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I
n the context of what the 2018 National Defense Strategy describes as “the re-emergence of 
long-term, strategic competition between nations” understanding the scientific and techno-
logical position of the United States relative to other nation-states is increasingly important 
(U.S. Department of Defense [DoD], 2018, p. 2). The RAND Corporation was asked to develop 

open-source methodological approaches for determining national standing within the science and 
technology (S&T) fields. Understanding the possible evolution of emerging technologies will inform 
DoD and Intelligence Community officials’ decisionmaking on actions to take. As technologies 
evolve, these officials will make decisions about the implications of those technologies for defensive 
and offensive missions, investments in research and development (R&D), personnel, procurement, 
foreign material acquisition, and additional information collection. This report is designed to pro-
vide analysts and decisionmakers with a quick-turn and open-source methodology for assessing 
national scientific and technological standing for a given field. The sponsoring organization is DoD, 
and the sponsoring office seeks to understand the level and trajectory of output and capacity for 
various emerging technologies in major powers and potential adversaries.

This report describes the use of four metrics to quickly assess national S&T standing for a given 
field: high-impact publications, collaborative network density, quality-adjusted patents, and S&T orga-
nizational capacity. These metrics were selected according to the extent to which they capture major 
dimensions of the national S&T endeavor and their transparency, generalizability, and extensibility.

Metric 1 (high-impact publications) is a measure of national scientific output for the field 
in question. Because scientific journals and conference papers are the primary means by which 
researchers communicate scientific advancements,1 scientific publications are a widely used mea-
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country employs to advance the focal S&T area. It 
is calculated as the sum of the number of organiza-
tions to have produced at least one patent in the field 
in question and the number of organizations to have 
produced at least one scientific publication in the 
field. It is thus a proxy for the number of organiza-
tions that a country hosts that are active in advancing 
the scientific or technological frontier for the field 
under scrutiny. 

To best serve the dynamic needs of DoD and 
Intelligence Community officials, the method pro-
posed here seeks to be transparent, generalizable, and 
extensible. To assure methodological transparency, 
several steps are taken. First, rather than building a 
single composite indicator, each metric is presented 
as a stand-alone indicator. Composite indicators—
generally calculated as a weighted average of various 
component metrics—provide the apparent benefit 
of simplicity of interpretation, but they can mask 
important international differences. Furthermore, 
scholars have found that the particular approach 
chosen to calculate the component weights for com-
posite indicators has a significant impact on indicator 
scores and can result in unstable country rankings 
(Grupp and Schubert, 2010). 

Instead of combining the metrics developed 
here into a single composite indicator, each metric 
is presented as a stand-alone indicator for a given 
concept. Thus, rather than providing an apparently 
definitive—yet possibly misleading—answer to the 
question of which country is the global leader in field 
X, this methodology provides its user with four pieces 
of evidence that are critical to answering that ques-
tion. This allows for a more nuanced understanding 
of the notion of S&T leadership in a given field. For 
example, suppose that a country is far and away the 
top producer of high-impact scientific journal articles 
in a given field, yet the firms from this country file 
very few patents. A composite indicator might assign 
the country a middling ranking, which would mask 
the observed high performance in one area and low 
performance in another. Furthermore, the composite 
metric would not point its user toward a potential flaw 
in the country’s system of innovation: an apparent 
failure to commercialize scientific knowledge. 

To allow assessment of a dynamic national secu-
rity environment, this methodology is also designed 

sure of national scientific output.2 This report consid-
ers only high-impact scientific publications (defined 
as publications that fall into the top decile in terms 
of citations received) to account for heterogeneity in 
average publication quality across countries (Schmid 
and Wang, 2017).

Metric 2 (network density) measures the con-
nectedness of the communities of scientific practice 
within the focal country for the field in question. 
Countries with high network density for the focal 
field are those in which scientific collaboration is 
relatively prevalent. The empirical literature on sci-
entific impact finds that increased collaboration is 
associated with greater scientific impact (Wuchty, 
Jones, and Uzzi, 2007). Thus, this report includes 
field-specific network density as a means of assessing 
the relative “health” of a country’s scientific network 
within the field in question.

Metric 3 (quality-adjusted patents) gauges a 
country’s ability to produce new technological inven-
tions within the S&T field under consideration. To 
receive a patent, an application must document—and 
convince a patent examiner with subject-matter 
expertise in the field in question—that the underly-
ing invention is nonobvious, novel, and useful. The 
set of patent grants developed by inventors from 
a given country for a given field thus constitutes a 
measure of a country’s nontrivial invention output 
that, because of the novelty criteria, is free of double-
counting. Here, each country’s field-specific patent 
counts are weighted by average patent family size 
to account for international heterogeneity in patent 
quality (Schmid and Wang, 2017).

Metric 4 (S&T organizational capacity) assesses 
the extent of the organizational resources that a 
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patent abstracts and titles. The analysis of these data 
using natural language processing methods is a pow-
erful means of gleaning information regarding the 
particular scientific and technical foci of individuals, 
organizations, or countries. 

Several limitations of this method are worth 
noting. First, it is important to note that although 
the methodology proposed here can be applied to 
most other S&T areas, the measurement of certain 
S&T areas would benefit from methodological tai-
loring. For example, the application of this model to 
S&T areas that are particularly capital-intensive or 
require extensive testing and evaluation (T&E) infra-
structure could benefit from including an additional 
metric related to a country’s T&E infrastructure. 
For example, if one were to apply the methodol-
ogy to the field of hypersonic weapons, it might be 
advisable to include a T&E infrastructure metric 
based on the number of wind tunnels hosted by each 
assessed country. Second, the methodology proposed 
here relies on open-source quantifiable measures of 
national S&T activity. Although this expedites the 
analysis process, additional insight for any given S&T 
field regarding the prominence of a given individual, 
organization, or country could be gleaned through 
interviews with subject-matter experts from the field 
in question. Third, because this methodology relies 
on open source information, it might not yield accu-
rate results for such S&T areas as nuclear physics 
and nuclear engineering, for which a large portion of 
advancement is kept secret.

A final limitation is that the proposed methodol-
ogy focuses on a country’s ability to advance the sci-

to be generalizable. To assure generalizability with 
regard to country, international data sources are 
used and adjustments are made to the metrics to 
account for well-known international differences in 
patenting and publishing behavior (Fisch, Block, and 
Sandner, 2016; Michalska-Smith and Allesina, 2017). 
To assure generalizability with regard to S&T topic 
area, the topic scoping strategy is defined primarily 
by using carefully designed keyword searches rather 
than predefined science or technology categories.3 
For example, a search strategy could be designed 
by the methodology’s user to characterize a broad 
technology field, such as semiconductors. Similarly, 
by simply changing the search strategy—rather than 
the underlying metrics—an analyst can narrow the 
search to a particular type of semiconductor, such 
as photovoltaic semiconductors.4 Such finely tuned 
scope definition is simply not possible using less 
descriptively rich data sources, such as R&D expendi-
ture or total factor productivity.5

Finally, the proposed methodology is exten-
sible. The primary purpose of the methodology is to 
inform answers to the question: Who are the global 
country-level leaders in a given S&T field? However, 
this is but one question of potential interest to ana-
lysts of S&T trends. Additional questions include 
the following: 

• How do organizations collaborate internation-
ally to advance a given field? 

• What are the research foci of particular orga-
nizations within a country? 

• What are the likely applications of the tech-
nologies in question in a given country? 

Methods for beginning to answer these addi-
tional questions are proposed in the final section of 
this report.

To assure that these questions can be answered, 
the data-gathering strategy proposed here collects 
data beyond what is immediately necessary to calcu-
late the four metrics. Specifically, data are collected 
on the organizations and individuals responsible for 
advancing the S&T sector, keywords, publications 
and patent classification codes, coauthorship and 
copatenting, patent and publication citations, and 
funding sources. The method also collects text data 
in the form of publication abstracts and titles and 

The data-gathering 
strategy proposed here 
collects data beyond 
what is immediately 
necessary to calculate 
the four metrics.
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An Open-Source Method for 
Assessing National Scientific 
and Technological Standing

Metric 1: High-Impact Publications

High-impact publications are determined by calculat-
ing the annual number of publications written by 
authors affiliated with an organization within the 
country in question that fall into the top decile in 
terms of citations received. The decile cut-off point 
is calculated on an annual basis. The “country” field 
within the Web of Science (WOS) database (a scien-
tific publication database that features over 90 mil-
lion records) is used to determine the country affili-
ation associated with a publication. WOS populates 
the “country” field using the author address that is 
associated with a given publication. For example, 
publications for which an author lists an address as 
“Georgia Institute of Technology, North Ave NW, 
Atlanta, GA 30332, USA,” will be assigned to the 
United States.

To illustrate the calculation of high-impact 
publications, consider Germany’s 2015 Metric 1 per-
formance in the field of AI/ML. In 2015, Germany 
published a total of 1,060 publications in the field. In 
2015, the global top decile cut point was 18 citations. 
That is, 10 percent of AI/ML publications from 2015 
globally received more than 18 citations as of the date 
of calculation (August 29, 2019). Of Germany’s AI/
ML publications, 210 received more than 18 citations. 
These publications—those within the top 10 per-
cent of publications in terms of citations received—
constitute Germany’s 2015 Metric 1 calculation. 

The use of highly cited publications, as opposed 
to all publications in the field, is designed to account 
for the fact that there is systematic country-level 
variation in the impact of published scientific journal 
articles. For example, research has found that the 
provision of direct financial incentives to publish 
in China appears to have led to a glut of low-quality 
publishing in that country (Schmid and Wang, 2017). 
The presence of systematic country-level variation in 
publication quality suggests that publication-based 
measures that simply count publications without 
adjusting for quality will suffer from low cross-
country commensurability. Metric 1 accounts for 

entific and technological frontier for a given field, not 
its ability to simply attain the output of the process of 
advancement. More exactly, the proposed methodol-
ogy does not consider technology attained through 
external sources, such as intellectual property theft, 
espionage, international trade, or state-to-state tech-
nology transfer. The international diffusion of atomic 
weapons and rocket technology following the end of 
World War II suggests that technology attainment 
through those sources is likely to be particularly 
important for a state’s capacity to acquire certain 
military technologies.

The remainder of this report is organized as 
follows. The next section describes the methodology; 
it provides definitions for each metric, an explana-
tion of the rationale for the metric’s inclusion, and 
the method of calculation. The section after that 
applies the methodology to a specific S&T area: arti-
ficial intelligence (AI) and machine learning (ML). 
That section reports the results of collecting data 
and calculating the four metrics for nine countries: 
China, France, Germany, India, Japan, South Korea, 
Russia, the United Kingdom, and the United States.6 
The final section extends the analysis to additional 
research questions.

The use of highly 
cited publications, 
as opposed to all 
publications in the field, 
is designed to account 
for the fact that there is 
systematic country-level 
variation in the impact 
of published scientific 
journal articles.
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As in the case of scientific publications, there is 
well-known international heterogeneity in patent qual-
ity. For example, multiple recent studies have found 
that Chinese patents are of lower-than-average quality 
compared with their international counterparts (Fisch, 
Block, and Sandner, 2016; Li, 2012). Recent research 
indicates that U.S. patents are cited 2.25 times more 
often, on average, than Chinese patents (Schmid and 
Wang, 2017). Counting all patents equally would thus 
degrade the cross-country commensurability of the 
metric. Thus, to account for country-specific heteroge-
neity in patent quality, Metric 3 adjusts the raw patent 
count data using the average annual patent family size 
for the country in question.

The family size of a patent is the number of coun-
tries in which the patent has been filed. The method 
leverages the finding that patents filed in multiple 
jurisdictions have been found to be of higher qual-
ity than those filed in a single jurisdiction (Sampat, 
2005; Thomson Reuters, 2011). Inventors of low-
quality patents are thought to be unlikely to file in 
multiple countries because of the application cost and 
the risk of the application being denied (Schmid and 
Fajebe, 2019). The quality-adjusted patents metric for 
a given country c at year t is defined as

average family sizet, c

average family sizet, global

× patentst, c .

In essence, Metric 3 is a country’s patents in a 
given field adjusted for quality. In the formula pro-
vided, a country’s quality proxy is calculated relative 
to the global average, so when the country’s patents 
are of higher quality than the global average, the 
quality factor inflates that country’s patent count. 
When a country’s patents are of lower quality than 
the global average, the ratio is less than one, and the 
country’s annual raw patent count is deflated.

Figure 1 demonstrates the effect of this quality 
adjustment on patent counts. The solid lines depict the 
annual unadjusted patent counts fitting the AI/ML 
patent search. Dotted lines depict the quality-adjusted 
patent counts. For most of the time series shown, the 
quality adjustment factor—the ratio of a country’s 
average patent family size to the global average—
results in an increase in the quality-adjusted metric 

systematic country-level variation in publication 
quality by counting only highly cited publications. 
During the process of documenting scientific results, 
scientists cite articles that have informed their find-
ings. Thus, the number of times that an article is 
cited is an indicator of the impact of a given article 
on subsequent scientific research. 

Metric 2: Network Density

Network density is calculated as the number of 
observed interorganization collaborations that a 
country’s publishing organizations have participated 
in as a proportion of the maximum possible number 
of collaborations for the field in question. A collabo-
ration occurs when two researchers from different 
organizations work together on the same research 
article. The maximum possible number of collabora-
tions is calculated as n(n – 1)/2, where n refers to the 
number of organizations that have contributed to a 
scientific journal article during the year in question.

Whereas Metric 1 focused on scientific output, 
network density is a measure of the process by which 
this output is produced. It is a measure of the con-
nectedness of the communities of scientific practice 
that produce scientific research. The empirical litera-
ture on scientific impact suggests that communities 
that are characterized by more collaboration are pref-
erable to ones in which researchers are isolated. For 
example, studies have found that research produced 
by teams has, on average, greater scientific impact in 
terms of citations received than research produced 
by solo authors and that teams are more likely to 
produce research with exceptional impact (Wuchty, 
Jones, and Uzzi, 2007).

Metric 3: Quality-Adjusted Patents

Quality-adjusted patents refers to the number of 
patents granted to organizations from a country 
discounted by the average annual patent family size 
of patents from that country.7 Patents are assigned to 
the country of origin of the patent’s assignee (the pat-
ent’s owner). For example, patents that are filed at the 
U.S. Patent and Trademark Office but have a Chinese 
assignee are allocated to China. 
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laboratories—has been empirically linked to national 
S&T output (Etzkowitz and Zhou, 2017). 

It is worth noting that the S&T organizational 
capacity and network density metrics entail a norma-
tive claim about optimal organizational arrangement. 
S&T organizational capacity assumes that, holding 
other factors constant, more organizations participat-
ing in a sector is preferable to fewer organizations 
doing so. The network density metric assumes that, 
holding other factors constant, more collaboration is 
preferred to less. These normative assumptions are 
based on empirical scholarship linking organizations 
and collaboration to S&T output (Etzkowitz and 
Zhou, 2017; Wuchty, Jones, and Uzzi, 2007). 

The Methodology in Context: Other 
Approaches to Assessing National 
Science and Technology Standing

The methodology proposed here was developed to be 
applied to a particular S&T field defined by the meth-
odology’s user. The four metrics used here—high-
impact publications, network density, quality-adjusted 
patents, and S&T organizational capacity—can be 
calculated for the vast majority of S&T areas.8 The 

for the United States and a decrease for China. This 
is consistent with other research finding that Chinese 
patents tend to be on average lower quality than their 
U.S. counterparts (Fisch, Block, and Sandner, 2016). 

Metric 4: Science and Technology 
Organizational Capacity

S&T organizational capacity is calculated as the 
annual number of organizations that have pro-
duced either a patent or a publication in the field in 
question. It is simply the sum of a country’s patent 
assignees and its authors’ affiliations. Assignment of 
nationality for publications and patents follows the 
same process as in previous metrics: For publications, 
the author’s country field is used; for patents, the 
country of origin of the patent assignee is used. 

Including a measure of organizational capacity 
seeks to capture the importance of organizational 
infrastructure in determining national S&T output. 
Holding other factors constant, this metric assumes 
that more organizations patenting and publishing 
in a given field is preferable to fewer organizations 
doing so. The presence of S&T organizations—such 
as firms, universities, and research government 

FIGURE 1 

Quality-Adjusted Artificial Intelligence Patents, China and United States, 2000–2018
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demah, 2019). One of the study’s metrics of AI talent 
is the number of Python package downloads within 
a given country. Given the prominence of the Python 
programming language in the AI community at this 
point in time, this metric is a sound and creative 
way of measuring country-level AI talent. However, 
the use of field-specific metrics limits the generaliz-
ability of this approach—the use of Python package 
downloads might not be appropriate for other S&T 
fields. A user of the methodology seeking to apply the 
approach to a different S&T field would be required 
to identify appropriate proxies on a sector-by-sector 
basis. Thus, because the methodology developed 
here seeks generalizability across S&T areas, sector-
idiosyncratic metrics are forgone. 

The GII and the Global AI Index are composite 
measures.10 Given the large number of metrics that 
make up these indexes, the calculation of a summary 
measure is an understandable way of facilitating 
interpretation. The method proposed here, however, 
refrains from including a composite measure because 
of observed instability in composite measures. Sensi-
tivity analysis of innovation indexes has shown that 
the chosen weighting method can have a consider-
able effect on composite scores and country rankings 
(Grupp and Schubert, 2010; Grupp and Mogee, 2004). 
Specifically, commonly used weighting approaches, 
such as weighting via principal component analysis 
and equal-metric weighting, were found by Grupp and 
Mogee (2004) and Grupp and Schubert (2010) to pro-
duce significant variation in final country rankings. 

The downside to not computing a composite 
indicator is the proposed method’s inability, in 
some cases, to yield apparently definitive declara-
tions regarding global leadership. That is, in cases 
for which no single country is ranked first in all 
measures, it is impossible, without the analyst using 
discretion, to claim that a given country is the defini-
tive global leader for a given S&T field. For example, 
as discussed in the next section, the United States 
appears to be the global leader for three of the four 
metrics in the field of AI/ML. The long-winded 
conclusion—that the United States is the global 
leader in the field of AI/ML in terms of high-impact 
publications, network density, and S&T organiza-
tional capacity—is preferable to a more definitive but 
possibly less precise conclusion about overall global 

methodology proposed is thus distinct from method-
ologies that rank countries according to aggregate S&T 
capacity or overall innovation performance. It is also 
distinct from methodologies that are designed to rank 
countries for a single S&T field. This section locates 
the approach proposed in this report within the con-
text of other S&T measurement approaches.

The Global Innovation Index (GII), produced 
annually by the World Intellectual Property Orga-
nization, is a prominent example of a measurement 
approach that seeks to measure aggregate national 
innovation performance (Dutta, Lanvin, and Wunsch-
Vincent, 2019). The GII is made up of 80 indicators 
that are divided into seven major categories: institu-
tions, human capital and research, infrastructure, 
market sophistication, business sophistication, knowl-
edge and technology outputs, and creative outputs. 
Given that its focus is aggregate national innovation 
performance, the GII uses country-level variables 
(meaning variables that describe the national innova-
tion environment irrespective of S&T sector). How-
ever, approaches that focus on country-level variables 
(such as domestic economic institutions and infra-
structure) are not conducive to sector-specific interna-
tional comparison.9 For example, the GII uses Wikipe-
dia page edits as one of its metrics of online creativity. 
This metric and the underlying phenomenon that it 
purports to measure are not equally relevant for all 
S&T fields. Online creativity can be a meaningful 
variable for internet-enabled fields (such as AI), but it 
is less clear that the rate at which a country’s citizens 
edit Wikipedia would be relevant to fields that are 
less dependent on online user communities (such as 
nuclear power generation or drug discovery). Thus, 
because the objective of the methodology developed 
here is to assess national S&T standing for a given S&T 
area of interest, only metrics that can be calculated at 
the level of the S&T area are used. 

In addition to multimetric approaches to mea-
suring aggregate national S&T capacity, scholars have 
developed sector-specific national ranking method-
ologies. However, these approaches often cannot be 
applied to fields beyond the one for which they were 
designed. In 2019, for example, Tortoise Media pro-
duced a “Global AI Index,” an AI-focused national 
ranking that uses more than 100 metrics to assign an 
AI Capacity score to 54 countries (Haynes and Gbe-
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Metric 1: High-Impact Publications

The plot in Figure 2 depicts the frequency distribu-
tion for all publications in the AI/ML sample over 
the 2017–2018 period. During that time, there were 
40,988 articles matching the search criteria. Of these, 
19,718 (48 percent) had not been cited at the date of 
calculation. The high-impact publications metric is 
concerned with only the top 10 percent of publica-
tions. When ranking articles by citations, the cut point 
for determining the top 10 percent of publications 
was found to be seven citations. Each country’s high-
impact publication measure represents the number of 
AI/ML publications to the right of the cut point that 
are produced by organizations from that country. 

Over the 2017–2018 period of analysis, the 
United States is the global leader in terms of high-
impact AI/ML scientific publications, producing 
2,005 publications (41 percent) within the top decile 
in terms of citations received. During this period, 
China ranks second, having produced 1,033 (21 per-
cent) high-quality AI/ML scientific publications. 
Figure 3 presents the Metric 1 results for the full 
sample of countries. 

Metric 2: Network Density

For the 2017–2018 period of analysis, the United 
States had the highest network density (0.027 per-
cent) of countries in the sample. That is, relative 
to the other countries examined, the U.S. research 
community exhibits a high degree of connectedness. 
Table 1 depicts the performance of the nine countries 
in the sample in terms of network density over the 
combined 2017–2018 period.14

Metric 3: Quality-Adjusted Patents

Whereas the United States was the global leader for 
Metrics 1 and 2, China predominates AI/ML patent-
ing. Raw, unadjusted patent counts indicate that China 
produced 18,646 patents (49.7 percent of the global 
total) within the AI/ML patent data set over the period 
of analysis. Even after adjusting for quality, China’s 
patent output greatly exceeds that of other countries. 
Table 2 provides the raw patent counts, the adjustment 
factor, and the adjusted figures. 

AI/ML leadership that would result from computing 
a composite measure. 

Finally, the metrics proposed here are not inde-
pendent from one another. For example, national 
patent output is likely to be driven by a country’s S&T 
organizational capacity. Neither are they independent 
from national contextual factors, such as how coun-
tries organize their overall S&T enterprise. Countries 
that organize their S&T enterprise in a fundamen-
tally different way might be underranked using these 
metrics. Given this, absent further analysis, the met-
rics should not be used as statistical determinants 
(for example, as regressors in a regression model of 
national S&T capacity). 

Applying the Methodology: 
Artificial Intelligence and 
Machine Learning, 2017–2018

Data and Search Strategy

In applying the measurement approach, this report 
uses patent data from the Derwent Innovation Index 
and publication data from the WOS (Clarivate; 
undated-a; Clarivate, undated-b). The period of 
analysis is the two-year period from 2017 to 2018. To 
produce a data set of AI/ML publications, a keyword 
search was relied on.11After removing such results 
as news items and commentaries that do not rep-
resent contributions to the scientific literature, the 
final sample consisted of 40,988 journal articles.12 
To arrive at a data set comprising AI/ML patents, a 
search strategy was used that combines keywords and 
international patent classification (IPC) codes. This 
patent search approach is modeled on a search strat-
egy developed by the Intellectual Property Office of 
the United Kingdom (Economics, Research and Evi-
dence Team, 2019). Performing searches over the full 
2017–2018 period yielded 48,981 patents.13 For both 
the publication and patent data set, additional data 
elements—such as keywords, titles, and abstracts—
were collected to allow the extended analysis pre-
sented in the final section of this report. 
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The summary table also illustrates the role 
that the proposed methodology can play in provid-
ing policy insight. For example, given almost any 
weighting system, creating a composite indicator 
from these metrics would rank China very highly.15 
However, considering the composite number alone 
would mask the fact that the collaboration network 
density in China is not particularly high. Failing to 
aggregate metrics allows analysts to identify portions 
of national techno-innovation systems that might 
warrant policy intervention. For example, empiri-
cal research on the collaboration in innovation finds 
that firms receiving government financial support 
are more likely to engage in collaboration (Mohnen 
and Hoareau, 2003; Bayona Sáez, Garcia Marco, and 
Huerta Arribas, 2002). 

Besides allowing for assessment of national stand-
ing with regard to an S&T field, this methodology was 
designed to be extensible. That is, it was designed to 
collect sufficiently detailed data regarding the selected 
S&T sector to allow for further analysis. The next 
section provides sample analyses to illustrate possible 

Metric 4: Science and Technology 
Organizational Capacity

The United States was the global leader for the 
2017–2018 period of analysis for Metric 4. That is, 
the United States hosted more organizations to have 
produced either a scientific journal article or a patent 
in the field of AI/ML than any other country in the 
sample. The U.S. position of leadership is driven by 
the large number of organizations publishing in the 
field. In terms of patenting organizations, China is 
the global leader. Figure 4 depicts the sample coun-
tries’ performance on this metric.

Conclusion: Final Rankings

Table 3 summarizes the national rankings based on the 
four metrics calculated here. Using the proposed meth-
odology for assessing national S&T standing, the United 
States ranks first in three of the four measures. These 
results suggest that a strong case can be made that the 
United States is the global leader for AI/ML. 

FIGURE 2 

Frequency Distribution of Citations, Artificial Intelligence and Machine Learning 
Publications, 2017–2018
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FIGURE 3

High-Impact Artificial Intelligence and Machine Learning Publications, 2017–2018
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TABLE 1 

Network Density for Artificial Intelligence and Machine Learning Publication Network

Country
AI/ML Collaborations

(Ties) AI/ML Articles Network Density (%)

United States 173,624 13,000 0.027

United Kingdom 128,540 2,701 0.020

Germany 122,748 2,195 0.019

France 112,218 1,363 0.018

China 108,316 6,590 0.017

Russia 86,460 688 0.014

South Korea 85,140 1,238 0.013

India 63,890 2,805 0.010

Japan 28,540 1,613 0.005
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activity in the field of AI/ML. This section briefly 
examines three topics of potential interest: interna-
tional patterns of collaboration, the role and research 
foci of particular organizations, and a particular 
application area of the field. 

It should be noted that this section does not pres-
ent a comprehensive catalogue of scientometric- or 
bibliometric-based analysis techniques; rather, it 

means by which the data collected here can be used to 
answer other research questions of interest. 

Extending the Analysis

The data gathered to calculate the four metrics pre-
sented here contain additional information that can 
be used to glean insight into other features of S&T 

FIGURE 4 

Science and Technology Organizational Capacity, 2017–2018
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TABLE 2 

Quality-Adjusted Artificial Intelligence and Machine Learning Patents
Country AI/ML Patents Average Family Size Quality-Adjusted AI/ML Patents

China 18,646 1.1 14,875

United States 3,442 2.3 5,091

Japan 1,042 2.4 1,570

South Korea 558 1.9 760

Germany 377 2.5 629

United Kingdom 80 2.6 140

India 59 4.5 123

France 32 3.3 71

Russia 5 1.0 4
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communities of collaboration. Edges are weighted 
according to the number of collaborations. Intrigu-
ingly, the most common bilateral collaborative rela-
tionship is the one between the United States and 
China. Figure 6 uses the same data but depicts pat-
terns of collaboration geographically. 

The Role and Research Foci of 
Particular Organizations

Another topic of potential interest to the defense and 
intelligence community is how particular research 
foci are distributed across organizations and coun-
tries. The topic of AI/ML is sufficiently broad that 
increasing the granularity of analysis to the level of 
keywords can be desirable. Figure 7 depicts how AI/
ML publications in the high-impact subsample are 
allocated across country, organization, and keywords. 
For example, the figure shows that only two universi-
ties (Stanford and the University of Illinois) within the 
subsample are conducting high-impact research in the 
field of remote sensing. The diagram also shows that 
no single university dominates publishing in the field; 
the size of the university “bars” is not highly variable. 

Deep Dive into an Application Area 
(Artificial Intelligence, Machine 
Learning, and Cyber)

The data gathered to calculate the metrics proposed 
here also can be used to examine a particular appli-

provides a sample of additional methods of analysis. 
Other areas of potential interest to the defense and 
intelligence communities that can be explored using 
these data include principal component analysis of 
the corpus of text and of keywords to identify the 
underlying intellectual structure; social network 
analysis to identify highly impactful researchers or 
research teams; and analysis of the subset of patents 
that are overtly meant for military, weapons, or intel-
ligence purposes.16 

International Patterns of Collaboration

Patterns of international scientific collaboration can 
be of interest to the defense and intelligence com-
munity for several reasons. Research suggests that 
international collaboration on scientific research is 
positively related to research impact (Guerrero Bote, 
Olmeda‐Gómez, and de Moya‐Anegón, 2013). How-
ever, international scientific collaboration, especially 
between potential adversaries, could represent a 
means by which intellectual property is unintention-
ally exported abroad. 

Figure 5 depicts the coauthorship network for the 
3,000 most highly cited journal articles in the AI/ML 
sample. Nodes are sized using betweenness centrality, 
a measure of how central a node is in the network. 
Nodes with a high betweenness centrality are impor-
tant if information has to be passed from one part of 
a network to another. Colors are assigned according 
to a Louvain clustering algorithm that aims to detect 

TABLE 3

Final Rankings in Science and Technology, 2017–2018

Country
Metric 1  

(High-Impact Publications)
Metric 2 

(Network Density)
Metric 3  

(Quality-Adjusted Patents)
Metric 4  

(S&T Organizational Capacity)

United States 1 1 2 1

China 2 5 1 2

Germany 5 3 5 4

United Kingdom 3 2 6 7

India 4 8 7 3

Japan 6 9 3 6

France 7 4 8 5

South Korea 8 7 4 8

Russia 9 6 9 9
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FIGURE 5

Collaborative Network, Artificial Intelligence and Machine Learning Publications

NOTES: Members of two distinct communities of scientific collaboration are distinguished by red and blue nodes; edges that connect the 
two are colored in gray to enhance the graph's clarity. Node colors are assigned according to a Louvain community detection algorithm. The 
thickness of edges is determined by the number of collaborations between the linked nodes. To more clearly depict major collaborative 
relationships, the edges shown represent collaborative dyads for which at least ten collaborations have occurred within the subsample. To 
show major relationships, only a subsample (the top 3,000 observations in terms of citations received) of the full sample is depicted. To 
increase the clarity of the graph, only the top 20 publishing countries in the sample are displayed in the network graph.

series of key terms related to cybersecurity.18 When 
a match was found, these patents were added to the 
new “AI + cyber” data set. Thus, the new “AI + cyber” 
data set represents the intersection of the AI/ML data 
set and the cyber keyword search. 

Table 4 depicts the frequency for the cyber-
security terms for U.S. and Chinese patents. The 
numbers in cells refer to the number of patents that 
contain both the cyber keyword and one of the AI 
keywords. The shaded cells depict the difference 
(United States minus China) in the number of pat-

cations area. Recently, AI/ML have been used to 
detect and respond to cyberattacks.17 However, AI 
also poses a means of increasing the efficacy of cyber 
offense (Brundage et al., 2018). To illustrate how a 
particular applications area can be analyzed using 
the data elements collected here, a subset of the AI/
ML patent data related to cybersecurity was selected.

Construction of this data set began with the full 
AI/ML patent data set for the 2000–2019 period. 
For each of the 106,740 patents in this database, the 
patent abstract and patent title were searched for a 



14 FIGURE 6 

International Collaboration, Artificial Intelligence and Machine Learning Publications

NOTE: Countries shaded in gray have not produced any AI/ML publications. Countries shaded in blue have produced at least one AI/ML publication; darker blue reflects a larger number of AI/ML 
publications produced. The red lines reflect international collaborations between the linked countries. 
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FIGURE 7

Research Foci by Country and Organization, Artificial Intelligence and Machine Learning Publications
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TABLE 4

Term Analysis of Artificial Intelligence and Cyber Application Domain, United States 
and China

NOTE: The keyword analysis presented here is sensitive to the particular language choices of the authors of the patent documents. In some 
cases, variation in countries’ totals might re�ect intercountry variation in language preferences rather than true differences in innovation. Blue 
cells re�ect positive values; red cells re�ect negative values.

AI + malware 13 66 53  12 48 36

AI + anomaly detection 26 73 47  24 55 31

AI + bot 2 33 31  2 31 29

AI + cyber 2 35 33  2 24 22

AI + Firewall 6 27 21  3 17 14

AI + breach 4 17 13  4 12 8

AI + cyber attack 0 9 9  0 7 7

AI + botnet 5 8 3  4 8 4

AI + data integrity 7 13 6  4 7 3

AI + Adware 0 4 4  0 3 3

AI + Spoof 6 8 2  6 8 2

AI + Handshak* 3 7 4  2 4 2

AI + cybersecurity 0 3 3  0 2 2

AI + cyber threat 0 2 2  0 2 2

AI + computer virus 1 2 1  0 1 1

AI + change point detection 0 3 3  0 1 1

AI + hack* 5 12 7  5 5 0

AI + Zero-Day 1 2 1  1 1 0

AI + data injection 1 1 0  1 1 0

AI + Rootkit 0 1 1  0 0 0

AI + data security 11 13 2  10 9 –1

AI + traf�c classi�cation 5 5 0  5 4 –1

AI + Sniff* 4 2 –2  3 2 –1

AI + cascading failure 5 0 –5  2 0 –2

AI + scada systems 10 2 –8  6 1 –5

AI + Phishing 18 4 –14  9 3 –6

AI + DDOS 11 6 –5  10 2 –8

AI + penetration 27 13 –14  22 11 –11

AI + access control 39 37 –2  27 15 –12

AI + Trojan horse 21 3 –18  15 2 –13

AI + information security 28 5 –23  24 5 –19

AI + vulnerability 39 14 –25  33 8 –25

AI + Encryption 110 71 –39  86 43 –43

AI + intrusion detection 86 24 –62  69 13 –56

AI + Hash 143 87 –56  122 38 –84

U.S.
advantage

China
United
States

U.S.
advantage

ChinaSearch term
United 
States

2010–2019 2015–2019
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to discount Metric 3. The data in Figure 8 are trun-
cated for 2017 because the Derwent Innovation Index 
patent data are not complete for 2018. The plot indi-
cates that the United States was the early leader in AI 
+ cyber patents, but Chinese patenting on this topic 
accelerated dramatically beginning in 2015. By 2017, 
the United States and China were producing roughly 
the same number of quality-adjusted patents in the 
AI + cyber field. 

ents for each keyword combination. Cells shaded in 
blue represent those in which the United States has 
an advantage in terms of patents produced in the area 
in question. Cells shaded in red (those with nega-
tive values) represent those in which China has an 
advantage.

Figure 8 depicts the annual adjusted patent 
counts for the AI + cyber subset. For this data series, 
we applied the quality adjustment methodology used 

FIGURE 8

Artificial Intelligence and Cyber Patents (Quality-Adjusted), 2000–2017
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Notes
1  In certain fields, such as computer science, conferences are 
the primary means of communicating advancements. The high-
impact publications metric proposed here thus includes confer-
ence presentations.
2  The Nature Index, published annually by Nature Research, is 
one example of a prominent national scientific output ranking 
based on scientific publications (Nature Research, 2021).
3  As will be described in the next section (“An Open-Source 
Method for Assessing National Scientific and Technological 
Standing”), the patent search strategy employs a dual approach, 
combining keyword and patent classification code searches. 
4  For example, to define the search strategy for photovoltaic 
semiconductors, the original semiconductor search could be 
combined with a series of photovoltaic keywords (such as active 
layer, amorphous silicon, light absorption, photoelectric conver-
sion efficiency, solar cell, radiation, and lead frame).
5  Patent and publication data are particularly effective in satis-
fying the generalizability criteria because these data sources have 
descriptively rich fields—such as abstracts, titles, keywords, and 
patent classification codes—that can be used to precisely define a 
topic of interest.
6  These countries were selected at the request of the sponsor of 
the research. 
7  Eusebi and Silberglitt (2014) propose an innovative method 
for assessing patent maturity via cross-domain linkages (mean-
ing co-occurrence of international patent classification codes on 
a given patent). Eusebi and Silberglitt argue that, as a technol-
ogy area matures, patents will be linked to more technological 
domains. If an analyst were interested in weighting patents (or a 
portfolio of patents) for maturity, this approach could be applied 
in a manner similar to the weighting approach proposed here 
(that is, weighting the patents by their cross-domain linkages 
relative to the global average number of cross-domain linkages). 
8  Exceptions are S&T fields that protect intellectual property 
via secrecy or those in which the publications and patents are not 
publicly released.
9  Other examples of composite metrics that use country-level 
variables are the European Innovation Scoreboard (produced by 
the European Commission) and the International Innovation 
Index (produced by Boston Consulting Group, National Asso-
ciation of Manufacturers, and The Manufacturing Institute). 
Importantly, the purpose of these aggregate indexes is not to 
assess sector-specific S&T standing but to rank countries in the 
aggregate.
10  Both indexes provide access to the composite metrics. The 
Global AI Index provides a sensitivity analysis in its weighting 
approach and found high stability in the rankings based on the 
chosen weighting strategy. 
11  Search performed on the WOS Core Collection. The exact 
search was TS=(“Machine Learning” OR “Artificial Intelligence”)

12  The document types that were removed were editorial 
materials, book reviews, letters, corrections, news items, reprints, 
software reviews, biographical items, bibliographies, retracted 
publications, corrections or additions, film reviews, items about 
individuals, database reviews, retractions, and poetry.
13  The exact search performed was: IP=(G06F-019/24 OR 
G06N-003* OR G06N-005* OR G06N-007/02 OR G06N-007/04 
OR G06N-007/06 OR G06N-020* OR G06T-001/40 OR G16B-
040/20 OR G16B-040/30 OR G16C-020/70) OR TS=(“ant-colony” 
OR “factorization machin*” OR “high-dimensional* feature*” 
OR “particle-swarm*” OR “bee-colony” OR “factorisation 
machin*” OR “factorization machin*” OR “high-dimensional* 
input*” OR “pattern-recogni*” OR “fire-fly” OR “feature 
engineer*” OR “k-means” OR “policy-gradient method” OR 
“adversar* network*” OR “feature extract*” OR “kernel learn*” 
OR “q-learn*” OR “artificial*-intelligen*” OR “feature select*” 
OR “latent-variable*” OR “random-forest*” OR “association rule” 
OR “fuzzy-c” OR “link* predict*” OR “recommender system*” 
OR “auto-encod*” OR “fuzzy environment*” OR “machine 
intelligen*” OR “reinforc* learn*” OR “autonom* comput*” OR 
“fuzzy logic*” OR “machine learn*” OR “sentiment* analy*” 
OR “back-propagat*” OR “fuzzy number*” OR “map-reduce” 
OR “sparse represent*” OR “back-propogat*” OR “fuzzy set*” 
OR “memetic algorithm*” OR “sparse*-code*” OR “cognitiv* 
comput*” OR “fuzzy system*” OR “multi* label* classif*” OR 
“spectral cluster*” OR “collaborat* filter*” OR “gaussian mixture 
model” OR “multi*-objective* algorithm*” OR “stochastic*-
gradient*” OR “deep-belief network*” OR “gaussian process*” 
OR “multi*-objective* optim*” OR “*supervis* learn*” OR 
“deep-learn*” OR “genetic program*” OR “natural-gradient” 
OR “support-vector machine” OR “differential*-evol* algo-
rithm*” OR “genetic* algorithm” OR “neural-turing” OR “swarm 
behav*” OR “dimensional*-reduc*” OR “high-dimensional* 
data” OR “*neural-network*” OR “swarm intell*” OR “ensemble-
learn*” OR “high-dimensional* model*” OR “neuro-morph 
comput*” OR “transfer-learn*” OR “evolution* algorithm*” 
OR “high-dimensional* space*” OR “non-negative matri* 
factor*” OR “variation*-infer*” OR “evolution* comput*” OR 
“high-dimensional*system*” OR “object-recogni*” OR “vector-
machine*”)
14  Over the period in question, 35,539 organizations produced 
at least one patent in the field. Thus, there are 631,492,491 
[(35,539 * (35,539 – 1)/2] possible ties in the network. The net-
work density metric is the ratio of actual ties to the number of 
possible ties. The U.S. network density metric is 0.027 percent 
(173,624 ÷ 631,492,491).
15  An equal weighting scheme would, for example, rank China 
second among the nine countries considered here. 
16  An approach to identifying and analyzing military patents is 
provided in Schmid (2018).
17  It is worth noting that some portion of patents and scien-
tific publication on AI and cyber is likely to be classified. As 
the method proposed here seeks to rely exclusively on publicly 
available databases, these data are considered out of the scope of 
research. 
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