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1. Introduction

Recently, there has been increased interest on investigating technologies and method-
ologies to extend the range of guided munitions for improved battlefield coverage.
Some of these include optimization of the munition aerodynamic design, analysis of
control surface designs and actuator requirements, and trajectory shaping.1–5 For the
flight control designs of these guided munitions, adaptive control algorithms have
been considered owing to their ability to suppress the effect of system uncertainties
through the use of parameter estimates to tune control gains online.

An often neglected aspect in the design of these adaptive control architectures is
the role the actuator dynamics play in limiting the achievable stability. This simpli-
fication is made by assuming the actuator dynamics are sufficiently fast such that
the actuator output is, in a practical sense, equivalent to the desired input from the
adaptive control law. However, since the adaptive control law relies on access to the
system uncertainties and the actuator dynamics interfere with this direct access, if
the actuator dynamics are not sufficiently fast, the capability of the adaptive control
law to suppress the system uncertainties can be limited and instability can occur.

Recently Gruenwald et al.6,7 propose an approach using an expanded reference
model such that the trajectories of this reference model are not significantly al-
tered. Furthermore, recent work in Gruenwald and Bryson4 applied the expanded
reference model approach to a fin-controlled guided munition. The limitation of the
approach used in Gruenwald et al.4,6,7 is that only a first-order actuator model is
considered. For more practical applications, it is more appropriate to consider the
use of actuator dynamics represented in a high-order model. This report presents a
generalization of the expanded reference model adaptive control architecture to ac-
count for high-order actuator dynamics. The proposed adaptive control architecture
is applied to a high-speed guided projectile example using the longitudinal dynam-
ics and a second-order actuator model.

2. Projectile Model

The Laboratory Technology Vehicle (LTV) is an engineering test-bed projectile
used by the US Army Combat Capabilities Development Command (DEVCOM)
Army Research Laboratory (ARL) to experiment with various gun-launched, guided
flight and maneuver technologies. The LTV flight body was shaped through a series
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of optimization analyses that identified design candidates with low drag and high
length-to-diameter (L/D) ratios while maintaining marginal stability across the su-
personic Mach regime.1,8,9 The body is 105 mm in diameter and 10 cal. (1.05 m)
in length with a 0.5-cal. 7◦ boattail, and has a center of gravity (CG) located 5.6

cal. back from the nose. The projectile has a 30% ogive nose as a trade-off between
drag and payload volume. There are four low-aspect-ratio fins arrayed symmet-
rically around the body. The projectile is designed to be sabot launched from an
8-inch-diameter gun with no deploying aerodynamic surfaces, which limits the fin
span to 8 inches tip to tip. Figure 1 shows an illustration of the LTV flight body in
a configuration with a 10.5-mm-radius rounded nose tip and 80-mm-chord control
surfaces hinged at their leading edges. The mass properties for this variant are given
in Table 1.

Fig. 1 Illustration of the LTV flight body. Dimensions given in millimeters.

Table 1 Mass properties for LTV

Mass Properties Unit

Mass 16.8 kg
CGx 588 mm from nose
CGy, CGz on center line
Ixx 0.0273 kg −m3

Iyy, Izz 1.247 kg −m3

For this analysis, the projectile is configured to fly in the “X” configuration with the
roll angle location of movable surface i given by ϕi

MAS = [45◦, 135◦, 225◦, 315◦]

for δ1, δ2, δ3, and δ4, respectively, as illustrated in Fig. 2.

In this work, the longitudinal dynamics of the projectile are considered. The lin-
earized longitudinal aerodynamic model and pitch-plane equations of motion for

2



Fig. 2 Fin control surface configuration and deflection sign convention. View is from projectile
base.

the projectile can be written as

q̇(t) =
QSD

Izz

D

2V
Cmqq(t)−

mD

Izz

Cmα

CZα

ẇ(t) +
QSD

Izz
Cmδq

δq(t), (1)

ẅ(t) = −QS

m
CZαq(t) +

QS

mV
CZαẇ(t), (2)

with the aerodynamic parameters given in Table 2. In addition, q(t) denotes the
pitch rate, ẇ(t) denotes the translational acceleration in the pitch plane, and δq(t)

denotes the deflection command in the pitch channel.

Table 2 Aerodynamic parameters for LTV

V Total velocity of projectile
Q Dynamic pressure, 1

2ρV
2

S, D Aerodynamic reference area and aerodynamic reference
diameter

m, ρ Mass and air density
Izz Moment of inertia about body-frame z-axis
CZα

, Cmα
, Cmq

Coefficients for Z-axis aerodynamic force, aerodynamic pitch
moment, and pitch damping

Cmδq
Coefficient of control derivatives pitch

It then follows that Eqs. 1 and 2 can be written in compact form as

ẋ0(t) = A0x0(t) +B0u0(t), (3)

where x0(t) = [q(t), ẇ(t)]T is the state vector, u0(t) = δq(t) is the control signal,
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and

A0 =

QSD
Izz

D
2V

Cmq −mD
Izz

Cmα

CZα

−QS
m
CZα

QS
mV

CZα

 , B0 =

QSD
Izz

Cmδq

0

 .

3. Model Reference Adaptive Control Architecture

We now provide a brief overview of the standard model reference adaptive control
problem in its generalized mathematical framework. For this purpose, consider the
class of uncertain dynamical systems given by

ẋ(t) = Ax(t) +B
(
u(t) +WTx(t)

)
, x(0) = x0, (4)

where x(t) ∈ Rn is the measurable state vector, u(t) ∈ Rm is the control signal,
A ∈ Rn×n and B ∈ Rn×m are known system matrices and the pair (A,B) is con-
trollable, and W ∈ Rn×m is an unknown weight matrix. The linearized longitudinal
dynamics for the LTV given by Eq. 3 fits the form of Eq. 4 where “W ” captures any
uncertainty in the aerodynamic coefficients.

Next, consider the reference model capturing a desired closed-loop dynamical sys-
tem performance given by

ẋr(t) = Arxr(t) +Brc(t), xr(0) = xr0, (5)

where xr(t) ∈ Rn is the reference state vector, Ar ∈ Rn×n is the Hurwitz reference
model matrix, Br ∈ Rn×m is the command input matrix, and c(t) ∈ Rm is the de-
sired uniformly continuous smooth and bounded reference command. The classical
objective of the model reference adaptive control problem is to design an adaptive
feedback control law such that the state vector x(t) follows the reference state vec-
tor xr(t) in the presence of system uncertainties captured by the unknown matrices
“W ”.

With this objective in mind, let the feedback control law be given as

u(t) = −K1x(t) +K2c(t)− ŴT(t)x(t), (6)

where K1 ∈ Rm×n and K2 ∈ Rm×m are the nominal feedback and feedforward
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gain matrices designed such that Ar ≜ A−BK1 and Br ≜ BK2 hold. In addition,
Ŵ (t) ∈ Rn×m is the (online) estimate of W satisfying the weight update laws.

˙̂
W (t) = γProjm

[
Ŵ (t), x(t)eT(t)PB

]
, Ŵ (0) = Ŵ0, (7)

where γ ∈ R+ is the learning rate, P ∈ Rn×n
+ is the solution of the Lyapunov

equation 0 = AT
r P+PAr+R, R ∈ Rn×n

+ , and e(t) ≜ x(t)−xr(t) is the system error
state vector. The full definition of the projection operator is given in the Appendix,
but it should be noted here that a key function of the projection operator is to provide
robustness with respect to the parametric uncertainties10 represented by “W ”. This
is accomplished by enforcing uniform bounds on the adaptive parameters “Ŵ (t)”.

Using Eqs. 4, 5, and 6, the system error dynamics can then be put into the form

ė(t) = Are(t)−BW̃T(t)x(t), e(0) = e0, (8)

where W̃ (t) ≜ Ŵ (t)−W ∈ Rn×m.

Remark 3.1 From Eq. 8, the weight update law Eq. 7 can be easily derived using

the Lyapunov function candidate V(e, W̃ ) = eTPe + γ−1tr W̃TW̃ .10–12 Specif-

ically, from the time derivative of this Lyapunov function (i.e., V̇(e(t), W̃ (t)) ≤
−eT(t)Re(t) ≤ 0), one can conclude the solution (e(t), W̃ (t)) is bounded for all

time. Furthermore, one can then show V̈ (e(t), W̃ (t)) is bounded such that invoking

Barbalat’s lemma13 it can be concluded that limt→∞ V̇
(
e(t), W̃ (t)

)
= 0. This con-

sequently shows that e(t) → 0 as t → ∞, thereby achieving the classical objective

of the model reference adaptive control problem.

4. Expanded Reference Model for High-Order Actuator
Dynamics

A major challenge for the implementation of model reference adaptive control ar-
chitectures is the exclusion of actuator dynamics in the theoretical development.
This is done by making the assumption that the actuator dynamics are fast enough
such that the actuation system is properly applying the desired control signal. In this
section, we introduce the proposed adaptive control architecture that allows for the
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trajectories of the LTV projectile dynamics represented by Eq. 4 to follow the de-
sired reference model trajectories in the presence of high-order actuator dynamics.
In particular, we rewrite Eq. 4 as

ẋ(t) = Ax(t) +B
(
v(t) +WTx(t)

)
, x(0) = x0, (9)

where the control signal u(t) as in Eq. 4 is now replaced with v(t) representing the
measurable output of the actuator dynamics given by

ẋc(t) = Fxc(t) +Gu(t), xc(0) = xc0,

v(t) = Hxc(t), (10)

with xc(t) ∈ Rp being the actuator state vector, F ∈ Rp×p being a Hurwitz actuator
state matrix, G ∈ Rp×m being the actuator input matrix, and H ∈ Rm×p being the
actuator output matrix.

To account for the actuator dynamics given by Eq. 10, we design an expanded ref-
erence model4,7 as[

ẋr(t)

ẋcr(t)

]
︸ ︷︷ ︸

żr(t)

=

[
A+BŴT(t) BH

−G
(
K1 + ŴT(t)

)
F −GK3

]
︸ ︷︷ ︸

Fr

(
Ŵ (t)

)
[
xr(t)

xcr(t)

]
︸ ︷︷ ︸

zr(t)

+

[
0n×m

GK2

]
︸ ︷︷ ︸

Gr

c(t), (11)

where K1 ∈ Rm×n and K2 ∈ Rm×m are the nominal gains designed such that Ar =

A − BK1 is Hurwitz, Br = BK2 with K2 being nonsingular, and −EA−1
r Br = I

with E ∈ Rm×n being a matrix that allows a user to select a subset x(t) to follow
c(t). In addition, K3 ∈ Rm×p is an additional gain matrix and Ŵ (t) ∈ Rn×m is the
estimate of W for which the weight update laws are introduced later.

Next, to achieve tracking of the expanded reference model Eq. 11, let the feedback
control law be given by

u(t) = −K1x(t) +K2c(t)−K3x̂c(t)− ŴT(t)x(t), (12)

where Ŵ (t) satisfies the weight update law
˙̂
W (t) = γProjm

[
Ŵ (t), x(t)z̃T(t)PB

]
, Ŵ (0) = Ŵ0, (13)
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with γ ∈ R+ being the learning rate, z̃(t) = [eT(t), (x̂T
c (t)−xT

cr(t))]
T ∈ Rn+p being

the augmented error of the system error state vector e(t) ∈ Rn and the actuator state
estimate error, P ∈ R(n+p)×(n+p)

+ being a solution of a matrix inequality given by
Eq. 16, and B = [BT, 0m×p]

T ∈ R(n+p)×m. In addition, the projection bounds are
defined such that ŵmin,i+(j−1)n ≤ [Ŵ (t)]ij ≤ ŵmax,i+(j−1)n, for i = 1, ..., n and
j = 1, ...,m. Furthermore, since the actuator state is not measurable, an observer is
used to estimate the actuator state. The observer is designed as

˙̂xc(t) = Fx̂c(t) +Gu(t) + L
(
v(t)−Hx̂c(t)

)
, x̂c(0) = x̂c0, (14)

where L ∈ Rp×m is a gain matrix designed such that F − LH is Hurwitz.

As noted previously, the last part of the proposed adaptive control architecture is
obtaining the solution P . This is done using linear matrix inequalities (LMIs). The
main feature of this is that one can determine ahead of time for given projection
bounds Ŵmax for the elements of Ŵ (t) and the parameters of the actuator dynam-
ics contained within F , G, and H , that the actuator dynamics are sufficiently fast
enough to suppress the effect of the considered system uncertainties. For this pur-
pose, let W i ∈ Rn×m represent all the possible variations in Ŵ (t) Now, let

Ai =

A+BW
T

i + ϵ
2
In BH

−G
(
K1 +W

T

i

)
F −GK3

)
+ ϵ

2
Ip

 , (15)

be the corners of the hypercube constructed from all the permutations of W i, where
ϵ ∈ R+ is an additional design parameter. For given actuator dynamics represented
by F , G, and H , one can then solve the LMI given by

AT
i P + PAi < 0, P > 0, (16)

to calculate P , which is then used in the weight update law (Eq. 13).
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5. Simulation Results

In this section, we present the simulation studies conducted on the LTV projectile
model presented in Section 3. We consider a flight configuration at Mach 2 and sea
level and a second-order actuator model such that

F =

[
0 1

−ω2
n −2ζωn

]
, G =

[
0

1

]
, H =

[
ω2
n 0

]
, (17)

where ωn is the natural frequency and ζ is the damping ratio. For this study, we
selected an actuator model such that ζ = 1 and ωn = 250 rad/s. The uncertainties
considered emulate a 200% change in the aerodynamic stability coefficient Cmα

and a 1000% change in the pitch damping coefficient Cmq . These are made large to
make the uncertain projectile model, with a nominal control, unstable. The initial
conditions are all set to zero.

Linear quadratic regulator theory14 is used to design the nominal controller gains.
The feedback gain matrix K1 and the gain K3 are tuned simultaneously using the
weighting matrices Q = diag([0.1, 100, 100, 100]) to penalize the states and
R = 1000 to penalize the control input. This results in K1 = [9.5682, 0.2107]

and K3 = 104 × [6.2299, 0.0112], and gives a desirable 79.2◦ phase margin and a
crossover frequency of 173 rad/s. The feedforward gain K2 is designed such that
the desired pitch acceleration ẇ(t) is followed. For this purpose, using E = [0, 1],
the gain K2 is calculated as K2 = −(EA−1

r B)−1 = 0.3198. Furthermore, the
observer gain L, is also designed using linear quadratic regulator theory with the
weighting matrices QL = diag([1000, 1000]) and RL = 0.01 resulting in L =

[316.23, −0.684]T. Figures 3 and 4 show the nominal baseline control performance
for the case in which there is no system uncertainty and then with the uncertainty
in the aerodynamic stability coefficient Cmα and the pitch damping coefficient Cmq

included. It can be seen that when the uncertainty is added, the nominal control is
not sufficient to provide stability for the projectile flight control.

In the proposed controller, we use the feasible solution P from the LMI analysis
highlighted in the previous section. This is obtained for the considered example with
ϵ = 0.35 and the selected elemental projection bounds given by 0 ≤

[
Ŵ (t)

]
1
≤

1.7952 and −0.0994 ≤
[
Ŵ (t)

]
2
≤ 0. The projection bounds are selected to provide

a 5% tolerance for the estimation of the unknown parameters in the uncertainty

8



Fig. 3 Nominal baseline control performance with no system uncertainty

Fig. 4 Nominal baseline control performance with system uncertainty included. Projectile
response is unstable as expected.
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matrix “W ”. The learning gain for the adaptive control is set as γ = 5000.

Figure 5 shows the control performance. It can be seen that in the presence of sys-
tem uncertainties, the adaptive control allows for quick tracking of the reference
model trajectories in the pitch acceleration ẇ(t) and the pitch rate q(t), and the ac-
tuator is fast enough that the output v(t) is very close to the desired control input
u(t). This is to be expected since the LMI analysis produces a feasible solution P
for the considered actuator dynamics and system uncertainties. Figures 6–8 show
the results of further increasing the uncertainty in the pitch damping coefficient
Cmq to 1500%, 2000%, and 2500%, respectively, of the true value. For the first two
increases, the LMI analysis provides a feasible solution P , implying that the actu-
ator dynamics are still fast enough to provide the appropriate control to suppress
the increased level of uncertainty. This can be seen in Figs. 6 and 7. While there
is increased oscillation, the overall result remains stable and the projectile trajec-
tories track the reference system. However, when the uncertainty is increased by
2500%, the LMI analysis does not produce a feasible solution P . This implies the
actuator is not fast enough for this level of uncertainty as can be seen in Fig. 8. It
can be noted from Fig. 8 that while the projectile system eventually stabilizes and
tracks the desired reference trajectories, the performance is severely degraded and
would be undesirable. This alludes to some conservatism in the proposed LMI ap-
proach. Through further increase in the uncertainty, it was found that the instability
occurred after a 2650% increase in the pitch damping coefficient Cmq .

6. Conclusion

In this work, a new model reference adaptive control architecture was documented
for uncertain dynamical systems with high-order actuator dynamics. The proposed
approach uses an expanded reference model constructed with the actuator model
included. This allows for the proper application of the adaptive control signal. An
LMI analysis is then used to compute a priori that the actuator dynamics are in fact
fast enough to suppress the considered level of uncertainty. This results in a feasible
solution P that is used in the weight estimate law. Simulation studies were carried
out on the DEVCOM ARL LTV projectile model to elucidate the proposed control
architecture. Future research can include extending the scope of the proposed ap-
proach to the case in which the system uncertainties are nonlinear such that a wider
class of practical applications can be considered.
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Fig. 5 Expanded reference model control performance for 1000% increase in the uncertainty
of the pitch damping coefficient Cmq

Fig. 6 Expanded reference model control performance for 1500% increase in the uncertainty
of the pitch damping coefficient Cmq

11



Fig. 7 Expanded reference model control performance for 2000% increase in the uncertainty
of the pitch damping coefficient Cmq

Fig. 8 Expanded reference model control performance for 2500% increase in the uncertainty
of the pitch damping coefficient Cmq

12
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Definition A.1 Consider a convex hypercube in the form Ω =
{
θ ∈ Rn : (θmin

i ≤ θi

≤ θmax
i )i=1,2,...,n} , where Ω ∈ Rn, and θmin

i and θmax
i , respectively, represent the

minimum and maximum bounds for the ith component of the n-dimensional param-

eter vector θ. Furthermore, for a sufficiently small positive constant ϵ0, consider an-

other hypercube in the form Ωϵ =
{
θ ∈ Rn : (θmin

i +ϵ0 ≤ θi ≤ θmax
i − ϵ0)i=1,2,...,n} ,

where Ωϵ ⊂ Ω. The projection operator Proj : Rn × Rn → Rn is then defined

component-wise by

Proj(θ, y) ≜


(

θmax
i −θi

ϵ0

)
yi, if θi > θmax

i − ϵ0 and yi > 0,(
θi−θmin

i

ϵ0

)
yi, if θi < θmin

i + ϵ0 and yi < 0,

yi, otherwise,

where y ∈ Rn.

Based on Definition A.1 and θ∗ ∈ Ωϵ, one can show the inequality

(θ − θ∗)T (Proj (θ, y)− y) ≤ 0,

holds for θ ∈ Ω and y ∈ Rn [10]. In addition, we use a generalization of this defini-
tion to matrices for (Eq. 13 in main text) as Projm(Θ, Y ) =

(
Proj(col1(Θ), col1(Y )),

. . . ,Proj(colm(Θ), colm (Y ))
)
, where Θ ∈ Rn×m, Y ∈ Rn×m, and coli(·) denotes

the i-th column operator. In this case, for a given matrix Θ∗, it follows that

tr
[
(Θ−Θ∗)T(Projm(Θ, Y )− Y )

]
=

m∑
i=1

[
coli(Θ−Θ∗)T(Proj(coli(Θ), coli(Y ))

−coli(Y ))
]
≤ 0,

holds.
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List of Symbols, Abbreviations, and Acronyms
ARL Army Research Laboratory

CG center of gravity

DEVCOM US Army Combat Capabilities Development Command

L/D length-to-diameter ratio

LMI linear matrix inequality

LTV Laboratory Technology Vehicle

MATHEMATICAL SYMBOLS:

R the set of real numbers.

Rn the set of n× 1 real column vectors.

Rn×m the set of n×m real matrices.

R+ the set of positive real numbers.

Rn×n
+ the set of n× n positive-definite real matrices.

0n×m the n×m matrix of all zeros.

In the n× n identity matrix.

≜ the equality by definition.

MATHEMATICAL OPERATORS:

( ˙ ) the overdot denotes the time-derivative.

(·)T the transpose operator.

(·)−1 the inverse operator.

tr(·) the trace operator.
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