

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Design: REV-03.18.2016.0 | Template: 02.05.2019

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

DEVSECOPS SYSTEM ASSURANCE
Geoffrey Sanders, Robert Ellison, Carol Woody

September 2021

Introduction

DevSecOps pipelines support organizational agility by automating rapid and frequent delivery of secure

infrastructure and software to production (Figure 1). Pipelines are complex systems that require tradeoff

decisions for each implementation, which commonly introduce risk to the pipeline and the product it

delivers. System assurance should be used to manage that risk and maintain confidence in the pipeline

and its product. This paper focuses on system assurance for DevSecOps software systems.

Figure 1: DevSecOps Pipeline (Infinity Diagram)

System assurance is an approach for justifying confidence that a system functions as intended and is

free of exploitable vulnerabilities intentionally or unintentionally designed or inserted as part of the

system during the lifecycle. While achieving zero vulnerabilities is normally impossible in practice,

assurance cases help risk management by reducing their probability and impact to acceptable levels

[NDIA 2008; NIST 2015].

Assurance cases convincingly justify to stakeholders that the implemented system meets critical system

assurance requirements. The assurance cases comprise a set of claims of critical system assurance prop-

erties, arguments that justify the claims (including assumptions and context), and evidence supporting

the arguments (Figure 2) [NDIA 2008; Ellison 2008].

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Figure 2: Assurance Case Framework [Ellison 2008]

Assurance case development results in system assurance requirements that flow to the system architec-

ture and product baseline. Systems engineering technical activities applied to those requirements gen-

erate assurance cases while also providing technical maturity evidence [NDIA 2008].

DevSecOps System Assurance

The Software Engineering Institute’s (SEI) DevSecOps platform independent model (PIM) provides a

formal approach and methodology for building a pipeline that can be tailored to an organization’s spe-

cific requirements while outlining the activities necessary to evolve it. Our work incorporates system

assurance to support assurance case development with pipeline data.

The SEI PIM accomplishes system assurance through several functions: software assurance, quality

assurance, security assurance, risk management, and audit (Figure 3).

 Software assurance: the level of confidence that software is free from vulnerabilities, either

intentionally designed into the software or accidentally inserted during its lifecycle, and that

the software functions in the intended manner [NIST 2021].

 Quality assurance: a strategic and systematic approach to monitoring the engineering tools,

practices, and processes used to ensure the quality of a product under development to assure

relevant stakeholders that the product under development will fulfill relevant stakeholder ex-

pectations and regulatory requirements. Expectations are ideally explicitly stated through ser-

vice level agreements, requirements, goals, etc. and not simply implied.

 Security assurance: the measure of confidence that the security features, practices, procedures,

and architecture of an information system accurately mediates and enforces security policy

[NIST 2021].

 Risk management: the program and supporting processes to manage information security risk

to organizational operations (including mission, functions, image, reputation), organizational

assets, individuals, other organizations, and the nation. It includes (1) establishing the context

for risk-related activities; (2) assessing risk; (3) responding to risk once determined; and (4)

monitoring risk over time [NIST 2021].

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

 Audit: the independent review and examination of records and activities to assess the adequacy

of system controls and ensure compliance with established policies and operational procedures

[NIST 2021].

Safety and reliability assurance are included in Figure 3 as additional system assurance areas to consider

in the future.

Quality assurance and security assurance share similarities but have different goals. Security assurance

focuses on failures or properties of the system, such as data integrity, confidentiality, and security de-

velopment practices. Quality assurance focuses on how development standards, practices, and methods

are applied to the system.

Figure 3: SEI PIM System Assurance

To fulfill these functions, a DevSecOps pipeline must provide a minimum set of system assurance fea-

tures: assurance case development, assurance case audit, system assurance risk measurement, and as-

surance case mapping.

 Assurance case development: the system shall be able to capture assurance cases that supply a

documented body of evidence that provides a convincing and valid argument that a specified

set of critical claims about a system’s properties are adequately justified for a given application

in a given DevSecOps environment.

 Assurance case audit: the system shall be able to support independent quality assurance re-

views, or audit of activities and work products, associated with assurance cases.

 System assurance risk measurement: the system shall be able to support system assurance risk

measurement.

 Assurance case mapping: the system shall be able to trace implementation elements to assur-

ance case claims.

 System assurance metrics: the system shall be able to create and track system assurance metrics.

Assurance cases are commonly constructed with Goal Structuring Notation (GSN). Using this notation,

claims are classified into subclaims that are supported by evidence while articulating the argumentation

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

strategies adopted for the claim, rationale for the approach, and context in which they are stated [Ellison

2014].

Example System Assurance Thread

Figure 4 illustrates an example thread to demonstrate system assurance with a DevSecOps pipeline. In

this thread, we discuss applying incremental threat modeling to each pipeline phase. Phases are repre-

sented by rectangles and control gates are represented by red diamonds [DoD 2021a].

Figure 4: DevSecOps Pipeline Phases [DoD 2021a]

Incremental threat modeling is an agile threat modeling process that assesses every story for new items,

such as components, processes, dataflows, or trust boundaries. If new items are introduced, the threat

model is extended to identify new threats and their countermeasures. This approach aligns well with

agile development where an application may already be in design or development before threat model-

ing begins [Michlin 2017; Goodwin 2020].

Control gates are manual or automated mandatory actions that determine artifact fitness for promotion

to the next pipeline phase. Actions primarily include cyber and operational test and evaluation (OT&E)

assessments. It is assumed that control gates established by new DevSecOps teams will require human

intervention. However, as the team matures through process improvement, repeatable actions should be

automated at control gates wherever possible. Automation is necessary to achieve high performing ac-

tivities such as continuous Authority to Operate (cATO).

Plan

Ideally, DevSecOps teams begin incremental threat modeling in the Plan phase by applying threat mod-

els to a comprehensive understanding of the system, architecture, and system-of-systems. Threat mod-

eling identifies threats, vulnerabilities, and countermeasures that require mitigation during the develop-

ment sprint. Incremental threat models assume a baseline threat model exists. This model is used to

compare against new sprint components.

Assurance case development should also begin in the Plan phase. Assurance claims are established,

evidence is identified, and case measurement is defined. Case measurement should continue through all

pipeline phases to understand how the sprint affects system assurance at each phase.

Develop

The Develop phase converts requirements into source code, infrastructure, processes, and other artifacts.

While these artifacts may directly support threat models and assurance cases, indirect items such as unit

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

tests are also necessary. Multiple team members will need to interpret threat models and assurance cases

for the sprint and implement mechanisms that log and collect measurement data [DoD 2021b].

DevSecOps pipeline maintainers may also need to work with developers to establish pipeline changes

required for the sprint. Ideally, the pipeline provides application programming interfaces (APIs) and

other services that support logging and measurement for each lifecycle iteration

This phase also determines metrics required for the control gate between the Develop and Build phases.

Threat models may use metrics such as CVSS (Common Vulnerability Scoring System) scores to meas-

ure risk, while assurance cases use confidence levels. Acceptable risk determines artifact control gate

transition from Develop to Build.

Build

Building and packaging applications, services, and microservices into artifacts occurs during the build

phase. Compiling, linting, documenting, dependency checking, and containerization are common ac-

tions that build and package artifacts. While some of these actions may be executed during the Develop

phase by developers with an integrated development environment (IDE), most are automated. SAST

(static application security test), build configuration control, and auditing are also performed in this

phase [DoD 2021b].

Data and metrics from Build phase activities feed threat model and assurance case risk measurement.

Example data include CVSS scores, assurance case confidence levels, software patches, and SAST

scans. Acceptable risk determines artifact control gate transition from Build to Test.

Test

Continuous, automated testing occurs during the Test phase. Multiple stages can be used during this

phase, such as development, system, and pre-production. Common activities for this phase are license

compliance checks, dynamic application security testing (DAST), interactive application security test-

ing (IAST), database testing, compliance scans, and system, performance, and regression testing. Man-

ual security testing, such as penetration testing, also occurs in this phase. Manual tests simulate cyberat-

tacks that help identify vulnerabilities, such as logic flaws, that easily escape automated tests [DoD

2021b].

Data and metrics from Test phase activities feed threat model and assurance case risk measurement.

Manual testing in this phase will likely generate information in file formats not directly consumable by

automation. Processes and procedures should account for manual formats and how they affect control

gates. Acceptable risk determines artifact control gate transition from Test to Release and Deliver.

Release and Deliver

Software artifacts are digitally signed and delivered to artifact repositories during the Release and De-

liver phase. Repositories may be centralized or distributed depending on mission needs. Multiple repos-

itories may also be implemented that map to Test phase stages. Common activities for this phase are

release packaging, artifact replication, operations acceptance, and configuration audit [DoD 2021b].

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Data and metrics from Release and Deliver phase activities feed threat model and assurance case risk

measurement. CVSS scores, acceptance criteria, audit results, and assurance confidence levels are ex-

ample data and metrics for this phase. Acceptable risk determines artifact control gate transition from

Release and Deliver to Deploy.

Deploy

Virtual machines and containers are deployed during the Deploy phase. Common activities for this

phase are infrastructure provisioning automation, post-deployment checkout, and systems and infra-

structure post-deployment security scanning [DoD 2021b].

Data and metrics from Deploy phase activities feed threat model and assurance case risk measurement.

CVSS scores, digital signatures, checksums, and audit results are example data and metrics for this

phase. Acceptable risk determines artifact control gate transition from Deploy to Operate.

Operate

System and application operations occur during the Operate phase. Activities in this phase include back-

ups, scaling, and load balancing. An operations dashboard provides visual situational awareness of sta-

tus, alerts, and actions [DoD 2021b].

Data and metrics from Operate phase activities feed threat model and assurance case risk measurement.

CVSS scores and various operational incident data that affect confidentiality, integrity, and availability

are monitored and measured in this phase. Operational feedback is recorded in the backlog for ongoing

development sprints and assurance case development.

Monitor

System, application, and pipeline operations information is collected and assessed during the Monitor

phase. Activities in this phase include log aggregation and analysis, continuous monitoring, alerting,

asset inventory, security monitoring, and system configuration monitoring [DoD 2021b].

Data and metrics from Monitor phase activities feed threat model and assurance case risk measurement

for systems and applications as they are developed and operate. Alerts, scans, and other operational data

are continuously measured to provide metrics for risk assessment and determination.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

References

[DoD 2021a]

United States Department of Defense. DoD DevSecOps Fundamentals Version 2.0. March 2021.

https://software.af.mil/wp-content/uploads/2021/05/DoD-Enterprise-DevSecOps-2.0-Fundamen-

tals.pdf.

[DoD 2021b]

United States Department of Defense. DoD DevSecOps Fundamentals Guidebook: DevSecOps Tools

and Activities Version 2.0, 2021, https://software.af.mil/wp-content/uploads/2021/05/DoD-Enterprise-

DevSecOps-2.0-Tools-and-Activities-Guidebook.pdf.

[Ellison 2008]

Ellison, Robert J., Goodenough, John, Weinstock, Charles, Woody, Carol. Survivability Assurance for

System of Systems. CMU/SEI-2008-TR-008. Software Engineering Institute, Carnegie Mellon Univer-

sity. 2008. https://resources.sei.cmu.edu/asset_files/TechnicalReport/2008_005_001_14978.pdf.

[Ellison 2014]

Ellison, Robert J. Assuring Software Reliability. CMU/SEI-2014-SR-008. Software Engineering Insti-

tute, Carnegie Mellon University. 2014. https://resources.sei.cmu.edu/asset_files/SpecialRe-

port/2014_003_001_301629.pdf.

[Goodwin 2020]

Goodwin, Mike. Real-World Threat Modelling. Sage. January 23, 2020. https://medium.com/sagefu-

turemakers/real-world-threat-modelling-fb14ef767c49.

[Michlin 2017]

Michlin, Irene. Incremental Threat Modeling. Presented at Open Web Application Security Project

(OWASP) AppSec Europe. May 2017.https://2017.appsec.eu/pre-

sos/CISO/Incremental%20Threat%20Modelling%20-%20Irene%20Michlin%20-

%20OWASP_AppSec-Eu_2017.pdf.

[NDIA 2008]

National Defense Industrial Association (NDIA) System Assurance Committee. Engineering for System

Assurance 1.0. NDIA. 2008. https://www.ndia.org/-/media/sites/ndia/meetings-and-events/divi-

sions/systems-engineering/sse-committee/systems-assurance-guidebook.ashx?la=en.

[NIST 2021]

National Institute of Standards and Technology. Computer Security Resource Center (CSRC) Glossary.

NIST.gov Website. September 22, 2021 [accessed]. https://csrc.nist.gov/glossary.

Contact Us

Softw are Engineering Institute

4500 Fifth Avenue, Pittsburgh, PA 15213-2612

https://www.ndia.org/-/media/sites/ndia/meetings-and-events/divisions/systems-engineering/sse-committee/systems-assurance-guidebook.ashx?la=en
https://www.ndia.org/-/media/sites/ndia/meetings-and-events/divisions/systems-engineering/sse-committee/systems-assurance-guidebook.ashx?la=en

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Phone : 412/268.5800 | 888.201.4479

Web: w ww.sei.cmu.edu

Email: info@sei.cmu.edu

Copyright 2021 Carnegie Mellon University.

This material is based upon w ork funded and supported by the Department of Defense under Contract No.

FA8702-15-D-0002 w ith Carnegie Mellon University for the operation of the Softw are Engineering Institute, a feder-

ally funded research and development center.

The view , opinions, and/or f indings contained in this material are those of the author(s) and should not be con-

strued as an off icial Government position, policy, or decision, unless designated by other documentation.

References herein to any specif ic commercial product, process, or service by trade name, trade mark, manufac-

turer, or otherw ise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Car-

negie Mellon University or its Softw are Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT

NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHA NTABILITY, EXCLUSIV ITY, OR

RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMA RK, OR

COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative w orks from this material for internal

use is granted, provided the copyright and “No Warranty” statements are included w ith all reproductions and deriv-

ative w orks.

External use:* This material may be reproduced in its entirety, w ithout modif ication, and freely distributed in w ritten

or electronic form w ithout requesting formal permission. Permission is required for any other external and/or com-

mercial use. Requests for permission should be directed to the Softw are Engineering Institute at permis-

sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon Univer-

sity.

DM21-0862

http://www.sei.cmu.edu/

