.005
617 619	32	17	
619	27		0.008
679	21	17	0.009
OTT	29	11	0.005
	Average:	13 cycles	0.006
00.742			
730	38	12	0.003
728	31	14	0.003
765	30	23	0.006
763	27	21	0.005
767	31	25	0.006
	Average:	19 cycles	0.0046%
00.405			
415	30	10	0.0017
458	26	53	0.009
460	30	55	0.009
428	34	23	0.004
450	31	45	0.007
	Average:	37 cycles	0.006
	611 00.742 730 728 765 763 767 00.405 415 458 460 428 450	619 611 29 Average: 00.742 730 730 738 31 765 30 763 27 767 31 Average: 00.405 415 30 458 26 460 30 428 34 450 31 Average:	619 37 17 611 29 11 Average: 13 cycles 00.742 730 38 12 728 31 14 765 30 23 763 27 21 767 31 25 Average: 19 cycles 0.405 415 30 10 458 26 53 460 30 55 428 34 23 27 21 767 31 25 Average: 37 cycles

Permitted by Specifications: Average: 0.01% Maximum: 0.015%

For comparison see Table No. 10 in NRL Report No. R-1328.

OECLASSIFIED @

TABLE NO. 8

Model ATAJ-6 Transmitting Equipment TEST FOR LOST MOTION, BACK LASH AND TORQUE LASH Test as per paragraph 3-7-2 of Specifications RE 13A 328J

	Frequency when app	roached in		6un L
ITIEL	Counter Clockwise	Clockwise	Back	Lash
No.	Direction	Direction	Cycles	Percent
1	200.631	200.617	14	0.007
2	638	613	25	0.012
3	638	610	28	0.01/
4	632	603	29	0.01/
5	640	613	27	0.013
		Average:	25	0.012
1	600.723	600.673	50	0,008
2	723	690	33	0.005
3	714	678	36	0.006
4	723	698	25	0.00/
5	721	715	6	0.001
		Average:	30	0.005
	Permitte	d by Specifications		

Permitted by Specifications: Average: 0.03% Maximum: 0.06%

For Comparison see Table No. 11 of NRL Report No. R-1328.

DECLASSIFIED

O DECLASSIFIED

TABLE NO. 9

Model XTAJ-6 Transmitting Equipment

OPERATION OF ADJUST-TUNE-OPERATE CONTROL

Test as per paragraph 3-7-3 of Specifications RE 13A 328J

Position 1	Position 2	Position 3	Maximum	Frequency Change
Adjust	Tune	Operate	Cycles	Percent
200.524	200.532	200.535	11	0.005
300.710	300.692	300.702	18	0.006
400.705	400.696	400.700	9	0.002
500.665	500.680	500.697	32	0.008
600,600	600.655	600.679	79	0.013*
300.710 400.705 500.665 600.600	300.692 400.696 500.680 600.655	300.702 400.700 500.697 600.679	18 9 32 79	0.006 0.002 0.008 0.013*

Note: * denotes this point re-checked twice with similar results, measurements showing 70 and 71 cycles respectively.

Permitted by Specifications: 0.01%

For comparison see Table No. 12 of NRL Report No. R-1328.

for chapterland and fable yes 13 of 200, Supert 90, h-1975.
ODECLASSIFIED @

TABLE NO. 10

Model XTAJ-6 Transmitting Equipment

DETUNING OF CIRCUITS

Test as per paragraph 3-7-4 of Specifications RE 13A 328J

Detuned	Frequency <u>Kc</u>	Change in Cycles	Frequency Percent
Normel	200.598		
IPA "D" cc	605	7	0.003
IFA "D" c	590	8	0.004
PA "F" cc	600	2	0.001
PA "F" c	598	0	
Ant "1" cc	599	1	0.0005
Ant "1" c	595	3	0.0015
		-	
Normal	600.833	The second	
IPA "D" cc	772	61	0.01
IPA "D" c	902	69	0.011
PA "F" cc	842	9	0.001
PA "F" c	832	1	0.0001
Ant "1" cc	831	2	0.0003
Ant "1" c	832	1	0.0001

Note: IPA "D" cc denotes circuit detuned in counter clockwise direction.

IPA "D" c denotes circuit detuned in clockwise direction.

Permitted by specifications: 0.01%

For comparison see Table No. 13 of NRL Report No. R-1328.

O DECLASSIFIED @

TABLE NO. 11

Model XTAJ-6 Transmitting Equipment

OPERATION OF POWER OUTPUT CONTROL

Test as per paragraph 3-7-5 of Specifications RE 13A 328J

LOMEL.						
Output Wette	Percent	Antenna	Plate	Frequency	Frequen	cy Change
10000	- i Duci	ourrent	VOLUS	<u></u>	Cycles	Percent
486	100	6.9	3000	200,601		nie w
365	75	5.98	2670	601	0	Contract of the
243	50	4.87	2250	600	1	0 0005
122	25	3.46	1700	599	2	0.001
500	100	7.00	3000	600.733		
375	75	6.06	2670	730	3	0.0005
250	50	4.74	2180	720	13	0.002
125	25	3.90	1820	714	19	0.003

Antenna Constants: Resistance 10.2 ohrs; Capacity - 970 uuf.

Permitted by Specifications: 0.005%

D

For comparison see Table No.14 of NRL Report No. R-1328.

O DECLASSIFIED @

TABLE NO. 12

Model XTAJ-6 Transmitting Equipment

CHANGE OF TUBES

Test as per paragraph 3-7-6 of Specifications RE 13A 328J

Tube No.	Frequency	Deviation from . Cycles	Mean Frequency Percent
	Master	Oscillator Circuit	
GE 365 GE 368 GE 369 GE 367	200.505 496 505 475	13 4 13 17	0.006 0.002 0.006 0.008
GE 696	480	25	0.012
Kean:	200.492	14	0.007
	Intermedi	ate Amplifier Circui	t
GE 366 GE 368 GE 369 GE 367 GE 696	200.497 498 498 497 498	1 0 0 1 0	Negligible
Mern:	200.498	Negligible	Negligible
	Powe	r Amplifier Circuit	
GE 16153 GE 16149 WE 26498	200.497 498 498		
dean:	200.4977	Negligible	Negligible
	Permitted by sp Master Uscil Subsequent s	ecifications: lator: 0.02% tages: 0.005%	

For comparison see Table No. 15 of WRL Report No. R-1328

O DECLASSIFIED O

TABLE NO. 13

Model XTAJ-6 Transmitting Equipment

CHANGE OF TUBES

Test as per paragraph 3-7-6 of Specifications RE 134 328J

Tube No.	Frequency	Deviation : Cycles	from Mean	Frequency Percent
	Master Os	cillator Circui	Lt	
GE 365 GE 367	600.613 557	29 27		0.0048
GE 368 GE 369	595 641	11 57		0.0018
GE 090	514	99		0.0165
Mean:	600,584	45		0.0075
	Intermediate	Amplifier Cir	cuit	
GE 366 GE 696	600.635 658	14		0.0023
GE 367 GE 368	650 655	1 6		0.001
UE 369	645	4		0.0006
Acen:	600.649	7		0.001
	Power Ampl	ifier Circuit		
GE 16149 GE 16153 WE 26498	600.645 645 648	1 1 2		
Mean:	600.646	1.3	Ne	gligible
Per H S	mitted by specia aster Uscillator ubsequent Stage	fications: r: 0.02% s: 0.005%		

For comparison see Table No. 16 of NRL Report No. R-1328

DECLASSIFIED

O DECLASSIFIED@

TABLE NO.14

Model XTAJ-6 Transmitting Equipment

VARIATION OF VOLTAGE APPLIED TO TRANSMITTER UNIT

Test as per paragraph 3-7-7 of Specifications RE 134 328J

Frequency				% Voltage	Frequen	cy Change
Kc	И.О. Ер	P.A. DD	<u>E fil</u>	Change	Cycles	Percent
200.603	1320	3000	11.0			
603	1320	3000	11.55	+5 Fil.	0	-
600	1320	3000	10.45	-5 Fil.	3	0.0015
603	1320	3150	11.0	+5 PA ED	Ō	-
603	1320	2850	11.0	-5 PA BO	0	-
603	1386	3000	11.0	+5 MO Ep	0	-
601	1253	3000	11.0	-5 MO Ep	2	0.001
606	1386	3150	11.55	+5 A11	3	0.0015
600	1253	2850	10.45	-5 All	3	0.0015
600.600	1320	3000	11.0			
594	1320	3000	11.55	+5 Fil.	6	0.001
613	1320	3000	10.45	-5 Fil.	13	0.002
602	1320	31.50	11.0	+5 PA Ep	2	0.0003
598	1320	2850	11.0	-5 PA Ep	2	0.0002
591	1386	3000	11.0	+5 MO Ep	9	0.0015
611	1253	3000	11.0	-5 MO Ep	11	0.002
583	1386	31.50	11.55	+5 411	17	0.003
620	1253	2850	10.45	-5 411	20	0.003

Permitted by specifications: 0.01%

For comparison see Table No. 17 of NRL Report No. R-1328

DECLASSIFIED

Model XTAJ-6 Transmitting Equipment

VARIATION OF LINE VOLTAGE

Test as per pars. 3-7(7) and 6-3 of Specifications RE 13A 328J

Line Volts	Fil. Volts	Bias Volts	M.O. Ep	P. A. <u>Ep</u>	Antenna Current	Frequency Kc	Change in Cycles	Frequency
418	10.4	114.5	1330	2995	6.88	200.599		
440	11.0	115.0	1335	3000	6.90	601		
462	11.6	115.5	1935	3000	6.92	604	5	0.0025
418	10.4	114.5	1315	2990	7.25	600.559		
440	11.0	115.0	1320	3000	7.30	557		
462	11.6	115.0	1320	3000	7.32	555	4	0.0006

Note: During the above test the line voltage was varied from 5% below to 5% above normal in a period of one minute.

418 440 462	10.4 11.0 11.6	114.5 115.0 115.5	1330 1335 1335	2995 3000 3000	6.88 6.91 6.92	200.599 602 605	6	0.003
418	10.4	114.0	1315	2990	7.25	600.554		
462	11.6	115.0	1320	3000	7.31	550	4	0.0006

Note: During the above test the line voltage was varied from 5% below to 5% above normal in a period of five minutes.

No damage to parts resulted from variation of line voltage.

For comparison see Table 40. 18 of NRL Report No. R-1328.

DECLASSIFIED

O DECLASSIFIED

TABLE NO. 16

Model XTAJ-6 Transmitting Equipment

VARIATIONS IN AMBLENT TEXPERATURE

Test as per paragraph 3-7-8 of Specifications RE 13A 328J

Time	Ambient Temp °C	Frequency KC	P. A. <u>Ip</u>	I.P.A.	M.O. <u>Ip</u>	Ant.	Watts Out	Rel Hum	P. A. Ep	Line Volts
0830 45 0900	51.5 51.0 51.0	200.390 373 384 389	332 321 319 309	40 39 37 36	36 35 34 3/	6.69 6.48 6.37 6.23	457 428 414 396	6777	2900 2830 2800 2760	432 432 428 432
30	51.0	406	300	36	34	6.13	384	7	2750	428
0945 1000 15 30 45	40.5 40.5 40.5 40.5 40.5	433 431 432 432 432 431	300 310 311 312 319	36 36 36 36 36	33 33 33 33 33 33	6.15 6.20 6.23 6.24 6.26	386 393 396 397 400	10 10 10 10 10	27 50 2750 2750 2750 2760	424 426 430 425 428
1100 15 30 45 1200	30.0 30.0 30.0 30.0 30.0	447 444 440 437 434	320 325 328 328 330	36 36 36 36 36	33 33 33 33 33	6.30 6.35 6.38 6.38 6.38	404 411 417 417 418	999999	2770 2780 2780 2780 2780 2790	428 424 432 430 430
1215 30 45 1300 15	20.0 20.0 20.0 20.0 20.0 20.0	448 453 451 449 446	330 332 339 339 340	36 36 36 36 36	33 33 33 33 33 33	6.42 6.43 6.49 6.51 6.52	420 421 428 433 434	13 13 13 13 13	2800 2800 2810 2820 2830	440 440 437 436 426
1330 45 1400 15 30	12.0 10.0 10.0 10.0 10.0	455 461 461 459 457	340 341 342 345 348	36 36 36 37 38	33 34 34 34 34	6.55 6.56 6.57 6.60 6.64	437 438 440 444 450	17 16 16 16 16	2850 2870 * 2880 2890 2900	434 432 425 426 432
1445 1500 15 30 45	1.0 -2.0 -2.0 -1.0 -1.0	488 495 483 505 503	349 349 350 353 354	38 39 39 40 40	34 35 35 35 35	6.66 6.70 6.71 6.80 6.84	452 457 458 472 477		2900 2950 2990 3000 3000	432 432 432 431 425

OECLASSIFIED @

TABLE No.16 - Cont'd

SUMMARY

Temperature Degrees C	Cycles Change per 10 Deg.C.	Percent Change per 1 Deg. C
50 to 40	25	0.00125
40 to 30	3	0.00015
30 to 20	12	0.0006
20 to 10	20 11	0.00055
10 to-1	46	0.0021

Permitted by Specifications

-

0.005%

-

For comparison see Tables No. 19 and 20 of NRL Report R-1328.

1

TABLE NO.17

Model XIAJ-6 Transmitting Equipment

VARIATIONS IN AMBIENT TEMPERATURE

Test as per paragraph 3-7-8 of Specifications RE 13A 328J

<u>Time</u>	Amolest Temp.°C	Frequency Kc	P. A. <u>Ip</u>	I.P.A.	E.O. Ip	Ant.	Watts Out	Rel Hum	P.A. Ep	Line Volts
0915 30 45 1000 15	52.0 51.0 51.0 51.0 51.0	600.365 328 326 358 407	340 325 320 320 315	54 50 49 49 48	45 44 43 42 42	7.30 7.05 6.95 6.90 6.87	542 507 493 484 481	8888	2970 2870 2820 2810 2800	426 426 428 428 428
1030 45 1100 15 30	41.0 41.0 41.0 41.0 41.0	490 470 451 447 458	315 315 315 315 315 317	47 46 46 46 46	42 41 41 41 41	6.84 6.80 6.80 6.80 6.81	477 473 473 473 473 474	10 10 10 10 10	2800 2790 2790 2800 2800	432 432 430 434 436
1145 1200 15 30 45	30.5 30.5 30.5 30.5 30.5 30.5	500 482 482 493 496	320 322 323 321 323	46 49 49 49 49	41 42 42 42 42	6.85 6.89 6.92 6.90 6.91	478 486 490 484 487	777777	2810 2830 2830 2820 2820	436 442 444 436 440
1300 15 30 45 1400	22.0 20.0 20.0 20.0 20.0 20.0	522 570 587 588 589	325 327 330 330 330	49 49 49 49 50	42 42 43 43	6.93 6.96 7.00 7.00 7.02	491 494 500 500 503	12 10 10 10	2850 2870 2880 2890 2900	434 432 440 436 436
1415 30 45 1500 15	12.0 10.0 10.0 10.0 10.0	616 640 643 647 645	332 337 340 340 340	50 50 52 53 56	43 44 44 45	7.06 7.11 7.16 7.17 7.22	507 516 522 524 532	12 10 10 10	2900 2910 2920 2950 2950	432 436 436 435 435
1530 45 1600 15 30	2.5 -1.0 -1.0 -1.0 -1.0	789 800 808 800 791	·340 342 348 350 350	56 56 59 60 61	45 45 45 46 47	7.21 7.22 7.27 7.29 7.36	530 532 539 542 550		2960 2980 3000 3000 3040	436 424 425 425 425

SUMMARY

Temperature Degrees C	Cycles Change per 10 Deg. C.	Percent Change per 1 Deg. C.
50 to 40	51	0.00085
40 to 30	38	0.00063
30 to 20	93	0.00155
20 to 10	56	0.00093
10 to -1	146	0.00218

Permitted by Specifications -

0.005%

For comparison see Tables No. 21 and 22 of NRL Report R-1328.

DECLASSIFIED

able Ornetonics Herr LOR obser Sep. 970 mild

DECLASSIFIED

10

Model XTAJ-6 Transmitting Equipment

VARIATIONS IN HUMIDITY

Test as per paragraph 3-7-9 of Specifications RE 13A 328J

Time	Ambient Temp.°C	RelHum.	Frequency <u>Kc</u>	P.A. <u>Ip</u>	I.P.A.	H.O. <u>Ip</u>	Ant.	netts Out	P.A. Ep	Line Volts
0830	41.0	10	200.565	346	41	37	6.90	485	3000	420
45	41.0	10	575	340	40	37	6.79	470	2950	424
0900	41.0	10	595	339	39	36	6.73	463	2900	432
15	41.0	58	569	331	39	36	6.68	455	2900	428
30	41.0	93	482	323	40	37	6.48	428	2890	436
45	41.0	93	477	320	40	36	6.47	426	2900	432
1000	41.0	93	470	320	40	36	6.43	422	2890	430
15	41.0	93	467	318	39	36	6.41	419	2880	432
30	41.0	93	463	312	39	35	6.43	410	2870	432
45	41.0	58	509	320	39	35	6.42	420	2870	426
1100	41.0	27	545	320	39	35	6.45	424	2870	428
15	41.0	20	572	321	39	35	6.48	428	2870	432
30	41.0	20	583	323	38	35	6.50	431	2870	434
45	41.0	14	598	326	38	35	6.52	434	2880	436
1200	41.0	14	610	326	38	35	6.50	431	2870	440

Greatest frequency variation noted during second and third tests from that prevailing at end of first test; 132 cycles; 0.066%. Permitted by specifications 0.05%. Decrease in power output during test: 15.4% Permitted by specifications: 5.0% Antenna Constants: Res. 1022 ohms; Cap. 970 mmfd

For comparison see Table No. 23 of NRL Report No. R-1328.

ODECLASSIFIED @

TABLE NO.19

Lodel ATAJ-6 Transmitting Equipment

VARIATIONS IN HUMIDITY

Test as per paragraph 3-7-9 of Specifications RE 13A 328J

Time	Ambient Temp °C	Rel.Hum.	Frequency Kc	P.A. 1p	I.P.A. 	M.O. 1p	Ant.	Netts Out	P.A. Ep	Line Volts
1230 45 1300	41.0 41.0 41.0	10 10 10	600 . 762 779 785	346 345 345	52 52 52	45 45 45	7.44 7.40 7.39	56 5 559 557	3000 2990 2990	436 434 434
15	41.0	60	689	340	52	45	7.38	556	2990	438
30 45 1400 15 30	41.0 41.0 41.0 41.0 41.0	93 93 93 93 93 93	524 434 420 385 389	340 340 340 340 340	54 53 53 52 53	45 45 45 45 45	7.38 7.33 7.33 7.32 7.32	556 548 548 547 547	2,90 2990 2990 2990 2990	432 438 426 434 436
45	41.0	39	557	340	52	45	7.32	547	2980	426
1500 15 30 45 1600	41.0 41.0 41.0 41.0 41.0	25 23 18 14 13	622 657 691 724 753	340 340 340 340 340	- 52 52 52 52 52 52	45 45 45 45 45	7.35 7.31 7.31 7.35 7.35	552 546 552 552	2980 2960 2970 2980 2980	434 432 420 428 424

Greatest frequency variation noted during second and third tests from that prevailing at end of first test: 400 cycles; 0.066%. Permitted by specifications 0.05%. Decrease in power output during test: 3.0% Permitted by specifications: 5% Antenna Constants: Res. 10.2 ohms; Cap. 970 mmfd.

For comparison see Table No. 24 of NRL Report R-1328.

GUEULASSIFIED @

TABLE NO.20

Model XTAJ-6 Transmitting Equipment

LOCKED KEY OPERATION FOR TWO HOURS

Test as per paragraph 3-7-10 of Specifications RE 13A 328J

		Ambient	Frequency	Cycles	76	Ant.	Watts	Plate	P.A.	<i>m</i> .0.
Tim	e	Temp °C	KC	whange	Change	Cur.	Out	Volts	·Ip	Ip
13:	10	(Fila	ments energ	ized)						
	15	27.8	200.747	-	-	6.90	485	3000	350	1325
	20	27.9	741	6	0.003	6.85	478	3000	350	1320
	25	28.0	735	12	0.006	6.80	472	2980	348	1310
	30	27.9	733	14	0.007	6.80	172	2960	347	1305
	35	28.0	730	17	800.0	6.75	465	2950	345	1300
1 1	40	27.8	730	17	0.008	6.75	465	2930	345	1300
	45	28.0	729	18	0.009	6.70	457	2920	343	1295
	50	28.0	728	19	0.009	6.65	451	2920	341	1295
	55	28.0	727	20	0.01	6.65	451	2910	341	1295
14:	00	28.1	727	20	0.01	6.65	451	2910	341	1295
3	05	28.2	727	20	0.01	6.65	451	2900	340	1290
	10	28.3	727	20	0.01	6.65	451	2900	340	1290
	15	28.3	724	23	0.011	6.62	447	2900	340	1282
	20	28.8	724	23	0.011	6.60	444	2900	340	1282
	25	28.8	724	23	0.011	6.60	444	2900	339	1280
	30	28.8	724	23	0.011	6.60	444	2900	339	1280
	35	28.8	726	21	0.01	6.60	444	2900	339	1280
	40	28.9	727	20	0.01	6.60	444	2900	339	1280
	45	28.9	729	18	0.009	6.60	444	2900	339	1280
	50	28.7	730	17	0.008	6.60	444	2900	339	1280
	55	28.7	731	16	0.008	6.60	444	2900	339	1280
15:1	00	28.5	731	16	800.0	6.55	438	2890	339	1277
	05	28.2	733	14	0.007	6.55	438	2890	339	1277
	10	28.0	736	11	0.005	6.55	438	2890	339	1277
1	15	27.6	736	11	0.005	6.55	438	2890	339	1277
			(Vo	ltages r	eadjuste	d to no	ormal)			
1	16	27.6	736	11	0.005	6.80	472	3000	350	1325

Temperature of Antenna Coil: Start - 27.8; finish 44.0° C. Temperature of P.A. Flate Shoke: Start - 27.8: finish 56.5°C Antenna Constants: Resistance - 10.2 ohms; Cap. - 960 mmf.

Frequency change during 1st five minutes: 6 cycles; 0.003% Specification requirements: 0.015% Frequency change during remainder of test: 17 cycles; 0.008% Specification requirements: 0.03%

DECLASSIFIED

For comparison see Table "o. 25 of MRM deport No. h-1328.

GUEULASSIFIEU G

TABLE NO.21

Model XTAJ-6 Transmitting Equipment

LOCKED KEY OPERATION FOR TWO HOURS (MCW)

Test as per paragraph 3-7-10 of Specifications RE 134 328J

<u>Time</u>	Amb. Temp.	Frequency KC	Cycles Change	% Change	Ant. Cur.	Watts Out	Plate Volts	PiA.	Aud. Osc. Ip
13:30		(Filaments	energized	(i					
35	25.0	400.800			5.90	355	3000	302	140
40	25.2	773	27	0.007	5.90	355	2980	300	138
45	25.3	758	42	0.010	5.85	349	2960	295	137
50	25.2	750	50	0.012	5.80	343	2940	292	136
55	25.4	745	55	0.014	5.75	338	2930	290	135
14:00	25.6	742	58	0.014	5.75	338	2920	290	135
05	25.5	738	62	0.015	5.70	331	2910	288	135
10	25.8	738	62	0.015	5.70	331	2910	288	135
15	25.8	738	62	0.015	5.70	331	2910	288	135
20	25.8	738	62	0.015	5.70	331	2900	287	135
25	25.9	736	64	0.016	5.70	331	2900	287	134
30	26.0	737	63	0.016	5.70	331	2900	285	134
35	25.8	737	63	0.016	5.65	326	2900	285	134
40	26.1	739	61	0.015	5.65	326	2900	285	134
45	25.9	741	59	0.015	5.65	326	2900	285	134
50	25.8	743	57	0.014	5.65	326	2900	285	134
55	25.8	745	55	0.014	5.65	326	2900	285	134
15:00	25.8	747	53	0.013	5.65	326	2900	285	134
05	25.7	749	51	0.013	5.65	326	2900	283	134
10	25.5	751	49	0.012	5.65	326	2890	282	133
15	25.7	754	46	0.011	5.65	326	2890	282	133
20	25.7	756	44	0.011	5.65	326	2890	282	133
25	25.7	758	42	0.010	5.65	326	2890	282	133
30	25.7	758	42	0.010	5.62	322	2890	281	133
35	25.5	760	40	0.010	5.60	320	2880	281	133
		(Voltages	re-adjust	ted to no	rmal)			12	
36	25.5	760	40	0.010	5.90	355	3000	295	140
Temp Ante Freq Freq	nna Cons uency cl	of Antenna " P.A. Cho " Audio Tr stants: Resi mange during mange during	Coil: 54 ke : ansf: stance - lst five Specific Specific	tart - 25 "25 10.2 ohm minutes cation re er of tes cation re	.0; Fir .0 .0 s; Cap. : 27 c quirement: 37 quirement	nish 46.0 " 41.0 " 70.0 - 960 cycles; (ents : (cycles: ents :	0°C) mmf.).007%).015% 0.009% 0.03%		

For comparison see Table Mo. 26 of NRL Report No. R-1328.

G DECLASSIFIED@

TABLE NO. 22

Model ATAJ-6 Transmitting Equipment

LOCKED KEY OPERATION FOR TWO HOURS

Test as per paragraph 3-7-10 of Specifications RE 13A 328J

Time	Ambient Temp ^o C	Frequency Kc	Cycles Change	76 Change	Ant. Cur.	Watts Out	Plate Volts	P.A.	M.O. Ep
14:20	(Filam	ents energi	zed)						
25	27.0	600.882			7.00	500	3000	350	1310
30	26.0	833	49	0.0082	6.90	486	2970	348	1300
35	26.9	810	72	0.012	6.90	486	.2950	346	1295
40	27.2	798	84	0.014	6.85	480	2930	345	1285
45	26.9	789	93	0.015	6.85	480	2920	345	1280
50	26.9	784	98	0.016	6.80	472	2900	343	1280
55	26.8	782	100	0.016	6.80	472	2900	341	1280
15:00	26.9	780	102	0.017	6.80	472	2900	340	1277
05	27.0	780	102	0.017	6.80	472	2900	340	1270
10	26.9	780	102	0.017	6.77	468	2900	340	1270
15	26.9	780	102	0.017	6.77	468	2890	340	1265
20	26.8	780	102	0.017	6.75	465	2890	340	1265
25	26.7	780	102	0.017	6.75	465	2890	340	1265
30	26.5	782	100	0.016	6.75	465	2890	340	1265
35*	-	-	-	-	-	-	-	-	-
40	26.7	800	82	0.014	6.65	450	2890	337	1265
45	25.5	790	92	0.015	6.65	450	2870	337	1265
50	25.6	790	92	0.015	6.65	450	2870	337	1260
55	25.9	791	91	0.015	6.65	450	2870	335	1258
16:00	26.1	792	90	0.015	6.65	450	2860	335	1255
05	26.3	795	87	0.015	6.65	450	2860	335	1255
10	26.0	797	85	0.014	6.65	450	2860	335	1255
15	26.2	799	83	0.014	6.65	450	2860	335	1250
20	26.2	798	84	0.014	6.65	450	2860	335	1250
25	26.0	799	83	0.014	6.65	450	2860	335	1250
	(10	ltages re-a	djusted t	o normal)					
26	26.0	785	97	0.016	7.10	509	3000	350	1320

Note: * denotes momentary line power fuilure.

Temperature of Antenna Coil : Start - 27.0; finish -40.0° Temperature of P.A. Plate Choke: Start - 27.0; finish - 51.0° Antenna Constants: Resistance: 10.2 ohms; Cap. 960 mmf.

Frequency change during 1st five minutes: 49 cycles; 0.0082% Specification requirements: 0.015% Frequency change during remainder of test: 53 cycles; 0.0088% Specification requirements: 0.03%

For comparison see Tables "o. 27 and 28 of "RL Report R-1328.

G DECLASSIFIED

Model XTAJ-6 Transmitting Equipment CHANGE FROM KEY LOCKED TO INTERMITTENTLY KEYED CONDITION Test as per paragraph 3-7-11 of Specifications RE 13A 328J

 Test Condition	Frequency at end of 10 min key locked period (Kc)	Frequency at end of 10 sec dash 20 min later (kc)	Change in cycles	Frequency percent
HO filament	200.582	200.575	7	0.003
NO filament not lighted	200.573	200.598	23	0.011
MO filament lighted	600.616	600.633	17	0.003
MO filament not lighted	600.580	600.675	95	0.016

Permitted by Specifications: Filament lighted: 0.015% Filament not lighted: 0.03%

for comparison see Table "o. 29 of MRL Report No. R-1328.

DECLASSIFIED

@ DECLASSIFIED @

TEBLE NO. 24

Model XTAJ-6 Transmitting Equipment CHANGE FROM CONFINUOUSLY KEYED TO INTERMITTENTLY KEYED CONDITION Test as per paragraph 3-7-12 of specifications RE 13A 328J

frequency at end of 30 minutes of continuous keying	Frequency at end of 10 sec. dash after 20 min pause	Change in Cycles	Frequency Percent	
200.575	200.578	3	0.0015	
600.518	600.529	11	0.002	

Filaments remained energized during entire test.

Permitted by specifications: 0.015%

For comparison see Table No. 30 of NRL Report No. R-1328

PECLASSIFIED

@ DECLASSIFIED@

TABLE NO. 25

Model XTAJ-6 Transmitting Equipment

VIBRATION

Test as per paragraph 3-7-14 of Specifications RE 13A 328J

Transmitter secured rigidly to Test Stand

Time	Frequency	
1515	200.283	Start
1520	280	
1525	295	
1530	297	
1535	275	
1540	275	
1545	275	
	280	Finish

Maximum set in frequency between beginning and end of test: 3 cycles 0.0015%

Fermitted by specifications: 0.005%

DECLASSIFIED

DECLASSIFIED

TEBLE NO. 26

Model ATAJ-6 Transmitting Equipment

SHOCK TEET

Test as per paragraph 3-7-15 of Specifications RE 13A 328J

Shock Applied to:	Frequency 1 Linute before_shock	Frequency 2 Minutes after shock	Set in <u>Cycles</u>	Frequency Percent
Front	200.615	200.604	11	0.0055
Left	620	619	1	0.0005
Right	599	602	3	0,0015
back	631	625	6	0.0030
Front	600.670	600.700	30	0.0050
Left	555	565	10	0.0016
Night	612	615	3	0.0005
back	565	546	19	0.0030

Specification Requirements: 0.005%

Note: On "Front" shock at 200 Kc (1st test) antenna ammeter broke out of case; was replaced with spare meter.

For comparison see Table No. 36 of Report R-1328.

DECLIASIFIED

TABLE No. 27

ECLASSIFIEL

Model XTAJ-6 Transmitting Equipment

DETERMINATION OF OVERLAP

Test as per permanent 3-11 of precifications RE 13A 328J

Control														
A	1	1	2	2	3	3	4	4	5	5	6	6	7	77
Б	022	900	0	900	0	900	0	900	Ó	900	õ	900	ó	000
C	1	1	2	2	3	3	4	4	5	5	6	6	7	700
D	0	95	15	98	13	99	15	98	16	98	22	00	16	00
E	1	1	2	2	3	3	4	4	5	5	6	6	10	70
F	16	75	6	91	1	82	1	88	i	80	12	02	1	100
G	5	5	5	5	5	1.	3	5	5	6	IL E	72	1	100
H	6	9	9	n	11	12	12	13	13	71	2	2	2	5
I	58	86	57	69	47	94	73	64	57	47	45	79	74	15 45
Freq.Kcs.	168.7	209.67	202.7	253.2	242.0	303.5	289.8	361.9	350.6	437.9	121.1	529.27	510 58	627 22
Overlap Kc	. 6.28		7.0		11.2		13.7		11.3		13.5	Ja John I	18 60	27 22
Mean Freq.	171.86		206.18		247.6		296.6		356.2		131.1		510 0	21.23
% Overlap	3.96		3.4		4.5		4.6		3.2		3.1		3.6	6.0

Measurements made with LD-4 Crystal Controlled Calibrator Serial No. 2

For comparison see Tables 37, 38 and 39 of NRL Report R-1328.

@ DECLASSIFIED?

TABLE NO. 28

Hodel XTAJ-6 Transmitting Equipment

VARIATION OF RESONANT FREQUENCY OF MASTER OSCILLATOR PER DIVISION OF DIAL MARKING.

Test as per paragraph 3-15 of Specifications RE 13A 328J

Control "A"	Control "B"	Frequency Kcs	Divisions <u>Change</u>	KC per Division	Per Cent per Division
1 1 1	000 193 714	166.84 175.00 200.00	193 521	0.042	0.024
2 2	461. 0 833.0	225.00 2 50.00	372	0.067	0.027
3 3	538 838	275.00 300.00	300	0.083	0.028
4	503 763	325.00 350.00	260	0.096	0.027
5 5 5	310 565 776	375.00 400.00 425.00	255 211	0.098	0.025 0.027
6 6 6 6	277. 497.5 683 849	450.00 475.00 500.00 525.00	220.5 185.5 166	0.113 0.135 0.150	0.028 0.027 0.029
7 7 7 7 7	343 522 676.5 816 900	550.00 575.00 600.00 625.00 637.93	179 154.5 139.5 84	0.140 0.162 0.179 0.094	0.024 0.027 0.029 0.015

Specification Requirements: Not more than 0.03% or less than 0.015% per division of marking.

Measurements made with LD-3 Crystal Controlled Calibrator, Ser.No.2

For comparison see Table No. 41 of NRL Report No. 5-1328.

@ DECLASSIFIED @

TABLE NO.29

Model XTAJ-6 Transmitting Equipment

CHANGE IN FREQUENCY DUE TO OPERATION OF DIAL LOCKING DEVICES

Test as per paragraph 3-16 of specifications RE 134 328J

	Frequ	Change in	Frequency	
Control	Not locked	Locked	Cycles	Percent
20 "B" cc	200.490	200.478	12	0.006
MO "B" c	498	488	10	0.005
IPA "D" cc	491	491	0	
IPA "D" c	490	490	0	
PA "F" cc PA "F" c	490 490	490 490	0	
Ant "1" cc Ant "1" c	489 488	489 488	0	
MO "B" cc	600.575	600.568	7	0.001
MO "B" c	568	559	9	0.0015
IPA "D" cc	556	557	1	
IPA "D" c	545	547	2	
PA "F" cc	548	547	1	
PA "F" c	547	547	0	
Ant "1" cc Ant "I" c	547 546	547 546	0	

Note: KO "B" cc denotes that dial setting had been approached in counter clockwise direction before applying dial lock.

MO "B" c denotes that dial setting had been approached in clockwise direction before applying dial lock.

DECLASSIFIED

1. Subsequent to the conclusion of the tests of the Model ATFJ-6 transmitting Equipment, as reported in Naval Research Laboratory Report No. R-1356, the General Electric Company submitted and installed a redeclined tube cradie. The installation of the new tube cradle was accomplished on April 7, 1937, by Mr. J.J. Farrell, representative of the Contractor. The contractor's representative also provided and installed covers for the time delay relays, RL-3 and RL-6, in an effort to produce more quiet operation. During the period April 7th to April 9th, inclusive, vibration and inclination tests were conducted in accordance with the terms of specifications RE 13A 328J. This appendix to N.R.L. Report No. R-1356 covers the results of these additional tests.

DECLASSIFIED

2. Plate No. E-1 is a view showing the modified tube cradle installed in the model XTAJ-6 transmitter unit. It will be noted that the ten watt lamps formarly employed as screen grid resistors, as illustrated in Plate 27 of MRL meport R-1328, have teen replaced by four 100 watt vitreous enamelled resistors. This substitution has increased the reliability of the equipment to the extent that the screen grid circuits operated consistently and successfully during the entire course of the vitration tests conducted with the modified tube cradle. This feature of the equipment is now considered to be suitable for service requirements.

3. Table Mo. =-1 and Plate Mo. A-2 cover an inclination test conducted at 200 K.C. The equipment was subjected to inclination in a fore and art direction through an angle of 45 degrees on either side of the vertical. The maximum frequency change noted during the half hour test from the frequency at the start of the test when the transmitter was in the vertical position, was 8 cycles, or 0.004%. The governing specifications (paragraph 2-7-13) permit a frequency change of 0.005%. Hence, the equipment successfully withstood the test when inclined in a fore and aft direction.

Table No. A-2 and Flate 4-3 cover an inclination test conducted at 4. 500 Kc. Furing this test the equipment was inclined from side to side through an angle of 45 degrees on either side of the vertical. The maximum frequency change noted during the half hour tests, from the frequency at the start of the test when the transmitter was in the vertical position, was 46 cycles, or 0.0092%. This frequency change occurred when the transmitter was inclined to the right hand side, looking at the front of the unit. At the conclusion of the test the equipment was subjected to a thorough examination in an effort to discover the cause of the frequency changes noted. The exact cause was not disclosed but it is believed that some element in the master oscillator compartment shifts its position sufficiently during inclination to cause the effects noted. During this test the equipment failed to meet the specification requirements and it is recommended that the manufacturer subject the entire master oscillator compartment to a thorough inspection with a view to discovering and eliminating the cause of the frequency shifts noted.

5. After the installation of the modified tube cradle the XTAJ-6 equipment was subjected to six 30 minute vibration tests at various frequencies. The contractor supplied five additional 38160 tubes on April 7th and three of these tubes were placed in the equipment prior to the vibration tests. A carbon anode 38161 tube (Ser. 16125) was placed in the power amplifier stage during two

DECLASSIFIED

Appendix B, page 1

O DECLASSIFIED

thirty minute tests, after which a Tantaium anode tube (Ser. 16158) was substituted therefor for the remaining four thirty minute tests.

6. Table No. 4-3 and Flate No. A-4 cover a vibration test conducted at 500 Kc. The maximum set in frequency between the beginning and the end of the test was 85 cycles, or 0.017%. The governing specifications, paragraph 3-7-14, permit a frequency difference of 0.005%. The second vibration test was conducted at 400 Kc and is covered by Table No. A-4 and Plate No. A-5. The maximum set in frequency noted during this test was 27 cycles, or 0.0067%. A third test was conducted at 200 Kc, resulting in a frequency variation of 22 cycles, or 0.011%, as shown in Table no. 4-5 and Plate No. 4-6. The fourth test conducted at 600 Kc is illustrated in Table No. A-6 and Plate No. 4-7. The maximum change noted was 38 cycles, or 0.0063%. It will be seen that in all the foregoing tests the specification requirements were exceeded. However, during these tests no failures of tubes occurred and the entire equipment functioned safely and satisfactorily. It was further noted that the largest portion of the frequency shift occurred immediately after the vibration was applied. In an effort to determine the cause of this phenomenon a new tube was substituted in the master oscillator bircuit. 38160 tube, Serial No. 700 was used to replace Serial No. 699.

7. Table No. A-7 and Flate No. A-8 cover a tests conducted at 600 Kc wherein tube Serial No. 700 was employed in the master oscillator circuit. It will be noted that the specification requirements are complied with, the maximum frequency set being 14 cycles or 0.0023%. In order to definitely demonstrate that the original M.O. tube, serial 699, had been the cause of unsatisfactory operation, an additional test was conducted at 200 Kc. This test is illustrated in Table No. A-8 and Plate No. A-9. The maximum frequency change noted was 8 cycles, or 0.004%. Thus it is demonstrated that a faulty tube was employed during the first four vibration tests and that the XTAJ-6 equipment fitted with the improved tube cradle and when supplied with suitable tubes is capable of safe and satisfactory operation complying with the requirements of the governing specifications.

8. After the completion of the vibration and inclination tests, time delay relays RL-3 and RL-6 were fitted with the covers provided by the contractor's representative. These covers produced only a very slight dimunition of the noise during keying operations and it is recommended that the contractor be required to still further modify the action of these relays to produce more quiet operation.

9. <u>Recommendations</u>. As a result of the tests conducted in connection with the Model XTAJ-6 equipment during the period of April 7th, 8th and 9th, certain of the recommendations listed on pages 2-b to 2-d inclusive, of NRL Report No. M-1356 must be revised, or modified, as follows:

(a) Reference par. (a) on page 2-b.

It is recommended that the use of 10 watt lamps as screen grid resistors be disapproved and that suitable 100 watt vitreous enamelled resistors, complying with the latest revision of Bureau of Engineering specifications, be substituted therefor.

(b) Reference Par. (m) on page 2-b.

It is recommended that the latest revision of the Model ZTAJ-6 equipment, as improved by the substitution of a modified tube cradle, be

DECLASSIFIED

Appendix 5, prge 2.

considered as satisfactory to meet the needs of the Naval Service in so far as the factor of vibration is concerned.

(c) Reference Per. (x) on page 2-c.

It is recommended that the frequency stability of the equipment with respect to inclined operation be further improved by preventing the shifting of any vital parts in the master oscillator circuit.

(d) Reference: Par. (y) on page 2-c.

It is recommended that the frequency stability of the equipment with respect to operation when subjected to vibration be approved.

(e) Reference Par. (kk) on page 2-d.

it is recommended that further precautions, over and beyond the placing of enclosing covers on the relays, be required to reduce the noise of operation of relays RL-3 and AL-6.

10. <u>Conclusions</u>. As a result of the modifications and improvements wrought in the Model XTAJ-6 transmitting equipment during the period of April 7th to April 9th, 1937, inclusive, and as a result of the tests conducted during the same period of time, it is concluded that:

(a) The Model XTAJ-6 equipment should be capable of providing safe and satisfactory operation when subjected to severe vibration.

(b) With some slight modification of the master oscillator circuit, the Model XTAJ-6 equipment should be capable of satisfactory operation complying with the frequency stability requirements of the governing specifications, when installed and operating on a Naval vessel subject to roll and pitch.

(c) The use of vitreous enamelled resistors should eliminate the difficulties encountered when employing small 10 watt lamps as screen grid resistors.

(d) The noise engendered during keying operations which is caused by the intermittent action of relays RL-3 and RL-6 is not sufficiently eliminated by the mere placement of covers over the operating parts. Further re-adjustment of movable parts or the application of suitable buffers is deemed necessary.

Table No. A-2

6

Model XTAJ-6 Transmitting Equipment INCLINATION DUE TO ROLL AND PITCH OF SHIP Test as per paragraph 3-.7-13 of Specifications RE 13A 328J

Transmitter inclined from side to side

Time	Maximum Frequency	Minimum Frequency
12:35	500.296	Stationary
12:40	290	500.330
12:45	291	333
12:50	293	335
12:55	293	341
13:00	293	31.2
13:05	293	342 (end)

Maximum frequency change during test from frequency at start of test: 46 cycles; 0.0092%

Permitted by Specifications: 0.005%

DECLASSIFIED

Hodel XTAJ-6 Transmitting Equipment

Table No.

(3

VIBRATION

Test as per paragraph 3-7-14 of Specifications RE 13A 328J

8

Trunsmitter rigidly secured to Test Stand

Time	Frequency	
16:05	500.377	
16:10	286	
16:15	285	
16:20	277	
16:25	275	
16:30	288	
16:35	287	
End	292	

Meximum set in frequency between beginning and end of test: 85 cycles; 0.017%

Permitted by Specifications: 0.005%

Circuit	Mfgr	Serial No.
M.O.	0038160	699
IPA	CG38160	697
Audio	CG38160	698
P.L.	CG38161	16125 (Carbon Anode)

CECLASSIFIED

Tuble No. A-4

Model XTAJ-6 Transmitting Equipment

VIBRATION

Test as per paragraph 3-7-14 of opecifications RE 13A 328J

Transmitter rigidly secured to Test Stand

<u>Time</u>	Frequency	
09:00	400.381	
09:05	369	
09:10	377	
09:15	381	
09:20	395	
09:25	406	
09:30	416	
End	408	

Maximum set in frequency between beginning and end of test: 27 cycles; 0.0067%

Permitted by Specifications: 0.005%

Circuit	<u> </u>	Serial I	No.	
H.O.	CG38160	699		
IPA	CG381.60	697		
Audio	CG38160	698		
P.A.	0038161	12125	(carbon	Anode

DECLASSIFIED

Model XTAJ-6 Transmitting Equipment

VIBRATION

Test as per paragraph 3-7-14 of Specifications RE 13A 328J

Transmitter rigidly secured to Test Stand

Time	Frequency	
10:45	200.312	
10:50	277	
10:55	280	
11:00	280	
11:05	280	
11:10	280	
11:15	284	
End	290	

Maximum set in frequency between beginning and end of test: 22 cycles; 0.011%

Permitted by Specifications: 0.005%

Circuit	Mfgr	Serial No.
M.O.	CG38160	699
IPA	CG38160	697
P.A.	CG38161	16158 (Tentulum inode)
		an ana har harare have rere adtribed

Table No. A-6

Model XTAJ-6 Transmitting Equipment

VIBRATION

Test as per paragraph 3-7-14 of Specifications RE 13A 328J

Transmitter rigidly secured to Test Stand

<u>_Time</u>	Frequency	
13:45	600.325	
13:50	286	
13:55	288	
14:00	287	
14:05	286	
14:10	284	
14:15	280	
End	287	

Maximum set in frequency between beginning and end of test: 38 cycles; 0.0063%

Permitted by Specifications: 0.005%

Circuit	<u>Mfgr</u>	Serial No.
M.O.	CG38160	699
IPA	CG38160	697
Audio	CG38160	698
P.A.	CG38161	16158 (Tantalum Anode)

DECLASSIFIED
DECL SSIFIED

Model &TAJ-6 Transmitting Equipment

VIBRATION

Test as per paragraph 3-7-14 of Specifications RE 13A 328J

Transmitter rigidly secured to Test Stand

Time	Frequency	
16:00	600.319	
16:05	312	
16:10	307	
16:15	325	
16:20	302	
16:25	31.2	
16:30	305	
End	305	

Maximum set in frequency between beginning and end of test: 14 cycles; 0.0023%

Permitted by specifications: 0.005%

6

Tubes used during test:

Circuit	<u></u>	Serial No.	
M.O. IPA	CC38160 CC38160	700	
Audio	0038160	698	
P.A.	CG38161	16158 (Tantalum Anor	de)

DECLASSIFIED

C DECLASSIFIEDO

Table No. A-8

Model XTAJ-6 Transmitting Equipment

VIBRATION

Test as per paragraph 3-7-14 of Specifications RE 13A 328J

Transmitter rigidly secured to Test Stand

Time		Frequency
	08:55	200.361
	09:00	359
	09:05	361
	09:10	365
	09:15	366
	09:20	364
	09:25	369
	End	369

Maximum set in frequency between beginning and end of test: 8 cycles; 0.004%

Permitted by Specifications: 0.005%

Tubes used during test:

Circuit	<u>Mfgr</u>	Serial No.		
M.O.	0038160	700		
IPA	0038160	697		
Audio	CG38160	698		
P.A.	CG38161	16158	(Tantalum	Anodej

DECLASUIFIED

Plate A-1

MODEL XTAJ-6 TRANSMITTER INCLINATION TEST AT 500 KILOCYCLES

500 CYCLE BANGE OF LK EQUIPMENT USED SCALE: 10 CYCLES PER DIVISION

TRANSMITTER INCLINED FROM SIDE TO SIDE

End Inclination

LADE 4-3

Start Inclination

MAXINUM FREQUENCY CHANGE DURING TEST FROM FREQUENCY AT START OF TEST: 46 CYCLES

6

TRANSMITTER SECURED RIGIDLY TO TEST STAND 500 CYCLE RANGE OF LE EQUIPMENT USED SCALE: 10 CYCLES PER DIVISION

MAXIMUM SET IN FREQUENCY BETTEEN (BEGINNING AND END OF TEST: 27 CYCLES 0.0067%

FLATE A-5

Plate A-

