AFRL-AFOSR-UK-TR-2022-0002

Towards a theory of long-step algorithms for large scale optimization

Bolte, Jerome

Fondat J J Laffont Tlse Sciences Eco
21, Allee De Brienne

TOULOUSE, , 31000

FR

10/29/2021
Final Technical Report

DISTRIBUTION A: Distribution approved for public release.

Air Force Research Laboratory
Air Force Office of Scientific Research
European Office of Aerospace Research and Development
Unit 4515 Box 14, APO AE 09421



REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE
29-10-2021 Final

3. DATES COVERED (From - To)
15 Jun 2018 - 14 Jun 2021

4. TITLE AND SUBTITLE
Towards a theory of long-step algorithms for large scale optimization

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA9550-18-1-0226

5c. PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S)
Jerome Bolte

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Fondat J J Laffont Tlse Sciences Eco

21, Allee De Brienne

TOULOUSE, 31000

FR

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
EOARD

UNIT 4515

APO AE 09421-4515

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/AFOSR IOE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)
AFRL-AFOSR-UK-TR-2022-0002

12. DISTRIBUTION/AVAILABILITY STATEMENT
A Distribution Unlimited: PB Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This research achieved its goal to study the design of large steps first-order methods by exploiting the geometry or the regularity of the problems. New
algorithms for optimization were developed, complexity analysis were completed and new geometries were explored for the previously developed NoLips
algorithm, an instance of the Bregman method, which has been exploited by the optimization community. This research generated 15 articles and has
already garnered more than 250 Google Scholar citations. The final report attached references section has links to the produced articles which provide

additional details beyond the overview contained within the final report.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT
a. REPORT b. ABSTRACT c. THIS PAGE

U ] U SAR

18. NUMBER
OF
PAGES

10

19a. NAME OF RESPONSIBLE PERSON
MARK FRIEND

19b. TELEPHONE NUMBER (Include area code)
314-235-6292

Standard Form 298 (Rev.8/98)
Prescribed by ANSI Std. Z39.18



Final report for grant FA9550-18-1-0226, 2019-2021
“Towards a theory of long-step algorithms for large scale Optimization"

PI: Jérome Bolte, TSE / Université Toulouse I Capitole.

Abstract. From an “artificial intelligence" perspective, our goal was to find ways and
settings in which learning rates may be increased, facilitating therefore training and in-
telligence acquisition processes. In the optimization terminology, we focused on “large
steps” first-order algorithms, both deterministic and stochastic, and designed them by
means of various structural and geometrical considerations. In particular, we introduced
and studied a notion of relative smoothness for non Euclidean problem which covers a
wide range of nonsmooth nonconvex problems. Our basic algorithm called NoLips, an
instance of the Bregman method, has already been largely exploited by the optimiza-
tion community. We provided a surprising optimality result: the optimal complexity
of Bregman-like methods is O(1/k) and not O(1/k?) as in the Euclidean case. We also
provided several counterexamples in the convex world related to longstanding problems
involving large steps methods: the steepest descent method with optimal step does not
converge, NoLips does not converge either. We also obtained results in the stochastic
world by providing methods with agressive step-sizes: NoLips with variance reduction,
SGD without replacement sampling, INNA anmethod for deep learning, second-order
stepsize tuning in Deep Learning .
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1 Research overview

The goal of this proposal is to study the possibility of designing large steps first-order
methods by exploiting the geometry or the regularity of the problems. Making large steps
is fundamental for providing efficient and fast methods, either deterministic or stochastic.
For instance, in machine learning, large steps amount to high learning rates and result in
much faster training.

Our research covers nonsmooth nonconvex, deterministic and stochastic optimiza-
tion.

The application domains that we considered range from inverse problems in statistics
to modern problems in Al as Deep Learning .

The COVID19 crisis compromised considerably the work flow for this proposal. A no-
cost extension was awarded.

Research Lines Our work can be divided and understood through different angles.

* New algorithms for optimization: we designed methods starting from a given class
of problems known for their importance in some field, as for instance nonsmooth
problems, composite methods or Deep Learning .

Applications considered: Nonlinear programming, Deep Learning .

* New geometries for long steps method: the ideas behind new geometries are at
the origin of the proposal. They were triggered by one of our previous proposals
FA9550-14-1-0056, and by the introduction of the NoLips algorithm. These geome-
tries generalize the Euclidean case and they can be thus adapted to match many new
problems: either because of the shape of the functions or of the nature of constraints.
The question of determining the best steps was a key question in this proposal too.
Applications considered: Symmetric Nonnegative Factorization, Euclidean Matrix
reconstruction.

¢ Complexity results: we tried to analyze upper and lower-bound for complexity
for Bregman like methods, composite methods and some minmax problems. In
particular we provided the optimal complexity of deterministic Bregman methods.
Consequences: new guarantees, new paths for acceleration

* Negative results: in our quest to augment step-length, we also discovered several
limitations that were unknown to the community. Indeed, some well known meth-
ods may have an acceptable complexity, yet the underlying sequence may oscillate
indefinitely near the minimizers’ set.

Consequences: many counterexamples, search for new rigidity assumptions.

The project in numbers
— 15 articles were produced, some of them appeared in high ranked journals or con-
terences as NeurIPS, Math. Prog., Math. OR, JEMS, ICML.

2
DISTRIBUTION A: Distribution approved for public release. Distribution unlimited



— a dozen of conferences, organization of seminars,

— we cofounded the French Optimization Seminar (2020) (in order to foster research
in our environment during the COVID crisis)
https://gdrmoa.math.cnrs.fr/seminaire—-francais—optimisation/

— one prize was obtained, U. Rothblum OR prize, Israel, on the very subject of the
proposal:
J. Bolte, S. Sabach, M. Teboulle, Y. Vaisbourd, First order methods beyond convexity and
Lipschitz gradient continuity with applications to quadratic inverse problems

— J. Bolte was awarded a chair in Al within the Artificial and Natural Intelligence
Toulouse Institute (ANITI) within Villani’s national Al plan.
His chair is entitled "Large scale Optimization for AI"

Involved researchers
— Jérdme Bolte, Full Professor, TSE, ANITI, Université Toulouse Capitole.
— Edouard Pauwels, Assistant Professor, ANITI and University Toulouse 3.
— Radu Dragomir, University Toulouse 3 & ENS Paris, now UC Louvain

— Rodolfo Rios-Zertuche, ANITI and LAAS

2 Main results

2.1 The NoLips algorithm and its extensions

The central method we consider is based on the Bregman gradient method
1 = argminy f(zg) + (Vf(@r), u — 2i) + ADp(u, 23, (BG)

where the Euclidean distance has been replaced by the Bregman distance (see Figure 1)

Dy(x,y) := h(z) — h(y) — (Vh(y),z — y)

induced by some strictly convex and continuously differentiable kernel function h. Under
the assumption that Lh— f is convex and A < 1/L, the complexity of the method is O(1/k).
This is the discovery in reference [A] funded by USAF in a previous proposal which has
now more than 200 Google Scholar citations. We called the fundamental property “Lh — f
convex" relative smoothness.

We focus here on the most salient novelties
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Figure 1: Effect of Bregman divergence on elementary steps

NoLips in the nonconvex world [6] We focused on nonconvex and nonsmooth mini-
mization problems with a composite objective, where the differentiable part of the objec-
tive is freed from the usual and restrictive global Lipschitz gradient continuity assump-
tion as explained above. This longstanding smoothness restriction is pervasive in first
order methods, and recently was circumvented for convex composite optimization in [A]
through a simple framework which captures, all at once, the geometry of the function and
of the feasible set. Building on this work, we tackled genuine nonconvex problems. We
complemented and extended the approach in [A] to derive an extended descent lemma.
We then considered a Bregman-based proximal gradient method for the nonconvex com-
posite model with relatively smooth functions, which is proven to globally converge to
a critical point under natural assumptions on the problem’s data, and in particular for
semialgebraic problems. To illustrate the potential of our general framework and results,
we consider a broad class of quadratic inverse problems with sparsity constraints which
arises in many fundamental applications, as phase retrieval and we applied our approach
to derive new globally convergent schemes for this class.

Low-rank reconstruction [9] This work is in the line of the previous one. The problem
consists of solving inverse problems or minimizing losses with rank constraints, which
is a form of algebraic sparsity. Using a model of Burer-Monteiro, we provided a univer-
sal kernel for treating such problems with large steps quartic methods. We applied our
findings to symmetric nonnegative matrix factorization which is a key approach to prob-
abilistic clustering or graph clustering. We also considered Euclidean distance matrix
completion which is a fundamental problem with applications in sensor network local-
ization and the study of the conformation of molecules. In that case, we developed new
specific geometries (Gram Kernels) which provide remarkably fast results. Additionally,
we proposed a dynamical update strategy, called DynNoLips, that allows to increase the
step size beyond the conservative value predicted by theory and thus take advantage of
local regularity of the function.
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Let us provide an example that illustrates our findings on NoLips algorithm. We wish
to recover the position of n points X7,..., X in R" from an incomplete set of pairwise
distances {d;; = || X; — X7||?| (¢, j) € Q}. We then face the following quadratic problem:

min f(X)= 3 (1% - X[ - dyy)?

X RTLXT‘
< (4,7)€Q
for which we used a Gram kernel as detailed in [9].
Experiments on synthetic Helix

dataset with 10% known distances,
dimension » = 3.

Dyn-NoLips Dyn-NoLips
102 ----- Dyn-NoLips-Gram L A e Dyn-NoLips-Gram
- - =GD + Armijo 10 - - =GD + Armijo
Trust region Trust region

RMSE
RMSE

A
0 10 20 30 40 0 50 100 150
CPU Time (s) CPU Time (s)
(a) n =2000,r =3 (b) n =5000,r =3

Figure 2: Euclidean matrix completion problems on the Helix dataset, with 10% known distances and
two different problem sizes. We present the normalized RMSE over the full distance matrix versus CPU
time. The results are averaged over 10 random initializations.

Lower bound for complexities [11] We obtained surprising negative results, a generic
NoLips method cannot reach a precision e with less than O(1/¢) iterations. This contrasts
with what was known in the Euclidean case where O(1/+/¢) is a sharp bound. Our proof
relies on a tricky counter-example which was guessed by computer-aided method. The
counter-example features very awkward level sets so that the progress at each step is
very limited whatever the descent strategy. On the bright side this also shows that the
complexity provided in our paper [A] on NoLips is optimal (up to a constant).

2.2 Negative results [4]

In a recent article accepted at Math. Prog., we provided counterexamples to some old-
standing optimization problems in the smooth convex coercive setting. These examples
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are based on general smooth convex interpolation results. Given a decreasing sequence
of positively curved C? convex compact sets in the plane, we provided a level set inter-
polation of a C” smooth convex function where p > 2 is arbitrary. If the intersection is
reduced to one point our interpolant has a positive definite Hessian, otherwise it is posi-
tive definite out of the solution set.

Exact line search: the case of smooth convex coercive functions Exact line search con-
stitutes a natural way to use gradient descent with large steps. In a smooth convex opti-
mization context, this method is know to converge in value and has an O(1/k) complexity.
Our approach allows to produce a smooth convex function and a well defined exact line
search sequence which does not converge.

Non convergence of NoLips Using the interpolation technique we developed we pro-
duced a continuous Legendre function % on a square S in the plane and a function f such
that the algorithm (BG) produce a sequence z;, that does not converge. Note however that
f(x)) converges to ming f in O(1/k).

The two counterexamples above provides a fresh insight into old problems and raises
the question of finding new rigidity assumptions to avoid these surprising pathologies.

2.3 Stochastic algorithms

Longer steps in Deep Learning [7] In Deep Learning the classical SGD method is ap-
plied using steps in O(1/v/k) where k is the epoch counter. Using the theory of Benaim-
Hofbauer-Sorin we showed that this bound is pessimistic and much more aggressive
steps can be taken up to o(1/log(k)). In this spirit, we also provided an algorithm sta-
bilizing oscillations, called INNA, who is competing with the fastest methods for Deep
Learning as ADAM. Our approach is inspired by the following continuous-time dynam-
ical system introduced in a paper by Alvarez, Attouch, Bolte, Redont in 2003:

0t) + aft) +BV2I0(t)6(t)+ VJ(O() = 0, forte [0, +00),
~~ N——" N V N——

NV
Inertial term  Friction term Newtonian effects Gravity effect

where ¢ is the time parameter which acts as a continuous epoch counter, J is a given
loss function (e.g., the empirical loss in DL applications), for now assumed C? (twice-
differentiable), with gradient V.J and Hessian V?.J. We managed to adapt this method
to nonsmooth Deep Learning problem by circumventing smoothness issues through a
change of variable allowing as well “mini-batching". Figure 3 gives an idea of the local
geometric intelligence of our method.

6
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Figure 3: Illustration of the role of the hyper-parameters of INNA on the non-smooth function

J(61,05) = 100(02 — |01])* + |1 — 61|. The results are simulated using a full-batch version of the algorithm
for three choices of hyper-parameters « and . Subplot (d) displays the values of the objective function for
the three settings considered.

Below we present some results on image classification: Classification of 60000 images
in 100 categories with a moderately large neural network called NilN.
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Fast Stochastic Bregman Gradient Methods: Sharp Analysis and Variance Reduction
[10] We study stochastic Bregman gradient methods for minimizing functions satisfying
the relative regularity property. First, we show that the standard stochastic Bregman
gradient method converges to a neighborhood of the optimum and oscillates because of
the noise in the stochastic gradient estimate. A usual strategy to counter the effect of this
noise is to use decreasing step size values, which causes the method to converge slowly.
We rather propose to apply variance reduction techniques in order to use a fixed step
size and obtain a fast convergence rate, at the expense of needing more memory to store
previously computed gradients.

Let us provide an illustration of our algorithms BSGD and BSAGA (algorithm MU
below is the state of the art method) for inverse problem with Poisson noise

f(z) = Dkp(b,Az), h(z)= Z —log "

=1

103 e MU
-’-BSAGA
=3¢ BSGD

- 102 =@®- BGD
=

£

*g 10!

< === %

wn

100

1071 . ' ' ,

0 200 400 600 800
Epoch

Sinogram Ax*

3 Aggressive steps in mini batch minimization [14]

We consider here nonconvex finite sum optimization, which is a typical problem arising in
Deep Learning . Modern methods for this type of problems use minibatches and analyze
the convergence through stochastic lenses.

A typical step size scheme for stochastic with replacement sampling decays like 1/v/k
where £ is the iteration counter. In the context of “without replacement sampling (in-
cremental methods)", we show that a less agressive step size strategy allows to obtain a
faster convergence rate. Furthermore, this can be implemented in way which is adaptive
to smoothness constants of the problem.

Adagrad step size has became a widespread preconditioning tool in machine learning.
It adapts the steps sizes in a coordinatewise fashion, leaving the possibility to perform
large steps for certain blocks of variables while keeping small steps for others (which

8
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was also the spirit of our production [2]). We prove that the sequences generated by this
algorithm converge in a smooth convex optimization context.

4 Conclusion and future works

The subject and the research presented in this proposal had a substantial impact on the
optimization community since it gathers already more than 250 Google Scholar citations
at this day (including our initial publication [A]).

The identification of an obstruction to acceleration for general kernels suggests fo-
cusing on more specific problems with concrete kernels: Boltzmann entropy, power type
functions, or Burg’s entropy. The acceleration problem for specific kernels has also at-
tracted a lot of interest and still does. We are currently investigating this issue.

We also investigated a new research line related to AI. We are indeed working to de-
sign large steps in Deep Learning training and even in GANSs (see e.g., [3]). This is a
delicate matter because steps must vanish when activation functions are nonsmooth (eg
ReLU, maxpool). On the other hand, qualification conditions are generally absent so that
automatic differentiation does not always provide subgradient.
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