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Agenda

CMU and SEI Overview

National Agenda for Software Engineering

Foundational selected AI practices 

- Characterizing and detecting mismatch in ML-enabled systems

- Software architecture for ML-enabled systems

- Role of MLOps in continuous monitoring and evolution of ML-enabled systems

Misconceptions for AI systems

What can we do today?
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About me

Pittsburgh, PA

Istanbul, Turkey



5
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Carnegie Mellon University Software Engineering Institute

CMU – Software Engineering Institute

• Founded in 1984 as a DoD R&D Federally Funded 

Research and Development Center 

• Focused on software, cyber, and AI

• 730 employees

• HQ in Pittsburgh, PA; other offices in DC and CA

• ~$145M annual funding / ~$21M DoD (USD R&E) 
6.2 and 6.3 Line funding

CMU – Global Research University

• CMU challenges the curious and passionate to 

imagine and deliver work that matters

• 1,442 total faculty, 13,285 students, 130 research 

centers

• Ranked #17 U.S. university, #1 for Computer Science, 

#4 for College of Engineering1

• Main campus and research centers in Pittsburgh, PA; 
Silicon Valley, CA; and Doha, Qatar

1 1 2018 US News and World Report
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Solve customer problems 

guided by software 
architecture principles and 

practices

Engineering Intelligent Software Systems – 1 

A team of 26 engineers, researchers, data 

scientists

We develop and apply range of techniques and 

practices applicable at different points in the 

software development lifecycle.

• Domains of expertise include IT, C2, tactical, 

avionics, and health informatics

• Technology expertise includes IoT, big data, 

digital twin, cloud, and machine learning

Create 
engineering 
practices for 

software 
systems 

(including AI-
enabled)

Develop 
automation, 

including using 
AI for improving 

software 
engineering 

efficiency
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10+ courses in software architecture, 

technical debt, big data, available in a 

mix of public, on-site, and eLearning 

options

Educator’s Workshop every year to 

give back to the community. 

https://resources.sei.cmu.edu/news

-events/events/software-

engineering-workshop/

Engineering Intelligent Software Systems – 2 

The SEI  Pearson Addison-Wesley Series on Software Architecture

https://resources.sei.cmu.edu/news-events/events/software-engineering-workshop/
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An AI-enabled system is a software system with one or 

more AI component(s) that need to be developed, deployed, 

and sustained along with the other software and hardware 

elements of the system. 

• Disciplined software engineering and cybersecurity 

practices are essential starting points in adopting AI.

• The interaction between software, data, and AI 

components (e.g., ML models) creates unique challenges 

and requires software design and architecture approaches 

to be incorporated early and continuously.

AI-enabled systems are software systems!

A. Horneman, A. Mellinger, I. Ozkaya. 

AI Engineering: 11 Foundational Practices. 

Pittsburgh: Carnegie Mellon University Software 

Engineering Institute, 2019.

https://resources.sei.cmu.edu/asset _files/WhitePaper/2019_019_001 _634648.pdf
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SEI National Agenda for Software Engineering

Led by Anita Carlton, SEI SSD Division Director
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=741193

Developed in collaboration with industry, government 

and the software engineering research community, in 

close collaboration with a diverse advisory board:
• Deb Frinkle, Oak Ridge National Lab (chair)
• Sara Manning Dawson, Microsoft
• Yolanda Gil, Unv. of Southern California

• Vint Cert, Google
• Penny Compton, Lockheed Martin

• Tim McBride, Zonic Labs
• Michael McQuade, CMU VP for Research
• Nancy Pendleton, Boeing

• Tim Dare, Booz Allen
• William Scherlis, DARPA

https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=741193
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Emerging Vision of the Future of Software Engineering

Advanced development paradigms lead to efficiency & trust at scale.

 Humans leverage trusted AI as a workforce multiplier for all aspects of 
software creation & sustainment.

 Formal assurance arguments are combined & analyzed to assure & 

efficiently (re)assure continuously evolving software.

 Enhanced software composition mechanisms enable predictable 

construction of systems at increasingly large scale.

Advanced architectural paradigms enable the predictable use of new 

computational models. 

 Theories & techniques drawn from social sciences are used to design 

large-scale socio-technical systems, yielding more predictable outcomes.

 AI & non-AI components interact in predictable ways to achieve enhanced 
mission, societal, & business goals.

 New analysis & design methods facilitate the development of quantum-
enabled systems.

The current notion of software development will be replaced by one where the software pipeline consists of 

humans & AI as trustworthy collaborators that rapidly evolve systems based on programmer intent.
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Research Focus Areas
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AI4SE has become an umbrella term to refer to 

research that uses AI approaches to tackle 

software engineering challenges. 

• There is already progress in improving 

developer tools to eliminate subtle mistakes 

that later become hard to detect and 

propagate fixes for.

- e.g. Github Copilot by Microsoft, “AI pair 

programmer”

• Availability of appropriate data sets is a 

critical barrier

- e.g. Project Codenet by IBM 

(https://arxiv.org/abs/2105.12655) 

AI-Augmented Software Development

https://arxiv.org/abs/2105.12655
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Engineering AI-Enabled Software Systems

Advances in ML algorithms and the increasing 

availability of computational power are already 

resulting in huge investments in systems that 

aspire to exploit AI.

• Application of software engineering to AI 

problems 

• Reinvigoration of data architecting

• Development of the new discipline of AI 

engineering will drive progress 

Studies increasingly are all emphasizing the 

disconnect between ML model development 

and operations of systems in the field 

(Lwakatare 2019, Serban 2020, Giray 2021) 
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SEI Pillars of Work in AI Engineering

AI Engineering is a field of research and practice that combines the principles of systems 

engineering, software engineering, computer science, and human-centered design to 

create AI systems in accordance with human needs for mission outcomes. 

Human-centered AI

how AI systems are designed to align with humans, their behaviors, and their values

Scalable AI

how AI infrastructure, data, and models may be reused across problem domains and 

deployments.

Robust and Secure AI

how we develop and test resilient AI systems.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=735452
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Core AI

AI 
Engineering

AI for 
Applications 
and Mission

AI at CMU and AI at the SEI

CMU AI Stack*

New ideas 

and 
capabilities

New questions

and needs

Tools, implementations,

and practical problems

Data, requirements, 

failures, and vulnerabilities

New tools, infrastructure, 

and practices

AI at the SEI

* A. W. Moore, M. Hebert, S. Shaneman, "The AI stack: a blueprint for developing and deploying artificial intelligence," Proc. SPIE 10635, 

Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR IX, 106350C (4 May 

2018); https://doi.org/10.1117/12.2309483

https://doi.org/10.1117/12.2309483


16
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Predictable Design and Analysis of 
AI-Enabled Systems Rely on Software Engineering Practices

What are ML components’ 
architectural dependencies? What are 

driving patterns?

How to model and analyze  high-priority 
quality attributes of AI-enabled systems

How can different aspects of 
monitorability inform ML-enabled 

system evolution?

How can we model for changing anything 
changes everything principle?

How can the essential but separate AI-
enabled co-architecting and co-
versioning needs be managed?

What changes are induced with 
maintenance and evolution of ML models? 
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Maintenance and Evolution are 
part of ML Model Life Cycle

Source: Adapted from S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi, and T. Zimmermann.  Software Engineering 

for Machine Learning:  A  Case  Study.   In2 019  IEEE/ACM  41st  ICSE-SEIP.  IEEE, 2019

Captures logs, 
metrics, user 

feedback, ground 
truth, …

Analyzes monitoring information 
to determine if the model needs 
to adapt to data drift or problem 

drift
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Systems Perspective is Essential for AI Systems

Failing to elicit, design for, and sustain the vast amount of other software components that 

AI components need to interact with results in not architecting the systems appropriately 

and failed AI system development and deployment.

“Only a small fraction of 

real-world ML systems is 

composed of the ML code, 

as shown by the small 

black box in the middle. 

The required surrounding 

infrastructure is vast and 

complex.” [Sculley 2015]

Source: Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden Technical Debt in Machine 
Learning Systems. In Advances in neural information processing systems (pp. 2503-2511). 

http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
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Manage Architectural Dependencies of AI Components

Source: Adapted from “On   the   Process   for   Building   Software   with   ML Components” available at  https://ckaestne.medium.com/on-the-process-for-building-
software-with-ml-components-c54bdb86db24

Plan and design for 
three different types 
of components in ML 

systems

Largest  difference is 
the necessary 

reliance on 

monitoring to 
account for data-

dependent behavior 
of ML components. 

https://ckaestne.medium.com/on-the-process-for-building-software-with-ml-components-c54bdb86db24
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Characterizing and Detecting 

Mismatch in ML-Enabled Systems

Grace Lewis, Stephany Bellomo, Ipek Ozkaya
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Problem: Multiple Perspectives

ML-enabled systems typically involve three 

different and separate workflows

• Model training

• Model integration and testing

• Model operation

… performed by three different sets of 

stakeholders ...

• Data scientists / ML engineers

• Software engineers

• Operations staff

… with three different perspectives

Data Scientist Perspective

Software Engineer Perspective

Operations Perspective

Model Training Environment

Raw Data

Data Preparation

Model

Training

Model

Selection

Candidate

Models

Trained Model

Training

Data

Evaluation

Data

Untrained Model

Data

Collection

Data

Labeling

Data

Cleaning

Feature

Engineering

Repeat until model(s) satisfie

s

 performance criteria 

Development and Testing Environment

Integrate

Model into

ML-Enabled

System

Test ML-Enabled

System 

ML-

Enabled

System

Trained Model

Testing

Tools
Test Data

Repeat until all tests pass

Operational Environment

ML-Enabled System

Software

Component A

Software

Component B

Runtime

Monitoring

Tools

Operational

Data

Data Collection

Data

Processing

<<Software Component>>

ML Component

Trained Model

Sensors

Data Entry

Data Store

Data

Stream

Insight /

Prediction /

Inference

Grace A. Lewis, Stephany Bellomo, Ipek Ozkaya:

Characterizing and Detecting Mismatch in Machine-Learning-Enabled Systems. WAIN@ICSE 2021: 133-140

https://dblp.org/db/conf/icse-wain/icse-wain2021.html#LewisBO21
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Problem: Mismatch between Assumptions made by each 
Perspective

We define an ML mismatch as a 

problem that occurs in the 

development, deployment, and 

operation of an ML-enabled system 

due to incorrect assumptions 

made  about system elements by 

different stakeholders that results in 

a negative consequence. 

We also posit that ML mismatch 

can be traced back to information 

that could have been shared 

between stakeholders that would 

have avoided the problem.
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Characterizing and Detecting ML 
Mismatch

Study replication package and paper pre-print available at 
https://github.com/GALewis/ML-Mismatch

Conducted a set of practitioner 

interviews to identify 

• examples and consequences of 

mismatch

• information that should be shared 
between system stakeholders in 

order to avoid that mismatch

Coded missing information into 7 

categories and 34 system attributes

• Validated via a surveyOperational Environment mismatches 
include poor system performance 
because computing resources for 

model testing different from 
operational computing resources

Test cases & data mismatches 
make up the majority of the 

observed challenges 
(monitoring, component 

dependencies)

https://github.com/GALewis/ML-Mismatch
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Descriptors for ML System Elements

Details of mismatch examples and attributes extracted from literature review were used to 

develop set of seven machine-readable descriptors (JSON Schema) that define system 

attributes that need to be specified in order to avoid mismatch

• Task and Purpose

• Raw Data

• Training Data

• Trained Model

• Development Environment

• Production Environment*

• Production Data*

* Operational Environment and Operational Data were 
renamed Production Environment and Production 

Data, respectively, based on survey feedback
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Example: 
Trained Model 
Descriptor

Bold borders indicate top attributes from interviews and surveys. Dashed borders indicate attributes added from the literatur e review and gap analysis.
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Failures Related to Architecturally Significant Requirements

Key AI-specific concerns, when not 

approached with a systems perspective, 

create unanticipated system-level 

failures, e.g. 

• data-dependent behavior

• shared resource dependencies

• misaligned runtime environments for 

AI components

L. Pons, I. Ozkaya. Priority Quality Attributes for Engineering AI-enabled Systems. Association for the 

Advancement of Artificial Intelligence AI in Public Sector Workshop. Washington, DC, November 7-9, 2019.

https://arxiv.org/abs/1911.02912
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Quality attributes drive software architectures

Architecture permits or precludes the achievement of a system’s desired quality attributes. 

The strategies for achieving these requirements entail thinking about the structure and 

behavior of the system.

If you desire… At a minimum, you need to …

high performance minimize the frequency and volume of inter-element 

communication

modifiability limit interactions between elements

security manage and protect inter-element communication

availability determine the properties and behaviors that elements must have 

and the mechanisms you will employ to address fault detection, 

fault prevention, and fault recovery

extensibility limit interactions between elements, isolate data types, and 

abstract common services
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Recommendation: Understand High-Priority Quality Attributes 
of ML-Enabled Systems

ML-related software design 

challenge

You will 

desire…
At a minimum, you need to …

ML components need to be 

designed such that attributes can 

be observed

monitorability • include monitoring components to observe and manage data changes 

over time

• identify attributes to expose

AI introduces new attack 

surfaces.

security • decouple model changes from the rest of the system

• build in capabilities to modify the systems to ease deploying retrained 

models

Tight coupling of data and 

models may limit implementing 

privacy protections.

privacy • decouple data stores and their interactions with other systems as much 

as possible

• isolate changes and updates to as few locations as possible

Software update cycles may not 

adequately address data 

changes and their impact.

data centricity • ensure that uncertainty, availability, and scalability of data are key 

architecture drivers for system design

Output of AI components is not 

human interpretable.

explainability • decouple model changes from changes to the rest of the system 

• introduce observability mechanisms into the system

Rate of change that impacts 

software and AI components can 

vary significantly.

sustainability • express rate of change as an architectural concern

• build in monitoring components for both the system and the AI 

components
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Monitorability

AI components may degrade at a different rate 

than the rest of the system components.

Monitoring changes in data and its impact to the 

rest of the system adds levels of complexity for 

both AI components and and other system 

components:

• Components that are responsible for 

detecting, e.g. ML model performance 

degradation, need to be clearly identified and 

designed

• Components that incorporate user feedback 

for ground truth need to be included

• Other system monitoring components may 

need to be adjusted 
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Recommendation: Decouple Different Aspects of 
Monitorability

Understand what different monitoring techniques will be needed for data quality vs. model 

quality vs. software quality vs. service quality

Explore relationship between monitorability to self-adaptation in ML systems*

• of ML — ML models self-adapt to system changes (one of the goals of MLOps)

• for ML — ML system adapts to changes that affect quality of service (QoS)

• by ML — system uses ML techniques to adapt (some of this research is already 

happening in the self-adaptive systems community)

Understand how architectural elements that enable monitorability could also provide 

information to handle the inherent uncertainty of ML systems

* H. Muccini and K. Vaidhyanathan. Software Architecture for ML-based Systems:  What  Exists  and  What  Lies  Ahead.  In 1st  Int.  
Workshop  on Software Engineering - AI Engineering (WAIN). IEEE, 2021. 



31
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Role of MLOps in Continuous 

Monitoring and Evolution of ML-

Enabled Systems

Rachel Brower Sinning, Jeff Hansen, Jeff Hammet, 

Jeff Charabaszcs
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MLOps State-of-the-Practice

MLOps automates model deployment, but creates a model retraining problem

• Assumes new training data should be treated the same as the initial training data

• Assumes model parameters are constant and should be the same as those identified on 

the initial training data

• Has no information to understand why the model performed as it did

• Has no informed procedure of how to combine the production and development data set 

into a new training data set

Diagram Source: MS Azure MLOps Pipeline

Problem: 

Automated model 

retraining leverages 

only data changes 

— refitting of the 

production model to 

the new data 
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Model Retraining Process Performed by a Data Scientist 

The experimental 

analyses performed as 

part of ML model 

retraining process are not 

replicated in automated 

MLOps pipelines

6. Test and 
evaluate 
model(s)
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Graphic modeled after David Bianco’s “Pyramid of Pain”

1. Analyze development and production data sets

2. Audit model performance.      
• Did the data perform equally well?

• What was the cost of what was missed?
• Did new clusters emerge?
• How do the data sets compare in model 

feature space? In data space?

3. Select data for retraining

4. Feature engineering

5. Build model(s)
a. Choose architecture
b. Fit parameters
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Solution: Integrate the analyses performed by the Data 
Scientist into the MLOps pipeline

Model Operational Analysis should perform the first three steps of the model retraining process

1. [Analyze] Statistical analysis between the production data and development data

2. [Audit] Audit model performance

3. [Select] Integration of development and production data into a new development data set, with 

weights

Model Operational Analysis

Diagram Adapted from MS Azure MLOps Pipeline

Goal is to perform informed retraining and reduce the time 

spent by data scientists in selecting new training data
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Architecture Allows Improving Predictability of Data and 
Other System Component Interactions

Take your data seriously to prevent it 

from consuming your project – data 

pipelines will require architecting.

Localize uncertainity. 

Incorporate user experience and 

interaction to constantly validate and 

evolve models and architecture. 

Treat ethics as both a software design 

consideration and a policy concern. 

I. Ozkaya. Ethics Is a Software Design 
Concern. IEEE Softw. 36(3): 4-8 (2019).

A. Horneman, A. Mellinger, I. Ozkaya. 
AI Engineering: 11 Foundational Practices, 
Sept. 2019

https://dblp.org/db/journals/software/software36.html#Ozkaya19b
https://resources.sei.cmu.edu/asset _files/WhitePaper/2019_019_001 _634648.pdf
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AI Exacerbates Existing SE Challenges

Specifying systems:

• The level of specification of AI systems depends on the level of 

uncertainty in the discovery process. Sometimes uncertainty is 
low to none. 

Avoiding hidden dependencies:

• Understanding data and shared resource dependencies is not 
only an AI system problem, but also a software system problem.

Relying too much on frameworks and tools: 

• Existing frameworks, model libraries, tools, and deployment 
environments help, but do not replace designing for scalability, 
observability, and sustainability of AI systems.

Ipek Ozkaya. What Is Really Different in Engineering AI-Enabled Systems? IEEE Softw. 37(4): 3-6 (2020).

https://dblp.org/db/journals/software/software37.html#Ozkaya20c
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