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LONG-TERM GOALS 

Proper inference in a decision or inference network requires that the commander (technically: the 
fusion center) have an understanding of the relative weight that he / she should place on the inputs each 
subordinate. Recent works have addressed the problem of estimating agents’ behaviors in complex 
networks, of which social networks are a prominent example. These works are especially promising 
and would seem to be of considerable practical importance in a wide variety of command & control 
venues. However, these works are perhaps limited by their somewhat idealized assumptions: that the 
commander (fusion center) possess full information of all subordinates’ histories, and that conditional 
statistical independence between these histories can be assumed. In the proposed project we intend to 
explore more general situations: of dependent sensors, of unknown structure of that (possible) 
dependence, of missing data and of subordinate identities that are either obscured / adulterated / 
entirely missing. For such dynamic fused inference problems we propose to extend results in a number 
of directions: exploring dependency amongst data sources (physical proximity or “group-think”), in 
term of useful communication strategies when the inference task and quantization are not necessarily 
matched, and even the unlabeled case in which the identity of each measurement’s source is unknown 
– this is a form of the data association problem

We also recognize that inference of dynamic underlying situations is of key interest. Given a 
traditional framework involving measurements and physical “targets” this is a familiar problem of 
tracking. But can techniques from target tracking and multi-sensor data association be applied to 
extract states that are not physical (physical as would be, say. an aircraft observed by radar) but are 
instead at a higher level? An example might be a terrorist threat or a battle plan – these would be 
observed from multiple sources via measurements such as intelligence reports and telemetry, and may 
even be thought to encompass civilian sources such as news or financial transactions. These are not 
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standard data, and neither are the dynamic systems that are of interest here the usual kinematic ones. 
Nonetheless we note that there is much commonality with (and thus opportunity for application of 
mature and emerging tools from) traditional target tracking: there can be multiple “targets”, there is 
clutter, and there is behavior that we might reasonably model via statistics. For such fused inference of 
dynamic systems we have the goal of extraction of unusual dynamic patterns that are evolving an 
would seem to merit closer attention. We specifically propose to ingest feature (identity) information, 
via modeling the clutter as a rich collection of similar activities and by adapting modern multi-sensor 
data association techniques for the task.  

OBJECTIVES 

The focus of the research is reliable inference in dynamic systems with fused observations. We begin 
with iterative fused decision-making (decisions need not be binary) from sensors / subordinates whose 
operating points (quality of data) are initially unknown. With time it should become possible to infer, 
jointly, that states of nature both of sensor suite and of the underlying situation (i.e., the real inference 
goal). We extend this in a number of directions as well: exploring dependency amongst data sources 
(physical proximity or “group-think”) and even the unlabeled case in which the identity of the 
measurement’s source is unknown. In the proposed project we additionally intend to explore situations: 
of dependent sensors, of unknown structure of that (possible) dependence of missing data and of 
subordinate identities that are either obscured / adulterated / entirely missing. We further intend to 
extend these ideas to fused estimation of dynamic threats, by ingesting feature (identity) information, 
via modeling the clutter as a rich collection of similar activities and by adapting modern multi-sensor 
data association techniques for the task.  

APPROACH 

In the first year of this effort we concentrated on the following two objectives. 

1. Unknown Identities of Decision-Makers. It is likely that in an operational situation the fusion
center (commander) receives sensor reports from his/her subordinates that is disordered: their
identities can be mixed up or even completely missing. Such a situation can be a concern in a
“big data” application in which data pedigree can be lost or for reasons of storage gets
discarded. The former situation suggests an interesting twist on Task #1: the identity
information has a strong prior to be correct but the locations of errors of identity must be
inferred; again, the EM algorithm is suggested. However, it may be so that all identity
information is lost, and the commander is presented with what might be thought of as a “bag of
decisions” each time. The method of types is in this case proposed to accomplish joint
inference of local (unlabeled) belief levels and ongoing optimal decisions.

2. Operating Points for Fused Inference of Dynamic Systems. Under previous support we have
explored dynamic event extraction: we have developed a reasonable hidden Markov model, we
have learnt to ingest (identity) features, we have a multi- Bernoulli filter-inspired extraction
approach – and we have even provided some theoretical analysis. As part of the proposed work
we will extend this in two ways. First, we intend to cast the measurements as a fused stream of
data from sources of unknown credibility that must be estimated. Second, each such
information source must be assumed to be cluttered with “ambient” events (such as the
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financial and travel footprint of a family going on vacation) that, while benign and likely 
uncomplicated, are dynamic and in some sense similar to the threats sought. These must be 
modeled (from data) and suppressed (by a multi-target tracker).  

Work in the second year focused on the following objectives. 

3. Identity Uncertainty in Data Fusion. When data are to be fused from multiple sources, and
when this data refers to multiple truth objects, a key concern is to determine which data from
one sensor go with which data from another: the “data association” problem. Actually the
means for such fusion – and even good approaches for the association process – are fairly well-
known. What is lacking is an understanding of the quality of the associations made. We attempt
to provide this, and we intend to explore the effect of sensor bias and positioning.

4. Sensor Networks with Extreme Communication Constraints. Consider inference by a network
of sensors whose positions are unknown and whose locations aresubject to drift and diffusion –
a Poisson field. Further, assume that in such a network the sensors, while cognizant of their
identities and other such relevant data choose not to transmit that to the fusion center, in order
to preserve bandwidth. What can be done? And what is lost? We examine these questions, as
well as evaluating the role (in the information theoretic sense) of identity versus observation.
That is, suppose two bandwidth-equal networks are compared; one with n sensors that transmit
only observation; and the other with n/2 sensors that transmit both data and identity. Which is
preferable, and when?

5. Tracking of the COVID-19 Epidemic Status. Admittedly epidemiology is not in the direct line
of the proposed research, but given the skills represented and the pressing need for them during
the current health emergency, it seems reasonable to be opportunistic. With a joint team of US
and Italian researchers we have shown that we can reliably estimate and forecast the evolution
of the infections from daily – and possibly uncertain – publicly available information provided
by authorities, e.g., daily numbers of infected and recovered individuals. The proposed method
is able to estimate infection and recovery parameters, and to track and predict the
epidemiological curve with good accuracy when applied to real data from Lombardy region in
Italy, and from the USA. We are presently extending our approaches to data segmentation,
change detection (as in an increase/decrease in the infected numbers) and regional clustering.

Work in the third year focused on the following objectives. 
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SELECTED WORK COMPLETED 

In the following subsections we briefly describe some of the work we have performed under this 
contract. More papers (and more details therein) are given in the following section “Publications”. 

Figure 1: Error probabilities for n=100 samples and observations of cardinality m=3 and m=10. Note the 
difference between labeled and unlabeled cases, and that the GLR can, surprisingly, be relatively poor. 

1. “Algorithms and Fundamental Limits for Unlabeled Detection using Types”. This paper 
was authored by S. Marano and P. Willett, and published in the IEEE Transactions on Signal 
Processing, vol. 67, no. 8, pp. 2022-2035, April 2019. We consider a canonical binary 
hypothesis test with independent data under both hypotheses. Motivated by modern 
applications of sensor networks engaged in big data analysis, we assume that the observation 
vector X=[x1, x2, … xn] collected by the peripheral units is delivered to the fusion center in the 
form of a random set Xu={ x1, x2, … xn} rather than a random vector – the distinction is that the 
former is labeled (it is known the source of xi) whereas in the latter the provenance of xi is not 
known, only that one of the sensors has communicated this xi. The theoretical question 
addressed is how much information for detection is carried by Xu, as opposed to X. We provide
the asymptotic (n diverging) characterization of the performance of the optimal test in terms of 
an error exponent rate Wu(a), which replaces the canonical rate W(a) of the labeled case – a is 
determined by the false alarm rate. It is proven that, when type I error tends to zero as e-na with 
the data size n, type II error may converge to zero as exp(-n Wu(a)) but not faster. The rate 
difference W(a)- Wu(a) quantifies the loss of information induced by the loss of data labels.  
The second part of this paper addresses the practical question of how to solve the test by 
algorithms of affordable computational complexity and good performance. The ULR detector 
makes no attempts to estimate the labels and is very efficient computationally. The GLRT 
solution for unlabeled data boils down to an assignment problem, for which a tailored form of 
the auction algorithm can be exploited. We also propose two alternative detection algorithms 
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Fig. 3. First computer experiment. Type II error probability versus type I
error probability, for n = 100 and m = 3, 10.

the routine that essentially determines the computational cost.
In this cycle the minimum over a decreasing-size vector is
computed. In the worst case where all the n entries of the
initial path must be changed, such vector has size n, and the
same argument used for Algorithm A leads to the conclusion
that the computational complexity of Algorithm B is O(n2).
However, the actual number of modifications required is less
(and possibly much less) than n, and depends on the realiza-
tion of tx, on the order in which its entries are processed,
and on the trellis values. This implies that the computational
complexity of Algorithm B is only upper bounded by O(n2),
but can be substantially less.

V. COMPUTER EXPERIMENTS

Let us begin by assuming that data are iid under H0, so that
the path search must be performed on a single trellis. In the
first computer experiment we assume that under H0 data are
uniformly distributed, namely, using column vector notation
for the PMFs, qi = (1/m . . . 1/m)T , for all i = 1, . . . , n.
Under H1 the n PMFs of size m, written as columns of an
m-by-n matrix, are as follows:
0

BBBBBBB@

0 1/m
n 1 2 1/m

n 1
1
m

 + 1/m 
n 1 +2 1/m 

n 1 ···
1
m

2 2+ 1/m 2
n 1 2+2 1/m 2

n 1 ···
1
m

3 3+ 1/m 3
n 1 3+2 1/m 3

n 1 ···
1
m

...
...

...
. . .

...
(m�1) (m�1)+ 1/m (m 1)

n 1 (m�1)+2 1/m (m 1)
n 1 ···

1
m

1

CCCCCCCA

,

(22)
where  = 2

m(m�1) . Thus, the first PMF (leftmost column)
is4 p1 = (0 2

m(m 1)
4

m(m 1) ...
2
m )T , the n-th PMF (rightmost)

pn = ( 1
m

1
m ... 1

m )T is uniform, and all other columns of (22)

4Note that we have always assumed strictly positive PMFs. Thus, for the
sake of rigor, we could replace the zero in (22) with a sufficiently small
positive value, and then normalize to unit the first column. This removes
the zero and leaves essentially unchanged the arguments and the results that
follow.

10-4 10-3 10-2 10-1 10010-4
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Fig. 4. First computer experiment. Type II error probability versus type I
error probability for m = 5 and n = 10, 50, 250.

are such that the entries on each row vary linearly from
the leftmost to the rightmost value (i.e., increase or decrease
linearly). Straightforward calculation shows that the entries of
the n-averaged PMF 1

n

Pn
i=1 pi are

⇣
1

2m
m+1

2m(m�1)
m+3

2m(m�1)
m+5

2m(m�1) . . .
m+2(m�1)�1)

2m(m�1)

⌘T
. (23)

Since these values do not depend on n, we have that p̄ =
limn!1

1
n

Pn
i=1 pi is given by (23).

For this case study, we now investigate the performance
of the four detectors presented in Sect. IV: ULR, auction-
sp, detector A, and detector B. For the auction-sp algorithm,
after trials and errors we found that ✏ = 10�3/m practically
achieves the same total benefit as the Hungarian algorithm,
and this value of ✏ is therefore selected in all numerical
experiments. In the figures, the results of the auction-sp
algorithm are labeled as “GLRT (auction-sp)”.

Let Pi(Hh) denote the probability of deciding for Hh, under
hypothesis Hi, h, i = 0, 1. In Figs. 3 and 4 we show the ROC5

(Receiver Operational Characteristic), namely the type II error
P1(H0) versus the type I error P0(H1), obtained by 105 Monte
Carlo runs. Clearly, the lower is the ROC curve, the better is
the detection performance. In Fig. 3 we set n = 100, and
consider two values of the alphabet size m = 3, 10. For m =
3 we see that detector B outperforms detector A, performs
exactly as the GLRT and close to the ULR, which achieves the
best performance. For the sake of comparison, we also report
the ROC curve for the “labeled” detector, namely, for the case
in which the association between data and generating PMFs is
perfectly known (no data permutation takes place). As it must
be, the labeled detector performs much better. Next, looking
at the case m = 10 in Fig. 3, we see that the performances
of the detectors worsen, and their relative ordering is as for
m = 3, with a minor gain of detector B over detector A, and
a minor loss of the unlabeled detectors over the labeled one.

5Actually, the “ROC” curve is the complement of type II error, 1 P1(H0),
in function of type I error P0(H1).
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with good trade-off between performance and complexity, as we show by computer 
experiments. Interestingly this is one of the few cases in which the GLRT (auction!) is very
suboptimal, the type is actually a better indicator for detection. 

Figure 2: Performance for situation that under H1 half the decisions are “always right” and half are “always 
wrong”. Note that the GLRT is quiet poor. The notional situation is described in the text, below. 

 
2. “Making Decisions by Unlabeled Bits”. This paper was authored by S. Marano and P. Willett, 

and is to appear in the IEEE Transactions on Signal Processing. The error exponent for 
unlabeled detection has been completely characterized in the above paper, but left in the 
implicit form of a convex optimization problem from which limited insight and intuition can be 
gained. Here we focus on the case in which observations are binary and show that the structure 
and the properties of error exponent becomes self-evident, also allowing straightforward 
numerical solution that does not require specialized convex optimization tools. In the 
challenging scenario of low-detectability regime, we provide simple closed-form analytical 
solutions for the error exponent and related quantities, for which we obtain much insight and 
intuition. From a theoretical point of view, these are the main contributions of the present 
study. From a practical perspective in several decision statis- tics have been proposed and here 
we show that in the case of binary observations their properties and relative merits be- comes
very clear, but also unpleasant. The decision algorithm based on the GLRT principle should be 
used with care because its performance may be quite poor and possibly biased.  Figure 2 
deserves some explanation. Suppose that H0  refers to the situation that all n sensors deliver 
their data as “coin flips”. An further suppose that H1  refers to the case that the first n/2 sensors 
are all-zero while the remainder are all-one. Testing in the labeled case is easy. Unwary testing 
in the unlabeled case can be disastrous, since the count of the number of ones has mean n/2 in 
either case. The GLRT (which attempts under H1 to match the 1’s to a sensor indexed above 
n/2) is can be very poor. The best unlabled strategy is actually to test the deviation of the 
number of 1’s from n/2. 
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Fig. 4. Computer simulations. Left: An experiment with m = 2 classes and n1 = n2 = 100. Detection performance with qc1 = qc1 = .5, pc1 = 1 ✏,
and pc2 = ✏, with ✏ = 0.01, 0.05, 0.1. Middle: As in Left, but with n1 = n2 = 10, pc1 = 1 ✏, and pc2 = 1/2 ✏. Right: the entries of q1:n grows
linearly from q1 = 0.3 to qn = 0.7, and those of p1:n grows linearly from p1 = 0.3 + to pn = 0.7 + ; here = 0.01, 0.05, and n = 10, 102, 103.

same performance, which is shown in the figure. The general
trend is that performance improves by increasing n and by
increasing �, as expected.

V. CONCLUSIONS

The error exponent for unlabeled detection has been com-
pletely characterized in [18], but left in the implicit form of
a convex optimization problem from which limited insight
and intuition can be gained. Here we focus on the case in
which observations are binary and show that the structure
and the properties of error exponent becomes self-evident,
also allowing straightforward numerical solution that does
not require specialized convex optimization tools. In the
challenging scenario of low-detectability regime, we provide
simple closed-form analytical solutions for the error exponent
and related quantities, for which we obtain much insight and
intuition. From a theoretical point of view, these are the main
contributions of the present study.

From a practical perspective in [18] several decision statis-
tics have been proposed and here we show that in the case
of binary observations their properties and relative merits be-
comes very clear, but also unpleasant. The decision algorithm
based on the GLRT principle should be used with care because
its performance may be quite poor and possibly biased. The
same warning applies to the algorithms called A and B: they
are exactly equivalent to the GLRT; and the detector called
ULR performs poorly just in the challenging case of low-
detectability regime. Neither solution proposed in [18] can
be considered satisfying in the case of binary observations.
This motivates us to propose a detector with close-to-optimal
performance and low computational complexity, based on a
central limit theorem approximation.

APPENDIX A
PROOF OF THEOREM 2

The proof follows by expanding in Taylor series the function
 h(!) defined in (4), and exploiting some properties of the
Legendre transform [40]. Let h(�) be function defined in (2),
which is finite, twice differentiable, and strictly convex on
� 2 <, because of Assumption A. Let  h(!) be its Legendre

transform. The “original” variable � and its “Legendre do-
main” counterpart !, are related by the one-to-one continuous
mapping [40]:

! =  ̇h(�), � =  ̇h(!), (A.1)

showing that � =  ̇�1

h (!) =  ̇h(!), namely  ̇h(·) and  ̇h(·)
are inverse functions of each other. The first equation in (A.1)
also shows that ! 2 (0, 1), see (3b). The Legendre transform
is involutive, namely:

 h(�) = sup
!2(0,1)

{�! � h(!)} , (A.2)

and admits the following representations:

 h(!) = !  ̇h(!)�  h( ̇h(!)), ! 2 (0, 1), (A.3)

 h(�) = �  ̇h(�)� h( ̇h(�)), � 2 <. (A.4)

We also know that  h(!) is strictly convex (and essentially
smooth) on ! 2 (0, 1), because the same property holds for
 h(�), see again [40].

Recall the definition of r̄ given in Sec. II, and note from (3b)
that  ̇h(0) = r̄. By taking the inverse of this relationship we
see that  ̇h(r̄) = 0, which, inserted into (A.3), yields

 h(r̄) =  ̇h(r̄) = 0, (A.5)

because, from (3a),  h(0) = 0. Thus, zero is the unique
minimum of  h(!) and is attained at ! = r̄. From Assump-
tion B,  h(!) is three times differentiable on (0, 1), and an
expression for the second derivative of  h(!) can be found
by differentiating the first of (A.1) with respect to �, and the
second of (A.1) with respect to !. This gives

d!

d�
=  ̈h(�),

d�

d!
=  ̈h(!), (A.6)

namely [53]:  ̈h(�) ̈h(!) = 1, when � and ! are the
“original” and the “transformed” variables, related by (A.1).
Thus, from (3c) and (12),

 ̈h(r̄) =
1

 ̈h(0)
=

1

�̄2

h

(A.7)

(recall: �̄2

h > 0). Differentiating the relationship
 ̈h(�) ̈h(!) = 1 with respect to ! gives:

...
 h(!) = �

...
 h( ̇

�1

h (!))

 ̈3

h( ̇
�1

h (!))
. (A.8)
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Figure 3: An example HMM used to model a terrorist event. This is much less complex than would be of interest 
but illustrates the sequential and multi-optional behavior seen. The “states” of the attack (for example, “Gather 

chemical fertilizer”) are represented as X’s; the transactional observations are the Z’s. Naturally, there is a great 
deal of ambient clutter (such as people buying gardening supplies) amongst the Z’s. The key is to use modern 

target tracking ideas to extract the low-observable “targets”. 

Figure 4: Quickest detection results over 2000 MC runs for the two filters. Vertical axis is in log scale since false 
alarms are rare. Mean target duration is marked since filter is useless if delay to detection is past this point. 

improves detection time and suppresses false alarms. The performance for threshold value of 0.8 is noted on 
both plots. 

Figure 1. An HMM where the states are represented as circles labeled with Xi. “Wait states” are indicated with a gray fill.
The values Ai,j indicate the probability at of transitioning from state i to state j at any time. The boxes labeled with Zk are

valid transactions for this model and the values Bik indicate the probability of outputting the transaction k when in the state i.
Although not shown explicitly, we not that “wait states” cannot output transactions.

where I (·) is the indicator function. This approximation is
sufficient when the number of particles is large enough that
only states with negligible prior masses have a chance to
equal zero.

The final step is the prediction step, where the parameters for
the next time step are predicted from the current time step.
Specifically, we use the augmented state transition matrix
from (5) to predict the state distributions forward

f i
t+1|t(S) = Πif i

t|t(S) (13)

The filter has been fully described, but it also needs to know
the probability of involvement in a process for each entity,
Ki. This is found easily using equation (3) once the clique
involvement probabilities, U i, are known. We can use the
current filter output to calculate these probabilities according
to a Bayesian update equation. The involvement process for
cliques is modeled as a Markov chain over the population
where the states are labeled “involved” and “not involved”.
The dynamics are such that the expected number of cliques in
the “involved” state at any time is Ninv and the mean sojourn
time for this state is the expected target lifetime.

We calculate the expected number of involved cliques to be
approximately

N i
inv,C =

NcNinv

Ne · Ee

[
P
(
e ∈ Iie |c(e) ∈ Iic

)] (14)

where Ee [·] is the expectation over all entities. We denote the
expected lifetime of threat process i is T i, and therefore the

transition matrix of this two state Markov chain for process i
is

Hi =




1− 1

T i

Ni
inv,C

T i(1−Ni
inv,C)

1
T i 1− Ni

inv,C

T i(1−Ni
inv,C)



 (15)

In the above, the first state is the “involved state”. It is worth
noting that we do not assume the true process is governed by
this Markov chain, but use this for prediction of probabilities
to the next time step.

Clique Involvement Update Recursion
The clique involvement probabilities are updated for the
cliques that are involved in observations at the current time.
Let {cm}2Nj

m=1 be the set of cliques observed at a certain time.
We define the prediction for clique involvements to the next
time step using the transition matrix in (15) as

ui
m(t+ 1|t)

=

(
1− 1

T i

)
ui
m(t|t) +

N i
inv,C

T i
(
1−N i

inv,C

)
(
1− ui

m(t|t)
)

(16)
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Fig. 8. Normalized quickest detection curve for Scenario 4.
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Fig. 9. Normalized quickest detection curves for 4 target scenario.

1 is that it is short-lived – it outputs at most 6 observations
over its lifetime. This is known to affect detectability in [8],
but the model was tested as an assumed limit on detectability.
Target models 2 and 3 are far more detectable: both output
a maximum of 12 observations over about a 1700 time step
duration – quite few, and suggesting the power of the Bernoulli
approach to detection.

V-B The Role of Identity
Performance is simulated for a filter using our observation

model and and compared to one using only observed transac-
tion types – not using the entity indicator weights. Results for
each are taken over 2000 Monte Carlo runs. The parameters
of the model used in the results are:

– Nz = 75
– Nx = 37 (19 target states)
– Ne = 2000
– p; = 0.1
– N̄inv = 10
– T̄st = 85

The plot of mean time between false alarms (TFA) versus
mean delay to detection (TD) in figure 11 clearly illustrates
that incorporation of identity involvement is key to successful

0 5000 10000 15000
0
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0.4

0.6

0.8

1
 w/o Entity Weights
 w/ Entity Weights
Start Time
End Time

Fig. 10. Estimated probability of target existence over time for a single active
instance of the target for each filter. True target start and end times are marked.
Using entity weights results in delayed but strong detection. The filter without
entity weights could be tuned to be more “sensitive” to targets, but this results
in more false alarms as a trade-off.
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Fig. 11. Quickest detection results over 2000 MC runs for the two filters.
Vertical axis is in log scale since false alarms are rare. Mean target duration
is marked since filter is useless if delay to detection is past this point. Use of
entity weights both improves detection time and suppresses false alarms. The
performance for threshold value of 0.8 is noted on both plots.

extraction of threats. Figure 10 suggests the reason why:
whereas without consideration of identity, the Bernoulli filter’s
threat-existence probability estimate is easily excited by clutter
transactions that happen to match one that would be expected
by the threat. That is, consideration of identity mitigates the
effect of such attractive false alarms. Note in figure 11 the
mean threat duration of slightly more than 1500 units: it is
important that the threat be declared to exist at least before
the threat ends.

V-C Multiple Processes
To illustrate, we test from 3 simulated threat process models.
1) Process 1 Model:

• 6 possible paths from start to finish.
• 11 true observations emitted (maximum).
• Ninv = 4 (expected number of involved entities).

2) Process 2 Model:
• 4 possible paths from start to finish.
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Figure 5: A graph of probability of the average time to detection vs. the logarithm of time between false alarms 
for 200 activations (Monte Carlo runs). The vertical orange line indicates the expected duration for the 

respective process. The plot demonstrates the advantage to using the underlying “clique” (group-membership 
and social connection) prior knowledge. 

3. “Target Tracking Applied to Extraction of Multiple Evolving Threats from a Stream of 
Surveillance Data”. This paper was co-authored by Z. Sutton, P. Willett and Y. Bar-Shalom, 
and has been submitted to the IEEE Transactions on Computational Social Systems. Threats are 
composed of some process or plan being carried out by a group of people with an end goal that 
is generally to cause harm. Some examples of these kinds of threats are terrorist attacks, 
military actions, or stock fraud. These threats can be modeled stochastically with help from 
experts within the relevant field. We model these threats with a hypothesis as to how these 
events will unfold along with a method for observing the unfolding threat. We use this model to 
detect the threat before its completion and theoretically allow for preemptive action against the 
threat’s perpetrators. The models used for threats in this paper are variations of Hidden Markov 
Models (HMMs) with sparse observation emission (compared to the expected process length), 
see Figure 3. There is a rich target tracking literature, with many methods to deal with dynamic 
estimation, target extraction, data association and multiple objects. Here we co-opt this 
literature, and offer significant refinement of earlier estimation procedures. Specifically, we 
now allow for multiple threats to exist and be extracted. This has necessitated a data
association step, since we now “frame” the observation stream into sets of transactional data 
(as opposed to one-at-a-time ingestion) to facilitate efficient operation. We further have 
augmented our model to admit “identity” information: transactional data often involves actors 
and places, etc., and the continual reappearance of these can offer a significant clue in the data 
association phase. The improvement through the use of identity information is readily seen in 
Figure 4. 

4. “Taking Advantage of Group Behavior When Tracking Multiple Threats in Cluttered
Surveillance Data”. This paper was authored by A. Finelli, Z. Sutton, P. Willett, and Y. Bar-
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Figure 3. A graph of probability of the average time to detection T̄D vs. the logarithm of time between false alarm
log10

(
T̄FA

)
for 200 activations (Monte Carlo runs). The vertical orange line indicates the expected duration for the respective

process. Both filters operated on the same data stream. We see that the Clique filter outperforms the Independent filter when it
comes to T̄FA and the tendency for false alarms causes low detection times with poor entity to threat association.
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Figure 4. A graph of probability of detection P i
D for two threat processes vs. log10

(
T̄FA

)
for 200 Monte Carlo runs.

of detection PD (see figure 5). Regardless, the curves for
the Clique filter show a much better performance and more
predictable outcomes. Furthermore, both filters show that the
second process is less detectable than the first. A measure
of detectability for HMMs is not known to the authors and is
a subject for further exploration. The accuracy of the clique
filter in deciding which cliques are involved was almost 100%
for a true detection. Accuracy of the Independent filter for
associating entities to threat processes is almost as bad as a
random selection. Finally, we found that the Clique filter
was computationally faster due to the smaller number of
calculations needed to track group involvement probabilities,
compared to that of tracking each individual’s.

5. CONCLUSIONS
We presented a model for grouping entities of a population
together into units called cliques. An entity’s involvement
in a threat process is then conditioned on their clique’s
involvement in that process. These threat processes, modeled
as HMMs, have their current state estimated by a bank of
Bernoulli filters. These filters require the probability of
involvement for each entity, which is calculated using the
known conditioning on their clique’s involvement probability.
The clique involvement probabilities are predicted to the next
time step and then updated using a Bayesian update and
conditioning upon association events in the observations. We
then presented results from synthetic threat processes for
a filter whose model includes the clique structure and one

7
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Shalom, and was presented at the IEEE Aerospace Conference, Big Sky MT, in March 2019. 
The paper was recognized as Best Paper in Track 6. The population observed is assumed to be 
organized into groups called “cliques”. Rather than tracking an individual’s involvement 
probability, we track a clique’s (group’s) involvement probability across all threats using a 
Bayesian update equation and conditioning on association events between the observations and 
the set of measurement generating HMMs (threat and clutter processes). We assign an 
individual’s probability conditionally based on their group’s and the state of each threat process 
then its state is estimated using a bank of Bernoulli filters. This allows us to accurately detect 
multiple threat processes within a single stream of observations (most of which will be clutter).  
Figure 5 shows that there is considerable advantage to the exploitation of clique behavior. 

Figure 6: The targets present in the experiments. Top left: The Ocean Space Drone. Bottom left: Munkholmen 
II. Right: The seamark. 

 

 
Figure 7: Average mode of the detectability estimate of confirmed tracks when the target is present. The black 

line shows the ground truth. 
 
 

5. “Estimation of Target Detectability for Maritime Target Tracking in the PDA 
Framework”. This paper was authored by E. Wilthil, P. Willett, Y. Bar-Shalom, and E. Brekke 
was presented at the ISIF FUSION Conference, Ottawa Canada, in June 2019. The paper was 
recognized as Best Student Paper runner-up. Accounting for varying target detectability can 

Fig. 1. Scenario overview. The grey dots are radar measurements, the black
lines are AIS position trajectories, and the dashed line is the ownship position
trajectory.

Fig. 2. The targets present in the experiments. Top left: The Ocean Space
Drone. Bottom left: Munkholmen II. Right: The seamark.

callsign Munkholmen II (MH II), which has a steel hull. The
target moving north-to-south is a lifeboat, repurposed into
an autonomous test vessel, with callsign Ocean Space Drone
(OSD). It has a fiberglass hull. A radar is mounted on the
ownship, which successfully avoids collision with both targets.
The targets are shown in Fig. 2. The dataset has a low amount
of clutter, with the exception of near-shore areas close to the
origin and to the east.

In the following discussion, the ground truth is based on the
AIS-indicated position of the targets, and the measurements
recorded during the experiments. Although the AIS system is
based on satellite navigation with its own flaws, we believe it
to be of sufficient accuracy to discuss the issues presented in
the rest of this section.

Both targets have frequent detections for the most part,
but there are some periods with more sparse detections. By
assuming the AIS-indicated position is sufficiently accurate
and a low clutter density, a validation gate can be set up around
the reported position. Let k be a measurement indicator,

Fig. 3. Empirical detection probability for the two boats in Fig. 1, calculated
by (10), where the values close to the start and end of the dataset have been
calculated by truncating (10).

Fig. 4. Resulting tracks after running the IPDA tracker described in Sec-
tion II-A. The track from the OSD target is terminated due to the assumed
high detection probability, as shown in the inset.

which is 0 when the validation gate is empty at time k, and
1 otherwise. Then, the moving average detection probability
can be calculated by

PD(k) =
1

2N + 1

k+NX

n=k N

n. (10)

Fig. 3 shows the detection probability PD for each of the
targets with different values of N .

The MH II has very good reflective properties and has
a high detection probability throughout the experiment, but
the detection probability of the OSD varies a lot. Keeping
a continuous track on the OSD is hard, and Fig. 4 shows
a set of tracks resulting from running an IPDA described in
Section II-A with a detection probability of 0.8. The track on
the OSD is lost and regained during the experiment.

The target aspect angle was previously mentioned as a
source of varying target detectability. In addition to the dataset
shown in Figures 1 and 4, an additional 15 datasets of similar
collision avoidance experiments are used to investigate the

TABLE II
FALSE TRACK DURATION

Tracker Avg. duration Avg. conf. time

MC1-IPDA 10.0 scans 4.8 scans
MC2-IPDA 78.5 scans 15.8 scans
HMM-IPDA 29.3 scans 10.1 scans
DET-IPDA 30.4 scans 7.7 scans

Fig. 9. Average number of true tracks with a single target present. The black
line shows the ground truth. The detectability of the target drops at t = 90 s.

track, which in part may explain the lower average number
of false tracks in the DET-IPDA and MC2-IPDA. These also
have a slightly lower standard deviation in the number of false
tracks.

B. Detectability estimation and lost tracks

To test the capability of tracking a target with varying
detectability, a single target is added to the surveillance region
previously described. It starts in the high detectability-mode,
and changes to the low detectability-mode after 100 s. After
an additional 100 s, the target disappears, and the scenario
continues for an additional 100 s. The purpose of the change in
the detectability and track existence is to test both the ability to
track targets with reduced detectability, and track termination
capabilities, i.e. how fast the track is terminated when it is
lost.

More precisely, define a true track as a confirmed track
that has a position error of less than 100m. Further, a lost
track is defined as a previously confirmed track that no longer
satisfied this requirement. Consequently, a confirmed track
that manages to track the target until it disappears will be
considered lost until it is terminated. For each tracker, the
average number of true tracks are shown in Fig. 9, and the
average number of lost tracks are shown in Fig. 10.

As expected, the IPDA with constant detection probability
struggles to keep track of the target when the detectability
decreases. However, the fast track termination capabilities
ensures the tracks are terminated rather than lost. The tracks
that are maintained until the target disappears are also termi-
nated very quickly. The other three trackers are much better
at tracking the target until it disappears. The MC2-IPDA,

Fig. 10. Number of lost tracks with a single target present.

Fig. 11. Average mode of the detectability estimate of confirmed tracks when
the target is present. The black line shows the ground truth.

however, still maintains over 90% of the lost tracks for more
than 30 scans after the target disappears. The HMM-IPDA and
the DET-IPDA terminates nearly all of the lost tracks before
the end of the scenario.

The average mode of the detectability estimate is shown in
Fig. 11. The DET-IPDA esitmates the detectability of the target
slightly better than the HMM-IPDA. When the detectability is
lowered, the MC2-IPDA is the closest, as one of the modes
allows for detectability lower than the true value.

C. Real data results

We now test the trackers on the motivating scenario pre-
sented in Section II-C with 3 targets (OSD, MH II and the
seamark). The tracking system parameters are the same as in
Table I, with some exceptions. The sampling interval varies
slightly according to when data is received, and the average
is 2.88 s. The clutter density is not known, and nonparametric
tracking methods are used by substituting = mk/Vk where
mk and Vk are the number of validated measurements and
the area of the validation gate, respectively. The Cartesian
position measurement model is still used, but the measurement
covariance is calculated by a polar to Cartesian conversion [1]
with polar measurement standard deviations of 20m and 2.3 .
Further details on the radar data processing can be found in
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significantly improve tracking performance when these issues are present. The detectability can 
be estimated with a HMM based on the number of validated measurements, or the probability 
of the joint detectability and target existence may be jointly evaluated using the based on the 
likelihood ratio of a target vs. clutter. Simulations shows that both of these methods are able to 
maintain the track when the detectability is lowered, and terminates lost tracks significantly 
faster than a Markov chain 2-IPDA. Tests on real data shows that the joint estimation of target 
detectability and existence probabilities reduces the number of false tracks, at the cost of 
slightly higher track confirmation time. The paper uses real data from radar and some friendly 
targets, and Figure 6 shows these. Figure 7 illustrates the point of the work: when the 
continuous-valued target-detection probabilty is integrated to the tracker and is itself tracked, 
the target existence probability can be far more effectively estimated. 
 

 

Figure 8. Left: Notional sketch of the problem and our posing in two dimensions. There are N = 13 targets 
randomly located in a ball whose area (volume) is N = 13 times that of a standard target volume. A standard 

volume is a ball whose radius is one half the nominal target separation; but of course some pairs or targets are 
close together and some are more widely separated. Each target is represented by a measurement at radar 

sensor 1 (a small red square) and also at radar sensor 2 (a small green triangle). These are assumed generated 
by adding independent Gaussian noise with the indicated standard deviation. Right: Solid lines are the 

approximated analytical probability of single pairwise switch error P(E) shown, as a function of the scene-
difficulty parameter, for three values of dimension = 3, 6, 10. Dashed lines show the value of accurate P(E) via 
numerical integration. Dotted lines are the asymptotic approximation, valid for small P(E). Symbols show the 

results of 106 Monte Carlo simulations with N = 25. 

6. “On the Probability of Cross-Radar Assignment Error”. This paper, by P. Braca, P. Willett 
and W.D. Blair, will be presented at the 2020 IEEE Radar Conference. If two radar sensors 
observe the same target their measurements can be combined to produce a fused target-state 
estimate that is of higher quality than that from one radar alone. If there are multiple targets 
whose information is shared, a necessary first step to fusion is to “assign” each measurement 
from the first sensor to that at the other in such a way that both refer to the same underlying 
object, a task generally accomplished by minimizing a global cost involving distance. An 
assignment error occurs when the measurement originated by target i at the first radar is 
wrongly associated to a measurement originated by target j (not i) at the second radar, see the 
left panel of Figure 8. Naturally, when such an error occurs the result is fusion of information 
describing disparate objects, resulting in degraded estimation performance and poor self-
assessment in terms of posterior uncertainty. Here we address the issue, and derive approximate 

On the Probability of Cross-Radar Assignment Error
P. Braca, L. M. Millefiori, S. Marano, P. Willett and W. D. Blair

Abstract—If two radar sensors observe the same target their

measurements can be combined to produce a fused target-state

estimate that is of higher quality than that from one radar alone.

If there are multiple targets whose information is shared, a

necessary first step to fusion is to “assign” each measurement

from the first sensor to that at the other in such a way that

both refer to the same underlying object, a task generally

accomplished by minimizing a global cost involving distance. An

assignment error occurs when the measurement originated by

target i at the first radar is wrongly associated to a measurement

originated by target j (not i) at the second radar. Naturally, when

such an error occurs the result is fusion of information describing

disparate objects, resulting in degraded estimation performance

and poor self-assessment in terms of posterior uncertainty. Here

we address the issue, and derive approximate assignment error

probability. Remarkably, performance depends only upon the

parameters combined to a single scalar constant.

I. INTRODUCTION

In this paper we consider the Measurement Origin Uncer-
tainty (MOU) – or data association – problem: the unknown
labeling between measurements and targets [1], [16] or between
targets as observed from one sensor and those observed from
another [9]. Several popular and effective data association
mechanisms are based on assignment algorithms, see e.g. [11].
In turn, assignment algorithms are formulated in terms of
optimization problems, which are key ingredients to most
successful multi-target tracking (MTT) methods developed in
last decades, such as Multi-Hypothesis Tracking (MHT), see
e.g. [6], [11]. The data association problem typically boils down
to a constrained optimization of a suitable cost function. Such
optimization problems can seldom be solved exactly because
of their combinatorial nature, and the exploration of suboptimal
solutions is required [11]. Here we specifically address the
two-dimensional (or two-list) assignment problem – an attempt
to assign objects the same labels at two remote radar stations.
It is noted that the two-dimensional assignment problem is of
polynomial complexity [5], [7], and there exist efficient means
to solve it even for hundreds of objects, such as via Hungarian
[13], [18] auction [2], [4] or Jonker-Volgenant-Castanon (JVC)
[12] algorithms. Assignment algorithms for more than two
lists (for example: reports from three or more sensors) are of
non-polynomial [3] complexity and are not considered here.

Although fast two-list assignment methods are decades old,
there has been little performance analysis appropriate for data
fusion. We consider the assignment problem in a scenario where
multiple targets in a region of interest are observed by two
sensors. An assignment error occurs when the measurement

Braca and Millefiori are with NATO’s CMRE. Marano is with the University
of Salerno. Willett is with the University of Connecticut. Blair is with GTRI.
Willett was partially supported by AFOSR under FA9500-18-1-0463. Copyright
notice: 978-1-7281-8942-0/20/$31.00 c�2020 IEEE

originated by target i at the first sensor is wrongly associated
to a measurement originated by target j 6= i at the second
sensor. Intuitively, this error is likely to happen when the
two targets are close enough compared to the measurement
noise. An illustrative sketch of the assignment problem is
shown in Figure 1 that, for illustration purpose, refers to a
two-dimensional surveyed area. Two relevant resources for this
are [15] and [17]. While we draw on the ideas in [15], the
situation we explore requires different modeling, and indeed the
conclusions are different; however, we note that the treatment
in [17] is broader in that features and non-isotropic noise are
included. Note that in this short conference publication we
provide only the results of analysis; a fuller treatment will be
available in [8], and will stress the differences between this
work and those.

Corroborating [15], we conduct an extensive simulation
campaign that, among other discoveries, finds that in the
challenging regime of rare assignment errors the dominant event
is that of a single pairwise switch error (a single association
error). We show that this probability is linearly related to a
characteristic parameter �⌫ that, for a fixed dimensionality ⌫,
combines in a single dimensionless constant all the relevant
problem parameters. The expression is confirmed by extensive
Monte Carlo simulation campaigns based on the auction
assignment algorithm [2].

volume of 
space where 
targets can be

a standard 
target 

volume

denotes 1-s
region for 

target

a measurement 
from sensor 2

a measurement 
from sensor 1

a target

Fig. 1. Notional sketch of the problem and our posing in two dimensions.
There are N = 13 targets randomly located in a ball whose area (volume)
is N = 13 times that of a standard target volume. A standard volume is a
ball whose radius is one half the nominal target separation; but of course
some pairs or targets are close together and some are more widely separated.
Each target is represented by a measurement at radar sensor 1 (a small red
square) and also at radar sensor 2 (a small green triangle). These are assumed
generated by adding independent Gaussian noise with the indicated standard
deviation.
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Fig. 8. Solid lines: Probability of single pairwise switch error P(E) shown
in (22), as a function of the parameter �⌫ , for three values of ⌫ = 3, 6, 10.
Dashed lines show the value of P(E) via numerical integration of (18) against
(10). Dotted lines are the asymptotic approximation, valid for small P(E).
Symbols show the results of 106 Monte Carlo simulations with N = 25.

Note that P(E) is a function of ⌫, �⌫ , and of the set of
coefficients {cm(⌫)}. Reference [8] derives and justifies a very
simple linear (in ⇠⌫) approximation of (22) that, for space
reasons, we do not reproduce here.

V. COMPUTER EXPERIMENTS AND VALIDATION OF THE
THEORETICAL DERIVATION

In this section, we validate the theoretical expressions
of the error probability by Monte Carlo simulations. In all
our experiments, the data association problem is solved by
the auction algorithm [8]. One important validation obtained
through the computer experiments is that the error probability
depends on the characteristic parameter [2] introduced in (21).
In the simulation campaign we compare:

1) empirical “global” error probability of auction;
2) empirical “pairwise” error probability, of switch errors

between measurements from the two closest targets;
3) theoretical error probability obtained by numerical inte-

gration of (18) with the pdf of rmin given in (10);
4) theoretical error probability in (22);
5) linear approximation.
The number of Monte Carlo runs to compute the empirical

error probability is 106. The simulation points, reported in
Figure 8, are obtained by fixing r and varying �, or by fixing
� and varying r. In this scenario the number of targets is
fixed to N = 25. We report the probability of single pairwise
switch error (solid line) — P(E) in (22) — in function of
the parameter �⌫ , for three values of ⌫ = 3, 6, 10. Clearly the
theory matches simulation; and the “global” and “pairwise”
error probabilities (from simulation) roughly match.

VI. CONCLUSION

Accurate data association is a key enabler for fusion of radar
contacts from multiple sensors. Here we give a theoretical result:

a close approximation for the probability of miss-association,
valid in the low error-probability regime, and assuming two
radar sensors with identical isotropic noise at each. The
development begins with extensive exploratory simulation
analysis of assignment. The key conclusion therefrom is that
in benign situations association errors are the result of a
single pairwise exchange of identity between the two closest
targets. The error probability expression that is derived isolates
a single key performance-determining scalar – �⌫ in (21) –
that incorporates the scenario parameters of scene density,
sensor noise and target number. The performance expression,
which is derived in detail in [8], is corroborated by simulation.
Future work includes incorporation of sensor bias [14] and
relaxation of the assumption of isotropic noise. An additional
consideration is that limited sensor ability in terms of resolution
of close targets [10] would affect the results.
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assignment error probability. Remarkably, performance (see the right panel of Figure 8) 
depends only upon the parameters combined to a single scalar constant.  

Figure 9. Comparison of the optimized positions (red squares) versus the positions drawn from the OU process 
evolution (cerulean points) and the positions of the nominal trajectory (blue dots). The ellipses (black solid lines) 

represent the 95%-confidence covariance of the OU/IOU process given the initial point of the trajectory. The 
point pc near which the vessel lingers is marked with a yellow star. On the left, a single radar contact, indicated 
by light blue shade, located in pm1 = 1 is taken into account. The right plot shows ROC curves describing the 
performance of an anomaly-detector in terms of track detection probability PD versus false alarm probability 
PFA when the optimal deviation (when it exists) is an OU process (black solid line) and is the deterministic 
output of the N-COST algorithm (red dashed line). The first ROC curve is the predicted performance of the 

optimal anomaly detector operating on the pessimal trajectory, performance provided by equation (13) in the 
paper, while the second is simulated with 1000 Monte Carlo runs, a close match. The blue dash-dotted ROC 

curve describes a sub-optimal (unwary) deviation, and the other plot is the chance line. 

7. “Optimal Opponent Stealth Trajectory Planning based on an Efficient Optimization 
Technique.” This paper, by A. Aubry, P. Braca, E. d’Afflisio, A. De Maio, L. Millefiori and 
Peter Willett, has been submitted to IEEE Transactions on Signal Processing. This work 
proposed a computationally efficient technique, called Non-Convex Optimized Stealth 
Trajectory (N-COST) algorithm, to solve the route planning problem with the goal to make a 
vessel’s trajectory as stealthy as possible to an anomaly detector, so as to hide a deviation from 
a nominal traffic route to accomplish a specific mission. Previous research has discussed 
tracking of an object whose velocity evolves according to an Ornstein-Uhlenbeck mean-
reverting stochastic process, while proper kinematic and practical constraints are taken into 
account – IOU processes (integrated because velocity is the derivative of position) have been
shown to be excellent empirical matches to commercial traffic in many modalities (air, sea, 
etc.) – and the model is key to tracking when the observation stream has gaps such as between 
fusion hand-offs. In this paper we look at the reverse problem: How can a target plan its most 
effective trajectory such that a goal is met (say: a rendezvous for smuggling) yet detection of 
the accompanying “diversion” is made most problematic; presumably, a game-theoretic 
approach would incorporate both perspectives. From this “red-team” viewpoint, the 
optimization problem minimizes the Kullback-Leibler divergence between the statistical 
hypotheses of the nominal and the anomalous trajectories. Interesting case studies concerning 
both synthetic and real-world scenarios are reported to prove the effectiveness of the proposed 
N-COST algorithm. In other words, as illustrated in Figure 9, we considered the worst 
condition case from the detection point of view, by minimizing its performance with the final 
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Fig. 2: Comparison of the optimized positions (red squares) versus the positions drawn from the OU process evolution (cerulean points) and
the positions of the nominal trajectory (blue dots). The ellipses (black solid lines) represent the 95%-confidence covariance of the OU/IOU
process given the initial point of the trajectory. The point pc near which the vessel lingers is marked with a yellow star. In the subplot (a) a
single radar contact, indicated by light blue shade, located in pm1 = 1 is taken into account, while in (b) there are multiple radar contacts
located in pm1 = 2, pm2 = 10 and pm3 = 18.
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Fig. 3: ROC curves describing the performance of detector (11) in terms of detection probability PD versus false alarm probability PFA when
the optimal deviation, occurring under H1, is an OU process (black solid line) and is the deterministic output of the N-COST algorithm
(red dashed line). The first ROC curve is provided by (13), while the second is simulated with 104 Monte Carlo runs. The blue dash-dotted
ROC curve describes the sub-optimal deviation, while the blind detector ROC PD = PFA is indicated by the green dotted line. The subplot
(a) refers to the single radar contact located at the beginning of the N -path, while the subplot (b) highlights the difference in terms of
performance achieved by considering multiple in-between radar contacts along the N -path.

to evolve according to the presence of three in-between radar
contacts located in pm1 = 2, pm2 = 10 and pm3 = 18 (light
blue patches), and achieved by relaxing the constraint on the
maximum absolute acceleration with vmax = 5 m/s.

The performance of the detection strategy in (11) is reported
in Fig. 3 in terms of false alarm probability versus detection
probability. Three different scenarios are considered. In the first
one (black solid line), the trajectory under H1 is assumed to
evolve according to an OU process with optimal long-run mean
velocity provided by the N-COST algorithm, and the related
ROC curve is given by eq. (13). In the second scenario (red
dashed line), the trajectory under H1 is exactly the deterministic
output of the N-COST algorithm, and the only randomness is

in the measurements. The ROC curve is simulated using the
detector (11) with 104 Monte Carlo runs. The third scenario
concerns a heuristic and sub-optimal deviation represented by a
first path section with velocity v0 and then a triangle trajectory
(with vertices p0, p

c
and v0T ) executed by a vessel that goes

to p
c
, stops there and then comes back to the nominal route.

In Fig. 3a it is possible to observe that both the optimized
scenarios exhibit similar (poor) detection performance; and
indeed, the ROC is close to that of the blind detector PD = PFA

(green dotted line), and this is not surprising, as the optimized
trajectory was designed precisely to overcome the detector and
the single radar contact provides a very low contribution to
the detector since it is located where the vessel is still very
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probability. Three different scenarios are considered. In the first
one (black solid line), the trajectory under H1 is assumed to
evolve according to an OU process with optimal long-run mean
velocity provided by the N-COST algorithm, and the related
ROC curve is given by eq. (13). In the second scenario (red
dashed line), the trajectory under H1 is exactly the deterministic
output of the N-COST algorithm, and the only randomness is

in the measurements. The ROC curve is simulated using the
detector (11) with 104 Monte Carlo runs. The third scenario
concerns a heuristic and sub-optimal deviation represented by a
first path section with velocity v0 and then a triangle trajectory
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and v0T ) executed by a vessel that goes
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In Fig. 3a it is possible to observe that both the optimized
scenarios exhibit similar (poor) detection performance; and
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trajectory was designed precisely to overcome the detector and
the single radar contact provides a very low contribution to
the detector since it is located where the vessel is still very
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goal of highlighting the detector limitations and opening the door to possible future works 
aiming at improving the anomaly detector capabilities by determining the optimal surveillance 
asset. 

Figure 10. Left: Estimated infection rate (“beta”) and recovery rate (“gamma”) for USA, in days. The shaded 
areas represent the 90 % confidence interval. Right: Average mean absolute percentage errors (MAPEs) of the 
forecasts of the epidemic evolution in USA, via the proposed algorithm, and with the fixed-parameter SIR-fit and 

GSEIR-fit (GSEIR is a more-sophisticated version of SIR) curve-fitting approaches, for different forecast 
horizons: 3, 7, and 14 days. The upper table reports the average MAPEs computed over the interval from March 

10 to June 5; the lower table reports the average MAPEs computed over the interval from April 1 to June 5. 

8. “Adaptive Bayesian Learning and Forecasting of Epidemic Evolution – Data Analysis of 
 the COVID-19 Outbreak.” This paper, by D. Gaglione, P. Braca, L Millefiori, G. Soldi, N. 
Forti, S. Marano, P. Willett and K. Pattipati, will appear online shortly in IEEE Access. The 
recent worldwide epidemic outbreak, due to a new strain of Coronavirus, has intensified 
research into novel mathematical models and algorithms that are able to reliably estimate and 
predict the epidemiological curve of the infection. The signal processing community has in its 
arsenal many tools to track, to track models that “switch”, and to detect such changes; and it is 
good, in the context of this project, to apply these tools to a current crisis. Hence, in this paper, 
we proposed a Bayesian sequential estimation and forecasting algorithm that, based on the 
information that authorities provide on a daily basis, that is able to estimate the state of the 
epidemic and the parameters of the underlying model, as well as to forecast the evolution of the 
epidemiological curve. We developed an efficient implementation specifically tailored to the 
stochastic SIR (susceptible/infected/recovered) model of pandemic evolution. The proposed 
algorithm is validated using synthetic data simulating two epidemic scenarios, and on real data 
acquired during the recent COVID-19 outbreak both in the Lombardy region of Italy and in the 
USA. The model “switches” mentioned generally reflect changes in policy, specifically a 
“lockdown”. Results (see Figure 10) show that the mean absolute percentage error computed 
after the lockdown is on average below 5% when the forecast is at 7 days, and approximately 
10% when the forecast horizon is 14 days. Moreover, the described Bayesian framework 
outperforms curve-fitting approaches that use deterministic epidemiological models, 
particularly when a clear change of model parameters occur, e.g., a decrease of the infection 
rate following the lockdown. Finally, accurate and timely data collection, especially on 
recovered individuals, hospitalizations, intensive care unit admissions, and intubations, is 

Gaglione et al.: Adaptive Bayesian Learning and Forecasting of Epidemic Evolution - Data Analysis of the COVID-19 Outbreak

ALGORITHM 3 DAYS 7 DAYS 14 DAYS

Proposed 6.3% 11.0% 27.3%

SIR-fit 77.5% 116.6% 242.8%

GSEIR-fit 10.3% 12.6% 18.0%

Average over the interval from March 4 to June 5

ALGORITHM 3 DAYS 7 DAYS 14 DAYS

Proposed 3.2% 4.9% 10.0%

SIR-fit 88.2% 124.9% 234.0%

GSEIR-fit 11.7% 13.1% 15.8%

Average over the interval from April 1 to June 5

TABLE 2. Average mean absolute percentage errors (MAPEs) of the
forecasts of the epidemic evolution in Lombardia, Italy, obtained with the
proposed algorithm, and with the SIR-fit and GSEIR-fit curve-fitting
approaches, for different forecast horizons, that is, 3, 7, and 14 days. The
uppermost table reports the average MAPEs computed over the interval from
March 4 to June 5; the lowermost table reports the average MAPEs computed
over the interval from April 1 to June 5.

tion and initialization of the parameters, and the initialization
of the epidemic state. Specifically, the smallest and largest
values used for the discretization of the infection rate are
#
(1)
1 = 0 and #

(1)
D1

= 0.5, respectively; the smallest and
largest values used for the discretization of the recovery rate
are #

(2)
1 = 0 and #

(2)
D2

= 0.05, respectively; mean and
standard deviation of their prior pmfs are �̄0 = 0.35 and
�� = 0.08, and �̄0 = 0.015 and �� = 0.008; and the ob-
servation noise covariance matrix is Rc = 2000 I2. The ini-
tial state of the epidemic is given by the normalized numbers
of susceptible, infected, and recovered on March 1, that are
s0 = 1 i0 r0, i0 = 22/P , and r0 = 8/P .

Fig. 10 shows the estimated infection and recovery rates.
From the second half of March and through April the infec-
tion rate decreases, presumably due to the restriction mea-
sures established by each single State. Here, we cannot mark
a specific date as the beginning of the lockdown; neverthe-
less, it is reasonable to assume that about three out of four
US citizens were under some form of lockdown by early
April [42]. Around April 30, the estimated recovery rate
shows a slight increase followed by an abrupt decrease. On
that day, 35 thousand new recovered (i.e., dismissed plus
deaths) individuals were reported against a decrease of in-
fected individuals of only 6 thousand (cf. Fig. 9); this results
in a sudden increase of the recovery rate. A large number of
new recovered individuals, that is, 52 thousand, is also re-
ported on May 22; however, this is better balanced by the
number of people leaving the infected group, that is, 29 thou-
sand, thus not affecting the estimates of the infection and re-
covery rates.

Overall, the estimated recovery rate is roughly 0.01, which
translates into an average number of 100 days that an individ-
ual takes to move from the group of infected (I) to the group
of recovered (R). Although the recovery duration seems over-
estimated, it is worth highlighting that this is an aggregate es-
timate of the recovery rate from multiple States, which there-
fore suffers from multiple different reporting delays, as well
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FIGURE 10. Estimated (top) infection rate and (bottom) recovery rate for
USA. The shaded areas represent the 90% confidence interval.

as from the different criteria used to declare an individual as
fully recovered. It underscores the need for the USA to pro-
vide timely and consistent data, similar to that just analysed
in Lombardia, if policy is to be driven by reliable estimation
and prediction.

Forecasts of the epidemic evolution evaluated every four
days in the time period between May 4 and June 5 are re-
ported in Fig. 11. Table 3 presents the MAPEs calculated
for each forecast and for different forecast horizons, that is
3, 7, and 14 days. We note that the larger MAPEs on May
16 and May 20 are mostly due to the large variation in the
numbers of infected and recovered individuals later reported
on May 22. The results in Table 3 confirm those obtained
with the data from Lombardia: the average MAPE is be-
low 4% for forecasts at 3 and 7 days, and approximately
6% when the forecast horizon is 14 days. Table 4 compares
the average MAPEs obtained with the proposed algorithm,
with those obtained with the SIR-fit and the GSEIR-fit curve-
fitting approaches. As for the previous analysis, the proposed
algorithm consistently outperforms the SIR-fit, whereas it

FORECAST DATE 3 DAYS 7 DAYS 14 DAYS

May 4 3.13% 3.59% 4.69%

May 9 1.69% 1.24% 2.13%

May 12 2.01% 3.74% 7.01%

May 16 4.12% 7.86% 13.63%

May 20 5.68% 9.32% 16.69%

May 24 0.90% 1.44% 4.03%

May 28 0.50% 0.85% 1.53%

Jun 1 2.11% 1.28% 2.00%

Jun 5 2.18% 2.70% 3.18%

AVERAGE 2.48% 3.56% 6.10%

TABLE 3. Mean absolute percentage errors (MAPEs) of the forecasts of the
epidemic evolution in USA, performed at different dates and calculated for
different forecast horizons, that is, 3, 7, and 14 days.
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presents a slightly higher average MAPE than that obtained
with GSEIR-fit at forecast horizon of 14 days when the aver-
age is performed over the interval from March 10 to June 5;
over the interval from April 1 to June 5, instead, we observe
that the proposed algorithm provides more accurate forecasts.

C. LIMITATIONS AND EXTENSIONS

The proposed analysis presents some limitations that may
lead to future extensions and are worth exploring. First, the
considered stochastic SIR model may be broadened to in-
clude the fraction of undocumented (or asymptomatic) and
quarantined infected individuals. Undocumented infections
usually include mild or asymptomatic cases that go unde-
tected and, hence, based on their proportion and contagious-
ness, can potentially increase the spread of the disease. The
portion of undocumented infectious cases is suspected to be
a critical epidemiological characteristic that is not easy to
quantify. Most of the available evidence on asymptomatic
SARS-CoV-2 infections, reviewed and summarised in [43]
for different circumscribed cohorts, suggests that this is a sig-
nificant factor in the fast progression of the COVID-19 pan-
demic. However, the difficulty in quantification of undocu-
mented cases is largely due to the imperfection of the data
usually available, which does not accurately reflect a large,
representative sample of the general population. Moreover,
in order to distinguish asymptomatic and presymptomatic

ALGORITHM 3 DAYS 7 DAYS 14 DAYS

Proposed 9.2% 16.3% 50.6%

SIR-fit 79.7% 122.5% 244.0%

GSEIR-fit 14.3% 22.0% 44.2%

Average over the interval from March 10 to June 5

ALGORITHM 3 DAYS 7 DAYS 14 DAYS

Proposed 3.6% 4.9% 8.5%

SIR-fit 93.9% 148.2% 308.2%

GSEIR-fit 11.6% 17.7% 34.6%

Average over the interval from April 1 to June 5

TABLE 4. Average mean absolute percentage errors (MAPEs) of the
forecasts of the epidemic evolution in USA, obtained with the proposed
algorithm, and with the SIR-fit and GSEIR-fit curve-fitting approaches, for
different forecast horizons, that is, 3, 7, and 14 days. The uppermost table
reports the average MAPEs computed over the interval from March 10 to June
5; the lowermost table reports the average MAPEs computed over the interval
from April 1 to June 5.

cases, longitudinal data — that is, repeated observations of
the individuals over time — should be available.

Another possible extension may be to separate people who
are confirmed infected and home-quarantined into a dedi-
cated epidemic compartment. In addition, the recovered com-
partment typical of the SIR model may be separated into two
distinct recovery and death compartments in the detection
phase so that the available data on reported cases can be taken
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essential for reliable model based decisions. There exists an enormous amount of very recent 
literature related to the forecast of COVID-19 pandemic evolution, and the analysis of this 
literature makes clear the effectiveness of model-based approaches, over less structured data-
centric methodologies. In this respect, one lesson learned by the present study is that accurate 
epidemic modeling requires accurate estimation of time-varying key parameters, such as the 
infection rate “beta” and recovery rate “gamma” (the celebrated R0 parameter – that which is 
exponentiated by time to determine the pandemic’s evolution – is beta divided by gamma). 
This is obviously true in the presence of abrupt changes of the underlying physical situation 
(e.g. adoption of drastic countermeasures) but, more interestingly, it is by no means limited to 
these extreme situations. One consequence is that, once the epidemic is under control, small 
variations in the estimated beta may be used as a sensible proxy for incipient detection of 
possible pandemic recurrence. 

Figure 11: Left is an example trajectory and ML-PMHT's tracks. On the right we show the benefits of data 
fusion, comparing the joint ML-PMHT to one that works individually on the 2 FPAs. 

9. “ML-PMH Tracking in 3 Dimensions Using Cluttered Measurements From Multiple 2-
Dimensional Sensors.” This paper, by Z. Sutton, P. Willett, T. Fair and Y. Bar-Shalom 
extends the maximum likelihood probabilistic multi-hypothesis tracker (ML-PMHT) to track 
targets in a 3-dimensional “global” space with observations provided by multiple 2-
dimensional sensors placed throughout the global space. ML-PMHT is a tracking method 
whose flexibility and scalability derive from relinquishing the assumption that each target emits 
at most one “hit” per scan of the sensor. It is a maximum likelihood method that essentially 
reduces to an optimization problem—recursively maximizing a likelihood function that is 
simple to evaluate given a batch of observations. Unlike maximum a posteriori or MMSE 
trackers, this likelihood maximization tracker requires neither prior knowledge about target 
motion nor measurement association, making it conceptually easy to work with. Since the 
observation model is nonlinear, the likelihood maximization is done via hill climbing. For this 
purpose, we also address the issue of “hill finding”. Due to the presence of clutter in the 
measurement model, the likelihood is a multi-modal function of the parameter space. That is, 
there are multiple hills in the likelihood function and it is of great advantage to the tracker to 
initialize the hill climber close to the right hill—the one whose peak is the global maximum. In 
this work, we present a data-driven method of initializing the hill climber based on the received 
observations. Figure 11 shows the improvement possible using our ML-PMHT approach; the 
paper also shows similar comparisons against other tracking/fusion approaches. 
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Fig. 9. The true hits received by each camera over the course of the entire scenario. Missed detections are accounted for (not visible).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR = 0 dB

SNR = -1 dB

Fig. 10. The ROC curves for target detection based on the ML-
PMHT likelihood at di erent SNR levels. The probability of target
detection at individual sensors is fixed at pd = 0.45. This implies a
clutter level of ⁄ =≥54 at an SNR of 0 dB, and ⁄ =≥74 at an SNR
of -1 dB

the algorithm is in track or not is set at 200 using the
results in Figure 12—slightly higher than the RMSE to
which the algorithm empirically converges.

For each plot, a peak in tracking performance appears,
above which the decreasing probability of target detection
has a negative e ect on the hill finder, and below which the
increasing level of clutter results in decreasing estimation
quality. The trend in the horizontal location of the peaks
suggest that the lower the SNR of the tracking scenario,
the lower the ideal measurement extraction threshold.
That is, in scenarios with lower target visibility, it is better
to operate in a “high clutter/high detection probability”
regime. And when targets are more visible, it is ideal to
compromise on the detection probability with the payo of
having less clutter. The vertical location of the peaks are
perhaps less informative since the probability of detection
is defined in terms of a RMSE threshold (a peak would be
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Fig. 11. The true target track (blue) plotted along with the batch
estimates (red) for a single Monte Carlo run with ⁄ = 54 and pd =
0.45.

higher if a higher error threshold was used for declaring
the algorithm in track). However, when the same threshold
is used for each data series in Figure 13, the predictable
trend of increasing peak performance for increasing SNR
can be observed.

These results assume a Gaussian intensity detection
structure for the measurement extraction which represents
a “worst case”. Of course if there is some other extraction
process with which a higher detection probability and/or
a lower level of clutter can be obtained (if, for instance,
the preprocessing of images involved software that used
features like shape or size to further discriminate between
targets and clutter), the performance of the tracker will
be better.

5.4 Track-Before-Fuse Comparison

The tracker presented in this paper maximizes the like-
lihood of the target state directly in the global 3-D space.
An alternative approach is to make a batch estimate of the
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Fig. 15. The RMS position error for the global space tracker (solid
line) and the RMSE for the image space tracker (dotted line) plotted
for implied measurement extraction SNR values. Errors are averaged
over 100 Monte Carlo runs and averaged over time.

The sensor arrangement remains the same as the sim-
ulation in §5.1. Along with the original target from the
scenario in §5.1, an additional target is simulated that
starts from rest at the point (1000.0, 0.0, 0.0) in the global
space, and accelerates linearly to arrive at the point
(≠1000.0, 0.0, 2000.0) at the end of the scenario. The linear
path of the second target remains well resolved from the
first target in the 3-D global space, although the targets
may become unresolved in the 2-D measurement space of
any one sensor. Although both targets violate the constant
velocity assumption of the ML-PMHT, it remains a close
approximation over the batch duration which is shortened
to N

b = 12 for this simulation. The batch slide is also
reduced to 1. That is, a batch estimate is obtained at every
time step based on the current scans along with the scans
from the past 11 time steps. This ensures that the ML-
PMHT is informed by every point obtained by the hill
finder routine.

The measurement error is the same as in §5.1 (‡◊ =
‡„ = 0.25¶). The measurement extraction is assumed
to operate such that, for each target, the probability of
receiving a hit at each sensor is pd = 0.5, and the expected
number of clutter measurements in each scan of each
sensor is ⁄ = 50.

For the JPDA, a single linear white noise acceleration
model is assumed for the targets with the process noise
parametrization being informed by the maximum acceler-
ation exhibited by the true targets.

Both the JPDA and the ML-PMHT are initialized with
a random joint state estimate distributed (with large
variance) around the truth, although the ML-PMHT is
also allowed immediate access to the hill finder as well, so
it has a chance of finding a better initialization for its first
batch estimate.

Figure 16 shows the root mean squared position esti-
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Fig. 16. The RMS position error for the maximum likelihood tracker
(solid line) and the RMSE for the JPDA (dotted line) plotted versus
time step. Errors are averaged over 100 Monte Carlo runs and
averaged over both targets.

mate error versus the time step of the scenario averaged
over both targets. The benefit of the point finder employed
by the ML-PMHT is evident at the beginning of the
scenario—while both trackers are given the same random
initialization, the ML-PMHT immediately makes use of
the point finding which, on average, results in faster
convergence to the “steady-state” performance. A test for
statistical significance of the Monte Carlo comparison, as
given in [4], is as follows. For a particular Monte Carlo
run mc, the RMSE from each of the tracking methods is
averaged over time and the di�erence between the averages
is noted as �mc. After all runs are completed, the sample
mean and sample standard deviation of the “deltas” are
computed and the significance of the comparison is taken
to be the sample mean divided by the sample standard
deviation. A value ∫ 2 is taken to indicate that the
performance di�erence is present in a significant number of
runs. The comparison in this simulation was found to have
a significance of 4.7. Note that this scenario simulates a
relatively low signal-to-noise ratio, and previous work has
suggested that the ML-PMHT likelihood formulation is
more suitable than the JPDA in such settings [14], [21].

6. Conclusion
The algorithm presented in this work is found to out-

perform a similar track-before-fusing algorithm at reason-
ably low SNR levels. This result is intuitively predictable
given that the global space tracker is taking advantage
of knowing the geometric layout of the sensors relative
to each other when evaluating the observation likelihood.
It is also shown that there is a performance “sweet spot”
for the underlying measurement extraction (the process by
which “point hits” are declared) where the target detection
probability is high enough for the likelihood maximization
to be e�ective, but the level of clutter doesn’t overwhelm
the batch estimation.
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Figure 12: Left shows the operational characteristic (risk R versus decision delay ∆) of the MAST quickest 
detection test, compared to the benchmark Page’s test. Three scenarios are considered, as described in the 

main text. In scenario 0, Page’s test is optimal. MAST outperforms Page’s test in scenarios 1 and 2, in which the 
sequences {μ0,n} and {μ1,n} are time-varying. Scenario 2, in particular, mimics the actual behavior of the 

sequences, as observed in COVID-19 pandemic data. MAST decision statistic computed for 10 US states and 
used to detect the onset of the COVID-19 second wave. The dashed horizontal lines represent the smallest and 
largest thresholds corresponding to R = 10-9, for the ensemble of the ten states. Curves are prolonged beyond 

threshold crossing for clarity. 
 

10. “Quickest Detection of COVID-19 Pandemic Onset.” This Signal Processing Letter, by P.
Braca, D. Gaglione, S. Marano, L. Millefiori, P. Willett and K. Pattipati, develops a novel 
version of Page’s CUSUM quickest-detection test, designed to work in composite hypothesis 
scenarios with time-varying data statistics, specifically an unknown change in mean. The 
derived decision statistic can be cast in recursive form, particularly suited for on-line analysis. 
When applied to COVID-19 data, the developed test allows to predict the explosion of the 
infection on a large scale, by analyzing the publicly-available sequence of new positive 
individuals per day from different countries. It is envisioned that the developed tool might help 
to proactively supporting the political decision makers for the adoption of restrictive measures 
to contain the COVID-19 pandemic explosion. Figure 12 shows the performance of MAST as 
compared to the optimal (but somewhat fragile) Page test, and applies it to detect critical phases 
of the pandemic in several US states. 

3

and known, say µ0,n = 1− α and µ1,n = 1 + α, the statistic
to be compared to a suitable threshold level would be the
CUSUM [1]–[3]: Q0 = 0 and, for n ≥ 1,

Qn = max

{
0, Qn−1 +

2α (xn − 1)

σ2

}
. (17)

For 1−α ≤ xk ≤ 1+α, Eq. (11) gives g(xk; 1−α, 1+α) =
2α
σ2 (xk − 1), which shows that the decision statistic Tn(1 −
α, 1+α) in (12) operates exactly as the Page’s test for samples
xk ∈ [1− α, 1 + α].

The test based on (17) is the optimal quickest-detection
Page’s test. Different optimality criteria have been advocated
for the Page’s CUSUM test. The “first-order” criterion consid-
ers the asymptotic situation in which the mean time between
false alarms goes to infinity and asserts that the CUSUM
minimizes the worst-case mean delay, where the qualification
“worst” refers to both the change time and the behavior of the
process before change [2, p. 166].

It is worth noting that the MAST statistic in (16) is formally
obtained by replacing the unknown value of α appearing in
the CUSUM statistic, with an estimate α̂n = |xn−1| (constant
factors can be incorporated in the threshold). This suggests an
analogy between MAST for quickest-detection problems and
the energy detector for testing the presence of an unknown
time-varying deterministic signal buried in Gaussian noise, in
the classical hypothesis testing framework [14].

III. PERFORMANCE ASSESSMENT

The performance of MAST(δ#, δu) is expressed in terms of
mean delay time ∆ and the risk R. The mean delay ∆ is
the difference between the time at which the MAST(δ#, δu)
statistic Tn(δ#, δu) crosses a preassigned threshold level γ,
see (10), and the time of passage from the controlled to the
critical regime. In the critical regime, the pandemic grows
exponentially fast and it is therefore important to ensure that
∆ is as small as possible. This requirement is in contrast with
the requirement R % 1. The risk R is defined as the reciprocal
of the mean time between two false alarms1. In turn, the
mean time between false alarms is the mean time between
two threshold crossings, assuming that the decision statistic is
reset to zero at any threshold crossing event, occurring in the
controlled regime. Because of the huge social and economic
impact of the measures presumably taken by the authorities
when passage into the critical regime is detected, it is evident
that R must be extremely small. The same performance
indices ∆ and R used to characterize MAST(δ#, δu) are used
for the Page’s test.

We now investigate the performance of MAST(δ#, δu) by
computer experiments, limiting the analysis to the case δ# =
δu = 1, i.e., the simple MAST. The performance of the Page’s
test is used as a benchmark. Let us consider the following
“scenario 0”. Fix α > 0. Suppose that the state of nature
(mean value of the xn’s) is µ0,n = 1 − α for all n in the
controlled regime; likewise, suppose µ1,n = 1 + α for all n
in the critical regime. By standard Monte Carlo counting, for

1Note that in a quickest detection application the concept of a “false alarm”
is different from that in a fixed-block test.
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Fig. 1. Operational characteristic (risk R versus decision delay ∆) of the
MAST quickest detection test, compared to the benchmark Page’s test. Three
scenarios are considered, as described in the main text. In scenario 0, Page’s
test is optimal. MAST outperforms Page’s test in scenarios 1 and 2, in which
the sequences {µ0,n} and {µ1,n} are time-varying. Scenario 2, in particular,
mimics the actual behavior of the sequences, as observed in COVID-19
pandemic data, see Sec. IV.

MAST we found that the delay ∆ varies almost linearly with
the threshold level γ, and that log10 R varies almost linearly
with γ. The same approximate behavior is found, again by
standard Monte Carlo counting, for the clairvoyant Page’s test
that is aware of the mean values µ0,n = 1−α and µ1,n = 1+α:
the mappings γ &→ ∆ and γ &→ log10 R are approximately
linear. These numerical analyses are not detailed for the sake
of brevity. The observed behavior is known for the Page’s
test, at least when the threshold γ is sufficiently large, in
view of the Wald’s approximation, see, e.g. [2, Eq. 5.2.44]. In
the present Gaussian case, more accurate formulas — known
as Siegmund’s approximations — are also available [2, Eqs.
5.2.64, 5.2.65].

We assume that the aforementioned linear mappings ob-
served for MAST and Page’s test hold true for any value
of the threshold, and this assumption allows us to consider
values of the mean delay and (especially) of the risk that
would be difficult to obtain by standard Monte Carlo analysis.
In this way, we obtain the operational curve of the two
decision systems shown in Fig. 1. The operational curve is
the relationship between R and ∆. As expected, Page’s test
outperforms the MAST, because the Page’s test is optimal for
the case addressed in scenario 0.

The same numerical analysis has been conducted for “sce-
nario 1” and “scenario 2”, also shown in Fig. 1. In scenario 1,
we suppose that in the controlled regime, any µ0,n is an instan-
tiation of a uniform random variable with support (1− α, 1),
while in the critical regime any µ1,n is an instantiation of
a uniform random variable with support (1, 1 + 10α). In
scenario 2, instead, we suppose that the sequences {µ0,k} and
{µ1,k} are sinusoidal with a period of 75 days.2 Specifically, in
the controlled regime the sinusoid oscillates in (1−α, 1), while
in the critical regime it oscillates in (1, 1+10α). To implement
the Page’s test in both scenarios 1 and 2, it is assumed that the

2Scenario 2 is consistent with the sequences of mean values obtained by
the COVID-19 epidemic data observed for different countries [16].

4

mean values are constant, i.e., µ0,n = 1−α and µ1,n = 1+α,
as in scenario 0. Clearly, no assumption about the mean values
is instead needed for implementing the MAST test, except
that they are bounded by one. In Fig. 1, we see that MAST
outperforms Page’s test, confirming its effectiveness when the
mean values {µ0,n} and {µ1,n} are unknown, except for being
bounded as shown in (2).

IV. APPLICATION TO COVID-19 PANDEMIC DATA

Starting from the landmark SIR model developed in [17], a
multitude of sophisticated epidemiological models have been
proposed to describe the pandemic evolution, based, e.g., on
stochastic evolution of epidemic compartments [18]–[22], or
metapopulation networks, [23], [24], just to cite two examples.
The trend in the topical literature is to conceive increasingly
complex models, often suitable for analysis by big-data tech-
niques. The main goal of these models is to predict mid/long-
term evolution of the infection. Our focus, instead, is to
quickly detect the onset of the pandemic explosion. With
this aim, we consider an abbreviated observation model, built
on the concept that the pandemic evolution is essentially a
multiplicative phenomenon.

We model the number of new positive individuals on day n,
say pn, as the number pn−1 of new positive individuals on
day n − 1, multiplied by a random variable xn. Further
including a “noise” term wn, yields the scalar discrete-time
state equation pn = pn−1xn + wn, n ≥ 1, for some initial
state p0. Such a recursion, under various assumptions for the
sequences {(xn, wn)}, is known as a perpetuity and appears
in many disciplines [25]–[27]. We assume that the noise term
wn is negligible, yielding3:

pn = pn−1xn ⇒ pn = p0

n∏

k=1

xk, (18)

for some p0 > 0. In this article, we refer to model (18), in
which x1, x2, . . . are independent random variables. This is
akin to the popular random walk model, with the difference
that the independence of the increments of the random walk
is replaced with the independence of the ratios pn/pn−1.
Model (18) has been derived from SIR-like models and vali-
dated on COVID-19 data in [16], where it is also shown that
the xn’s closely follow a Gaussian distribution with (unknown)
time-varying expected value Exn, and a common standard
deviation4 σ.

As long as Exn < 1, the sequence {pn} tends to decrease
exponentially fast, while, for Exn > 1, {pn} tends to increase
exponentially fast. We are interested in quickly detecting the
passage from the former situation (a controlled regime) to the
latter (critical). Detecting this change of regime can be cast in
terms of a binary decision problem between two hypotheses,
referred to as the null and the alternative, as shown in (1).

3The same multiplicative structure shown in (18) applies, other than pn,
to different time-series related to the pandemic evolution, e.g., the number of
new hospitalizations per day [16].

4Since σ ! 1 and Exn ≈ 1, P(xn < 0) is negligible, for all n. Thus,
one can safely assume that {xn} is a sequence of independent nonnegative
random variables.
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Fig. 2. MAST decision statistic computed for 10 US states and used to
detect the onset of the COVID-19 second wave. The dashed horizontal lines
represent the smallest and largest thresholds corresponding to R = 10−9,
for the ensemble of the ten states. Curves are prolonged beyond threshold
crossing for clarity.

An example of application of MAST to COVID-19 data is
provided in Fig. 2. The abscissa point at which the MAST
statistic crosses the threshold represents the day at which
the onset is detected. The test threshold is state-dependent,
as discussed in [16]. Then, for clarity of illustration, only
the smallest and largest thresholds corresponding to the risk
R = 10−9 are shown, which for many states makes only a
few days difference as to the time of alert. One evidence
is that not always restrictive measures have been adopted
as timely as dictated by the MAST analysis. The reader is
referred to [12], [16], [28]–[30] for details. Several aspects of
the MAST analysis of COVID-19 data deserve further study.
These include the pre-processing to clean the data from gross
errors (e.g., asynchronous or unreported data); generalization
of the approach to analyze other publicly available time-series
(e.g., number of hospitalized, number of deaths), even jointly;
on-line estimation of the variance to make the detector robust
to statistical fluctuations, often observed in COVID-19 data.

V. CONCLUSION

This article derived a sequential test called MAST, which
is used in [16] to detect passage from the controlled regime
in which the COVID-19 pandemic is restrained, to the criti-
cal regime in which the infection spreads exponentially fast.
MAST is a variation of the celebrated Page’s test based on the
CUSUM statistic, designed for cases in which the expected
values of the data are bounded below a lower barrier δ!
in the controlled regime, and above an upper barrier δu in
the critical one, but are otherwise unknown. We show that
MAST admits a recursive form and in the simplest case
δ! = δu = 1, is formally obtained from the Page’s test
with nominal expected values 1 ± α, by replacing α with an
estimate thereof. The performance of MAST is investigated
by computer experiments. If the expected values of the data
are constant and known, the performance loss of MAST with
respect to the optimal Page’s test is moderate. In pandemic
scenarios, lacking knowledge of the expected values of the
data, MAST can well overcome the Page’s test designed with
nominal values of the unknowns.
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Figure 6. (a) Growth rate of the hospitalized individuals (green solid line) — and its time-varying mean obtained through a
moving average that uses a window of 21 days (magenta solid line) — compared to the growth rate of the daily new positives
individuals (green area) — and its time-varying mean (magenta dotted line) — in Italy since February 21, 2020. (b)
Application of the MAST procedure on the growth rate sequence of the daily new positive individuals (solid lines, already
shown in Fig. 3) and on the growth rate sequence of the hospitalized individuals (dotted lines). On the left-side vertical axis
we select a desired risk, e.g., R = 10−4. Then, the blue curves indicate the stopping day (about July 18 if the growth rate
sequence of the daily new positive individuals is used, and August 10 if the growth rate sequence of the hospitalized
individuals is used) corresponding to the selected value of risk. Finally, the red curves referred to the right-side vertical axis
show the mean delay ∆ corresponding to the selected risk R (about 3 days if the growth rate sequence of the daily new
positive individuals is used, and below 5 days if the growth rate sequence of the hospitalized individuals is used). For clarity,
note that the right-side scale for the delay is split into two linear ranges, for a better rendering of the small-∆ range.

the available data (hospitalized individuals, daily deaths, daily number of tests etc.) could be used jointly and thus improve
the detection capability and reliability of the approach.

An extended analysis of COVID-19 infection data from more countries than those covered in this paper is available on the
web.30 We hope that in the near future the publicly available data can be: (i) more reliable so as to mitigate bias effects due
to, e.g., false positives, contrasting multiple test outcomes for the same individual, markedly different contagion incidence in
close geographical areas, etc.; and (ii) released with finer granularity so as to allow for analyses stratified by population age,
comorbidity, etc. These aspects are also relevant for effective vaccination policy making.

Methods

The observation model used in this paper can be formally obtained by replacing the constant growth rate (1+α) appearing in
Eq. (1) by the sequence of random variables x1,x2, . . . , yielding

pn+1 = p1

n

∏
k=1

xk, n = 1,2, . . . (3)

where pn is the number of new cases on day n, while xn = pn+1/pn, a time-series that makes explicit the growth rate that we
seek to coopt. The model in Eq. (3) is validated empirically. In particular, in the accompanying Supplementary Information,
we elaborate on the classic susceptible-infected-recovered (SIR) compartmental epidemic model to motivate the usage of the
sequence {xn} as observable process for quickest detection. Using the model in Eq. (3), we assume to have available the
sequence of daily new positives, for a certain region of interest; the analysis presented here relies on the data provided by the
Johns Hopkins University.28 Referring for instance to Fig. 2, such a sequence is shown in gray in the left panel. To address
gross errors, missing values and delays in reporting the data, the sequence is smoothed by a moving average filter with uniform
weights (the moving average filter of length L is always assumed to have equal 1/L weights). The smoothed sequence {pn}
so obtained is shown in green in Fig. 2(a). The growth rate process used as observable is then computed as {xn = pn+1/pn},
and is represented by the green curve in Fig. 2(b). We observed that, selecting a length L of the filter equal to 21 days, the
growth rate samples from all countries are distributed as Gaussian random variables and pass the Kolmogorov-Smirnov test,
see details in the Supplementary Information.
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Figure 13: Left shows the growth rate of the hospitalized individuals (green solid line) — and its time-varying 
mean obtained through a moving average that uses a window of 21 days (magenta solid line) — compared to 

the growth rate of the daily new positives individuals (green area) — and its time-varying mean (magenta dotted 
line) — in Italy since February 21, 2020. On the right, we show the application of the MAST procedure on the 

growth rate sequence of the daily new positive individuals and on the growth rate sequence of the hospitalized 
individuals (dotted lines). On the left-side vertical axis we select a desired risk, e.g., R = .0001. Then, the blue 

curves indicate the stopping day (about July 18 if the growth rate sequence of the daily new positive individuals 
is used, and August 10 if the growth rate sequence of the hospitalized individuals is used) corresponding to the 

selected value of risk. Finally, the red curves referred to the right-side vertical axis show the mean delay ∆ 
corresponding to the selected risk R (about 3 days if the growth rate sequence of the daily new positive 

individuals is used, and below 5 days if the growth rate sequence of the hospitalized individuals is used). For 
clarity,	note	that	the	right-side	scale	for	the	delay	is	split	into	two	linear	ranges,	for	a	better	rendering	of	the	small-∆	

range.

11. “Decision Support for the Quickest Detection of Critical COVID-19 Phases.” This Nature
Communications paper, by P. Braca, D. Gaglione, S. Marano, L. Millefiori, P. Willett and K.
Pattipati, leverages the MAST to rapidly detect the passage from a controlled regime to a
critical one. The performance of MAST is investigated for the second pandemic wave, showing
an effective trade-off between average decision delay ∆ and risk R, where R is inversely
proportional to the time required to declare the need to take unnecessary restrictive measures.
The risk is determined by the average occurrence rate of false alarms, which could have
unnecessary social and economic ramifications. Ideally, the decision mechanism should be as 
quick as possible for a given level of risk. We find that all the countries share the same 
behavior in terms of quickest detection, specifically the risk scales exponentially with the 
delay, R ∼ exp (−ω ∆), where ω depends on the specific nation. For a reasonably small risk 
level, say, one possibility in ten thousand (i.e., unmotivated implementation of countermeasures 
every 27 years, on the average), the proposed algorithm detects the onset of the critical regime 
with delay between a few days to three weeks, much earlier than when the exponential growth
becomes evident. Strictly from the quickest-detection perspective adopted in this paper, it turns 
out that countermeasures against the second epidemic wave have not always been taken in a 
timely manner. The developed tool can be used to support decisions at different geographic 
scales (regions, cities, local areas, etc.), levels of risk, instantiations of controlled/critical 
regime, and is general enough to be applied to different pandemic time-series. Additional 
analysis and applications of MAST are made available on a dedicated website. Figure 13 shows 
the MAST procedure applied to real data, respectively the day-over-day ratio of new positive 
reports and hospitalizations. 

Figure 14: The left plot supports our contention that the distribution of phrase lengths output from the LZ77 
algorithm before and after the change (H and K, respectively); the H and statistics of the original (before LZ) 

Fig. 1. Raw (unprocessed) acoustic file in which we wish to detect
the addition of AWGN. The red line at t ' 26.675 seconds denotes
the (undiscernable?) time a change occurs.

5. RESULTS AND CONCLUSIONS

To display the effectiveness of our approach, we present a sce-
nario with real data from an underwater hydrophone, sampled
at 8kHz and using an 8-bit quantization. The first 106 sam-
ples are used for the DBLZ and are not used for detection (to
preserve independence of the database). The change occurs
at t ' 26.675 seconds into processing. The change we wish
to detect is the addition of white Gaussian noise (AWGN) to
the signal with a standard deviation of 0.005.

Fig. 2. Distribution of phrase lengths output from the LZ77 algo-
rithm before and after the change (H and K, respectively).

Figure 1 shows the quantized sound file before any pro-
cessing with a red line denoting the point where a change we
wish to detect occurs. We see no discernible difference in the
data at first glance. Figure 2 shows histograms of the phrase
lengths before and after the change. There is a noticeable de-
crease in mean and standard deviation. Figure 3 shows the
modified CUSUM tests discussed above applied to this data.
We see that each test is capable of detecting the change with
little to no false alarms (depending on threshold selected).

Finally, Figure 4 shows Monte Carlo statistics of TFA vs.
TD. These statistics were taken over 250 Monte Carlo runs
where the ambient and anomalous states are binary Markov

Fig. 3. Output of the modified CUSUM test applied to underwa-
ter hydrophone data to detect the addition of a small amount of
AWGN.The red line indicates the time when the change (addition
of the AWGN) occurs.
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�
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) and the average time to detection (TD) over

250 Monte Carlo runs for a change between two memory length
M = 1 Markov Chains with similar stationary distributions. We
see that the performance is better initially for the single LO test, but
for higher thresholds the doubly LO test quickly performs better.

chains, with similar stationary distributions, and each with
memory M = 1. We use a database of size 106 bits for test-
ing and find that for shorter length disturbances, the single LO
test will perform more reliably, however if the disturbance is
longer (i.e., the test statistic has more codewords to evaluate
than in the anomalous state) then using a larger threshold and
leveraging information from both parameters with the Dou-
bly LO test provides better detection performance (for these
Markov and short memory sources).

6. CONCLUSION

This work motivated, developed, and justified several related
statistical test for preforming source-agnostic change detec-
tion based on universal source coding. We then developed
several tests on the standardized, coded phrase lengths and
showed their effectiveness on real data gathered from under-
water hydrophones. The results show promise for a non-
bespoke change detection algorithm. Future work will ex-
plore quantization as well as different CUSUM versions, es-
pecially those based on the MAST formalism [5, 6].
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TD. These statistics were taken over 250 Monte Carlo runs
where the ambient and anomalous states are binary Markov

Fig. 3. Output of the modified CUSUM test applied to underwa-
ter hydrophone data to detect the addition of a small amount of
AWGN.The red line indicates the time when the change (addition
of the AWGN) occurs.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
TD

1

2

3

4

5

6

7

8

9

10

log
10

(T FA
)

log10(TFA) vs. TD

L.O.
Double L.O.

Fig. 4. A plot of the logarithm of average time between false
alarms (log10

�
TFA

�
) and the average time to detection (TD) over

250 Monte Carlo runs for a change between two memory length
M = 1 Markov Chains with similar stationary distributions. We
see that the performance is better initially for the single LO test, but
for higher thresholds the doubly LO test quickly performs better.

chains, with similar stationary distributions, and each with
memory M = 1. We use a database of size 106 bits for test-
ing and find that for shorter length disturbances, the single LO
test will perform more reliably, however if the disturbance is
longer (i.e., the test statistic has more codewords to evaluate
than in the anomalous state) then using a larger threshold and
leveraging information from both parameters with the Dou-
bly LO test provides better detection performance (for these
Markov and short memory sources).

6. CONCLUSION

This work motivated, developed, and justified several related
statistical test for preforming source-agnostic change detec-
tion based on universal source coding. We then developed
several tests on the standardized, coded phrase lengths and
showed their effectiveness on real data gathered from under-
water hydrophones. The results show promise for a non-
bespoke change detection algorithm. Future work will ex-
plore quantization as well as different CUSUM versions, es-
pecially those based on the MAST formalism [5, 6].
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data are HMMs with the same stationary distributions. On the right we see delay-to-detection and false-alarm 
rate performances for suggested two post-processing schemes – both are quite good. 

12. “Transient Detection with Unknown Statistics via Source Coding.” This ICASSP
submission, by A. Finelli, P. Willett, Y. Bar-Shalom and S. Marano, notes that quickest
detection problems are fairly common in surveillance applications, as framing surveillance
alerts as a change in an observation sequence’s statistics is often apt. It considers the scenario
where an appropriate statistical description of our observations is not available, neither before
nor after the transient to be detected. In this vein, the use of the database Lempel-Ziv, or LZ77,
procedure, is applied to detect this transient in the observation data. This algorithm is known to
produce code “phrase” lengths that are asymptotically distributed as Gaussian random
variables, which allows us to form a quickest detection problem around statistics of the coded
output. This work specifies procedures to perform source-agnostic transient detection using
Locally Optimal (LO) statistic to augment a Page CUSUM test. The work also shows an
application to acoustic data. Figure 14 justifies our claim of the phrase lengths following
Gaussian distributions, and offers performance plots for two possible approaches. Further
results (not yet submitted) show that an appropriate MAST procedure is even better. The
approach has been applied very successfully to US, Italian and world data.
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IMPACT/APPLICATIONS 

Dynamic fusion of data from disparate and non-traditional sources may require design and analysis 
novel methodologies.  

1. For reasons both of robustness and of bandwidth it may be advantageous to transmit data in an
unlabeled format. For example, we might consider a sensor network sending coarsely-
quantized observations of 1 or 2 bits: does it make sense to accompany such low-fidelity data
by far more bits explaining the identity of the sensor? Why not explore a situation in which the
identity is not transmitted, but instead inferred by the fusion engine? What is lost by doing so?
The impact and application are to the design of sensor networks.

2. We explore the extraction of low-observable dynamic “targets” from transactional data. Both
the targets (for example, a terrorist plot) and the observations (human activities noted) are
highly nontraditional. However, target-tracking and low-observable target-extraction (track-
before-detect, or TBD) techniques are to some extend mature as applied to classic applications
(like radar), and are therefore ripe to be applied in wider venues. We do so, and especially
make use of the emerging Bernoulli filter (MBF) paradigm for target extraction. The key in the
work reported is to marry the MBF with feature-aided tracking and knowledge-aided tracking,
the former of which here is identity (who purchased the chemical fertilizer?) and the latter prior
relationship data (noted surveillance of an Air Force facility by a relative of the former actor is
something to be wary of). The impact and application are to defense of the homeland and
projected forces from nontraditional attacks.

3. Since the beginning of 2020, the outbreak of a new strain of Coronavirus has caused hundreds
of thousands of deaths and put under heavy pressure the world’s most advanced healthcare
systems. In order to slow down the spread of the disease, known as COVID-19, and reduce the
stress on healthcare structures and intensive care units, many governments have taken drastic
and unprecedented measures, such as closure of schools, shops and entire industries, and
enforced drastic social distancing regulations, including local and national lockdowns. To
effectively address such pandemics in a systematic and informed manner in the future, it is of
fundamental importance to develop mathematical models and algorithms to predict the
evolution of the spread of the disease to support policy and decision making at the
governmental level. There is a strong literature describing the application of Bayesian
sequential and adaptive dynamic estimation to surveillance (tracking and prediction) of objects
such as missiles and ships; and in this paper, we transfer some of its key lessons to
epidemiology. We show that we can reliably estimate and forecast the evolution of the
infections from daily — and possibly uncertain — publicly available information provided by
authorities, e.g., daily numbers of infected and recovered individuals. The proposed method is
able to estimate infection and recovery parameters, and to track and predict the epidemiological
curve with good accuracy when applied to real data from Lombardy region in Italy, and from
the USA. The impact and application are to the health of the US (and Allied) civilian
populations, via guidance to local, State and National authorities.

4. If two radar sensors observe the same target their measurements can be combined to produce a
fused target-state estimate that is of higher quality than that from one radar alone. If there are
multiple targets whose information is shared, a necessary first step to fusion is to “assign” each
measurement from the first sensor to that at the other in such a way that both refer to the same
underlying object, a task generally accomplished by minimizing a global cost involving
distance. An assignment error occurs when the measurement originated by target i at the first
radar is wrongly associated to a measurement originated by target j (not i) at the second radar.
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Naturally, when such an error occurs the result is fusion of information describing disparate 
objects, resulting in degraded estimation performance and poor self-assessment in terms of 
posterior uncertainty. Here we address the issue, and derive approximate assignment error 
probability. The impact and application are to performance prediction for (and thence design 
of) multi-sensor inference systems. 

5. In principle, IFF (Identification Friend or Foe) and AIS (Automatic Identification System)
makes covert rendezvous at sea (smuggling, piracy, etc.) impossible; in practice, AIS can be
spoofed or simply disabled. Previous work showed a means whereby such deviations can be
spotted. Here we play the opponent’s side, and describe the least-detectable trajectory that that
the elusive vessel can take. The impact and application are to air defense and surveillance via a
game-theoretic perspective.

6. Talk delivered to AFRL researchers, December 6th, 2020: “Distributed Detection and Data
Fusion.” Abstract: The initial paper on the subject of distributed detection, by Tenney and
Sandell, showed that under a fixed fusion rule, for two sensors with one bit outputs, the optimal
Bayes sensor decision rule is a likelihood ratio test. It has been shown that the optimal fusion
rule for N sensors is a likelihood ratio test on the data received from the sensors. Reibman and
Nolte and Hoballah and Varshney have generalized the results to N sensors with optimal
fusion, again with the restriction of one bit sensor outputs; this has been relaxed later to multi-
bit quantizations. In this “primer” talk we explore a number of issues in distributed detection,
including some pathologies, the benefits of fusion, optimal design, structures for decision flow,
consensus, sensor biases, feedback, deliberate obfuscation (i.e., security) and censoring. We
also devote some time to distributed estimation (i.e., fusion for tracking): why is it difficult and
what seems to work best?

7. The ML-PMHT has recently emerged as a go-to means to extract very low observable (VLO)
target signatures. Previous implementations have worked with meaurements that correspond to
the tracking space: two-dimensional measurements for two-dimensional targets, and three for
three. Under this contract, the technique has been extended to fusion of data from non-
commensurate data streams. The complication is that ML-PMHT requires optimization of a
multimodal likelihood surface, and clever initialization is vital. The key insight here is to
trigger hill-climbing from closest approaches of lines-of-sight vectors. The performance is
excellent.

8. Many important surveillance problems can be posed as of detection of a change: of network
activity, of social and trust relationships, of acoustic signatures, of images, of target behavior,
etc. The issue is that optimal procedures require that the statistics before and after the changes
be modeled precisely; and that almost trivially limites the applicability of (say) a Page test. A
clever approach has recently emerged in the literature, but seems to be little appreciated: use a
Lempel-Ziv encoding of the data – whatever the data may be, and really the format matters
little – and, since the LZ theme is to look for the longest data patterns (“phrases”) that can be
seen in the past, to alarm upon a sudden decrease in the coding efficiency (i.e., shorter phrases).
Our contribution has been to address the automated alert of a change, and we have developed
several procedures for this. First, we leverage results that show asymptotic Gaussianity of the
data; and, second, we develop several novel approaches to detect unknown and unmodeled
changes in a stream of Gaussian data. The future impact of this technology, if properly
promulgated, is very wide: changes of any sort generally presage something of importance to
examine more closely (say, an incursion of a network or of a defended space) and this
technology delivers a key bell-ringer.

DISTRIBUTION A: Distribution approved for public release.



18 

9. Reported as #3 above, we have applied some of our tracking expertise to help authorities
predict the future trends of the COVID-19 pandemic, focusing specifically on the b and
g parameters whose ratio, if greater than unity, indicates an out-of-control situation. We have
gone further, and applied our signal processing experience with detection of changes to the
pandemic. The goal is to detect as quickly as possible any recrudescence of the pandemic so
that authorities can institute mitigation policies in a timely manner; and conversely to detect as
quickly as possible a return to a more benign state so that public patience can be maintained.
There are two key developments we have pioneered. The first is to reformulate the data stream
as a ratio of easily available observations such as hospitalizations or new cases; what is good
about this is the empirical (and asymptotic, according to theory) Gaussianity of such ratios. The
second is new quickest detection update statistic (MAST) that uses a GLR formulation to detect
an unknown change in Gaussian data. The potential impact  for policy makers is obvious, and
our group has worked hard to offer this technology transfer (of ideas from dynamic estimation
and from signal processing) to a wide audience of readers and audiences.
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