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LONG-TERM GOALS

Proper inference in a decision or inference network requires that the commander (technically: the
fusion center) have an understanding of the relative weight that he / she should place on the inputs each
subordinate. Recent works have addressed the problem of estimating agents’ behaviors in complex
networks, of which social networks are a prominent example. These works are especially promising
and would seem to be of considerable practical importance in a wide variety of command & control
venues. However, these works are perhaps limited by their somewhat idealized assumptions: that the
commander (fusion center) possess full information of all subordinates’ histories, and that conditional
statistical independence between these histories can be assumed. In the proposed project we intend to
explore more general situations: of dependent sensors, of unknown structure of that (possible)
dependence, of missing data and of subordinate identities that are either obscured / adulterated /
entirely missing. For such dynamic fused inference problems we propose to extend results in a number
of directions: exploring dependency amongst data sources (physical proximity or “group-think™), in
term of useful communication strategies when the inference task and quantization are not necessarily
matched, and even the unlabeled case in which the identity of each measurement’s source is unknown
— this is a form of the data association problem

We also recognize that inference of dynamic underlying situations is of key interest. Given a
traditional framework involving measurements and physical “targets” this is a familiar problem of
tracking. But can techniques from target tracking and multi-sensor data association be applied to
extract states that are not physical (physical as would be, say. an aircraft observed by radar) but are
instead at a higher level? An example might be a terrorist threat or a battle plan — these would be
observed from multiple sources via measurements such as intelligence reports and telemetry, and may
even be thought to encompass civilian sources such as news or financial transactions. These are not
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standard data, and neither are the dynamic systems that are of interest here the usual kinematic ones.
Nonetheless we note that there is much commonality with (and thus opportunity for application of
mature and emerging tools from) traditional target tracking: there can be multiple “targets”, there is
clutter, and there is behavior that we might reasonably model via statistics. For such fused inference of
dynamic systems we have the goal of extraction of unusual dynamic patterns that are evolving an
would seem to merit closer attention. We specifically propose to ingest feature (identity) information,
via modeling the clutter as a rich collection of similar activities and by adapting modern multi-sensor
data association techniques for the task.

OBJECTIVES

The focus of the research is reliable inference in dynamic systems with fused observations. We begin
with iterative fused decision-making (decisions need not be binary) from sensors / subordinates whose
operating points (quality of data) are initially unknown. With time it should become possible to infer,
jointly, that states of nature both of sensor suite and of the underlying situation (i.e., the real inference
goal). We extend this in a number of directions as well: exploring dependency amongst data sources
(physical proximity or “group-think) and even the unlabeled case in which the identity of the
measurement’s source is unknown. In the proposed project we additionally intend to explore situations:
of dependent sensors, of unknown structure of that (possible) dependence of missing data and of
subordinate identities that are either obscured / adulterated / entirely missing. We further intend to
extend these ideas to fused estimation of dynamic threats, by ingesting feature (identity) information,
via modeling the clutter as a rich collection of similar activities and by adapting modern multi-sensor
data association techniques for the task.

APPROACH
In the first year of this effort we concentrated on the following two objectives.

1. Unknown Identities of Decision-Makers. It is likely that in an operational situation the fusion
center (commander) receives sensor reports from his/her subordinates that is disordered: their
identities can be mixed up or even completely missing. Such a situation can be a concern in a
“big data” application in which data pedigree can be lost or for reasons of storage gets
discarded. The former situation suggests an interesting twist on Task #1: the identity
information has a strong prior to be correct but the locations of errors of identity must be
inferred; again, the EM algorithm is suggested. However, it may be so that all identity
information is lost, and the commander is presented with what might be thought of as a “bag of
decisions” each time. The method of types is in this case proposed to accomplish joint
inference of local (unlabeled) belief levels and ongoing optimal decisions.

2. Operating Points for Fused Inference of Dynamic Systems. Under previous support we have
explored dynamic event extraction: we have developed a reasonable hidden Markov model, we
have learnt to ingest (identity) features, we have a multi- Bernoulli filter-inspired extraction
approach — and we have even provided some theoretical analysis. As part of the proposed work
we will extend this in two ways. First, we intend to cast the measurements as a fused stream of
data from sources of unknown credibility that must be estimated. Second, each such
information source must be assumed to be cluttered with “ambient” events (such as the
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financial and travel footprint of a family going on vacation) that, while benign and likely
uncomplicated, are dynamic and in some sense similar to the threats sought. These must be
modeled (from data) and suppressed (by a multi-target tracker).

Work in the second year focused on the following objectives.

3.

Identity Uncertainty in Data Fusion. When data are to be fused from multiple sources, and
when this data refers to multiple truth objects, a key concern is to determine which data from
one sensor go with which data from another: the “data association” problem. Actually the
means for such fusion — and even good approaches for the association process — are fairly well-
known. What is lacking is an understanding of the quality of the associations made. We attempt
to provide this, and we intend to explore the effect of sensor bias and positioning.

Sensor Networks with Extreme Communication Constraints. Consider inference by a network
of sensors whose positions are unknown and whose locations aresubject to drift and diffusion —
a Poisson field. Further, assume that in such a network the sensors, while cognizant of their
identities and other such relevant data choose not to transmit that to the fusion center, in order
to preserve bandwidth. What can be done? And what is lost? We examine these questions, as
well as evaluating the role (in the information theoretic sense) of identity versus observation.
That is, suppose two bandwidth-equal networks are compared; one with n sensors that transmit
only observation; and the other with n/2 sensors that transmit both data and identity. Which is
preferable, and when?

Tracking of the COVID-19 Epidemic Status. Admittedly epidemiology is not in the direct line
of the proposed research, but given the skills represented and the pressing need for them during
the current health emergency, it seems reasonable to be opportunistic. With a joint team of US
and Italian researchers we have shown that we can reliably estimate and forecast the evolution
of the infections from daily — and possibly uncertain — publicly available information provided
by authorities, e.g., daily numbers of infected and recovered individuals. The proposed method
is able to estimate infection and recovery parameters, and to track and predict the
epidemiological curve with good accuracy when applied to real data from Lombardy region in
Italy, and from the USA. We are presently extending our approaches to data segmentation,
change detection (as in an increase/decrease in the infected numbers) and regional clustering.

Work in the third year focused on the following objectives.
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SELECTED WORK COMPLETED

In the following subsections we briefly describe some of the work we have performed under this
contract. More papers (and more details therein) are given in the following section “Publications”.
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Figure 1: Error probabilities for n=100 samples and observations of cardinality m=3 and m=10. Note the
difference between labeled and unlabeled cases, and that the GLR can, surprisingly, be relatively poor.

1. “Algorithms and Fundamental Limits for Unlabeled Detection using Types”. This paper
was authored by S. Marano and P. Willett, and published in the /EEE Transactions on Signal
Processing, vol. 67, no. 8, pp. 2022-2035, April 2019. We consider a canonical binary
hypothesis test with independent data under both hypotheses. Motivated by modern
applications of sensor networks engaged in big data analysis, we assume that the observation
vector X=[X1, X2, ... Xn] collected by the peripheral units is delivered to the fusion center in the
form of a random set Xu={ X1, X2, ... Xa} rather than a random vector — the distinction is that the
former is labeled (it is known the source of xi) whereas in the latter the provenance of x; is not
known, only that one of the sensors has communicated this x;. The theoretical question
addressed is how much information for detection is carried by X, as opposed to X. We provide
the asymptotic (n diverging) characterization of the performance of the optimal test in terms of
an error exponent rate Qu(a), which replaces the canonical rate QQ(a) of the labeled case — o is
determined by the false alarm rate. It is proven that, when type I error tends to zero as e™* with
the data size n, type II error may converge to zero as exp(-n {y(a)) but not faster. The rate
difference Q(a)— Qu(a) quantifies the loss of information induced by the loss of data labels.
The second part of this paper addresses the practical question of how to solve the test by
algorithms of affordable computational complexity and good performance. The ULR detector
makes no attempts to estimate the labels and is very efficient computationally. The GLRT
solution for unlabeled data boils down to an assignment problem, for which a tailored form of
the auction algorithm can be exploited. We also propose two alternative detection algorithms
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with good trade-off between performance and complexity, as we show by computer
experiments. Interestingly this is one of the few cases in which the GLRT (auction!) is very
suboptimal, the type is actually a better indicator for detection.
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Figure 2: Performance for situation that under H1 half the decisions are “always right” and half are “always
wrong”. Note that the GLRT is quiet poor. The notional situation is described in the text, below.

2. “Making Decisions by Unlabeled Bits™. This paper was authored by S. Marano and P. Willett,
and is to appear in the [EEE Transactions on Signal Processing. The error exponent for
unlabeled detection has been completely characterized in the above paper, but left in the
implicit form of a convex optimization problem from which limited insight and intuition can be
gained. Here we focus on the case in which observations are binary and show that the structure
and the properties of error exponent becomes self-evident, also allowing straightforward
numerical solution that does not require specialized convex optimization tools. In the
challenging scenario of low-detectability regime, we provide simple closed-form analytical
solutions for the error exponent and related quantities, for which we obtain much insight and
intuition. From a theoretical point of view, these are the main contributions of the present
study. From a practical perspective in several decision statis- tics have been proposed and here
we show that in the case of binary observations their properties and relative merits be- comes
very clear, but also unpleasant. The decision algorithm based on the GLRT principle should be
used with care because its performance may be quite poor and possibly biased. Figure 2
deserves some explanation. Suppose that Hy refers to the situation that all n sensors deliver
their data as “coin flips”. An further suppose that H; refers to the case that the first n/2 sensors
are all-zero while the remainder are all-one. Testing in the labeled case is easy. Unwary testing
in the unlabeled case can be disastrous, since the count of the number of ones has mean n/2 in
either case. The GLRT (which attempts under Hi to match the 1’s to a sensor indexed above
n/2) is can be very poor. The best unlabled strategy is actually to test the deviation of the
number of 1’s from n/2.

DISTRIBUTION A: Distribution approved for public release.
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Figure 3: An example HMM used to model a terrorist event. This is much less complex than would be of interest
but illustrates the sequential and multi-optional behavior seen. The “states” of the attack (for example, “Gather
chemical fertilizer”) are represented as X’s; the transactional observations are the Z’s. Naturally, there is a great
deal of ambient clutter (such as people buying gardening supplies) amongst the Z’s. The key is to use modern
target tracking ideas to extract the low-observable “targets”.

%% - -
nl . X x* * w/ Entity Weights
x % w/o Entity Weights
x * — Mean Target Duration
0 | | |
0 500 1000 1500
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Figure 4: Quickest detection results over 2000 MC runs for the two filters. Vertical axis is in log scale since false
alarms are rare. Mean target duration is marked since filter is useless if delay to detection is past this point.
improves detection time and suppresses false alarms. The performance for threshold value of 0.8 is noted on
both plots.
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Average Time to Detection vs. Time Between False Alarms: Process 1
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Figure 5: A graph of probability of the average time to detection vs. the logarithm of time between false alarms
for 200 activations (Monte Carlo runs). The vertical orange line indicates the expected duration for the
respective process. The plot demonstrates the advantage to using the underlying “clique” (group-membership
and social connection) prior knowledge.

3. “Target Tracking Applied to Extraction of Multiple Evolving Threats from a Stream of
Surveillance Data”. This paper was co-authored by Z. Sutton, P. Willett and Y. Bar-Shalom,
and has been submitted to the IEEE Transactions on Computational Social Systems. Threats are
composed of some process or plan being carried out by a group of people with an end goal that
is generally to cause harm. Some examples of these kinds of threats are terrorist attacks,
military actions, or stock fraud. These threats can be modeled stochastically with help from
experts within the relevant field. We model these threats with a hypothesis as to how these
events will unfold along with a method for observing the unfolding threat. We use this model to
detect the threat before its completion and theoretically allow for preemptive action against the
threat’s perpetrators. The models used for threats in this paper are variations of Hidden Markov
Models (HMMs) with sparse observation emission (compared to the expected process length),
see Figure 3. There is a rich target tracking literature, with many methods to deal with dynamic
estimation, target extraction, data association and multiple objects. Here we co-opt this
literature, and offer significant refinement of earlier estimation procedures. Specifically, we
now allow for multiple threats to exist and be extracted. This has necessitated a data
association step, since we now “frame” the observation stream into sets of transactional data
(as opposed to one-at-a-time ingestion) to facilitate efficient operation. We further have
augmented our model to admit “identity” information: transactional data often involves actors
and places, etc., and the continual reappearance of these can offer a significant clue in the data
association phase. The improvement through the use of identity information is readily seen in
Figure 4.

4.“Taking Advantage of Group Behavior When Tracking Multiple Threats in Cluttered
Surveillance Data”. This paper was authored by A. Finelli, Z. Sutton, P. Willett, and Y. Bar-
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Shalom, and was presented at the IEEE Aerospace Conference, Big Sky MT, in March 2019.
The paper was recognized as Best Paper in Track 6. The population observed is assumed to be
organized into groups called “cliques”. Rather than tracking an individual’s involvement
probability, we track a clique’s (group’s) involvement probability across all threats using a
Bayesian update equation and conditioning on association events between the observations and
the set of measurement generating HMMs (threat and clutter processes). We assign an
individual’s probability conditionally based on their group’s and the state of each threat process
then its state is estimated using a bank of Bernoulli filters. This allows us to accurately detect
multiple threat processes within a single stream of observations (most of which will be clutter).
Figure 5 shows that there is considerable advantage to the exploitation of clique behavior.

-

Figure 6: The targets present in the experiments. Top left: The Ocean Space Drone. Bottom left: Munkholmen
Il. Right: The seamark.
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Figure 7: Average mode of the detectability estimate of confirmed tracks when the target is present. The black
line shows the ground truth.

5.“Estimation of Target Detectability for Maritime Target Tracking in the PDA
Framework”. This paper was authored by E. Wilthil, P. Willett, Y. Bar-Shalom, and E. Brekke
was presented at the ISIF FUSION Conference, Ottawa Canada, in June 2019. The paper was
recognized as Best Student Paper runner-up. Accounting for varying target detectability can
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significantly improve tracking performance when these issues are present. The detectability can
be estimated with a HMM based on the number of validated measurements, or the probability
of the joint detectability and target existence may be jointly evaluated using the based on the
likelihood ratio of a target vs. clutter. Simulations shows that both of these methods are able to
maintain the track when the detectability is lowered, and terminates lost tracks significantly
faster than a Markov chain 2-IPDA. Tests on real data shows that the joint estimation of target
detectability and existence probabilities reduces the number of false tracks, at the cost of
slightly higher track confirmation time. The paper uses real data from radar and some friendly
targets, and Figure 6 shows these. Figure 7 illustrates the point of the work: when the
continuous-valued target-detection probabilty is integrated to the tracker and is itself tracked,
the target existence probability can be far more effectively estimated.
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Figure 8. Left: Notional sketch of the problem and our posing in two dimensions. There are N = 13 targets
randomly located in a ball whose area (volume) is N = 13 times that of a standard target volume. A standard
volume is a ball whose radius is one half the nominal target separation; but of course some pairs or targets are
close together and some are more widely separated. Each target is represented by a measurement at radar
sensor 1 (a small red square) and also at radar sensor 2 (a small green triangle). These are assumed generated
by adding independent Gaussian noise with the indicated standard deviation. Right: Solid lines are the
approximated analytical probability of single pairwise switch error P(E) shown, as a function of the scene-
difficulty parameter, for three values of dimension = 3, 6, 10. Dashed lines show the value of accurate P(E) via
numerical integration. Dotted lines are the asymptotic approximation, valid for small P(E). Symbols show the

results of 106 Monte Carlo simulations with N = 25.

6. “On the Probability of Cross-Radar Assignment Error”. This paper, by P. Braca, P. Willett
and W.D. Blair, will be presented at the 2020 IEEE Radar Conference. If two radar sensors
observe the same target their measurements can be combined to produce a fused target-state
estimate that is of higher quality than that from one radar alone. If there are multiple targets
whose information is shared, a necessary first step to fusion is to “assign” each measurement
from the first sensor to that at the other in such a way that both refer to the same underlying
object, a task generally accomplished by minimizing a global cost involving distance. An
assignment error occurs when the measurement originated by target i1 at the first radar is
wrongly associated to a measurement originated by target j (not i) at the second radar, see the
left panel of Figure 8. Naturally, when such an error occurs the result is fusion of information
describing disparate objects, resulting in degraded estimation performance and poor self-
assessment in terms of posterior uncertainty. Here we address the issue, and derive approximate



assignment error probability. Remarkably, performance (see the right panel of Figure 8)
depends only upon the parameters combined to a single scalar constant.
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Figure 9. Comparison of the optimized positions (red squares) versus the positions drawn from the OU process
evolution (cerulean points) and the positions of the nominal trajectory (blue dots). The ellipses (black solid lines)
represent the 95%-confidence covariance of the OU/IOU process given the initial point of the trajectory. The
point pc near which the vessel lingers is marked with a yellow star. On the left, a single radar contact, indicated
by light blue shade, located in pm1 = 1 is taken into account. The right plot shows ROC curves describing the
performance of an anomaly-detector in terms of track detection probability PD versus false alarm probability
PFA when the optimal deviation (when it exists) is an OU process (black solid line) and is the deterministic
output of the N-COST algorithm (red dashed line). The first ROC curve is the predicted performance of the
optimal anomaly detector operating on the pessimal trajectory, performance provided by equation (13) in the
paper, while the second is simulated with 1000 Monte Carlo runs, a close match. The blue dash-dotted ROC

7.

curve describes a sub-optimal (unwary) deviation, and the other plot is the chance line.

“Optimal Opponent Stealth Trajectory Planning based on an Efficient Optimization
Technique.” This paper, by A. Aubry, P. Braca, E. d’Afflisio, A. De Maio, L. Millefiori and
Peter Willett, has been submitted to IEEE Transactions on Signal Processing. This work
proposed a computationally efficient technique, called Non-Convex Optimized Stealth
Trajectory (N-COST) algorithm, to solve the route planning problem with the goal to make a
vessel’s trajectory as stealthy as possible to an anomaly detector, so as to hide a deviation from
a nominal traffic route to accomplish a specific mission. Previous research has discussed
tracking of an object whose velocity evolves according to an Ornstein-Uhlenbeck mean-
reverting stochastic process, while proper kinematic and practical constraints are taken into
account — IOU processes (integrated because velocity is the derivative of position) have been
shown to be excellent empirical matches to commercial traffic in many modalities (air, sea,
etc.) — and the model is key to tracking when the observation stream has gaps such as between
fusion hand-offs. In this paper we look at the reverse problem: How can a target plan its most
effective trajectory such that a goal is met (say: a rendezvous for smuggling) yet detection of
the accompanying “diversion” is made most problematic; presumably, a game-theoretic
approach would incorporate both perspectives. From this “red-team” viewpoint, the
optimization problem minimizes the Kullback-Leibler divergence between the statistical
hypotheses of the nominal and the anomalous trajectories. Interesting case studies concerning
both synthetic and real-world scenarios are reported to prove the effectiveness of the proposed
N-COST algorithm. In other words, as illustrated in Figure 9, we considered the worst
condition case from the detection point of view, by minimizing its performance with the final
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goal of highlighting the detector limitations and opening the door to possible future works
aiming at improving the anomaly detector capabilities by determining the optimal surveillance
asset.
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Figure 10. Left: Estimated infection rate (“beta”) and recovery rate (“gamma”) for USA, in days. The shaded
areas represent the 90 % confidence interval. Right: Average mean absolute percentage errors (MAPES) of the
forecasts of the epidemic evolution in USA, via the proposed algorithm, and with the fixed-parameter SIR-fit and

GSEIR-fit (GSEIR is a more-sophisticated version of SIR) curve-fitting approaches, for different forecast
horizons: 3, 7, and 14 days. The upper table reports the average MAPEs computed over the interval from March

10

8.

to June 5; the lower table reports the average MAPEs computed over the interval from April 1 to June 5.

“Adaptive Bayesian Learning and Forecasting of Epidemic Evolution — Data Analysis of

the COVID-19 Outbreak.” This paper, by D. Gaglione, P. Braca, L Millefiori, G. Soldi, N.
Forti, S. Marano, P. Willett and K. Pattipati, will appear online shortly in IEEE Access. The
recent worldwide epidemic outbreak, due to a new strain of Coronavirus, has intensified
research into novel mathematical models and algorithms that are able to reliably estimate and
predict the epidemiological curve of the infection. The signal processing community has in its
arsenal many tools to track, to track models that “switch”, and to detect such changes; and it is
good, in the context of this project, to apply these tools to a current crisis. Hence, in this paper,
we proposed a Bayesian sequential estimation and forecasting algorithm that, based on the
information that authorities provide on a daily basis, that is able to estimate the state of the
epidemic and the parameters of the underlying model, as well as to forecast the evolution of the
epidemiological curve. We developed an efficient implementation specifically tailored to the
stochastic SIR (susceptible/infected/recovered) model of pandemic evolution. The proposed
algorithm is validated using synthetic data simulating two epidemic scenarios, and on real data
acquired during the recent COVID-19 outbreak both in the Lombardy region of Italy and in the
USA. The model “switches” mentioned generally reflect changes in policy, specifically a
“lockdown”. Results (see Figure 10) show that the mean absolute percentage error computed
after the lockdown is on average below 5% when the forecast is at 7 days, and approximately
10% when the forecast horizon is 14 days. Moreover, the described Bayesian framework
outperforms curve-fitting approaches that use deterministic epidemiological models,
particularly when a clear change of model parameters occur, e.g., a decrease of the infection
rate following the lockdown. Finally, accurate and timely data collection, especially on
recovered individuals, hospitalizations, intensive care unit admissions, and intubations, is
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essential for reliable model based decisions. There exists an enormous amount of very recent
literature related to the forecast of COVID-19 pandemic evolution, and the analysis of this
literature makes clear the effectiveness of model-based approaches, over less structured data-
centric methodologies. In this respect, one lesson learned by the present study is that accurate
epidemic modeling requires accurate estimation of time-varying key parameters, such as the
infection rate “beta” and recovery rate “gamma” (the celebrated RO parameter — that which is
exponentiated by time to determine the pandemic’s evolution — is beta divided by gamma).
This is obviously true in the presence of abrupt changes of the underlying physical situation
(e.g. adoption of drastic countermeasures) but, more interestingly, it is by no means limited to
these extreme situations. One consequence is that, once the epidemic is under control, small
variations in the estimated beta may be used as a sensible proxy for incipient detection of
possible pandemic recurrence.
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Figure 11: Left is an example trajectory and ML-PMHT's tracks. On the right we show the benefits of data

9.

fusion, comparing the joint ML-PMHT to one that works individually on the 2 FPAs.

“ML-PMH Tracking in 3 Dimensions Using Cluttered Measurements From Multiple 2-
Dimensional Sensors.” This paper, by Z. Sutton, P. Willett, T. Fair and Y. Bar-Shalom
extends the maximum likelihood probabilistic multi-hypothesis tracker (ML-PMHT) to track
targets in a 3-dimensional ‘“global” space with observations provided by multiple 2-
dimensional sensors placed throughout the global space. ML-PMHT is a tracking method
whose flexibility and scalability derive from relinquishing the assumption that each target emits
at most one “hit” per scan of the sensor. It is a maximum likelihood method that essentially
reduces to an optimization problem—recursively maximizing a likelihood function that is
simple to evaluate given a batch of observations. Unlike maximum a posteriori or MMSE
trackers, this likelihood maximization tracker requires neither prior knowledge about target
motion nor measurement association, making it conceptually easy to work with. Since the
observation model is nonlinear, the likelihood maximization is done via hill climbing. For this
purpose, we also address the issue of “hill finding”. Due to the presence of clutter in the
measurement model, the likelihood is a multi-modal function of the parameter space. That is,
there are multiple hills in the likelihood function and it is of great advantage to the tracker to
initialize the hill climber close to the right hill—the one whose peak is the global maximum. In
this work, we present a data-driven method of initializing the hill climber based on the received
observations. Figure 11 shows the improvement possible using our ML-PMHT approach; the
paper also shows similar comparisons against other tracking/fusion approaches.
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Figure 12: Left shows the operational characteristic (risk R versus decision delay A) of the MAST quickest
detection test, compared to the benchmark Page’s test. Three scenarios are considered, as described in the
main text. In scenario 0, Page’s test is optimal. MAST outperforms Page’s test in scenarios 1 and 2, in which the
sequences {Jo,n} and {u1,n} are time-varying. Scenario 2, in particular, mimics the actual behavior of the
sequences, as observed in COVID-19 pandemic data. MAST decision statistic computed for 10 US states and
used to detect the onset of the COVID-19 second wave. The dashed horizontal lines represent the smallest and
largest thresholds corresponding to R = 10, for the ensemble of the ten states. Curves are prolonged beyond

10.

Growth Rate

threshold crossing for clarity.

“Quickest Detection of COVID-19 Pandemic Onset.” This Signal Processing Letter, by P.
Braca, D. Gaglione, S. Marano, L. Millefiori, P. Willett and K. Pattipati, develops a novel
version of Page’s CUSUM quickest-detection test, designed to work in composite hypothesis
scenarios with time-varying data statistics, specifically an unknown change in mean. The
derived decision statistic can be cast in recursive form, particularly suited for on-line analysis.
When applied to COVID-19 data, the developed test allows to predict the explosion of the
infection on a large scale, by analyzing the publicly-available sequence of new positive
individuals per day from different countries. It is envisioned that the developed tool might help
to proactively supporting the political decision makers for the adoption of restrictive measures
to contain the COVID-19 pandemic explosion. Figure 12 shows the performance of MAST as

compared to the optimal (but somewhat fragile) Page test, and applies it to detect critical phases
of the pandemic in several US states.
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Figure 13: Left shows the growth rate of the hospitalized individuals (green solid line) — and its time-varying
mean obtained through a moving average that uses a window of 21 days (magenta solid line) — compared to
the growth rate of the daily new positives individuals (green area) — and its time-varying mean (magenta dotted
line) — in ltaly since February 21, 2020. On the right, we show the application of the MAST procedure on the
growth rate sequence of the daily new positive individuals and on the growth rate sequence of the hospitalized
individuals (dotted lines). On the left-side vertical axis we select a desired risk, e.g., R =.0001. Then, the blue
curves indicate the stopping day (about July 18 if the growth rate sequence of the daily new positive individuals
is used, and August 10 if the growth rate sequence of the hospitalized individuals is used) corresponding to the
selected value of risk. Finally, the red curves referred to the right-side vertical axis show the mean delay A
corresponding to the selected risk R (about 3 days if the growth rate sequence of the daily new positive
individuals is used, and below 5 days if the growth rate sequence of the hospitalized individuals is used). For
clarity, note that the right-side scale for the delay is split into two linear ranges, for a better rendering of the small-A
range.

11. “Decision Support for the Quickest Detection of Critical COVID-19 Phases.” This Nature
Communications paper, by P. Braca, D. Gaglione, S. Marano, L. Millefiori, P. Willett and K.
Pattipati, leverages the MAST to rapidly detect the passage from a controlled regime to a
critical one. The performance of MAST is investigated for the second pandemic wave, showing
an effective trade-off between average decision delay A and risk R, where R is inversely
proportional to the time required to declare the need to take unnecessary restrictive measures.
The risk is determined by the average occurrence rate of false alarms, which could have
unnecessary social and economic ramifications. Ideally, the decision mechanism should be as
quick as possible for a given level of risk. We find that all the countries share the same
behavior in terms of quickest detection, specifically the risk scales exponentially with the
delay, R ~ exp (—® A), where o depends on the specific nation. For a reasonably small risk
level, say, one possibility in ten thousand (i.e., unmotivated implementation of countermeasures
every 27 years, on the average), the proposed algorithm detects the onset of the critical regime
with delay between a few days to three weeks, much earlier than when the exponential growth
becomes evident. Strictly from the quickest-detection perspective adopted in this paper, it turns
out that countermeasures against the second epidemic wave have not always been taken in a
timely manner. The developed tool can be used to support decisions at different geographic
scales (regions, cities, local areas, etc.), levels of risk, instantiations of controlled/critical
regime, and is general enough to be applied to different pandemic time-series. Additional
analysis and applications of MAST are made available on a dedicated website. Figure 13 shows
the MAST procedure applied to real data, respectively the day-over-day ratio of new positive
reports and hospitalizations.
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Figure 14: The left plot supports our contention that the distribution of phrase lengths output from the LZ77
algorithm before and after the change (H and K, respectively); the H and statistics of the original (before LZ)
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data are HMMs with the same stationary distributions. On the right we see delay-to-detection and false-alarm
rate performances for suggested two post-processing schemes — both are quite good.

12. “Transient Detection with Unknown Statistics via Source Coding.” This ICASSP
submission, by A. Finelli, P. Willett, Y. Bar-Shalom and S. Marano, notes that quickest
detection problems are fairly common in surveillance applications, as framing surveillance
alerts as a change in an observation sequence’s statistics is often apt. It considers the scenario
where an appropriate statistical description of our observations is not available, neither before
nor after the transient to be detected. In this vein, the use of the database Lempel-Ziv, or LZ77,
procedure, is applied to detect this transient in the observation data. This algorithm is known to
produce code “phrase” lengths that are asymptotically distributed as Gaussian random
variables, which allows us to form a quickest detection problem around statistics of the coded
output. This work specifies procedures to perform source-agnostic transient detection using
Locally Optimal (LO) statistic to augment a Page CUSUM test. The work also shows an
application to acoustic data. Figure 14 justifies our claim of the phrase lengths following
Gaussian distributions, and offers performance plots for two possible approaches. Further
results (not yet submitted) show that an appropriate MAST procedure is even better. The
approach has been applied very successfully to US, Italian and world data.
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IMPACT/APPLICATIONS

Dynamic fusion of data from disparate and non-traditional sources may require design and analysis
novel methodologies.

1.

For reasons both of robustness and of bandwidth it may be advantageous to transmit data in an
unlabeled format. For example, we might consider a sensor network sending coarsely-
quantized observations of 1 or 2 bits: does it make sense to accompany such low-fidelity data
by far more bits explaining the identity of the sensor? Why not explore a situation in which the
identity is not transmitted, but instead inferred by the fusion engine? What is lost by doing so?
The impact and application are to the design of sensor networks.

We explore the extraction of low-observable dynamic “targets” from transactional data. Both
the targets (for example, a terrorist plot) and the observations (human activities noted) are
highly nontraditional. However, target-tracking and low-observable target-extraction (track-
before-detect, or TBD) techniques are to some extend mature as applied to classic applications
(like radar), and are therefore ripe to be applied in wider venues. We do so, and especially
make use of the emerging Bernoulli filter (MBF) paradigm for target extraction. The key in the
work reported is to marry the MBF with feature-aided tracking and knowledge-aided tracking,
the former of which here is identity (who purchased the chemical fertilizer?) and the latter prior
relationship data (noted surveillance of an Air Force facility by a relative of the former actor is
something to be wary of). The impact and application are to defense of the homeland and
projected forces from nontraditional attacks.

Since the beginning of 2020, the outbreak of a new strain of Coronavirus has caused hundreds
of thousands of deaths and put under heavy pressure the world’s most advanced healthcare
systems. In order to slow down the spread of the disease, known as COVID-19, and reduce the
stress on healthcare structures and intensive care units, many governments have taken drastic
and unprecedented measures, such as closure of schools, shops and entire industries, and
enforced drastic social distancing regulations, including local and national lockdowns. To
effectively address such pandemics in a systematic and informed manner in the future, it is of
fundamental importance to develop mathematical models and algorithms to predict the
evolution of the spread of the disease to support policy and decision making at the
governmental level. There is a strong literature describing the application of Bayesian
sequential and adaptive dynamic estimation to surveillance (tracking and prediction) of objects
such as missiles and ships; and in this paper, we transfer some of its key lessons to
epidemiology. We show that we can reliably estimate and forecast the evolution of the
infections from daily — and possibly uncertain — publicly available information provided by
authorities, e.g., daily numbers of infected and recovered individuals. The proposed method is
able to estimate infection and recovery parameters, and to track and predict the epidemiological
curve with good accuracy when applied to real data from Lombardy region in Italy, and from
the USA. The impact and application are to the health of the US (and Allied) civilian
populations, via guidance to local, State and National authorities.

If two radar sensors observe the same target their measurements can be combined to produce a
fused target-state estimate that is of higher quality than that from one radar alone. If there are
multiple targets whose information is shared, a necessary first step to fusion is to “assign” each
measurement from the first sensor to that at the other in such a way that both refer to the same
underlying object, a task generally accomplished by minimizing a global cost involving
distance. An assignment error occurs when the measurement originated by target 1 at the first
radar is wrongly associated to a measurement originated by target j (not 1) at the second radar.
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Naturally, when such an error occurs the result is fusion of information describing disparate
objects, resulting in degraded estimation performance and poor self-assessment in terms of
posterior uncertainty. Here we address the issue, and derive approximate assignment error
probability. The impact and application are to performance prediction for (and thence design
of) multi-sensor inference systems.

In principle, IFF (Identification Friend or Foe) and AIS (Automatic Identification System)
makes covert rendezvous at sea (smuggling, piracy, etc.) impossible; in practice, AIS can be
spoofed or simply disabled. Previous work showed a means whereby such deviations can be
spotted. Here we play the opponent’s side, and describe the least-detectable trajectory that that
the elusive vessel can take. The impact and application are to air defense and surveillance via a
game-theoretic perspective.

Talk delivered to AFRL researchers, December 6%, 2020: “Distributed Detection and Data
Fusion.” Abstract: The initial paper on the subject of distributed detection, by Tenney and
Sandell, showed that under a fixed fusion rule, for two sensors with one bit outputs, the optimal
Bayes sensor decision rule is a likelihood ratio test. It has been shown that the optimal fusion
rule for N sensors is a likelihood ratio test on the data received from the sensors. Reibman and
Nolte and Hoballah and Varshney have generalized the results to N sensors with optimal
fusion, again with the restriction of one bit sensor outputs; this has been relaxed later to multi-
bit quantizations. In this “primer” talk we explore a number of issues in distributed detection,
including some pathologies, the benefits of fusion, optimal design, structures for decision flow,
consensus, sensor biases, feedback, deliberate obfuscation (i.e., security) and censoring. We
also devote some time to distributed estimation (i.e., fusion for tracking): why is it difficult and
what seems to work best?

The ML-PMHT has recently emerged as a go-to means to extract very low observable (VLO)
target signatures. Previous implementations have worked with meaurements that correspond to
the tracking space: two-dimensional measurements for two-dimensional targets, and three for
three. Under this contract, the technique has been extended to fusion of data from non-
commensurate data streams. The complication is that ML-PMHT requires optimization of a
multimodal likelihood surface, and clever initialization is vital. The key insight here is to
trigger hill-climbing from closest approaches of lines-of-sight vectors. The performance is
excellent.

Many important surveillance problems can be posed as of detection of a change: of network
activity, of social and trust relationships, of acoustic signatures, of images, of target behavior,
etc. The issue is that optimal procedures require that the statistics before and after the changes
be modeled precisely; and that almost trivially limites the applicability of (say) a Page test. A
clever approach has recently emerged in the literature, but seems to be little appreciated: use a
Lempel-Ziv encoding of the data — whatever the data may be, and really the format matters
little — and, since the LZ theme is to look for the longest data patterns (“phrases”) that can be
seen in the past, to alarm upon a sudden decrease in the coding efficiency (i.e., shorter phrases).
Our contribution has been to address the automated alert of a change, and we have developed
several procedures for this. First, we leverage results that show asymptotic Gaussianity of the
data; and, second, we develop several novel approaches to detect unknown and unmodeled
changes in a stream of Gaussian data. The future impact of this technology, if properly
promulgated, is very wide: changes of any sort generally presage something of importance to
examine more closely (say, an incursion of a network or of a defended space) and this
technology delivers a key bell-ringer.
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9. Reported as #3 above, we have applied some of our tracking expertise to help authorities
predict the future trends of the COVID-19 pandemic, focusing specifically on the B and
v parameters whose ratio, if greater than unity, indicates an out-of-control situation. We have
gone further, and applied our signal processing experience with detection of changes to the
pandemic. The goal is to detect as quickly as possible any recrudescence of the pandemic so
that authorities can institute mitigation policies in a timely manner; and conversely to detect as
quickly as possible a return to a more benign state so that public patience can be maintained.
There are two key developments we have pioneered. The first is to reformulate the data stream
as a ratio of easily available observations such as hospitalizations or new cases; what is good
about this is the empirical (and asymptotic, according to theory) Gaussianity of such ratios. The
second is new quickest detection update statistic (MAST) that uses a GLR formulation to detect
an unknown change in Gaussian data. The potential impact for policy makers is obvious, and
our group has worked hard to offer this technology transfer (of ideas from dynamic estimation
and from signal processing) to a wide audience of readers and audiences.
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