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PI Hans Mittelmann, Arizona State University 
Co-I Shankarachary Ragi, South Dakota School of Mines and Technology 

This report is divided into four sections, as explained below, where we summarize the main 
results obtained and refer to the papers included for further details.  

I. Competing Objective Limited Resource Optimization (COLRO) framework for
networked swarm systems
Decentralized and distributed autonomous sensing and control methods for networked
sensor systems have many applications in surveillance, Internet of Things (IoT),
autonomous cars, and UAV swarms. These decentralized autonomy methods are
especially challenging when the network connecting the sensors is time varying.
Moreover, when the network is large with 10s or even 100s of sensors connected,
decision making for sensor resource management (e.g., decisions on sensor mobility -
sensors mounted on UAVs) becomes computationally intensive, in fact, the complexity is
exponential in the decision space and the number of sensors. To address these challenges, 
we developed an optimization framework called COLRO to optimize the limited sensing
resources in a time-varying networked sensor system for a target tracking application
while minimizing the computational effort. We presented the results of this research at
National Aerospace and Electronics Conference 2019 (NAECON 2019) [1]. Building on
these results, we further incorporated explicit optimization of the network graph
connecting the UAVs to maximize the combined tracking and computing performance in
the context of multi-target tracking. We compared the performance of our methods
against a centralized optimization approach, where all the decision variables are
optimized together providing the best achievable performance. This numerical study
allowed us to quantize the performance of our decentralized approaches benchmarked
against the centralized approaches. Furthermore, we proved that the optimal solution
from our COLRO optimization framework is pareto-optimal. The performance of our
decentralized UAV control methods is only marginally inferior to the centralized
approaches in terms of tracking performance, while significantly outperforming the
centralized approach in terms of computational efficiency. Some of the results from this
work was published in the Algorithms journal in the special issue Algorithms in Stochastic
Models [2] (guest-edited by Co-I Ragi).
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II. Monte-Carlo tree search methods for solving long horizon optimal control problems and 
convergence analysis 
Long-horizon optimal control problems appear naturally in robotics, advanced 
manufacturing, and economics, especially in applications requiring decision making in 
stochastic environments. Often these problems are solved via dynamic programming 
(DP). DP problems are notorious for their computational complexity and require 
approximation approaches to make them tractable referred to as approximate dynamic 
programs (ADPs). In this project, the goal is to develop a class of ADP methods called 
Monte-Carlo Tree Search (MCTS) approaches to solve long (but finite) horizon optimal 
control problems formulated as DPs. These MCTS methods enable smooth trade-off 
between the approximation error and the computational intensity. In the first phase of 
this research, we performed convergence analysis to show these MCTS methods 
converge in probability to the true cost function using variants of law of large numbers 
and Chebyshev’s theorem. Particularly, we proved that the convergence of two kinds of 
MCTS methods: a) tree-branching methods, where the state possibilities are evolved as a 
tree; b) non-overlapping tree branching, where the state possibilities are evolved with no 
shared nodes between the branches except for the root/parent node. In the second 
phase, we demonstrated the effectiveness of these MCTS methods in two case studies: 
linear quadratic control problems, UAV motion control problems. Part of these results 
were recently presented at the 4th IEEE Conference on Control Technology and 
Applications (CCTA 2020) [3]. Since the possibilities grow exponentially with the planning 
horizon in MCTS methods, we developed pruning strategies (with polynomial-time 
complexity) and studied their convergence. All the results from this work were recently 
published in the journal IEEE Control Systems Letters [4].  

 
III. Decentralized Data Fusion in Networked Sensor Systems 

Autonomous and adaptive sensing has applications such as target tracking, surveillance, 
and autonomous car navigation. Particularly, target tracking via adaptive sensing is 
becoming increasingly important in autonomous car industry for accurate pedestrian 
detection and tracking. Sensors such as RADAR, LIDAR, optical sensors, thermal sensors 
are typically used to measure the target state including its position, velocity, and 
acceleration. Target tracking with multiple sensors was studied in the past, where a 
central fusion node is typically responsible for making sensing decisions (e.g., sensor 
location - assuming sensor mounted on a moving vehicle) for all the sensors combined. 
Clearly, sensing decisions optimized for all the sensors combined provides the best target 
tracking performance as these decisions are coupled via sensor data fusion. The main 
drawback with these centralized decision making methods is that they are 
computationally intensive as the computational complexity is exponential in the decision 
space and the number of sensors. To address this challenge, we developed a 
decentralized autonomous sensing method over a networked sensor system for a target 
tracking application. Specifically, we extended an existing approach called average 
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consensus algorithm to perform decentralized data fusion while tracking a moving 
target. Our preliminary studied demonstrated that our methods significantly outperform 
the standard decentralized Bayesian data fusion approaches. These results were recently 
presented at the IEEE 10th Annual Computing and Communication Workshop and 
Conference (IEEE CCWC 2020) [5].     

 
IV. Waveform optimization for joint radar communications performance 

In the past, we have developed optimization frameworks for waveform design in joint 
radar communications systems. Particularly, we developed methods to optimize the 
spectral shape of the radar waveform while minimizing the interference from 
communications systems (radar and wireless communications coexist in the same 
spectrum) and maximizing the radar target tracking performance. In our final report to 
AFOSR in 2018, we summarized the results from this research. This research helped us 
establish a collaboration with the Bliss Lab at Arizona State University. Building on this 
research, we addressed a new set of challenges associated with waveform design for 
joint radar communications systems for “long-term” performance. Specifically, we 
developed methods to design waveforms while accounting for their impact on the long-
term performance. Particularly, we posed the waveform co-design for radar and 
communications as a partially observable Markov decision process (POMDP). POMDP is 
a stochastic control framework useful in modeling stochastic systems with Markovian 
dynamics and decision making. As POMDPs have PSPACE-Complete computational 
complexity, we solved the waveform co-design problem posed as POMDP using an 
existing approximate dynamic programming approach called nominal belief-state 
optimization (NBO). The NBO method allowed us to obtain the optimal (or suboptimal) 
waveform parameters in near real-time. Moreover, this POMDP-based waveform co-
design approach proved to superior to the existing myopic waveform design methods in 
terms of the radar and communications data rates. These results were published in the 
proceedings of the 54th Asilomar Conference on Signals, Systems and Computers 
(Asilomar 2020) [6]. Furthermore, we extended the MCTS-based ADP schemes, discussed 
in Section II,  to solve the co-design problem. We also studied the impact of pruning 
strategies (also discussed in Section II) on MCTS methods in the waveform co-design 
context. We considered challenges including dealing with clutter, dynamic 
communications data rate requirements, and also extended decentralized decision 
making framework COLRO (discussed in Section I) for waveform co-design in large and 
heterogeneous joint radar-communications systems. The complete set of results from 
this work is submitted to the journal IEEE Transactions on Aerospace and Electronic 
Systems [7], which is currently under review. 
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Abstract-In this paper, we develop a decentralized collabo
rative sensing algorithm where the sensors are located on-board 
autonomous unmanned aerial vehicles. We develop this algorithm 
in the context of a target tracking application, where the objective 
is to maximize the tracking performance measured by the mean
squared error between the target state estimate and the ground 
truth. The tracking performance depends on the quality of the 
target measurements made at the sensors, which depends on the 
relative location of the sensors with respect to the target. Our goal 
is to control the motion of the swarm of vehicles with on-board 
sensors to maximize target tracking performance. Each sensor 
(on-board the vehicle) generates local noisy measurements of the 
target location, and the sensors maintain and update target state 
estimates via Bayesian data fusion rules using local measurements 
and the information received from neighboring sensors. The 
quality of the data fusion depends on the network graph over 
which the sensors exchange information, and this determines the 
overall target tracking performance. We also assume that each 
sensor is powered by a limited energy source; which we assume 
is drained by how frequently sensors exchange information. The 
goal is to optimize the collective motion of the vehicles/sensors 
(also determines the network graph connectivity) such that the 
mean-squared target tracking error and the network energy costs 
are jointly minimized. This problem belongs to a class of hard 
optimization problems called conflicting objective limited resource 
optimization (COLRO). We develop a fast heuristic algorithm, 
using dynamic programming principles, to solve this COLRO 
problem in real-time. 

Index Terms-Swarm systems, target tracking, competing 
objectives, sensor network 

I. INTRODUCTION 

There is a growing interest in decentralized and distributed 
autonomous sensing methods [1], [2], where the network 
connecting the sensors may be time-varying. With increasing 
number of sensor and surveillance systems in public places, 
there is a need for decentralized methods to track moving 
targets (e.g. movement of an intruder, movement of enemy 
tanks in battle field) with a network of sensors. However, 
the decentralized collaborative sensing in a wireless multi
sensor network is a challenging problem, especially when there 
are network energy costs involved. Since the battery-powered 
sensor nodes have limited energy, there is a need for methods 

This work was supported in part by Air Force Office of Scientific Research 
under grant FA9550-19-1-0070. 

Hans D. Mittelmann 
School of Mathematical and Statistical Sciences 

Ariwna State University 
Tempe, AZ 85287, USA. 
mittelmann@asu.edu 

that can trade off between the target tracking performance and 
the energy costs of acquiring the measurements and sharing 
them (with peers) over a network. If a distributed set of 
autonomous vehicles are connected via a wireless network 
(vehicle is considered a wireless node), due to the movement 
of the vehicles, the links in the network graph may form and 
break as the relative distances between the nodes change over 
time, thus leading to a time-varying graph. There is a growing 
interest in controlling the motion of the vehicles with on-board 
sensors for various applications such as formation control 
[3], [4], target tracking [5]. With this motivation, we develop 
a stochastic decision optimization framework to control the 
motion of a swarm of autonomous vehicles (e.g., unmanned 
aerial systems) to track a moving object, where the swarm is 
connected via a wireless network. 

As swarm-based systems tend to have a large number of 
vehicles, optimizing each motion control variable may lead to 
computationally expensive optimization problems; instead, we 
optimize the centroid location of the swarm. Once a desired 
centroid and network graph are obtained, the vehicles may 
choose one of infinitely many paths to achieve the desired 
centroid and the network graph. 

As mentioned earlier, we also optimize the network graph 
of the swarm, which determines how well the sensors (on
board the vehicles) fuse their local sensor measurements with 
the measurements received from the neighboring sensors, as 
depicted in Figure 1. Clearly, the objectives of maximizing the 
tracking performance and minimizing the network energy costs 
are competing, i.e., emphasizing one objective deteriorates 
the other. We refer to these problems as competing objective 
limited resource optimization (COLRO) problems. In this 
paper, we focus on solving COLRO problems in real-time in 
the context of networked swarm systems. 

II. PROBLEM SPECIFICATION AND APPROACH 

Let k represent the time index. A target moves on a 2-
D plane according to the constant velocity model [6]. Let Xk 
represent the target state at time k, which includes its location, 
velocity, and acceleration. According to the constant velocity 
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Fig. 1. Autonomous vehicle swarm tracking a target while jointly minimizing 
the tracking error and the energy consumption. 

model, the target state evolves according to the following 
equation: 

where F is the state-transition matrix, vk is the process noise, 
which is drawn from a zero-mean normal distribution with the 
co-variance matrix Q. Let n represent the number of vehicles 
in the swarm. We assume that the each vehicle in the swarm 
has an on-board sensor that generates noisy measurements of 
the target's location. The vehicles in the network are connected 
by a time-varying graph, represented by (h, where 

gk = [~~-l- . -~~~ .. ::: .. -~~~] 
an1 an2 . . . 0 

aij,i#i = 1 represents the ability of the sensors i and j 
to exchange measurements for data fusion at time k, and 
aij,i#i = 0 otherwise. Let Ck represent the centroid of the 
swarm at time k. We assume that the presence of a link 
between two sensors at time k lets the sensors exchange 
local measurements (generated at time k) for data fusion 
purpose. The sensors on-board the vehicles generate noisy 
measurements of the target positions in each time step. We 
use the standard Kalman filter to track the target state. Since 
the swarm is a decentralized system, each vehicle runs a local 
target tracking algorithm (Kalman filter), which is updated 
using the measurements generated locally and received from 
the neighboring nodes, where the measurement at ith sensor 
is given by: 

Zk = HposXk + Wk, Wk ~ N(O, Rk(sk, Xk)), (1) 

where Hpos is a matrix that captures just the position informa
tion in the target state vector Xk, wk is the measurement noise, 
and si is the position of the ith vehicle. We assume that the 
angular uncertainty is better than the range uncertainty; which 
is captured in the definition of the covariance matrix Rk, also 

• 
Target 

Error 
concentration 
ellipse of target 
measurement 

Fig. 2. Measurement error model. 

captured in Figure 2. The state of the tracking algorithm is 
given by (ff;,, PD, where ~k and Pk represent the mean vector 
and the error covariance matrix corresponding to target state 
estimation at the ith sensor. 

Let !track Wk, Ck) and fen ergy(gk, Ck) be functions repre
senting target tracking error and the energy consumed respec
tively from sensor i's perspective, as defined below: 

ftrack(gk, Ck)= IIXk - ~kll~ 
f energy(gk , Ck) = LLgk(i,j) linkcost(i,j) 

j 

(2) 

where linkcost ( i , j) represents the cost of using the link 
between sensors i and j for data fusion purpose. For simplicity, 
we assume the link cost is a constant and does not depend on 
i and j . As this is a decentralized system, each sensor in the 
system evaluates these functions using their own local target 
state estimates. 

The goal of this study is to optimize the variables gk and 
ck such that the objectives !track and !energy are jointly 
minimized over a long time horizon H. In other words, the 
goal boils down to solving a COLRO problem as described 
below: 

H-1 

min L E[pftrack(gk, Ck)+ 
9k ,C k, k=O , .. ,H-l (3) 

k=O 

(1 - p)fenergy(gk, Ck)] 

where E[·] is the expectation, and pis a weighting parameter. 
The above optimization problem resembles a long-horiwn op
timal control problem. These problems are notorious for high 
computational complexities, especially due to the presence of 
E[·], which is hard to evaluate explicitly. To overcome these 
computational issues, a class of approximation techniques 
called approximate dynamic programming (ADP) approaches 
are used. With this motivation, we adopt an ADP approach 
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called nominal belief-state optimization (NBO) [6], which 
allows us to approximate the expectation making its evaluation 
tractable. According to the NBO approach, the expectation is 
approximated by assuming the "future" noise variables take 
nominal or mean values from the probability distributions 
they are drawn from. Since we model the noise variables as 
zero-mean Gaussian, the nominal values are zeros. After the 
approximation, the COLRO problem reduces to 

H-1 

I1Ell L fFArack(gk, Ck)+ 
Qk ,Ck ,k-0, .. ,H-l k=O (4) 

(1 - p)fenergy(gk, Ck)] 

where !track and !energy are deterministic approximations 
to !track and !energy obtained from the NBO method. The 
reduced COLRO problem in Eq. 4 is highly nonlinear and non
convex, and also a mixed integer program since gk contains 
discrete variables. We use a numerical optimization solver 
called Knitro, which allows solving mixed integer programs 
such as the above reduced COLRO problem. 

With the NBO approach, !track Wk, Ck) is given by the 
trace of the error covariance matrix corresponding to the 
target state, which is obtained by running the Kalman filter 
by assuming: 1) the future process and measurement noise 
variables as zero; 2) the data fusion rules are applied according 
to the network graph state gk · 

A. Evaluation of Optimal UAV Kinematic Controls 

The decision variables gk and Ck depend on the positions 
of the UAVs over time. Of course, once the optimal values 
for gk and Ck are evaluated in Eq. 4, we still need to achieve 
the desired graph state and the desired swarm centroid by 
appropriately controlling the motion of the UAVs. Since the 
UAV kinematic control decisions depend on the optimal values 
of gk and Ck, we introduce a hierarchical model with two 
levels, where gk and Ck are optimized in the upper level (by 
solving Eq. 4) and the UAV kinematic controls are optimized 
in the lower level according to the following artificial potential 
field approach. 

Let gz and Cj; be the optimized network graph and the cen
troid location. At time k, on each UAV we apply an attractive 
potential field with the center at CZ, another attractive potential 
field between UAVs i and j (j -=/- i) if g;;(i , j) = 1 and the 
repulsive field otherwise. These two potential fields allow the 
UAVs to approach the desired centroid while forming/breaking 
network links to achieve gz. In addition, we also apply short
range repulsive potential fields between each pair of UAVs to 
avoid collisions. 

III. RESULTS AND DISCUSSION 

We implement the above-discussed methods in MATLAB 
for a scenario with three UAVs tracking a single target. We 
set the time horizon H = 6 and apply the receding horizan 
control [6] approach for planning and implementing the opti
mized decisions. For bench-marking, we also implement the 

Fig. 3. Three UAVs tracking a target. 

centralized UAV motion planning approach discussed in [6]; 
we call this centralized fusion approach. 

Figure 3 shows the trajectories of three UAVs tracking a 
target. The target and the UAV s begin their motion in the 
bottom-left region, and move toward the top-right region. 
Figures 4 and 5 show the network link status (three links 
for three UAVs) as a function of time for the weighting 
parameter in Eq. 4 set top = 0.2 and p = 0.01 respectively. 
Clearly, in Figure 5, the UAVs exchange information less often 
compared to the scenario in Figure 4. These figures clearly 
demonstrate our ability to smoothly trade off between the two 
competing performance indices. We evaluate the normed error 
between the actual target location (ground truth) and the target 
location estimate at each sensor over time for the scenario 
in Figure 3. In Figure 6, we compare the performance of 
the above-discussed approach against the centralized fusion 
approach, which clearly shows that the tracking performance 
of the centralized approach is just marginally better than 
our COLRO-based methods discussed here. Of course, in 
the centralized approach, the performance with respect to the 
network energy costs is ignored. In other words, our approach, 
while slightly trading off the tracking performance, gains 
significantly in the performance with respect to the network 
energy consumption. 

IV. CONCLUSIONS 

In this paper, we presented a real-time heuristic approach 
to solve a competing objective limited resource optimization 
(COLRO) problem in the context of a networked DAV/sensors 
system. The objective is to optimize the motion of a swarm of 
UAVs (equipped with sensors) to track a moving target, while 
jointly minimizing the tracking error and the network energy 
cost. This optimization problem lead to long horizan opti
mal control problem, which is known to be computationally 
hard. So, we extended our previously developed approximate 
dynamic programming approach called nominal belief state 
optimization to solve the above COLRO problem. We tested 
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Fig. 6. Normed target location error: COLRO-based approach vs. centralized 
approach. 

the performance of the approach in a simulated environment 
(implemented in MATLAB), and compared the performance of 
our approach with a centralized fusion approach (benchmark). 
We found our method to lose on the tracking performance only 

minimally compared to the centralized fusion approach, while 
significantly saving the network energy costs. 
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Abstract: In this paper, we present a decentralized unmanned aerial vehicle (UAV) swarm formation
control approach based on a decision theoretic approach. Specifically, we pose the UAV swarm motion
control problem as a decentralized Markov decision process (Dec-MDP). Here, the goal is to drive the
UAV swarm from an initial geographical region to another geographical region where the swarm must
form a three-dimensional shape (e.g., surface of a sphere). As most decision-theoretic formulations
suffer from the curse of dimensionality, we adapt an existing fast approximate dynamic programming
method called nominal belief-state optimization (NBO) to approximately solve the formation control
problem. We perform numerical studies in MATLAB to validate the performance of the above
control algorithms.

Keywords: swarm intelligence; formation control; decentralized Markov decision process; approxi-
mate dynamic programming

1. Introduction

Unmanned Aerial Vehicle (UAV) swarm formation has applications in many areas
of research, such as infrastructure inspection [1], surveillance [2,3], target tracking [4],
and precision agriculture [5]. There are existing methods in the literature to control UAV
swarms using centralized methods [6–11], where there is a command center (centralized
system) computing optimal motion commands for the UAVs. Centralized methods are rela-
tively easy to develop and implement, but computational complexity grows exponentially
with the size of the swarm. To address this challenge, we present a decentralized UAV
swarm formation control approach using decentralized Markov decision process frame-
work. The main goal this study is to drive the swarm fly and hover in a certain geographical
region while forming a certain geometrical shape. The motivation for studying such prob-
lems comes from data fusion applications with UAV swarms where the fusion performance
depends on the strategic relative separation of the UAVs from each other [12,13]. We previ-
ously studied decentralized decision making frameworks for UAV swarm formation in
two-dimensional (2D) scenarios [14], while in this study, we decentralized control strategies
in three-dimensional (3D) scenarios.

The formation control of vehicle swarms has many applications in areas including
infrastructure inspection, precision agriculture, intelligent transportation, and surveillance.
In many applications in these domains, strategic placement of the vehicles (forming a
certain geometrical shape, e.g., points on the surface of a sphere) can lead to significant
gains in data fusion performance due to the different vantage points of the sensors on-board
the vehicles observing a target of interest [10]. Suppose the vehicles carry optical cameras
generating 2D images of a 3D object, and if the goal is to reconstruct the 3D shape of the
object via the 2D images (i.e., tomography-based methods), the strategic placements of
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the vehicles around the object can have significant impact on the performance of the 3D
shape reconstruction.

Different formation control settings have been studied in the past: ground
vehicles [15–17], unmanned aerial vehicles (UAVs) [18,19], surface and underwater au-
tonomous vehicles (AUVs) [20,21]. Regardless of settings, there are many different method-
ologies developed by the researchers to tackle formation control problem, e.g., behavior-
based, virtual structure, and leader following. The authors of [22,23] developed a behavior-
based approach in which they described the desired behavior for each robot, e.g., collision
avoidance, formation keeping, and target seeking. The control commands for the robot is
determined by weighing the relative importance of each behavior. The virtual structure ap-
proach [24,25] takes a physical object shape as a reference and mimics the formation of that
shape. The robots are required to communicate with each other in order to achieve a for-
mation in this approach which requires significant communication costs (e.g., bandwidth).
The leader following approach [15] requires a robot, assigned as a leader, which moves
according to a predetermined trajectory. The other robots, the followers, are designed to
follow the leader, maintaining a desired distance and orientation with respect to the leader.
The main drawback of this approach is that the followers are dependent on the leader to
achieve the goal (formation). The system may collapse if the leader fails when the leader
possibly runs short on power or when the communications link fails. Considering the
aforementioned limitations of formation control, which specifically stem from centralized
approaches, we develop a decentralized Markov decision process (Dec-MDP)-based forma-
tion control approach for a UAV swarm. Our decentralized control strategies are robust to
failures of individual UAVs in the swarm and also robust to communications link failures.

Centralized control strategies for UAV swarm control are well studied [7–9,11,26].
For instance, the authors of [6,7] developed UAV control strategies for target tracking in a
centralized setting. In centralized systems like these, typically, there exists a notional fusion
center (a computing node) that collects and fuses the sensor measurements (e.g., using
Bayes’ theorem) from all the UAVs and runs a tracking algorithm (e.g., Kalman filter) to
maintain and update the estimate of the state of the system. More importantly, the fusion
center computes the combined optimal control commands for all the UAVs to maximize the
system performance. For instance, the authors of [10] used the notion of fusion center to
control fixed-wing UAVs for multitarget tracking while accounting for collision avoidance
and wind disturbance on UAVs. Although, these centralized control and fusion strategies
are easy to implement, they are computationally expensive especially if the swarm is large.
Specifically, the computational complexity increases exponentially with the number of
UAVs in the swarm.

To tackle these challenges, a few studies in the literature developed decentralized
control strategies [14,26–29]. The authors of [26] used the decentralized partially observable
Markov decision process (Dec-POMDP) to formulate and solve a target tracking problem
with a swarm of decentralized UAVs. As solving decentralized POMDP is very difficult
(as is the case with solving any decision-theoretic methods), the authors introduced an
approximate dynamic programming method called nominal belief-state optimization (NBO)
to solve the control problem. The authors in [30] developed a UAV formation control
approach using decentralized Model Predictive Control (MPC). In their work, the UAVs
were able to avoid collisions with multiple obstacles in a decentralized manner. They used
a figure of eight as a reference trajectory; their results show that the UAVs were able to
avoid collision with obstacles and among themselves. Several recent papers describe the
formation control of different geometric shapes, e.g., multi-agent circular shape with a
leader [9]. The authors of [9] propose centralized formation control, which is not suitable
for swarm control when the number of UAVs in the swarm is large. Although decentralized
control methods exist in the literature, our method is novel in the sense that each UAV
in the swarm optimizes its own control commands and its nearest neighbor’s controls
over time. Then, each UAV implements its own optimized controls, and discards the
neighbor’s controls. We anticipate, from this decentralized control optimization approach,
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a global cooperative behavior among the UAVs emerges mimicking a centralized control
approach. The authors of [31] demonstrated a successful use of a distributed UAV control
framework for wildfire monitoring while avoiding in-flight collisions. The authors of [32]
introduced path tracking and desired formation for networked mobile vehicles using non-
linear control theory to maintain the formation in the network. They have showed that path
tracking error of each vehicle is reduced to zero and formation is achieved asymptotically.
As centralized control strategies suffer from exponential computational complexity and
high memory usage, the decentralized control methods are being actively pursued in the
context of swarm control, especially when the size of the swarm is large. A survey of these
decentralized control strategies can be found in [29].

In this paper, we develop a novel decentralized UAV swarm formation control ap-
proach using Dec-MDP formation. In this problem, the goal is to optimize the UAV control
decisions (e.g., waypoints) in a decentralized manner, such that the swarm forms a certain
geometrical shape while avoiding collisions. We use dynamic programming principles to
solve the decentralized swarm motion control problem. As most dynamic programming
problems suffer from the curse of dimensionality, we adapt a fast heuristic approach called
nominal belief-state optimization (NBO) [10,33] to approximately solve the formation control
problem. We perform simulation studies to validate our control algorithms and compare
their performance with centralized approaches for bench marking the performance.

Key Contributions

• We formulate the UAV swarm formation control problem as a decentralized Markov
decision process (Dec-MDP).

• We extend an approximate dynamic programming method called nominal belief-state
optimization (NBO) to solve the formation control problem.

• We perform numerical studies in MATLAB to validate the swarm formation control
algorithms developed here.

• One of the key contributions of this paper is to induce cooperative behavior among the
UAVs in the swarm via the following novel decentralized control
optimization strategy:

– Each UAV i optimizes the control vector [ai
k, ann

k ] at time k, where ai
k is the control

vector for UAV i, and ann
k is the control vector for its nearest neighbor.

– Next, UAV i discards the optimized controls for its neighbor and implements just
its own controls ai

k.
– Each UAV in the system implements the above approach.

The rest of the paper is organized as follows. Section 2 provides the problem specifica-
tion and objectives. We also formulate the problem using decentralized Markov decision
process in Section 2 followed by the discussion on the NBO approach in Section 3. UAV
motion model and dynamics are provided in Section 4. In Section 5, we discuss simulation
results to evaluate the performance of our method.

2. Problem Formulation

Unmanned aerial vehicles: We consider quadrotor motion dynamics in 3D, as mod-
eled in [34,35]. In this study, our goal is to optimize the waypoints (position coordinates in
3D space) for the quadrotors to guide the UAVs to their destination formation shape while
avoiding collisions.

Communications and Sensing: We assume that UAVs are equipped with sensing
systems and wireless transceivers with which each UAV learns the exact location and the
velocity of the nearest neighboring UAV. Our decentralized control method requires only
the kinematic state (location and velocity) of the nearest neighbor to optimize the control
commands of the local UAV.

Objective: The goal is to control the swarm (optimizing waypoints) in a decentralized
manner, such that the swarm arrives at a certain pre-determined 3D geometrical surface in
the shortest time possible while avoiding collisions.

DISTRIBUTION A: Distribution approved for public release.
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We formulate the swarm formation control problem as a decentralized Markov de-
cision process (Dec-MDP). Dec-MDP is a mathematical formulation useful for modeling
control problems for decentralized decision making. This formulation has the following ad-
vantages: (1) allows us to efficiently utilize the computing resources on-board all the UAVs,
(2) requires less computational time compared to centralized approaches, (3) as UAVs are
decentralized, point of failure of the entire mission is minimal, (4) decentralized approach
provides robustness to addition or deletion of UAVs to the swarm, (5) UAVs do not need to
rely on a central command center for evaluating optimal control commands. We define the
key components of Dec-MDP as follows. Here, k represents the discrete-time index.

Dec-MDP Ingredients

Agents/UAVs: We assume there are N UAVs in our system. The set of UAVs is given
by an index vector I = {1, ...., N}. This index vectors may be referred to as a set of agents
or set of independent decision makers. Here, a UAV can be considered an agent or a
decision maker.

States: We model the system dynamics in discrete time, where k represents the time
index. The state of the system sk includes the locations and velocities of all the UAVs in
the system.

Actions: The actions are the controllable aspects of the system. We define action
vector ak = (a1

k , . . . , aN
k ), where ai

k represents the action vector at UAV i, which includes the
position coordinates in 3D for the UAV.

State Transition Law: State transition law describes how the state evolves over time.
Specifically, the transition law is a conditional probability distribution of the next state given
the current state and the current control actions (assuming the Markovian property holds).
The transition law is given by sk+1 ∼ pk(·|sk, ak), where pk is the conditional probability
distribution. Since the state of the system only includes the states of the UAVs, the state
transition law is completely determined by the dynamics of the UAVs (discussed in the next
section). In other words, the transition law is given by si

k+1 = ψ(si
k, ai

k) +W
i
k, i = 1, . . . , N,

where si
k represents the state of the ith UAV and ai

k indicates the local dynamic controls
(position coordinates) of ith UAV, ψ represents the motion model as discussed in Section 4,
andW i

k represents noise, which is modeled as a zero-mean Gaussian random variable.
Cost Function: The cost function C(sk, ak) deals with cost of being in a given state sk

and performing actions ak. Here, sk represents the global state, i.e., the state of all the UAVs
in the system. Since the problem is decentralized, each UAV only has access to its local state
and the state of the nearest neighboring UAV. Let bi

k = (si
k, snn

k ) represent that local system
state at UAV i, where snn

k is the state of the nearest neighboring UAV, and nn ∈ I\{i}.
Let di be the destination location UAV i must reach, and dcoll,thresh is the distance

between the UAVs below which the UAVs are considered to be at the risk of collision. We
now define the local cost function for UAV i, as follows:

c(bi
k, ai

k, ann
k ) = w1

[
dist(si,pos

k , di) + dist(snn,pos
k , dnn)

]
+ w2

[
dist(si

k, snn
k )−1I

(
dist(si

k, snn
k ) < dcoll,thresh

)] (1)

where si,pos
k represents the location of the ith UAV, w1 and w2 are weighting parameters,

dist(a, b) represents the distance between locations a and b, and I(a) is the indicator
function, i.e., I(a) = 1 if the argument a is true and 0 otherwise.

By minimizing the above cost function, each UAV optimizes its own control commands
and that of its neighbor, but only implement its own local control commands and discards
the commands optimized for its neighbor. The first part of the cost function lets the UAV
reach its destination, while the second part minimizes the risk of collisions between UAVs.

The Dec-MDP starts at an initial random state s0 and the state of the system evolves
according to the state-transition law and the control commands applied at each UAV.
The overall objective is to optimize the control commands at each UAV i such that the
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expected cumulative local cost over a horizon H (shown below) is minimized. where bi
0 is

the initial local state at UAV i, and the expectation E[·] is over the stochastic evolution of the
local state over time (due to the random variables present in the UAV dynamic equations).

min
{ai

k ,ann
k },k=0,...,H−1

E

[
H−1

∑
k=0

c(bi
k, ai

k, ann
k )

∣∣∣∣∣bi
0

]
(2)

3. NBO Approach to Solve Dec-MDP

It is well know in the literature that solving Equation (2) exactly is computationally
prohibitive and not practical. For this reason, we extend a heuristic approach called nominal
belief-state optimization (NBO) [10]. As discussed in the previous section, we let a UAV
optimize its own and its nearest neighbor’s controls over the time horizon H. Once the UAV
calculates local controls for itself and its neighbors, the UAV implements its own controls
and discards its neighbors controls at each time step. Since obtaining the expectation in
Equation (2) exactly is not tractable, the NBO approach approximates this expectation by
assuming that all the future random variables (over which the expectation is supposed
to be evaluated) assume the nominal values, i.e., the mean values. Since we model the
above-mentioned random variable as zero-mean Gaussian, the nominal values are simply
zeros. In summary, the NBO approach approximates the cumulative cost function in
Equation (2) by replacing the expectation with the random trajectory of the states over time
by a sequence of states obtained by replacing future random variables with zeros. In the
NBO method, the objective function at agent i is approximated as follows:

J(bi
0) ≈

H−1

∑
k=0

c(b̂i
k, ai

k, ann
k ), (3)

where b̂i
1, b̂i

2, . . . , b̂i
H−1 is a nominal local state sequence.

4. UAV Motion Model

The state of the ith UAV at time k is given by si
k =

(
xi

k, yi
k, zi

k, φi
k, θi

k, ψi
k
)
, where(

xi
k, yi

k, zi
k
)

are position coordinates and
[
φi

k, θi
k, ψi

k
]
= [bank angle, pitch angle, heading angle]

are the Euler angles. The UAV motion dynamics are given by the following equations.

uk+1 = T(−g sin(θk) + rkvk − qkwk) + uk +Wu
k

vk+1 = T(g sin(φk) cos(θk)− rkuk + pkwk) + vk +Wv
k

wk+1 = T
(

1
m
(−Fz) + g cos(φk) cos(θk) + qkuk − pkvk

)
+ wk +Ww

k

pk+1 = T
(

1
Ixx

(L + (Iyy − Izz)qkrk)

)
+ pk +W

p
k

qk+1 = T
(

1
Iyy

(M + (Izz − Ixx)pkrk)

)
+ qk +W

q
k

rk+1 = T
(

1
Izz

(N + (Ixx − Iyy)pkqk)

)
+ rk +W r

k

φk+1 = T(pk + (qk sin φk + rk cos φk) tan θk) + φk +W
φ
k

θk+1 = T(qk cos φk − rk sin φk) + θk +W θ
k

ψk+1 = T((qk sin φk + rk cos φk) sec θk) + ψk +W
ψ
k

xk+1 = T
(

cθk cψk ub + (−cφk sψk + sφk sθk cψk )v
b + (sφk sψk + cφk sθk cψk )w

b
)
+ xk +W x

k
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yk+1 = T
(

cθk sψk ub + (cφk cψk + sφk sθk sψk )v
b + (−sφk cψk + cφk sθk sψk )w

b
)
+ yk +W

y
k

zk+1 = T
(
−1 ∗ (−sθk ub + sφk cθk vb + cφk cθk wb)

)
+ zk +W z

k

where,Wk is a zero-mean Gaussian random variables, [uk, vk, wk] = [longitudinal velocity,
lateral velocity, normal velocity] are the linear velocity, and [pk, qk, rk] = [roll rate, pitch rate, yaw
rate] represent the angular velocity of the vehicle at time k. [Fx, Fy, Fz] are linear translation
forces and [L, M, N] are angular moments.

UAV Motion Control

We implement a linear controller [36] to produce the appropriate torque and thrust in
order to drive the UAV to the desired state in SO(3), governed by the optimized waypoints.
The Figure 1 shows how the waypoints generator works with the controller. We make the
following assumptions for the linear controller.

• We linearize the trigonometric functions assuming roll angle φ and pitch angle θ small
enough, i.e., cos φ = 1, sin φ = φ, cos θ = 1, sin θ = θ

• The angular velocity of the UAV is also considered small enough

 

Waypoint 

optimizer 

NBO Dec-MDP 

Controller Dynamics 

Sensor Data 

(states) 

Figure 1. UAV formation shape control architecture.

The linear controller is described extensively in [37,38]. The control problem is to
calculate the inputs u1 = ∑4

i=1 Fi and u2 required to track a set of waypoints rw
k . The input

u2 is given by the following equation.

u2 =

 0 L 0 −L
−L 0 L 0
γ γ γ γ




F1
F2
F3
F4


where, [F1, F2, F3, F4] are propeller forces and γ is the drag coefficient.

Position control. The position control method use the bank and the pitch angles as
inputs to drive the position of the UAV. The position controller determines the desired
bank angle φdes and desired pitch angle θdes. The desired bank and pitch angles are used to
calculate the desired speed of the UAV [37].

5. Simulation Results

We assume that each UAV has its own on-board computer to compute the local optimal
control decisions. We implement the above-discussed NBO approach to solve the swarm
control problem in MATLAB. We test our methods in two scenarios—a spherical shape
with and without an obstacle. The UAVs are aware of the shape dimensions and the exact
location of shape. Each UAV randomly picks a location on the formation shape, and uses
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the NBO approach to arrive at this location. We use MATLAB’s fmincon to solve the NBO
optimization problem. Here, we set the horizon length to H = 3 time steps.

We define the following metrics to measure the performance of our formation control
approach: (1) Tc-average computation time to evaluate the optimal control commands and (2) Tf :
time taken for the swarm to arrive on the formation shape. As a benchmark method, we use
a centralized approach to solve the above-discussed swarm formation control problem.
In other words, we use a single NBO algorithm, which optimizes the motion control
commands for all the UAVs together based on the global state of the system. We implement
this centralized algorithm in MATLAB.

We implement the Dec-MDP approach with a spherical formation shape with and
without an obstacle. The resulting swarm motion is shown in Figure 2 for the spheri-
cal formation shape in the absence of any obstacle using the cost function described in
Equation (1). The scenario with an obstacle considers the following cost function.

c(bi
k, ai

k, ann
k ) = w1

[
dist(si,pos

k , di) + dist(snn,pos
k , dnn)

]
+ w2

[
dist(si

k, snn
k )−1I(dist

(
si

k, snn
k ) < dcoll,thresh

)]
+ w3

[
dist(si

k, sobstacle
k )−1I(dist

(
si

k, sobstacle
k ) < dcoll,obstacle

)]
where sobstacle

k is the location of an obstacle, dcoll,obstacle is a collision threshold with the
obstacle, and w3 is a weighting parameter. The indicator function I(b) = 1, if the argument
b is true and 0 otherwise. The resulting motion of the scenario with the obstacle is shown
in Figure 3. For this scenario, we also plot the distance between every pair of UAVs in the
swarm, as shown in Figure 4. Here, we assume that there is a collision risk between a pair
of UAVs when the distance between them is less than 5 m. Clearly, the Figures 3 and 4
demonstrate that our decentralized algorithm drives the swarm to the destination while
successfully avoiding collisions between the UAVs.

Figure 2. UAV swarm converging to the spherical formation shapes in 3D.
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Figure 3. UAV swarm converging to the spherical formation shapes avoiding obstacle.

2 4 6 8 10 12 14
0

2

4

6

8

10

12

Distance threshold for collision (5 m)

Figure 4. Distance between each pair of UAVs.

We calculate the Tc and Tf values for both the centralized and the decentralized
algorithms for 10 UAVs. Figure 5 and Table 1 clearly demonstrate that our decentralized
method significantly outperforms the centralized method with respect to both the metrics
Tc and Tf .

Table 1. Average time taken by the swarm to arrive at the formation shape.

Dec-MDP Centralized

Tf (sec) 16.7 25.98
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Figure 5. Computation time (Tc): centralized vs decentralized method

Dec-MDP Centralized
Tf (sec) 16.7 25.98

Table 1. Average time taken by the swarm to arrive at the formation shape.

Clearly, the Figures 3, and 4 demonstrate that our decentralized algorithm drives the swarm to the
destination while successfully avoiding collisions between the UAVs.

We calculate the Tc and Tf values for both the centralized and the decentralized algorithms
for 10 UAVs. Figure 5 and Table I clearly demonstrate that our decentralized method significantly
outperforms the centralized method with respect to both the metrics Tc and Tf .

We now compute average computation time and average pairwise distance with respect to
neighborhood threshold where each UAV communicates with other UAVs within the radius of
neighborhood threshold. If neighborhood threshold is infinity, a UAV can communicate with all
other UAVs in the swarm. UAVs optimize its decision together with neighbors which depends
on neighborhood threshold and implement its own control. We expect that with the increase of
neighborhood threshold, average computation time rises and after certain neighborhood threshold,
average computation time saturates. Figure 6 shows average computation time rise until neighborhood
threshold reach 240 m and then waves between 20 to 25 sec.

We also expect that with the increase of neighborhood threshold, average pairwise distance drops.
The reason we are interested in analyzing average pairwise distance is, we expect the swarm to be as
closely as possible while avoiding collision between UAVs. Small average pairwise distance allows
the swarm to be more cooperative while saving battery life as communication distance depends on
distance between UAVs. Figures 7 and 6 suggest that neighborhood threshold more than 130 m allows
UAVs to stay closely in the swarm with reasonable computation cost.

Figure 5. Computation time (Tc): centralized vs. decentralized method.

We now compute average computation time and average pairwise distance with
respect to neighborhood threshold where each UAV communicates with other UAVs
within the radius of neighborhood threshold. If neighborhood threshold is infinity, a UAV
can communicate with all other UAVs in the swarm. UAVs optimize their decisions
together with neighbors, which depend on neighborhood threshold and implement its own
control. We expect that, with the increase in neighborhood threshold, average computation
time rises and, after certain neighborhood threshold, average computation time saturates.
Figure 6 shows average computation time rise until neighborhood threshold reach 240 m
and then waves between 20 to 25 s.
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Figure 6. Average computation time with respect to neighborhood threshold.
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We also expect that with the increase of neighborhood threshold, average pairwise
distance drops. The reason we are interested in analyzing average pairwise distance is,
we expect the swarm to be as close as possible while avoiding collision between UAVs.
Small average pairwise distance allows the swarm to be more cooperative while saving
battery life as communication distance depends on distance between UAVs. Figures 6 and 7
suggest that a neighborhood threshold of more than 130 m allows UAVs to stay close in the
swarm with reasonable computation cost.
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Figure 7. Average pairwise distance with respect to neighborhood threshold.

6. Conclusions

In this paper, we developed decentralized control method for UAVs in the context
of formation control. Specifically, we extended a decision-theoretic formulation called
decentralized Markov decision process (Dec-MDP) to develop near real-time decentralized
control methods to drive a UAV swarm from an initial formation to a desired formation
in the shortest time possible. As decision-theoretic approaches suffer from the curse of
dimensionality, for computational tractability, we extended an approximate dynamic pro-
gramming method called nominal belief-state optimization (NBO) to approximately solve
the Dec-MDP. For benchmarking, we also implemented a centralized approach (Markov
decision process-based) and compared the performance of our decentralized control meth-
ods against the centralized methods. In the context of the formation control problem, our
results show that the average computation time for obtaining the optimal controls and the
time taken for the swarm to arrive at the formation shape are significantly less with our
Dec-MDP approach compared with that of the centralized methods. We also studied the
impact of neighborhood threshold on multiple performance metrics in a UAV swarm.

The formation control approach discussed in this thesis can be extended to 3D forma-
tion, and these formations can be used to sense the environments for 3D reconstruction of
a scene. The vantage points of the UAVs in the swarm in 3D formation can be exploited
for the efficient reconstruction of the scene in 3D, while extending tomography-type ap-
proaches. The decentralized control strategies presented in this thesis can be extended to
control the motion of the UAVs in the swarm to maximize the efficiency of the above 3D
scene reconstruction process. These methods have several applications, including the use
of drones to map unexplored and unsafe regions (e.g., caves, underground mines, toxic
environments).
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Random-Sampling Multipath Hypothesis Propagation for Cost
Approximation in Long-Horizon Optimal Control

Shankarachary Ragi, IEEE Senior Member, and Hans D. Mittelmann

Abstract—In this paper, we develop a Monte-Carlo based
heuristic approach to approximate the objective function in
long horizon optimal control problems. In this approach,
we evolve the system state over multiple trajectories into
the future while sampling the noise disturbances at each
time-step, and find the weighted average of the costs
along all the trajectories. We call these methods random
sampling - multipath hypothesis propagation or RS-MHP.
These methods (or variants) exist in the literature; however,
the literature lacks convergence results for a generic class
of nonlinear systems. This paper fills this knowledge gap to
a certain extent. We derive convergence results for the cost
approximation error from the MHP methods and discuss
their convergence (in probability) as the sample size in-
creases. As a case study, we apply RS-MHP to approximate
the cost function in a linear quadratic control problem
and demonstrate the benefits of our approach against an
existing and closely related approximation approach called
nominal belief-state optimization.

Index Terms—Long horizon optimal control, cost ap-
proximation, approximate dynamic programming, multi-
path hypothesis propagation.

I. INTRODUCTION

Long-horizon optimal control problems appear nat-
urally in robotics, advanced manufacturing, and eco-
nomics, especially in applications requiring decision
making in stochastic environments. Often these problems
are solved via dynamic programming (DP) formulation
[1]. DP problems are notorious for their computational
complexity, and require approximation approaches to
make them tractable. A plethora of approximation tech-
niques called approximate dynamic programs (ADPs)
exist in the literature to solve these problems approx-
imately. Some of the commonly used ADPs include
policy rollout [2], hindsight optimization [3], [4], etc. A
survey of the ADP approaches can found in [1]. Feature-
based techniques and deep learning methods are gaining
importance in the development of ADP approaches as
discussed in [5]. These approximation techniques have
been successfully adopted to solve real-time problems
such as a UAV guidance control problem in [6]–[8].
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Certain ADP approaches, especially the methods based
on approximation in value space, require numerical ap-
proximation of the expectation in the objective function
[6]. In this study, our objective is to develop Monte-
Carlo-based approaches to approximate the expectation
in the objective function in the long (but finite) horizon
optimal control problems, and study their convergence.

A. Preliminaries

A long horizon optimal control problem is described
as follows. Let xk be the state vector for a system at
time k, which evolves according to a discrete stochastic
process as follows:

xk+1 = f (xk,uk,wk) (1)

where f (·) represents the state-transition mapping, uk
is the control vector, and wk random disturbance. Let
g(xk,uk) represent the cost (a real value) of being in state
xk and performing action uk. The functions f and g are
independent of k in our study, but can generally depend
on k. The goal is to optimize the control vectors uk,k =
0, . . . ,H − 1 such that the expected cumulative cost is
minimized, i.e., the goal leads to solving the following
optimization problem

min
uk,k=0,...,H−1

E

[
H−1

∑
k=0

g(xk,uk)

]
, (2)

where H is the length of the planning horizon. Let
x0 be the initial state and according to the dynamic
programming formulation the optimal cost function is
given by

J∗0 (x0) = min
u0

E [g(x0,u0)+ J∗1 (x1)] , (3)

where J∗1 represents the optimal cost-to-go from time
k = 1, and x1 = f (x0,u0,w0). In this study, long horizon
refers to the condition that H is sufficiently large that the
optimal policy is approximately stationary (independent
of k). Solving the above optimization problem is not
tractable mainly due to two reasons: the expectation E[·]
and the optimal cost-to-go J∗1 are hard to evaluate, which
are usually approximated by numerical methods or ADP
approaches.

An ADP approach called nominal belief-state opti-
mization (NBO) [6], [9] was developed primarily to
approximate the above expectation. In NBO, the expec-
tation is replaced by a sample state trajectory generated
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with an assumption that the future noise variables in
the system take so called nominal or mean values,
thus making the above objective function deterministic.
The NBO method was developed to solve a UAV path
optimization problem, which was posed as a partially
observable Markov decision process (POMDP). POMDP
generalizes the long horizon optimal control problem
described in Eq. 2 in that the system state is assumed
to be “partially” observable, which is inferred via using
noisy observations and Bayes rules. Although the perfor-
mance of the NBO approach was satisfactory, in that it
allowed to obtain reasonably optimal control commands
for the UAVs, it ignored the uncertainty due to noise
disturbances thus leading to inaccurate evaluation of the
objective function. To address this challenge, several
methods exist in the literature usually referred to as
Monte-Carlo Tree Search (MCTS) methods as surveyed
in [10].

Inspired from the NBO method and MCTS meth-
ods, we develop a new MCTS method called random
sampling - multipath hypothesis propagation (RS-MHP)
and derive convergence results. In this study, we mainly
use the NBO approach as a benchmark for performance
assessment since RS-MHP builds on the NBO approach.

II. RANDOM SAMPLING MULTIPATH HYPOTHESIS
PROPAGATION (RS-MHP)

In the NBO method, the expectation is replaced by
a sample trajectory of the states (as opposed to random
states) generated by

x̃k+1 = f (x̃k,uk, w̄k), k = 0, . . . (4)

where x̃0 = x0 (initial state or current state), and w̄k is
the mean of the random variable wk. Thus, the long hori-
zon optimal control problem, with NBO approximation,
reduces to

min
uk

H−1

∑
k=0

g(x̃k,uk). (5)

The above reduced problem, without the need for evalu-
ating the expectation, can significantly reduce the com-
putational burden in solving the long horizon control
problems. However, the downside with this approach is it
completely ignores the uncertainty in the state evolution,
and may generate severely sub-optimal controls. To
overcome this trivialization, we develop a Monte-Carlo
approach to approximate the expectation described as
follows. For time step k = 1, we sample the probability
distribution of the noise disturbance N times to gener-
ate the samples wi

0 with corresponding probability pi
0,

i = 1, . . . ,N. Using these, we generate N sample states
at k = 1 generated according to

xi
1 = f (x0,u0,wi

0), ∀i. (6)

We repeat this sampling approach for time k = 2, i.e.,
we generate N noise samples wi

1 with corresponding
probability pi

1, i = 1, . . . ,N. Using these noise samples
and the sample states from the previous time step, we
generate N2 sample states at k = 2 according to

xi, j
2 = f (xi

1,u1,w
j
1), ∀i, j. (7)

We repeat the above sampling procedure until the last
time step k = H − 1 to generate NH−1 possible state
evolution trajectories using N noise samples generated
in each time step.

One can now replace the expectation in Eq. 2 with the
weighted average of the cumulative cost corresponding
to each state evolution trajectory, where the weights
are the probabilities or likeliness of the trajectories.
Clearly, the number of possible state trajectories grow
exponentially with the horizon length H. Although this
approach is not novel as many such methods exist in the
literature often classified as Monte-Carlo Tree Search
methods, our study is focused on deriving convergence
results of RS-MHP approaches.

To avoid the exponential growth in our RS-MHP
approach, at each time step we retain only M sample
states and prune the remaining states, and if the number
of sample states at a given time instance is less than or
equal to M, we do not perform pruning. For pruning, at
each time k, we rank the state trajectories up to time k
according to their likeliness (obtained by multiplying the
probabilities of all the noise samples that generated the
trajectory) and retain the top M trajectories with highest
likeliness and prune the rest. With this procedure, at
k =H−1, there would be only M state trajectories. With
pruning, the number of trajectories remains a constant
irrespective of the time horizon length. An illustration of
the above RS-MHP approach is shown in Figure 1 along
with the NBO approach. Here, we consider pruning
based on likeliness of the state trajectories as the costs
from these trajectories have higher contribution in the
cost function in Eq. 1 than the less likely trajectories. We
will consider other pruning strategies to further improve
the approximation error in our future study.

Let i = 1, . . . ,M represent the indices of the M distinct
state trajectories with q1,q2, . . . being their probabilities
(likeliness). The probability qi is evaluated by simply
multiplying the probabilities of the noise samples that
generate the trajectory i over time. These probabilities
are normalized, i.e., ∑

M
i=1 qi = 1. Let J represent the

actual objective function as described below

J = E

[
H−1

∑
k=0

g(xk,uk)

]
. (8)

We can now approximate the objective function J in
four possible ways as described below (assuming N >
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k k+1 k+2

k k+1 k+2
Sampling in NBO approach

Sampling in MHP approach

Mean
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samples
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Fig. 1. Sampling probability distributions of noise variables: NBO vs.
MHP.

M). Let xi
k represent the state at time k in the ith state

trajectory.
(I) Sample Averaging. We can simply approximate the

expectation with an average over all possible trajec-
tories as follows:

No pruning: J ≈ J̃NP =
1

NH−1

NH−1

∑
i=1

(
H−1

∑
k=0

g(xi
k,uk)

)

With pruning: J ≈ J̃P =
1
M

M

∑
i=1

(
H−1

∑
k=0

g(xi
k,uk)

)
(9)

(II) Weighted Sample Averaging. We can also approxi-
mate the expectation with a weighted average with
weights being the normalized likeliness indices of
the state trajectories given by qi, i = 1, . . . (and q̄i in
the pruned case) as follows:

No pruning: J ≈ J̄NP =
NH−1

∑
i=1

qi

(
H−1

∑
k=0

g(xi
k,uk)

)

With pruning: J ≈ J̄P =
M

∑
i=1

q̄i

(
H−1

∑
k=0

g(xi
k,uk)

)
.

(10)
For a given sequence of control decisions u0,u1, . . .,

let gi denote the cost of the ith trajectory given by

gi =
H−1

∑
k=0

g(xi
k,uk). (11)

Clearly, g1,g2, . . . are identically distributed random vari-
ables, where E[gi] = J, ∀i. In dynamic programming
formulations, we do not typically optimize the deci-
sion variables u0,u1, . . . together, except in certain ADP
schemes such as the NBO, where the decision variables
over a finite horizon are indeed optimized together.

The below result suggests that with sufficient number
of sample state trajectories (large N), the approximation
error in J̃NP becomes small enough to ignore.

Lemma 2.1: For any given sequence of controls
u0,ul , . . ., if the random variables g1,g2, . . . have finite
variances, J̃NP converges to J almost surely.
We can verify the above result using a variation of the
law of large numbers as stated below

J̃NP =
1

NH−1

NH−1

∑
i=1

gi
a.s.−−→ E [gi] = J, (12)

where a.s.−−→ represents almost sure convergence.
In most applications, normal distributions capture the

system or model uncertainties and noise characteristics
well, as can be seen in our previous studies [6], [11].
Suppose, for a given sequence of actions u0, . . . ,uH−1,
the trajectory cost variables g1,g2, . . . follow normal dis-
tribution with N (µ,σ2) where µ and σ2 are the mean
and the variance respectively. Of course, if µ is known,
then we do not need an approximation strategy as J = µ .
However, if g1,g2, . . . are known to follow a normal
distribution with unknown mean (µ) and variance (σ )
with possibly known bounds, i.e., µmin ≤ µ ≤ µmax and
σmin ≤ σ ≤ σmax, the following result holds significance.

Lemma 2.2: For a given sequence of actions
u0, . . . ,uH−1

J̄NP
a.s.−−→ J√

2πσ2
(13)

Proof: The likeliness probability of gi is qi. We also
know that qig1,q2g2, . . . are identically distributed, where
the expectation of this sequence is evaluated below

E [qigi] =
∫

∞

−∞

P(gi)giP(gi)dgi. (14)

Since gi ∼N (µ,σ2), the following holds:

E [qigi)] =
∫

∞

−∞

giP(gi)
2dgi

=

∫
∞

−∞

gi

(
1√

2πσ2
e−(gi−µ)2/2σ2

)2

dgi

=
1√

4πσ2

∫
∞

−∞

gi

(
1√

2πσ2
e−(gi−

√
2µ)2/2σ2

)2

dgi

=

√
2µ√

4πσ2
=

µ√
2πσ2

=
J√

2πσ2
.

(15)
Therefore, due to the law of large numbers

J̄NP =
NH−1

∑
i=1

qigi
a.s.−−→ E [qigi] =

J√
2πσ2

. (16)

Although the above result does not guarantee that the
approximation error for J̄NP converges to zero, we know
that the ratio J̄NP/J converges (in probability) to a limit
bounded above by the constant 1/

√
2πσ2

min.
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III. CASE STUDY

We implement the above-discussed MHP methods in
the context of a linear quadratic Gaussian control (LQG)
problem as discussed below. Although there are closed-
form solutions for LQG problems, this example allows
us to quantify the benefits of using RS-MHP methods
over existing similar methods, particularly NBO.

A. Linear Quadratic Problem

Let the system state evolve according to the following
linear equation:

xk+1 = (1−a)xk +auk +wk, wk ∼N (0,σ2), (17)

where 0 < a < 1 is a constant, and wk is a random
disturbance modeled by a zero-mean Gaussian distribu-
tion with variance σ2. The cost function over the time-
horizon H is defined as follows:

J = E

[
r(xH −T )2 +

H−1

∑
k=0

u2
k

]
, (18)

where r and T are constants. This is a simplified oven
temperature control example borrowed from [12].

If we apply the traditional NBO method, assuming
H = 2, the cost function J is approximated (assuming
nominal values or zeros for w0 and w1) as

JNBO = r
(
(1−a)2x0 +a(1−a)u0 +au1−T

)2
+u2

0 +u2
1

(19)
and the exact cost function J can be evaluated analyti-
cally as

J = r
(
(1−a)2x0 +a(1−a)u0 +au1−T

)2
+u2

0 +u2
1

+ rσ
2 ((1−a)2 +1

)
.

(20)
We notice the approximation error due to the NBO
method is

|JNBO− J|= rσ
2 ((1−a)2 +1

)
. (21)

This approximation error for a generic time-horizon H
(the above error term is derived for H = 2) is given by

|JNBO− J|= rσ
2

H−1

∑
n=0

(1−a)2n. (22)

The above expression suggests that the NBO approxi-
mation error can be significantly high depending on the
parameters a, σ , and r. With MHP approximation, the
cost function reduces to

JMHP =
1
P

(
P

∑
i=1

r(xi
H −T )2

)
+

H−1

∑
k=0

u2
k , (23)

where P is the number of state-trajectories generated
using the MHP approach, and xi

H is the final state in
the ith trajectory. Lemma 2.1 suggests that the approx-
imation error due to the above MHP method converges

(in probability) to zero. We verify this result with a
numerical simulation, where we implement the NBO
and the MHP methods with the following assumptions:
x0 = 0,r = 10,T = 1,H = 2,u0 = 0.55,u1 = 0.17,σ = 1.
We vary P from 100 to 10000 with increments of 100.
Figure 2 shows the cost function approximated using
MHP and NBO methods. The figure clearly demon-
strates that the error due to NBO approximation can be
significantly high, while MHP performs better in cost
approximation.
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Fig. 2. MHP vs. NBO

RS-MHP has better capability in approximating the
expectation operator in Eq. 1 than the NBO approach as
we consider multiple hypotheses of state trajectories in
RS-MHP as opposed to a single hypothesis in NBO. This
is demonstrated in the above case study. In our future
study, we will derive quantitative performance guaran-
tees of RS-MHP over NBO for generic long horizon
optimal control problems. The impact of parameters M
and N on the approximation error will also be considered
in our future study.

IV. CONCLUSIONS

In this paper, we developed two approximate dy-
namic programming or ADP methods to approximate the
cost function in long horizon optimal control problems.
Specifically, our methods called random sampling -
multipath hypothesis propagation or RS-MHP methods
are inspired from Monte-carlo Tree Search methods.
The basic theme of these methods is to evolve the
system state over multiple trajectories into the future
while sampling the noise disturbances at each time-
step. We derive convergence results that show that the
cost approximation error from our RS-MHP methods
converges (in probability) toward zero as the sample
size increases. As a case study, we applied our methods
to approximate the cost function in a linear quadratic
control problem, where we demonstrated the benefits of

17
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our approach against an existing approach called nominal
belief-state optimization or NBO. In our future study, we
will apply the above methods to more complex control
problems such as the UAV motion control problem we
studied in the past [6], where we applied the NBO
method to approximate the cost function. Additionally,
we will derive convergence results for a general classs
of nonlinear systems.
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Random-Sampling Monte-Carlo Tree Search
Methods for Cost Approximation in

Long-Horizon Optimal Control
Shankarachary Ragi , Senior Member, IEEE , and Hans D. Mittelmann

Abstract—We develop Monte-Carlo based heuristic
approaches to approximate the objective function in long
horizon optimal control problems. In these approaches, to
approximate the expectation operator in the objective func-
tion, we evolve the system state over multiple trajectories
into the future while sampling the noise disturbances at
each time-step, and find the average (or weighted average)
of the costs along all the trajectories. We call these meth-
ods random sampling - multipath hypothesis propagation
or RS-MHP. These methods (or variants) exist in the lit-
erature; however, the literature lacks results on how well
these approximation strategies converge. This letter fills
this knowledge gap to a certain extent. We derive stochas-
tic convergence results for the cost approximation error
from the RS-MHP methods and discuss their convergence
(in probability) as the sample size increases. We consider
two case studies to demonstrate the effectiveness of our
methods - a) linear quadratic control problem; b) unmanned
aerial vehicle path optimization problem.

Index Terms—Optimal control, optimization, Markov
processes, discrete event systems.

I. INTRODUCTION

LONG-HORIZON optimal control problems appear
naturally in robotics, advanced manufacturing, and eco-

nomics, especially in applications requiring decision making
in stochastic environments. Often these problems are solved
via dynamic programming (DP) formulation [1]. DP problems
are notorious for their computational complexity, and require
approximation approaches to make them tractable. A plethora
of approximation techniques called approximate dynamic pro-
grams (ADPs) exist in the literature to solve these problems
approximately. The main advantage of the ADP methods
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is that these approaches aim to approximate a term called
expected-value-to-go (EVTG) in Bellman’s principle [1]–[3]
while solving the DP problems, which is otherwise computa-
tionally intractable to evaluate. Commonly used ADPs include
policy rollout [4], hindsight optimization [5], [6], etc. A sur-
vey of the ADP approaches can be found in [1]. Feature-based
techniques and deep learning methods are gaining importance
in the development of ADP approaches [7]. In general, bound-
ing the performance of ADP approaches is hard, except when
the objective function has special properties. For instance,
the authors of [8], using the theory of string submodular-
ity [9], bounded the performance of generic ADP schemes if
the objective function satisfied certain curvature constraints.
Bounds on the approximation error from the ADP schemes
were derived for infinite horizon optimal control problems
in [10] when the objective functions satisfied certain crite-
ria. ADP methods have been successfully adopted to solve
real-time problems such as unmanned aerial vehicle (UAV)
guidance control [11], [12]. Certain ADP approaches, espe-
cially the methods based on approximation in value space,
require numerical approximation of the expectation in the
objective function [11].

In this letter, we develop Monte-Carlo-based approaches to
approximate the expectation in the objective function in the
long (but finite) horizon optimal control (LHC) problems, and
study their convergence. We refer to these methods as random
sampling multipath hypothesis propagation (RS-MHP) meth-
ods. RS-MHP methods are a variant of the existing broad class
of approaches called Monte-Carlo tree search (MCTS) meth-
ods. Our RS-MHP methods differ from the existing MCTS
methods in the following ways. Most MCTS methods (e.g.,
Upper Confidence Bounds for Trees [13]) apply sampling in
the action space or both in the action and state space, while
our methods focus on solely approximating the expectation
operator in the LHC objective function while sampling the
process noise distributions. This allows us to integrate RS-
MHP to approximate the expectation operator in existing ADP
methods including Q-learning, policy rollout, and hindsight
optimization [1]. Furthermore, RS-MHP allows a smooth and
parameterizable trade-off between the computational complex-
ity of the method and its closeness to the optimal solution, a
feature that is not present in the existing approaches such the
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nominal belief-state optimization (NBO) [11]. A preliminary
version of the parts of this letter were published as [14]. This
letter differs from the conference paper [14] in the following
ways: 1) we include detailed proofs omitted in the confer-
ence version; 2) we derive new convergence results and proofs
in Section II-A for non-overlapping tree branching models;
3) we implement our methods for a new case study - UAV
path optimization problem.

Our contributions in this letter include: a) new stochas-
tic convergence results on Monte-Carlo based approximation
methods to solve LHC problems; b) numerical studies to
show the above Monte-Carlo methods outperform an existing
approach to solve LHC in two case studies: linear quadratic
control problem, UAV path optimization problem.

A. Preliminaries

A long horizon optimal control problem is described as
follows. Let xk be the state vector for a system at time k,
which evolves according to a discrete stochastic process as
xk+1 = f (xk, uk, wk), where f (·) represents the state-transition
mapping, uk is the control vector, and wk random disturbance.
Let g(xk, uk) represent the cost (a real value) of being in state
xk and performing action uk. The functions f and g are inde-
pendent of k in our study, but can generally depend on k. The
goal is to optimize the control vectors uk, k = 0, . . . , H − 1
such that the expected cumulative cost is minimized, i.e., the
goal leads to solving the following optimization problem

min
uk,k=0,...,H−1

E

[
H−1∑
k=0

g(xk, uk)

]
, (1)

where H is the length of the planning horizon. Let x0 be
the initial state and according to the dynamic programming
formulation the optimal cost function is given by

J∗
0 (x0) = min

u0
E
[
g(x0, u0) + J∗

1 (x1)
]
, (2)

where J∗
1 represents the optimal cost-to-go from time k = 1,

and x1 = f (x0, u0, w0). In this letter, long horizon refers to the
condition that H is sufficiently large that the optimal policy
is approximately stationary (independent of k). Solving the
above optimization problem is not tractable mainly due to two
reasons: the expectation E[·] and the optimal cost-to-go J∗

1 are
hard to evaluate and are usually approximated by numerical
methods or ADP approaches.

An ADP approach called nominal belief-state optimization
(NBO) [11], [15] was developed primarily to approximate the
above expectation. In NBO, the expectation is replaced by a
sample state trajectory generated with an assumption that the
future noise variables in the system take so called nominal or
mean values, thus making the above objective function deter-
ministic. The NBO method was developed to solve a UAV
path optimization problem, which was posed as a partially
observable Markov decision process (POMDP). POMDP gen-
eralizes the long horizon optimal control problem described
in (1) in that the system state is assumed to be “partially”
observable, which is inferred via using noisy observations and
Bayes rules. Although the performance of the NBO approach
was satisfactory, in that it allowed to obtain reasonably optimal

Fig. 1. State trajectory sampling models: (a) tree branching model,
(b) non-overlapping branching model.

control commands for the UAVs, it ignored the uncertainty due
to noise disturbances thus leading to inaccurate evaluation of
the objective function. This challenge is typically overcome
by Monte-Carlo Tree Search (MCTS) methods [16].

Inspired from the NBO method and MCTS methods, we
develop a new MCTS method called random sampling -
multipath hypothesis propagation (RS-MHP) and derive con-
vergence results. In this letter, we use the NBO approach as a
benchmark for performance assessment since RS-MHP builds
on the NBO approach.

II. RANDOM SAMPLING MULTIPATH HYPOTHESIS

PROPAGATION (RS-MHP)

In the NBO method, the expectation is replaced by a sam-
ple trajectory of the states (as opposed to random states)
generated by

x̃k+1 = f (x̃k, uk, w̄k), k = 0, . . . (3)

where x̃0 = x0 (initial state or current state), and w̄k is the
mean of the random variable wk. Thus, the long horizon
optimal control problem, with NBO approximation, reduces to

min
uk

H−1∑
k=0

g(x̃k, uk). (4)

The above reduced problem, without the need for evaluat-
ing the expectation, can significantly reduce the computational
burden in solving the long horizon control problems. However,
the downside with this approach is it completely ignores
the uncertainty in the state evolution, and may generate
severely sub-optimal controls. To overcome this trivializa-
tion, we develop a Monte-Carlo approach to approximate the
expectation described as follows. We will follow the tree-like
sampling approach as in Figure 1(a). For time step k = 1, we
sample the probability distribution of the noise disturbance N
times to generate the samples wi

0 with corresponding proba-
bility pi

0, i = 1, . . . , N. Using these, we generate N sample
states at k = 1 generated according to

xi
1 = f (x0, u0, wi

0), ∀i. (5)

We repeat this sampling approach for time k = 2, i.e., we
generate N noise samples wi

1 with corresponding probability
pi

1, i = 1, . . . , N. Using these noise samples and the sample
states from the previous time step, we generate N2 sample
states at k = 2 according to

xi,j
2 = f (xi

1, u1, wj
1), ∀i, j. (6)

We repeat the above sampling procedure until the last time
step k = H − 1 to generate NH−1 possible state evolution
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trajectories using N noise samples generated in each time step
as depicted in Figure 1(a). Sampling approach in Figure 1(b)
will be discussed later.

One can now replace the expectation in (1) with the
weighted average of the cumulative cost corresponding to each
state evolution trajectory, where the weights are the proba-
bilities or likeliness indices of the trajectories. Although this
approach is not novel as many such methods exist in the lit-
erature classified as MCTS methods, our study is focused on
the convergence of RS-MHP.

Clearly, the number of possible state trajectories in the
above approach grow exponentially with the horizon length H.
To avoid the exponential growth in our RS-MHP approach, at
each time step we retain only M sample states and prune the
remaining states, and if the number of sample states at a given
time instance is less than or equal to M, we do not perform
pruning. For pruning, at each time k, we rank the state tra-
jectories up to time k according to their likeliness (obtained
by multiplying the probabilities of all the noise samples that
generated the trajectory) and retain the top M trajectories with
highest likeliness and prune the rest. With this procedure, at
k = H−1, there would be only M state trajectories. With prun-
ing, the number of trajectories remains a constant irrespective
of the time horizon length, i.e., the method’s computational
complexity grows polynomially with respect to the horizon
length with pruning. An illustration of the above RS-MHP
approach is shown in Figure 2 along with the NBO approach.
The figure also shows an illustration of the above branch
pruning strategy for a simple scenario with N = 2 and M = 2.

Let i = 1, . . . , M represent the indices of the M distinct state
trajectories with q1, q2, . . . being their likeliness indices, where
qi is evaluated using the probabilities of the noise samples that
generate the trajectory i over time. Let J represent the actual
objective function as described below

J = E

[
H−1∑
k=0

g(xk, uk)

]
. (7)

We can now approximate the objective function J in four
possible ways as described below (assuming N > M). Let xi

k
represent the state at time k in the ith state trajectory.
(I) Sample Averaging: We can simply approximate the

expectation with an average over all possible trajectories
as follows:

No pruning: J ≈ J̃NP = 1

NH−1

NH−1∑
i=1

(
H−1∑
k=0

g(xi
k, uk)

)

With pruning: J ≈ J̃P = 1

M

M∑
i=1

(
H−1∑
k=0

g(xi
k, uk)

)
. (8)

(II) Weighted Sample Averaging: We can also approximate
the expectation with a weighted average with weights
being the normalized likeliness indices of the state trajec-
tories given by qi, i = 1, . . . (and q̄i in the pruned case)
as follows:

No pruning: J ≈ J̄NP = 1

NH−1

NH−1∑
i=1

qi

(
H−1∑
k=0

g(xi
k, uk)

)

Fig. 2. Top two figures show the sampling probability distributions of
noise variables: NBO vs. RS-MHP. The bottom figure shows a branch
pruning strategy in RS-MHP.

With pruning: J ≈ J̄P = 1

M

M∑
i=1

q̄i

(
H−1∑
k=0

g(xi
k, uk)

)
(9)

where
∑NH−1

i=1 qi = NH−1 and
∑M

i=1 q̄i = M.
For a given sequence of control decisions u0, u1, . . ., let gi

denote the cost of the ith trajectory given by

gi =
H−1∑
k=0

g(xi
k, uk). (10)

Clearly, g1, g2, . . . are identically distributed random variables,
but are dependent due to the overlapping state trajectories
in the tree-like sampling approach in Figure 1(a), where
E[gi] = J, ∀i.

The below result suggests that with sufficient number of
sample state trajectories (large N), the approximation error in
J̃NP becomes small enough to ignore.

Proposition 1: For any given sequence of actions
u0, ul, . . . , if the random variables g1, g2, . . . have finite
variances, J̃NP converges to J in probability.

Proof: From [17, Ex. 254], we know that J̃NP
P−→ J if

lim|i−j|→∞ Cov(gi, gj) = 0, (11)

where Cov() represents covariance. Suppose, the sequence
g1, g2, . . . is arranged such that g1 represents the cost for the
left-most branch in Figure 1(a), and g2 representing the second
branch from the left, and so on. Clearly, the first g1, g2, . . . , gN

are dependent random variables as they share the same parent
node, whereas the next N terms gN+1, gN+2, . . . , g2N , although
dependent among themselves, are independent of the previous
N terms (as these branches evolve from a separate parent
node), and so on. Thus, Cov(gi, gj) = 0 if |i − j| > N, which
implies lim|i−j|→∞ Cov(gi, gj) = 0.
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Furthermore, we can apply similar arguments to prove the
convergence of J̄NP in probability.

Proposition 2: For a given sequence of actions
u0, . . . , uH−1, if g1, g2, . . . have finite variances, then
J̄NP converges to J in probability.

Proof: From [18], we know that if J̃NP
P−→ J (which is

true as shown in Proposition 1), and if the weights q1, q2, . . .

are monotonically decreasing, then J̄NP
P−→ J. Without loss

of generality, we can arrange the trajectory costs gi such that
their likeliness indices are monotonically decreasing, i.e., q1 ≥
q2 ≥ q3 ≥ . . . , which completes the proof.

A. Non-Overlapping State Trajectories or Tree Branches

Suppose the state sample trajectories are generated inde-
pendently of each other, where the state trajectories do not
share any common state samples as depicted in Figure 1(b).
In this new sampling approach, given u0, u1, . . . are the control
decisions over the planning horizon, let pi represent the cost
associated with the ith state trajectory. We can approximate
the LHC objective function as follows:

J̄N = 1

N

N∑
i=1

pi J̃N = 1

N

N∑
i=1

qipi, (12)

where qi represents the likeliness index of the ith trajectory
and

∑
i qi = N. From propositions 1 and 2, we can verify that

J̄N
P−→ J and J̃N

P−→ J. Furthermore, since p1, p2, . . . are i.i.d.,
due to the strong law of large numbers, we can verify that J̄N

converges to J almost surely. We can further derive the rate
of convergence (in probability) for a special case as discussed
below. The main advantages of this non-overlapping branching
approach are: a) we are able to conclude that the approximate
cost function from this approach J̄N converges to the the true
cost function almost surely (as opposed to the weaker conver-
gence results discussed previously with overlapping branch
models); b) we are able to derive the rate of convergence (in
probability) for linear LHC problems as discussed below.

Suppose the state-transition and cost functions are linear
(motivated by the fact that the linear models capture the state
dynamics well in most control problems) as described below:

xk+1 = Axk + Buk + wk, wk ∼ N (0, �)

g(xk, uk) = Cxk + Duk, (13)

where g(xk, uk) is a scalar function. The cost from the sample
trajectory i is given by

pi =
H∑

k=1

g(xi
k, uk) =

H∑
k=1

(Cxi
k + Duk), (14)

where xi
k is the sampled state at time step k from the ith tra-

jectory. Using the linear expressions in (13), we can verify pi

further satisfies the following equation:

pi − E[pi] = C

⎡
⎣H−1∑

k=0

⎛
⎝H−k−1∑

q=0

Aq

⎞
⎠wk

⎤
⎦ = C

[
H−1∑
k=0

Akwk

]
,

(15)

where Ak = ∑H−k−1
q=0 Aq.

Proposition 3: For a given sequence of actions
u0, . . . , uH−1

P(|JN − J| ≥ ε) ≤ constant

Nε2
. (16)

Proof: Let p represent the cost for a sampled state trajectory.
Using 15, we can verify

Var(p) = E
[
(p − E[p])T(p − E[p])

]
= C

[
H−1∑
k=0

Ak�AT
k

]
CT, (17)

which is a real scalar. Thus, Var(JN) = Var(p)/N.
Using Chebyshev’s inequality, we can verify easily that

P(|JN − J| ≥ ε) ≤ Var(p)

Nε2
=

C
[∑H−1

k=0 Ak�AT
k

]
CT

Nε2
. (18)

Furthermore,

lim
N→∞ P(|JN − J| ≥ ε) = 0, (19)

which shows the convergence in probability as well.
From Propositions 1 and 2, it is clear that by choosing a suf-

ficiently large N, we can make the probability of the approx-
imation error negligible. Furthermore, from Proposition 3, by
increasing N in RS-MHP (at the expense of increased compu-
tational requirements), we can tighten the upper bound on the
probability of the approximation error for the non-overlapping
tree branching model, i.e., RS-MHP allows a paramterizable
trade-off between computational complexity and the optimality
of the solution via the choice of N.

III. CASE STUDIES

We implement the above-discussed RS-MHP methods in
two case studies: (a) linear quadratic Gaussian control (LQG);
(b) path planning for unmanned aerial vehicles (UAVs). These
case studies are discussed below.

A. Linear Quadratic Problem

Although there are closed-form solutions for LQG prob-
lems, the below example allows us to quantify the benefits of
using RS-MHP methods over existing similar methods, par-
ticularly NBO. Let the system state evolve according to the
following linear equation:

xk+1 = (1 − a)xk + auk + wk, wk ∼ N (0, σ 2), (20)

where 0 < a < 1 is a constant, and wk is a random dis-
turbance modeled by a zero-mean Gaussian distribution with
variance σ 2. The cost function over the time-horizon H is
defined as follows:

J = E

[
r(xH − T)2 +

H−1∑
k=0

u2
k

]
, (21)

where r and T are constants. This is a simplified oven
temperature control example borrowed from [19].
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Fig. 3. LQG problem: RS-MHP vs. NBO.

If we apply the traditional NBO method, assuming H = 2,
the cost function J is approximated (assuming nominal values
or zeros for w0 and w1) as

JNBO = r
(
(1 − a)2x0 + a(1 − a)u0 + au1 − T

)2 + u2
0 + u2

1

(22)

and the exact cost function J can be evaluated analytically as

J = r
(
(1 − a)2x0 + a(1 − a)u0 + au1 − T

)2 + u2
0 + u2

1

+ rσ 2
(
(1 − a)2 + 1

)
. (23)

We notice the approximation error due to the NBO method is

|JNBO − J| = rσ 2
(
(1 − a)2 + 1

)
. (24)

This approximation error for a generic time-horizon H is
given by

|JNBO − J| = rσ 2
H−1∑
n=0

(1 − a)2n. (25)

The above expression suggests that the NBO approximation
error can be significantly high depending on the parameters
a, σ , and r. With RS-MHP approximation, the cost function
reduces to

JRS-MHP = 1

P

(
P∑

i=1

r(xi
H − T)2

)
+

H−1∑
k=0

u2
k, (26)

where P is the number of state-trajectories generated using
the RS-MHP approach, and xi

H is the final state in the ith tra-
jectory. Proposition 1 shows that the approximation error due
to the above RS-MHP method converges (in probability) to
zero. We verify this result with a numerical simulation, where
we implement the NBO and the RS-MHP methods with the
following assumptions: x0 = 0, r = 10, T = 1, H = 2,

u0 = 0.55, u1 = 0.17, σ = 1. We vary P from 100 to 10000
with increments of 100. Figure 3 shows the cost function
approximated using RS-MHP and NBO methods. The figure
clearly demonstrates that the error due to NBO approximation
can be significantly high, while RS-MHP performs better in
cost approximation.

B. UAV Path Planning Problem

We consider a UAV path planning problem, where the
goal is to optimize the kinematic controls of a UAV to
maximize a target tracking performance measure. Here, the
UAV is assumed to be equipped with a sensor on-board that
generates the location measurements of the target (a ground-
based moving vehicle) corrupted by random noise. A detailed
description of the problem can be found in [11]. In [11], we
posed this problem as a partially observable Markov deci-
sion process (POMDP), where the POMDP led to solving a
long horizon optimal control problem. We applied the NBO
approach to solve the above POMDP. The resulting UAV path
optimization problem is summarized as follows:

min
u

E

[
H−1∑
k=0

tr (Pk(u))

]
NBO approx.−−−−−−−→ min

u

H−1∑
k=0

tr (P̂k(u)),

where Pk(u) (a random variable) represents the error co-
variance matrix corresponding to the state of the system, tr()
represents the matrix trace operator, u is the sequence of UAV
kinematic controls (e.g., forward acceleration and bank angle)
applied over the discrete time planning horizon of length H
steps. After NBO approximation, the expectation over the ran-
dom evolution of Pk(u) is replaced with the nominal sequence
of the state covariance matrices tr (P̂k(u)).

We now approximate the above objective function using the
RS-MHP approach as follows:

min
u

E

[
H−1∑
k=0

tr (Pk(u))

]
RS-MHP approx.−−−−−−−−−→

min
u

1

NT

N∑
i=1

H−1∑
k=0

tr (P̃i
k(u)),

where P̃i
k represents the state covariance matrix obtained from

the ith state trajectory generated from the RS-MHP approach,
and NT is the number of state trajectories. We implement this
approach in MATLAB and run a Monte-Carlo study to see
the impact of NT on the performance of the above UAV path
planning algorithm, which is measured by the average target
location estimation error. Figure 4(a) shows the cumulative dis-
tribution of average target location errors from the RS-MHP
approach with H = 6, and for NT set to 50, 100, and 250. The
figure shows a gradual increase in the algorithm’s performance
with increasing NT as expected. This result, as expected, also
suggests that pruning methods (discussed in the previous sec-
tion) would degrade the performance of the RS-MHP methods
but can provide gains in terms of computational intensity. RS-
MHP has better capability in approximating the expectation
operator in 1 than the NBO approach as we consider multiple
hypotheses of state trajectories in RS-MHP as opposed to a
single hypothesis in NBO as demonstrated in Figure 4(b).

IV. CONCLUSION

In this letter, we developed a Monte-Carlo tree search
method called random sampling - multipath hypothesis prop-
agation or RS-MHP to approximate the expectation operator
in long horizon optimal control problems. Although variants
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Fig. 4. (a) Cumulative distribution of average target location errors. Here
NT represents the number of state evolution trajectories. (b) Cumulative
distribution of target location errors: NBO vs. RS-MHP.

of these methods exist in the literature, we focused on the
convergence analysis of these approximation methods. The
basic theme of these methods is to evolve the system state
over multiple trajectories into the future while sampling the
noise disturbances at each time-step. We derive convergence
results that show that the cost approximation errors from our
RS-MHP methods converge (in probability) toward zero as
the sample size increases. We conducted a numerical study to
assess the performance of our methods in two case studies:
linear quadratic control problem and UAV path optimization
problem. In both case studies, we demonstrated the benefits
of our approach against an existing approach called nominal
belief-state optimization or NBO (used as a benchmark).
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Abstract—Decentralized and distributed autonomous sensing
over networked sensor systems has many applications in surveil-
lance, Internet of Things (IoT), autonomous cars, and UAV
swarms tactics. In this study, we develop an average consensus-
based decentralized data fusion approach for a target tracking
application. Specifically, we extend the standard average consen-
sus algorithm to merge the local state estimate information with
that of the neighbors. We test the performance of our consensus
based data fusion approach for various network configurations.
We also perform numerical studies to compare the performance
of our approach against the standard Bayesian data fusion
approach.
Index Terms—Networked sensor systems, Decentralized average

consensus, Sensor data fusion, Target tracking

I. INTRODUCTION

Autonomous and adaptive sensing has applications such
as target tracking, surveillance [1], autonomous car navi-
gation [2], and UAV swarm tactics [3], [4]. Particularly,
target tracking via adaptive sensing is becoming increasingly
important in autonomous car industry for accurate pedes-
trian detection and tracking [5]. Sensors such as RADAR,
LIDAR, optical sensors, thermal sensors are typically used
to measure the target state including its position, velocity,
and acceleration. Target tracking with multiple sensors was
studied in the past, e.g., [3], where a central fusion node
was responsible for making sensing decisions (e.g., sensor
location - assuming sensor mounted on a UAV) for all the
sensors combined. Clearly, sensing decisions optimized for
all the sensors combined provides the best target tracking
performance as these decisions are coupled via sensor data
fusion. The main drawback with these centralized decision
making methods is that they are computationally intensive as
the computational complexity is exponential in the decision
space and the number of sensors. To address this challenge,
we investigated decentralized strategies in the past to some
extent [4].

This work was supported in part by Air Force Office of
Scientific Research under grant FA9550-19-1-0070.

In this study, we develop a decentralized autonomous sens-
ing method over a networked sensor system for a target track-
ing application. Specifically, we extend an existing approach
called average consensus algorithm to perform decentralized
data fusion while tracking a moving target. The sensor network
is modeled by an undirected graph, which is assumed to be
non-time varying. Each sensor generates a noisy measurement
of the target state. The presence of an edge between the nodes
or sensors means that the sensors are allowed to exchange
information/messages for data fusion. In this study, we assume
that each sensor maintains a local tracker (or tracking algo-
rithm, e.g., Kalman filter), which updates its local target state
estimate using the locally generated sensor measurements and
the information it receives from its neighbors. We measure the
performance of the above consensus algorithm with average
target tracking error - the mean-squared error between the
target state (ground truth) and the estimate. As a benchmark,
we also implement the standard Bayesian data fusion approach
for performance comparison.

The authors of [6] have surveyed both classical approaches
and recent advances in multi-sensor data fusion and consensus
filter for sensor networks. The authors of [7] reviewed the
key theories and methodologies of distributed multi-sensor
data fusion and discussed their advantages like graceful degra-
dation, scalability, and interchangeability. Average consensus
was studied previously in distributed computing [8] and for
achieving consensus among agent values (a real number pos-
sibly representing its opinion or state). In [9], a distributed
consensus algorithm was developed for obtaining the averages
of the node data over networks with large volume of data. N.
Gupta et. al. proposed an asynchronous distributed average
consensus algorithm [10] to guarantee information-theoretic
privacy in multi-agent systems. In [11], the authors provide a
theoretical framework for analysis of consensus algorithms for
multi-agent networked systems. In [12], the authors developed
a distributed consensus tracking filter to solve the target
tracking problem. The authors in [13] discussed algorithms
for solving decentralized consensus optimization problems.
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A. Key Contributions

• We extend the average consensus algorithm [9] to track
a moving target via a decentralized network of sensors.
We compare the performance of this method against
a standard benchmark method - decentralized Bayesian
data fusion approach [7].

• We perform a numerical study to quantify the impact
of various sensor network configurations (e.g., varying
degrees of the nodes) on the performance of the average
consensus algorithm.

The rest of the paper is organized as follows. Section II
presents the problem specification and the objectives. Sec-
tion III provides the problem formulation and the methods
followed by the simulation results in Section IV. Finally, we
provide concluding remarks and future scope in Section V.

II. PROBLEM SPECIFICATION

In our study, we assume there are n sensors tracking a
moving target in a decentralized setting, where the sensors
are connected via an undirected graph. The target is assumed
to be moving on a 2-D plane, where the motion is modeled
via a stochastic process, i.e., the state-transition law is a linear
model with zero-mean Gaussian noise. We assume the sensor
measurement law is also linear with zero-mean Gaussian noise.
Thus, each sensor maintains and updates a local target state
estimate via Kalman filtering algorithm.
We assume that the sensors have limited battery power

and computational capabilities, which sets limitations on the
sensors in terms of how they generate measurements and
communicate with other sensors. Specifically, we assume that
the sensors can either sense (generate target measurements)
or exchange information with neighboring sensors, but not
simultaneously.
Communications: The sensors have communications capa-

bilities, i.e, each sensor can transmit or receive data to/from
the sensors they share edges in the network graph. We further
assume that the communications delay is negligible.
Sensor network: The n sensors are assumed to be con-

nected via an undirected graph. Each sensor i has a set of
neighbors, denoted by N(i), where sensor j ∈ N(i) if there
is an edge connecting j with i.
Performance measure: We measure the performance of

the algorithms using average tracking error, which is the
mean-squared error between the target state and the estimates
averaged over all the sensors and over time.
Objective: The objective is to compare the performance the
average consensus algorithm against the standard decentral-
ized Bayesian data fusion technique for target tracking with a
decentralized sensor network. We measure the performance of
these algorithms for different sensor network configurations.

III. PROBLEM FORMULATION

A. Tracking Approach

In our study, {1, ..., n} represent the sensor indices, and Si
represents the 2D location of sensor i. The target’s motion is

described by a linear state-space model (specifically constant
velocity model [14]):

xk = Axk−1 + θk, θk ∼ N (0,Q) (1)

where xk is the state of the target at time k (which includes
the target’s 2D location, 2D velocity, and 2D acceleration), A
is a state transition matrix, and θk is process noise with zero-
mean normal distribution with co-variance matrix Q. Sensor i
generates a position measurement zik given by:

zik = Hxk + v
i
k (2)

where H is the observation matrix given by

H =

�
1 0 0 0 0 0
0 1 0 0 0 0

�
,

which means that the sensors only generate positional mea-
surements. Here vik ∼ N (0,R(xk, Si)) is the random mea-
surement noise modeled as a zero-mean normal distribu-
tion, where the co-variance matrix R(xk, Si) captures the
dependence of the noise characteristics on the location of
the target with respect to the sensor. Here, Rk reflects 10%
range uncertainty and 0.01π radian angular uncertainty. Since
the state and the observation laws are linear with zero-mean
Gaussian noise disturbances, we run Kalman filter at each
sensor node to maintain and update the target state posterior
distribution with mean and co-variance given by x̂ik|k and P

i
k|k.

Clearly, if the sensors do not exchange any information, the
tracking performance suffers at each node. The sensors are
connected via an undirected graph, where the presence of an
edge between nodes i and j means that the sensors are allowed
to exchange information. So, we extend an approach called
average consensus algorithm to allows sensors to exchange
information in a manner that improves the target tracking
performance across the sensor network.

B. Average Consensus

Average consensus algorithms let a network of sensors or
agents reach a common consensus on certain attributes (real
numbers) such as the agent opinions, sensor measurements,
etc. Specifically, in these approaches, each agent or sensor
updates/replaces (in an iterative manner over time) its local
value by taking a weighted average between its local value and
the values from all the neighbors. We extend this approach to
let the sensors in our problem reach a common consensus on
their state estimate parameters (mean vector and covariance
matrix). Let yik is a vector obtained by concatenating x̂

i
k|k and

P ik|k into a column vector at sensor i at time k. N(i) is the
set of neighbors for ith sensor. Average consensus algorithm
applied to our problem is captured by the following equation:

yik+1 =
αyik + (1 − α)

�
j∈N(i) y

j
k

α+ |N(i)|(1 − α) , ∀i (3)

where α is a weighting parameter.
This algorithm achieves its objective if all the sensors reach

consensus on the state estimation parameters, i.e., yik = y
j
k for

all i, j.
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C. Decentralized Bayesian data fusion

Multi-sensor data fusion techniques can be applied in both
centralized and decentralized settings. In our study, we use
decentralized Bayesian data fusion techniques over the sensor
network. Each sensor has a local state estimate xik which is
updated in each time step by fusing xik with the estimates from
its neighboring sensors as given by the following equations
(using standard Bayes rules [15]).

P ik+1 =

(P ik)−1 + N(i)�
j=1

(P jk )
−1

−1 (4)

x̂ik+1 = P
i
k+1

�
(P ik)

−1x̂ik +
N(i)�
j=1

(P ik)
−1x̂jk

�−1
(5)

IV. SIMULATION RESULTS

We implement our methods for a scenario with 10 sensors,
i.e., n = 10. We set α = 0.5 in the following numerical
studies except when we evaluate the performance of our
algorithms with varying α. We compare the performance of
the average consensus algorithm against the decentralized
Bayesian data fusion approach for different sensor network
configurations with average tracking error (defined earlier)
as the performance measure. In our numerical studies, we use
error bars with one standard deviation to show the spread of the
performance measure for multiple network graphs generated
from a given configuration as discussed below (examples of
configurations in Fig. 1).
Configuration I. This corresponds to a network where each
sensor has the same degree, where the degree is given by D,
which is referred to as network degree. We generate a random
graph with n sensors and D network degree.
Configuration II. In this configuration, we generate a

random graph with edge probability Pe, where Pe represents a
probability of an edge existing between two sensors. We start
with n sensors with no edges at the beginning, and we create
an edge between every pair of sensors with probability Pe. We
repeat this process until we get a connected network.
Configuration III. This corresponds to a network with a

total number of edges Ne in a connected network.
As sensors typically have limited computational capabil-

ity and limited battery life, we assume they can run only
tracking algorithm while generating sensor measurements or
only communicate with neighbors, i.e., run the consensus or
data fusion methods as described in Section II. Specifically,
in our study, sensors track the target for M time steps and
apply the consensus/data fusion algorithms in the next M
time steps, and repeat the process. During the M time steps
when the consensus/data fusion algorithms are being applied,
sensors update the state estimates of the target without the
measurements, i.e., perform only prediction step and ignore
the measurement update step. In other words, the uncertainty
in the target state estimate steadily increases during these M
time-steps.

Fig. 1. Examples of configurations (configuration I, II, III from top to bottom)
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Let Z represent the total number of time steps in our
simulation run time. We set Z = 300 in this study. We define
the average tracking error measure as follows:

1

Z

1

n

Z�
k=1

n�
i=1

��x̂ik − xk��22
where xk represents the ground truth at time k, and �·�2 is
the Euclidean norm.

A. Average tracking error vs. M

We now compare the performance of average consensus
and decentralized Bayesian data fusion algorithms for different
values of M on five randomly generated graphs for n = 10.
We evaluate the average tracking error, as defined earlier, for
each value ofM considered. Fig. 2 shows the average tracking
error as a function of M , where M ∈ {3, 6, 9, . . . , 24}.
The figure suggests that the average consensus algorithm
outperforms the data fusion approach for all values of M con-
sidered. The consensus algorithm seems to be more effective in
merging information from multiple sensors than the standard
decentralized Bayesian data fusion approach.
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Fig. 2. Average tracking error across all sensors with respect to number of
time steps, M

Fig. 3 represents average tracking error as a function of M
forM ∈ {1, 2, . . . , 9}. Fig. 3 shows that the average consensus
and decentralized Bayesian data fusion algorithm give better
performance for M = 2 and M = 3 respectively compared to
all other values of M considered here.

B. Average tracking error for configuration I

We now evaluate the average tracking error as a function
of the network degree as shown in Fig. 4. We compare
the performance of these two algorithms on five randomly
generated graphs for M = 1 and n = 10. We observe that
the performance of both algorithms increase as the network
degree increases. Furthermore, from Fig. 4, we observe that
the average consensus algorithm performs better than the
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Fig. 3. Average tracking error across all sensors with respect to number of
time steps, M

decentralized Bayesian data fusion method. This is an expected
behavior since with greater network degree, the sensors have
better capability in merging information from other sensors.
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Fig. 4. Average tracking error across all sensors for configuration I

C. Average tracking error for configuration II

We now perform the same numerical study for a randomly
generated graph by using Configuration II with different values
of Pe drawn from the set {0.1, 0.2, . . . , 1}. For each Pe, we
generate 10 graphs. Fig. 5 shows that, for both algorithms,
the average tracking error decreases with respect to Pe, which
is expected since the network connectivity increases with
increasing Pe. We also notice that the consensus algorithm
outperforms the decentralized Bayesian data fusion approach
for each Pe.
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Fig. 5. Average tracking error across all sensors with respect to edge
probability Pe

D. Average tracking error for configuration III

We now evaluate the average tracking error for different
value of Ne as shown in Fig. 6. We generate (randomly)
five graphs with Configuration III for this study. We observe
that with increasing Ne, the performance of both of the
algorithms increases. We fit 5th degree polynomial curves
for the performance plots in Fig. 6, which characterize the
variation of the performance of the algorithms as a function
of Ne.
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Fig. 6. Average tracking error across all sensors with respect to number of
edges

E. Average tracking error for weighting parameter α

In this part, we study the performance of the average con-
sensus algorithm with respect to the weighting parameter α.
Here, α = 0 means that the consensus algorithm replaces the
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Fig. 7. Average tracking error across all sensors with respect to weighting
parameter α

local sensor’s state estimate with the average of its neighbors’
estimates. On the other hand, α = 1 means that the consensus
algorithm ignores the estimates from the neighbors and simply
retains the local state estimate. For different values of α in
the interval [0, 1], we evaluate the average tracking error, as
shown in Fig. 7. The figure shows that the average tracking
error increases significantly when the value of α is close to 1.

V. CONCLUSION AND FUTURE SCOPE

In this study, we extended the average consensus algo-
rithm for decentralized data fusion over a networked sensor
system for target tracking. We studied the performance of
our extended average consensus algorithm numerically for
different network configurations and compared with standard
Bayesian decentralized Bayesian data fusion as a benchmark.
We found that the average consensus algorithm outperformed
the decentralized Bayesian data fusion for all network configu-
rations considered in this study. In the future, we will consider
decentralized data fusion over time-varying sensor networks
and develop graph-theoretic solutions to maximize the data
fusion performance.
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Abstract—In this paper, we develop a decision theoretic ap-
proach for radar waveform design to maximize the joint radar
communications performance in spectral coexistence. Specifically,
we develop an adaptive waveform design approach by posing
the design problem as a partially observable Markov decision
process (POMDP), which leads to a hard optimization problem.
We extend an approximate dynamic programming approach
called nominal belief-state optimization to solve the waveform
design problem. We perform a numerical study to compare
the performance of the proposed POMDP approach with the
commonly used myopic approaches.

I. INTRODUCTION

Spectral congestion is forcing legacy radar band users to in-
vestigate methods of cooperation and co-design with a growing
number of communications applications [1]. The co-design
of radar and wireless communications systems faces several
challenges such as interference, radar and communications
decoupling, and dynamic user (radar and communications)
requirements. The studies in [2], [3] provide a detailed
overview of the challenges and research directions in the
“spectral” coexistence of radar and communications. From
the study in [4], the quality of the radar return and also
the communications rate is mainly determined by the spectral
shape of the waveform. Moreover, one of the key challenges
for any waveform design method is to meet dynamic user
needs. To address these challenges, in this paper, we develop
waveform shaping methods that are adaptive, and can trade-off
between competing performance objectives.

A waveform design method can most effectively meet the
dynamic user needs if it predicts the future user needs and
allocates the resources accordingly. Previous research has
considered waveform design for joint radar-communications
systems, for example [5], [6]. However, existing methods
often do not meet dynamic performance requirements, as they
tend to be greedy in that they only maximize short-term
performance for instantaneous benefits. For problems with
dynamic performance requirements, long-term performance

The work of S. Doly, S. Ragi, and H. D. Mittelmann was supported in part
by the Air Force Office of Scientific Research under grant FA9550-19-1-0070.

is critical as decisions (to choose a particular waveform) at
current time epoch may lead to regret in the future.

To address these challenges, we develop an adaptive wave-
form design method for joint radar-communications systems
based on the theory of partially observable Markov decision
process (POMDP) [7]. Specifically, we formulate the wave-
form design problem as a POMDP, after which the design
problem becomes a matter of solving an optimization problem.
In essence, the POMDP solution provides us with the optimal
decisions on the waveform design parameters [8]. However,
the optimization problems resulting from POMDPs are hard to
solve exactly. There is a plethora of approximation methods
called approximate dynamic programming methods or ADP
methods, as surveyed in [7]. To this end, we extend one
of the computationally least intensive ADP approaches called
nominal belief-state optimization (NBO) [8].

The POMDP framework has a natural look-ahead feature,
i.e., it can trade-off short-term for long-term performance. This
feature lets the POMDP naturally anticipate the dynamic user
needs and optimize the resources (waveforms) to actively meet
the user’s needs. Typically, one studies these adaptive methods
under “cognitive radio (radar),” which has a rich literature.
However, this project brings formalism to these methods by
posing the waveform design problem as a POMDP. This par-
ticular waveform design problem has not been studied before.
Recently, POMDPs were used in [9] to develop adaptive
methods for “cognitive radar,” but in a different context, where
the focus was on optimizing radar measurement times and not
on waveform shaping. The current waveform design problem
is related to a class of problems called adaptive sensing, where
POMDP was already a proven effective framework [8], [10].

We assume that the environment consists of a maneuvering
radar target, obstacle blocking radar line-of-sight, a com-
munications user, and a joint radar-communications system
node. The joint radar-communications node can sense the
environment to extract target parameter information or can
communicate with other communications nodes, and can also
act as communications relay. The joint node can simultane-
ously estimate the target parameters from the radar return and
decode a received communications signal. We co-design the
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TABLE I: Survey of Notation

Variable Description
B Total System Bandwidth

Pradar Radar power
Ttemp Effective temperature
b Communication propagation loss

Pcom Communications power
a Combined antenna gain
N Number of targets

σ2
CRLB Cramer-Rao lower bound
σ2
noise Thermal noise
σ2
proc Process noise variance
TB Time–bandwidth product
δ Radar duty factor
w Measurement noise
ζk Mean vector noise
τ Time delay to mth target
α Weighting parameter

Rcomm Communications rate
Rest Radar estimation rate
Pk Error covariance matrix
Tpri Pulse repetition interval
H Planning horizon length

joint radar-communications system so that radar and communi-
cations systems can cooperatively share information with each
other and mutually benefit from the presence of the other. In
this paper, we consider target range or time-delay to be the
target parameter of interest.

Table I shows the notations employed in this paper.

II. JOINT RADAR-COMMUNICATIONS PRELIMINARIES

A. Successive Interference Cancellation Receiver Model

In this section, we present the receiver model called Suc-
cessive Interference Cancellation (successive interference can-
cellation (SIC)). SIC is the same optimal multiuser detection
technique used for a two user multiple-access communications
channel [2], [11], except it is now reformulated for a com-
munications and radar user instead of two communications
users. We assume we have some knowledge of the radar
target range (or time-delay) up to some random fluctuation
(also called process noise) from prior observations. We model
this process noise, nproc(t), as a zero-mean random variable.
Using this information, we can generate a predicted radar
return and subtract it from the joint radar-communications
received signal. After suppressing the radar return, the receiver
then decodes and removes the communications signal from
the radar return suppressed received waveform to obtain a
radar return signal free of communications interference. This
method of interference cancellation is called SIC. It is this
receiver model that causes communications performance to be
closely tied to the radar waveform spectral shape. It should be
noted that since the predicted target location is never always
accurate, the predicted radar signal suppression leaves behind
a residual contribution, nresi(t). Consequently, the receiver
will decode the communications message from the radar-
suppressed joint received signal at a lower rate. The block

Transmit
Radar

Waveform

Radar
Channel

Comms
Channel

Remove
Predicted

Return

Decode
Comms

& Remove

Process
Radar
Return

Comms InfoComms
Signal

Σ

Fig. 1: Joint radar-communications system block diagram for
SIC scenario. The radar and communications signals have two
effective channels, but arrive converged at the joint receiver.
The radar signal is predicted and removed, allowing a reduced
rate communications user to operate. Assuming near perfect
decoding of the communications user, the ideal signal can
be reconstructed and subtracted from the original waveform,
allowing for unimpeded radar access.

diagram of the joint radar-communications system considered
in this scenario is shown in Figure 1. When applying SIC,
the interference residual plus noise signal nint+n(t), from the
communications receiver’s perspective, is given by [3], [12]

nint+n(t) = n(t) + nresi(t)

= n(t) +
√
‖a‖2 Prad nproc(t)

∂x(t− τ)
∂t

, (1)

and

‖nint+n(t)‖2 = σ2
noise + a2 Prad (2π Brms)

2
σ2

proc , (2)

where nproc(t) is the process noise with variance σ2
proc.

B. Radar Estimation Rate

To measure spectral efficiency for radar performance, we
developed a new metric recently called radar estimation rate,
which is formally defined as the minimum average data rate
required to provide time-dependent estimates of system or
target parameters, for example, target range [3], [12], [13].
The radar estimation rate is expressed as follows:

Rest = I(x;y)/Tpri, (3)

where I(x;y) is the mutual information between random
vectors x and y, and Tpri =Tpulse/δ is the pulse repetition
interval of the radar system, Tpulse is the radar pulse duration,
and δ is the radar duty factor. This rate allows construction of
joint radar-communications performance bounds, and allows
future system designers to score and optimize systems relative
to a joint information metric. For a simple range estimation
problem with a Gaussian tracking prior, this takes the form
[2], [3], [14]:

Rest = (1/2T ) log2(1 + σ2
proc/σ

2
CRLB), (4)

where σ2
proc is the range-state process noise variance and σ2

CRLB
is the Cramér-Rao lower bound (CRLB) for range estimation
given by [3], [12], [13] σ2

CRLB = σ2
noise/8π

2B2
rms TpB Prad,rx,

where σ2
noise is the noise variance or power, Tp is the radar

pulse duration, Brms is the radar waveform root mean square
(RMS) bandwidth, and Prad,rx is the radar receive power, which
is inversely proportional to the distance of the target from the
joint node. Immediately apparent is the similarity of above
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equation to Shannon’s channel capacity equation [3], [12],
[13], where the ratio of the source uncertainty variance to
the range estimation noise variance forms a pseudo-signal-
to-noise ratio (SNR) term. In Eq. 4, the estimation rate
is inversely proportional to the distance of the target from
the joint node. As discussed later, we design the waveform
parameters over the planning horizon while accounting for the
varying estimation rate due to target’s motion.

III. TECHNICAL APPROACH

We measure the performance of the system with two
metrics: communications information rate bound and radar
estimation rate bound (discussed in the previous section). The
joint radar-communications performance bounds developed
in [3], [12], [13] considered only local radar estimation
error, therefore making simplified assumptions about the radar
waveform. In [4], the results were generalized to include
formulation of an optimal radar waveform for both global
radar estimation rate performance and consideration of in-
band communications users forced to mitigate radar returns.
To demonstrate a point solution of joint radar-communications
information inner bounds, we recently developed the notion of
SIC [3], [15], [16].

The key to joint radar-communications is SIC, which is
to predict and subtract the radar target return, where the
prediction variance would therefore drive an additional resid-
ual noise term for the in-band communications user, which
reduces the communications rate from the normal interference-
free bound. The communications signal is then decoded and
reconstructed (reapplication of forward error correction), and
subtracted from the original return. The radar user can then
operate unimpeded. As a result, the radar estimation rate is the
same as given in (3). Radar users would like to increase the
RMS bandwidth to the point where the range estimation error
is minimized, but not at the expense of significant global error.
The communications user, however, suffers from the additional
residual noise source [3]:

R̃com ≤ B log2

[
1 +

b2Pcom

σ2
noise + a2 Prad (2π Brms)

2
σ2

proc

]
. (5)

A. POMDP Formulation of Joint Waveform Design problem

We consider a particular case study, with a radar target,
communications user, and the joint node, as shown in Figure 2.
The line-of-sight between the radar target and the joint node
may be lost as the target moves around an obstacle (e.g., urban
structure). We will develop our POMDP framework for this
case study, which can be easily generalized and extended to
other problem scenarios. This particular case study allows us
to show qualitative and quantitative benefits of POMDP in
adaptive waveform design.

The key components in the waveform design algorithm
based on POMDP are shown in Figure 3. The POMDP plan-
ner evaluates the belief-state (posterior distribution over the
state space updated according to Bayes’ rule) of the system,
uses an ADP method to solve the POMDP approximately,

Radar 
Transmitter

Radar 
Target

Communications 
user

Obstacle

Region invisible to 
radar transmitter

Fig. 2: Problem Scenario

and produces optimal or near-optimal decisions on waveform
parameters; details are discussed later. Our objective is to
design the shape of the waveforms over time to maximize
the system performance. Here, we choose a weighted average
of the estimation rate and the communications rate as the
performance metric. First, we begin with a unimodular chirp
waveform exp[j(πB/T )(t2)]. We control the spectral shape
of this chirp signal to maximize joint performance. To achieve
this, we first sample the chirp signal, and collect N samples
in the frequency domain. Let X = (X(f1), . . . , X(fN ))T be
the discretized signal in the frequency domain at frequencies
f1, . . . , fN . Let u = (u1, . . . , uN )T be an array of spectral
weights we will optimize as discussed below, where ui ∈
[0, 1],∀i. We control the spectral shape of the chirp signal
by multiplying (i.e., dot product) the signal with the spectral
weights in the frequency domain, i.e., the resulting signal is
given by X(fi)ui,∀i. To pose any decision making problem
as a POMDP, we need to define the POMDP ingredients,
which are states, actions, state-transition law, observations &
observation law, and reward function, in the context of the
particular problem at hand. The following is a description of
the POMDP ingredients as defined specific to our waveform
design problem. Hereafter, we model the system dynamics as
a discrete event process, where k represents the discrete time
index.

States: State at time k is defined as xk = (χk, ξk, Pk),
where χk represents the target state, which includes the loca-
tion, velocity, and the acceleration of the target; and (ξk, Pk)
represents the state of the tracking algorithm, e.g., Kalman
filter, where ξk is the mean vector, and Pk is the covariance
matrix.

Actions: Actions are the waveform spectral weights vector
uk as defined above.

State-Transition Law: χk evolves according to a mo-
tion model called near-constant velocity model captured by
χk+1 = Fχk + nk, where F is a transition matrix, and
nk = nproc(t = k) is the process noise described in Section
II-A, which is modeled as a Gaussian process. ξk and Pk
evolve according to Kalman filter equations.

Observation Law: zTargk = Gχk + wk (if not occluded)

8
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Fig. 3: Adaptive waveform optimization in a dynamic environment.

and zTargk = wk (if occluded), where G is a transition matrix,
and wk is the measurement noise, modeled as a Gaussian
process. Specifically, wk ∼ N (0, Rk), where Rk is the
noise covariance matrix, where the entries in the matrix scale
(increase) with the distance between the joint node (or sensor
node) and the target. We assume the other state variables to
be fully known.

Reward Function: The reward function rewards the deci-
sion uk taken at time k given the state of the system is xk as
defined below:

R(xk, uk) = αRest(xk, uk) + (1− α)Rcomm(xk, uk),

where Rest is the radar estimation rate [4], Rcomm is the
communications data rate, and α ∈ [0, 1] is a weighting
parameter.

Belief State: We maintain and update the posterior distri-
bution over the state space (as the actual state is not fully
observable), also known as the “belief state” given by bk =
(bχk , b

ξ
k, b

P
k ), where bξk(x) = δ(x − ξk), bPk (x) = δ(x − Pk),

and bχk = N (ξk, Pk). Here, we know the state of the tracking
algorithm, so belief states corresponding to these states are
just delta functions, whereas the target state is modeled as a
Gaussian distribution with ξk and Pk as the mean vector and
the error covariance matrix respectively.

B. POMDP Solution

Our goal is to optimize the actions over a long time-horizon
(of length H) to maximize the expected cumulative reward.
The objective function (to be maximized) is given by JH =

E
[∑H−1

k=0 R(xk, uk)
]
. But, we can also write JH in terms of

the belief states as

JH = E

[
H−1∑
k=0

r(bk, uk)

∣∣∣∣∣ b0
]
,

where, r(bk, uk) =
∫
R(x, uk)bk(x) dx and b0 is the initial

belief state. Let J∗
H(b) represent the optimal objective function

value, given the initial belief-state b. Therefore, the optimal ac-
tion policy at time k is given by π∗(bk) = argmaxu Q(bk, u),
where Q(bk, u) = r(bk, u)+E [J∗

H(bk+1) | bk, u] which is also
called the Q-value. [7], [8] give a detailed description of
POMDP and its solution. POMDP formulations are known

for their high computational complexity, particularly because
it is near impossible to obtain the above-discussed Q-value in
real-time [8]. There exist a plethora of approximation methods
called approximate dynamic programming (ADP) methods
that approximate the Q-value [7]. We adopt a fast ADP
approach called nominal belief-state optimization (NBO),
which we previously developed in the context of another
adaptive sensing problem [8]. With NBO approximation,
the POMDP formulation leads to the following optimization
problem:

min
uk,k=0,...,H−1

H−1∑
k=0

r(b̃k, uk), (6)

where b̃k, k = 0, . . . ,H − 1 is a sequence of readily available
“nominal” belief states, as opposed to bks which are random
variables, obtained from the NBO approach.

IV. SIMULATION RESULTS AND DISCUSSION

We implement the POMDP and the NBO approaches in
MATLAB to solve the waveform design problem in the above
described scenario. We study the methods in a scenario with
two obstacles blocking the line-of-sight (LOS) between the
joint node and the target as the target moves from the left to
the right as shown in Figure 2. We use MATLAB’s fmincon
[17] to solve the optimization problem in Eq. 6. Additionally,
we implement the receding horizon control approach while
optimizing the decision variables over the moving planning
horizon. The parameters used in this study are shown in Ta-
ble II. The following are the main objectives of this numerical
study.

• Study the impact of the planning horizon H on the
joint performance with respect to the estimation and the
communications rates.

• Quantitative comparison of the myopic approach (H = 1)
and the non-myopic approach (H > 1).

A. Impact of Blending Parameter on the Rates

We plot the estimation rate and communications rate of the
optimized waveform against α ∈ [0, 1] as shown in Figure 4.
As expected, α allows us to trade-off between the two rates.
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TABLE II: Parameters for Waveform Design Methods

Parameter Value
Bandwidth (B) 5 MHz

Center frequency 3 GHz
Effective temperature (Ttemp) 1000 K

Communications range 10 km
Communications power (Pcom) 1 W
Communications antenna Gain 20 dBi

Communications receiver Side-lobe Gain 10 dBi
Radar antenna gain 30 dBi
Target cross section 10 m2

Target process standard deviation (σproc) 100 m
Time–bandwidth product (TB) 128

Radar duty factor (δ) 0.01
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Fig. 4: Average rate vs. α

This trade-off property of the system is the reason we need to
optimize the waveform parameters over a planning horizon as
opposed to one-step optimization. We show a rate-rate curve
showing the communications and estimation rate for different
values of α where Rcomm is the SIC communications data
rate defined in Section III-A and α is a blending parameter
that is varied from 0 to 1. When α = 0, in Eq. 4 only
communications rate is considered, and when α = 1, only the
radar estimation rate is considered. In between, the product is
jointly maximized.

B. Impact of Planning Horizon on the Rates

In Figure 5, we plot the estimation rate for H = 1 and H =
5. At around time index 40, the line of sight is lost, which leads
to reduction in the estimation rate. As the line-of-sight gets
established at the time index 60, the rates go up in both cases,
but the rise is significantly higher for H = 5, which shows
that our non-myopic approach plans the waveform parameters
more effectively than the myopic approach (H = 1). Table III
summarizes the average combined rates for different planning
horizon lengths as discussed above. As we increase H = 1 to
H = 5 the combined rate is increased by more than five times,

TABLE III: Planing horizon length (H) Versus average
combined rate for α = 0.5

Planing horizon length (H) Average combined rate (x106 bits/sec)
1 22.8
2 45.72
3 68.58
4 91.43
5 114.29

Fig. 5: Estimation rate vs. planning horizon

but at the same time the computational complexity in solving
Eq. 6 with H = 5 is significantly higher than with H = 1. In
fact, this computational complexity grows exponentially with
H . Thus, one may need to assess if it is worth trading off
computational complexity for better performance, and then
determine the planning horizon length H accordingly. Figure 6
shows the quantitative comparison of radar estimation rate
and average combined rate for five different planning horizon.
Figure 7 shows the qualitative comparison of planning horizon
H = 1 vs. H = 5. In both cases the size of the error
confidence ellipse of the target increases when the target is
occluded by the obstacles. But the size of the ellipse visibly
reduces as we set H = 5. This reduction in the ellipse size
is captured quantitatively in Figure 7. Table IV shows the

Fig. 6: Average rate vs. planning horizon
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(a) Planning Horizon H=1 (b) Planning Horizon H=5

Fig. 7: Myopic vs. non-myopic approach
TABLE IV: Planing horizon length (H) Versus Average target
location error

Planing horizon length (H) Average target location error (m)
1 107.4344
2 102.7342
3 94.9062
4 73.7049

impact of plan horizon length on the average target location
error.

V. CONCLUSIONS

We developed a decision theoretic framework for adap-
tive waveform design in joint radar-communications systems.
Specifically, we posed the waveform design problem as a
partially observable Markov decision process (POMDP) and
extended an approximated dynamic programming approach to
solve the problem in near real-time. Particularly, we adapted
an ADP approach called nominal belief-state optimization
or NBO. The goal is to optimize the spectral shape of the
radar waveform over time to maximize the joint performance
of radar and communications in spectral coexistence. We
presented the quantitative benefits, in terms of communications
and radar estimation rates, of our POMDP-based non-myopic
approach in waveform design against myopic or greedy ap-
proaches. In our future studies, we will address challenges
including time-varying communication demand and target
detection probability.

REFERENCES CITED

[1] J. B. Evans, “Shared Spectrum Access for Radar and Communica-
tions (SSPARC),Online:http://www.darpa.mil/program/shared-spectrum-
access-for-radar-and-communications.

[2] D. W. Bliss and S. Govindasamy, Adaptive Wireless Communications:
MIMO Channels and Networks. New York, New York: Cambridge
University Press, 2013.

[3] D. W. Bliss, “Cooperative radar and communications signaling: The
estimation and information theory odd couple,” in Proc. IEEE Radar
Conference, May 2014, pp. 50–55.

[4] B. Paul, A. R. Chiriyath, and D. W. Bliss, “Joint communications and
radar performance bounds under continuous waveform optimization: The
waveform awakens,” in IEEE Radar Conference, May 2016, pp. 865–870.

[5] P. Chavali and A. Nehorai, “Cognitive radar for target tracking in mul-
tipath scenarios,” in Proc. Waveform Diversity & Design Conf., Niagara
Falls, Canada, 2010.

[6] Ma, O., Chiriyath, A. R., Herschfelt, A., & Bliss, D. (2019). Cooperative
Radar and Communications Coexistence Using Reinforcement Learning.
In M. B. Matthews (Ed.), Conference Record of the 52nd Asilomar
Conference on Signals, Systems and Computers, ACSSC 2018 (pp. 947-
951). [8645080] (Conference Record - Asilomar Conference on Signals,

Systems and Computers; Vol. 2018-October). IEEE Computer Society.
https://doi.org/10.1109/ACSSC.2018.8645080

[7] E. K. P. Chong, C. Kreucher, and A. O. Hero, “Partially observable
Markov decision process approximations for adaptive sensing,”Disc.
Event Dyn. Sys., vol. 19, pp. 377–422, 2009.

[8] S. Ragi and E. K. P. Chong, “UAV path planning in a dynamic envi-
ronment via partially observable Markov decision process,” IEEE Trans.
Aerosp. Electron. Syst.,vol. 49, pp. 2397–2412, 2013.

[9] A. Charlish and F. Hoffmann, “Anticipation in cognitive radar using
stochastic control,” in Proc. IEEE Radar Conf., Arlington, VA, 2016,
pp. 1692–1697.

[10] S. Ragi, E. K. P. Chong, and H. D. Mittelmann, “Mixed-integer nonlinear
programming formulation of a UAV path optimization problem,” in Proc.
2017 American Control Conf., Seattle, WA, 2017, pp. 406–411.

[11] T. M. Cover and J. A. Thomas, Elements of Information Theory,2nd ed.
Hoboken, New Jersey: John Wiley & Sons, 2006.

[12] A. R. Chiriyath, B. Paul, G. M. Jacyna, and D. W. Bliss, “Inner
bounds on performance of radar and communications co-existence,”IEEE
Transactions on Signal Processing, vol. 64, no. 2, pp. 464–474, January
2016.

[13] B. Paul and D. W. Bliss, “Extending joint radar-communications bounds
for FMCW radar with Doppler estimation,” in IEEE Radar Conference,
May 2015, pp. 89–94.

[14] B. Paul and D. W. Bliss, “The constant information radar,” En-
tropy,vol. 18, no. 9, p. 338, 2016. [Online]. Available: http://www.mdpi.
com/1099-4300/18/9/338

[15] A. Chiriyath, S. Ragi, H. D. Mittelmann, D. W. Bliss, ”Novel Radar
Waveform Optimization for a Cooperative Radar-Communications Sys-
tem,”IEEE Transactions on Aerospace and Electronic Systems , vol. 55,
no. 3, pp. 1160–1173, April 2019.

[16] A. Chiriyath, S. Ragi, H. D. Mittelmann, D. W. Bliss, ”Radar Waveform
Optimization for Joint Radar Communications Performance,” Electronics,
special issue on Cooperative Communications for Future Wireless Sys-
tems, vol. 8, no. 12, December 2019.

[17] MATLAB’s fmincon. 2016. [Online]. Available: https://www. math-
works.com/help/optim/ug/fmincon.

[18] B. Paul, A. R. Chiriyath, and D. W. Bliss. Survey of rf communications
and sensing convergence research. IEEE Access, 5:252–270, 2017.

[19] S. Ragi and E. K. P. Chong, “Decentralized guidance control of UAVs
with explicit optimization of communication,” J. Intell. Robot. Syst., vol.
73, pp. 811–822, 2014.

[20] A. R. Chiriyath and D. W. Bliss, “Joint radar-communications per-
formance bounds: Data versus estimation information rates,” in 2015
IEEE Military Communications Conference, MILCOM, October 2015, pp.
1491–1496.

[21] A. R. Chiriyath and D. W. Bliss, “Effect of clutter on joint radar-
communications system performance inner bounds,” in 2015 49th Asilo-
mar Conference on Signals, Systems and Computers, November 2015,
pp. 1379–1383.

[22] B. Paul, D. W. Bliss, and A. Papandreou-Suppappola, “Radar tracking
waveform design in continuous space and optimization selection using
differential evolution,” in 2014 48th Asilomar Conf. Signals, Systems and
Computers, November 2014, pp. 2032–2036.

[23] J. R. Guerci, R. M. Guerci, A. Lackpour, and D. Moskowitz, “Joint
design and operation of shared spectrum access for radar and communi-
cations,” inIEEE Radar Conference, May 2015, pp. 761–766.

[24] M. Bica, K.-W. Huang, V. Koivunen, and U. Mitra, “Mutual information
based radar waveform design for joint radar and cellular communication
systems,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), March 2016, pp. 3671–3675.

[25] M. R. Bell, N. Devroye, D. Erricolo, T. Koduri, S. Rao, and D. Tuninetti,
“Results on spectrum sharing between a radar and a communications sys-
tem,” in 2014 International Conference on Electromagnetics in Advanced
Applications (ICEAA), August 2014, pp. 826–829.

[26] R. M. Gutierrez, A. Herschfelt, H. Yu, H. Lee, and D. W. Bliss. Joint
radar-communications system implementation using software defined
radios: Feasibility and results. In 2017 51st Asilomar Conference on
Signals, Systems, and Computers, pages 1127–1132, Oct 2017.

[27] A. R. Chiriyath, B. Paul, and D. W. Bliss. Radar-communications
convergence: Coexistence, cooperation, and co-design.IEEE Transactions
on Cognitive Communications and Networking,3(1):1–12, March 2017.

[28] B. Paul, C. D. Chapman, A. R. Chiriyath, and D. W. Bliss. Bridging
mixture model estimation and information bounds using i-mmse. IEEE
Transactions on Signal Processing, 65(18):4821–4832,Sept. 2017.

11

Authorized licensed use limited to: Tencent. Downloaded on June 30,2021 at 09:14:14 UTC from IEEE Xplore.  Restrictions apply. 

DISTRIBUTION A: Distribution approved for public release.



1

Waveform codesign for radar-communications
spectral coexistence via dynamic programming
Shammi A. Doly ∗, Alex Chiriyath∗, Hans D. Mittelmann†, Daniel W. Bliss∗ and Shankarachary Ragi‡
∗ School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287

Email: sdoly@asu.edu, achiriya@asu.edu & d.w.bliss@asu.edu
† School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287

Email: mittelmann@asu.edu
‡ Department of Electrical Engineering, South Dakota School Mines & Technology, Rapid City, SD 57701

Email: shankarachary.ragi@sdsmt.edu

Abstract—We develop a new waveform codesign approach
for radar-communications spectral coexistence using a decision-
theoretic framework called partially observable Markov decision
process (POMDP). The POMDP framework’s natural look-
ahead feature allows us to trade-off short-term for long-term
performance, which is necessary in waveform codesign problems
with competing objectives and dynamic user needs. As POMDPs
are computationally intractable, we extend two approximation
methods called nominal belief-state optimization and random-
sampling multipath hypothesis propagation to make the codesign
approaches tractable.

I. INTRODUCTION

Spectral congestion is forcing legacy radar band users to
investigate cooperation and co-design methods with a growing
number of communications applications [1]. The codesign
of radar and wireless communications systems faces several
challenges: interference, radar, communications decoupling,
and dynamic user (radar and communications) requirements.
The studies in [2], [3] provide a detailed overview of the chal-
lenges and research directions in the “spectral” coexistence
of radar and communications. In the study in [4], the quality
of the radar return and the communications rate is mainly
determined by the waveform’s spectral shape. Moreover, one
of the critical challenges for any waveform design method
is to meet dynamic user needs. In this paper, we develop
waveform shaping methods that are adaptive and can trade-off
between competing performance objectives to address these
challenges. A waveform design method can most effectively
meet the dynamic user needs if it predicts the future user needs
and allocates the resources accordingly. Previous research has
considered waveform design for joint radar-communications
systems, for example, [5], [6]. However, existing methods
often do not meet dynamic performance requirements, as they
tend to be greedy in that they only maximize short-term per-
formance for immediate benefits. For problems with dynamic

The work of S. Doly, S. Ragi, and H. D. Mittelmann was supported in part
by the Air Force Office of Scientific Research under grant FA9550-19-1-0070.

performance requirements, long-term performance is critical
as decisions (to choose a particular waveform) at the current
time epoch may lead to regret in the future. To address these
challenges, we develop an adaptive waveform design method
for joint radar-communications systems based on the theory of
partially observable Markov decision process (POMDP) [7],
[8]. Specifically, we formulate the waveform design problem
as a POMDP [8], after which the design problem becomes
a matter of solving an optimization problem. In essence,
the POMDP solution provides us with the optimal decisions
on the waveform design parameters [9]. The optimization
problems resulting from POMDPs are hard to solve precisely;
specifically, these problems are PSPACE-complete [10]. The
optimization problems resulting from POMDP formulation
are typically reformulated as dynamic programming problems,
which allows us to apply Bellman’s principle of optimality,
leading to a plethora of approximation methods called ap-
proximate dynamic programming methods or ADP methods
as surveyed in [7]. In this study, we adopt two different ADP
approaches called nominal belief-state optimization (NBO)
[7], and random sampling multipath hypothesis propagation
(RS-MHP) [11], [12] to maximize the reward in the long
horizon decision problems. RS-MHP methods are a variant of
the existing broad class of Monte-Carlo tree search (MCTS)
methods. The POMDP framework has a natural look-ahead
feature, i.e., it can trade-off short-term for long-term perfor-
mance. This feature lets the POMDP naturally anticipate the
dynamic user needs and optimize the resources (waveforms)
to actively meet the user’s needs. Typically, one studies these
adaptive methods under “cognitive radio (radar),” which has a
rich literature. The current waveform design problem is related
to a class of problems called adaptive sensing, where POMDP
was already a proven effective framework [9], [13]. However,
this paper brings formalism to these methods by posing the
waveform design problem as a POMDP. Recently, POMDPs
were used in [14] to develop adaptive methods for “cognitive
radar,” but in a different context, where the focus was on
optimizing radar measurement times and not on waveform
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shaping.

A. Literature Review

Modern spectrum sharing techniques proposed waveform
co-design and operation as a necessary construct for joint
radar-communications [15], [16]. Various methods employ
optimization theory to select a jointly optimal waveform [17]–
[19] or jointly maximizing information criteria for radar and
orthogonal frequency-division multiplexing (OFDM) commu-
nications users to minimize mutual interference for dynamic
bandwidth allocation [20]. Other avenues for co-design have
also been investigated [21]–[30]. Most modern co-design
approaches do not take the long term needs of the system
into consideration. The proposed POMDP-based waveform
co-design framework is able to evaluate the needs of the
system into the future and trade performance in the short-term
versus the long-term.

Cognitive techniques in radar were primarily used for en-
hanced dynamic behavior in complex environments [31], [32],
but researchers have begun to look at cognitive radar as a solu-
tion to the spectral scarcity problem via radar scheduling [33]
or employing cognitive radio spectrum sensing techniques,
emitter localization, and power allocation to avoid interfer-
ence [34]–[39]. Others have investigated cognitive radar as a
solution to the spectral congestion problem [40]–[43]. Most
research efforts tend to adaptively use the spectrum to avoid
interference. Such methods are akin to the traditional spectrum
sharing solution of isolation in space, time and/or frequency,
which can limit joint system performance as opposed to a co-
design approach, where both systems cooperatively utilize the
spectrum. Co-design approaches, such as our POMDP-based
approach, show better joint system performance due to better
cooperation between systems.

Relationships between radar estimation sidelobe ambiguity
and communications channel coding were previously studied
[44]. Others have suggested specific coding techniques with
favorable properties such as finite Heisenberg-Weyl groups
[45], Golay waveforms with Doppler resilient properties [46],
and complementary sequences [47]. These approaches tend
to prioritize the performance of one system over the other,
and as such are sub-optimal in performance to most modern
co-design approaches.

OFDM was investigated as a viable option in vehicle-to-
vehicle applications [48]–[51], software-defined radio (SDR)
architectures [52], etc. However, results show conflicting
cyclic prefix requirements, data-dependent ambiguities, and
trouble mitigating peak-to-average power ratio (PAPR) for
typical radar power requirements. Researchers focused on de-
veloping joint systems that could mitigate the effects of these
problems, such as suppressing side-lobes [53], maintaining a
constant envelope [54], or reducing PAPR [55]. An OFDM
approach is fundamentally more favorable to communications
system performance and most research efforts lie in improving
radar performance to an acceptable level. However, co-design

TABLE I: Survey of Notation

Variable Description

B Total system bandwidth

Brms Root-mean-squared radar bandwidth

Bcom Communications-only subband

Prad Radar power

Ttemp Effective temperature

b Communications propagation loss

Pcom Communications power

Prad Communications power

x(t) Unit-variance transmitted radar signal

a Combined antenna gain

N Number of samples

σ2
CRLB Cramer-Rao lower bound

σ2
noise Thermal noise

σ2
proc Process noise variance

TB Time-bandwidth product

δ Radar duty factor

w Measurement noise

ζk Mean vector noise

τ Time delay to mth target

α Weighting parameter

Rcomm Communications rate

Rest Radar estimation rate

Pk Error covariance matrix

Tpri Pulse repetition interval

H Planning horizon length

approaches such as ours are more beneficial in the long-term
due to them giving both systems equal importance.

B. Key Contributions

Below are the key contributions of this study.
• We formulate the joint radar waveform codesign problem

as a POMDP.
• We extend ADP methods NBO and RS-MHP to solve

the waveform design problem posed as POMDP.
• We implement the POMDP-based waveform codesign

algorithms in simulated environments and conduct a
numerical study to quantify the impact of the planning
horizon on the performance of our methods.

A preliminary version of the parts of this paper was published
as [8]. This paper differs from the conference paper [8] in
the following ways: 1) along with the previous numerical
results in [8] we conduct an empirical study to assess the
impact of the planning horizon H in POMDP on the radar
and communications performance; 2) we extend a new ADP
approach RS-MHP [11], [12] to solve the waveform codesign
problem, and benchmark its performance against the NBO
approach we previously used in [8].

2
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Fig. 1: Joint radar-communications system block diagram for
SIC scenario. The radar and communications signals have two
effective channels, but arrive converged at the joint receiver.
The radar signal is predicted and removed, allowing a reduced
rate communications user to operate. Assuming near perfect
decoding of the communications user, the ideal signal can
be reconstructed and subtracted from the original waveform,
allowing for unimpeded radar access.

II. JOINT-RADAR COMMUNICATIONS PREMISE

A. Successive Interference Cancellation Receiver Model

Table I shows the notations employed in this paper. In this
study, we use an optimal multi-user receiver model called
successive interference cancellation (SIC) [2], [57] to remove
the communication signal from the radar return. Based on the
prior observations of the radar target range (or time-delay)
up to some random fluctuation (also called process noise)
nproc(t) as a zero-mean random variable we generate the radar
return. Then we subtract the predicted radar return from the
joint radar-communications signal received. After suppressing
the radar return, the receiver then decodes and removes the
communications signal from the received signals. It is this
receiver model that causes communications performance to be
closely tied to the radar waveform spectral shape. The block
diagram of the joint radar-communications system considered
in this scenario is shown in Figure 1. When applying SIC,
the interference residual plus noise signal nint+n(t), from the
communications receiver’s perspective, is given by [3], [58]

nint+n(t) = n(t) + nresi(t)

= n(t) +
√
‖a‖2 Prad nproc(t)

∂x(t− τ)
∂t

, (1)

and

‖nint+n(t)‖2 = σ2
noise + a2 Prad (2π Brms)

2
σ2

proc , (2)

where nproc(t) is the process noise with variance σ2
proc.

B. Radar Estimation Rate

To measure spectral efficiency for radar performance, we
developed a new metric recently called radar estimation rate,
which is formally defined as the minimum average data rate
required to provide time-dependent estimates of system or
target parameters, for example, target range [3], [58], [59].
The radar estimation rate is expressed as follows:

Rest = I(x;y)/Tpri, (3)

where I(x;y) is the mutual information between random
vectors x and y, and Tpri =Tpulse/δ is the pulse repetition

interval of the radar system, Tpulse is the radar pulse duration,
and δ is the radar duty factor. This rate allows construction of
joint radar-communications performance bounds, and allows
future system designers to score and optimize systems relative
to a joint information metric. For a simple range estimation
problem with a Gaussian tracking prior, this takes the form
[2], [3], [60]:

Rest = (1/2T ) log2(1 + σ2
proc/σ

2
CRLB), (4)

where σ2
proc is the range-state process noise variance and σ2

CRLB
is the Cramér-Rao lower bound (CRLB) for range estimation
given by [3], [58], [59]

σ2
CRLB =

σ2
noise

8π2B2
rms TpB Prad,rx

(5)

where σ2
noise is the noise variance or power, Tp is the radar

pulse duration, Brms is the radar waveform root mean square
(RMS) bandwidth, and Prad,rx is the radar receive power, which
is inversely proportional to the distance of the target from the
joint node. Immediately apparent is the similarity of above
equation to Shannon’s channel capacity equation [3], [58],
[59], where the ratio of the source uncertainty variance to
the range estimation noise variance forms a pseudo-signal-
to-noise ratio (SNR) term. In Eq. 4, the estimation rate
is inversely proportional to the distance of the target from
the joint node. As discussed later, we design the waveform
parameters over the planning horizon while accounting for
the varying estimation rate due to target’s motion.

C. Inner rate bounds

We measure the performance of the system with two
metrics: communications information rate bound and radar
estimation rate bound (discussed in the previous section). The
joint radar-communications performance bounds developed
in [3], [58], [59] considered only local radar estimation
error, therefore making simplified assumptions about the radar
waveform. In [4], the results were generalized to include
formulation of an optimal radar waveform for both global
radar estimation rate performance and consideration of in-
band communications users forced to mitigate radar returns.
After the SIC process, some radar residual will be left in
the communications signal (due to error in predicted target
location and actual target location). If Rest ≈ 0 is sufficiently
low, then the communications operates according to the bound
determined by the isolated communications system [2]. The
highest possible communications rate when decoding the post-
SIC received signal is given by

R̃com ≤ B log2

[
1 +

b2Pcom

σ2
noise

]
. (6)

If R̃com is sufficiently low for a given transmit power then
the communications signal can be decoded and subtracted

3
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Fig. 2: Target tracking problem scenario

completely from the underlying signal, so that the radar
parameters can be estimated without contamination,

R̃com ≤ B log2

[
1 +

b2Pcom

σ2
noise + a2 Prad (2π Brms)

2
σ2

proc

]
,

(7)
In this regime, the corresponding estimation rate bound Rest
is given by Eq. 4. An achievable rate lies within the imaginary
triangle constructed by the Eq. 4, Eq. 6, and Eq. 7.

III. PROBLEM SPECIFICATION

We consider a case study with a radar target, commu-
nications user, and the joint node, as shown in Figure 2.
We consider a single clutter condition as shown in Figure 2
where an obstacle may occlude the line-of-sight of the tar-
get from the joint node. Total clutter residue acts as extra
additive noise in the system, which causes the channel to
appear more degraded. Radar estimation rates are also reduced
(radar and communications overlap) once the clutter occludes
the target. We do not consider any external interference or
a jamming condition in this paper. We will develop our
POMDP framework for this case study, which can be easily
generalized and extended to other problem scenarios. This
particular case study allows us to show the qualitative and
quantitative benefits of POMDP in adaptive waveform design.
The key components in the waveform design algorithm based
on POMDP are shown in Figure 3. The POMDP planner
evaluates the belief-state (posterior distribution over the state
space updated according to Bayes’ rule) of the system, uses
an ADP method to solve the POMDP approximately, and
produces optimal or near-optimal decisions on waveform
parameters; details are discussed later. Our objective is to
design the shape of the waveforms over time to maximize the
system’s performance. First, we begin with a unimodular chirp
waveform exp[j(πB/T )(t2)]. We control the spectral shape
of this chirp signal to maximize joint performance. We first
sample the chirp signal and collect m samples in the frequency

domain to achieve this. Let X = (X(f1), . . . , X(fm))T be
the discretized signal in the frequency domain at frequencies
f1, . . . , fm. Let u = (u(1), . . . , u(m))T be an array of
spectral weights we will optimize as discussed below, where
u(i) ∈ [0, 1],∀i. We control the chirp signal’s spectral shape
by multiplying (i.e., dot product) the signal with the spectral
weights in the frequency domain, i.e., the resulting signal is
given by X(fi)u(i),∀i.

IV. POMDP FORMULATION FOR JOINT WAVEFORM
CODESIGN

To pose any decision making problem as a POMDP, we
need to define the POMDP ingredients, namely states, actions,
state-transition law, observations and observation law, and
reward function, in the context of the particular problem at
hand. Below is a description of the POMDP ingredients as
defined specific to our waveform design problem. Hereafter,
we model the system dynamics as a discrete event process,
where k represents the discrete time index.

States: State at time k is defined as xk = (χk, ξk, Pk),
where χk represents the target state, which includes the
location, velocity, and the acceleration of the target; and
(ξk, Pk) represents the state of the tracking algorithm, e.g.,
Kalman filter, where ξk is the mean vector, and Pk is the
covariance matrix.

Actions: Actions are the waveform spectral weights vector
uk, at time k, as defined previously.

State-Transition Law: χk evolves according to a target
motion model near-constant velocity model [9] captured by
χk+1 = Fχk + nk, where F is a transition matrix, and nk =
nproc(t = k) is the process noise described in Section II-A,
which is modeled as a Gaussian process. ξk and Pk evolve
according to Kalman filter equations.

Observation Law: zTargk = Gχk + wk (if not occluded)
and zTargk = wk (if occluded), where G is a transition matrix,
and wk is the measurement noise, modeled as a Gaussian
process. Specifically, wk ∼ N (0, Rk), where Rk is the
noise covariance matrix, where the entries in the matrix scale
(increase) with the distance between the joint node (or sensor
node) and the target. We assume the other state variables to
be fully known.

Reward Function: The reward function rewards the deci-
sion uk taken at time k given the state of the system is xk as
defined below:

R(xk, uk) = αRest(xk, uk) + (1− α)Rcomm(xk, uk) (8)

where Rest is the radar estimation rate [4], Rcomm is the com-
munications data rate, and α ∈ [0, 1] is a weighting parameter.
The dependence of the rates on the waveform spectral weights
uk is explained as follows. Both the rates Rest(xk, uk) and
Rcomm(xk, uk) is a function of the RMS bandwidth Brms

of the waveform as can be seen from equations 4, 5, and
7. The RMS bandwidth clearly depends on the shape of the

4
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waveform spectrum, which is determined by the waveform
spectral weights uk.

Belief State: We maintain and update the posterior dis-
tribution over the state space (as the actual state is not
fully observable), also known as the “belief state” given by
bk = (bχk , b

ξ
k, b

P
k ), where bξk(x) = δ(x − ξk), bPk (x) =

δ(x − Pk), and bχk = N (ξk, Pk). Here, we know the state
of the tracking algorithm, so belief states corresponding to
these states are just delta functions, whereas the target state
is modeled as a Gaussian distribution with ξk and Pk as
the mean vector and the error covariance matrix respectively.
Our goal is to optimize the actions over a long time-horizon
(of length H) to maximize the expected cumulative reward.
The objective function (to be maximized) is given by JH =

E
[∑H−1

k=0 R(xk, uk)
]
. But, we can also write JH in terms of

the belief states as

JH = E

[
H−1∑
k=0

r(bk, uk)

∣∣∣∣∣ b0
]
, (9)

where, r(bk, uk) =
∫
R(x, uk)bk(x) dx and b0 is the initial

belief state. Let J∗
H(b) represent the optimal objective function

value, given the initial belief-state b. Therefore, the optimal ac-
tion policy at time k is given by π∗(bk) = argmaxu Q(bk, u),
where Q(bk, u) = r(bk, u)+E [J∗

H(bk+1) | bk, u] which is also
called the Q-value. A detailed description of POMDP and its
solution can be found in [7], [9]. POMDP formulations are
notorious for their high computational complexity (PSPACE-
complete [10]), particularly because it is near impossible to
obtain the above-discussed Q-value in real-time [9]. Most
ADP methods approximate the Q-value [7]. We adopt two
ADP approaches: nominal belief-state optimization (NBO) [9]
and random sampling - multipath hypothesis propagation (RS-
MHP) [11], [12].

A. POMDP Solution via NBO

With NBO approximation, the POMDP formulation leads
to the following optimization problem:

max
uk,k=0,...,H−1

H−1∑
k=0

r(b̃k, uk), (10)

where b̃k, k = 0, . . . ,H − 1 is a sequence of readily available
“nominal” belief states, as opposed to bks which are random
variables, obtained from the NBO approach. In NBO, the
expectation is replaced by a sample state trajectory generated
with an assumption that the future noise variables in the
system collapse to the nominal or mean values (Figure 4),
thus making the above objective function deterministic. The
NBO method was developed to solve a UAV path optimization
problem, which was posed as a partially observable Markov
decision process (POMDP) [9]. POMDP generalizes the long
horizon optimal control problem described in [11] in that
the system state is assumed to be “partially” observable,
which is inferred via the use of noisy observations and Bayes
rules. Although the performance of the NBO approach was
satisfactory in that it allowed to obtain reasonably optimal
reward commands for the decision problem to be received,it
ignored the uncertainty due to noise disturbances, thus leading
to inaccurate evaluation of the objective function. This chal-
lenge can be overcome by the RS-MHP approach as discussed
below.

B. POMDP solution via RS-MHP

The tree-like sampling of the states in the RS-MHP ap-
proach, as shown in figures 4 and 5, allows us to incorporate
the uncertainty of the state evolution into the decision-making
criteria, albeit with the increased computational burden com-
pared to NBO. However, the sampling approach allows us
to trade-off between the computational intensity and the

5
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Fig. 4: Sampling in NBO vs. RS-MHP approach

solution’s optimality (determined by our choice of the number
of samples/branches in RS-MHP). In RS-MHP approach, we
sample the probability distribution of the state of the system
(a random variable) N times at each time step and generate
a sampling tree as shown in Figure 5 (here, N = 3). To
avoid the exponential growth of the state sample nodes in this
approach, at each time step we retain only M sample states
and prune the remaining samples. If the number of the sample
states at a given time instance is less than or equal to M , we
do not perform pruning. Figure 5 shows an illustration of the
above branch pruning strategy for a scenario with N = 3
and M = 3. We prune the tree branches based on their
likeliness indices [11], [12], i.e., we retain the top M branches
at each time step with the highest sample probabilities. We
approximate the expectation with an average over the possible
state trajectories or tree branches as follows:

1

M

M∑
i=1

(
H−1∑
k=0

r(xik, uk)

)
(11)

where xik represents the sample state node from the ith
trajectory at time k. Clearly, as N → ∞ and M → ∞, the
above approximation converges to the true objective function
in Eq. (9).

V. SIMULATION AND RESULTS

We study the efficacy of the above-mentioned waveform
codesign methods in a scenario with two obstacles blocking
the line-of-sight (LOS) between the joint node and the radar
target as the target moves from the left to the right, as shown
in Figure 7. Furthermore, we implement the receding horizon
control approach while optimizing the decision variables over
the moving planning horizon [9]. We implement the NBO
& RS-MHP approaches to solve the joint radar waveform
optimization problem, in the above context, in MATLAB.
We use MATLAB’s fmincon [61] (an optimization tool in
MATLAB) to solve the optimization problems discussed in
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Fig. 5: Sampling in RS-MHP approach with pruning (3 nodes
allowed to remain at each stage).

TABLE II: Parameters for Waveform Design Methods

Parameter Value

Bandwidth (B) 5 MHz

Center frequency 3 GHz

Effective temperature (Ttemp) 1000 K

Communications range 10 km

Communications power (Pcom) 1 W

Communications receiver Side-lobe gain 20 dBi

Radar antenna gain 30 dBi

Target cross section 10 m2

Target process standard deviation (σproc) 100 m

Time-bandwidth product (TB) 128

Radar duty factor (δ) 0.01

the previous section. The following are the main objectives of
this numerical study.

• Study the optimal radar waveform properties.

• Study the impact of the planning horizon H on the
joint performance with respect to the estimation and the
communications rates.

• Performance comparison of NBO vs. RS-MHP ADP
approaches in the non-myopic approach (H > 1).

A. Optimal radar waveform properties

We assume that the joint radar-communications receiver
shares a single antenna front end and that the communications
signal is received through an antenna sidelobe while the
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(a) Radar waveform autocorrelation function of the optimized waveform with
α = 0.5 and H = 1

(b) Radar waveform spectrum with α = 0.5 and H = 1. The standard chirp
is depicted by the red line, and the optimal waveform spectrum is shown by

the blue dotted line

Fig. 6: Optimized waveform vs. the standard chirp.

radar return is received through the same antenna mainlobe,
so that the radar and communications receive gain are not
identical. From the simulation results, it can be seen that the
SNR varies from 19 dB to 23 dB roughly. The SNR in the
NBO approach is 19.1419dB, and the RS-MHP approach is
22.4310dB. The parameters used in our simulation studies are
shown in Table II. In Figure 6 (a) we show the radar waveform
spectral autocorrelation function of optimized waveform with
blending parameter α = 0.5 and planning horizon H = 1 at
a time step k = 1. We plot the spectrum of the optimized
waveform with α = 0.5 along with the original unmasked
chirp waveform as shown in Figures 6 (b). This waveform
spectrum shows the joint radar-communications optimal and
has more energy at the bandwidth center than the sidebands.
Radar waveform spectrum with α = 0.1 and α = 1 along with
the original unmasked chirp waveform shown in Figure 8.

B. Effect of planning horizon length on the joint performance
We implement the NBO approach for H = 1 and H = 9

as shown in Figure 7. In both cases, the size of the error
confidence ellipse of the target increases when the target is oc-
cluded by the obstacles. The growth of the ellipse size visibly
reduces for H = 9 compared to H = 1. So, the non-myopic
method (H > 1) has a better capability in keeping the growth
of the target-sate uncertainty small compared to a myopic
approach (H = 1). Figure 9 shows the estimation and the
communications rates as a function of the blending parameter
α. As expected, α allows us to smoothly trade-off between the
two rates. Furthermore, in Figure 10, we plot the estimation
rate as a function of time for the above two scenarios with

H = 1 and H = 9, which shows the quantitative benefit
of a non-myopic approach (H > 1) over a myopic approach
(H = 1) in terms of the radar estimation rate. Figure 11
shows a gradual increase in the joint radar-communications
performance with increasing H as expected in a non-myopic
approach, however, the computational complexity in solving
Eq. 9 grows exponentially with H .

C. Performance comparison of NBO vs. RS-MHP ADP ap-
proaches

Here we implement the RS-MHP approach for waveform
codesign in the same simulation scenario described earlier.
Figure 12 shows the cumulative distribution of the radar
estimation rates using RS-MHP and NBO methods for H = 3.
The figure clearly demonstrates that the RS-MHP approach
outperforms the NBO approach and that the performance
improves as we increase the number of samples N in the RS-
MHP approach. Figure 13 shows the average radar estimation
rates for N set to 10, 50, 100, 150, and 200 for H = 3.
The figure shows a gradual increase in the algorithm’s per-
formance (in terms of the estimation rate) with increasing N
as expected. This result also suggests that the pruning step
in RS-MHP method would degrade the performance but can
provide gains in terms of computational intensity. In summary,
our numerical study confirms that the RS-MHP’s performance
has a clear statistical edge over that of the NBO approach in
terms of the estimation rate.
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(a) Planning Horizon H=1 (b) Planning Horizon H=9

Fig. 7: Error concentration ellipse (95% confidence) of the dynamic target at different location in both myopic (H = 1) and
non-myopic (H > 1) approaches for α = 0.5 by red lines. The number of iteration indexes is considered k = 15 to demonstrate
which locations match which ellipses more precisely. For example, the solid blue line shows the error concentration ellipse
at the time index k = 5 for H = 1, and the error concentration ellipse for H = 9 at the time index k = 5 is shown by the
blue dotted line. We see that with the non-myopic method (H > 1), we could minimize the size of the error concentration
ellipse as the target tracking error as determined by the spectral mask we chose.
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of the bandwidth. The optimized waveform is depicted by the
green dashed line for α = 1 and, this waveform spectrum
is radar-optimal and has more energy in the center of the
bandwidth.

VI. CONCLUSIONS

We developed a waveform codesign approach for joint-radar
communications systems using a decision-theoretic frame-
work called partially observable Markov decision processes
(POMDPs). The goal is to optimize the spectral shape of the
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Fig. 9: Rate–rate curve depicting communications and estima-
tion rate vs. α. Communications and estimation rate pairs are
shown α ∈ [0, 1].

radar waveform over time to maximize the joint performance
of radar and communications in spectral coexistence measured
in terms of radar estimation and communications rates. As
most decision-theoretic formulations suffer from the curse
of dimensionality, we extended two approximation strategies
or approximate dynamic programming (ADP) methods to
solve the POMDP - nominal belief-state optimization (NBO)
and random sampling multipath hypothesis propagation (RS-
MHP). Our numerical study confirmed that the POMDP-
based non-myopic waveform codesign approach has a better
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Fig. 11: Average estimation and communication rates vs.
planning horizon H ∈ {1, 2, 3, 4, 5}.

capability in keeping the growth of target state uncertainty
small compared to a myopic approach. We also presented
the quantitative benefits, in terms of the communications
and the radar estimation rates, of our POMDP-based non-
myopic approach against the traditional myopic approaches.
Our results also confirmed a gradual increase in the joint radar-
communications performance with increasing planning hori-
zon length, which was expected in a non-myopic approach.
Our numerical studies also confirmed that the ADP approach
RS-MHP outperformed the NBO approach in terms of the
target estimation rate.
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