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1.   INTRODUCTION: 
An important health problem affecting veterans and Americans with type 2 diabetes is the high rate 
of diabetic foot infection (DFI) and is most often caused by the bacterium Staphylococcus aureus. 
For people with diabetes, these infections are harder to treat and often result in antibiotic 
therapeutic failure, which can lead to antibiotic resistance. We hypothesize that the metabolic state 
of the host can impact bacterial metabolism and contribute to altered antibiotic susceptibility in the 
microbiome and in diabetic foot infections (DFI). The goal of this project is to define the antibiotic 
response of the total microbiome in the gut as well as S. aureus in the hindfoot infection in 
hyperglycemic mice. Over the past year, we have made progress in writing up the results of Aim 2 
of the proposal. This manuscript was submitted to Cell Reports, and we are in the process of 
conducting experiments and revisions requested by the reviewers and editor. This work outlines our 
data on the impact of hyperglycemia on the murine microbiome with and without antibiotic 
exposure. Our new data indicate that hyperglycemia predisposes the microbiome to antibiotic-
induced perturbation as well as post-antibiotic colonization with enteric pathogens. During the 
remaining time of the NCE we aim to finalize revisions to the Cell Reports manuscript and resubmit. 
During the past year, we have also published a related article in MSystems.   

2.   KEYWORDS: 

Microbiome, hyperglycemia, infection, diabetic foot infection, staphylococcus aureus, antibiotic, antibiotic 
resistance, and dysbiosis. 

3.   ACCOMPLISHMENTS: 

o What were the major goals of the project? 

We proposed to study the impacts of host hyperglycemia on antibiotic efficacy in 
pathogenic bacteria and the microbiome. This work is vital to understanding the high 
rate of infections and therapeutic failure among patients with diabetes mellitus, 
particularly diabetic veterans. 

Aim 1) Determine the impacts of induced hyperglycemia on pathogen killing by 
bactericidal antibiotics and relate these results to the activity of metabolism-based 
tolerance mechanisms. This aim is divided into two parts Aim 1A and Aim 1B. The 
goal of Aim 1A is to utilize a bioluminescent strain of S. aureus to determine the 
impacts of hyperglycemia on antibiotic mediated clearance of a DFI infection while 
the goal for Aim 1B is to use a Tn-Seq library in S. aureus to identify genes 
responsible for hyperglycemia-induced tolerance. 

Aim 2) Determine the impacts of induced hyperglycemia on the composition of the 
murine gut microbiome and its functional response to bactericidal antibiotics. 

In addition, we proposed to submit an R01 at the one-year mark to continue funding 
of this project. 

o What was accomplished under these goals?

Aim 1) During earlier cycles we reported significant progress on Aim 1; thus, in this 
past year of the work we have mostly focused on writing up the microbiome work 
completed for Aim 2. 
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Aim 2) We have generated data that indicates that hyperglycemia impacts the 
structure of the microbiome and its response to amoxicillin (AMX). We also 
conducted metagenomics, metatranscriptomics, and metabolomics that link these 
taxonomic impacts to functional responses and metabolite availability during STZ 
induce hyperglycemia. 

In addition, our data indicated that after antibiotic treatment STZ mice have an 
overabundance of ethanolamines, that past studies have associated with 
Salmonella colonization susceptibility. To test if these conditions predispose mice to 
colonization STZ-treated and normoglycemic mice were challenged with Salmonella 
enterica serovar Typhimurium at infective doses between 1x10^2 and 1x10^6 
colony forming units. We found that STZ treatment both lowered the threshold 
required to establish infection after AMX treatment and worsened disease outcomes 
as measured by lethality. Specifically, at all tested infection doses, hyperglycemia 
increased lethality by day 7 and significantly increases the total pathogenic load 
within the intestines. 

Over the past year, we have made progress in writing up the results of Aim 2 of the 
proposal. This manuscript was submitted to Cell Reports, and we are in the process 
of conducting experiments and revisions requested by the reviewers and editor. The 
initial submission is included in the appendix of this report. This work outlines our 
data on the impact of hyperglycemia on the murine microbiome with and without 
antibiotic exposure. Our new data indicate that hyperglycemia predisposes the 
microbiome to antibiotic-induced perturbation as well as post-antibiotic colonization 
with enteric pathogens. During the remaining time of the NCE we aim to finalize 
revisions to the Cell Reports manuscript and resubmit. During the past year, we 
have also published a related article in MSystems. 

What opportunities for training and professional development has the project provided? 

"Nothing to Report." 

o How were the results disseminated to communities of interest?

Publications 

1. Cabral D.J, Wurster J.I, Korry B.J, Penumutchu S., Belenky P. “Consumption of a
Western-Style Diet Modulates the Response of the Murine Gut Microbiome to
Ciprofloxacin”. mSystems. (2020) Jul 28;5(4):e00317-20. doi: 10.1128/mSystems.00317-
20. PMID: 32723789; PMCID: PMC7394352 (Research paper)

Presentations describing this work 
1. 2020    “Microbial Metabolism is a Determinant of Antibiotic-induced Disruption of the Gut

Microbiome”   Microbiology and Immunology Dartmouth Medical School, Hanover, NH
2. 2020    “Microbial Metabolism is a Determinant of Antibiotic-induced Disruption of the Gut

Microbiome”   Bacteriology & the Biology Program University of Wisconsin Madison,
Madison, WI

3. 2020    “Host and Microbial Metabolism as Determinants of Antibiotic-induced Disruption in the
Microbiome”   2020 North American Cystic Fibrosis Conference, Phoenix (virtual), AZ

4. 2021    “Microbial metabolism is a modulator of antibiotic efficacy and dysbiosis in the
microbiome”   Mayo Clinic MPET, Rochester MN
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o What do you plan to do during the next reporting period to accomplish the goals?

We will complete the revisions requested by Cell reports and resubmit. 

4.   IMPACT: 

o What was the impact on the development of the principal discipline(s) of the project? 

So far, the key developmental impact from this work has been in demonstrating the 
capacity of metatranscriptomics to define the responses of bacteria to antibiotics in 
the microbiome. We envision that in the same way the RNA-seq has revolutionized 
in vitro microbiology this new capacity will revolutionize the study of bacteria in their 
natural environment. 

o What was the impact on other disciplines?

I believe that the metatranscriptomics approach that we demonstrated is applicable 
outside of ID research as well. 

o What was the impact on technology transfer?

"Nothing to Report." 

o What was the impact on society beyond science and technology?

"Nothing to Report." 

5.   CHANGES/PROBLEMS:

o Changes in approach and reasons for change 

Nothing to report 

o Actual or anticipated problems or delays and actions or plans to resolve them

Starting from March 9th 2020 the physical space of the Belenky lab has been largely
shutdown due to the COVID19 crisis. In June 2020 the lab was partially reopened
(approximately 20% capacity). Over the past year the situation has improved and the lab is
currently at all most full capacity, However, it is important to note that the short- and long-
term impact of this shutdown are still difficult to anticipate. For example, many reagents and
supplies are still difficult to get and this reduces the rate at which we can complete key work.

Changes that had a significant impact on expenditures

The shutdown has significantly impacted or planed expenditures. While our 
personnel obligations remained unchanged we had to significantly reduced 
spending on supplies, animals, and services. 

o Significant changes in use or care of human subjects, vertebrate animals,
biohazards, and/or select agents

Nothing to report 
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o Significant changes in use or care of human subjects

o Significant changes in use or care of vertebrate animals.

o Significant changes in use of biohazards and/or select agents

6.   PRODUCTS:

o Publications, conference papers, and presentations 
Report only the major publication(s) resulting from the work under this award.

Publications 

1. Cabral D.J, Wurster J.I, Korry B.J, Penumutchu S., Belenky P. “Consumption of a
Western-Style Diet Modulates the Response of the Murine Gut Microbiome to
Ciprofloxacin”. mSystems. (2020) Jul 28;5(4):e00317-20. doi: 10.1128/mSystems.00317-
20. PMID: 32723789; PMCID: PMC7394352 (Research paper)

Presentations describing this work 
1. 2020    “Microbial Metabolism is a Determinant of Antibiotic-induced Disruption of the Gut

Microbiome”   Microbiology and Immunology Dartmouth Medical School, Hanover, NH
2. 2020    “Microbial Metabolism is a Determinant of Antibiotic-induced Disruption of the Gut

Microbiome”   Bacteriology & the Biology Program University of Wisconsin Madison,
Madison, WI

3. 2020    “Host and Microbial Metabolism as Determinants of Antibiotic-induced Disruption in the
Microbiome”   2020 North American Cystic Fibrosis Conference, Phoenix (virtual), AZ

4. 2021    “Microbial metabolism is a modulator of antibiotic efficacy and dysbiosis in the
microbiome”   Mayo Clinic MPET, Rochester MN

7.    PARTICIPANTS & OTHER COLLABORATING 

ORGANIZATIONS

o What individuals have worked on the project? 

Name: Rachael Nilson 

Project Role: Graduate Student 

Researcher Identifier (e.g. 
ORCID ID): 

RNILSON 

Nearest person month 
worked: 

1 month 

Contribution to Project: Rachael assisted with mouse work in Aim2 

Funding Support: this award 

Name: Kathy Antosca 
Project Role: Postdoctoral associate 

Researcher Identifier (e.g. 
ORCID ID): 

https://orcid.org/0000-0001-9027-9874 

Nearest person month 
worked: 

1 
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Contribution to Project: 
Kathy provided key guidance in computational 
analysis 

Funding Support: this award 

Name: Peter Belenky 

Project Role: PI 

Researcher Identifier (e.g. 
ORCID ID): 

BELENKYP 

Nearest person month 
worked: 

0.3 

Contribution to Project: Project leader 

Funding Support: this award 

o Has there been a change in the active other support of the PD/PI(s) or senior/key
personnel since the last reporting period?

"Nothing to Report." 

o What other organizations were involved as partners?

"Nothing to Report." 

8.    SPECIAL REPORTING REQUIREMENTS

o COLLABORATIVE AWARDS:  

o QUAD CHARTS:  

9.   APPENDICES: 

We have attached 2 manuscripts as Appendices for this report. These include a published 
MSystems manuscript and an unpublished but submitted Cell Reports manuscript. 
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ABSTRACT Dietary composition and antibiotic use have major impacts on the
structure and function of the gut microbiome, often resulting in dysbiosis. Despite
this, little research has been done to explore the role of host diet as a determinant
of antibiotic-induced microbiome disruption. Here, we utilize a multi-omic approach
to characterize the impact of Western-style diet consumption on ciprofloxacin-
induced changes to gut microbiome structure and transcriptional activity. We found
that Western diet consumption dramatically increased Bacteroides abundances and
shifted the community toward the metabolism of simple sugars and mucus glyco-
proteins. Mice consuming a Western-style diet experienced a greater expansion of
Firmicutes following ciprofloxacin treatment than those eating a control diet. Tran-
scriptionally, we found that ciprofloxacin reduced the abundance of tricarboxylic
acid (TCA) cycle transcripts on both diets, suggesting that carbon metabolism plays
a key role in the response of the gut microbiome to this antibiotic. Despite this, we
observed extensive diet-dependent differences in the impact of ciprofloxacin on mi-
crobiota function. In particular, at the whole-community level we detected an in-
crease in starch degradation, glycolysis, and pyruvate fermentation following antibi-
otic treatment in mice on the Western diet, which we did not observe in mice on
the control diet. Similarly, we observed diet-specific changes in the transcriptional
activity of two important commensal bacteria, Akkermansia muciniphila and Bacte-
roides thetaiotaomicron, involving diverse cellular processes such as nutrient acquisi-
tion, stress responses, and capsular polysaccharide (CPS) biosynthesis. These findings
demonstrate that host diet plays a role in determining the impacts of ciprofloxacin
on microbiome composition and microbiome function.

IMPORTANCE Due to the growing incidence of disorders related to antibiotic-
induced dysbiosis, it is essential to determine how our “Western”-style diet impacts
the response of the microbiome to antibiotics. While diet and antibiotics have
profound impacts on gut microbiome composition, little work has been done to ex-
amine their combined effects. Previous work has shown that nutrient availability, in-
fluenced by diet, plays an important role in determining the extent of antibiotic-
induced disruption to the gut microbiome. Thus, we hypothesize that the Western
diet will shift microbiota metabolism toward simple sugar and mucus degradation
and away from polysaccharide utilization. Because of bacterial metabolism’s critical
role in antibiotic susceptibility, this change in baseline metabolism will impact how
the structure and function of the microbiome are impacted by ciprofloxacin expo-
sure. Understanding how diet modulates antibiotic-induced microbiome disruption
will allow for the development of dietary interventions that can alleviate many of
the microbiome-dependent complications of antibiotic treatment.

KEYWORDS diet, antibiotics, metagenomics, metatranscriptomics, dysbiosis
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The gut microbiome includes the trillions of largely commensal bacteria, archaea,
and fungi that inhabit the gastrointestinal tract (1–3). These communities play an

important role in numerous biological processes such as digestion, neurological devel-
opment, colonization resistance, and immune function (4–17). Consequently, it is
unsurprising that disruption of microbial homeostasis, termed dysbiosis, has numerous
harmful impacts to the host. The gut microbiome is highly sensitive to perturbations
such as broad-spectrum antibiotic usage. Within hours of treatment, antibiotics induce
dramatic reductions in both bacterial load and diversity within the microbiome, both of
which are common indicators of dysbiosis (18, 19).

While compositional changes are typically transient and recover following the
cessation of a perturbation, oftentimes the structure and diversity of the microbiota
never return to their original levels. The resulting dysbiosis often has numerous acute
and chronic impacts on host health. In the case of antibiotic usage, this may increase
the risk of infection with opportunistic fungal and bacterial pathogens by reducing
colonization resistance (1, 4, 5, 17, 20–24). Most notably, broad-spectrum antibiotic
treatment is a major risk factor in Clostridioides difficile infection (20, 22, 25, 26).
Persistent dysbiosis is correlated with many chronic conditions with considerable
morbidity and mortality, such as asthma, obesity, and inflammatory bowel disease (6–9,
11, 13, 14, 17, 26).

Interestingly, antibiotic-induced disruption of the microbiome may be influenced by
the metabolic environment of the gut. A large body of in vitro data indicates that the
rate of metabolic activity for bacteria correlates positively with antimicrobial suscepti-
bility, such that metabolically active, ATP-producing processes such as respiration
promote toxicity, whereas less efficient or quiescent metabolism induces tolerance
(27–29). A similar trend is observed in the context of bacteria responding to antibiotics
in the gut microbiome, where nutrient availability and bacterial metabolism are closely
linked to host diet. Recent work has demonstrated that antibiotic exposure changes
both the composition of the gut microbiome and its metabolic capacity, such that the
surviving microbiome is overall less metabolically active (19). Further, amoxicillin
treatment was shown to increase the expression of polysaccharide utilization genes,
while simultaneously decreasing the abundance of transcripts involved in simple sugar
utilization (19). Reflecting these changes, amoxicillin also decreased the total concen-
tration of glucose within the ceca of mice (19). These transcriptional changes have
significant impacts on the response of specific bacteria to the treatment. In the case of
Bacteroides thetaiotaomicron, polysaccharide utilization promoted tolerance to amoxi-
cillin, and simple sugar utilization increased toxicity. Accordingly, the response of the
microbiota to antibiotics can be impacted by dietary nutrient modulation (30). For
example, Cabral et al. found that glucose supplementation impacts the response of the
total community and reduces the absolute abundance of bacteria, particularly B.
thetaiotaomicron, following amoxicillin treatment in mice (19). Together these findings
suggest that dietary composition may act as an additional perturbation that drives the
severity of the microbiome’s response to antibiotic treatment.

Dietary composition is known to have a profound impact on microbiome diversity
and overall gut health (31–37). Diets high in fat and simple sugars, typically referred to
as “Western” diets, have been associated with a number of negative health states
including obesity, diabetes mellitus, allergies, and inflammatory bowel disease (36–46).
Such diets have very low levels of microbiota-accessible carbohydrates (MACs), which
are typically found in complex plant polysaccharides and are indigestible and unab-
sorbable by the host (40, 44, 47–49). MACs are typically fermented by the colonic
microbiota to produce short-chain fatty acids (SCFAs), which play important roles in
regulating energy homeostasis and inflammation within the host (40, 45, 50–55).
High-MAC diets have also been shown to increase microbial diversity, a classic bench-
mark for gut microbiota health. Conversely, low-MAC diets are known to reduce both
microbiome diversity and SCFA production (44, 46, 49, 56). MAC starvation enriches for
muciniphilic microbes that are capable of degrading the mucosal lining of the gut, such
as Akkermansia muciniphila (40, 42, 48, 57). Degradation of the mucosal layer over time
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may result in compromised gut barrier function and lead to increased inflammation,
colitis, and susceptibility to infection by enteric pathogens (57).

Individually, antibiotic usage and the consumption of Western-style diets are known
to negatively impact the microbiota, impacting host health. Despite this, little work has
explored the impact of diet on the response of the microbiota to antibiotics. Previous
work has suggested that dietary composition may play an important role in determin-
ing the extent of antibiotic-induced microbiome disruption (19). Thus, we hypothesize
that the consumption of a Western-style diet will significantly modify the metabolic
activity of the microbiome toward simple sugar and mucus glycoprotein degradation
rather than dietary polysaccharide utilization. This will be characterized by differential
utilization of carbohydrate-active enzymes (CAZymes) along with changes in respira-
tory activity and central carbon metabolism. Given that respiratory activity plays a key
role in drug susceptibility in vitro, when this community is treated with a bactericidal
antibiotic like ciprofloxacin, its compositional and functional responses to the drug
would be different due to the altered metabolic state. Overall, we anticipate that the
diet-related metabolic state of the microbiome before treatment will have a larger
impact on drug disruption than the metabolic changes that are induced during the
drug exposure. In this study, we use a combined metagenomic and metatranscriptomic
approach to characterize the impact of a Western-style diet on the taxonomic and
functional disruption of the microbiome during ciprofloxacin treatment. Using shotgun
metagenomics, we found that ciprofloxacin elicited differential impacts on community
composition in mice at both the phylum and species level in a diet-dependent manner.
Using metatranscriptomics, we observed that consumption of a Western diet induced
profound transcriptional changes within the gut microbiomes of mice. Furthermore,
consumption of this diet modulated the transcriptional response of these communities
to antibiotic treatment. Specifically, dietary composition had a major impact on the
abundance of transcripts containing key metabolic genes. Lastly, we were able to
detect unique species-specific transcriptional changes in response to both diet and
ciprofloxacin treatment in two important commensal bacteria, A. muciniphila and B.
thetaiotaomicron.

RESULTS

To determine the impact of dietary composition and antibiotic exposure on the
structure and function of the murine gut microbiome, female C57BL/6J mice were
randomly assigned to either a high-fat, high-sugar “Western”-style (Western) diet or a
low-fat control diet for 7 days in multiple cages. At this point, mice from each diet were
again randomly split between ciprofloxacin and vehicle control groups and treated for
24 h in multiple cages (n � 8 to 12 per group). Previously it has been shown that 24 h
of ciprofloxacin treatment was sufficient to induce changes in community structure and
transcriptional activity (19). This time frame also allowed for profiling the acute re-
sponse of the microbiota to ciprofloxacin exposure, rather than characterizing a
post-antibiotic state of equilibrium. Following treatment, the mice were sacrificed to
harvest their cecal contents for taxonomic profiling and transcriptional analysis
(Fig. 1A). Overall, we found that diet and ciprofloxacin treatment had a significant
impact on gut microbiome structure (Fig. 1B to D; see also Fig. S1 in the supplemental
material).

We first assessed the effects that diet and ciprofloxacin have on the diversity of the
gut microbiome using 16S rRNA sequencing. Mice consuming the Western diet had
significantly less diverse gut microbiomes than those fed the control diet (Fig. S1A).
Interestingly, we also observed that the Western diet was associated with a reduction
in alpha diversity during ciprofloxacin treatment (Fig. S1A). Next, we performed Prin-
cipal Coordinate Analysis (PCoA) using Bray-Curtis dissimilarity paired with permuta-
tional multivariate analysis of variance (PERMANOVA) to profile the degree of dissim-
ilarity between our samples and the significance of this distance. Our samples formed
four distinct clusters driven by both diet and ciprofloxacin treatment (Fig. 1B).

Due to the limited phylogenetic resolution provided by 16S rRNA sequencing and

Impact of Antibiotics and Diet on the Gut Microbiome
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inability to provide functional information about sequenced communities, we opted to
perform shotgun metagenomic and metatranscriptomic analyses on a subset of our
samples, representing mice from multiple cages (n � 4 per treatment group) (19,
58–61). Interestingly, we observed that Western diet consumption reduced community
diversity while ciprofloxacin did not have a statistically significant impact on the alpha
diversity of the community (Fig. 1C). However, the metagenomic data exhibited a
similar trend in unique taxonomic structures being associated with each treatment
group, supporting a model wherein diet and antibiotic treatment are distinct pertur-
bations (Fig. 1D). However, to evaluate if diet modifies the response to ciprofloxacin, we
had to untangle diet-induced changes from antibiotic-induced changes. First, we
characterized the impact of the Western diet consumption.

FIG 1 Impact of diet and ciprofloxacin administration on murine gut microbiome composition. (A) Experimental workflow used in this study. Figure was created
with BioRender.com (BioRender, Toronto, Canada). (B) Principal Coordinate Analysis of experimental groups as measured by Bray-Curtis dissimilarity of 16S rRNA
amplicons. (**, P � 0.01; ***, P � 0.001, permutational ANOVA). (C) Alpha diversity of experimental groups as measured by the Shannon diversity index. Data
are represented as mean � standard error of the mean (SEM) (**, P � 0.01, Welch ANOVA with Dunnett T3 test for multiple hypothesis testing). (D) Stacked
bar plot of the five most abundant bacterial phyla in our data set. Data are represented as mean � SEM for each phylum. For 16S rRNA amplicons, n � 8 to
12. For metagenomics, n � 4.
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Consumption of a Western diet modifies the metabolic activity of the micro-
biome. Mice fed a Western diet displayed elevated levels of the phyla Verrucomicrobia

and Bacteroidetes and a reduction of Firmicutes (Fig. 1D). At the species level, these
shifts appear to be largely driven by an expansion of members of the Bacteroides genus
(Fig. 2A, Fig. S1B, and Data Set S1). Additionally, the Western diet-fed mice displayed an
elevated abundance of several species from the Proteobacteria phylum, suggestive of
dysbiosis (62). Two important bacterial species found in the gut microbiomes of both
mice and humans, B. thetaiotaomicron and A. muciniphila, were observed at signifi-
cantly elevated levels in the mice fed a Western diet (Fig. 2A and Fig. S1B). Notably,
both species are known to utilize host-produced mucins; thus, this observation is
consistent with earlier studies suggesting that the consumption of a low-MAC Western
diet enriches for muciniphilic bacteria (40, 42, 48).

Given this expansion, we anticipated that the transcriptional activity of these
communities would exhibit an increased capacity for mucus degradation and simple
sugar utilization. Due to the potential limitations of using a single pipeline, we analyzed
our metatranscriptomic data set with SAMSA2 in parallel with HUMAnN2 (63, 64). The
SAMSA2 pipeline generates unnormalized transcript abundances and thus is represen-
tative of overall transcript levels (63). SAMSA2 is advantageous in its capacity for
annotation against multiple databases and enables differential abundance testing of
individual transcripts in addition to pathway- and subsystem-level analysis (63). Con-
versely, the HUMAnN2 pipeline normalizes the abundance of RNA transcripts against
their corresponding gene abundance in the metagenomic data set, thus normalizing
for differences in community composition between experimental groups and facilitat-
ing comparisons of metabolic pathway expression at the whole-community level (64).
When paired, these pipelines facilitate a more robust examination of microbiome
transcriptional activity.

We observed an increased abundance of transcripts related to respiration at the
SEED subsystem level in the microbiota of the mice consuming the Western diet, which
was mirrored in our HUMAnN2 data set as increased tricarboxylic acid (TCA) cycle
expression (Fig. 2B, Fig. S2A, and Data Sets S2 and S3). The Western diet-fed mouse
microbiota also displayed increased abundance of transcripts involving fatty acid
metabolism and terpenoid biosynthesis, likely reflecting altered nutrient availability
and increased respiratory activity, respectively (Fig. 2B and Data Set S3) (65, 66).
Interestingly, we also detected large increases in the abundance of two different
sialidase transcripts, which play a key role in the utilization of host-produced mucins
(Fig. S2B and Data Set S4) (67). While other studies have shown that the consumption
of a Western diet enriches for muciniphilic taxa, this observation suggests that this diet
also increases transcriptional activity related to mucin degradation within the micro-
biome (40, 42).

Additionally, the Western diet-fed mouse microbiota had reduced expression of
nucleotide biosynthesis, glycolysis, gluconeogenesis, starch degradation, and pyruvate
fermentation compared to control diet-fed mice (Fig. S2A and Data Set S2). We also
observed relative reduction in the expression of the Bifidobacterium shunt, which is
known to play a role in SCFA production and may provide mechanistic insight into the
reduced SCFA levels observed on the Western diet in other studies (Fig. S2A and Data
Set S2) (40, 51).

Examination of CAZyme activity provided further evidence of significant transcrip-
tional reprogramming in response to diet. Specifically, we observed that Western diet
consumption decreased transcript abundances of multiple enzymes involved in poly-
saccharide breakdown (Fig. 2C and Data Set S5) (68–71). Simultaneously, there was a
significant increase in �-amylases, lysozyme C, and �-lactalbumin breakdown (Fig. 2C
and Data Set S5) (72, 73). Given the content of the Western diet, a shift toward
utilization of these carbon sources was not unexpected. However, the robust loss of
complex polysaccharide breakdown was surprising and complements the SEED and
HUMAnN2 data sets. Together these data suggest that Western diet alone is sufficient
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FIG 2 Consumption of a Western diet induces broad taxonomic and transcriptional changes at the community
level. (A) Differentially abundant (Benjamini-Hochberg-adjusted P value � 0.05) bacterial species (within the 45
most abundant taxa) as detected in mice consuming the Western diet. Data are represented as log2 fold change
relative to control diet � standard error. Bar color and top legend denote phylum-level taxonomic classification
(yellow, Verrucomicrobia; green, Firmicutes; teal, Bacteroidetes; blue, Proteobacteria; navy, Actinobacteria). See Data
Set S1 for full results. (B) Differentially expressed (Benjamini-Hochberg-adjusted P value � 0.05) level 1 SEED
subsystems in the murine cecal metatranscriptome of mice consuming the Western diet. Data are represented as
log2 fold change relative to control diet � standard error. Only features with a base mean of �100 were plotted.
See Data Set S3 for full results. (C) Differentially expressed (Benjamini-Hochberg-adjusted P value � 0.05) CAZyme
transcripts in the murine cecal metatranscriptome in mice consuming the Western diet. Data are represented as
log2 fold change relative to control diet � standard error. CAZyme class (yellow, glycoside hydrolase; lime,
glycosyltransferase; green, polysaccharide lyase; teal, carbohydrate binding modules; blue, carbohydrate esterase;
purple, auxiliary activity), source of the target substrate (blue, plant derived; magenta, animal derived; peach,
microbially derived), and linkages targeted by the CAZyme (dark gray, alpha; light gray, beta) are listed below the
data and color coded. White values represent either a lack of singular substrate/linkage or a lack of enough
information available to make a definitive call. See Data Set S5 for full results. For all analyses, n � 4.
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to restructure the metabolic activity of the gut microbiome, due to significant changes
in nutrient availability.

Ciprofloxacin elicits unique shifts in gene expression on Western and control
diets. Given the significant body of literature that links microbial metabolism with
antimicrobial susceptibility both in vitro and within the microbiome, we hypothesized
that the metabolic restructuring induced by the Western diet would result in differen-
tial susceptibility to ciprofloxacin (19, 27–29). Although ciprofloxacin did not induce a
significant reduction in alpha diversity in the time frame tested, we found that diet
drove differential community composition following antibiotic exposure (Fig. 1C and
D). At the phylum level, we observed a significant expansion in the relative abundance
of Firmicutes following ciprofloxacin treatment on the Western diet (adjusted P
value � 0.0388) but not on the control diet (adjusted P value � 0.8718) (Fig. 1D and
Fig. S1B). To determine which species displayed a differential response to ciprofloxacin
on the Western and control diets, we utilized DESeq2 to analyze the interaction
between diet and antibiotic treatment to determine which species displayed differen-
tial responses to ciprofloxacin between the diets (74). While most species responded
similarly to ciprofloxacin therapy on both diets, there were several notable exceptions.
For example, the expansion of several Clostridium species (such as Clostridium saccha-
rolyticum, Clostridium sphenoides, and Clostridium scindens) following ciprofloxacin was
higher on the Western diet than the control (positive interaction values, Fig. 3A and
Data Set S1). Conversely, the reduction of several Bacteroides species following antibi-
otic treatment tended to be exacerbated on the Western diet (negative interaction
values, Fig. 3A and Data Set S1).

We detected clear differences in ciprofloxacin susceptibility between the two diets
and hypothesized that diet-induced differences in metabolism would both alter sus-
ceptibility and be reflected in unique transcriptional signatures. An all-by-all compari-
son of experimental groups demonstrated that the microbiota of Western diet-
consuming mice displayed elevated expression of TCA cycle and fatty acid degradation
pathways in both vehicle and ciprofloxacin treatments, likely reflective of the increased
fat and sugar content of this diet (Fig. 3B and Data Set S2). Additionally, we found
elevated expression of glycogen degradation genes that was specific to Western
diet-fed mice receiving ciprofloxacin (Fig. 3B and Data Set S2). Conversely, the micro-
biota of control diet-consuming mice had elevated expression of amino acid biosyn-
thesis pathways (isoleucine, aspartate, asparagine, lysine, and histidine) regardless of
antibiotic treatment (Fig. 3B and Data Set S2). We also observed elevated levels of
several different nucleotide biosynthesis pathways in the vehicle-treated control diet
mice while the Western diet mice displayed elevated levels of adenosine and guanosine
nucleotide degradation (Fig. 3B and Data Set S2). Overall, these data support that our
experimental groups could be characterized by unique transcriptional signatures.

We found key differences in the overall transcriptional profiles in response to
ciprofloxacin on each diet. On the Western diet, ciprofloxacin treatment was associated
with an increased abundance of transcripts from glycogen and starch degradation,
glycolysis, and pyruvate fermentation (Fig. S3C and Data Set S2). Notably, the expres-
sion of glycogen degradation was elevated in vehicle-treated samples on the control
diet, suggesting that the utilization of this pathway during ciprofloxacin treatment is
diet dependent (Fig. S3C and Data Set S2). We observed that TCA cycle expression was
reduced in ciprofloxacin-treated mice compared to the vehicle treatment—the lone
commonality between diets (Fig. S3C and Data Set 2). Previous work has demonstrated
that TCA cycle elevation increases sensitivity to bactericidal antibiotics (27–29, 75).
Thus, this result suggests that TCA cycle activity may play a key role in the response of
the microbiota to ciprofloxacin treatment in vivo, though more work is required to
understand its impact.

Interestingly, comparatively few subsystems were changed following ciprofloxacin
treatment on either diet (Fig. 3C and D and Data Set S3), suggesting that the pretreat-
ment metabolic state affects the antibiotic response more than the drug-induced
transcriptional changes. Most notably, we observed a decrease in transcripts related to
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FIG 3 Ciprofloxacin elicits unique shifts in gene expression on Western and control diets at the community level. (A) Heatmap of the change in abundance
of the top 45 bacterial species in response to ciprofloxacin on control and Western diets. The Interact column represents the interaction term generated

(Continued on next page)
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dormancy and sporulation in response to ciprofloxacin on both diets (Fig. 3C and D and
Data Set S3). A similar finding was observed in a recent study, suggesting that these
transcripts may play a key role in the response of the microbiota to this antibiotic (19).
Furthermore, ciprofloxacin increased the abundance of sialidase transcripts in mice on
the control diet, suggesting that this effect may be exacerbated by antibiotic treatment
(Fig. S3A and Data Set S4). Reflecting the overall reduction in sporulation seen at the
subsystem level, we found that several sporulation-related transcripts were reduced on
the control diet following ciprofloxacin treatment (Fig. S3A and Data Set S4).

We also examined the interaction of diet and antibiotic treatment on transcript
abundance within the microbiome. Notably, we found that several sporulation genes
were significantly higher on the Western diet than the control following ciprofloxacin
treatment (Data Set S4), which was reflected in the SEED subsystem level (Fig. 3C and
D). Additionally, transcripts encoding phosphotransferase system (PTS) transporters of
various substrates were also found to be higher on the Western diet following cipro-
floxacin treatment (Data Set S4). Conversely, Western diet consumption significantly
reduced the change in transcript abundance of both pectate lyase and a hemin
receptor following ciprofloxacin therapy. Together, these findings demonstrate that
dietary composition significantly impacts the transcriptional response of the micro-
biome to ciprofloxacin.

Recent studies have shown CAZyme activity to be a significant component of the
microbiome’s response to antibiotic stress (19). In our study, over 75 CAZymes exhib-
ited differential abundance during ciprofloxacin treatment (Data Set S5). Interestingly,
these changes were exclusive to the control diet-fed microbiota, as the Western
diet-fed communities displayed no significant difference in CAZyme abundance (Data
Set S5). The microbiota of mice on the control diet exhibited increases in CAZymes
involved in starch, glycogen, xylose, pectin, rhamnogalacturonan, and arabinofuranose
degradation (Data Set S5) (76, 77). Additionally, these communities exhibited a signif-
icant increase in trehalose phosphorylase and synthase activity, both of which have
been associated with transient antibiotic tolerance in pathogenic species (Data Set S5)
(78, 79). Loss of these CAZyme shifts may be directly involved in the increased toxicity
of ciprofloxacin on the Western diet; however, more work is required to elucidate the
mechanism. These data, in conjunction with our SEED and HUMAnN2 data sets, provide
evidence for unique transcriptional signatures during ciprofloxacin challenge that are
diet dependent. Overall, this supports a model in which diet-driven differences in
baseline metabolism directly impact taxonomic and functional responses to ciprofloxa-
cin treatment.

Diet and ciprofloxacin alter gene expression within B. thetaiotaomicron and A.
muciniphila. Next, we sought to profile how diet and drug treatment impacted the
transcriptional response of individual species within the microbiota. In order to have
sufficient genome coverage and sequencing depth, we ranked all taxa that were
differentially abundant in the Western diet by average RNA reads, further analyzing
only those with 500,000 or greater (Data Set S6). With this criterion, we used a
previously published pipeline to interrogate the impact of diet and antibiotic treatment
on three individual species: B. thetaiotaomicron, A. muciniphila, and C. scindens (19, 80).

FIG 3 Legend (Continued)
by DESeq2, denoting the impact of diet on the change in abundance of each species to ciprofloxacin compared to vehicle control. Cell color denotes log2

fold change of a particular species in response to ciprofloxacin (white represents failure to meet statistical significance: Benjamini-Hochberg-adjusted P
value � 0.05). Heatmap rows were sorted by interaction term value from highest to lowest, and taxa with no differential abundance (failure to meet statistical
significance) in either group were removed. See Data Set S1 for full DESeq2 results. (B) Linear discriminant analysis (LDA) of MetaCyc pathways that were
differentially associated with each experimental group. Bar size indicates LDA score, and color indicates the experimental group that a MetaCyc pathway
was significantly associated with. All LDA scores were generated using LEfSe on unstratified pathway outputs from HUMAnN2. For full pathway names and
statistics, see Data Set S2. (C) Differentially expressed (Benjamini-Hochberg-adjusted P value � 0.05) level 1 SEED subsystems in the murine cecal
metatranscriptome after ciprofloxacin treatment in mice consuming the control diet. Data are represented as log2 fold change relative to vehicle controls �
standard error. Only features with a base mean of �100 were plotted. See Data Set S3 for full results. (D) Differentially expressed (Benjamini-Hochberg-
adjusted P value � 0.05) level 1 SEED subsystems in the murine cecal metatranscriptome after ciprofloxacin treatment in mice consuming the Western diet.
Data are represented as log2 fold change relative to vehicle controls � standard error. Only features with a base mean of �100 were plotted. See Data Set
S3 for full results. For all analyses, n � 4.
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We focused on these bacteria because they are known human gut commensals, were
found at relatively high levels in all samples analyzed, and were differentially abundant
in a diet-dependent manner. Unfortunately, C. scindens had relatively few transcrip-
tional changes across all comparisons, and those genes that were differentially regu-
lated were almost exclusively hypothetical proteins (Data Set S6).

The Western diet significantly elevated the relative abundance of A. muciniphila
(Fig. 4A). Interestingly, on this diet A. muciniphila displayed increased expression of
several known stress response genes: catalase HPII, ATP-dependent chaperone ClpB, a
universal stress protein, superoxide dismutase, and a UvrB/UvrC protein (Fig. 4B and
Data Set S7). Additionally, we observed numerous changes in respiration and central
carbon metabolism, including increased terminal oxidases, TCA cycle, glycolysis, and
pyruvate metabolism, suggesting broad metabolic changes in response to the Western
diet (Fig. 4B and Data Set 7). No CAZymes were differentially expressed on this diet,
suggesting that the changes in A. muciniphila that facilitate its expansion are not driven
by CAZyme activity (Data Set S7).

Ciprofloxacin treatment had a relatively minor impact on A. muciniphila gene
expression (Data Set S7), likely due to the relatively low impact on the relative
abundance of A. muciniphila (Fig. 4A). In total, ciprofloxacin significantly altered the
expression of 2 and 17 genes on the control and Western diets, respectively (Data Set
S7). On the control diet, A. muciniphila increased the expression of the molecular
chaperone protein DnaK, which is known to play a role in stress responses (81–84). On
the Western diet, several genes related to tryptophan biosynthesis and metabolism
were elevated following ciprofloxacin treatment; however, their biological significance
is unclear at this time (Data Set S7). Additionally, ciprofloxacin induced the differential
expression of a sole chitin or lysozyme glycoside hydrolase, and only on the control diet
(Fig. S3F and Data Set S7). Lastly, an examination of the interaction between diet and
ciprofloxacin treatment indicated that only three genes were significantly altered.
Overall, these data suggest that diet does not have a major impact on the response of
this bacterium to ciprofloxacin within the microbiome (Data Set 7).

In contrast to A. muciniphila, diet had a relatively minor impact on B. thetaiotaomi-
cron gene expression while ciprofloxacin induced extensive changes. Of note, B.
thetaiotaomicron bloomed in response to the Western diet and was significantly
perturbed by ciprofloxacin on this diet but not on the control (Fig. 4C). In total, 42
genes were altered in B. thetaiotaomicron in response to Western diet consumption
(Data Set S7). Of note, this diet increased the expression of an aminoglycoside efflux
pump and a hemin receptor. However, more than half of the genes (52.4%) that
changed in response to diet are of unknown function and are classified as “hypothetical
proteins;” making interpretation difficult. Interestingly, B. thetaiotaomicron did not
exhibit robust changes in CAZyme transcription in response to the Western diet. Like
A. muciniphila, B. thetaiotaomicron did not exhibit any differentially abundant CAZymes,
suggesting that carbohydrate utilization does not drive the diet-induced changes in B.
thetaiotaomicron abundance (Data Set S7). Ultimately, a description of this change will
be dependent on improved functional annotations going forward.

On the control diet, we observed an increased abundance of transcripts encoding
proteins involved in capsular polysaccharide (CPS) biosynthesis and export (Fig. 4D and
Data Set S7). Within B. thetaiotaomicron, CPS production is encoded by a total of 182
genes distributed among eight loci (typically termed cps1 to -8) (85, 86). It is hypoth-
esized that an individual bacterium expresses one of these CPS configurations at any
given time and that these structures play key roles in processes such as nutrient
acquisition and immune evasion (86). Additionally, the two genes with the greatest
increase in expression during ciprofloxacin treatment encoded UDP-glucose
6-dehydrogenase, which plays a key role in the biosynthesis of glycan precursors that
are essential for capsule production in other bacteria (87–89). Together, these findings
may suggest a role for CPS state as a determinant of ciprofloxacin susceptibility in vivo.

On the Western diet, ciprofloxacin elicited profound changes in transcriptional
activity, altering the expression of 278 different genes (Fig. 4E and Data Set S7), and this
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FIG 4 Diet and ciprofloxacin alter gene expression within B. thetaiotaomicron and A. muciniphila. (A) Normalized counts of A. muciniphila in each
experimental group. Data are represented as mean � SEM. Normalized counts were generated with DESeq2 and subsequently used to perform differential

(Continued on next page)
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robust response may be related to the reduction in B. thetaiotaomicron under this
condition (Fig. 4C). Interestingly, expression of many genes involved in the utilization
of host-derived carbohydrates (sialic acid-specific 9-O-acetylesterase, endo-beta-N-
acetylglucosaminidase F1, beta-hexosaminidase) and stress responses (universal stress
protein UspA, thioredoxin) was reduced, mirroring changes seen at the whole-
community level (Fig. 4E and Data Set S7) in response to ciprofloxacin. Conversely, we
observed increased expression of several genes that encode molecular chaperones or
are involved in DNA replication or damage repair (Fig. 4E and Data Set S7). Ciprofloxa-
cin triggers DNA damage via inhibition of DNA gyrase and topoisomerase IV. Thus,
these changes in gene expression may be reflective of the primary mechanism of action
of this antibiotic, are consistent with previously published data, and serve as a valida-
tion for our analysis (19).

Diet appears to have a significant impact on ciprofloxacin-induced transcriptional
changes in B. thetaiotaomicron, modulating the response of 71 genes (Data Set S7). Of
note, Western diet consumption in the context of ciprofloxacin treatment had a
negative impact on several genes involved in the acquisition of nutrients, such as
vitamin B12 and hemin receptors, and transporters of glucose/galactose, hexuronate,
arabinose, and Na� (Data Set S7). Thus, it is likely that the availability of nutrients within
the gut plays a role in the response of these bacteria to antibiotics. Lastly, we examined
the impact that nutrient availability has on the response of B. thetaiotaomicron CAZyme
abundance to ciprofloxacin. We observed notable differences in CAZyme levels be-
tween the diets as well as differences in substrate targets (Fig. S3D and E and Data Set
S7). On the control diet, B. thetaiotaomicron exhibits an increase in polysaccharide
CAZymes, including those targeting pectin, rhamnogalacturonan, �-glucans, and hemi-
celluloses, with a simultaneous decrease in �-fucosidases (Fig. S3D and Data Set S7). On
the Western diet, B. thetaiotaomicron exhibits an increase in lipopolysaccharide (LPS)
biosynthesis and heparan degradation (Fig. S3E and Data Set S7). While interesting,
more work will be required to elucidate mechanisms driving these phenotypes.

DISCUSSION

Previous work has demonstrated that host diet, particularly with respect to sugar
and fiber content, plays a major role in antibiotic-induced microbiome disruption (19,
30). In Western societies, many people consume a diet high in added sugars and fat but
low in host-indigestible fiber. Such a composition is thought to promote the develop-
ment of metabolic syndrome, heart disease, diabetes, and a number of other chronic
conditions (36–46). Furthermore, broad-spectrum antibiotic use and resulting micro-
biome dysbiosis have been associated with a number of similar comorbidities along
with increased susceptibility to opportunistic infections (1, 4, 5, 17, 20–22, 24, 25).
Despite this connection, little work has been done examining how host dietary com-
position impacts the response of the microbiota to antibiotic perturbation. Nutrient
availability and metabolic state are known to be major determinants of antibiotic
susceptibility of bacteria in vitro (19, 27–29, 75, 90–95). Thus, modulating diet and
subsequently nutrient availability to the microbiota would likely alter the sensitivity of
bacteria in these communities to antibiotic therapy.

Using a combined metagenomic and metatranscriptomic approach, we demon-
strate that diet composition has a major impact on the response of the murine gut

FIG 4 Legend (Continued)
abundance testing. (*, P � 0.05; ****, P � 0.0001; Wald test with Benjamini and Hochberg correction). See Data Set S1 for full results. (B) Select differentially
expressed (Benjamini-Hochberg-adjusted P value � 0.05) genes of interest in A. muciniphila within the cecum of vehicle-treated mice consuming the
Western diet. Data are represented as log2 fold change relative to control diet � standard error. See Data Set S7 for full results. (C) Normalized counts of
B. thetaiotaomicron in each experimental group. Data are represented as mean � SEM. Normalized counts were generated with DESeq2 and subsequently
used to perform differential abundance testing. (*, P � 0.05; ****, P � 0.0001; Wald test with Benjamini and Hochberg correction). See Data Set S1 for full
results. (D) Select differentially expressed (Benjamini-Hochberg-adjusted P value � 0.05) genes of interest in B. thetaiotaomicron within the cecum of
ciprofloxacin-treated mice consuming the control diet. Data are represented as log2 fold change relative to vehicle-treated controls � standard error. See
Data Set S7 for full results. (E) Select differentially expressed (Benjamini-Hochberg-adjusted P value � 0.05) genes of interest in B. thetaiotaomicron within
the cecum of ciprofloxacin-treated mice consuming the Western diet. Data are represented as log2 fold change relative to vehicle-treated controls �
standard error. See Data Set S7 for full results. For all analyses, n � 4. ns, not significant.
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microbiome to ciprofloxacin therapy. By utilizing these tools in parallel, we are able to
link transcriptional changes to observed shifts in community structure on each diet.
Using metagenomics, we observed that ciprofloxacin had a differential impact on
community composition in a diet-dependent manner. Specifically, we observed a
significant expansion of the Firmicutes phylum following ciprofloxacin treatment only
on the Western diet. Metatranscriptomic data showed decreased abundance of tran-
scripts from the TCA cycle after antibiotic treatment in both diets, suggesting that this
response is diet independent, which is consistent with previous in vitro findings that
demonstrate a key role for bacterial respiration as a determinant of fluoroquinolone
susceptibility (27, 28, 77, 94, 96–98). Conversely, the impact of ciprofloxacin on the
abundance of various iron and mucin utilization transcripts differed between diets.
Lastly, we detected species-specific transcriptional changes in two important commen-
sal bacteria, B. thetaiotaomicron and A. muciniphila. In addition to detecting changes in
transcript levels that were reflective of stress responses, we also observed differential
expression in transcripts involved in diverse cellular processes such as nutrient acqui-
sition, carbon metabolism, and capsular polysaccharide (CPS) biosynthesis. Together,
our findings supported our hypothesis that the Western diet would modify the meta-
bolic capacity of the gut microbiome and that this change would directly translate to
differential activity in response to ciprofloxacin treatment.

Despite the advantages of a multi-omic approach, there are several drawbacks to
these techniques that complicate interpretation of the results. First, our study was
performed only in female mice. It is now understood that sex-dependent differences
exist in diet metabolism, mucosal immunity, and gut microbiome antibiotic responses,
and as such our findings may not be generalizable to males (96, 99, 100). Another
critical drawback is that the analytical pipelines used to analyze microbiome data are
reliant on existing databases that are largely incomplete: approximately half of all
genes within the human gut microbiome are hypothesized to have no functional
annotation, limiting the ability to accurately profile the transcriptional activity of these
communities (101). Additionally, inferring biological significance of taxonomic changes
is often difficult in many microbiome analyses. 16S amplicon sequencing and shotgun
metagenomics are inherently limited to reporting relative abundances and thus may
fail to fully characterize changes in absolute abundance. Thus, we cannot comment on
how diet or antibiotics change the total number of bacteria found in the gut, nor can
we determine if the bloom in Firmicutes is a result of an increase in colony-forming units
or a reduction of other bacteria relative to Firmicutes. Due to the complex nature of
these communities, it is challenging to ascertain if the observed transcriptional changes
are the result of the direct action of the antibiotic or the indirect effect of changes in
host physiology, nutrient availability, or the disruption of ecological networks within
the microbiome. For example, our transcriptional analysis of B. thetaiotaomicron
showed that this bacterium differentially expressed receptors for both hemin and
vitamin B12, which may suggest that these nutrients play a role in ciprofloxacin toxicity.
Alternatively, it is possible that these transcriptional changes are reflective of increased
availability of these nutrients due to decreased competition from other members of the
microbiota. Further, dietary composition could play a significant role in antibiotic
absorption or sequestration in the gut, which in turn would impact the extent of the
damage caused to the microbiota.

This study builds on recent work that demonstrates that the availability of metab-
olites plays an important role in determining the extent of antibiotic-induced micro-
biome disruption (19). Taken together, these results demonstrate the need to consider
dietary composition in the design and interpretation of experiments focused on
understanding the impact of antibiotics on the microbiota. Previous studies have
demonstrated that dietary changes induce rapid shifts in gut microbiome composition
(32, 34, 43, 56, 97, 98, 102, 103). Therefore, in the long term, dietary modulation could
represent an attractive strategy to reduce the collateral damage to commensal bacteria
and the resulting complications from dysbiosis caused by clinical therapy. Despite these
promising applications, considerable work is required before these findings have direct
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clinical relevance. In particular, the considerable differences in physiology, microbiome
composition, and diet between humans and rodents complicate the direct clinical
relevance of these findings. Furthermore, it is unclear whether short-term dietary
modulation has any long-term consequences on either the host or the microbiome.
Thus, additional research is warranted to fully elucidate how host diet impacts
antibiotic-induced microbiome disruption in humans and how specific dietary formu-
lation will impact these disruptions.

MATERIALS AND METHODS
Animal procedures. All animal work was approved by Brown University’s Institutional Animal Care

and Use Committee (IACUC) under protocol number 1706000283. Four-week-old female C57BL/6J mice
were purchased from Jackson Laboratories (Bar Harbor, ME, USA) and given a 2-week habituation period
immediately following arrival at Brown University’s Animal Care Facility. After habituation, mice were
switched from standard chow (Laboratory Rodent Diet 5001; St. Louis, MO, USA) to either a Western diet
(D12079B; Research Diets Inc., New Brunswick, NJ, USA) or a macronutrient-defined control diet
(D12450B; Research Diets Inc., New Brunswick, NJ, USA) for 1 week (see Data Set S7, Sheet 41, in the
supplemental material). On the 8th day of dietary intervention, mice were given acidified ciprofloxacin
(12.5 mg/kg of body weight/day), or a pH-adjusted vehicle, via filter-sterilized drinking water ad libitum
for 24 h (n � 8 to 12 per treatment group). Water consumption was monitored to ensure equal
consumption across cages. Mice were then sacrificed and dissected in order to collect cecal contents.
Cecal contents were immediately transferred to ZymoBIOMICS DNA/RNA Miniprep kit (Zymo Research,
Irvine, CA, USA) collection tubes containing DNA/RNA Shield. Tubes were processed via vortexing at
maximum speed for 5 min to homogenize cecal contents and then placed on ice until permanent storage
at �80°C.

Nucleic acid extraction and purification. Total nucleic acids (DNA and RNA) were extracted from
samples using the ZymoBIOMICS DNA/RNA Miniprep kit from Zymo Research (R2002; Irvine, CA, USA)
using the parallel extraction protocol per the manufacturer’s instructions. Total RNA and DNA were
eluted in nuclease-free water and quantified using the dsDNA-HS and RNA-HS kits on a Qubit 3.0
fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) before use in library preparations.

16S rRNA amplicon preparation and sequencing. The 16S rRNA V4 hypervariable region was
amplified from total DNA using the barcoded 518F forward primer and the 816Rb reverse primers from
the Earth Microbiome Project (104). Amplicons were generated using 5� Phusion high-fidelity DNA
polymerase under the following cycling conditions: initial denaturation at 98°C for 30 s, followed by 25
cycles of 98°C for 10 s, 57°C for 30 s, and 72°C for 30 s, and then a final extension at 72°C for 5 min. After
amplification, samples were pooled in equimolar amounts and visualized via gel electrophoresis. The
pooled amplicon library was submitted to the Rhode Island Genomics and Sequencing Center at the
University of Rhode Island (Kingston, RI, USA) for sequencing on the Illumina MiSeq platform. Amplicons
were pair-end sequenced (2 � 250 bp) using the 500-cycle kit with standard protocols. We obtained an
average of 106,135 � 49,789 reads per sample.

Analysis of 16S rRNA sequencing reads. Raw 16S rRNA reads were subjected to quality filtering,
trimming, denoising, and merging using the DADA2 package (version 1.8.0) in R (version 3.5.0).
Ribosomal sequence variants were assigned taxonomy using the RDP Classifier algorithm with RDP
Training set 16 using the assignTaxonomy function in DADA2 (105). Alpha diversity (Shannon) and beta
diversity (Bray-Curtis dissimilarity) were calculated using the phyloseq package (version 1.24.2) in R
(version 3.5.0).

Metagenomic and metatranscriptomic library preparation. Metagenomic libraries were prepared
from DNA (100 ng) using the NEBNext Ultra II FS DNA library prep kit (New England BioLabs, Ipswich, MA,
USA) �100-ng input protocol per the manufacturer’s instructions. This yielded a pool of 200- to 1,000-bp
fragments where the average library was 250 to 500 bp. Metatranscriptomic libraries were prepared from
total RNA using the NEBNext Ultra II Directional RNA sequencing prep kit (New England BioLabs, Ipswich,
MA, USA) in conjunction with the NEBNext rRNA depletion kit for human/mouse/rat (New England
BioLabs, Ipswich, MA, USA) and the MICROBExpress kit (Invitrogen, Carlsbad, CA, USA). First, up to 1 �g
of total RNA was treated with recombinant DNase I (rDNase I) and subsequently depleted of bacterial
rRNAs using MICROBExpress per the manufacturer’s instructions. This depleted RNA was then used to
prepare libraries with the NEBNext Ultra II Directional RNA sequencing prep and rRNA depletion kits per
the manufacturer’s instructions. This yielded libraries that averaged between 200 and 450 bp. Once
library preparation was complete, both metagenomic and metatranscriptomic libraries were sequenced
as paired-end 150-bp reads on an Illumina HiSeq X Ten. We sequenced an average of 2,278,948,631
(�2,309,494,556) bases per metagenomic sample and 14,751,606,319 (�3,089,205,166) bases per metatran-
scriptomic sample. One metagenomic sample from the Western diet � vehicle group had an abnormally low
number of bases sequenced (165,000 bp) and was excluded from all subsequent analyses. Following the
removal of this sample, we obtained an average of 2,430,867,540 (�2,306,317,898) bases per metagenomic
sample.

Processing of raw metagenomic and metatranscriptomic reads. Raw metagenomic reads were
trimmed and decontaminated using the kneaddata utility (version 0.6.1) (106). In brief, reads were first
trimmed to remove low-quality bases and Illumina TruSeq3 adapter sequences using Trimmomatic
(version 0.36) using a SLIDINGWINDOW value of 4:20 and an ILLUMINACLIP value of 2:20:10, respectively
(107). Trimmed reads shorter than 75 bases were discarded. Reads passing quality control were
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subsequently decontaminated by removing those that mapped to the genome of C57BL/6J mice using
bowtie2 (version 2.2) (108). Additionally, preliminary work by our group detected high levels of reads
mapping to two murine retroviruses found in our animal facility: murine mammary tumor virus (MMTV,
accession NC_001503) and murine osteosarcoma viruses (MOV, accession NC_001506.1) (19). Raw
metatranscriptomic reads were trimmed and decontaminated using the same parameters. However, in
addition to removing reads that mapped to the C57BL/6J, MMTV, and MOV genomes, we also decon-
taminated sequences that aligned to the SILVA 128 LSU and SSU Parc rRNA databases (109).

Taxonomic classification of metagenomic reads. Trimmed and decontaminated metagenomic
reads were taxonomically classified against a database containing all bacterial and archaeal genomes
found in NCBI RefSeq using Kraken2 (version 2.0.7-beta) with a default k-mer length of 35 (110). Phylum-
and species-level abundances were subsequently calculated from Kraken2 reports using Bracken (version
2.0.0) with default settings (111). The phyloseq package (version 1.28.0) in R (version 3.6.0) was used to
calculate alpha diversity using the Shannon diversity index (112). Metagenomic data were not sub-
sampled prior to analysis.

To perform differential abundance testing, species-level taxonomic output was first filtered to
remove taxa that were not observed in �1,000 reads (corresponding to approximately 0.1% of all reads)
in at least 20% of all samples using phyloseq in R. Differential abundance testing was subsequently
performed on filtered counts using the DESeq2 package (version 1.24.0) using default parameters (74).
All P values were corrected for multiple hypothesis testing using the Benjamini-Hochberg method (113).

Annotation of metatranscriptomic reads using SAMSA2. Trimmed and decontaminated meta-
transcriptomic reads were annotated using a modified version of the Simple Annotation of Metatran-
scriptomes by Sequence Analysis 2 (SAMSA2) pipeline as described previously (19, 63, 114). First, the
Paired-End Read Merger (PEAR) utility was used to merge forward and reverse reads (115). Merged reads
were then aligned to databases containing entries from the RefSeq, SEED Subsystems, and CAZyme
databases using DIAMOND (version 0.9.12) (116–118). The resulting alignment counts were subsequently
analyzed using DESeq2 (version 1.24.0) using the Benjamini-Hochberg method to perform multiple
hypothesis testing correction (19, 63, 113). Features with an adjusted P value of less than 0.05 were
considered to be statistically significant.

Metatranscriptomic analysis using HUMAnN2. To determine the impact of dietary modulation and
ciprofloxacin treatment on gene expression within the gut microbiome, we used the HMP Unified
Metabolic Analysis Network 2 (HUMAnN2, version 0.11.1) pipeline (64). First, metagenomic reads were
taxonomically annotated using MetaPhlan2 (version 2.6.0) and functionally annotated against the
UniRef90 database to generate gene family and MetaCyc pathway-level abundances. To ensure consis-
tent assignment between paired samples, the taxonomic profile generated from the metagenomic reads
was supplied to the HUMAnN2 algorithm during the analysis of the corresponding metatranscriptomic
reads. Metatranscriptomic reads were subsequently annotated as done for metagenomic reads. The
resulting gene family and pathway-level abundance data from the metatranscriptomic reads were
normalized against the metagenomic data from the corresponding sample and smoothed using the
Witten-Bell method (119). Lastly, the resulting RPKM (reads per kilobase per million) values were
unstratified to obtain whole-community level data, converted into relative abundances, and analyzed
using LEfSe (version 1) hosted on the Galaxy web server (120).

Transcriptional analysis of A. muciniphila and B. thetaiotaomicron. A modified version of a
previously published pipeline from Deng et al. was utilized to perform transcriptional analysis of
individual species within the murine microbiome during dietary modulation and antibiotic treatment (19,
80). First, Kraken2 (version 2.0.7-beta) was used to identify the 50 most prevalent bacterial species
present within the metatranscriptomic samples (110). Next, the BBSplit utility within the BBMap package
(version 37.96) was used to extract reads within our metatranscriptomic data set that mapped to these
50 most abundant species (121). Reads from B. thetaiotaomicron, A. muciniphila, and C. scindens were
subsequently aligned to their corresponding reference genomes using the BWA-MEM algorithm (version
0.7.15) (122). Lastly, the featureCounts command within the subread program (version 1.6.2) was used to
analyze the resulting alignment files to generate a count table for differential expression analysis with
DESeq2 (74). All P values were corrected for multiple hypothesis testing with the Benjamini-Hochberg
method (113). Features with an adjusted P value of less than 0.05 were considered to be statistically
significant.

Data availability. The data sets generated and analyzed during this study are available from the
NCBI Sequence Read Archive (SRA) under BioProject accession numbers PRJNA563913 (metagenomics
and metatranscriptomics) and PRJNA594642 (16S rRNA amplicon sequences). Any additional information
is available from the corresponding author upon request.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, PDF file, 0.2 MB.
FIG S2, PDF file, 0.5 MB.
FIG S3, PDF file, 0.4 MB.
DATA SET S1, XLS file, 0.05 MB.
DATA SET S2, XLS file, 0.1 MB.
DATA SET S3, XLS file, 0.04 MB.
DATA SET S4, XLS file, 5.5 MB.
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Summary25 

It is well established in the microbiome field that antibiotic use and metabolic disease both 26 

impact the structure and function of the gut microbiome. But how host and microbial 27 

metabolism interacts with antibiotic susceptibility to affect the resulting dysbiosis remains 28 

poorly understood. We used a combined metagenomic, metatranscriptomic, and 29 

metabolomic approach to profile host hyperglycemia-related changes in microbiome 30 

taxonomic composition, transcriptional activity, and metabolite abundance both pre- and 31 

post-antibiotic challenge. We found that hyperglycemia did not significantly change 32 

microbial community structure but modified microbiome metabolism and increased 33 

susceptibility to amoxicillin. Hyperglycemia exacerbated the drug-induced dysbiosis and 34 

increased both PTS system activity and energy catabolism compared to controls. Finally, 35 

STZ and amoxicillin dual treatment increased pathogen susceptibility and reduced 36 

survival in a Salmonella enterica infection model. Our data demonstrate that changes in 37 

host metabolism are sufficient to modify microbial metabolism, worsen the severity of 38 

antibiotic dysbiosis, and decrease colonization resistance. 39 
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Introduction 41 

Exposure to broad-spectrum antibiotics is one of the most significant microbiome 42 

perturbations. Antibiotic-induced dysbiosis occurs within hours of treatment, 43 

characterized by rapid loss in total bacterial load and taxonomic diversity, and significant 44 

transcriptional reprogramming (Cabral et al., 2019; 2020; Dethlefsen and Relman, 2011). 45 

This consequentially alter the intestinal metabolome, placing the host at an increased risk 46 

for opportunistic infections (Bäumler and Sperandio, 2016; Buffie et al., 2012; Chang et 47 

al., 2008; Croswell et al., 2009; Kaiko and Stappenbeck, 2014; Rivera-Chávez et al., 48 

2016; Theriot et al., 2015; Theriot and Young, 2015). Understanding the mechanistic 49 

activity of antibiotics within the gut and the external factors that dictate susceptibility is 50 

critical given the severity of antibiotic toxicity, downstream impacts on the microbiome, 51 

and the nearly ubiquitous use of these drugs.  52 

Microbial metabolism is a critical determinant of the severity of antibiotic toxicity 53 

(Stokes et al., 2019a). Microbes performing metabolically-permissive processes that 54 

generate ATP, such as aerobic respiration, have increased bactericidal drug sensitivity 55 

and experience a lethal respiratory burst during drug challenge in vitro (Adolfsen and 56 

Brynildsen, 2015; Belenky et al., 2015; Dwyer et al., 2014; Kohanski et al., 2007; Lam et 57 

al., 2020; Lobritz et al., 2015). Meanwhile, inefficient fermentation, diversion away from 58 

tricarboxylic acid (TCA) cycle activity, or overall reduction in metabolism can confer drug 59 

tolerance in some species (Ahn et al., 2016; Conlon et al., 2016; Lobritz et al., 2015; 60 

Meylan et al., 2017; Thomas et al., 2013). We recently showed that this trend holds true 61 

within the context of the gut microbiome, where antibiotic exposure dramatically reduces 62 

the overall metabolic capacity of the community (Cabral et al., 2019). Surviving taxa such 63 
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as Bacteroides thetaiotaomicron can survive amoxicillin (AMX) exposure by 64 

transcriptional reprogramming that prioritizes polysaccharide fermentation over the more-65 

permissive utilization of simple sugars (Cabral et al., 2019). When considering 66 

mechanisms of in vivo antibiotic activity, the impact of available nutrients on microbial 67 

metabolism is important to consider. For the microbiome, host diet is likely one of the 68 

largest factors shaping the nutrient pool. Diet alone has been demonstrated to perturb 69 

microbiome diversity and activity, and thus may directly impact antibiotic susceptibility 70 

(Albenberg and Wu, 2014; Bisanz et al., 2019; Collins et al., 2018; David et al., 2014; Ley, 71 

2014; Smits et al., 2017; Tanes et al., 2021). Consistent with this, we observed that dietary 72 

glucose supplementation exacerbates AMX toxicity within the murine cecum and reduces 73 

both the total bacterial load and tolerance phenotype of B. thetaiotaomicron (Cabral et 74 

al., 2019). This trend also occurs with the bactericidal drug ciprofloxacin, where 75 

consumption of a high fat/sugar diet increases mucus glycoprotein and simple sugars 76 

consumption within the gut, subsequently increasing the abundance of starch utilization, 77 

glycolysis, and pyruvate fermentation transcripts. Ultimately this increase in metabolic 78 

activity enhances the microbiota’s susceptibility to ciprofloxacin (Cabral et al., 2020). 79 

These data bolster the hypothesis that the local nutrient pool can drive the severity of the 80 

microbiome’s response to antibiotic pressure by modulating how metabolically permissive 81 

the resident taxa are.  82 

Dietary composition is not the sole determinant of the gut nutrient pool. Host-83 

derived molecules and pancreaticobiliary secretions can alter macronutrient breakdown 84 

within the small intestine (SI) and impact the gut microbiome (Shin et al., 2019). For 85 

example, the host controls the concentration of sugars that progress to the colon through 86 
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a combination of SI transporter expression, gastric emptying speed, and enteroendocrine 87 

function (L. Chen et al., 2016; Holst et al., 2016; Koepsell, 2020; Holst et al., 2016; Ussar 88 

et al., 2017). Macronutrient breakdown is thus an interconnected metabolic system. 89 

Disruptions of host metabolism, like digestive and metabolic disorders, are correlated with 90 

microbial dysbiosis (Brestoff and Artis, 2013; Nikita Lomis, 2015; Noor et al., 2017; Qin 91 

et al., 2012; Sabatino et al., 2017). For example, patients with dysglycemia demonstrate 92 

bacterial infiltration of the epithelial mucosa that is unrelated to dietary intake or body 93 

mass index, suggesting dysglycemia triggers an inflammatory intestinal phenotype and 94 

prompts microbial breakdown of mucus glycoproteins (Chassaing et al., 2017). 95 

Host hyperglycemia may lead to potent modulation of the gut metabolic 96 

environment. Currently, the relationship between perturbations in host metabolism and 97 

the severity of antibiotic-induced dysbiosis remains relatively understudied. We 98 

hypothesize that changes in host metabolism related to hyperglycemia will alter the 99 

microbiota-accessible cecal metabolite pool and place the community in a metabolically 100 

permissive state that increases toxicity to bactericidal antibiotics. To test this, we chose 101 

to use the single-dose STZ model rather than a diet- or genetically-induced model of 102 

glucose dysregulation (Deeds et al., 2011; Kobayashi et al., 2000; C.-Y. Wang and Liao, 103 

2011). The benefit of STZ is the selective destruction of pancreatic beta-cells which 104 

induces rapid and irreversible hyperglycemia without potentially microbiome-confounding 105 

factors like diet and host genetics (Deeds et al., 2011; Xiao et al., 2017; Yang et al., 2019). 106 

Existing research on glucose dysregulation and the microbiome is confounded by the use 107 

of metabolic animal models that require dietary modification such as the high-fat diet-108 

induced diabetes mouse model (Fujisaka et al., 2016). In this study we used a multi-omic 109 
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approach that profiled the taxonomic composition, transcriptional activity, and small 110 

molecule repertoire of the cecum to characterize the impact of hyperglycemia on 111 

microbiome disruption during AMX exposure. We then assessed the impact of 112 

hyperglycemia on AMX-induced pathogen susceptibility by challenging mice with 113 

Salmonella enterica. Together, our data demonstrate that changes in host metabolism 114 

are sufficient to directly modulate the metabolic function of the gut microbiota and 115 

increase the susceptibility to antibiotic-induced dysbiosis and worsen a dysbiosis-related 116 

complication.  117 

118 

Results 119 

To examine the combined impact of hyperglycemia and antibiotics on the structure and 120 

function of the cecal microbiome, male C57BL/6J mice were given an intraperitoneal 121 

injection of either STZ or sham vehicle (control). Mice were assessed for hyperglycemia 122 

48 hours post-injection then randomized. The next day, animals were given AMX or 123 

vehicle for 24 hours ad libitum. This time frame is sufficient to profile the acute response 124 

of the microbiota to antimicrobial stress, without encountering significant extinctions 125 

resulting from prolonged drug exposure (Cabral et al., 2020; 2019). After AMX exposure, 126 

mice were sacrificed and cecal contents were harvested for multi-omic profiling (Figure 127 

1A).  128 

STZ caused significant and irreversible hyperglycemia (Figure 1B). Utilizing 16S 129 

rRNA sequencing, we found that hyperglycemia and AMX caused significant changes to 130 

the composition of the gut microbiome (Figure 1C). Because 16S sequencing has limited 131 

phylogenetic resolution, we conducted the remaining analyses with WMGS to gain 132 
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species-level resolution (Cabral et al., 2020; 2019; Clooney et al., 2016; Poretsky et al., 133 

2014; Ranjan et al., 2016). We found that STZ did not impact microbiome alpha diversity, 134 

but exacerbated the reduction in diversity caused by AMX (Figure 1D). We propose that 135 

hyperglycemia sets up a transcriptional and metabolic environment that alters the 136 

microbiome’s response to antibiotic exposure. Thus, we assessed the impact of host 137 

hyperglycemia on the activity of the pre-antibiotic community, then examined the impact 138 

of AMX on microbiome function. 139 

140 

Hyperglycemia Minimally Impacts Microbiome Composition but Modifies the 141 

Metabolome and Metatranscriptome. Unlike many dietary models of diabetes (Xiao et 142 

al., 2017; Yang et al., 2019), acute STZ had minimal impact on taxonomic composition 143 

(Figure 1D, 1E), and caused one significant phylum-level change: the expansion of 144 

Verrucomicrobia (Figure 1E, Figure 6G). We performed differential abundance testing 145 

and confirmed that the expansion was driven by Akkermansia muciniphila (Figure 2A, 146 

Figure 6Q) (Love et al., 2014). A. muciniphila forages carbon from epithelial mucins and 147 

has been proposed to breakdown gut lining integrity under dysbiotic conditions like 148 

polysaccharide starvation (Cabral et al., 2020; Desai et al., 2016; T. Zhang et al., 2019). 149 

Degradation of the mucosa by A. muciniphila could trigger imbalances in the local carbon 150 

pool and have downstream impacts on microbial cross-feeding networks (Belzer et al., 151 

2017).  152 

We observed a 17-fold reduction in the abundance of Blautia sp. YL58 in response 153 

to STZ (Figure 2A). Members of the Blautia genus are documented short-chain fatty acid 154 

(SCFA) producers that use mucin as a carbon substrate (Bui et al., 2019; Oliphant and 155 
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Allen-Vercoe, 2019; Rey et al., 2010; Vacca et al., 2020), and the differential abundance 156 

of two muciniphilic species may indicate STZ disrupts carbon syntrophy. Because of the 157 

compositional similarity prior to AMX exposure, we postulated that the disparity in drug 158 

susceptibility was due to modifications in metabolic and transcriptional activity that directly 159 

impacts toxicity.  160 

Given the significant dysregulation of blood glucose metabolism in STZ-treated 161 

mice (Figure 1B), and insulin’s involvement in maintaining proper intestinal glucose 162 

absorption (Ussar et al., 2017), we wondered if AMX susceptibility was related to cecal 163 

glucose levels. However, we found no significant difference without antibiotic perturbation 164 

(Figure 1F). We subsequently assessed the cecal metabolome divergence using Principal 165 

Coordinate Analysis, and found that the metabolomes of hyperglycemic and 166 

normoglycemic communities were distinct from each other (Figure 1G). We identified the 167 

most significant Q-TOF-MS features via differential abundance testing (Love et al., 2014) 168 

and pathway-level projection (Aggio et al., 2010), and LC-MS/MS features using random 169 

forest classification (Figure 2B, Figure 2C, Figure S2A, Table S1, Table S2). 454 Q-TOF-170 

MS metabolites were differentially abundant and we characterized the top-50 most 171 

influential LC-MS/MS metabolite clusters in our machine learning model (Figure 2B, 172 

Figure 2C, Figure S1D, Figure S2A, Table S1, Table S2, Table S3). We paired these 173 

findings with community-level and species-level transcriptomics to better characterize the 174 

functional capacity of the microbiome prior to antibiotic introduction.    175 

Despite consuming identical diets, hyper- and normoglycemic communities had 176 

different levels of plant-based fiber and polyphenols that suggested disturbed 177 

polysaccharide processing. We observed STZ-specific enrichment of the flavones 178 
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apigenin, schaftoside, and daidzein (Figure 2C, Table S1) and significant reductions in 179 

major metabolites from apigenin breakdown such as 3-3-hydroxyphenyl propanoate 180 

(Figure 2C, Table S1). Flavonol degradation can generate either hydroxyphenylacetic 181 

acids or phenolic intermediates that are converted to SCFAs by Firmicutes (Braune and 182 

Blaut, 2016), and loss of this degradation may partially explain how reduced 183 

polysaccharide processing impacts SCFA levels. We observed that STZ-treatment 184 

reduced transcription of phytate degradation and multiple plant polysaccharide-related 185 

carbohydrate-active enzymes (CAZymes), and reduced the abundance of the SCFA 186 

valerate (Figure 2C, Figure S1B, Table S1, Table S4).  We also identified that 187 

polysaccharide-fermenting taxa like B. thetaiotaomicron (Martens et al., 2008; 188 

Sonnenburg et al., 2005) reduced the expression of loci for targeted polysaccharide 189 

import (Figure 2E: BT3086, BT3087, BT3090, and BT4581, Table S5). These data 190 

suggest diminished microbial breakdown of dietary fiber, and that STZ causes shifts in 191 

polysaccharide-derived carbon sources levels. 192 

Amino acids are another significant bacterial carbon source (X. Wang et al., 2019). 193 

STZ treatment greatly modified amino acid metabolism by the cecal microbiota. Multiple 194 

metabolites associated with aromatic amino acid generation (AAA), including 3-(3-195 

hydroxyphenyl)propanoic acid and phenylethyl alcohol were reduced by STZ (Figure 2C, 196 

Table S1). We also observed accumulation of shikimate pathway intermediates like 3-197 

dehydroquinate, 3-dehydroshikimate, and shikimate, likely caused by a block in the 198 

terminal component of the pathway and exemplified by reduced transcription of both AAA 199 

and chorismate synthesis (Figure 2C, Figure 2D, Table S1, Table S6). Because the 200 

shikimate pathway feeds directly into AAA generation via chorismate synthesis, reduced 201 
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transcription and accumulation of metabolic intermediates could suggest a shift from 202 

anabolic to catabolic amino acid metabolism.  203 

The shikimate pathway is also involved in B-vitamin generation and impacts the 204 

availability of energy carriers like coenzyme A (CoA) (Tzin and Galili, 2010). To that end, 205 

we observed enrichment of metabolites involved in pantothenate and CoA biosynthesis 206 

coupled with reduced pathway transcription (Figure 2D, Figure S1E, Table S3, Table S6). 207 

STZ also increased microbial expression of thiazole biosynthesis, which is critical for the 208 

generation of vitamin B1- and thus key metabolic enzymes like pyruvate dehydrogenase 209 

and decarboxylase, and ⍺-ketoglutarate dehydrogenase (Andersen et al., 2015) (Figure 210 

2D, Table S6). The link between energy carriers and primary metabolism prompted us to 211 

look for changes in TCA activity and glycolysis (Allaway et al., 2020; Yoshii et al., 2019). 212 

We observed increased pyruvate metabolism, glycolysis, and gluconeogenesis-related 213 

metabolites, including glutamine and glycerol-3-phosphate (Figure S1D, Figure S1E). 214 

Finally, we observed an increase in transcripts such as ATPases, phosphoenolpyruvate 215 

hydratase, and succinate dehydrogenase (Figure S1C, Table S8), that, in conjunction 216 

increased inosine and tRNA processing activity (Figure 2D, Table S1), may suggest 217 

increased respiration and translation by some of the microbiome (Figure S1E, Table S3). 218 

These data indicate that STZ has robust impacts on both the metabolic and 219 

transcriptional activity of the gut microbiota without major modifications to its taxonomic 220 

composition. We also observed metabolites associated with increased translational 221 

demand, which likely requires higher metabolic flux from the gut microbiota. However, 222 

these data do not reveal directional information about these reactions and biochemical 223 

pathways. Additionally, we must consider that these processes likely occur 224 
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simultaneously within multiple compartments of the microbiome. Additionally, there is 225 

redundancy in species function and in substrate utilization across biochemical pathways 226 

(Tian et al., 2020). Thus, rather than a single disruption increasing drug susceptibility, it 227 

is likely that the summation of large-scale disruption places the STZ-treated community 228 

in a more metabolically permissive state. In concert, the observed changes to gut 229 

microbiome function ultimately may put increased metabolic demand on the community 230 

which may lead to increased AMX susceptibility. 231 

232 

Hyperglycemia Exacerbates Antibiotic Dysbiosis and Shifts Microbial Metabolism. 233 

Given the connection between microbial metabolism and antibiotic susceptibility (Belenky 234 

et al., 2015; Cabral et al., 2019; Lobritz et al., 2015; Stokes et al., 2019b),  we 235 

hypothesized that STZ-induced metabolic disruption would enhance susceptibility to 236 

AMX. Accordingly, STZ exacerbated the AMX-induced caused significant divergence in 237 

taxonomic, metabolite and transcriptional profiles (Figure 1E, Figure 1G, Figure 6A). The 238 

majority of detected responses were highly divergent between hyper- and normoglycemic 239 

mice. First, fatty acid metabolism was differentially regulated during drug challenge and 240 

may represent a core STZ-driven difference in AMX responses. Hyperglycemic animals 241 

had a unique loss of phosphotidylserines and tigylcarnitines (Table S1) but had 242 

enrichment for multiple N-acylethanolamines (Figure 4A: positive interaction value, Table 243 

S1). Higher concentrations of ethanolamines may suggest increased fatty acid 244 

epoxidation within the gut and localized inflammation that has been associated with gut 245 

dysbiosis (Ormsby et al., 2019; Thiennimitr et al., 2011a).  246 
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To highlight host-dependent changes in CAZyme expression, we calculated the 247 

interaction between glycemia and AMX exposure for the CAZyme repertoire (Figure 3A, 248 

Table S4). Hyperglycemic animals do not have the same reduction in glycoside hydrolase 249 

(GH) 43 as controls, which suggests modified polysaccharide binding capacity, as GH43 250 

is primarily assumed to be involved in xylan and arabinose binding (Figure 3A, Table S4) 251 

(Mewis et al., 2016). Despite increased GH43-related transcripts, we observed decreased 252 

GH transcripts at the SEED subsystem level, and an overall greater reduction in GH 253 

abundance relative to controls (Figure 3B, Figure 3D, Table S4, Table S7). Given the 254 

reduction in polysaccharide foraging in the STZ baseline, it is possible that the 255 

hyperglycemic microbiota is unable to adapt its CAZyme expression in response to AMX. 256 

Accordingly, we observed STZ-specific accumulation of polyphenols and 257 

polysaccharides, providing further support for host-dependent modifications in 258 

polysaccharide metabolism (Figure 4A: positive interaction, Table S1). STZ communities 259 

had accumulation of multiple phenylpropanoids, phenylacetic acids, polyphenols, 260 

alkaloids, flavonoids, and isoprenoids (Figure 4A, Table S1) as well as pathway-level 261 

enrichment of metabolites related to flavonoid/isoflavonoid synthesis after AMX treatment 262 

(Table S3). As with the pre-AMX baseline, hyperglycemia resulted in a diminished 263 

capacity for fiber and polyphenol metabolism by the gut which may directly contribute to 264 

the severity of AMX-induced dysbiosis.  265 

Hyperglycemia also modified mucus foraging by the microbiota after AMX 266 

challenge. In our CAZyme dataset, STZ-treated communities had reduction (negative 267 

interaction value) of GHs that target the chitobiose core of mucins (GH115), and did not 268 

upregulate GH84, GH129, and GH89 which target N-acetylglucosamine, class-III mucins, 269 
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and mucus glycoproteins (Figure 3A, Table S4). Simultaneously, STZ- and AMX 270 

treatment downregulated expression of the Leloir pathway, which plays a role in foraging 271 

mucus galactose residues (Figure 3E, Table S6)  (Tang et al., 2016). Additionally, 272 

hyperglycemic mice did not exhibit an enrichment of the sialic acid residue N-273 

acetylneuraminic acid (NAN) that occurred in normoglycemic animals after AMX exposure 274 

(Table S1). Because NAN is liberated by mucus degradation of the epithelium (Crost et 275 

al., 2016), this suggest reduced muciniphilic activity by STZ-treated communities during 276 

AMX challenge. Changes in host-dependent polysaccharide and mucus metabolism were 277 

also true at the species level for B. thetaiotaomicron (See Supplementary Results). 278 

Ultimately, STZ-related modifications in glycan foraging occur both before and after AMX 279 

exposure, suggesting that host glycemia directly impacts the composition of the cecal 280 

carbon pool, and this may in turn modify bacterial metabolism during drug challenge. 281 

Although AMX reduced cecal glucose concentrations in both hosts, hyperglycemic 282 

animals had significantly higher glucose levels than controls (Figure 1F). Accordingly, we 283 

observed that the expression of phosphotransferase system (PTS) transcripts and the 284 

abundance of PTS metabolites like mannitol 1-phosphate were elevated in hyperglycemic 285 

mice after AMX treatment (Figure 3D, Figure 4A, Table S1, Table S7). Elevated glucose 286 

and PTS activity likely increased catabolism. To that end, we observed STZ-specific 287 

increases in pyruvate fermentation (Figure 3E, Table S6) and higher concentrations of 288 

acetylated sugars like acetyl-maltose relative to controls (Table S1). STZ-treated mice 289 

had specific metabolic enrichment of catabolism and catabolism-supporting pathways 290 

including 2-oxocarboxylic acid metabolism (pyruvate), glycolysis, starch/sucrose 291 

utilization, nicotinate/nicotinamide generation, and propanoate generation (Table S3). 292 
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The enrichment of nicotinate/nicotinamide and propanoate generation-related 293 

metabolites likely impacts the abundance of energy carriers (Belenky et al., 2007), and 294 

accordingly in our LC-MS/MS dataset we saw that STZ-treated communities had a unique 295 

enrichment in riboflavin (Figure 4C: Cluster 699, Figure S2C, Table S2) (Steinert et al., 296 

2020).  297 

298 

Hyperglycemia Modifies the Composition of Bacteroidetes and Firmicutes after 299 

Amoxicillin Challenge. The large metabolic changes observed after AMX translate to a 300 

highly divergent impact on microbial composition. We found that hyperglycemia enhanced 301 

the AMX-induced reduction in alpha diversity (Figure 1D). Hyperglycemic mice had a 302 

unique reduction in Verrucomicrobia, however this is potentially due to the baseline 303 

expansion of A. muciniphila in response to STZ treatment (Figure 1E, Figure 6A, Figure 304 

6G, Figure 6Q).  Interestingly, the phylum-level community changes that we anticipated 305 

in response to AMX (Cabral et al., 2019) were exacerbated in hyperglycemic mice. 306 

Specifically, there were greater reductions in Actinobacteria and Firmicute abundances 307 

and a significant increase in the AMX-induced bloom of Bacteroidetes (Figure 1E, Figure 308 

6C-F). Consistent with our previous work (Cabral et al., 2019), the Bacteroidetes bloom 309 

was driven by expansion of B. thetaiotaomicron in both normo- and hyperglycemic mice 310 

(Figure 6A, Figure 6H). 311 

To examine species-level AMX responses, we calculated the interaction of host 312 

metabolism and AMX treatment (Love et al., 2014). In addition to B. thetaiotaomicron, 313 

many members of the Bacteroides genus increased after AMX, but their abundances 314 

were significantly higher in hyperglycemic mice (positive interaction) (Figure 5A, Figure 315 
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6B). Meanwhile, the species with reduced abundance in STZ mice after AMX treatment 316 

(negative interaction) were primarily within the order Clostridiales. This includes 317 

Intestinimonas butyriciproducens, Oscillibacter valericigenes, Oscillibacter sp. PEA192, 318 

Clostridium innocuum, and Erysipelotrichaeceae bacterium I46 (Figure 5A, Figure 6N-P). 319 

These taxa are key starch degraders and SCFA producers, and their reduction speaks to 320 

the increased dysbiotic state of STZ and AMX co-treated animals (Bui et al., 2016a; Iino 321 

et al., 2007; Kazemian et al., 2020; Newman et al., 2018). Overall, these data suggest 322 

that the metabolic shifts that occur in the gut microbiome via STZ exacerbates the post-323 

AMX bloom of Bacteroidetes while significantly increasing the collapse of key SCFA-324 

producing Firmicutes. This likely impacts the local metabolome and metatranscriptome, 325 

and thus AMX susceptibility, given the syntrophic nature of Bacteroides and Firmicute 326 

metabolism (Fischbach and Sonnenburg, 2011).  327 

328 

Hyperglycemia and Amoxicillin Dual-Treatment Increases Susceptibility to 329 

Salmonella enterica Infection. We observed STZ-specific enrichment of ethanolamines 330 

(Figure 4A: positive interaction, Table S1), and the ethanolamine precursor 331 

phosphotidylethanolamine after AMX treatment (Figure S3A, Table S1). Ethanolamines 332 

are naturally generated by phosphotidylethanoamine breakdown during cell turnover; 333 

however, the majority of the microbiota is unable to ferment ethanolamines and that any 334 

microbial use is strictly associated with pathogenic contexts (Garsin, 2010). Interestingly, 335 

ethanolamines have been characterized to increase both the colonization and virulence 336 

of multiple enteric pathogens (Anderson et al., 2018; Christopher J Anderson, 2015; 337 

Nawrocki et al., 2018; Rowley et al., 2018). Specifically, some Enterobacteriaceae are 338 
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enriched for the genetic machinery required to use ethanolamines, and can funnel its 339 

breakdown products into both nitrogen metabolism and respiration (Christopher J 340 

Anderson, 2015; Garsin, 2010; Srikumar and Fuchs, 2010; Thiennimitr et al., 2011b). In 341 

Salmonella, exogenous ethanolamine signals a cascade of metabolic and virulence 342 

genes that promote intestinal colonization (Anderson and Kendall, 2016). Antibiotic-343 

induced dysbiosis is also associated with increased S. enterica colonization, likely 344 

through the induction of a respiratory-favorable environment and disruption of the 345 

endogenous microbiota (M. Y. Yoon and S. S. Yoon, 2018; Zeng et al., 2017). Thus, we 346 

asked if STZ and AMX treatment would increase infection susceptibility by challenging 347 

hyper- and normoglycemic mice with S. enterica (Figure 7A). AMX increased 348 

susceptibility to S. enterica even at low infective doses regardless of host glycemia. Lower 349 

infective doses were required to establish infection in STZ- and AMX-treated mice and 350 

these animals experience a higher total pathogen burden (Figure 7B). 351 

At all tested infection doses, hyperglycemia increased lethality by day 7. We 352 

observed that 100 percent of control mice receiving the AMX sham survived the infection 353 

course, while AMX-treated mice from the 1x104 and 1x105 dosing groups had 75 and 50 354 

percent survival, respectively (Figure 7C). The first lethality event in control mice did not 355 

occur until 72 hours post-infection (Figure 7C), while the first lethality event in 356 

hyperglycemic mice was at 24 hours (Figure 7D). Hyperglycemic mice receiving the AMX 357 

sham had reduced survival at the infective doses of 1x105 and 1x106 (75 and 40 percent, 358 

respectively) (Figure 7D). AMX-treated hyperglycemic mice experienced lethality events 359 

at all infective doses, and had overall lower survival rates. The 1x105 and 1x106 dosing 360 

groups had 80 percent lethality within 24 hours, and exhibited no survival after 7 days 361 
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(Figure 7D). Meanwhile, the 1x104, 1x103, and 1x102 doses exhibited survival rates 362 

between 25 and 50 percent (Figure 7D). Together, these data suggest that the 363 

combination of STZ and AMX severely reduces the probability of survival after S. enterica 364 

challenge, likely due to increased pathogen burden relative to controls. It is possible that 365 

the enrichment of favorable metabolites in STZ and AMX-treated communities promotes 366 

the expansion and virulence of S. enterica, although more work is required to confirm this 367 

hypothesis.  368 

369 

Discussion 370 

Recent estimates of dysglycemia’s global prevalence suggest that metabolic 371 

disruption occurs in approximately ten percent of individuals, with incidence increasing 372 

annually (Saeedi et al., 2019). Thus, understanding how host metabolism impacts the 373 

severity of antibiotic-induced dysbiosis is key to the development of informed therapeutic 374 

strategies to mitigate microbiome damage during antibiotic administration. To address 375 

this knowledge gap, we used an integrated multi-omic strategy to examine how STZ-376 

induced hyperglycemia modifies the microbiome’s response to AMX challenge. 377 

Specifically, we combined WMGS, metatranscriptomics, and Q-TOF-MS- and LC-378 

MS/MS-based metabolomics to examine glycemia-related differences in microbiome 379 

taxonomic composition and metabolic function both pre- and post-antibiotic treatment.  380 

STZ treatment initiated a cascade of changes to fiber and polyphenol foraging and 381 

SCFA generation. Although STZ did not have major implications on the taxonomic 382 

structure of the gut, it did reduce the abundance of SCFA-producing Firmicutes such as 383 

Blautia sp. YL58 that participate in syntropy with carbohydrate-fermenting members of 384 
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the microbiota (Bui et al., 2016b; Oliphant and Allen-Vercoe, 2019; Rey et al., 2010; 385 

Vacca et al., 2020). One possible but untested explanation for this taxonomic shift is that 386 

changes in the abundance of muciniphilic species like A. muciniphila modifies the balance 387 

of favorable metabolites for Blautia sp. to initiate SCFA fermentation. Alternatively, STZ-388 

induced changes to the cecal metabolome may alter the behavior of polysaccharide-389 

foraging species, which would initiate a cascade of metabolic changes that enrich for 390 

muciniphile expansion, loss of SCFA production, and could generate a dysbiotic state. 391 

Given the overall shifts in polysaccharide metabolism in the STZ-treated gut, our data 392 

suggests that the latter is more likely.  393 

A major indicator of perturbed polysaccharide metabolism in our datasets was the 394 

altered abundance of polyphenol substrates and metabolites. Bacteria can coopt plant-395 

based phenylpropanoid intermediates for various enzymatic reactions and are capable of 396 

liberating sugars from these compounds for use in their own metabolic activity (Fraser 397 

and Chapple, 2011; Braune and Blaut, 2016; Moore et al., 2002). In fact, some microbiota-398 

associated taxa can directly utilize flavones as a carbon source and fuel flavone 399 

metabolites into their respiratory cycle (Burlingame and Chapman, 1983). Thus, shifts in 400 

the abundance of dietary-derived polyphenols could modify microbial metabolism in the 401 

cecum. Reduced dietary intake of fiber and polyphenols has been recognized as a 402 

perturbation to the microbiota and, increases susceptibility to bactericidal antibiotics by 403 

modifying microbial metabolism (Cabral et al., 2020; 2019; Makki et al., 2018; Ng et al., 404 

2019). We propose that a similar disruption of the microbiome is occurring in our study. 405 

Reduced fiber use by the microbiota may be partially explained by a side-effect of 406 

STZ treatment. In rodents receiving a multiple low-dose regime (i.e. 50 mg/kg/day for 5 407 
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days) of STZ, treatment is correlated with an initial reduction in food consumption (Motyl 408 

and McCabe, 2009). However animals eventually exhibit hyperphagia after 1 week post-409 

injection (Motyl and McCabe, 2009; M. Zhang et al., 2008). It is possible that our 410 

experimental time point for AMX administration and sample collection (3 and 4 days-post 411 

injection, respectively) are also associated with reduced food intake. This would reduce 412 

the availability of fiber for fermentation by the microbiota. The STZ-related shifts in amino 413 

acid metabolism that we observed may be explained by the fact that, in addition to SCFAs, 414 

reduced fiber use impacts the production of several amino acid-based metabolites by 415 

members of the Firmicutes phylum (Neis et al., 2015; Tanes et al., 2021). Interestingly, 416 

studies have correlated spikes in both aromatic and branched-chain amino acids to be 417 

predictive biomarkers of type-2 diabetes (Neis et al., 2015), suggesting an intrinsic link 418 

between metabolic dysregulation and shifts in gut amino acid metabolism.  Broad 419 

changes in amino acid metabolism are also a biomarker of vancomycin-induced dysbiosis 420 

(Tanes et al., 2021), thus, reductions in amino acid generation may represent a 421 

generalized stress response to antibiotic challenge (Cabral et al., 2019). Because 422 

Firmicutes have been characterized to perform a bulk of amino acid, nitrogen, and sulfur 423 

metabolism reactions within the gut, it is possible that these changes in our datasets 424 

indicate disruption to Clostridial Firmicute metabolism rather than whole-community 425 

perturbation (Bernal et al., 2007; Böttcher et al., 2014; Gao et al., 2018; Meadows and 426 

Wargo, 2015). It is possible that the increased AAA catabolism in the STZ-treated 427 

microbiome places a higher metabolic demand on Firmicutes, which in turn places them 428 

in a more antibiotic-susceptible state. This could explain the increased sensitivity of these 429 

taxa to AMX in STZ-treated mice, but more work in needed to confirm this hypothesis.  430 
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A key consideration of any ecological network is its taxonomic composition (Coyte 431 

and Rakoff-Nahoum, 2019). Polymicrobial interactions are a significant component of the 432 

microbiome’s ecology and changes to taxonomic structure will directly impact the 433 

functional capacity of a given polymicrobial network (Coyte and Rakoff-Nahoum, 2019; 434 

Layeghifard et al., 2017) (Boon et al., 2014). Our results contrast with existing work 435 

examining STZ-related microbial taxonomic changes in rats, but this may be indicative of 436 

inherent differences between mice and rats, differences in dosing regimens and sample 437 

collection, sequencing depth, or use of a diet in combination with and STZ versus the 438 

single-dose model (S. Liu et al., 2019; Ma et al., 2020; Patterson et al., 2014; Yin et al., 439 

2020). Interestingly, the relatively minor taxonomic shifts we observed were correlated 440 

with significant modifications in both the cecal metatranscriptome and metabolome 441 

(Figure 2) as well as significant taxonomic restructuring after antibiotic challenge (Figure 442 

6). Because STZ-treatment impacted total alpha diversity and the abundance of every 443 

major phyla tested compared to normoglycemic controls after antibiotic treatment, it 444 

stands to reason that changes in the transcriptional and metabolic function are the driving 445 

force behind the disparities in post-antibiotic taxonomic composition of the microbiome. 446 

Overall, these data make a very strong argument for the degree of control that changes 447 

in baseline functional capacity have on the compositional restructuring of the microbiome 448 

after an external perturbation.  449 

Lastly, we examined if the increased severity of AMX toxicity in hyperglycemic 450 

animals would increase their susceptibility to acute complications of dysbiosis such as 451 

enteric infection. Overall, STZ- and AMX-treated animals exhibited both increased 452 

susceptibility to S. enterica and reduced overall survival after one-week of infection 453 
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(Figure 7). Recent work by Thaiss et al. has demonstrated that decreased barrier function 454 

induced by STZ increases susceptibility to S. enterica (Christopher A Thaiss et al., 2018). 455 

However, this study utilized a multiple-dose STZ model and did not begin the pathogen 456 

challenge until a few weeks after STZ treatment, thus these results may not translate to 457 

our study. For example, we found that, at low infection doses, STZ treatment had no 458 

impact on susceptibility in the absence of antibiotics. Thus, it is possible that the 459 

hyperglycemic and drug-treated microbiome is structurally, functionally, and metabolically 460 

perturbed in a way that promotes the colonization and expansion of S. enterica. For 461 

example, we observed enrichment of multiple ethanolamines, which are a carbon source 462 

that cannot be fermented by the microbiota but can be utilized by Salmonella (Christopher 463 

J Anderson, 2015; Srikumar and Fuchs, 2010; Thiennimitr et al., 2011b). S. enterica has 464 

notably flexible metabolism compared to the bulk of the microbiota (Savannah J Taylor, 465 

2020), and can use non-accessible carbon sources like ethanolamines to promote both 466 

coloninzation and niche adaptation in the mammalian host (Christopher J Anderson, 467 

2015). Other metabolites that may have impacted infection severity by S. enterica include 468 

acetyl-maltose, as Salmonella are equipped with tightly controlled maltose import 469 

systems that allow it to readily fuel this carbon source into its respiratory cycle (Erhardt 470 

and Dersch, 2015; Jain et al., 2020; Miller et al., 2013). Another elevated metabolite of 471 

interest was pantetheine, which Salmonella can also directly shunt into its CoA synthesis, 472 

potentially providing a fitness advantage through competitor exclusion (Ernst and Downs, 473 

2015) (Table S1). An additive explanation for the increased expansion of Salmonella in 474 

our hyperglycemic and drug-treated mice in an overall increase in antibiotic-induced 475 

intestinal oxygenation. Salmonella are facultative anaerobes and can readily switch to 476 
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aerobic respiration when needed (Rhen, 2019). Additionally, Salmonella can use 477 

inflammation-related metabolites like tetrathionate as a terminal electron acceptor, and 478 

thus can coopt the oxygenated and inflamed gut to promote its own growth (Winter et al., 479 

2010). Although more work is required to parse what components of the hyperglycemic 480 

microbiome provide Salmonella with a competitive advantage after AMX perturbation, our 481 

data provides strong preliminary evidence that host metabolism can also directly impact 482 

the acute consequences of antibiotic dysbiosis. Ultimately, our study demonstrates that 483 

host-related physiology and metabolic state must be a key consideration of any current 484 

and future therapeutic strategy aimed at mitigating antibiotic-induced microbiome 485 

damage. 486 

487 

Limitations. While our multi-omic approach provides a robust characterization of the 488 

murine cecal microbiome during dysglycemia and antibiotic perturbation, there are 489 

limitations in the study design and methodology that complicate the interpretation of the 490 

results. First, our study exclusively uses male mice. Female mice are partially resistant to 491 

STZ-induced hyperglycemia and require significantly higher doses and (or) repetitive 492 

dosing regimens compared to males to induce a metabolic phenotype (Deeds et al., 2011; 493 

Goyal et al., 2016). Key considerations of our metagenomic and metatranscriptomic 494 

analyses are both the dependence on existing databases that possess annotation-based 495 

limitations and the need for imperfect alignment algorithms (Consortium, 2012). About 496 

half of all genes within the microbiome have not been functionally characterized 497 

(Consortium, 2012), complicating the interpretation of any read assignments. Further, 498 
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WMGS data is also complicated by the fact that taxonomic levels are reported as relative 499 

abundance.  500 

For untargeted metabolomics, ion annotation is still considered the primary bottleneck 501 

during analysis (Gertsman and Barshop, 2018; Schrimpe-Rutledge et al., 2016). 502 

Additionally, the diversity in chemical modification, polarity, solubility, and ionization of 503 

chemical structures from complex biological samples often requires multiple analytical 504 

modes (i.e. positive versus negative ion mode) to be run in order to characterize all 505 

structures, and that can subsequently complicate ion identification (Gertsman and 506 

Barshop, 2018; Lei et al., 2011; Luan et al., 2019). While metabolomics offers a robust 507 

and powerful examination of the small molecule repertoire of the cecum, it does not allow 508 

for us to distinguish between bacterially-derived, fungal-derived and host-derived 509 

metabolites (Gertsman and Barshop, 2018). Ultimately, further work will be required to 510 

correlate STZ and AMX-induced metabolomic changes with individual taxa, and greater 511 

annotation of metabolic syntrophy in the gut will aid in the biological interpretation of 512 

subsequent metabolomic analyses.   513 
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Main Figure Titles and Legends 541 

Figure 1. The impact of streptozotocin and amoxicillin on the murine gut microbiome. 542 

A. Experimental design of this study. Figure was created with BioRender.com543 

(BioRender, Toronto, Canada).544 

B. Fasting blood glucose of individual mice before STZ injection (Day 0), 48 hours545 

post-injection, and 96 hours post-injection. Only mice whose fasting blood546 

glucose was > 250 mg/dL were used in the antibiotic treatment experiment (N547 

= 20 for controls, N = 24 for STZ-treated).548 

C. Principal Coordinate Analysis of Bray-Curtis Dissimilarity between 16S rRNA549 

amplicons from experimental groups.550 

D. Average alpha diversity of experimental groups as measured by the Shannon551 

diversity index of metagenomic samples.552 

E. Average relative abundance of the five most-abundant bacterial phyla in our553 

data set. Data are represented as mean + SEM for each phylum.554 

F. Quantification of cecal glucose concentrations from experimental groups. Data555 

represent averaged concentrations + SEM.556 

G. Principal Coordinate Analysis of Bray-Curtis Dissimilarity between metabolome557 

extracts from experimental groups.558 

For C-F: N = 5 to 8 per group  559 

For G: N = 6 per group, 2 technical replicates per mouse 560 

For C & G: (*, P < 0.05; **, P < 0.01; ***, P < 0.001, permutational ANOVA) 561 

For D & F: (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001, Welch’s ANOVA with 562 

Dunnet T3 test for multiple hypothesis testing) 563 

564 
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Figure 2. Hyperglycemia modifies the cecal metabolome and metatranscriptome 565 

A. Differentially abundant bacterial species (from the 75 most-abundant taxa) 566 

detected following STZ treatment. Data represent log2 fold change relative to 567 

normoglycemic controls + standard error (N = 5 to 8 per group). 568 

B. Differentially abundant (unpaired T-test with Welch’s correction p value < 0.05) 569 

GNPS-annotated clusters that contain known metabolites within the cluster. 570 

Clusters were selected from the top-50 most relevant features via Random Forest 571 

Testing (Figure S2). See Table S2 for full results. 572 

C. Differentially abundant Q-TOF-MS metabolite features in the murine cecum 573 

following STZ treatment as represented by log2 fold change + standard error. See 574 

Table S1 for full results. 575 

D. Linear discriminant analysis score of differentially expressed MetaCyc pathways 576 

following STZ treatment as calculated by LEfSe. See Table S6 for full pathway 577 

names and statistics. 578 

E. Differentially-abundant B. thetaiotaomicron transcripts after STZ treatment. Data 579 

represent log2 fold change versus normoglycemic controls + standard error. See 580 

Table S5 for fill results. 581 

For B & C: N = 6 per group, 2 technical replicates per mouse 582 

For D & E: N= 4 per group 583 

For A, C & E: Differentially abundant = Benjamini-Hochberg adjusted p value < 0.05 584 

  585 
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Figure 3. Amoxicillin differentially alters the cecal metatranscriptome. 586 

A. Differentially-abundant CAZyme transcripts in control and STZ-treated mice,587 

alongside their interaction value after AMX. Data represent log2 fold change588 

relative to vehicle controls + standard error. See Table S4 for full results.589 

B. Differentially-abundant level 2 SEED Subsystem transcripts in normoglycemic590 

mice after AMX. Data represent log2 fold change relative to vehicle controls +591 

standard error. See Table S7 for full results.592 

C. Linear discriminant analysis score of differentially expressed MetaCyc pathways593 

following AMX treatment in normoglycemic mice as calculated by LEfSe. See594 

Table S6 for full pathway names and statistics.595 

D. Differentially-abundant level 2 SEED Subsystem transcripts in hyperglycemic mice596 

after AMX. Data represent log2 fold change relative to vehicle controls + standard597 

error. See Table S7 for full results.598 

E. Linear discriminant analysis score of differentially expressed MetaCyc pathways599 

following AMX treatment in hyperglycemic mice as calculated by LEfSe. See Table600 

S6 for full pathway names and statistics.601 

For all panels: N = 4 per group 602 

For A, B, & D: Differentially abundant = Benjamini-Hochberg adjusted p value < 0.05 603 

604 
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Figure 4. Amoxicillin differentially alters the cecal metabolome. 605 

A. Differentially-abundant (Benjamini-Hochberg adjusted p value < 0.05) Q-TOF-MS606 

metabolite features normoglycemic (Control) and hyperglycemic (STZ) mice,607 

alongside their interaction value after AMX treatment. Data represent log2 fold608 

change relative to vehicle controls + standard error. See Table S1 for full results.609 

B. Differentially abundant GNPS-annotated clusters that contain known metabolites610 

within the cluster. Clusters were selected from the top-50 most relevant features611 

via Random Forest Testing (Figure S2). Comparison is between control mice612 

receiving AMX versus vehicle. See Table S2 for full results.613 

C. Differentially abundant GNPS-annotated clusters that contain known metabolites614 

within the cluster. Clusters were selected from the top-50 most relevant features615 

via Random Forest Testing (Figure S2). Comparison is between hyperglycemic616 

mice receiving AMX versus vehicle. See Table S2 for full results.617 

For all panels, N = 6 per group with 2 technical replicates per mouse 618 

For B & C: Differentially abundant = unpaired T-test with Welch’s correction p value < 619 

0.05 620 

621 
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Figure 5. Hyperglycemia modifies the impact of amoxicillin on members of the 622 

Bacteroides genus.  623 

A. Differentially abundant bacterial species (within the 75 most-abundant taxa)624 

detected following AMX treatment in control and hyperglycemic mice, compared625 

to their interaction value. Data represent log2 fold change relative to vehicle-treated626 

controls + standard error (N = 5 to 8 per group).627 

B. Differentially-abundant B. thetaiotaomicron transcripts after AMX treatment. Data628 

represent log2 fold change of hyperglycemic AMX-treated mice relative to vehicle629 

controls + standard error. See Table S5 for full results (N = 4 per group).630 

For all panels: Differentially abundant = Benjamini-Hochberg adjusted p value < 0.05 631 

632 
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Figure 6. Hyperglycemia and amoxicillin treatment modify the taxonomic composition of 633 

the murine cecal microbiome.  634 

A. Average relative abundance of the 25 most-abundant species in our data set. Data635 

are represented as mean + SEM for each species.636 

B. Average relative abundance of species from A after the removal of reads assigned637 

to B. thetaiotaomicron. Data are represented as mean + SEM for each species.638 

C. Average relative abundance of reads assigned to the Bacteroidetes phylum.639 

D. Average relative abundance of reads assigned to the Actinobacteria phylum.640 

E. Average relative abundance of reads assigned to the Firmicutes phylum.641 

F. Average relative abundance of reads assigned to the Proteobacteria phylum.642 

G. Average relative abundance of reads assigned to the Verrucomicrobia phylum.643 

H. Average relative abundance of reads assigned to Bacteroides thetaiotaomicron.644 

I. Average relative abundance of reads assigned to Muribaculum intestinale.645 

J. Average relative abundance of reads assigned to Acutalibacter muris.646 

K. Average relative abundance of reads assigned to Clostridiales bacterium647 

CCNA10.648 

L. Average relative abundance of reads assigned to Flavonifractor plautii.649 

M. Average relative abundance of reads assigned to Hungateiclostrideaceae650 

bacterium KB18.651 

N. Average relative abundance of reads assigned to Intestinimonas 652 

butyriciproducens.653 

O. Average relative abundance of reads assigned to Oscillibacter sp. PEA192.654 

P. Average relative abundance of reads assigned to Oscillibacter valericigenes.655 

Q. Average relative abundance of reads assigned to Akkermansia muciniphila.656 

For all panels, N = 5 to 8 per group.  657 

For panels C-Q, (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001, Welch’s ANOVA 658 

with Dunnet T3 test for multiple hypothesis testing). 659 

660 
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Figure 7. Hyperglycemia and amoxicillin increase susceptibility to and worsen survival 661 

against Salmonella enterica infection.  662 

A. Experimental design of pathogen challenge study. Figure was created with663 

BioRender.com (BioRender, Toronto, Canada).664 

B. Salmonella enterica Typhimurium colony forming units (CFU) per gram of feces665 

in control AMX(+/-), and hyperglycemic AMX(+/-) mice over the course of666 

infection with an inoculum of 1x102 cells. Data represent mean CFU + standard667 

error. (*, P < 0.1; **, P < 0.05 Mann-Whitney U test of STZ AMX(+) vs Control668 

AMX(+)).669 

C. Kaplan Meier survival curve of normoglycemic mice after one week.670 

D. Kaplan Meier survival curve of hyperglycemic mice after one week.671 

For all panels N = 4 to 5 per group 672 

673 
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STAR METHODS 674 

Resource Availability 675 

Lead Contact and Materials Availability 676 

This study did not generate new, unique reagents. Further information and requests for 677 

resources and reagents should be directed to and will be fulfilled by the Lead Contact, 678 

Peter Belenky (peter_belenky@brown.edu).  679 

680 

Data and Code Availability 681 

Raw 16S amplicon, metagenomic, and metatranscriptomic reads were submitted to the 682 

NCBI Short Read Archive (SRA) under the following BioProject numbers: PRJNA720755 683 

for 16S rRNA reads, and PRJNA720712 for raw metagenomic and metatranscriptomic 684 

reads. Raw Q-TOF-MS Data and annotation guide are available within the supplementary 685 

data of Table S1. Raw LC-MS/MS files are available at massive.ucsd.edu under MassIVE 686 

ID MSV000087093. GNPS molecular networking is available at 687 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=013901272f394a6f8fe94dc5d62df4e688 

. LC-MS/MS data and analysis scripts are available at 689 

https://github.com/guziordo/Belenky-Brown-Diabetes-Antibiotics.  690 

691 

Experimental Model and Subject Details 692 

Mice 693 

Experimental procedures involving mice were all approved by the Institutional Animal 694 

Care and Use Committee of Brown University. Five-week-old male C57BL/6J mice were 695 

purchased from the Jackson Laboratories (Bar Harbor, ME, USA) and given a two-week 696 

mailto:peter_belenky@brown.edu
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=013901272f394a6f8fe94dc5d62df4e
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=013901272f394a6f8fe94dc5d62df4e
https://github.com/guziordo/Belenky-Brown-Diabetes-Antibiotics
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habituation period immediately following their arrival at Brown University. All animals were 697 

cohoused together in specific-pathogen-free (SPF), temperature controlled (21+1.1 °C), 698 

and 12-hour light/dark cycling conditions within Brown University’s animal care facility, 699 

while being fed a standard chow (Laboratory Rodent Diet 5001, LabDiet, St. Louis, MO, 700 

USA). After habituation, mice were randomized into new cages to reduce potential cage 701 

effects.  702 

 703 

Bacterial Strains 704 

S. enterica Typhimurium SL1344 (GFP+, AmpR) was generously donated by Dr. Venessa 705 

Sperandio (University of Texas, Southwestern). Cells were grown at 37°C under shaking 706 

aerobic conditions in Luria-Bertani (LB) broth containing ampicillin (100 µg/mL). Colony 707 

forming units (CFU) were quantified on LB agar plates containing ampicillin (100 µg/mL). 708 

Because S. enterica Typhimurium SL1344 constitutively expresses green-fluorescent 709 

protein, CFU counts were confirmed by UV-imaging using the ChemiDoc Imaging System 710 

(Bio-Rad, Hercules, CA, USA).  711 

 712 

Methods Details 713 

Animal Experiments 714 

To induce hyperglycemia, 7-week-old male C57BL/6J mice were fasted for 4-6 hours, 715 

then given an intraperitoneal injection of either streptozotocin (STZ) (150 mg/kg, pH 4.5) 716 

or a Na-Citrate sham (pH 4.5). All mice were given overnight supplementation of 10% 717 

sucrose water to avoid post-procedural hypoglycemia. Sucrose water was then replaced 718 

with standard filter-sterilized water the following morning. Two days post-injection, fasting 719 
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blood glucose was assessed in all mice using the CONTOUR®NEXT blood glucose 720 

monitoring system (Bayer AG, Whippany, NJ, USA). Mice with hyperglycemia (fasting 721 

blood glucose > 250 mg/dL) were selected for subsequent antibiotic treatment along with 722 

normoglycemic controls. 24-hours after glycemic assessment, all mice were randomized 723 

again to reduced potential cage effects and given either amoxicillin (25 mg/kg/day) or a 724 

pH-adjusted vehicle via filter-sterilized drinking water ad libitum for 24 hours (Cabral et 725 

al., 2019). Mice were subsequently sacrificed and dissected to collect blood, tissues, and 726 

cecal contents. Cecal contents were weighed then divided to be processed according to 727 

their downstream application (nucleic acid extraction, Q-TOF-MS, or LC-MS/MS). Exact 728 

processing methods are described in each application section below. 729 

730 

Multi-omic Analysis: Pipelines, Purpose, and Scope 731 

Our multi-omic approach to microbiome analysis features the combinatory usage of the 732 

Kraken2 and Bracken annotation pipelines for whole metagenomic sequencing (WMGS) 733 

(Lu et al., 2017; Wood et al., 2019), and the HMP Unified Metabolic Analysis Network 734 

(HUMAnN2) (Franzosa et al., 2018) and Simple Annotation of Metatranscriptomes by 735 

Sequencing Analysis (SAMSA2) pipelines for metatranscriptomics (Westreich et al., 736 

2018).  Combined utilization of these pipelines facilitates examination of species-level 737 

taxonomic shifts (Kraken2/Bracken), community-level changes in transcript abundances 738 

(SAMSA2) and community-level gene expression that is normalized to the abundance of 739 

each taxa (HUMAnN2). We also used the pipeline developed by Deng et al. (Deng et al., 740 

2018) to examine species-level transcriptional responses to STZ and amoxicillin 741 

challenge for high-abundance and transcriptionally active members of the microbiota.  742 
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Sequencing pipelines were used in conjunction with both quadrupole flow injection 743 

electrospray time-of-flight mass spectrometry (Q-TOF-MS) (Fuhrer et al., 2011) and liquid 744 

chromatography tandem mass spectrometry (LC-MS/MS) paired with spectral annotation 745 

and networking analysis via the Global Natural Products Social Metabolic Network 746 

(GNPS; http://gnps.ucsd.edu) (M. Wang et al., 2016) (Figure 1A). While recent advances 747 

in mass spectrometry methods have vastly increased the range and accuracy of 748 

metabolite detection, no single analytical method is currently capable of capturing the 749 

entirety of small molecules in a complex biological sample (Luan et al., 2019). Thus, we 750 

opted to increase our metabolite coverage through the combinatory use of a tandem (LC-751 

MS/MS) and a high-resolution (Q-TOF-MS)  method (M. X. Chen et al., 2019). The Q-752 

TOF-MS data is presented at the metabolite level where unknown features are ignored. 753 

For pathway-level comparisons, available Kyoto Encyclopedia of Genes and Genomes 754 

compound identifiers were used to perform Pathway Activity Profiling (Aggio et al., 2010) 755 

of known features (Figure S1E, Table S3). A deeper metabolome analysis including 756 

unknown molecules or related metabolites to known compounds is presented with the 757 

and data originating from our LC-MS/MS dataset using GNPS cluster identification.  758 

 759 

Nucleic Acid Extraction & Purification 760 

For nucleic acid extraction, cecal contents were transferred to ZymoBIOMICS DNA/RNA 761 

Miniprep Kit (Zymo Research, Irvine, CA, USA) Collection Tubes containing DNA/RNA 762 

Shield. These tubes were then processed via vortex at maximum speed for 5 minutes to 763 

homogenize cecal contents, which were subsequently placed on ice until permanent 764 

storage at -80°C. Using the parallel extraction protocol as per the manufacturer’s 765 

http://gnps.ucsd.edu/
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instructions, the ZymoBIOMICS DNA/RNA Miniprep Kit was used to isolate total nucleic 766 

acids (DNA and RNA) from cecal slurry. Total DNA/RNA were eluted in nuclease-free 767 

water and quantified using the dsDNA-HS and RNA-HS kits on the Qubit™ 3.0 768 

fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).   769 

770 

16S rRNA Amplicon Generation and Sequencing 771 

The V4 hypervariable region of the 16S ribosomal RNA was amplified from extracted total 772 

DNA using the 518F and 816R barcoded primers published under the Earth Microbiome 773 

Project (Thompson et al., 2017). Amplicons were generated using Phusion high-fidelity 774 

polymerase and the following cycling protocol: 98°C for 30 seconds initial denaturation, 775 

then 25 cycles of 98°C for 10 seconds (denaturation), 57°C for 30 seconds (annealing), 776 

and 72°C for 30 seconds (extension). This was followed by a final extension of 72°C for 777 

5 minutes. Amplicon libraries were submitted to the Rhode Island Genomics and 778 

Sequencing Center at the University of Rhode Island (Kingston, RI, USA) for pair-end 779 

sequencing (2x250 bp) on the Illumina MiSeq platform using the 500-cycle kit with 780 

standard protocols. We obtained an average of 14,674 + 12,458 reads per sample.  781 

782 

16S rRNA Read Processing & Analysis 783 

Raw reads underwent quality filtering, trimming, de-noising and merging using the R 784 

(version 3.5.0) package implementation of DADA2 (version 1.8.0) (Cabral et al., 2020; 785 

2019; Callahan et al., 2016). The resulting ribosomal sequence variants underwent 786 

taxonomic assignment by using the assignTaxonomy function in DADA2 with the RDP 787 

Classifier algorithm with RDP Training set 16. Both alpha (Shannon) and beta (Bray-788 
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Curtis dissimilarity) diversity were calculated using the R package phyloseq (version 789 

1.24.2) (McMurdie and Holmes, 2013). 790 

 791 

Metagenomic & Metatranscriptomic Library Preparation 792 

Libraries for metagenomics and metatranscriptomics were prepared as described in our 793 

recent work (Cabral et al., 2020). We prepared metagenomic libraries from DNA (100 ng) 794 

using the NEBNext® Ultra II FS DNA Library Prep Kit (New England BioLabs, Ipswich, 795 

MA, USA) and the > 100 ng input protocol as per the manufacturer’s instructions, which 796 

generated a pool of fragments whose average size was between 250 and 500 bp. 797 

Meanwhile, we prepared metatranscriptomic libraries from total RNA (< 1 ug) using a 798 

combination of the MICROBExpress kit (Invitrogen, Carlsbad, CA, USA), NEBNext® 799 

rRNA Depletion Kit for Human/Mouse/Rat (New England BioLabs, Ipswich, MA, USA), 800 

and the NEBNext® Ultra II Direction RNA Sequencing Prep Kit as per the manufacturers’ 801 

instructions. This generated a pool of fragments with an average size between 200 and 802 

450 bp. Both metagenomic and metatranscriptomic libraries were pair-end sequenced 803 

(2x150 bp) on the Illumina HiSeq X Ten platform, yielding an average of 1,464,061 + 804 

728,330 reads per metagenomic sample and 35,884,874 + 27,059,402 reads per 805 

metatranscriptomic sample.  806 

 807 

Metagenomic & Metatranscriptomic Read Processing 808 

Raw metagenomic and metatranscriptomic reads underwent trimming and 809 

decontamination using kneaddata (version 0.6.1) as previously described (Cabral et al., 810 

2020; 2019; McIver et al., 2018). Illumina adapter sequences were removed using 811 
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Trimmomatic (version 0.36), then depleted of reads that mapped to C57BL/6J, murine 812 

mammary tumor virus (MMTV, accession NC_001503) and murine osteosarcoma virus 813 

(MOV, accession NC_001506.1) using bowtie2 (version 2.2) (Bolger et al., 2014; Cabral 814 

et al., 2020; Langmead and Salzberg, 2012). Metatranscriptomic reads were additionally 815 

depleted of sequences that aligned to the SILVA 128 LSU and SSU Parc ribosomal RNA 816 

databases as previously described (Cabral et al., 2020; 2019; Pruesse et al., 2007).  817 

818 

Taxonomic Classification of Reads 819 

We taxonomically classified trimmed and decontaminated metagenomic reads against a 820 

database of all completed bacterial, archaeal, and viral genomes contained within NCBI 821 

RefSeq using Kraken2 (version 2.0.7-beta, “Kraken2 Standard Database”) with a k-mer 822 

length of 35 (Wood et al., 2019). Bracken (version 2.0.0) was then used to calculate 823 

phylum- and species-level abundances from Kraken2 reports, and the R package 824 

phyloseq (version 1.28.0) was used to calculate alpha and beta diversity metrics (Lu et 825 

al., 2017; McMurdie and Holmes, 2013).  826 

We then performed differential abundance testing on species-level taxonomic 827 

assignments (Cabral et al., 2020; 2019). First, low-abundance taxa (< 1,000 reads in > 828 

20% of samples) were removed, then differential abundance testing of filtered counts was 829 

performed with the DESeq2 package (version 1.24.0) using default parameters (Love et 830 

al., 2014). All p-values were corrected for multiple hypothesis testing using the Benjamini-831 

Hochberg method (Benjamini and Hochberg, 1995). Features with an adjusted p-value of 832 

less than 0.05 were considered to be statistically significant.  833 

834 
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Metatranscriptomic Read Annotation Using SAMSA2 835 

We used a modified version of the Simple Annotation of Metatranscriptomes by 836 

Sequences Analysis 2 (SAMSA2) pipeline to annotate trimmed and decontaminated 837 

metatranscriptomics reads as previously described (Cabral et al., 2020; 2019; Westreich 838 

et al., 2018). This modified pipeline involves implementation of the Paired-End Read 839 

Merger (PEAR) utility to generate merged reads and DIAMOND (version 0.9.12) aligner 840 

algorithm (Buchfink et al., 2014; J. Zhang et al., 2014) to generate alignments against 841 

RefSeq, SEED Subsystem, and CAZyme databases (Cantarel et al., 2009; Overbeek et 842 

al., 2013). The resulting alignments were subjected to differential abundance testing using 843 

DESeq2 (version 1.24.0) with standard parameters and Benjamini-Hochberg multiple 844 

hypothesis testing correction (Benjamini and Hochberg, 1995; Love et al., 2014). 845 

Features with an adjusted p-value of less than 0.05 were considered to be statistically 846 

significant. 847 

 848 

Metatranscriptomic Analysis Using HUMAnN2 849 

We used the HMP Unified Metabolic Analysis Network 2 (HUMAnN2, version 0.11.1) 850 

pipeline to assess the impact of STZ-based hyperglycemia and amoxicillin treatment on 851 

gene expression within the gut microbiome (Franzosa et al., 2018). We supplied the 852 

taxonomic profiles generated for each sample into the HUMAnN2 algorithm in order to 853 

assure consistent taxonomic assignment between paired samples (Cabral et al., 2020; 854 

2019). Then, using HUMAnN2, we generated MetaCyc pathway abundances and used 855 

these to estimate community-level gene expression and normalized this to metagenomic 856 

abundance using the Witten-Bell method (Witten and Bell, 1991). Unstratified smoothed 857 
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RPKM values were converted to relative abundances then analyzed using linear 858 

discriminant analysis as described (Cabral et al., 2020; 2019). This was performed with 859 

the LEfSe (version 1) toolkit hosted on the Huttenhower Galaxy server (Segata et al., 860 

2011).  861 

862 

Single-species Transcriptomics 863 

We performed transcriptional analysis at the individual species level using a modified 864 

version of the pipeline developed by Deng et al. (Deng et al., 2018). First, species whose 865 

metagenomic abundance was subjected to an interaction between host glycemia and 866 

antibiotic usage were selected. We then calculated to total RNA read abundance for each 867 

of these species, and performed transcriptional analysis only on those with 500,000 or 868 

greater reads per sample (Table S5). First, reads that mapped to candidate taxa were 869 

extracted from our metatranscriptomes using the BBSplit utility within BBMap (version 870 

37.96) (Bushnell, 2014). Reads from B. thetaiotaomicron, O. valericigenes, and O. spp. 871 

PEA192 were aligned to their corresponding reference genomes using BWA-MEM 872 

(version 0.7.15) (Cabral et al., 2020; H. Li and Durbin, 2010). Then, we used subread 873 

program (version 1.6.2) command featureCounts was used to generate a count table from 874 

alignments, and this count table was assessed for differential abundance using DESeq2 875 

(Love et al., 2014). All p-values were corrected for multiple hypothesis testing using the 876 

Benjamini-Hochberg method (Benjamini and Hochberg, 1995). Features with an adjusted 877 

p-value of less than 0.05 were considered statistically significant.878 

879 

Metabolite Extraction & Flow Injection Time-of-Flight Mass-Spectrometry 880 
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For untargeted Q-TOF-MS metabolomics, cecal samples were flash frozen upon 881 

collected and stored at -80°C until extraction. To extract metabolites, flash-frozen 882 

samples were removed from -80°C and placed on ice. A 10-20 mg sample was taken and 883 

submerged in 300 µl of fresh-made LC/MS-grade acetone:isopropanol (2:1) extraction 884 

solvent, then homogenized via vortex two times for 15 seconds each at 4°C. Supernatant 885 

extraction solvent was transferred to a new tube and was placed at -80°C temporarily. 886 

The 300 µl was and homogenization was repeated, and this supernatant was then added 887 

to the original solvent aliquot. Combined samples underwent centrifugation at 4°C for 10 888 

minutes at 13,500 x G. After centrifugation, supernatant was moved to a fresh 889 

microcentrifuge tube, sealed with parafilm, and placed on dry ice before immediate 890 

delivery to General Metabolics Inc. (Boston, MA, USA) where samples were stored at -891 

80°C.  892 

 Extracted metabolites were quantified as described in Fuhrer et al. (Fuhrer et al., 893 

2011) using flow injection Time-of-Flight mass spectrometry on the Agilent G6550A 894 

iFunnel Quadrupole Time-of-Flight mass spectrometer (Agilent, Santa Clara, CA, USA) 895 

equipped with a dual AJS electrospray ionization source operated in negative ion mode. 896 

Samples were injected at a flow-rate of 0.15 mL/minute in a mobile phase containing 897 

isopropanol and water (60%:40% ratio) buffered in 1mM Ammonium Fluoride, 15nM HP-898 

0921, and 5µM homotaurine. Mass spectra data was recorded in 4 GHz high-resolution 899 

Ms mode at a rate of 1.4 spectra/second. We detected 714.3 ms/spectra and 9652 900 

transients/spectra between 50 and 1000 m/z. Source operating parameters included a 901 

temperature of 225°C, drying gas rate of 11 L/min, nebulizer pressure of 20 psi, sheath 902 

gas temperature of 350°C and flow of 10 L/min. The source Vcap and Nozzle voltage 903 
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were 3500V and 2000V. The ms TOF operating parameters include fragmentor, collision, 904 

RF peak-to-peak voltages of 350V, 0V, and 750V, respectively and the Skimmer was 905 

disabled.  906 

Data processing and analysis was performed as described by Fuhrer et al. in 907 

Matlab (The Mathworks, Natick, MA, USA) using functions from the following toolkits: 908 

Bioinformatics, Statistics, Database, and Parallel Computing (Fuhrer et al., 2011). Ions 909 

were additionally referenced against the Human Metabolome Database in addition to 910 

KEGG. Data analyses were run on an automated embedded platform by General 911 

Metabolics Inc. then delivered upon run completion. Finally, principal coordinate analysis 912 

was performed on ion intensities by using Bray-Curtis dissimilarity paired with 913 

PERMANOVA analysis using the phyloseq (version 1.26.1) R package and subsequently 914 

visualized in Prism GraphPad (version 9.0.2) (McMurdie and Holmes, 2013). 915 

916 

Metabolite Extraction, Liquid Chromatography Tandem Mass Spectrometry, and 917 

GNPS Molecular Networking 918 

For untargeted LC-MS/MS metabolomics, cecal samples were placed into 300 µl of 919 

LMCS-grade methanol then supplemented with 600 µl of 70% cold LC-MS-grade 920 

methanol. Samples were homogenized via vortex for 5 minutes, then placed at 4°C for 921 

an overnight incubation. Following incubation, samples were subjected to centrifugation 922 

at 1000 x G for 3 minutes. 500 µl of the supernatant was moved to a sterile 923 

microcentrifuge tube and stored at -80°C for long-term preservation.  924 

Samples were thawed and diluted 1:1 (v/v) in 50% methanol prior to LC-MS/MS. 925 

Liquid chromatography was performed using a Vanquish Autosampler (Thermo Scientific, 926 
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Waltham, MA, USA) and an Acquity UPLC column (Waters, Milford, MA, USA). Mass 927 

spectrometry was performed using a Q Exactive® Hybrid Quadrupole-Orbitrap Mass 928 

Spectrometer (Thermo Scientific, Waltham, MA, USA) in positive ion mode. All analysis 929 

used a 5 µL injection volume. Samples were eluted via water-acetonitrile gradient (98:2 930 

to 2:98) containing 0.1% formic acid at a 0.4 mL min-1 flow rate. RAW files were converted 931 

via GNPS Vendor Conversion and mined with MZmine (ver. 2.52) prior to submission for 932 

feature based molecular networking (Pluskal et al., 2010; Nothias et al., 2020). Briefly, 933 

MS1 and MS2 feature extraction was performed for a centroid mass detector with a signal 934 

threshold of 5.0 x 105 and 5.0 x 104 respectively. Chromatogram builder was run with an 935 

m/z tolerance of 0.02 Da or 7 ppm and a minimum height of 1.0 x 105. Then, 936 

chromatograms were deconvoluted utilizing a baseline cut-off algorithm of 1.0 x 105 and 937 

a peak duration range of 0 to 1.00 minutes. Following this, isotopic peaks were then 938 

grouped with an m/z tolerance of 0.02 Da or 7 ppm and a retention time percentage of 939 

0.1. The Join Aligner Module was then utilized with a 0.02 Da or 7 ppm m/z tolerance and 940 

a retention time tolerance of 0.1 minutes. Feature-based molecular networking on GNPS 941 

was performed with the following parameters: precursor and fragment ion mass tolerance 942 

0.02 Da; minimum cosine of 0.7 and minimum matched peaks of 4, all others were 943 

defaults. Library searching was performed with the same parameters as described above.  944 

 945 

Differential Abundance Testing & Pathway Enrichment of Q-TOF-MS Metabolite 946 

Data 947 

Differentially abundant metabolites were identified using the DESeq2 package (version 948 

1.22.2) with standard parameters (Love et al., 2014). All p-values were corrected for 949 
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multiple hypothesis testing using the Benjamini-Hochberg method (Benjamini and 950 

Hochberg, 1995). Features with an adjusted p-value of less than 0.05 were considered to 951 

be statistically significant. KEGG compound identifiers that were feature-matched by the 952 

Bioinformatics MATLAB toolkit were used to create a list of all KEGG IDs associated with 953 

differentially abundant metabolites. This list (and associated ion intensities) were used to 954 

perform KEGG pathway enrichment analysis using the PAPi R package (version 1.22.1) 955 

with standard parameters (Aggio et al., 2010). Pathways with an adjusted p-value of less 956 

than 0.05 were considered statistically significant.  957 

958 

Random Forest Classification of LC-MS/MS Metabolite Data 959 

First, principal coordinate analysis was performed on ion intensities by using Bray-Curtis 960 

dissimilarity paired with PERMANOVA analysis. These analyses were performed using 961 

the phyloseq (version 1.26.1) R package and subsequently visualized in Prism GraphPad 962 

(version 9.0.2) (McMurdie and Holmes, 2013). Random forest classification models on 963 

treatment mouse treatment group were then generated using the randomForest (version 964 

4.6-16) R package (Breiman, 2001). Variable importance plots from the models were 965 

used to identify metabolites that best contributed to group classification. Each metabolite 966 

feature of interest was then checked for annotation in GNPS, if not directly annotated 967 

from MS/MS library searching, the node of interest was identified in the molecular network 968 

and assessed for spectral similarity to other annotated nodes. This provided a molecular 969 

family annotation of each unknown cluster. Models classifying hyperglycemic mice 970 

treated with amoxicillin and not treated with amoxicillin resulted in out-of-bag prediction 971 

error of 2.7%. Classification of nonhyperglycemic treated with amoxicillin and not treated 972 
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with amoxicillin resulted in out-of-bag prediction error of 6.25%. Classification of 973 

hyperglycemic mice and nonhyperglycemic mice, both treated with antibiotics, resulted in 974 

out-of-bag prediction error of 7.96%. Classification of hyperglycemic mice and 975 

nonhyperglycemic mice, neither treated with antibiotics, resulted in out-of-bag prediction 976 

error of 16.67%. 977 

 978 

Cecal Glucose Assessment 979 

Cecal glucose levels were assessed using the Abcam Glucose Detection Kit (cat. No. 980 

ab102517, Abcam, Cambridge, United Kingdom). First, cecal material was weighed out 981 

and resuspended in glucose assay buffer at a concentration of 100 mg material/mL of 982 

buffer, then homogenized via vortex until no visible clumps were present. Samples were 983 

spun at maximum speed for 1 minute to pellet any residual debris, and 500 µl of 984 

supernatant was transferred to a Corning Costar Spin-X 0.22 µM centrifuge tube filter 985 

(cat. No. CLS8160, Corning Brand, Corning, New York, USA). The costar tubes 986 

containing supernatant were spun via centrifugation at 15,000 x G for 10 minutes, after 987 

which up to 500 µl of flow-through was transferred to an abcam 10kD spin column in order 988 

to deproteinize the samples. Samples were again spun at 15,000 x G for 10 minutes and 989 

flow-through was quantified using the Abcam Glucose Assay kit as per the manufacturer’s 990 

instructions.  991 

 992 

Enteric Pathogen Challenge  993 

Salmonella enterica serovar Typhimurium SL1344 was grown overnight in 5 mL Luria-994 

Bertani (LB) broth supplemented with fresh-made ampicillin (100 µg/mL) and grown at 995 
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37°C. This culture was diluted 1:1000 into fresh LB+ampicillin (100 µg/mL) the morning 996 

of infections and grown until cells were approximately at mid-log phase (OD600 = 0.3-997 

0.4).   998 

Rather than sacrificing animals after the 24-hours of amoxicillin treatment as 999 

outlined above (See Animal Procedures), animals were given an additional 48 hours of 1000 

ad libitum amoxicillin within their drinking water followed by antibiotic-free filter-sterilized 1001 

water for 24 hours. Subsequently, animals were moved to clean cages and placed under 1002 

a 4-hour fast, at which point they were infected with an inoculum between 102 and 106 1003 

cells/dose via oral gavage (volume < 200 µl). Animals were transferred to clean cages 1004 

and weighed daily throughout the course of pathogen challenge. Fecal samples were 1005 

collected daily then resuspended in 1 mL of phosphate-buffered saline and homogenized 1006 

via vortex at maximum speed for at least 5 minutes. Fecal slurry was then serially diluted 1007 

and plates onto ampicillin-supplemented (100 µg/mL) LB agar plates and grown at 37°C 1008 

for 24 hours. After growth, colonies were counted and the total colony forming units (CFU) 1009 

were quantified per gram of feces to assess pathogen burden.  1010 

1011 

Quantification and Statistical Analysis 1012 

Specific details of the statistical analyses for all experiments are outlined in the figure 1013 

legends and Results section. Sample numbers represent biological replicates, and 1014 

instances of technical replicates are specifically stated in corresponding figure legends. 1015 

LEfSe (version 1.0) was used to analyze MetaCyc pathway abundance data generated 1016 

by HUMAnN2 on the Galaxy web server using default settings 1017 

(http://huttenhower.sph.harvard.edu/galaxy). Metatranscriptomic outputs generated by 1018 

http://huttenhower.sph.harvard.edu/galaxy
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SAMSA2 and single-species sequencing, along with Q-TOF-MS abundances were 1019 

subjected to differential abundance testing using the DESeq2 package (1.24.0) in R 1020 

(version 3.5.2) under default parameters and included contrast:interaction comparisons 1021 

(Love et al., 2014). All DESeq2 results were corrected using the Benjamini-Hochberg 1022 

method (Benjamini and Hochberg, 1995) to account for multiple hypothesis testing. LC-1023 

MS/MS Random Forest testing was conducted using the R package implementation 1024 

(Breiman, 2001). Permutational ANOVA calculations were made using the vegan R 1025 

package (version 2.5.2). ANOVA, unpaired T tests, and Mann-Whitney U tests were 1026 

performed in Prism Graphpad (version 9.0) without sample size estimation.  1027 

  1028 



47 

Supplementary Results 1029 

In addition to the results presented in the main-body text, we found that STZ 1030 

treatment modified other significant macronutrient processing pathways that we will 1031 

discuss here. In addition to the amino acid-related changes stated above, we found 1032 

enrichment of metabolites like 6-methylnicotinamide along with pathway enrichment of 1033 

AAA degradation and protein digestion, suggesting a shift towards AAA catabolism rather 1034 

than de novo synthesis (Figure S1D, Figure S1E, Table S1, Table S3). We additionally 1035 

identified perturbed amino acid pathways beyond AAA, including enrichment in 2-1036 

ketoisocaproate and α-ketovaline, which are metabolic intermediates of leucine and 1037 

valine catabolism, respectively (Figure 2C, Figure S1D, Table S1).  Glutamate, 1038 

acetylornithine, and N-acetylornithine were also enriched after STZ treatment (Table S1). 1039 

These changes were likely microbially-driven, as we observed increased expression of 1040 

the arginine biosynthesis II pathway that generates arginine from glutamate and L-1041 

ornithine using an N-acetylornithine intermediate (Figure 2D, Table S6) (Sakanyan et al., 1042 

1992).   1043 

Our LC-MS/MS dataset showed STZ-specific enrichment of dipeptides containing 1044 

either aliphatic or aromatic amino acids (Figure 2B: Cluster 713, Cluster 676, Figure S2, 1045 

Table S2). STZ treatment reduced the abundance of amino acid-related SEED 1046 

transcripts, specifically sarcosine oxidase (the generation of N-methylglycine from 1047 

choline) and selenoprotein processing which are involved in glycine metabolism 1048 

(Sliwkowski and Stadtman, 1988) (Figure S1A, Table S7). We also observed changes in 1049 

sulfated amino acid metabolism, specifically reduced sulfur assimilation transcripts 1050 

(Figure S1A, Table S7) and pathway-level reductions in homoserine and methionine 1051 
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biosynthesis (Figure 2D, Table S6). Together, the enrichment of aliphatic amino acid 1052 

catabolites and dipeptides, aromatic dipeptides, and arginine synthetic intermediates, 1053 

coupled with reductions in transcripts related to glycine and sulfated amino acids 1054 

suggests that STZ treatment shifts branched-chain amino acid metabolism by the gut 1055 

microbiota (H. Zhang et al., 2018).  1056 

A major signature of STZ-related perturbations to polysaccharide metabolism was 1057 

the differential abundance of flavone compounds like apigenin and daidzein. The reason 1058 

these particular metabolites are of importance is because aglycone compounds like 1059 

apigenin and daidzein have glycoside residues that are liberated and likely metabolized 1060 

by microbes (M. Wang et al., 2019; Lundgren and Christoph A Thaiss, 2020; Vollmer et 1061 

al., 2018; M. Wang et al., 2019). Thus, their abundance can directly shift the composition 1062 

of the local carbon pool.  1063 

Beyond changes in carbon foraging and increased microbial metabolism, STZ 1064 

treatment was also induced significant dyslipidemia, as characterized by reductions in 1065 

multiple fatty acid synthetic pathways including sphingolipids (Figure 2B: Clusters 1703, 1066 

30, and 2184, Table S2), linoleic, α-linoleic, arachidonic, and unsaturated fatty acids after 1067 

STZ administration (Figure 2C, Figure S1D, Figure S1E, Table S1, Table S3). Our LC-1068 

MS/MS data indicated that STZ-treated communities are enriched for long-chain fatty acid 1069 

alcohols, phospholipids, and epoxide derivatives of linoleic acid (Figure 2B: Clusters 1070 

2803, 2721, 2851, 2759, Figure S2A, Table S2). Coupled with transcriptional reductions 1071 

in the expression of unsaturated fatty acid biosynthesis pathways like cis-vaccenate 1072 

(Figure 2D, Table S6), these data suggest that STZ hampers both host and microbial fatty 1073 

acid processing, likely enriching for esterification reactions, although we are unable to 1074 
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distinguish between dysregulation of fatty acid uptake and fatty acid storage based off 1075 

our results (Johnson et al., 2020).  1076 

Prompted by the observed dyslipidemia, we additionally surveyed for changes in 1077 

cecal bile acid metabolism. Metabolites involved in primary bile acid biosynthesis and 1078 

secretion, as well as steroid metabolism (cholesterol sulfate), were depressed in STZ-1079 

treated communities (Figure S1D, Figure S1E, Table S1, Table S3). We observed a stark 1080 

decrease in multiple bile acids including chenodeoxycholate, 7-sulfocholate, and 1081 

sulfodeoxycholate (Figure S1D, Table S1). Overall, this paints a picture of reduced 1082 

primary bile acid availability without a detectable change in secondary bile acids in the 1083 

STZ-treated microbiome. At the species level we noticed that B. thetaiotaomicron had 1084 

reduced expression of bile salt efflux systems (Figure 2E: BT2793-2795, Table S5 ) (H. 1085 

Liu et al., 2019), perhaps due to overall systemic reductions in the bile acid pool. Both the 1086 

concentration and composition of the bile acid pool has been demonstrated to exhibit 1087 

control on the function of the colonic microbiome; bile acid transformations are executed 1088 

by select community members, and primary bile acids can trigger spore induction in 1089 

certain Clostridia (Quinn et al., 2020; Staley et al., 2016; Zheng et al., 2017). Thus, 1090 

reductions in the overall bile acid pool may place the microbiota in a more susceptible 1091 

state to antibiotic challenge by reducing sporulation capacity (Cabral et al., 2019). As with 1092 

fatty acids, changes in bile acid metabolism have been reported in STZ-treated rodent 1093 

models and are likely a major contributing factor to the larger set of metabolite changes 1094 

in the cecum, given their involvement in both postprandial nutrient absorption and gut 1095 

transit time (T. Li et al., 2012; Ugarte et al., 2012). Ultimately, STZ treatment dysregulated 1096 

multiple macronutrient processing pathways, altered the available carbon pool and 1097 
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appeared to shift the microbiome towards AAA catabolism. Altered amino acid acquisition 1098 

in turn modified the generation of B-vitamins which increased glycolysis and TCA activity. 1099 

Together these data suggest that STZ shifts the metabolic activity of the gut microbiome 1100 

and impacts drug susceptibility, as stated above.  1101 

 STZ and AMX co-treatment increased the abundance of multiple Bacteroides 1102 

species relative to normoglycemic controls. This abundance change was also true for 1103 

other Bacteroidetes including Odoribacter splanchnicus, Parabacteroides sp. CT06, and 1104 

Prevotella intermedia. We observed a 2-fold and 4-fold increase in the abundances of the 1105 

Bacteroidetes Alistipes finegoldii and Alistipes shahii, respectively, that were unique to 1106 

STZ-treated mice. Interestingly, these species are heavily enriched for polysaccharide 1107 

utilization loci, which may speak to a collective fitness advantage for these loci in STZ 1108 

and AMX-treated communities (Grondin et al., 2017; Terrapon et al., 2015). Interestingly, 1109 

in our WMGS dataset,  we noticed that the taxa that were more reduced in STZ-treated 1110 

mice have been correlated with lipid intake, cholesterol, and cholesterol metabolite 1111 

abundance in other works (Clarke et al., 2014; Wohlgemuth et al., 2014). For example, 1112 

some species of Erysipelotrichaceae are auxotrophic for lipid biosynthesis; thus, the 1113 

combination of STZ- and AMX-induced dyslipidemia may provide an explanation for the 1114 

differential abundance of these taxa under hyperglycemic conditions (Kaakoush, 2015; 1115 

Martínez et al., 2012).  1116 

Despite significant glycemia-dependent differences in the impact of AMX, we 1117 

observed some common antibiotic responses from the gut microbiota. First, we observed 1118 

that drug treatment caused enrichment of numerous monosaccharides including 1119 

deoxyribose, hexose, triose, and pentoses, regardless of host phenotype (Table S1).  The 1120 
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availability of these monosaccharides resulted in respiratory microbial metabolism, as 1121 

indicated by increases in fructose bisphosphate aldolase, succinate dehydrogenase, and 1122 

ATP synthase transcripts (Table S8). Concurrently, regardless of host glycemia, AMX 1123 

treatment increased the expression of chorismate synthesis (Figure 3C, Figure 3E, Table 1124 

S6), which likely resulted in elevated production of electron carriers (Boersch et al., 2018). 1125 

For example, the GNPS Clusters 1020, 883, and 886 which are related to valeryl, 1126 

palmitoyl, and lauroyl-conjugated carnitine species were elevated (Figure 4B, Figure 4C, 1127 

Figure S2B, Figure S2C, Table S3). Carnitines have been identified as possible 1128 

alternative final electron acceptors in obligate anaerobes (including the 1129 

Enterobacteriaceae), suggesting an increased capacity for anaerobic respiratory activity 1130 

as a common response to drug challenge (Bernal et al., 2007; Meadows and Wargo, 1131 

2015). This respiratory increase is consistent with the model of bactericidal antibiotic 1132 

toxicity in which a lethal respiratory burst is a significant contribution to drug susceptibility 1133 

(Belenky et al., 2015; Cabral et al., 2019; Lobritz et al., 2015).  1134 

Antibiotic-induced dysbiosis has been associated with changes in bile acids 1135 

(Theriot et al., 2015), as well as dyslipidemia in multiple animal models (Sato et al., 2016; 1136 

Yan et al., 2020) and microbes (Belenky et al., 2015). Thus, we anticipated that signatures 1137 

of dyslipidemia and bile acid dysregulation would occur in our datasets. AMX reduced the 1138 

abundance of metabolites involved in primary and secondary bile acid synthesis as well 1139 

as bile secretion pathways irrespective of host glycemia (Table S3). Specifically, the 1140 

primary bile acid metabolites 3α,7α-dihydroxycoprostanic acid, cholate, 1141 

chenodeoxycholate (Figure 4B, Figure 4C: Cluster 376, Table S2), the related GNPS 1142 

Clusters 915 and 380 (Figure 4B, Figure 4C, Table S2), as well as bile acid alcohols like 1143 
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6-deoxodolichosterone, 5ß-Cholestane-3α,7α,12α,23S,25-pentol, and 27-1144 

norcholestanehexol were all reduced after antibiotic administration (Table S1).  We also 1145 

observed that STZ-treated communities exhibited typical signatures of antibiotic stress 1146 

including increased transcripts related to stress responses, iron metabolism, translation, 1147 

and quorum sensing/biofilms (Figure 3D, Table S7) (Cabral et al., 2020; 2019). Together 1148 

these data suggest that AMX-induced bile acid dysregulation is not host dependent, while 1149 

dyslipidemia is, and that STZ-treatment increases the abundance of pro-inflammatory 1150 

intestinal metabolites and antibiotic-stress related transcripts.   1151 

The observed reduction of polysaccharide utilization in STZ and AMX co-treated 1152 

hosts held true at the species level. Specifically, B. thetaiotaomicron uniquely 1153 

downregulated the expression of multiple polysaccharide PULs (BT4293-BT4299, 1154 

BT4296-4298, BT3025), including those targeted at fructose (BT1759-1763, and 1155 

BT1759), ribose (BT2804), levan (BT1761, BT1762), and fucose substrates (BT3665) 1156 

(Figure 5B, Table S5) (Lynch and Sonnenburg, 2012; Mardo et al., 2017; Mimee et al., 1157 

2015; Townsend et al., 2020). Simultaneously, the combination of STZ and AMX 1158 

treatment coincided with significant upregulation of one of B. thetaiotaomicron’s primary 1159 

redox balance loci, specifically the NADH dehydrogenase complex spanning positions 1160 

BT4058-4067 (Fischbach and Sonnenburg, 2011). We additionally observed increased 1161 

activity in another NADH ubiquinone reductase operon (BT0616) (Goodman et al., 2009), 1162 

ATPase (BT1746) (Figure 5B, Table S5). Our community-level metabolomics indicated 1163 

STZ-specific loss of phosphoenolpyruvate (Table S1), which is likely related to the 1164 

differential regulation of the NADH complex that modifies respiratory activity in B. 1165 

thetaiotaomicron. 1166 
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Supplementary Discussion 1167 

When evaluating data that examine host-microbe interactions it is important to 1168 

acknowledge the influence of host physiology on the system. It is known that proper 1169 

endocrine function is required for intestinal glucose uptake, and endocrine disruption can 1170 

result in perturbed host monosaccharide metabolism. This in turn can modify the 1171 

carbohydrate pool that reaches the colon. Specifically streptozotocin (STZ)-mediated 1172 

insulin dysfunction, has been shown to directly modulate intestinal glucose absorption by 1173 

rapidly increased expression of SI glucose transporters (Koepsell, 2020). Some have 1174 

suggested that genetic disruption of intestinal insulin signaling increases glucose release 1175 

from enteroendocrine cells (Ussar et al., 2017). A common clinical feature of metabolic 1176 

disturbances is delayed gastric transit time, which is intrinsically linked with proper 1177 

intestinal glucose absorption (Rayner and Horowitz, 2006). This phenotype has been 1178 

recapitulated in multiple rodent models, including STZ-treated rats that have significant 1179 

delays in stomach-to-cecal transit time (Chesta et al., 1990). Delays in gut transit and 1180 

altered expression of intestinal glucose uptake likely impacts the carbohydrate pool that 1181 

reaches the cecum, and might explain some of the microbiome disturbances seen in 1182 

metabolic diseases (Dabke et al., 2019).  1183 

Ultimately, we found that host-hyperglycemia had relatively little impact on 1184 

taxonomic composition but greatly perturbed glycan foraging and amino acid catabolism 1185 

in the gut. This, in turn, increased the generation of B-vitamin species, energy carrier 1186 

abundance, and respiratory rate by the microbiota. These changes may have 1187 

subsequently created an environment that enhanced the toxicity of AMX in metabolically 1188 

permissive taxa, which may have directly modified the post-antibiotic transcriptome and 1189 
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metabolome at the community and species level. While we did detect common antibiotic 1190 

responses, most of the drug-induced changes we observed were divergent and 1191 

influenced by host glycemia. Specifically, hyperglycemia exacerbated the AMX-induced 1192 

collapse of Clostridial Firmicutes and the expansion of Bacteroides species. These 1193 

taxonomic shifts were correlated with reductions in fiber, polyphenol, and mucus 1194 

utilization and a simultaneous increase in PTS system activity and catabolism at the 1195 

community level. At the species level we observed that B. thetaiotaomicron had increased 1196 

expression of its NADH dehydrogenase locus and ATP synthesis, suggesting increased 1197 

respiratory activity in response to elevated cecal glucose levels when compared to 1198 

normoglycemic controls. Finally, we observed that STZ- and AMX-treated mice had 1199 

increased susceptibility to S. enterica and reduced survival after pathogen challenge 1200 

when compared to normoglycemic controls. Together, these data demonstrate that 1201 

changes in host metabolism are sufficient to modify microbial metabolism and worsen the 1202 

severity of antibiotic-induced dysbiosis, and contributes to high pathogen susceptibility. 1203 

We found that a hallmark feature of STZ-induced hyperglycemia was significant 1204 

dysregulation of cecal lipid metabolism in both the pre- and post-antibiotic treatment 1205 

groups. This finding is in line with existing studies on serum metabolomics in rats, which 1206 

find perturbation in fatty acid metabolism as a reliable biomarker of STZ-treatment 1207 

(Fernández-Ochoa et al., 2020; Ugarte et al., 2012). While the host executes significant 1208 

control of lipid processing via pancreaticobiliary secretions, there is evidence from germ-1209 

free animal studies that implicates the gut microbiome as an integral component of fatty 1210 

acid metabolism, and suggests that microbial dyslipidemia results in negative metabolic 1211 

phenotypes (Schoeler and Caesar, 2019). Microbial lipid processing (for example the 1212 
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conjugation of linoleic acid) has also been implicated in the generation of metabolite 1213 

intermediates that increase the integrity of gut epithelial barrier function (Schoeler and 1214 

Caesar, 2019) . Thus, it stands to reason that disruption of lipid homeostasis within the 1215 

gut, as observed in our datasets, has downstream consequences to gut barrier function 1216 

and places the cecal microbiota in a more delicate state prior to antibiotic challenge. 1217 

Decreases in gut barrier function have also been directly implicated in the susceptibility 1218 

of the microbiome to enteric pathogen challenge (Christopher A Thaiss et al., 2018), and 1219 

we observed that the enteric pathogen S. enterica was able to infect hyperglycemic drug-1220 

treated animals more readily and caused more lethal disease. These data indicate a 1221 

potential link between perturbed lipid metabolism and pathogen colonization, but more 1222 

work is required to elucidate specific mechanisms.  1223 

Beyond disruption to lipid homeostasis, a novel finding in our datasets was that 1224 

both STZ and AMX treatment reduced the abundance of primary bile acids within the 1225 

cecum. The microbiota executes a large portion of bile acid conjugation reactions and 1226 

cross-talks with the host to regulate primary bile acid secretion (Ridlon et al., 2014). Thus, 1227 

antibiotic-induced changes were anticipated and were in agreeance with an existing body 1228 

of work that indicates antibiotic administration modifies the abundance and composition 1229 

of the bile acid pool (Ridlon et al., 2014; Sayin et al., 2013; Vrieze et al., 2014). 1230 

Interestingly, other beta-lactam antibiotics have been shown to increase the total bile acid 1231 

abundance within the colon (Kuribayashi et al., 2012). Meanwhile, vancomycin, 1232 

clindamycin, cefoperazone, polymyxin B, and the combinatory cocktail of 1233 

vancomycin/metronidazole/kanamycin/clindamycin reduce the abundance of secondary 1234 

bile acids but do not modify the primary bile acid pool (Kuno et al., 2018; Theriot et al., 1235 
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2015). Thus, our data may represent a novel, STZ- and AMX-specific bile acid 1236 

dysregulation.  1237 

We previously identified that polysaccharide fermentation by B. thetaiotaomicron 1238 

functions as an AMX tolerance response in normoglycemic animals (Cabral et al., 2019). 1239 

However, this study complicates that understanding, as STZ-specific reductions in B. 1240 

thetaiotaomicron’s polysaccharide and mucus foraging suggests that these may not be 1241 

universal AMX tolerance responses. There may be non-mucosal or non-polysaccharide 1242 

metabolite species that induce a protective phenotype to members of the Bacteroides 1243 

genus and might explain their relative fitness advantage in STZ and AMX dual treatment. 1244 

Alternatively, members of the Bacteroides genus possess beta-lactamases within their 1245 

genomes, and differences in the expression of these resistance genes may be involved 1246 

in the observed enrichment of Bacteroides in STZ and AMX-treated samples (Edwards, 1247 

1997). Regardless, reduction in polysaccharide fermentation by Bacteroides disrupts the 1248 

balance of nutrients available for syntrophic metabolism with Firmicutes and 1249 

Actinobacteria (Fischbach and Sonnenburg, 2011). These changes may induce a 1250 

proinflammatory state in the gut through reduced SCFA production and contribute to the 1251 

increased dysbiosis experienced by STZ-treated animals during drug challenge. Given 1252 

the total ecological complexity of the gut microbiome, gleaning a more complete 1253 

understanding of cross-feeding networks will be integral to the full characterization of a 1254 

given perturbation’s impact on the microbiome.  1255 

  1256 
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Supplemental Data/Video/Table Title and Legends 

Figure S1. STZ-induced hyperglycemia modifies both the cecal metabolome and 
metatranscriptome. Related to Figure 2. 

A. Differentially-abundant (Benjamini-Hochberg adjusted p value < 0.05) level 2 
SEED Subsystem transcripts in STZ-induced hyperglycemic mice. Data represent 
log2 fold change relative to normoglycemic controls + standard error. See Table 
S7 for full results (N = 4 per group). 

B. Differentially-abundant (Benjamini-Hochberg adjusted p value < 0.05) CAZyme 
transcripts in STZ-induced hyperglycemic mice. Data represent log2 fold change 
relative to normoglycemic controls + standard error. See Table S4 for full results 
(N = 4 per group). 

C. Volcano plot of the cecal metatranscriptome following streptozotocin treatment. 
Purple points represent differentially-abundant (Benjamini-Hochberg adjusted p 
value < 0.05) transcripts. Transcripts of features are labeled. See Table S8 for full 
results. (N = 4 per group). 

D. Volcano plot of the cecal metabolome in STZ-induced hyperglycemic mice relative 
to normoglycemic controls. Purple points represent differentially-abundant 
(Benjamini-Hochberg adjusted p value < 0.05) metabolite features. Metabolites of 
interest are labeled. See Table S1 for full results (N = 6 per group, 2 technical 
replicates per mouse) 

A. KEGG Pathway Assignments for enriched (red) and depleted (blue) metabolites 
within the cecum following streptozotocin treatment. Significant pathways 
(unpaired t-test p value < 0.05) were calculated using the Pathway Activity Profiling 
pipeline (see methods). See Table S3 for full results (N = 6 per group, 2 technical 
replicates per mouse) 

  

Supplemental Information



Figure S2. Streptozotocin and amoxicillin treatment differentially impact the cecal 
metabolome as determined by LC-MS/MS. Related to Figure 2 and Figure 4.  

A. Top-50 most relevant metabolite features detected via Random Forest
Classification between normoglycemic and STZ-treated cecal LC-MS/MS 
metabolomes. Colored diamonds indicate GNPS clusters that contain 
known/annotated metabolites.  

B. Top-50 most relevant metabolite features detected via Random Forest
Classification between vehicle and amoxicillin-treated cecal LC-MS/MS 
metabolomes from normoglycemic mice. Colored diamonds indicate GNPS 
clusters that contain known/annotated metabolites.  

C. Top-50 most relevant metabolite features detected via Random Forest
Classification between vehicle and amoxicillin-treated cecal LC-MS/MS 
metabolomes from hyperglycemic mice. Colored diamonds indicate GNPS 
clusters that contain known/annotated metabolites.  

For all panels, N = 6 per group (2 technical replicates per mouse) 



Figure S3. The amoxicillin treated metabolome differs between normoglycemic and 
hyperglycemic mice. Related to Figure 7.  

A. Differentially abundant (Benjamini-Hochberg adjusted p value < 0.05) Q-TOF-
MS metabolite features in the murine cecum following amoxicillin treatment
between hyperglycemic and normoglycemic mice. Data represented by log2

fold change + standard error of hyperglycemic amoxicillin-treated mice versus
normoglycemic amoxicillin-treated mice. See Table S1 for full results

B. Differentially abundant (unpaired T-test with Welch’s correction p value < 0.05)
GNPS-annotated clusters that contain known metabolites within the cluster.
Clusters were selected from the top-50 most relevant features via Random
Forest Testing. Comparison is between hyperglycemic mice receiving
amoxicillin versus normoglycemic mice receiving amoxicillin. See Table S2 for
full results.

C. KEGG Pathway Assignments for enriched (red) and depleted (blue)
metabolites within the cecum of hyperglycemic amoxicillin-treated mice
compared to normoglycemic amoxicillin-treated controls. Significant pathways
(unpaired t-test p value < 0.05) were calculated using the Pathway Activity
Profiling pipeline (see methods).

For all panels, N = 6 per group with 2 technical replicates per mouse 



Table S1: Raw Q-TOF-MS Ion Intensities, annotation guide, and full DESEq2 results of 
Q-TOF-MS data. Related to Figure 1G, Figure 2C, Figure 4A, Figure S1D, and Figure 
S3A. 

A. Raw Q-TOF-MS ion intensities generated by General Metabolics Inc. (Boston, MA, 
USA) 

B. Annotation guide for Q-TOF-MS ion intensites generated by General Metabolics 
Inc. (Boston, MA, USA) 

C. Differential abundance testing of the impact of streptozotocin treatment on the 
abundance of Q-TOF-MS metabolites in the murine cecal microbiome prior to 
antibiotic administration. Log2 fold change values were calculated relative to 
normoglycemic controls samples (STZ AMX - vs Control AMX -) 

D. Differential abundance testing of the impact of amoxicillin treatment on the 
abundance of Q-TOF-MS metabolites in the normoglycemic murine cecal 
microbiome. Log2 fold change values were calculated relative to normoglycemic 
vehicle-treated controls samples (Control AMX - vs Control AMX +) 

E. Differential abundance testing of the impact of amoxicillin treatment on the 
abundance of Q-TOF-MS metabolites in the hyperglycemic murine cecal 
microbiome. Log2 fold change values were calculated relative to hyperglycemic 
vehicle-treated controls samples (STZ AMX - vs STZ AMX +) 

F. Differential abundance testing of the impact of streptozotocin treatment on the 
abundance of Q-TOF-MS metabolites in the murine cecal microbiome after 
amoxicillin treatment. Log2 fold change values were calculated relative to 
normoglycemic amoxicillin-treated controls samples (Control AMX + vs STZ AMX 
+) 

G. Interaction term analysis generated by DESeq2 for the impact of host glycemia 
on changes in metabolite abundance following amoxicillin therapy. Log2 fold 
change values were calculated relative to normoglycemic vehicle-treated 
samples (Control AMX -) 

 
Table S2: Random Forest Classification of GNPS-annotated LC-MS/MS Clusters. 
Related to Figure 2B, Figure 4B, Figure 4C, Figure S2, and Figure S3B.  

A. Full Random Forest results of feature importance distinguishing normoglycemic 
and hyperglycemic cecal metabolomes before antibiotic treatment (i.e. STZ AMX 
- vs. Control AMX -) 

B. Full Random Forest results of feature importance distinguishing vehicle-treated 
and amoxicillin-treated cecal metabolomes in normoglycemic mice (i.e. Control 
AMX - vs. Control AMX +) 

C. Full Random Forest results of feature importance distinguishing vehicle-treated 
and amoxicillin-treated cecal metabolomes in hyperglycemic mice (i.e. STZ AMX - 
vs. STZ AMX +) 

D. Full Random Forest results of feature importance distinguishing normoglycemic 
and hyperglycemic cecal metabolomes after antibiotic treatment (i.e. STZ AMX + 
vs. Control AMX +) 

 
Table S3: Full KEGG-based Pathway Activity Profiling of enriched and depleted cecal Q-
TOF-MS metabolites. Related to Figure S1E and Figure S3C. 



A. Combined results from Pathway Activity Profiling of metabolites that are
differentially abundant during streptozotocin treatment (Table S1C).

B. Combined results from Pathway Activity Profiling of metabolites that are
differentially abundant during amoxicillin treatment in normoglycemic mice (Table
S1D).

C. Combined results from Pathway Activity Profiling of metabolites that are
differentially abundant during amoxicillin treatment in hyperglycemic mice (Table
S1E).

D. Combined results from Pathway Activity Profiling of metabolites that are
differentially abundant after amoxicillin treatment between normo- and
hyperglycemic mice (Table S1F).

Table S4: Full DESeq2 results of CAZyme transcript abundance generated by SAMSA2. 
Related to Figure 3A and Figure S1B. 

A. Differential abundance testing of the impact of streptozotocin treatment on the
abundance of CAZyme transcripts in the murine cecal metatranscriptome. Log2

fold change values were calculated relative to normoglycemic controls (STZ AMX
- vs Control AMX -)

B. Differential abundance testing of the impact of amoxicillin treatment on the
abundance of CAZyme transcripts in the murine cecal metatranscriptome in
normoglycemic animals. Log2 fold change values were calculated relative to
normoglycemic vehicle-treated samples (Control AMX - vs Control AMX +)

C. Differential abundance testing of the impact of amoxicillin treatment on the
abundance of CAZyme transcripts in the murine cecal metatranscriptome in
hyperglycemic animals. Log2 fold change values were calculated relative to
hyperglycemic vehicle-treated samples (STZ AMX - vs STZ AMX +)

D. Interaction term analysis generated by DESeq2 for the impact of host glycemia on
changes in CAZyme transcripts abundance after amoxicillin treatment. Log2 fold
change values were calculated relative to normoglycemic vehicle-treated samples
(Control AMX-).

Table S5: Full DESeq2 results of transcript abundance analysis of A. muciniphila and B. 
thetaiotaomicron during dietary intervention and ciprofloxacin treatment and dietary 
formulation. Related to Figure 2E and Figure 5B.  

A. Total and average counts for Kraken2-generated metatranscriptomic read
assignments.

B. Differential abundance testing of the impact of hyperglycemia on the abundance
of B. thetaiotaomicron transcripts within the murine cecal metatranscriptome. Log2

fold change values were calculated relative to normoglycemic controls (STZ AMX
- vs Control AMX -)

C. Differential abundance testing of the impact of amoxicillin treatment on the
abundance of B. thetaiotaomicron transcripts within the normoglycemic murine
cecal metatranscriptome. Log2 fold change values were calculated relative to
normoglycemic vehicle-treated controls (Control AMX - vs Control AMX +)

D. Differential abundance testing of the impact of amoxicillin treatment on the
abundance of B. thetaiotaomicron transcripts within the hyperglycemic murine



cecal metatranscriptome. Log2 fold change values were calculated relative to 
hyperglycemic vehicle-treated controls (STZ AMX - vs STZ AMX +) 

E. Interaction term analysis generated by DESeq2 for the impact of host glycemia on 
changes in B. thetaiotaomicron transcripts abundance after amoxicillin treatment. 
Log2 fold change values were calculated relative to normoglycemic vehicle-treated 
samples (Control AMX-).  

F. Differential abundance testing of the impact of hyperglycemia on the abundance 
of O. valericigenes transcripts within the murine cecal metatranscriptome. Log2 fold 
change values were calculated relative to normoglycemic controls (STZ AMX - vs 
Control AMX -) 

G. Differential abundance testing of the impact of amoxicillin treatment on the 
abundance of O. valericigenes transcripts within the normoglycemic murine cecal 
metatranscriptome. Log2 fold change values were calculated relative to 
normoglycemic vehicle-treated controls (Control AMX - vs Control AMX +) 

H.  Differential abundance testing of the impact of amoxicillin treatment on the 
abundance of O. valericigenes transcripts within the hyperglycemic murine cecal 
metatranscriptome. Log2 fold change values were calculated relative to 
hyperglycemic vehicle-treated controls (STZ AMX - vs STZ AMX +) 

I. Interaction term analysis generated by DESeq2 for the impact of host glycemia on 
changes in O. valericigenes transcripts abundance after amoxicillin treatment. 
Log2 fold change values were calculated relative to normoglycemic vehicle-treated 
samples (Control AMX-).  

J. Differential abundance testing of the impact of hyperglycemia on the abundance 
of O. sp. PEA192 transcripts within the murine cecal metatranscriptome. Log2 fold 
change values were calculated relative to normoglycemic controls (STZ AMX - vs 
Control AMX -) 

K. Differential abundance testing of the impact of amoxicillin treatment on the 
abundance of O. sp. PEA192 transcripts within the normoglycemic murine cecal 
metatranscriptome. Log2 fold change values were calculated relative to 
normoglycemic vehicle-treated controls (Control AMX - vs Control AMX +) 

L.  Differential abundance testing of the impact of amoxicillin treatment on the 
abundance of O. sp. PEA192 transcripts within the hyperglycemic murine cecal 
metatranscriptome. Log2 fold change values were calculated relative to 
hyperglycemic vehicle-treated controls (STZ AMX - vs STZ AMX +) 

M. Interaction term analysis generated by DESeq2 for the impact of host glycemia on 
changes in O. sp. PEA192 transcripts abundance after amoxicillin treatment. Log2 
fold change values were calculated relative to normoglycemic vehicle-treated 
samples (Control AMX-).  

 
Table S6: Full LEfSe results from the analysis of MetaCyc pathway abundance generated 
by HUMAnN2. “Class” denotes the experimental group a particular pathway was 
associated with. Related to Figure 2D, Figure 3C, and Figure 3E.  

A.  Pairwise LEfSe analysis of normoglycemic and hyperglycemic samples prior to 
antibiotic treatment (STZ AMX - vs Control AMX -) 

B.  Pairwise LEfSe analysis of amoxicillin- and vehicle-treated samples from 
normoglycemic mice (Control AMX - vs Control AMX +) 



C. Pairwise LEfSe analysis of amoxicillin- and vehicle-treated samples from
hyperglycemic mice (STZ AMX - vs STZ AMX +)

Table S7: Full DESeq2 results of SEED subsystem abundance generated by SAMSA2. 
Related to Figure 3B, Figure 3D, and Figure S1A.  

A. Differential abundance testing of the impact of streptozotocin treatment on the
abundance of SEED subsystem transcripts in the murine cecal metatranscriptome.
Log2 fold change values were calculated relative to normoglycemic controls (STZ
AMX- vs Control AMX-)

B. Differential abundance testing of the impact of amoxicillin treatment on the
abundance of SEED subsystem transcripts in the murine cecal metatranscriptome
in normoglycemic animals. Log2 fold change values were calculated relative to
normoglycemic vehicle-treated samples (Control AMX - vs Control AMX +)

C. Differential abundance testing of the impact of amoxicillin treatment on the
abundance of SEED subsystem transcripts in the murine cecal metatranscriptome
in hyperglycemic animals. Log2 fold change values were calculated relative to
hyperglycemic vehicle-treated samples (STZ AMX - vs STZ AMX +)

D. Interaction term analysis generated by DESeq2 for the impact of host glycemia on
changes in SEED subsystem transcript abundance after amoxicillin treatment.
Log2 fold change values were calculated relative to normoglycemic vehicle-treated
samples on the (Control AMX-).

Table S8: Full DESeq2 results of RefSeq transcript abundance generated by SAMSA2. 
Related to Figure S1C.  

A. Differential abundance testing of the impact of streptozotocin treatment on the
abundance of RefSeq transcripts in the murine cecal metatranscriptome. Log2 fold
change values were calculated relative to normoglycemic controls (STZ AMX- vs
Control AMX-)

B. Differential abundance testing of the impact of amoxicillin treatment on the
abundance of RefSeq transcripts in the murine cecal metatranscriptome in
normoglycemic animals. Log2 fold change values were calculated relative to
normoglycemic vehicle-treated samples (Control AMX - vs Control AMX +)

C. Differential abundance testing of the impact of amoxicillin treatment on the
abundance of RefSeq transcripts in the murine cecal metatranscriptome in
hyperglycemic animals. Log2 fold change values were calculated relative to
hyperglycemic vehicle-treated samples (STZ AMX - vs STZ AMX +)

D. Interaction term analysis generated by DESeq2 for the impact of host glycemia on
changes in RefSeq transcript abundance after amoxicillin treatment. Log2 fold
change values were calculated relative to normoglycemic vehicle-treated samples
on the (Control AMX-).
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