
AFRL-RV-PS- 
TR-2021-  

AFRL-RV-PS- 
TR-2021-  

INTEGRATION OF CHIMERA GPS ANTI-SPOOFING 
METHODS WITH INERTIAL NAVIGATION 
SYSTEMS 

Mark L. Psiaki 

Kevin T. Crofton Department of Aerospace and Ocean Engineering 
Virginia Tech 
300 Turner Street NW, Suite 4200 
Blacksburg, VA  24061-0203 

31 May 2021 

Final Report 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. 

AIR FORCE RESEARCH LABORATORY 
Space Vehicles Directorate 
3550 Aberdeen Ave SE 
AIR FORCE MATERIEL COMMAND 
KIRTLAND AIR FORCE BASE, NM  87117-5776 



DTIC COPY 

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for  
any purpose other than Government procurement does not in any way obligate the U.S. 
Government. The fact that the Government formulated or supplied the drawings,  
specifications, or other data does not license the holder or any other person or corporation; 
or convey any rights or permission to manufacture, use, or sell any patented invention that  
may relate to them.

AFRL-RV-PS-TR-20  HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 

 //SIGNED//
_______________________________
Dr.
Program Manager/AFRL/RVB

//SIGNED//
________________________________

, Chief
AFRL  Division 

This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 

Approved for public release; distribution is unlimited.



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY)
31-05-2021

2. REPORT TYPE
Final Report 

3. DATES COVERED (From - To)
30 Aug 2019 – 31 May 2021 

4. TITLE AND SUBTITLE
Integration of CHIMERA GPS Anti-Spoofing Methods with Inertial Navigation Systems 

5a. CONTRACT NUMBER 
FA9453-19-1-0083 
5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 
C6601F 

6. AUTHOR(S)
Mark L. Psiaki 

5d. PROJECT NUMBER 
4846 
5e. TASK NUMBER 
EF133151 
5f. WORK UNIT NUMBER 
V1FQ 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Kevin T. Crofton Department of Aerospace and Ocean Engineering 
Virginia Tech 
300 Turner Street NW, Suite 4200 
Blacksburg, VA  24061-0203

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Research Laboratory 
Space Vehicles Directorate 
3550 Aberdeen Avenue SE 
Kirtland AFB, NM  87117-5776 

AFRL/RVBYS 

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

AFRL-RV-PS-TR-2021-0090 
12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Tightly-coupled INS/GPS navigation algorithms have been developed to use GPS data that have latency due to authentication using the 
CHIMERA system. Such an algorithm is needed to produce non-delayed navigation results that are guaranteed, via CHIMERA, not to have 
been spoofed. The developed algorithms are modified versions of the standard tightly-coupled INS/GPS method in which the INS data 
define a Kalman filter’s position, velocity, and attitude dynamics via the technique known as model replacement. The Kalman filter’s 
measurements are the GPS observables pseudorange and carrier Doppler shift. The CHIMERA authentication latency is handled by running 
multiple filters or partial filters. One filter uses only the authenticated data up to a past authentication epoch and INS data that run up to the 
present. One or more other filters process unauthenticated data in preparation for future use. Some filters consider the possibility that 
authentication times are staggered in hopes of improving performance. The methods have been evaluated using real data collected from a 
general-aviation aircraft and using simulations of what INS of varying quality would have output had they been taken on the same flight. 
Results for the fast CHIMERA channel, which entails latencies of only 2 seconds, have accuracies commensurate with zero-latency stand-
alone GPS regardless of the IMU quality, i.e., 2 m RMS position errors. Results for the slow CHIMERA channel are problematic. The slow 
channel entails latencies of 180 sec. For non-staggered slowchannel CHIMERA with a navigation-grade INS, RMS position error is 9.5 m, 
and peak position error is more than 20 m. Lower-grade INS produce much larger RMS position errors, on the order of 100 to 2400 m, 
when paired with slow-channel CHIMERA. Even the navigation-grade INS performance with slow CHIMERA is significantly worse than 
zero-latency stand-alone GPS. If three staggered CHIMERA authentication groups are used, then these results improve to 6 m RMS and 15 
m peak position error if using a navigation-grade IMU. The staggered CHIMERA results for tactical-grade and MEMSgrade IMUs improve 
by larger amounts, but they are still significantly worse than standalone, zero-latency GPS. 
15. SUBJECT TERMS
authentication, anti-spoofing, GPS/INS, Kalman filtering 
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON 
Dr. Joanna C. Hinks 

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified Unlimited 19b. TELEPHONE NUMBER (include area

code) 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. 239.18



This material is based on research sponsored by Air Force Research Laboratory under 
agreement number FA9453-1 -1- . The U.S. Government is authorized to reproduce and 
distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. 

The views and conclusions contained herein are those of the authors and should not be 
interpreted as necessarily representing the official policies or endorsements, either expressed or 
implied, of Air Force Research Laboratory or the U.S. Government. 

Approved for public release; distribution is unlimited.



Integration of CHIMERA GPS Anti-Spoofing Methods with Inertial Navigation 
Systems

Final Report for AFRL Grant No. FA9453-19-1-0083 

by Mark L. Psiaki, Principal Investigator 
Kevin T. Crofton Department of Aerospace and Ocean Engineering

Virginia Tech, Blacksburg, Virginia  24061-0203 

Report for period starting on Aug. 30, 2019 and ending on May 31, 2021 

Abstract
Tightly-coupled INS/GPS navigation algorithms have been developed to use GPS 

data that have latency due to authentication using the CHIMERA system.  Such an
algorithm is needed to produce non-delayed navigation results that are guaranteed, via 
CHIMERA, not to have been spoofed.  The developed algorithms are modified versions of 
the standard tightly-coupled INS/GPS method in which the INS data define a Kalman 
filter’s position, velocity, and attitude dynamics via the technique known as model 
replacement.  The Kalman filter’s measurements are the GPS observables pseudorange and 
carrier Doppler shift.  The CHIMERA authentication latency is handled by running 
multiple filters or partial filters.  One filter uses only the authenticated data up to a past 
authentication epoch and INS data that run up to the present.  One or more other filters 
process unauthenticated data in preparation for future use.  Some filters consider the 
possibility that authentication times are staggered in hopes of improving performance.  The 
methods have been evaluated using real data collected from a general-aviation aircraft and 
using simulations of what INS of varying quality would have output had they been taken 
on the same flight.  Results for the fast CHIMERA channel, which entails latencies of only 
2 seconds, have accuracies commensurate with zero-latency stand-alone GPS regardless of 
the IMU quality, i.e., 2 m RMS position errors.  Results for the slow CHIMERA channel 
are problematic.  The slow channel entails latencies of 180 sec.  For non-staggered slow-
channel CHIMERA with a navigation-grade INS, RMS position error is 9.5 m, and peak 
position error is more than 20 m.  Lower-grade INS produce much larger RMS position 
errors, on the order of 100 to 2400 m, when paired with slow-channel CHIMERA. Even 
the navigation-grade INS performance with slow CHIMERA is significantly worse than 
zero-latency stand-alone GPS.  If three staggered CHIMERA authentication groups are 
used, then these results improve to 6 m RMS and 15 m peak position error if using a 
navigation-grade IMU. The staggered CHIMERA results for tactical-grade and MEMS-
grade IMUs improve by larger amounts, but they are still significantly worse than stand-
alone, zero-latency GPS.

Work Accomplished During Grant Period
Three tasks were carried out under this grant.  The first was to acquire GPS/INS data 

for use in evaluating the algorithms and to develop a method of simulating different types 
of INS other than the one used for the real data.  The simulation effort involved the 
determination of a “truth” trajectory for the true aircraft, including an attitude trajectory, 
the differentiation of that trajectory to produce “truth” rate-gyro and accelerometer outputs, 
and the addition of various levels of white-noise, bias, and bias drift to the “truth” outputs 
in order to simulate varying INS qualities.

Approved for public release; distribution is unlimited.
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The second task was to develop and evaluate filtering methods for overcoming 
CHIMERA latency when all of the signals authenticate at the same time.  One basic 
algorithm has been developed.  It consists of two filters.  One the filters implements pure 
INS propagation in order to propagate from the most recent CHIMERA authentication 
epoch to the current time.  This propagation takes INS bias estimates into account.  The 
second filter performs a brute-force re-filtering operation that goes back and reprocesses 
all of the data from the next most recent authentication epoch to the newest one, this time 
using both the INS and the authenticated GPS data.  A slightly different strategy does 
effectively the same thing, except that the two filters run in parallel.  The full-data filter 
passes its authenticated estimates and covariance information to the INS-only filter in order 
to reset the latter filter at each authentication time – provided that the CHIMERA 
authentication is successful.

The third task was to develop and evaluate filtering methods that allow for staggering 
of CHIMERA authentication times.  Like the non-staggered case, there is one part of    
each method that performs pure INS propagation in order to propagate from the most 
recent CHIMERA authentication epoch to the current time.  Various other filters or partial 
filters run in parallel and process subsets of the GPS data in preparation for anticipated 
future authentication. 

Personnel
Two researchers were involved in this project: Michael Esswein, a Ph.D. student, and 

Mark Psiaki, a professor. Both were part of Virginia Tech’s Kevin T. Crofton Department 
of Aerospace and Ocean Engineering during the period when they worked on this project. 

Significant Results
Almost all of the results of this grant are presented in detail in Ref. 1. For details see 

that paper.  A preprint of it is attached to this report as Appendix A.  The results reported 
in that paper are briefly summarized below.  After that summary there is another section 
that gives a result which is not given in the paper. 

Optimal Filter Designs for INS/CHIMERA Navigation with Authentication Latency 
Three filters have been designed and evaluated, and they are reported in Ref. 1.  The 

first is a sort of brute-force filter that is suitable for use with CHIMERA when there is no 
staggering of authentication epochs, i.e., when all GPS signals are authenticated at the same 
time.  It is documented in Section II of Ref. 1.  It runs two tightly-coupled INS/GPS filters. 
One filter uses only INS data to propagate its attitude/position/velocity estimate from the 
most recent CHIMERA GPS authentication epoch time.  This propagation uses the 
standard technique known as INS model replacement.  The other filter also uses INS model 
replacement for its dynamic propagation, but it also processes measurement updates from 
the GPS pseudoranges and carrier Doppler shifts.  One version of the algorithm runs the 
INS-only filter in real-time from the most recent successful authentication.  It is initialized 
with the best estimates of the state based on all of the GPS and INS data up through the 
most recent authentication time.  The second filter reprocesses the INS and GPS data in an 
after-the-fact mode after the next authentication time.  It re-starts at the previous 
authentication time and runs up through the new authentication time.  Its outputs are then 
used to initialize the INS-only filter for the upcoming authentication interval.  A slightly 
modified version runs the second filter in parallel with the first one in order for it to be 
immediately ready to initialize the INS-only filter at the new authentication time.

Approved for public release; distribution is unlimited.
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The other two filters that have been designed and evaluated have been tailored to the 
case of CHIMERA authentication staggering.  They are described in Section V and 
Appendices A and B of Ref. 1.  Authentication staggering occurs when different subsets 
of the available GPS signals have different CHIMERA authentication epoch times.  Such 
an approach can ameliorate the accuracy degradation that is inherent in slow CHIMERA
authentication even when using a navigation-grade INS to compensate for the latency that
arises from the 180 sec interval between authentications.  Both of these algorithms use 
tightly-coupled INS/GPS techniques. 

One of the staggered-authentication algorithms is similar to the method discussed 
above when there is no staggering.  Its main difference lies in its need to use ( + 1) filters 
if there are separate authentication groups.  One filter uses only INS data from the most 
recent authentication epoch.  It will have been initialized at that epoch time based on the 
best estimate that uses all of the INS data up to that time and all of the GPS data that have 
been authenticated from all groups at authentication times up to and including that time.  A 
second filter will include additional GPS data: that from the subset of signals whose next 
authentication is the nearest in the future.  A third filter will use all of the data that the 
second filter uses plus additional GPS data from the subset of signals whose next 
authentication time is the second nearest in the future, etc.  The final filter will use all of 
the GPS data.  At each authentication time, the various filters pass state and covariance 
information from one to the other.  All except the first and last filter undergo a change of 
authentication signal sets whose data they will process.  The ( + 1) filters can be run in 
parallel.  Alternatively, the same calculations can be implemented using brute-force re-
filtering of past data that have been newly authenticated along with past data that had been 
previously authenticated.

The other staggered-authentication algorithm runs one complete Kalman filter and 
partial filters.  Its one complete Kalman filter is identical to the INS-only filter of the 
preceding algorithm.  The partial filters keep track of various subsets of additional 
information from the as-yet-unauthenticated GPS data.  When a new authentication time 
epoch is reached, the INS-only filter has its information fused with the partial filter whose 
data have been authenticated. That partial filter as then re-set to contain zero information 
and the algorithm continues to the next authentication epoch.   

The advantage of this second filter for the staggered case is that it reduces the 
computational expense relative to the other staggered-case filter. The computational cost 
reduction comes from the fact that all N of the partial filters process smaller numbers of 
measurements than do any of the N unauthenticated filters of the preceding method.  An 
assessment of the amount of computational cost savings has yet to be done. 

Both of the new filters for the staggered authentication case have been encoded and 
tested.  They both work well when processing the true and partially simulated INS/GPS 
data that have been considered in this project. 

Accuracy Results of Filters
Section III of Ref. 1 reports accuracy results for the case of no authentication 

staggering.  It reports results for the fast CHIMERA channel with 2 seconds between 
authentications and for the slow channel with 180 seconds between authentications. 
Section IV of Ref. 1 reports accuracy results for the slow CHIMERA channel with 
authentication staggering.  It assumes that the visible GPS signals are split into three 
roughly equal staggered authentication groups with even spacing between their 

Approved for public release; distribution is unlimited.
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authentication times.  Thus, roughly one third of the available GPS signals get 
authenticated every minute, but the data interval over which any one group gets 
authenticated stretches 180 sec into the past.

The fast-channel CHIMERA results are documented by the table in Fig. 3 of Ref. 1 
and by the error time history in Fig. 4.  RMS position errors are on the order of 2 m for all 
4 grades of IMU that have been considered.  The 4 considered IMUs are a navigation-grade 
device, two tactical-grade devices, and a MEMS-grade device.  

The slow-channel CHIMERA results without authentication staggering are 
documented by the table in Fig. 5 of Ref. 1 and by the error time history in Fig. 6.  An     
RMS error of 9.5 m and a peak error of about 20 m occurs when using slow 
CHIMERA authentication with a navigation-grade IMU.  If a tactical-grade IMU is 
used, the RMS error grows to between 100 and 340 m.  A MEMS-grade IMU yields an 
RMS position error of 2400 m.  Peak errors for the tactical-grade and MEMS-grade IMUs 
are commensurately larger.  

The slow-channel CHIMERA results with authentication staggering are documented 
by the table in Fig. 8 of Ref. 1 and by the error time history in Fig. 9.  An RMS error of 6.0 
m and a peak error of about 15 m occurs with a navigation-grade IMU.  The RMS error 
increases to 43.8 m with a tactical-grade IMU and to 173.9 m with a MEMS-grade IMU. 
Thus, authentication staggering improves performance, especially for a lower-grade IMUs. 

An Alternative Signal Processing Algorithm that uses Partial Re-Filtering
The foregoing algorithms are well designed for the cases that they consider. Several 

of them have unresolved challenges, however, if any of the CHIMERA authentications 
should fail.  If authentication fails but is expected to succeed in the future due to spoofing 
counter measures, then some of the filters, especially for the second staggered-case 
algorithm, will have to flush some of their information and start over from scratch.  This 
could be costly in terms of computational effort.  Therefore, another algorithm has been 
developed.  It is a partial re-filtering algorithm that is agnostic to the question of whether 
or not authentication times have been staggered and whether or not some GPS data never 
gets authenticated.  Its strategy is to go back in time whenever a new span of data gets 
authenticated and to perform the needed partial filtering operations that incorporate the 
new information into the filter state estimate, its covariance information, and the 
corresponding information for the smoothed process noise.  The new algorithm has been 
written-up in the form of the body of a technical note.  It is attached to this report as 
Appendix B.   

This new algorithm has a similar computational time advantage as the partial filters 
algorithm that has been discussed above for the staggered authentication case: It too 
processes only a reduced number of measurements for the staggered case and, therefore, 
requires fewer computations than a full brute-force re-filtering calculation would require. 

This alternative algorithm has not yet been encoded and tested.

Summary
This grant has supported efforts to develop algorithms that compensate for the latency 

of the CHIMERA authentication of GPS signals.  Various forms of tightly-coupled 
INS/GPS navigation Kalman filters have been developed and tested to achieve this goal. 
They all share the property of processing INS data and authenticated GPS data up to the 
time of the most recent CHIMERA authentication.  Going forward from that time, they 

Approved for public release; distribution is unlimited.
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process only the INS data in order to achieve a zero-latency solution with reduced 
uncertainty.  A number of different algorithms have been developed and tested.  One 
applies only to a CHIMERA authentication scheme in which all signals are authenticated 
together at the same time.  Other filters also apply to the case of staggered authentication, 
where different subsets of the GPS signals have different authentication times.  

The algorithms have been tested using real flight data and partially simulated flight 
data.  The fast CHIMERA authentication channel achieves good accuracy, on the order of 
2 m RMS in position for all types of IMUs.  The slow CHIMERA authentication channel 
leads to RMS errors on the order of 10 m and peak errors on the order of 20 m when using 
a navigation-grade IMU and when all signals are authenticated simultaneously. 
Performance deteriorates markedly for tactical-grade and MEMS-grade IMUs.  Staggering 
of the authentication times can improve the performance of the filters with slow-channel 
CHIMERA authentication, but the best such performance, the performance when using a 
navigation-grade IMU, still has RMS position errors on the order of 6 m and peak errors 
on the order of 15 m.
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Abstract

A tightly coupled GPS/IMU estimation algorithm is developed assuming that all received measurements 
must first be authenticated by CHIps MEssage Robust Authentication (CHIMERA). CHIMERA is designed to 
authenticate incoming GPS signals through two methods referred to as the fast and slow channels. This paper 
analyzes the accuracy of estimation algorithms for both of these channels when using an Inertial Measurement     
Unit (IMU) to compensate for authentication delay, and it considers the effects of different quality IMUs. This paper 
also introduces a concept of authentication staggering as a possible approach to improve location and attitude 
accuracy. The estimation algorithm is modified to account for authentication staggering and different possible 
estimation architectures are developed for this purpose. The results indicate that the fast channel produces         
typical GPS navigation accuracy for different quality IMUs while the slow channel has moderately degraded 
navigation accuracy even with a navigation-grade IMU and highly degraded accuracy with tactical- and MEMS-

grade IMUs. Staggering the authentication times of the GPS satellites can be used to improve navigation accuracy 
for the slow channel.

I. INTRODUCTION

One of the main current threats to resilient GPS Position, Navigation, and Timing (PNT) is the possibility of a

spoofing attack. There are a number of different anti-spoofing techniques that have been proposed in order to

mitigate this threat. One such technique is known as Navigation Message Authentication (NMA). NMA typically

use a public-key/private-key method within the GPS navigation message in order to authenticate the incoming

signal.1 A realization of an NMA technique for the L1C signal, proposed by Anderson et al.,2 is known as

Chips-Message Robust Authentication (CHIMERA). CHIMERA uses navigation message authentication along

with spreading code puncturing. In doing so, CHIMERA attempts to combat spoofing attacks by tying the signal

to its source using cryptographic methods.

The current design of CHIMERA can be described by the following operations. A user receives an incoming

signal. The user stores raw samples that have been output by the RF front-end Analog to Digital Converter (ADC)

A-1
Approved for public release; distribution is unlimited.

7



A-2

for the duration of an authentication interval. The user next authenticates an incoming digital signature using the 
users’ public key. If the signature is determined to be authentic, then the marker key, which can be obtained 
multiple ways, such as through the navigation message, is run through an algorithm to create cipher texts that 
derive marker chip values and their placements. The newly derived markers chips are correlated with all the stored 
samples. If the correlation succeeds, then the signal is deemed authentic by CHIMERA.

CHIMERA has two ”channels”, the slow channel and the fast channel. Channels are methods by which a user can 
authenticate the incoming signals. The slow channel assumes that the authentication processes is fully contained 
within the incoming GPS signals. Therefore, this method obtains the marker keys solely through the digital 
signature within the navigation message. Using the slow channel, a receiver can verify that the incoming signal 
is authentic every three minutes. The fast channel uses a trusted source that is external to the incoming signal in 
order to obtain new marker keys and the digital signature at higher data rates. This requires the receiver to have 
an independent broadcast communication link from this external source. This alternate method greatly decreases 
the time needed to authenticate because it does not require waiting for the navigation message to be decoded. 
The time for authentication can be on the order of seconds.

Authentication staggering is a concept that will play an important role in the latter part of this paper. This concept 
refers to having the digital signature, which lies within the navigation message of different GPS satellites, decoded 
at different times. This means that the authentication of GPS observables from different GPS satellites may occur 
at different times. Not every GPS satellite must have a different authentication time than the others. GPS satellites 
that have the same authentication time are considered to be part of the same authentication group.

For the purposes of analysis, some assumptions must be made about CHIMERA. For all simulations in this paper, 
the slow channel will take 3 minutes to authenticate while the fast channel will take 2 seconds to authenticate. For 
the cases that use staggering, all authentication groups will be evenly spaced from each other. For cases without 
authentication staggering, authentication occurs at the same time for all GPS signals.

This paper makes four contributions to the use of CHIMERA for authentication of GPS signals. The first is 
incorporation of an tightly coupled GPS/INS navigation filter to handle the authentication delays produced by 
CHIMERA. The second contribution is the implementation of authentication staggering with CHIMERA in order 
to improve navigation accuracy and the development of a brute-force navigation filter that uses IMU data and 
staggered, delayed CHIMERA authentications. Note that the abbreviations IMU and INS are used interchangeably 
in this paper, the latter being shorthand for Inertial Navigation System. The third contribution is a pair of alternate 
estimation architectures that can be used to improve computation speed in the staggered CHIMERA case relative 
to the brute-force approach. The fourth contribution is an initial evaluation of the performance of these algorithms 
using real and simulated data.

This paper presents its contributions to IMU-aided GPS navigation with CHIMERA authentication delays in four 
main sections followed by a conclusions section and appendices. Section II details the tightly coupled GPS/IMU 
navigation filter that is used to account for CHIMERA authentication delays. This section includes state and 
measurement models as well as the SRIF implementation that is used for the estimation algorithm. Section III 
discusses the results that are achieved when applying this algorithm to the fast and slow channel for different 
quality real and simulated IMUs. This section’s results are based on GPS data taken onboard an aircraft. Section IV 
details the concept of authentication staggering, develops a brute-force filter architecture for dealing with staggered 
authentication, and compares its results to the non-staggered results for the slow channel. Section V develops 
alternate architectures that can be used to process the staggered data differently than a brute-force approach. 
These alternate methods do not improve navigation accuracy, but, they may be used to improve computational 
speed. Section VI presents this paper’s conclusions. Appendix A gives the detailed equations of a staggered 
authentication filter that uses multiple filters for the different staggered groups of GPS data. Appendix B gives the 
detailed equations for an alternative staggered authentication filter that uses multiple partial filters to accomplish the 
same calculations.

Approved for public release; distribution is unlimited.
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II. TIGHTLY COUPLED GPS/IMU NAVIGATION FILTER THAT ACCOUNTS FOR CHIMERA DELAYS

A tightly coupled GPS/IMU navigation filter is an estimator where the attitude, position, and velocity components 
of the state are propagated by IMU model replacement and the filter’s measurements are the GPS observables. 
The state vector used by this estimator is,

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qIMU/ECEF

rECEF

vECEF

brg
bacc
cδr
c δ̇r
b̄rg
b̄acc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where qIMU/ECEF is a 4×1 vector for the quaternion that parameterizes the rotation from the Earth-Centered/Earth-

Fixed (ECEF) WGS-84 coordinate frame to the IMU body-fixed coordinate frame, rECEF is the 3× 1 position

of the IMU accelerometer in the ECEF frame, vECEF is the corresponding 3 × 1 velocity of the IMU in the

ECEF frame, brg & bacc are the 3 × 1 in-run stability bias vectors of the IMU’s rate gyro and accelerometer,

respectively, cδr is the scalar range-equivalent receiver clock offset, cδ̇r is the scalar range-rate-equivalent receiver

clock offset rate, and b̄rg & b̄acc are the 3×1 repeatability bias vectors of the IMU’s rate gyro and accelerometer,

respectively. This state vector has 24 elements.

A. State Propagation Model

The quaternion, position, and velocity state is propagated using IMU model replacement. This means that IMU

measurement models are used to define their dynamic propagation equations.

The quaternion dynamic propagation model is takes the form:

q̇IMU/ECEF =
1

2
Ω
[
ω̃rg − brg − b̄rg −A(qIMU/ECEF )ωearth − νrg

]
qIMU/ECEF (2)

where ω̃rg is the raw rate-gyro output vector,

Ω(ω) =

⎡
⎢⎢⎢⎣

0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

⎤
⎥⎥⎥⎦

the Earth’s rotation rate vector in ECEF coordinates is,

ωearth =

⎡
⎢⎣ 0
0
ωe

⎤
⎥⎦
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with ωe = 7.2921151467×10−5 rad/sec being the nominal Earth rotation rate, A(q) is the 3 × 3 orthonormal

rotation matrix associated with the quaternion q, and νrg is the rate-gyro angular random walk white noise.

The position and velocity dynamic propagation models consist of the following pair of coupled equations:

ṙECEF = vECEF (3)

v̇ECEF =[A(qIMU/ECEF )]
T (ãacc − bacc − b̄acc − νacc) + g(rECEF )− 2ωearth × vECEF

−ωearth × ωearth × rECEF (4)

where ãacc is the raw IMU accelerometer output and νacc is the accelerometer velocity random walk white noise.

The IMU bias models’ discrete-time dynamic propagations take the forms:

brg/acc(k+1) = e−
Δt

τ brg/acck +wrg/acck (5)

brg/acc(k+1) = brg/acck (6)

where τ is a Markov process time constant. Δt = tk+1 − tk is the discrete-time interval between the times tk
and tk+1 at which the in-run stability bias states brg/acck and brg/acc(k+1) apply, and wrg/acck is the discrete-time

white noise vector that drives the corresponding first-order Markov process. Note that the subscript ()rg/acc is

used here as short-hand to indicate that there is one such equation or quantity for the IMU rate gyro and another

for the IMU accelerometer.

The receiver clock discrete-time dynamic propagation drift model takes the following form:

[
cδr(k+1)

c δ̇r(k+1)

]
=

[
1 Δt
0 1

] [
cδrk
c δ̇rk

]
+

[
wclk

wdriftk

]
(7)

where wclk is the discrete-time scalar white noise component that drives clock offset random walk and wdriftk

is the discrete-time scalar white noise component that drives clock rate offset random walk.

A nonlinear discrete-time dynamic model for this system with process noise can then be written as:

xk+1 = fk(xk,wk,wk+1) (8)

where,

fk(xk,wk,wk+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qIMU/ECEF (k+1)

rECEF (k+1)

vECEF (k+1)

brg(k+1)

bacc(k+1)

cδr(k+1)

c δ̇r(k+1)

b̄rg(k+1)
b̄acc(k+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)
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where the vectors wk and wk+1 are white process noise vectors at samples k and k+1. They include discrete-

time approximations of the effects of the rate-gyro angular random walk continuous-time white noise νrg and the

accelerometer velocity random walk continuous-time white noise νacc. These continuous-time white noise vectors

are approximated as discrete-time white noise sequences where the value at a given sample instant is subtracted

from the corresponding IMU output at that sample time, and the resulting partially corrected IMU measurement

is deemed to apply for one half of a sample interval before and after the corresponding IMU sample time. That

is why the white noise vectors wk and wk+1 are both required for the dynamic propagation from time tk to time

tk+1 rather than just wk. Of course, the discrete-time white noise vector wk also contains the discrete-tme white

noise drivers of the IMU in-run stability bias drifts that are modeled in Eq. (5) and of the receiver clock and

clock rate drifts that are modeled in Eq. (7).

In order to determine the state at sample time tk+1, Eqs. (2-4) must be integrated from time tk to time tk+1. One

possible method to achieve this is to use implicit trapezoidal integration. The integration scheme for this method

is shown below,

xk+1 = xk +
1

2
Δt

[
ẋ(tk,xk) + ẋ(tk+1,xk+1)

]
(10)

where Δt is the sample interval.

It is implicit because xk+1 appears on both sides of the equation. To find the xk+1 that satisfies this equation,

Newton’s method is typically used. This method implies that the IMU measurements at tk and time tk+1 must

be known to propagate.

Three useful Jacobian first partial derivatives of the dynamics are defined as follows:

Fk =
∂fk

∂xk

∣∣∣∣
(x̂k,ŵk,w̄k+1)

Γk,k =
∂fk

∂wk

∣∣∣∣
(x̂k,ŵk,w̄k+1)

Γk,k+1 =
∂fk

∂wk+1

∣∣∣∣
(x̂k,ŵk,w̄k+1)

where fk is a nonlinear function defined in Eq. (9).

B. Measurement Model

The GPS observables that are used by the filter are pseudorange and Doppler shift. The model for the pseudorange

is,

P j =
√
(xj − x)2 + (yj − y)2 + (zj − z)2 + c(δr − δj) + cδjiono + cδjna + νjpseudo (11)

where x, y, and z are the components of the user position vector �rECEF and where xj , yj , and zj are the ECEF

position components of GPS satellite j at the broadcast time of the signal, but are rotated into the ECEF frame

that applies at the time of signal reception.

The Doppler shift can be approximated by numerically differentiating the Accumulated Delta Range (ADR) model,

where the ADR model takes a similar form to the pseudorange:

ADRj = λφj =
√
(xj − x)2 + (yj − y)2 + (zj − z)2 + c(δr − δj)− cδjiono + cδjna + νjadr (12)
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Then the Doppler shift, Dj , can be modeled approximately by,

−λDj
k ≈ ADRj

k,−2 − 8ADRj
k,−1 + 8ADRj

k,+1 −ADRj
k,+2

12ΔFD
(13)

where,

ADRj
k,l = ADRj{xk + [lΔFD/(1 + δ̇rk)]ẋk} (14)

is a time-perturbed version of the ADR using the time perturbation lΔFD in erroneous receiver clock time, which

translates into the time perturbation [lΔFD/(1 + δ̇rk)] in true time. The interval ΔFD is the finite difference

interval that is used for this 5-point finite-difference approximation of the ADR time rate of change.

The pseudorange and carrier Doppler shift measurement times do not necessarily correspond to the IMU sample

times. Typically they are determined at some time t̃k that lies between two IMU sample times: tk ≤ t̃k < tk+1.

Therefore, a partial dynamic propagation from IMU sample time tk to GPS measurement sample time t̃k is needed

as part of the measurement model.

The nonlinear measurement model vector function can then be written as:

hk(xk,wk,wk+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P 1

...

PN

−λD1

...

−λDN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

where N is the number of available GPS signals and where the presence of the process noise vectors wk and

wk+1 is required to accomplish the dynamic propagation from tk to t̃k.

This function is then used to define the nonlinear measurement model:

yk+1 = hk(xk,wk,wk+1) + νk+1 (16)

where νk+1 is the measurement noise vector. It is assumed to be a zero-mean Gaussian random vector with

covariance matrix R−1
νν(k+1) R

−T
νν(k+1). Note that ()−T refers to the inverse of the transpose of the matrix in question.

Three useful Jacobian first partial derivatives of the measurement model vector function are,

Hxk =
∂hk

∂xk

∣∣∣∣
(x̂k,ŵk,w̄k+1)

Hk,wk =
∂hk

∂wk

∣∣∣∣
(x̂k,ŵk,w̄k+1)

Hk,w(k+1) =
∂hk

∂wk+1

∣∣∣∣
(x̂k,ŵk,w̄k+1)

(17)

where hk is the measurement model function that is described in this section.
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C. SRIF Implementation

This section describes how state estimation would be implemented if there were no need to account for delays.

These developments are included for reference purposes. The estimator used is an Extended Kalman Filter (EKF)

that is implemented using Square Root Information Filter (SRIF) techniques.

A single sample interval of the filter starts with a posteriori estimates of the state vector and the process noise

vector, x̂k and ŵk, at sample time tk along with an a priori estimate of the process noise vector, w̄k+1, at

sample time tk+1. It also starts with a pair of coupled a posteriori square-root information equations that model

the estimation error uncertainty in x̂k an ŵk along with an a priori square-root information equation for the

uncertainty in w̄k+1. Grouping them together into a single system of square-root information equations yields:⎡
⎢⎣

0 R̄ww(k+1) 0

R̂wwk 0 R̂wxk

0 0 R̂xxk

⎤
⎥⎦
⎡
⎢⎣ wk − ŵk

wk+1 − w̄k+1

xk − x̂k

⎤
⎥⎦ = −

⎡
⎢⎣vw̄k+1

vŵk

vx̂k

⎤
⎥⎦ (18)

where R̄ww(k+1), R̂wwk, R̂wxk, and R̂wxk are square-root information matrices of appropriate dimensions and

vw̄k+1
, vŵk

, and vx̂k
are uncorrelated, zero-mean, identity-covariance Gaussian random vectors of appropriate

dimensions. This equation implies that the a priori error covariance in w̄k+1 is R̄−1
ww(k+1)R̄

−T
ww(k+1). Similarly, the

a posteriori error covariance of the vector [ŵk; x̂k] is

Pwxk =

[
R̂wwk R̂wxk

0 R̂xxk

]−1 [
R̂wwk R̂wxk

0 R̂xxk

]−T

(19)

The nonlinear state dynamic propagation model and the measurement model are used to determine EKF approx-

imations to the a priori state and measurement at sample time tk+1:

x̄k+1 = fk(x̂k, ŵk, w̄k+1)

ȳk+1 = hk(x̂k, ŵk, w̄k+1) (20)

These values and the Jacobians of the dynamics and measurement models are used to define the following

EKF-type linearized dynamics and measurement model equations:

xk+1 − x̄k+1 = Fk(xk − x̂k) + Γk,k(wk − ŵk) + Γk,k+1(wk+1 − w̄k+1)

yk+1 − ȳk+1 = Hxk(xk − x̂k) +Hk,wk(wk − ŵk) +Hk,w(k+1)(wk+1 − w̄k+1) + νk+1 (21)

The EKF/SRIF calculations also use the square-root information equation for the measurement noise in yk+1. It

is

Rνν(k+1)νk+1 = −vν(k+1) (22)

where vν(k+1) is a zero-mean, identity-covariance Gaussian random vector.

The combined dynamic propagation and measurement update calculations of the SRIF implementation of the

EKF start by stacking the square-root information equations in Eq. (18) on top of the square-root information

equation in Eq. (22). Next, the second line of Eq. (21) is solved for vν(k+1), the result is substituted the vν(k+1)

square-root information. Finally, the first line of Eq. (21) is solved for xk − x̂k, and the result is substituted into

the combined system of square-root information equations. The resulting system of equations is:

⎡
⎢⎢⎢⎣

0 R̄ww(k+1) 0

R̂wwk − R̂wxkF
−1
k Γk,k −R̂wxkF

−1
k Γk,k+1 R̂wxkF

−1
k

−R̂xxkF
−1
k Γk,k −R̂xxkF

−1
k Γk,k+1 R̂xxkF

−1
k

Rνν(k+1)(Hk,wk −HxkF
−1
k Γk,k) Rνν(k+1)(Hk,w(k+1) −HxkF

−1
k Γk,k+1) Rνν(k+1)HxkF

−1
k

⎤
⎥⎥⎥⎦
⎡
⎢⎣ wk − ŵk

wk+1 − w̄k+1

xk+1 − x̄k+1

⎤
⎥⎦
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=

⎡
⎢⎢⎢⎣

0
0
0

Rνν(k+1)(yk+1 − ȳk+1)

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣
vw̄(k+1)

vŵk

vx̂k

vν(k+1)

⎤
⎥⎥⎥⎦ (23)

The combined SRIF dynamic propagation and measurement update performs the following orthonormal upper-

triangular factorization of the large coefficient matrix on the left-hand side of the preceding equation:

Tk

⎡
⎢⎢⎢⎣
R∗

wwk R∗
w(k)w(k+1) R∗

w(k)x(k+1)

0 R̂ww(k+1) R̂wx(k+1)

0 0 R̂xx(k+1)

0 0 0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 R̄ww(k+1) 0

R̂wwk − R̂wxkF
−1
k Γk,k −R̂wxkF

−1
k Γk,k+1 R̂wxkF

−1
k

−R̂xxkF
−1
k Γk,k −R̂xxkF

−1
k Γk,k+1 R̂xxkF

−1
k

Rνν(k+1)(Hk,wk −HxkF
−1
k Γk,k) Rνν(k+1)(Hk,w(k+1) −HxkF

−1
k Γk,k+1) Rνν(k+1)HxkF

−1
k

⎤
⎥⎥⎥⎦ (24)

where the large block matrix on the right-hand side of this equation constitutes the input to the factorization

and the matrices on the left-hand side constitute the outputs. The output Tk is a large orthonormal matrix of

appropriate dimensions. The output matrices R∗
wwk, R̂ww(k+1), and R̂xx(k+1) are square, upper-triangular matrices,

and the output matrices R∗
w(k)w(k+1), R

∗
w(k)x(k+1), and R̂wx(k+1) are general matrices. The orthonormal matrix Tk

is transposed and used in the following equation:⎡
⎢⎢⎢⎣

z∗
wk

ẑw(k+1)

Δẑx(k+1)

ẑr(k+1)

⎤
⎥⎥⎥⎦ = T T

k

⎡
⎢⎢⎢⎣

0
0
0

Rνν(k+1)(yk+1 − ȳk+1)

⎤
⎥⎥⎥⎦ (25)

in order to compute the various vectors on the left-hand side.

Next, increments to the state and process noise vector estimates at sample time tk+1 are computed as follows:

δxk+1 = R̂−1
xx(k+1)Δẑx(k+1) (26)

δwk+1 = R̂−1
ww(k+1)(ẑw(k+1) − R̂wx(k+1)δxk+1) (27)

Finally the updated state and process noise estimates at time tk+1 are computed as follows:

x̂k+1 = x̄k+1 + δxk+1 (28)

ŵk+1 = w̄k+1 + δwk+1 (29)

The actual implementation of this SRIF incorporates the quaternion multiplicative error technique that is discussed

in [3] and [4]. These techniques entail using a 3-element quaternion uncertainty vector because the magnitude of

the unit-normalized attitude quaternion has no uncertainty. It is known to equal 1 exactly. The current derivations

would become even more complicated than they already are if they included all of the details about how to

incorporate quaternion multiplicative uncertainty. Therefore, this paper’s filter derivations omit that complication.

All of its results, however, use multiplicative quaternion uncertainty. The types of changes that occur in this
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(a) Propagate from t0 to tauth (no
measurements)

(b) Re-Propagate from t0 to tauth (all
measurements)

Fig. 1: The two-part estimation process over a single authentication interval.

technique start with a 4×1 quaternion error such as q− q̂ and project it down onto the 3-dimensional error space

that is perpendicular to the estimate in q̂. These projections reduce the number of elements in a state estimation

error vector such as xk − x̂k from 24 to 23, and the dimensions of the corresponding square-root information

matrices and covariance matrices are also reduced from 24 to 23. The incorporation of the needed quaternion

error projection techniques into this paper’s methods are left as an exercise for the reader.

D. GPS/INS CHIMERA Algorithm

This subsection presents a method to incorporate CHIMERA authentication delays into the GPS/INS estimator

described in the previous subsection. This section assumes that all observables will be authenticated at the same

time. The incorporation of these delays into the estimator is done with a two step process. First, when no incoming

observables can be authenticated, the estimator will simply propagate the state and square root information matrices

without any measurement update. Second, once the observables are authenticated, the estimator will return to the

nearest saved previous epoch state and rerun the estimation equations described in Subsection II.C only now

including the measurement update from all previous observables up to the current time. Figure 1 shows this

visually. In this example, the green dot indicates the current time. In subfigure (a), the estimator begins with

authenticated estimates at time t0 and runs without incorporating any measurements until it reaches time tauth.

Once tauth is the current time, the next process shown in subfigure (b) begins. In this subfigure, the green dot is

still the current time. The red dot indicates the saved epoch time, where the previously authenticated state and

process noise estimates and their information matrices were stored for time t0. The estimator will then use the

saved authenticated quantities at the red dot and re-run the estimator to the current time using all measurements

obtained during this interval. The updated state and information matrices at time tauth will now become the new

saved authenticated quantities for the next interval. This process will repeat for each future time interval that

extends from the time of a successful authentication to the time of the next potential authentication.

The modification to the equations in Subsection II.C is relatively straightforward for the initial Fig. 1a portion of

the algorithm when there is no authenticated data. During this interval, the final row of the large matrix on the

left-hand side of Eq. (24) is omitted due to the lack of measurements. Equations (25)-(27) are omitted because

all of the corresponding results are identically zero. Equations (28) and (29) are evaluated using δxk+1 = 0 and

δwk+1 = 0. Note that these same measurement-update-less calculations are needed even for the Fig. 1b pass that

uses authenticated data. They are needed for any IMU sample intervals when no GPS data are available. Given

that an IMU may sample at 50-100 Hz while GPS data may be available at 1-20 Hz, many such update-less

intervals exist even when working with authenticated data.
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III. ANALYSIS OF THE FAST AND SLOW CHIMERA CHANNELS USING A VARIETY OF IMUS

In order to determine the viability of the tightly coupled GPS/IMU estimator, a number of factors must be

considered. Two key factors are the CHIMERA authentication latency and the quality of the IMU used. A number

of test cases will be compared to see how these factors affect navigation accuracy. The same GPS measurements

will be used in every test case. These measurements come from an Inertial Labs GPS/IMU system that was

recording GPS/IMU observables onboard an aircraft. The GPS sampling rate was set to 20 Hz, and the IMU

sampling rate was set to 100 Hz. As only one IMU was recording real measurements on the aircraft, three other

IMU’s measurements were simulated. This was done by determining the body accelerations and the angular rates

from interpolated truth data of the aircraft’s position, velocity, and attitude. Then noise was applied to these

measurements, based on three commercial IMUs of varying quality, to create simulated IMU measurements at

the same times as the real measurements. Figure 2 shows the noise parameters for the three Honeywell IMUs

that were simulated. The noise parameters of the real IMU data are not known, but seem to be close to the noise

parameters of the tactical grade Honeywell IMU.

Fig. 2: Table of IMU Parameters.

Using the one set of real IMU measurements and the three sets of simulated IMU measurements, results were

tabulated for both the fast channel and slow channel. Figure 3 shows the results for the different IMUs when using

the fast channel. It can be seen that as the quality of the IMU decreases the RMS error increases slightly. However,

even with the lowest quality IMU, the RMS position error never rises above 2 meters, and the RMS velocity

error never rises above 0.25 meters/sec. For comparison, the GPS/IMU RMS errors without any CHIMERA

authentication delays are approximately 1.47 meters for position and 0.03 meters/sec for velocity.

Figure 4 shows plots of the position error time history components in ECEF coordinates as well as the navigation

filter’s corresponding computed 1-sigma bounds for the case using IMU HG9900 for the fast channel. This case is

a representative example of how the fast channel is able to maintain accuracy over time. In this case, position error

never exceeds 2.5 meters in any direction. The fast channel is able to maintain close to nominal GPS navigation

accuracy for all IMU qualities that were tested. This shows that incorporating an IMU is an effective method for

handling CHIMERA authentications delays from the fast channel.

The 180 second authentication delays from the slow channel are much larger than the 2 second delays from the

fast channel. Therefore, authentication via the slow CHIMERA channel presents a much more difficult test for

the GPS/IMU system. Figure 5 shows the results for the different IMUs when using the slow channel. This figure

shows that, even when using the highest quality IMU, the RMS position error is much larger than the nominal

GPS navigation accuracy. It also shows that results get significantly worse when using lower quality IMUs. Figure

6 plots the position error component time histories in ECEF coordinates as well as their corresponding navigation
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Fig. 3: Table of Fast Channel RMS Accuracy Results.

Fig. 4: Position error time histories and corresponding navigation filter computed 1-sigma values for fast channel.

filter computed 1-sigma bounds for the case that uses the IMU HG9900 for the slow channel. This figure not

only shows the problem of high RMS error, but also highlights the fact that the worst-case error can reach over

20 meters in some instances even when the overall RMS error is much lower. This is due to the fact that the 3

minute authentication delay is too long to rely solely on the IMU.

IV. AUTHENTICATION STAGGERING

One possible remedy to the problem of poor performance with slow channel CHIMERA authentication is to

stagger the authentication intervals. Authentication staggering is the concept of separating the GPS satellites into

different groups with each group having a different authentication time from the others. This does not change the
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Fig. 5: Table of Slow Channel RMS Accuracy Results.

A-12

Fig. 6: Position error time histories and corresponding navigation filter computed 1-sigma values for the                
slow channel.

length of the authentication delay for any one signal because that is determined by the channel. However, it can 
reduce the maximum amount of IMU propagation time over which no satellites have been authenticated.

Figure 7 shows a timing diagram to help visualize this concept. This figure assumes that there are three au-

thentication groups with each group denoted by a letter: A, B, or C. From this example, one can see that an 
authentication of some GPS observables will occur every minute. However, the interval between Group A’s 
successive authentication times remains three minutes, the delay required by the slow channel. The same is true 
for the intervals between Group B authentication times and between Group C authentication times. The procedure 
for operating the navigation filter when including authentication staggering is similar to the procedure without
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staggering. First, the state is updated solely using the IMU. Next, when an authentication time is reached, the

interval is re-processed using the newly authenticated data. For authentication staggering, each one minute sub-

interval must be processed N + 1 times, where N is the number of authentication groups, incorporating newly

authenticated data each time.

Consider the sub-interval that extends from tCauth. to the second tAauth. in Fig. 7. The first processing of this

one-minute interval occurs using IMU data only and starting from SRIF filter estimates based on all GPS data

up through the first tAauth. in the figure, based only on GPS data from authentication Groups B and C during the

interval from the first tAauth. to tBauth., and based only GPS data from authentication Group C during the interval

from tBauth. to tCauth.. The second processing of the one-minute interval from from tCauth. to the second tAauth.
occurs as part of a full 3-minutes of re-processing from the first tAauth. to the second tAauth. in Fig. 7. Again,

processing starts with the filter state and covariance based on all the GPS data through the first tAauth. It continues

using all of the GPS data during its first minute of propagation and measurement update until it reaches tBauth..
During the interval from tBauth. to tCauth., it uses only GPS data from authentication Groups A and C. During the

final interval from tCauth. to the second tAauth., it uses only GPS data from authentication Group A. The third and

forth passes over the interval from tCauth. to the second tAauth. operate similarly, except that the third is part of a

3-minute propagation and update operation that extends from tBauth. to a next tBauth. that lies to the right of the

figure’s second tAauth., and the forth is part of a 3-minute propagation and update operation that extends from

tCauth. to a next tCauth. that lies even further to the right of the figure’s second tAauth.. In fact, the procedure without

staggering can be described as a special case of authentication staggering where N is equal to 1.

Fig. 7: CHIMERA staggering timing diagram.

The main idea behind staggering is that it is better to have some measurements sooner, rather than all measurements

later. Figure 8 shows results for the same test cases as are covered in Fig. 5, except that these new results divide

the visible GPS satellites into three authentication groups. One can see that, by comparing the two tables, the

results improve when authentication staggering is introduced. The relative improvements in RMS position error

for the tactical- and MEMS-grade IMUs are much larger than for the navigation-grade IMU. Figure 9 shows a

plot of the position error component time histories in ECEF coordinates along with their corresponding computed

navigation filter 1-sigma bounds for the case that uses the Honeywell IMU HG9900 for the slow channel with

authentication staggering. Comparing Fig. 9 and Fig. 6, it can be seen that RMS error is reduced and the worst-

case position error and position uncertainty is also reduced. This worst-case error difference is even more apparent

when comparing authentication staggering and non authentication staggering for lower quality IMUs. The number

of authentication groups used and the particular satellites in each group were arbitrarily chosen. Future work needs

to be done to determine how much more effective an optimal grouping would be at improving navigation results.

V. ALTERNATIVE ARCHITECTURES

The preceding section’s architecture for processing staggered authentication groups ensures that all data are

processed appropriately. However, it uses a brute-force approach that constantly re-processes data over the same
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Fig. 8: Table of Slow Channel RMS Accuracy Results with Staggering.

Fig. 9: Position error time histories and their corresponding navigation filter computed 1-sigma bounds when

using the slow CHIMERA channel with staggering and a navigation-grade IMU.

interval. This section will discuss two alternative architectures that can be used to handle CHIMERA authentication

delays and staggering in a more sophisticated manner.

A. Multiple Authentication Filter Staggering Architecture

The first of these two architectures will be referred to as the Multiple Authentication Filter (MAF) architecture.

This architecture leverages the fact that each interval must be processed N+1 times. It implements N+1 filters in

parallel in order to eliminate computation delays. Assuming two authentication groups, denoted by A and B, Fig.

10 shows a visual representation of which data groups each filter processes over multiple authentication intervals.

Filter 1, which is the trusted filter whose outputs are used by the system, does not use GPS measurements. Filter
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2 uses the measurements from only the upcoming authentication group. Filter 3 uses all available measurements

from all groups. At each authentication time, Filter 2 passes its state estimate and square-root information matrix

to Filter 1, and Filter 3 passes its state estimate and square-root information matrix to Filter 2. The detailed

equations that implement this filter are presented in Appendix A. This pattern can be expanded to an arbitrary

number of authentication groups. The details of how to do this for 3, 4, 5, etc. authentication groups are omitted

for the sake of brevity. The interested reader should be able to work them out based in the foregoing pattern for

2 authentication groups and the equations in Appendix A.

Fig. 10: Timing diagram for GPS data usage within the MAF architecture.

B. Multiple Authentication Partial Filter Staggering Architecture

The benefit of the previous method is its simplicity. It runs N+1 filters in parallel with different data sets applied

to each filter and with estimates and uncertainties passed up the chain of filters at each authentication time. That

architecture is still somewhat brute-force in that it runs N+1 full filters in parallel. The architecture presented in

this subsection seeks to economize by re-using some common operations between the filters. This re-use comes

at the expense of complexity, as the equations needed for this filter will demonstrate. The following example

demonstrates how to implement this alternate architecture for three authentication groups. Note, however, that

this architecture can be applied to any number of authentication groups.

Suppose the three staggered authentication groups are called Groups A, B, and C. At IMU sample time tk,

the SRIF version of this special EKF navigation filter starts with a posteriori estimates of the state vector and

the process noise vector at sample time tk, x̂k and ŵk, that are based only on the data that have been fully

authenticated up to this time. It also has an a priori estimate of the process noise vector at sample time tk+1,

w̄k+1. The filter also has a pair of coupled a posteriori square-root information equations for xk and wk for its

nominal authenticated filter and for each of the 3 authentication groups. In addition, it has an a priori square-root

information equation for wk+1. Grouped together into a single large matrix-vector equation, these nine square-root

information equations take the form:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 R̄ww(k+1) 0

R̂C
wwk 0 R̂C

wxk

R̂B
wwk 0 R̂B

wxk

R̂A
wwk 0 R̂A

wxk

R̂wwk 0 R̂wxk

0 0 R̂C
xxk

0 0 R̂B
xxk

0 0 R̂A
xxk

0 0 R̂xxk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ wk − ŵk

wk+1 − w̄k+1

xk − x̂k

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

ẑC
wk

ẑB
wk

ẑA
wk

0

ẑC
xk

ẑB
xk

ẑA
xk

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vw̄k+1

vC
ŵk

vB
ŵk

vA
ŵk

vŵk

vC
x̂k

vB
x̂k

vA
x̂k

vx̂k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

Suppose, without loss of generality, that authentication Group A is the one with the next new authentication time

after tk, that Group B has the next new authentication time after that of Group A, and that Group C has the latest
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new authentication time. The first, fifth, and ninth rows of this system of equations are identical to the system in

Eq. (18) and characterize the authenticated estimate at time tk. The fourth and eighth lines of this equation, the

ones corresponding to Group A, keep track of all of the new information from Group A GPS measurements that

have been made since the most recent past Group A authentication time. The third and seventh lines correspond

to Group B. They keep track of all of the new information from Group B GPS measurements since the most

recent past Group B authentication time. The second and sixth lines correspond to Group C and keep track of

all of the new information from Group C GPS measurements since the most recent past Group C authentication

time. The vectors ẑA
wk, ẑB

wk, ẑC
wk, ẑA

xk, ẑB
xk, and ẑC

x in this system of equations are known non-homogeneous

terms that arise because of differences between the a posteriori estimates x̂k and ŵk and the estimates that would

have been produced had the corresponding unauthenticated data been used to produce them. The terms vA
ŵk

, vB
ŵk

,

vC
ŵk

, vA
x̂k

, vB
x̂k

, and vC
x̂k

are uncorrelated, zero-mean, identity-covariance Gaussian random vectors that model the

uncertainties in the corresponding information equations.

If there are no new GPS measurements in the IMU sample interval from tk to tk+1, then the filter performs

only a dynamic propagation. The dynamic propagation is implemented using standard EKF/SRIF techniques. The

first line of Eq. (20) is used to determine x̄k+1. The first line of Eq. (21) is solved for xk − x̂k. The result is

substituted into the system of 9 square-root information equations. The resulting equations are defined by the

coefficient matrix below and the equation that follows it. Note that the νprop on the right-hand side of this equation

equals the stacked vector [vw̄k+1
;vC

ŵk
; . . . ;vx̂k

] that appears on the right-hand side of Eq. (30).

Aprop =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 R̄ww(k+1) 0

R̂C
wwk − R̂C

wxkF
−1
k Γk,k −R̂C

wxkF
−1
k Γk,k+1 R̂C

wxkF
−1
k

R̂B
wwk − R̂B

wxkF
−1
k Γk,k −R̂B

wxkF
−1
k Γk,k+1 R̂B

wxkF
−1
k

R̂A
wwk − R̂A

wxkF
−1
k Γk,k −R̂A

wxkF
−1
k Γk,k+1 R̂A

wxkF
−1
k

R̂wwk − R̂wxkF
−1
k Γk,k −R̂wxkF

−1
k Γk,k+1 R̂wxkF

−1
k

−R̂C
xxkF

−1
k Γk,k −R̂C

xxkF
−1
k Γk,k+1 R̂C

xxkF
−1
k

−R̂B
xxkF

−1
k Γk,k −R̂B

xxkF
−1
k Γk,k+1 R̂B

xxkF
−1
k

−R̂A
xxkF

−1
k Γk,k −R̂A

xxkF
−1
k Γk,k+1 R̂A

xxkF
−1
k

−R̂xxkF
−1
k Γk,k −R̂xxkF

−1
k Γk,k+1 R̂xxkF

−1
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

Aprop

⎡
⎢⎣ wk − ŵk

wk+1 − w̄k+1

xk+1 − x̄k+1

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

ẑC
wk

ẑB
wk

ẑA
wk

0

ẑC
xk

ẑB
xk

ẑA
xk

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− νprop (32)

The dynamic propagation performs a sequence of orthonormal/upper-triangular factorizations of subsets of rows

of the coefficient matrix in this equation in order to complete its calculations. These operations are detailed in

Appendix B. These operations produce a system of square-root information equations applicable at time tk+1 that

is like the system in Eq. (30).

If any measurements occur in the IMU sample interval from time tk to time tk+1, then this filter performs a

combined dynamic propagation and measurement update. Without loss of generality, suppose that measurements
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are available from all three authentication groups. If any group lacks measurements, then the corresponding

matrices and vectors in the following description have zero rows in them. The measurement update calculations

require a priori estimates of the GPS measurement vectors for the three groups. Let them be:

ȳA
k+1 = hA

k (x̂k, ŵk, w̄k+1)

ȳB
k+1 = hB

k (x̂k, ŵk, w̄k+1)

ȳC
k+1 = hC

k (x̂k, ŵk, w̄k+1) (33)

The functions hA
k (, , ), hB

k (, , ), and hC
k (, , ) are the GPS pseudorange and carrier Doppler shift measurement

model functions for, respectively, authentication Groups A, B, and C.

The EKF-type measurement update calculations require linearized measurement models for the three groups. They

take the form:

yA
k+1 − ȳA

k+1 = HA
xk(xk − x̂k) +HA

k,wk(wk − ŵk) +HA
k,w(k+1)(wk+1 − w̄k+1) + νA

k+1

yB
k+1 − ȳB

k+1 = HB
xk(xk − x̂k) +HB

k,wk(wk − ŵk) +HB
k,w(k+1)(wk+1 − w̄k+1) + νB

k+1

yC
k+1 − ȳC

k+1 = HC
xk(xk − x̂k) +HC

k,wk(wk − ŵk) +HC
k,w(k+1)(wk+1 − w̄k+1) + νC

k+1 (34)

The vectors yM
k+1 for M = A,B, and C are the actual measurement vectors for Groups A, B, and C. The matrices

HM
xk , HM

k,wk, and HM
k,w(k+1) for M = A,B, and C are the Jacobian first partial derivatives of the corresponding

measurement model function hM
k (, , ) for M = A,B, and C, similar to Eq. (17). The vectors νM

k+1 for M =
A,B, and C are measurement noise vectors. They are modeled as being zero-mean, Gaussian random vectors

with measurement noise covariances [RM
νν(k+1)]

−1[RM
νν(k+1)]

−T for M = A,B, and C.

The combined dynamic propagation and measurement update operations use the following measurement noise

square root information equations of the three authentication groups:

RA
νν(k+1)ν

A
k+1 = −vA

ν(k+1)

RB
νν(k+1)ν

B
k+1 = −vB

ν(k+1)

RC
νν(k+1)ν

C
k+1 = −vC

ν(k+1) (35)

where vM
ν(k+1) for M = A,B, and C are uncorrelated, zero-mean, identity-covariance Gaussian random error

vectors.

The combined dynamic propagation and measurement update starts by solving the three equations in Eq. (34) for

the noise vectors νM
k+1 for M = A,B, and C, and it substitutes the results into the three square-root information

equations in Eq. (35). Next, it solves the first equation in Eq. (21) for xk − x̂k, and it substitutes the result

into these three square-root information equations. Next, these three equations are appended to the bottom of the

system of 9 square-root information equations that are modeled in Eq. (32). The resulting system of 12 square-root

information equations is modeled by the following coefficient matrix and equation:
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Ameas =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 R̄ww(k+1) 0

R̂C
wwk − R̂C

wxkF
−1
k Γk,k −R̂C

wxkF
−1
k Γk,k+1 R̂C

wxkF
−1
k

R̂B
wwk − R̂B

wxkF
−1
k Γk,k −R̂B

wxkF
−1
k Γk,k+1 R̂B

wxkF
−1
k

R̂A
wwk − R̂A

wxkF
−1
k Γk,k −R̂A

wxkF
−1
k Γk,k+1 R̂A

wxkF
−1
k

R̂wwk − R̂wxkF
−1
k Γk,k −R̂wxkF

−1
k Γk,k+1 R̂wxkF

−1
k

−R̂C
xxkF

−1
k Γk,k −R̂C

xxkF
−1
k Γk,k+1 R̂C

xxkF
−1
k

−R̂B
xxkF

−1
k Γk,k −R̂B

xxkF
−1
k Γk,k+1 R̂B

xxkF
−1
k

−R̂A
xxkF

−1
k Γk,k −R̂A

xxkF
−1
k Γk,k+1 R̂A

xxkF
−1
k

−R̂xxkF
−1
k Γk,k −R̂xxkF

−1
k Γk,k+1 R̂xxkF

−1
k

RC
νν(k+1)(H

C
k,wk −HC

xkF
−1
k Γk,k) RC

νν(k+1)(H
C
k,w(k+1) −HC

xkF
−1
k Γk,k+1) RC

νν(k+1)H
C
xkF

−1
k

RB
νν(k+1)(H

B
k,wk −HB

xkF
−1
k Γk,k) RB

νν(k+1)(H
B
k,w(k+1) −HB

xkF
−1
k Γk,k+1) RB

νν(k+1)H
B
xkF

−1
k

RA
νν(k+1)(H

A
k,wk −HA

xkF
−1
k Γk,k) RA

νν(k+1)(H
A
k,w(k+1) −HA

xkF
−1
k Γk,k+1) RA

νν(k+1)H
A
xkF

−1
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(36)

Ameas

⎡
⎢⎣ wk − ŵk

wk+1 − w̄k+1

xk+1 − x̄k+1

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

ẑC
wk

ẑB
wk

ẑA
wk

0

ẑC
xk

ẑB
xk

ẑA
xk

0
zC
a(k+1)

zB
a(k+1)

zA
a(k+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− νmeas (37)

where the vector νmeas is a zero-mean, identity-covariance Gaussian random vector that equals νprop from

Eq. (32) with vA
ν(k+1), v

B
ν(k+1), and vC

ν(k+1) from Eq. (35) appended to the bottom of it, and where zM
a(k+1) =

RM
νν(k+1)(y

M
k+1 − ȳM

k+1) for M = A,B, and C.

The combined dynamic propagation and measurement update performs a sequence of orthonormal/upper-triangular

factorizations of subsets of the rows of the coefficient matrix in this equation in order to complete its calculations.

These operations are detailed in Appendix B. These operations produce a system of square-root information

equations applicable at time tk+1 that is like the system in Eq. (30).

If the next authentication time for Group A has been reached at sample time tk+1, then special operations are

carried out to include the Group A information in the fully authenticated state estimate. These operations start

with the combined square-root information equations at sample time tk+1 for the original authenticated estimate

and for Group A:

⎡
⎢⎢⎢⎢⎣
R̂A

ww(k+1) R̂A
wx(k+1)

0 R̂A
xx(k+1)

R̂ww(k+1) R̂wx(k+1)

0 R̂xx(k+1)

⎤
⎥⎥⎥⎥⎦
[
wk+1 − ŵk+1

xk+1 − x̂k+1

]
=

⎡
⎢⎢⎢⎣
ẑA
w(k+1)

ẑA
x(k+1)

0
0

⎤
⎥⎥⎥⎦− νauth (38)
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where the vector νauth = [vA
ŵk

;vA
x̂k
;vŵk

;vx̂k
] is zero-mean, identity-covariance Gaussian random noise. An

A-19

orthonormal/upper-triangular factorization of the left-hand coefficient matrix in this equation is performed in 
order to derive updates to the authenticated matrices R̂ww(k+1), R̂wx(k+1), and R̂xx(k+1). Corresponding operations 
on the non-homogeneous terms on the right-hand side of this equation are used to develop Group-A authentication 
update increments to the current authenticated estimates ŵ k+1 and x̂k+1. The details of these operations are given 
in Appendix B.

Note: All of these filters assume that all data eventually get authenticated. Should any data fail its authentication 
test, then the IMU-only filter would not undergo any authentication update. If there were hope that future GPS 
data would successfully pass its CHIMERA authentication test after a failure, then the various other filters or 
partial filters of the two techniques would need modifications in order to prepare them properly for this eventuality. 
The question of how to do this has been left as a subject of potential future study.

VI. CONCLUSIONS

The proposed CHIMERA system will be a useful tool for authenticating incoming GPS signals. However, this 
system creates a time delay between the time a GPS observable is received and the time it can be authenticated 
by CHIMERA. One proposed solution to the inherent navigation lag is to use a tightly coupled GPS/IMU 
navigation filter to dynamically propagate the state during this delay. The fast CHIMERA channel, with only 
a two second delay, is able to maintain nominal GPS navigation accuracy even when using low grade IMUs. The 
slow CHIMERA channel, with a 180 second delay, cannot maintain nominal navigation accuracy. RMS position 
errors on the order of 9.5 meters occur when using a navigation-grade IMU and slow CHIMERA authentication. 
The RMS errors can grow to thousands of meters when using a MEMS-grade IMU. Peak errors immediately 
before an authentication can be much larger than these RMS values.

A strategy for potentially improving on the slow-CHIMERA performance is to stagger the times that different 
GPS satellites have their signals authenticated. Results showed that this method improves the navigation accuracy 
when compared to non-staggered results. Future work will need to be done in order to determine if an optimal 
grouping of GPS satellites can further improve navigation accuracy.

Multiple filter architectures can be derived to handle the time delay produced by CHIMERA authentication and 
authentication staggering. This paper develops two alternate architectures that can be used and briefly discusses 
their computational benefits. Overall, a tightly coupled GPS/IMU system can be used to aid navigation in the 
presence of CHIMERA authentication delays.

APPENDIX A
MULTIPLE AUTHENTICATION FILTER EQUATIONS

This section shows in detail the full equations for this architecture assuming 2 authentication groups.

Filter 1:

Filter 1 works with matrices and vectors that bear a superscript ()1 in order to designate its estimates and square-
root information matrices. For example, its a posteriori state and process noise estimates at sample time tk are, 
respectively, x̂1

k and ŵ 1k, and its a priori state estimate at sample time tk+1 is x̄1
k+1. Its operations to transition 

from sample time tk to sample time tk+1 follow those of Eqs. (20) and (24)-(29), except that the last lines of 
Eqs. (24) and (25) are omitted because there are no measurements associated with this fully authenticated filter. 
Therefore, the increments computed in Eqs. (26) and (27) are zero, and the a priori and a posteriori estimates at 
sample time tk+1 are identical in Eqs. (28) and (29).
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Filter 1’s calculations start by propagating the nonlinear dynamics to get the a priori estimate at sample time

tk+1:

x̄1
k+1 = fk(x̂

1
k, ŵ

1
k, w̄k+1) (39)

Next, Filter 1 forms the large block matrix on the right-hand side of the following equation, and it performs an

orthonormal/upper-triangular factorization of it in order to produce the output matrices on the left-hand side of

this equation:

Tk

⎡
⎢⎢⎢⎢⎣
R∗

wwk R∗
w(k)w(k+1) R∗

w(k)x(k+1)

0 R̂1
ww(k+1) R̂1

wx(k+1)

0 0 R̂1
xx(k+1)

0 0 0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎣

0 R̄ww(k+1) 0

R̂1
wwk − R̂1

wxkF
−1
k Γk,k −R̂1

wxkF
−1
k Γk,k+1 R̂1

wxkF
−1
k

−R̂1
xxkF

−1
k Γk,k −R̂1

xxkF
−1
k Γk,k+1 R̂1

xxkF
−1
k

⎤
⎥⎦ (40)

Finally, the a priori state and process noise estimates at sample time tk+1 become the a posteriori estimates:

x̂1
k+1 = x̄1

k+1 (41)

ŵ1
k+1 = w̄k+1 (42)

Filter 3:

Before defining Filter 2, it is helpful first to define Filter 3. For the case of two authentication groups, Filter 3 is

the full measurement case. The highest numbered filter will always correspond to the full measurement case.

If there is no measurement, then the operations are like those of Filter 1. Except that its vectors and matrices

bear the superscript ()3 rather than ()1, its operations repeat those given in Eqs. (39)-(42) for Filter 1.

If there are any measurements from either of the 2 authentication groups, then it uses the same procedure that is

shown in the SRIF implementation given in Eqs. (20) and (24)-(29).

First, the a priori state estimate at sample time tk+1 is approximated as:

x̄3
k+1 = fk(x̂

3
k, ŵ

3
k, w̄k+1) (43)

Next, the combined dynamic propagation and measurement update calculations are implemented as follows:

The matrix on the right-hand side of the following equation is factorized using an orthonormal/upper-triangular

factorization to produce the output matrices on the left-hand side.

Tk

⎡
⎢⎢⎢⎢⎣
R∗

wwk R∗
w(k)w(k+1) R∗

w(k)x(k+1)

0 R̂3
ww(k+1) R̂3

wx(k+1)

0 0 R̂3
xx(k+1)

0 0 0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 R̄ww(k+1) 0

R̂3
wwk − R̂3

wxkF
−1
k Γk,k −R̂3

wxkF
−1
k Γk,k+1 R̂3

wxkF
−1
k

−R̂3
xxkF

−1
k Γk,k −R̂3

xxkF
−1
k Γk,k+1 R̂3

xxkF
−1
k

Rνν(k+1)(Hk,wk −HxkF
−1
k Γk,k) Rνν(k+1)(Hk,w(k+1) −HxkF

−1
k Γk,k+1) Rνν(k+1)HxkF

−1
k

⎤
⎥⎥⎥⎦ (44)
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The non-homogeneous vector on the extreme right-hand side of the following equation is transformed to produce

the non-homogeneous terms on the left-hand side.

⎡
⎢⎢⎢⎣

z∗
wk

ẑ3
w(k+1)

Δẑ3
x(k+1)

ẑ3
r(k+1)

⎤
⎥⎥⎥⎦ = T T

k

⎡
⎢⎢⎢⎣

0
0
0

Rνν(k+1)(yk+1 − ȳk+1)

⎤
⎥⎥⎥⎦ (45)

where ȳk+1 = hk(x̂
3
k, ŵ

3
k, w̄k+1).

Increments to the state and process noise estimates are computed as follows:

δx3
k+1 = (R̂3

xx(k+1))
−1Δẑ3

x(k+1) (46)

δw3
k+1 = (R̂3

ww(k+1))
−1(ẑ3

w(k+1) − R̂3
wx(k+1)δx

3
k+1) (47)

Finally, the a posteriori Filter-3 state and process-noise estimates at time tk+1 are computed:

x̂3
k+1 = x̄3

k+1 + δx3
k+1 (48)

ŵ3
k+1 = w̄k+1 + δw3

k+1 (49)

Filter 2:

The no measurement case operations for Filter 2 are like those of Filter 1. Its operations repeat those given in

Eqs. (39)-(42) for Filter 1, except that its vectors and matrices bear the superscript ()2 rather than ()1.

If there is a measurement, then Filter 2 performs a combined dynamic propagation and measurement update,

like Filter 3, except that it only uses the measurements which correspond to the authentication group with the

nearest future authentication time. These operations are the same as those given for Filter 3 in Eqs. (43)-(49).

There are two differences. First, Filter 2’s vectors and matrices bear the superscript ()2 rather than ()3. Second,

the measurement equations used in the last lines of the right-hand sides of Eqs. (44) and (45) are different. They

are only the subset of measurements from the authentication group with the nearest future authentication time.

When the next authentication occurs, the following operations are carried out in order to pass the newly authen-

ticated information from Filter 2 to Filter 1 and in order to prepare Filter 2 for working only with data from the

alternate authentication group, which is the group that will have the next authentication time:

R̂1
xx(k+1) = R̂2

xx(k+1) (50)

R̂2
xx(k+1) = R̂3

xx(k+1) (51)

R̂1
wx(k+1) = R̂2

wx(k+1) (52)

R̂2
wx(k+1) = R̂3

wx(k+1) (53)
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R̂1
ww(k+1) = R̂2

ww(k+1) (54)

R̂2
ww(k+1) = R̂3

ww(k+1) (55)

x̂1
k+1 = x̂2

k+1 (56)

x̂2
k+1 = x̂3

k+1 (57)

ŵ1
k+1 = ŵ2

k+1 (58)

ŵ2
k+1 = ŵ3

k+1 (59)

Note that Filter 3 changes none of its vectors or matrices due to an authentication. This is true because Filter 3 
always uses all of the data. Essentially, it is a filter that operates as though all of the data are always authenticated.

For each additional authentication group, this approach would need an additional filter. Given N authentication 
groups, Filter 1 would be the one that used none of the data, Filter 2 would use only the data for the authentication 
group with the nearest future authentication time, Filter 3 would use only the data from the two authentication 
groups with the two nearest future authentication times, etc. Finally, Filter N+1 would be the one that used all 
the data from all of the authentication groups. The equations implemented by the N+1 filters would be analogous 
to the equations that have been described above.

APPENDIX B
MULTIPLE AUTHENTICATION PARTIAL FILTER EQUATIONS

This section presents in detail the full equations for this architecture assuming 3 authentication groups.

If there are no measurements from any authentication groups, then the following operations are implemented to 
transition from sample time tk to sample time tk+1:

The process begins by computing the following approximation of the a priori state estimate at sample time tk+1:

x̄k+1 = fk(x̂k, ŵ k, w̄ k+1) (60)

Starting with the large block coefficient matrix in Eq. (31), the first, fifth, and ninth rows are used to form 
the matrix on the right-hand side of the following equation. An orthonormal/upper-triangular factorization of the 
resulting matrix is then performed to determine the output matrices on the left-hand side of the following equation:

Tk

⎡
⎢⎣
R∗

wwk R∗
w(k)w(k+1) R∗

w(k)x(k+1)

0 R̂ww(k+1) R̂wx(k+1)

0 0 R̂xx(k+1)

⎤
⎥⎦ =

⎡
⎢⎣

0 R̄ww(k+1) 0

R̂wwk − R̂wxkF
−1
k Γk,k −R̂wxkF

−1
k Γk,k+1 R̂wxkF

−1
k

−R̂xxkF
−1
k Γk,k −R̂xxkF

−1
k Γk,k+1 R̂xxkF

−1
k

⎤
⎥⎦ (61)
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The three rows of the upper-triangular matrix on the left-hand side of the preceding equation and used to            
replace the first, fifth, and ninth rows of the large block matrix in Eq. (31) to yield the following partially 
transformed matrix: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R∗
wwk R∗

w(k)w(k+1) R∗
w(k)x(k+1)

R̂C
wwk − R̂C

wxkF
−1
k Γk,k −R̂C

wxkF
−1
k Γk,k+1 R̂C

wxkF
−1
k

R̂B
wwk − R̂B

wxkF
−1
k Γk,k −R̂B

wxkF
−1
k Γk,k+1 R̂B

wxkF
−1
k

R̂A
wwk − R̂A

wxkF
−1
k Γk,k −R̂A

wxkF
−1
k Γk,k+1 R̂A

wxkF
−1
k

0 R̂ww(k+1) R̂wx(k+1)

−R̂C
xxkF

−1
k Γk,k −R̂C

xxkF
−1
k Γk,k+1 R̂C

xxkF
−1
k

−R̂B
xxkF

−1
k Γk,k −R̂B

xxkF
−1
k Γk,k+1 R̂B

xxkF
−1
k

−R̂A
xxkF

−1
k Γk,k −R̂A

xxkF
−1
k Γk,k+1 R̂A

xxkF
−1
k

0 0 R̂xx(k+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(62)

Next, the first, fourth, and eighth rows of the preceding matrix are used to form the matrix on the right-hand side

of the following equation. An orthonormal/upper-triangular factorization of the resulting matrix is then performed

to determine the output matrices on the left-hand side of the following equation:

TA
k

⎡
⎢⎢⎣
R∗A

wwk R∗A
w(k)w(k+1) R∗A

w(k)x(k+1)

0 R̂A
ww(k+1) R̂A

wx(k+1)

0 0 R̂A
xx(k+1)

⎤
⎥⎥⎦ =

⎡
⎢⎣

R∗
wwk R∗

w(k)w(k+1) R∗
w(k)x(k+1)

R̂A
wwk − R̂A

wxkF
−1
k Γk,k −R̂A

wxkF
−1
k Γk,k+1 R̂A

wxkF
−1
k

−R̂A
xxkF

−1
k Γk,k −R̂A

xxkF
−1
k Γk,k+1 R̂A

xxkF
−1
k

⎤
⎥⎦ (63)

The three rows of the upper-triangular matrix on the left-hand side of the preceding equation are used to replace

the first, fourth, and eighth rows of the large block matrix in Eq. (62) to yield yet another partially transformed

matrix. An equation like Eq. (63) for Group B is formed based on the first, third, and seventh rows of this new

partially transformed matrix, and the result is yet another partially transformed matrix. Finally, another equation

like Eq. (63) for Group C is formed based on the first, second, and sixth lines of this next partially transformed

matrix, and its outputs are used to form the following final transformed matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R∗C
wwk R∗C

w(k)w(k+1) R∗C
w(k)x(k+1)

0 R̂C
ww(k+1) R̂C

wx(k+1)

0 R̂B
ww(k+1) R̂B

wx(k+1)

0 R̂A
ww(k+1) R̂A

wx(k+1)

0 R̂ww(k+1) R̂wx(k+1)

0 0 R̂C
xx(k+1)

0 0 R̂B
xx(k+1)

0 0 R̂A
xx(k+1)

0 0 R̂xx(k+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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A corresponding set of transformations are applied to the following non-homogeneous vector that has been taken

from Eq. (32): ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

ẑC
wk

ẑB
wk

ẑA
wk

0

ẑC
xk

ẑB
xk

ẑA
xk

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

There is no need to transform this vector using the transpose of the Tk matrix because its first, fifth, and ninth

rows are all zero. The first operation applies the following transformation to the first, fourth, and eighth rows of

the preceding vector: ⎡
⎢⎣

z∗A
wk

ẑA
w(k+1)

ẑA
x(k+1)

⎤
⎥⎦ = (TA

k )T

⎡
⎢⎣ 0

ẑA
wk

ẑA
xk

⎤
⎥⎦

Substitution of the left-hand side results of this partial transformation into the first, fourth, and eighth rows of

the original large vector yields the following partially transformed non-homogeneous term:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z∗A
wk

ẑC
wk

ẑB
wk

ẑA
w(k+1)

0

ẑC
xk

ẑB
xk

ẑA
x(k+1)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Next, a similar partial transformation of the non-homogeneous vector’s first, third, and seventh rows is implemented

for Group B. Afterwards, a similar partial transformation of the resulting vector’s first, second, and sixth rows is

implemented for Group C. The final result is the following transformed non-homogeneous vector:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z∗C
wk

ẑC
w(k+1)

ẑB
w(k+1)

ẑA
w(k+1)

0

ẑC
x(k+1)

ẑB
x(k+1)

ẑA
x(k+1)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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If there are measurements, then the combined dynamic propagation and measurement update operations start

like the simple dynamic propagation operations. They compute the following approximation of the a priori state

estimate at sample time tk+1:

x̄k+1 = fk(x̂k, ŵk, w̄k+1) (64)

Starting with the large block coefficient matrix in Eq. (36), the first, fifth, and ninth rows are used to form

the matrix on the right-hand side of the following equation. An orthonormal/upper-triangular factorization of the

resulting matrix is then performed to determine the output matrices on the left-hand side of the following equation:

Tk

⎡
⎢⎣
R∗

wwk R∗
w(k)w(k+1) R∗

w(k)x(k+1)

0 R̂ww(k+1) R̂wx(k+1)

0 0 R̂xx(k+1)

⎤
⎥⎦ =

⎡
⎢⎣

0 R̄ww(k+1) 0

R̂wwk − R̂wxkF
−1
k Γk,k −R̂wxkF

−1
k Γk,k+1 R̂wxkF

−1
k

−R̂xxkF
−1
k Γk,k −R̂xxkF

−1
k Γk,k+1 R̂xxkF

−1
k

⎤
⎥⎦ (65)

The three rows of the upper-triangular matrix on the left-hand side of the preceding equation and used to replace

the first, fifth, and ninth rows of the large block matrix in Eq. (36) to yield the following partially transformed

matrix:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R∗
wwk R∗

w(k)w(k+1) R∗
w(k)x(k+1)

R̂C
wwk − R̂C

wxkF
−1
k Γk,k −R̂C

wxkF
−1
k Γk,k+1 R̂C

wxkF
−1
k

R̂B
wwk − R̂B

wxkF
−1
k Γk,k −R̂B

wxkF
−1
k Γk,k+1 R̂B

wxkF
−1
k

R̂A
wwk − R̂A

wxkF
−1
k Γk,k −R̂A

wxkF
−1
k Γk,k+1 R̂A

wxkF
−1
k

0 R̂ww(k+1) R̂wx(k+1)

−R̂C
xxkF

−1
k Γk,k −R̂C

xxkF
−1
k Γk,k+1 R̂C

xxkF
−1
k

−R̂B
xxkF

−1
k Γk,k −R̂B

xxkF
−1
k Γk,k+1 R̂B

xxkF
−1
k

−R̂A
xxkF

−1
k Γk,k −R̂A

xxkF
−1
k Γk,k+1 R̂A

xxkF
−1
k

0 0 R̂xx(k+1)

RC
νν(k+1)(H

C
k,wk −HC

xkF
−1
k Γk,k) RC

νν(k+1)(H
C
k,w(k+1) −HC

xkF
−1
k Γk,k+1) RC

νν(k+1)H
C
xkF

−1
k

RB
νν(k+1)(H

B
k,wk −HB

xkF
−1
k Γk,k) RB

νν(k+1)(H
B
k,w(k+1) −HB

xkF
−1
k Γk,k+1) RB

νν(k+1)H
B
xkF

−1
k

RA
νν(k+1)(H

A
k,wk −HA

xkF
−1
k Γk,k) RA

νν(k+1)(H
A
k,w(k+1) −HA

xkF
−1
k Γk,k+1) RA

νν(k+1)H
A
xkF

−1
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(66)

A partial transformation process is then implemented for each authentication group starting with Group A and

ending with Group C. The process for Group A is shown below. It takes the first, fourth, eighth, and twelfth rows

of the large block matrix in Eq. (66) and uses them to form the matrix on the right-hand side of the following

equation. An orthonormal/upper-triangular factorization of the resulting matrix is then performed to determine

the output matrices on the left-hand side of the following equation:

TA
k

⎡
⎢⎢⎢⎢⎣
R∗A

wwk R∗A
w(k)w(k+1) R∗A

w(k)x(k+1)

0 R̂A
ww(k+1) R̂A

wx(k+1)

0 0 R̂A
xx(k+1)

0 0 0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

R∗
wwk R∗

w(k)w(k+1) R∗
w(k)x(k+1)

R̂A
wwk − R̂A

wxkF
−1
k Γk,k −R̂A

wxkF
−1
k Γk,k+1 R̂A

wxkF
−1
k

−R̂A
xxkF

−1
k Γk,k −R̂A

xxkF
−1
k Γk,k+1 R̂A

xxkF
−1
k

RA
νν(k+1)(H

A
k,wk −HA

xkF
−1
k Γk,k) RA

νν(k+1)(H
A
k,w(k+1) −HA

xkF
−1
k Γk,k+1) RA

νν(k+1)H
A
xkF

−1
k

⎤
⎥⎥⎥⎥⎦ (67)
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The four rows of the upper-triangular matrix on the left-hand side of the preceding equation are used to replace

the first, fourth, eighth, and twelfth rows of the large block matrix in Eq. (66) to yield yet another partially

transformed matrix. An equation like Eq. (67) for Group B is formed based on the first, third, seventh, and

eleventh rows of this new partially transformed matrix, and the result is yet another partially transformed matrix.

Finally, another equation like Eq. (67) for Group C is formed based on the first, second, sixth, and tenth rows of

this next partially transformed matrix, and its outputs are used to form the following final transformed matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R∗C
wwk R∗C

w(k)w(k+1) R∗C
w(k)x(k+1)

0 R̂C
ww(k+1) R̂C

wx(k+1)

0 R̂B
ww(k+1) R̂B

wx(k+1)

0 R̂A
ww(k+1) R̂A

wx(k+1)

0 R̂ww(k+1) R̂wx(k+1)

0 0 R̂C
xx(k+1)

0 0 R̂B
xx(k+1)

0 0 R̂A
xx(k+1)

0 0 R̂xx(k+1)

0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(68)

Various non-homogeneous terms also need to be transformed. The needed operations start with the following

non-homogeneous vector from Eq. (37):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

ẑC
wk

ẑB
wk

ẑA
wk

0

ẑC
xk

ẑB
xk

ẑA
xk

0
zC
a(k+1)

zB
a(k+1)

zA
a(k+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

There is no need to transform this vector using the transpose of the Tk matrix because its first, fifth, and ninth

rows are all zero. The first operation applies the following transformation to the first, fourth, eighth, and twelfth

rows of the preceding vector:

⎡
⎢⎢⎢⎣

z∗A
wk

ẑA
w(k+1)

ẑA
x(k+1)

ẑA
r(k+1)

⎤
⎥⎥⎥⎦ = (TA

k )T

⎡
⎢⎢⎢⎣

0

ẑA
wk

ẑA
xk

zA
a(k+1)

⎤
⎥⎥⎥⎦
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Substitution of the results on the left-hand side of the preceding equation into the first, fourth, eighth, and twelfth

rows of the original large non-homogeneous vector yields the following partially transformed vector:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z∗A
wk

ẑC
wk

ẑB
wk

ẑA
w(k+1)

0

ẑC
xk

ẑB
xk

ẑA
x(k+1)

0
zC
a(k+1)

zB
a(k+1)

ẑA
r(k+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A similar transformation is applied for Group B to the first, third, seventh, and eleventh rows of the preceding

non-homogeneous vector to produce yet another partially transformed non-homogeneous vector. Finally, a similar

transformation is applied for Group C to the first, second, sixth, and tenth rows of the result in order to produce

the final transformed non-homogeneous vector:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z∗C
wk

ẑC
w(k+1)

ẑB
w(k+1)

ẑA
w(k+1)

0

ẑC
x(k+1)

ẑB
x(k+1)

ẑA
x(k+1)

0

ẑC
r(k+1)

ẑB
r(k+1)

ẑA
r(k+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(69)

A-27

Note that the final three vectors in this expression are residual error vectors.

After all of these calculations have been completed, and regardless of whether or not measurements have been 
processed, the following assignments are made:

x̂k+1 = x̄k+1

ŵ k+1 = w̄ k+1

and the last three rows, the residual error rows, are dropped from the large transformed coefficient matrix in Eq.

(68) and from the large transformed non-homogeneous vector in Eq. (69).

Next, a query is made as to whether authentication Group A has received a new authentication for all of its  
data up through sample time tk+1. If no authentication has occurred, then the algorithm proceeds to the next 
sample interval.
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If Group A’s GPS data have received an authentication up through sample time tk+1, then the following operations

are needed in order to incorporate that information into the trusted state estimate. The second and third columns of

the fourth, fifth, eighth, and ninth rows of the matrix in Eq. (68) are used to form the matrix on the right-hand side

of the following equation. An orthonormal/upper-triangular factorization of the resulting matrix is then performed

to determine the output matrices on the left-hand side of the following equation:

TA
new(k)

⎡
⎢⎢⎢⎣
R̂auth

ww(k+1) R̂auth
wx(k+1)

0 R̂auth
xx(k+1)

0 0
0 0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
R̂A

ww(k+1) R̂A
wx(k+1)

0 R̂A
xx(k+1)

R̂ww(k+1) R̂wx(k+1)

0 R̂xx(k+1)

⎤
⎥⎥⎥⎥⎦

Next, the fourth, fifth, eighth, and ninth rows of the non-homogeneous vector in Eq. (69) are used to form the

vector on the far right-hand side of the equation below, and the resulting vector is transformed as shown below

to produce the outputs on the left-hand side of this equation:

⎡
⎢⎣
δẑauth

w(k+1)

δẑauth
x(k+1)

ẑauth
r(k+1)

⎤
⎥⎦ = (TA

new(k))
T

⎡
⎢⎢⎢⎣
ẑA
w(k+1)

ẑA
x(k+1)

0
0

⎤
⎥⎥⎥⎦

Note that the last entry of the vector on the left-hand side of this equation is an authentication residual vector.

Next, the following operations compute updates of the authenticated state and process noise estimates at sample

time tk+1:

x̂auth
k+1 = x̂k+1 + (R̂auth

xx(k+1))
−1δẑauth

x(k+1) (70)

ŵauth
k+1 = ŵk+1 + (R̂auth

ww(k+1))
−1[δẑauth

w(k+1) − R̂auth
wx(k+1)(x̂

auth
k+1 − x̂k+1)] (71)

It is necessary to update the remaining non-homogeneous terms in the system’s square-root information equations

in order to account for the changes to the state and process noise estimates given in Eqs. (70) and (71). For the

Group B equations, the needed modifications to the non-homogeneous terms are:

ẑ
B(new)
x(k+1) = ẑB

x(k+1) + R̂B
xx(k+1)(x̂k+1 − x̂auth

k+1 ) (72)

ẑ
B(new)
w(k+1) = ẑB

w(k+1) + R̂B
ww(k+1)(ŵk+1 − ŵauth

k+1 ) + R̂B
wx(k+1)(x̂k+1 − x̂auth

k+1 ) (73)

The equations for the modifications to the Group C non-homogeneous terms are almost identical, except that ()C

superscripts replace ()B superscripts.

Finally, a switch of authentication staggering groups must be implemented so that the new Group A is the one

with the next authentication time. This will be the authentication group that had been labeled Group B. Similarly,

the new Group B must be the one with the second future authentication time. This will be the authentication

group that had been labeled Group C. The new Group C must be the one whose next authentication time lies

furthest in the future. This will be the authentication group that had been labeled Group A. This latter group will

have no measurement information in it yet because all of its information will have been incorporated into the

fully authenticated filter that bears no group label.
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The following matrix and vector substitutions are required in order to maintain consistency with the foregoing

changes to the definitions of the three authentication groups:

R̂A
xx(k+1) = R̂B

xx(k+1)

R̂B
xx(k+1) = R̂C

xx(k+1)

R̂C
xx(k+1) = 0

ẑA
x(k+1) = ẑ

B(new)
x(k+1)

ẑB
x(k+1) = ẑ

C(new)
x(k+1)

ẑC
x(k+1) = 0

R̂A
wx(k+1) = R̂B

wx(k+1)

R̂B
wx(k+1) = R̂C

wx(k+1)

R̂C
wx(k+1) = 0

R̂A
ww(k+1) = R̂B

ww(k+1)

R̂B
ww(k+1) = R̂C

ww(k+1)

R̂C
ww(k+1) = 0

ẑA
w(k+1) = ẑ

B(new)
w(k+1)

ẑB
w(k+1) = ẑ

C(new)
w(k+1)

ẑC
w(k+1) = 0

ŵk+1 = ŵauth
k+1

x̂k+1 = x̂auth
k+1

R̂ww(k+1) = R̂auth
ww(k+1)

R̂wx(k+1) = R̂auth
wx(k+1)

R̂xx(k+1) = R̂auth
xx(k+1)
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REPROCESSING OF PAST DATA

An algorithm can be developed that processes newly authenticated GPS data from past samples

using partial Square-Root Information Filter (SRIF) calculations. These calculations use the stan-

dard linearizations of an Extended Kalman Filter (EKF). They use the same system models and

notation as are used in [1].

Input Data for Reprocessing Calculations

Prior to the processing of past data that have been recently authenticated, suppose that the follow-

ing three types of information are available: First, there is a coupled pair of square-root information

equations that characterize the estimates of the sample-k process-noise vector wk and state vector

xk. They are: [
R̂wwk R̂wxk

0 R̂xxk

] [
wk − ŵk

xk − x̂k

]
= −

[
vŵk

vx̂k

]
(1)

where ŵk is the a posteriori estimate of wk, x̂k is the a posteriori estimate of xk, vŵk
and vx̂k

are

uncorrelated, zero-mean, identity-covariance Gaussian random noise vectors, and R̂wwk, R̂wxk, and

R̂xxk are square-root information matrices. Sample k is the current sample of the Kalman filter, but

these estimates only incorporate the GPS information that has been previously authenticated. There

remain measurements at previous samples and at the present sample that have been authenticated

recently, but they have not yet been incorporated into these filter estimates.

The vectors ŵk and x̂k and the matrices R̂wwk, R̂wxk, and R̂xxk will have been determined by one

of two means. Initially, before any data have been authenticated, they will have been determined via

the IMU-only filtering pass that is described in [1]. If previous reprocessing due to authentication

has occurred, as happens in the case of staggered authentications, then these vectors and matrices

will have been determined during the previous authentication reprocessing, as described below.

The joint estimation error covariance for wk and xk is

Pwxk = E{
[
wk − ŵk

xk − x̂k

] [
wk − ŵk

xk − x̂k

]T

} =

[
R̂wwk R̂wxk

0 R̂xxk

]−1 [
R̂wwk R̂wxk

0 R̂xxk

]−T

(2)

where the notation ()−T indicates the inverse of the transpose of the matrix in question. This covari-

ance relationship is consistent with standard SRIF techniques.

The second piece of information available to the reprocessing algorithm is a set of smoothed

square-root information equations for the past process-noise vectors wj for j = (k−m), . . . , (k−1).
The index decrement m equals the number of newly authenticated measurements, which are yj+1

for j = (k−m), . . . , (k−1). The smoothed square-root information equations are

R∗
wwjwj +R∗

w(j)w(j+1)wj+1 +R∗
w(j)x(j+1)xj+1 = z∗

wj − vŵ∗
j

for j = (k−m), . . . , (k−1) (3)

The matrices R∗
wwj , R

∗
w(j)w(j+1), and R∗

w(j)x(j+1) are 1-sample smoothed square-root information

matrices, and z∗
wj is a corresponding known non-homogeneous term. The vector vŵ∗

j
is a zero-

mean, identity-covariance Gaussian random vector.

Similar to the quantities in Eq. (1), these matrices and this vector will have been determined by

one of two means. Initially, before any data have been authenticated, they will have been deter-

mined from the results of the IMU-only filtering pass that is described in [1]. The matrices R∗
wwj ,
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R∗
w(j)w(j+1), and R∗

w(j)x(j+1) are direct outputs of that pass. The vector z∗
wj is computed as:

z∗
wj = z∗ep

wj +R∗
wwjŵj +R∗

w(j)w(j+1)w̄j+1 +R∗
w(j)x(j+1)x̄j+1 (4)

where z∗ep
wj is the z∗

wj vector that gets calculated in the first line of Eq. (25) of [1]. It is given the

extra superscript ()ep here in order to distinguish it from the new z∗
wj that gets computed here. The

vectors ŵj and x̄j+1 are estimates that get generated during the IMU-only filtering pass of [1], and

the vector w̄j+1 is an a priori estimate which is available during that pass. If previous reprocessing

due to authentication has occurred, then these matrices and this vector will have been determined

during the previous authentication reprocessing, as described below.

The third piece of available information is the following set of linearized dynamic propagation

equations for j = (k−m), . . . , (k−1):

xj+1 = Fjxj + Γj,jwj + Γj,j+1wj+1 + f̆ j for j = (k−m), . . . , (k−1) (5)

This model is a linearization of the following nonlinear dynamics propagation model from Eq. (8)

of [1]:

xj+1 = f j(xj ,wj ,wj+1) (6)

The three matrices in Eq. (5) are Jacobian matrices of the nonlinear function on the right-hand side

of Eq. (6):

Fj =
∂f j

∂xj

∣∣∣∣
(x̂j ,ŵj ,w̄j+1)

Γj,j =
∂f j

∂wj

∣∣∣∣
(x̂j ,ŵj ,w̄j+1)

Γj,j+1 =
∂f j

∂wj+1

∣∣∣∣
(x̂j ,ŵj ,w̄j+1)

(7)

where the vectors x̂j and ŵj are estimates that get generated during the IMU-only filtering pass

of [1], and the vector w̄j+1 is an a priori estimate which is available during that pass. The non-

homogeneous vector f̆ j in Eq. (5) is generated from the results of the Ref. [1] IMU-only filtering

pass:

f̆ j = x̄j+1 − Fjx̂j − Γj,jŵj − Γj,j+1w̄j+1 (8)

where

x̄j+1 = f j(x̂j , ŵj , w̄j+1) (9)

from that same IMU-only forward filtering pass.

Nonlinear and Linearized Measurement Models of the Newly Authenticated Data

The reprocessing that incorporates the information from the newly authenticated measurements

starts with the following nonlinear measurement model from Eq. (16) of [1]:

yj+1 = hj(xj ,wj ,wj+1) + νj+1 (10)

where νj+1 is a zero-mean Gaussian random measurement noise vector. Its square-root information

matrix is Rνν(j+1), and its corresponding square-root information equation is

Rνν(j+1)νj+1 = −vνj+1 (11)
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where vνj+1 is a zero-mean, identity-covariance Gaussian random vector. Therefore, the covariance

matrix of the measurement noise vector νj+1 is R−1
νν(j+1)R

−T
νν(j+1).

The following linearized versions of the measurement models for all of the newly authenticated

data are formed for use in the reprocessing calculations:

yj+1 = Hxjxj +Hj,wjwj +Hj,w(j+1)wj+1 + h̆j + νj+1 for j = (k−m), . . . , (k−1) (12)

The three matrices on the right-hand side of Eq. (12) are Jacobian matrices of the nonlinear function

on the right-hand side of Eq. (10):

Hxj =
∂hj

∂xj

∣∣∣∣
(x̂j ,ŵj ,w̄j+1)

Hj,wj =
∂hj

∂wj

∣∣∣∣
(x̂j ,ŵj ,w̄j+1)

Hj,w(j+1) =
∂hj

∂wj+1

∣∣∣∣
(x̂j ,ŵj ,w̄j+1)

(13)

where the estimates at which these Jacobians are evaluated come from the IMU-only pass of the

filter in [1]. The non-homogeneous term in the linearized measurement model is determined via the

calculation:

h̆j = hj(x̂j , ŵj , w̄j+1)−Hxjx̂j −Hj,wjŵj −Hj,w(j+1)w̄j+1 (14)

Storage of Cumulative Authenticated Information

The reprocessing algorithm needs to keep track of the information about wj and xj that is con-

tained in the reprocessed data y� for 
 = (k−m+1), . . . , j. It stores this information in the following

pair of coupled square-root information equations:[
R̃wwj R̃wxj

0 R̃xxj

] [
wj

xj

]
=

[
z̃wj

z̃xj

]
−
[
ṽwj

ṽxj

]
(15)

where R̃wwj , R̃wxj , and R̃xxj are square-root information matrices, z̃wj and z̃xj are known non-

homogeneous vectors, and ṽwj and ṽxj are uncorrelated, zero-mean, identity-covariance Gaussian

random vectors.

The reprocessing algorithm starts with the following initialization of these quantities at sample

j = k −m:

R̃wwj = 0

R̃wxj = 0

R̃xxj = 0

z̃wj = 0

z̃xj = 0 (16)

This initialization is consistent with the assumption that there is no new authenticated data from

before measurement yk−m+1.
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Recursive Reprocessing Operations

The reprocessing algorithm performs the following operations recursively for each sample start-

ing from j = k − m and working forward one sample at a time up through sample j = k − 1.

The first operation of the recursion forms a coupled system of four square-root information equa-

tions by stacking the square-root information in Eq. (3), the coupled pair of square-root information

equations in Eq. (15), and the square-root information equation in Eq. (11). Next, the measurement

model in Eq. (12) is solved for νj+1, and the result is substituted into the system of square-root

information equations. Lastly, the dynamics model in Eq. (5) is solved for xj , and this result is

substituted into the system. The resulting system of square-root information equations takes the

form:

⎡
⎢⎢⎢⎣

R∗
wwj R∗

w(j)w(j+1) R∗
w(j)x(j+1)

(R̃wwj − R̃wxjF
−1
j Γj,j) (−R̃wxjF

−1
j Γj,j+1) (R̃wxjF

−1
j )

(−R̃xxjF
−1
j Γj,j) (−R̃xxjF

−1
j Γj,j+1) (R̃xxjF

−1
j )

Rνν(j+1)(Hj,wj −HxjF
−1
j Γj,j) Rνν(j+1)(Hj,w(j+1) −HxjF

−1
j Γj,j+1) Rνν(j+1)(HxjF

−1
j )

⎤
⎥⎥⎥⎦

×
⎡
⎣ wj

wj+1

xj+1

⎤
⎦

=

⎡
⎢⎢⎢⎣

z∗
wj

(z̃wj + R̃wxjF
−1
j f̆ j)

(z̃xj + R̃xxjF
−1
j f̆ j)

Rνν(j+1)(yj+1 − h̆j +HxjF
−1
j f̆ j)

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎣

vŵ∗
j

ṽwj

ṽxj

−vνj+1

⎤
⎥⎥⎦ (17)

The algorithm performs an orthonormal/upper-triangular (QR) factorization of the large block ma-

trix on the left-hand side of this equation. It is defined as follows:

T̃j

⎡
⎢⎢⎢⎣
R∗new

wwj R∗new
w(j)w(j+1) R∗new

w(j)x(j+1)

0 R̃ww(j+1) R̃wx(j+1)

0 0 R̃xx(j+1)

0 0 0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

R∗
wwj R∗

w(j)w(j+1) R∗
w(j)x(j+1)

(R̃wwj − R̃wxjF
−1
j Γj,j) (−R̃wxjF

−1
j Γj,j+1) (R̃wxjF

−1
j )

(−R̃xxjF
−1
j Γj,j) (−R̃xxjF

−1
j Γj,j+1) (R̃xxjF

−1
j )

Rνν(j+1)(Hj,wj −HxjF
−1
j Γj,j) Rνν(j+1)(Hj,w(j+1) −HxjF

−1
j Γj,j+1) Rνν(j+1)(HxjF

−1
j )

⎤
⎥⎥⎥⎦

(18)

where the large block matrix on the right-hand side of this equation constitutes the input to the

QR factorization, and the matrices on the left-hand side constitute the outputs. The output matrix

T̃j is orthonormal, the output matrices R∗new
wwj , R̃ww(j+1), and R̃xx(j+1) are square, upper-triangular

square-root information matrices, and the output matrices R∗new
w(j)w(j+1), R

∗
w(j)x(j+1), and R̃wx(j+1)

are dense square-root information matrix components of appropriate dimensions.

Next, the algorithm performs the following transformation of the non-homogeneous term that is
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the first term on the right-hand side of Eq. (17):

⎡
⎢⎢⎣
z∗new
wj

z̃w(j+1)

z̃x(j+1)

z̃r(j+1)

⎤
⎥⎥⎦ = T̃ T

j

⎡
⎢⎢⎢⎣

z∗
wj

(z̃wj + R̃wxjF
−1
j f̆ j)

(z̃xj + R̃xxjF
−1
j f̆ j)

Rνν(j+1)(yj+1 − h̆j +HxjF
−1
j f̆ j)

⎤
⎥⎥⎥⎦ (19)

The three new matrices from the top line of the left-hand side of Eq. (18), R∗new
wwj , R∗new

w(j)w(j+1), and

R∗new
w(j)x(j+1) are used to replace the original matrices R∗

wwj , R
∗
w(j)w(j+1), and R∗

w(j)x(j+1). Similarly,

the new vector from the time line of the left-hand side of Eq. (19), z∗new
wj , is used to replace z∗

wj .

These four replacements prepare the smoothed process-noise information equation for wj in case

a future authentication should require another reprocessing pass through sample j. This is a likely

scenario in the case of staggered authentication measurement sets.

The three matrices R̃ww(j+1), R̃wx(j+1), and R̃xx(j+1) from the second and third lines of the left-

hand side of Eq. (18) and the two vectors z̃w(j+1) and z̃x(j+1) from the second and third lines of

the left-hand side of Eq. (19) constitute the information that is needed in order to recursively apply

these operations to successive samples. The vector z̃r(j+1) from the last line of the left-hand side of

Eq. (19) is an authentication residuals vector. It gets discarded.

Fusion of Authenticated Past Data with Current Estimates

The reprocessing recursion terminates at the sample j = k − 1. Its final output is the following

coupled system of two square-root information equations:[
R̃wwk R̃wxk

0 R̃xxk

] [
wk

xk

]
=

[
z̃wk

z̃xk

]
−
[
ṽwk

ṽxk

]
(20)

The final authentication operation fuses this information with the information in the coupled a pos-
teriori square-root information equations in Eq. (1). Combining the two sets of square-root infor-

mation equations yields the system:⎡
⎢⎢⎢⎣
R̂wwk R̂wxk

0 R̂xxk

R̃wwk R̃wxk

0 R̃xxk

⎤
⎥⎥⎥⎦
[
wk

xk

]
=

⎡
⎢⎢⎣
(R̂wwkŵk + R̂wxkx̂k)

(R̂xxkx̂k)
z̃wk

z̃xk

⎤
⎥⎥⎦−

⎡
⎢⎢⎣
vŵk

vx̂k

ṽwk

ṽxk

⎤
⎥⎥⎦ (21)

The large coefficient matrix on the left-hand side of this equation gets QR-factorized as follows:

T̆k

⎡
⎢⎢⎣
R̂new

wwk R̂new
wxk

0 R̂new
xxk

0 0
0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣
R̂wwk R̂wxk

0 R̂xxk

R̃wwk R̃wxk

0 R̃xxk

⎤
⎥⎥⎥⎦ (22)

The block matrix on the right-hand side of this equation is the input to the QR factorization, and

the matrices on the left-hand side are the outputs. The matrix T̆k is orthonormal. The square-root

information matrices R̂new
wwk and R̂new

xxk are square and upper-triangular. The square-root information

component R̂new
wxk is a dense matrix of appropriate dimensions.
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Next, the leading non-homogeneous vector on the right-hand side of Eq. (21) is transformed as

follows: ⎡
⎢⎢⎣
ẑnew
wk

ẑnew
xk

zrak

zrbk

⎤
⎥⎥⎦ = T̆ T

k

⎡
⎢⎢⎣
(R̂wwkŵk + R̂wxkx̂k)

(R̂xxkx̂k)
z̃wk

z̃xk

⎤
⎥⎥⎦ (23)

Next, the new state and process-noise vector estimates are formed as follows:

x̂new
k = (R̂new

xxk )
−1ẑnew

xk

ŵnew
k = (R̂new

wwk)
−1(ẑnew

wk − R̂new
wxkx̂

new
k ) (24)

The lower two output vectors on the left-hand side of of Eq. (23), zrak and zrbk, are residual

error vectors of the authentication. They are discarded.

The final step of the reprocessing algorithm replaces the original a posteriori estimates ŵk and

x̂k with their respective newly updated versions ŵnew
k and x̂new

k . Similarly, the original a posteriori
square-root information matrices R̂wwk, R̂wxk, and R̂xxk are replaced with their respective newly

updated versions R̂new
wwk, R̂new

wxk, and R̂new
xxk .
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