
1
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Softw are Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

What is Really Different in
Engineering AI-Enabled
Systems?

Dr. Ipek Ozkaya

Technical Director, Engineering Intelligent Software Systems

Software Solutions Division

Carnegie Mellon University Software Engineering Institute

ozkaya@sei.cmu.edu

2
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other
documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM21-1048

3
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Agenda

CMU and SEI Overview

National Agenda for Software Engineering

Foundational selected AI practices

- Characterizing and detecting mismatch in ML-enabled systems

- Software architecture for ML-enabled systems

- Role of MLOps in continuous monitoring and evolution of ML-enabled systems

Misconceptions for AI systems

What can we do today?

4
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

About me

Pittsburgh, PA

Istanbul, Turkey

5
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Carnegie Mellon University Software Engineering Institute

CMU – Software Engineering Institute

• Founded in 1984 as a DoD R&D Federally Funded

Research and Development Center

• Focused on software, cyber, and AI

• 730 employees

• HQ in Pittsburgh, PA; other offices in DC and CA

• ~$145M annual funding / ~$21M DoD (USD R&E)
6.2 and 6.3 Line funding

CMU – Global Research University

• CMU challenges the curious and passionate to

imagine and deliver work that matters

• 1,442 total faculty, 13,285 students, 130 research

centers

• Ranked #17 U.S. university, #1 for Computer Science,

#4 for College of Engineering1

• Main campus and research centers in Pittsburgh, PA;
Silicon Valley, CA; and Doha, Qatar

1 1 2018 US News and World Report

6
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Solve customer problems

guided by software
architecture principles and

practices

Engineering Intelligent Software Systems – 1

A team of 26 engineers, researchers, data

scientists

We develop and apply range of techniques and

practices applicable at different points in the

software development lifecycle.

• Domains of expertise include IT, C2, tactical,

avionics, and health informatics

• Technology expertise includes IoT, big data,

digital twin, cloud, and machine learning

Create
engineering
practices for

software
systems

(including AI-
enabled)

Develop
automation,

including using
AI for improving

software
engineering

efficiency

7
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

10+ courses in software architecture,

technical debt, big data, available in a

mix of public, on-site, and eLearning

options

Educator’s Workshop every year to

give back to the community.

https://resources.sei.cmu.edu/news

-events/events/software-

engineering-workshop/

Engineering Intelligent Software Systems – 2

The SEI Pearson Addison-Wesley Series on Software Architecture

https://resources.sei.cmu.edu/news-events/events/software-engineering-workshop/

8
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

An AI-enabled system is a software system with one or

more AI component(s) that need to be developed, deployed,

and sustained along with the other software and hardware

elements of the system.

• Disciplined software engineering and cybersecurity

practices are essential starting points in adopting AI.

• The interaction between software, data, and AI

components (e.g., ML models) creates unique challenges

and requires software design and architecture approaches

to be incorporated early and continuously.

AI-enabled systems are software systems!

A. Horneman, A. Mellinger, I. Ozkaya.

AI Engineering: 11 Foundational Practices.

Pittsburgh: Carnegie Mellon University Software

Engineering Institute, 2019.

https://resources.sei.cmu.edu/asset _files/WhitePaper/2019_019_001 _634648.pdf

9
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

SEI National Agenda for Software Engineering

Led by Anita Carlton, SEI SSD Division Director
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=741193

Developed in collaboration with industry, government

and the software engineering research community, in

close collaboration with a diverse advisory board:
• Deb Frinkle, Oak Ridge National Lab (chair)
• Sara Manning Dawson, Microsoft
• Yolanda Gil, Unv. of Southern California

• Vint Cert, Google
• Penny Compton, Lockheed Martin

• Tim McBride, Zonic Labs
• Michael McQuade, CMU VP for Research
• Nancy Pendleton, Boeing

• Tim Dare, Booz Allen
• William Scherlis, DARPA

https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=741193

10
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Emerging Vision of the Future of Software Engineering

Advanced development paradigms lead to efficiency & trust at scale.

 Humans leverage trusted AI as a workforce multiplier for all aspects of
software creation & sustainment.

 Formal assurance arguments are combined & analyzed to assure &

efficiently (re)assure continuously evolving software.

 Enhanced software composition mechanisms enable predictable

construction of systems at increasingly large scale.

Advanced architectural paradigms enable the predictable use of new

computational models.

 Theories & techniques drawn from social sciences are used to design

large-scale socio-technical systems, yielding more predictable outcomes.

 AI & non-AI components interact in predictable ways to achieve enhanced
mission, societal, & business goals.

 New analysis & design methods facilitate the development of quantum-
enabled systems.

The current notion of software development will be replaced by one where the software pipeline consists of

humans & AI as trustworthy collaborators that rapidly evolve systems based on programmer intent.

11
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Research Focus Areas

12
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

AI4SE has become an umbrella term to refer to

research that uses AI approaches to tackle

software engineering challenges.

• There is already progress in improving

developer tools to eliminate subtle mistakes

that later become hard to detect and

propagate fixes for.

- e.g. Github Copilot by Microsoft, “AI pair

programmer”

• Availability of appropriate data sets is a

critical barrier

- e.g. Project Codenet by IBM

(https://arxiv.org/abs/2105.12655)

AI-Augmented Software Development

https://arxiv.org/abs/2105.12655

13
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Engineering AI-Enabled Software Systems

Advances in ML algorithms and the increasing

availability of computational power are already

resulting in huge investments in systems that

aspire to exploit AI.

• Application of software engineering to AI

problems

• Reinvigoration of data architecting

• Development of the new discipline of AI

engineering will drive progress

Studies increasingly are all emphasizing the

disconnect between ML model development

and operations of systems in the field

(Lwakatare 2019, Serban 2020, Giray 2021)

14
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

SEI Pillars of Work in AI Engineering

AI Engineering is a field of research and practice that combines the principles of systems

engineering, software engineering, computer science, and human-centered design to

create AI systems in accordance with human needs for mission outcomes.

Human-centered AI

how AI systems are designed to align with humans, their behaviors, and their values

Scalable AI

how AI infrastructure, data, and models may be reused across problem domains and

deployments.

Robust and Secure AI

how we develop and test resilient AI systems.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=735452

15
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Core AI

AI
Engineering

AI for
Applications
and Mission

AI at CMU and AI at the SEI

CMU AI Stack*

New ideas

and
capabilities

New questions

and needs

Tools, implementations,

and practical problems

Data, requirements,

failures, and vulnerabilities

New tools, infrastructure,

and practices

AI at the SEI

* A. W. Moore, M. Hebert, S. Shaneman, "The AI stack: a blueprint for developing and deploying artificial intelligence," Proc. SPIE 10635,

Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR IX, 106350C (4 May

2018); https://doi.org/10.1117/12.2309483

https://doi.org/10.1117/12.2309483

16
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Predictable Design and Analysis of
AI-Enabled Systems Rely on Software Engineering Practices

What are ML components’
architectural dependencies? What are

driving patterns?

How to model and analyze high-priority
quality attributes of AI-enabled systems

How can different aspects of
monitorability inform ML-enabled

system evolution?

How can we model for changing anything
changes everything principle?

How can the essential but separate AI-
enabled co-architecting and co-
versioning needs be managed?

What changes are induced with
maintenance and evolution of ML models?

17
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Maintenance and Evolution are
part of ML Model Life Cycle

Source: Adapted from S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi, and T. Zimmermann. Software Engineering

for Machine Learning: A Case Study. In2 019 IEEE/ACM 41st ICSE-SEIP. IEEE, 2019

Captures logs,
metrics, user

feedback, ground
truth, …

Analyzes monitoring information
to determine if the model needs
to adapt to data drift or problem

drift

18
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Systems Perspective is Essential for AI Systems

Failing to elicit, design for, and sustain the vast amount of other software components that

AI components need to interact with results in not architecting the systems appropriately

and failed AI system development and deployment.

“Only a small fraction of

real-world ML systems is

composed of the ML code,

as shown by the small

black box in the middle.

The required surrounding

infrastructure is vast and

complex.” [Sculley 2015]

Source: Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden Technical Debt in Machine
Learning Systems. In Advances in neural information processing systems (pp. 2503-2511).

http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

19
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Manage Architectural Dependencies of AI Components

Source: Adapted from “On the Process for Building Software with ML Components” available at https://ckaestne.medium.com/on-the-process-for-building-
software-with-ml-components-c54bdb86db24

Plan and design for
three different types
of components in ML

systems

Largest difference is
the necessary

reliance on

monitoring to
account for data-

dependent behavior
of ML components.

https://ckaestne.medium.com/on-the-process-for-building-software-with-ml-components-c54bdb86db24

20
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Characterizing and Detecting

Mismatch in ML-Enabled Systems

Grace Lewis, Stephany Bellomo, Ipek Ozkaya

21
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Problem: Multiple Perspectives

ML-enabled systems typically involve three

different and separate workflows

• Model training

• Model integration and testing

• Model operation

… performed by three different sets of

stakeholders ...

• Data scientists / ML engineers

• Software engineers

• Operations staff

… with three different perspectives

Data Scientist Perspective

Software Engineer Perspective

Operations Perspective

Model Training Environment

Raw Data

Data Preparation

Model

Training

Model

Selection

Candidate

Models

Trained Model

Training

Data

Evaluation

Data

Untrained Model

Data

Collection

Data

Labeling

Data

Cleaning

Feature

Engineering

Repeat until model(s) satisfie

s

 performance criteria

Development and Testing Environment

Integrate

Model into

ML-Enabled

System

Test ML-Enabled

System

ML-

Enabled

System

Trained Model

Testing

Tools
Test Data

Repeat until all tests pass

Operational Environment

ML-Enabled System

Software

Component A

Software

Component B

Runtime

Monitoring

Tools

Operational

Data

Data Collection

Data

Processing

<<Software Component>>

ML Component

Trained Model

Sensors

Data Entry

Data Store

Data

Stream

Insight /

Prediction /

Inference

Grace A. Lewis, Stephany Bellomo, Ipek Ozkaya:

Characterizing and Detecting Mismatch in Machine-Learning-Enabled Systems. WAIN@ICSE 2021: 133-140

https://dblp.org/db/conf/icse-wain/icse-wain2021.html#LewisBO21

22
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Problem: Mismatch between Assumptions made by each
Perspective

We define an ML mismatch as a

problem that occurs in the

development, deployment, and

operation of an ML-enabled system

due to incorrect assumptions

made about system elements by

different stakeholders that results in

a negative consequence.

We also posit that ML mismatch

can be traced back to information

that could have been shared

between stakeholders that would

have avoided the problem.

23
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Characterizing and Detecting ML
Mismatch

Study replication package and paper pre-print available at
https://github.com/GALewis/ML-Mismatch

Conducted a set of practitioner

interviews to identify

• examples and consequences of

mismatch

• information that should be shared
between system stakeholders in

order to avoid that mismatch

Coded missing information into 7

categories and 34 system attributes

• Validated via a surveyOperational Environment mismatches
include poor system performance
because computing resources for

model testing different from
operational computing resources

Test cases & data mismatches
make up the majority of the

observed challenges
(monitoring, component

dependencies)

https://github.com/GALewis/ML-Mismatch

24
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Descriptors for ML System Elements

Details of mismatch examples and attributes extracted from literature review were used to

develop set of seven machine-readable descriptors (JSON Schema) that define system

attributes that need to be specified in order to avoid mismatch

• Task and Purpose

• Raw Data

• Training Data

• Trained Model

• Development Environment

• Production Environment*

• Production Data*

* Operational Environment and Operational Data were
renamed Production Environment and Production

Data, respectively, based on survey feedback

25
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Example:
Trained Model
Descriptor

Bold borders indicate top attributes from interviews and surveys. Dashed borders indicate attributes added from the literatur e review and gap analysis.

26
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Failures Related to Architecturally Significant Requirements

Key AI-specific concerns, when not

approached with a systems perspective,

create unanticipated system-level

failures, e.g.

• data-dependent behavior

• shared resource dependencies

• misaligned runtime environments for

AI components

L. Pons, I. Ozkaya. Priority Quality Attributes for Engineering AI-enabled Systems. Association for the

Advancement of Artificial Intelligence AI in Public Sector Workshop. Washington, DC, November 7-9, 2019.

https://arxiv.org/abs/1911.02912

27
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Quality attributes drive software architectures

Architecture permits or precludes the achievement of a system’s desired quality attributes.

The strategies for achieving these requirements entail thinking about the structure and

behavior of the system.

If you desire… At a minimum, you need to …

high performance minimize the frequency and volume of inter-element

communication

modifiability limit interactions between elements

security manage and protect inter-element communication

availability determine the properties and behaviors that elements must have

and the mechanisms you will employ to address fault detection,

fault prevention, and fault recovery

extensibility limit interactions between elements, isolate data types, and

abstract common services

28
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Recommendation: Understand High-Priority Quality Attributes
of ML-Enabled Systems

ML-related software design

challenge

You will

desire…
At a minimum, you need to …

ML components need to be

designed such that attributes can

be observed

monitorability • include monitoring components to observe and manage data changes

over time

• identify attributes to expose

AI introduces new attack

surfaces.

security • decouple model changes from the rest of the system

• build in capabilities to modify the systems to ease deploying retrained

models

Tight coupling of data and

models may limit implementing

privacy protections.

privacy • decouple data stores and their interactions with other systems as much

as possible

• isolate changes and updates to as few locations as possible

Software update cycles may not

adequately address data

changes and their impact.

data centricity • ensure that uncertainty, availability, and scalability of data are key

architecture drivers for system design

Output of AI components is not

human interpretable.

explainability • decouple model changes from changes to the rest of the system

• introduce observability mechanisms into the system

Rate of change that impacts

software and AI components can

vary significantly.

sustainability • express rate of change as an architectural concern

• build in monitoring components for both the system and the AI

components

29
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Monitorability

AI components may degrade at a different rate

than the rest of the system components.

Monitoring changes in data and its impact to the

rest of the system adds levels of complexity for

both AI components and and other system

components:

• Components that are responsible for

detecting, e.g. ML model performance

degradation, need to be clearly identified and

designed

• Components that incorporate user feedback

for ground truth need to be included

• Other system monitoring components may

need to be adjusted

30
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Recommendation: Decouple Different Aspects of
Monitorability

Understand what different monitoring techniques will be needed for data quality vs. model

quality vs. software quality vs. service quality

Explore relationship between monitorability to self-adaptation in ML systems*

• of ML — ML models self-adapt to system changes (one of the goals of MLOps)

• for ML — ML system adapts to changes that affect quality of service (QoS)

• by ML — system uses ML techniques to adapt (some of this research is already

happening in the self-adaptive systems community)

Understand how architectural elements that enable monitorability could also provide

information to handle the inherent uncertainty of ML systems

* H. Muccini and K. Vaidhyanathan. Software Architecture for ML-based Systems: What Exists and What Lies Ahead. In 1st Int.
Workshop on Software Engineering - AI Engineering (WAIN). IEEE, 2021.

31
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Role of MLOps in Continuous

Monitoring and Evolution of ML-

Enabled Systems

Rachel Brower Sinning, Jeff Hansen, Jeff Hammet,

Jeff Charabaszcs

32
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

MLOps State-of-the-Practice

MLOps automates model deployment, but creates a model retraining problem

• Assumes new training data should be treated the same as the initial training data

• Assumes model parameters are constant and should be the same as those identified on

the initial training data

• Has no information to understand why the model performed as it did

• Has no informed procedure of how to combine the production and development data set

into a new training data set

Diagram Source: MS Azure MLOps Pipeline

Problem:

Automated model

retraining leverages

only data changes

— refitting of the

production model to

the new data

33
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Model Retraining Process Performed by a Data Scientist

The experimental

analyses performed as

part of ML model

retraining process are not

replicated in automated

MLOps pipelines

6. Test and
evaluate
model(s)

W
h
e

re
 d

a
ta

 s
c
ie

n
tis

ts

a
c
tu

a
lly

s
p

e
n
d

 th
e

ir tim
e

W
h
e

re
 d

a
ta

 s
c
ie

n
tis

ts

s
h

o
u

ld
s
p

e
n
d

 th
e

ir tim
e

Graphic modeled after David Bianco’s “Pyramid of Pain”

1. Analyze development and production data sets

2. Audit model performance.
• Did the data perform equally well?

• What was the cost of what was missed?
• Did new clusters emerge?
• How do the data sets compare in model

feature space? In data space?

3. Select data for retraining

4. Feature engineering

5. Build model(s)
a. Choose architecture
b. Fit parameters

34
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Solution: Integrate the analyses performed by the Data
Scientist into the MLOps pipeline

Model Operational Analysis should perform the first three steps of the model retraining process

1. [Analyze] Statistical analysis between the production data and development data

2. [Audit] Audit model performance

3. [Select] Integration of development and production data into a new development data set, with

weights

Model Operational Analysis

Diagram Adapted from MS Azure MLOps Pipeline

Goal is to perform informed retraining and reduce the time

spent by data scientists in selecting new training data

35
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Architecture Allows Improving Predictability of Data and
Other System Component Interactions

Take your data seriously to prevent it

from consuming your project – data

pipelines will require architecting.

Localize uncertainity.

Incorporate user experience and

interaction to constantly validate and

evolve models and architecture.

Treat ethics as both a software design

consideration and a policy concern.

I. Ozkaya. Ethics Is a Software Design
Concern. IEEE Softw. 36(3): 4-8 (2019).

A. Horneman, A. Mellinger, I. Ozkaya.
AI Engineering: 11 Foundational Practices,
Sept. 2019

https://dblp.org/db/journals/software/software36.html#Ozkaya19b
https://resources.sei.cmu.edu/asset _files/WhitePaper/2019_019_001 _634648.pdf

36
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

AI Exacerbates Existing SE Challenges

Specifying systems:

• The level of specification of AI systems depends on the level of

uncertainty in the discovery process. Sometimes uncertainty is
low to none.

Avoiding hidden dependencies:

• Understanding data and shared resource dependencies is not
only an AI system problem, but also a software system problem.

Relying too much on frameworks and tools:

• Existing frameworks, model libraries, tools, and deployment
environments help, but do not replace designing for scalability,
observability, and sustainability of AI systems.

Ipek Ozkaya. What Is Really Different in Engineering AI-Enabled Systems? IEEE Softw. 37(4): 3-6 (2020).

https://dblp.org/db/journals/software/software37.html#Ozkaya20c

37
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

References

L. E. Lwakatare, A. Raj, J. Bosch, H. H. Olsson, and I. Crnkovic. A Taxonomy of Software Engineering

Challenges for Machine Learning Systems: An Empirical Investigation. In International Conference on
Agile Software Development, pages 227–243. Springer, Cham, 2019.

A. Serban, K. van der Blom, H. Hoos, and J. Visser. Adoption and effects of software engineering best
practices in machine learning. In Proceedings of the ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM), 2020.

S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi, and T. Zimmermann.
Software Engineering for Machine Learning: A Case Study. In 2019 IEEE/ACM 41st International

Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pages 291–300.
IEEE, 2019.

G. Giray A software engineering perspective on engineering machine learning systems: State of the art

and challenges. J. Syst. Softw. 180: 111031 (2021).

A. Horneman, A. Mellinger, I. Ozkaya.
AI Engineering: 11 Foundational Practices. Pittsburgh: Carnegie Mellon University Software Engineering
Institute, 2019.

https://resources.sei.cmu.edu/asset _files/WhitePaper/2019_019_001 _634648.pdf

38
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

References

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden

Technical Debt in Machine Learning Systems. In Advances in neural information processing systems (pp.
2503-2511).

Grace A. Lewis, Stephany Bellomo, Ipek Ozkaya: Characterizing and Detecting Mismatch in Machine-
Learning-Enabled Systems. WAIN@ICSE 2021: 133-140

L. Pons, I. Ozkaya. Priority Quality Attributes for Engineering AI-enabled Systems. Association for the

Advancement of Artificial Intelligence AI in Public Sector Workshop. Washington, DC, November 7-9,
2019.

https://dblp.org/db/conf/icse-wain/icse-wain2021.html#LewisBO21
https://arxiv.org/abs/1911.02912

39
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Contact Information

Ipek Ozkaya

Technical Director

Engineering Intelligent Software Systems

Software Engineering Institute

Carnegie Mellon University

ozkaya@sei.cmu.edu

mailto:ozkaya@sei.cmu.edu

