ARL-TR-9334 ¢ OCT 2021

[BEvecom

Generalization and Expansion of Topology
Optimization in MATLAB for Scalable High-
Resolution Design

by Benjamin S Rathman and Andrew T Gaynor

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the

Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorse-

ment or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TR-9334 ¢ OCT 2021

Z DEVCOM

Generalization and Expansion of Topology
Optimization in MATLAB for Scalable High-
Resolution Design

by Benjamin S Rathman
Montana Technological University

Andrew T Gaynor
Weapons and Materials Research Directorate, DEVCOM Army Research Laboratory

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE o A g

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
October 2021 Technical Report January 2020-April 2021
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Generalization and Expansion of Topology Optimization in MATLAB for Scalable

High-Resolution Design Sb. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Benjamin S Rathman and Andrew T Gaynor AHS80

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
DEVCOM Army Research Laboratory NUMBER
ATTN: FCDD-RLW-MB ARL-TR-9334

Aberdeen Proving Ground, MD 21005-5066

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
corresponding author’s email: <andrew.t.gaynor2.civ@army.mil>.

14. ABSTRACT
Generally, topology optimization codes are designed to find a solution for a single type of problem. For educational codes, this

tends to be a 2-D problem solving for minimum compliance (maximum stiffness). This report presents a single algorithm that
broadens the capabilities for topology optimization in MATLAB. The presented algorithm has been designed to optimize 2- and
3-D problems from a selection of objective functions. Provisions were also added to allow for the optimization of geometrically
complex components using existing mesh (STL) files. The algorithm does this while maintaining a high degree of control over
the optimization process and increasing efficiency (allowing for fast and high-resolution solutions).

15. SUBJECT TERMS

topology optimization, TO, additive manufacturing, AM, resolution

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
)) OF OF Andrew T Gaynor
ABSTRACT PAGES
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
Unclassified Unclassified Unclassified uUu 60 410-306-0825

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 7Z39.18

i

Contents

List of Figures

List of Tables

Acknowledgments

1. Introduction

2. The 99-Line Code and Its Evolution
3. The Works Algorithm

4. Extensions
4.1 Filtering Schemes
4.2 Complex Geometries

4.3 Heat Transfer
5. The Works Problem Setup: GE Bracket Problem Example
6. Performance
7. Conclusion
8. References
Appendix A. templateTO.m
Appendix B. topTheWorks.m
Appendix C. objective.m
Appendix D. objMatrices.m
Appendix E. filtertype.m

Appendix F. multigrid.m

1l

10
12

15

18

19

20

22

25

30

33

36

40

Appendix G. GE Bracket Problem Setup
List of Symbols, Abbreviations, and Acronyms

Distribution List

v

44

50

51

List of Figures

Fig. 1 Optimal topologies for the simply supported beam with load on center

problem with various filtering and projection schemes applied.............. 9
Fig.2 Problem definition for the GE bracket challenge problem.................. 10
Fig. 3 “Voxelized” GE bracket (268 x 92 x 160 elements)........................ 11
Fig. 4 Optimized GE bracket topologycovviiiiiiiiiiiiiiiiiiiiiiieeenns 12
Fig.5 Cylinder heat sink design case (1/4 domain)c.c.coveveienenennn.n.. 13
Fig. 6 Optimized solution for the cylinder heatsinkc.ooiiie. 14
Fig. 7 Defined support and load elementsc.coeoeiiiiiiiiiiiiininininnnn.. 16
Fig. 8 Comparison of 3-D TO algorithmsccooiiviiiiiiiiiiiiiinn, 18

List of Tables

Table 1 topTheWorks .m function StrUCIUIE.ccevvviireiiriitiiriineeeeeneens. 7
Table 2 Filtering methods ..o 9
Table 3 Objective fUNCHONS......ouinititiet e e 14

Acknowledgments

Funding for this project was provided by the US Army Combat Capabilities De-
velopment Command Army Research Laboratory under Cooperative Agreement
WO11NF-20-2-0202.

Benjamin Rathman wishes to thank Dr Andrew Gaynor for his help in the develop-
ment of this code. Rathman also wishes to thank Dr Andelle Kudzal for the oppor-
tunity to work on this research as well as her help and advice.

vi

1. Introduction

Topology optimization (TO) is the process of redistributing material within a design
envelope using finite element analysis (FEA) in a rigorous optimization scheme to
make a component more efficient. Often, this design envelope is the outer surfaces
of the component itself. Often, the driving mechanism of using TO is creating a
resulting component that is lighter while maintaining the original mechanical prop-
erties. Additionally, the component can be optimized to achieve a certain goal with
respect to a fixed volume fraction or minimize the volume with respect to a fixed
goal. These goals, known as objective functions, include maximizing stiffness (min-

imum compliance),' minimizing stress, or changing the heat transfer properties.

The combination of additive manufacturing (AM) processes and TO design algo-
rithms provides several opportunities for component and system modernization.
One example is the Army’s Next Generation Combat Vehicle cross-functional team.
The lightweighting of structural components in combat vehicles facilitates greater
maneuverability of the vehicle, allowing Soldiers to get out of harm’s way. Con-
versely, the same design tools can be applied to redistribute weight from the struc-

tural system to other systems, such as those of armor or lethality.

This report presents the progress that has been made toward creating a MATLAB
code for TO that can be used for a wide range of optimization problems while
still allowing for a high degree of control. In addition, the code was designed to
have good mesh scaling properties, allowing for high-resolution design and thus

the capability to approximate the resolution of AM processes more closely.

This report is organized as follows. The 99-line code and its evolutions are reviewed
in Section 2. The new algorithm is described in Section 3. Several extensions and
expansions that have been added to the code are described in Section 4. Section 5
goes through the process of coding in a problem for optimization. In Section 6,
the performance of this algorithm is examined in comparison with its predecessors.
Conclusions are given in Section 7. The relevant code is provided in Appendixes
A-G.

2. The 99-Line Code and Its Evolution

In 2001, Sigmund published a 99-line MATLAB code for solving 2-D TO prob-
lems for minimum compliance.>? This algorithm was designed as an educational
tool for engineers to learn about the process of TO and aid in the development of
the user’s intuition regarding optimal designs. As a result of the program’s simplic-
ity, the user has complete control over the optimization process when compared to
commercial solutions, with a few limitations. Problems are restricted to the use of
the linear elastic material model for simplification of the FEA equations. Addition-
ally, to simplify implementation, problems are relegated to a structured, rectangular
mesh using linear rectangular and hexahedron elements for 2- and 3-D problems,
respectively. While there is no inherent 3-D capability in the 99-line code, other

codes using Sigmund’s as the base have added this capability.

First, an FEA function is run to solve for the global displacement vector. The dis-
placement vector is used to calculate compliance, ensuring the compliance is de-

creasing, using the following objective function:

m(gn c(¢p) = UTKU
subjectto: K(¢p)U =F
1
ZeeQ $(¢)€U€ S f ()
%

0< ¢ <™ Vieq,

where c is compliance, @ is the vector of elemental densities, and ¢ is the vector
of design variables. U, F, and K represent the global displacement vector, global
force vector, and global stiffness matrix, respectively. v, is the elemental volume,
V' is the total volume in the design domain, and f is the prescribed volume fraction.

Finally, €2 is the design domain.

The 99-line code then uses a gradient-based optimization approach that assumes the
material is homogeneous within each element. Each element is related to a design
variable scaled by that element’s density, where an element density of 0 implies no
material density, or void, and an element density of 1 implies full material density.
Since intermediate density materials are not achievable, binary solutions must be

promoted. One prominent method to achieve this uses the solid isotropic material

with penalization (SIMP) interpolation method. The SIMP method (shown in Eq. 2)

is used to promote a binary solution by penalizing intermediate densities.

E(i‘e> - Emin + xep(EO - Emin); (2)

where F, Ey, and Ey;, represent the Young’s moduli of the element, solid phase,
and void phase, respectively; x. represents the element density; and p represents
the penalization factor. As shown in Eq. 2, the penalization process is performed
by applying an exponential function on the domain such that low-density elements
are forced to a zero-density condition and high-density elements are not affected as
much. For example, with no penalization (p = 1), an element with a density of 0.5
(50%) equates to a 50% stiffness. With a penalization factor of 3, the same element

would equate to a 12.5% stiftness.

After the SIMP method is applied, the gradient is filtered using one of the several
available filtering methods to ensure the minimum length scale is being achieved.
The minimum length scale is a prescribed parameter that describes the minimum

feature size. Any feature smaller than this parameter is purged from the gradient.

Finally, the gradient is entered into the Optimality Criteria (OC) optimizer to up-
date the design variables. The optimizer uses a bi-sectioning algorithm to find the

Lagrangian multiplier that fulfills the prescribed volume fraction.

This entire process is repeated until the convergence criteria are met. The structure
of Sigmund’s code relies on several functions, albeit in the same script, to find an
optimized solution. Sigmund’s code utilizes a main function to run the optimization,

with several child functions to do various calculations for each iteration.

Over the past two decades, several updates and extensions have been made to Sig-
mund’s 99-line code. Some significant contributions are noted as follows. In 2003,
Bendsge and Sigmund published a book, which in addition to giving an introduc-
tion to the field of TO, details some extensions and alternate objective functions
for the 99-line code.! In 2011, Andreassen et al. published an updated version of
the 99-line code, the 88-line code, which utilized some of the functions MATLAB
had made available in the previous decade to make the code more computation-

ally efficient.* In addition, some of the computations were made significantly more

efficient by eliminating for loops within the optimization loop. For example, An-
dreassen moved the calculation of indices for assembling of the global stiffness ma-
trix outside the optimization loop. This change eliminated a double nested for loop
and redundant calculations present in the 99-line code, replacing the assembly with
a single efficient function call to sparse. In 2014, Liu and Tovar published an ex-
panded version of Andreassen’s code that allowed for solving 3-D solutions, while
keeping the same framework.’ In the following years, Liu and Tovar have posted
several tutorials on their website (www.top3d.app) for adding functionality to the
code. In 2020, Ferrari and Sigmund published an updated version of Andreassen’s

88-line code, allowing further speedups and savings in computational cost.®

Ferrari’s code, consisting of the files top99neo.m and top3D125.m for 2- and
3-D problems, respectively, was built to update Sigmund’s code to incorporate var-
ious speedups and reduce the computational cost. By optimizing the code layout
and using recent and third-party MATLAB functions, there has been a significant
increase in the performance of the algorithm. These speedups included the assembly
of the global stiffness matrix, the OC update, the use of MATLAB’s imfilter,
and the use of £sparse. Since the OC update was not used in this work, the details

of this speedup are not reviewed.

In the assembly of the stiffness matrix, two major improvements were made. First,
two vectors used in the assembly of Andreassen’s 88-line code, referred to as 1K
and jK, used MATLAB’s default numeric data type (double). Although this works,
iK and jK can become very large and take up a substantial amount of random-
access memory (RAM). To combat this issue and because the values of these vec-
tors were integers anyway, Ferrari changed the data type of the 1K and jK vectors
from double to int32, reducing the RAM usage of each element from 8 to 4 bytes.
The second major improvement was recognizing that both the elemental and global
stiffness matrices are symmetrical. This means the optimization calculations can be

done using a sparse triangular matrix instead of the full matrix.

The other speedups have also impacted the efficiency. One is the use of MATLAB’s
imfilter function, which allows the filtering operations to be completed more
efficiently. The other is the use of fsparse, a function developed by Engbolm
and Lukarski.” The fsparse function is more efficient than MATLAB’s sparse

function and is also able to work with both the double and integer data types, al-

lowing for the new global stiffness matrix assembly to be implemented.

The Ferrari code was chosen as the base function for this work because of its effi-
ciency and the ability to solve both 2- and 3-D problems using essentially the same

code.

3. The Works Algorithm

Unfortunately, due to the requirement of this implementation of TO being simple to
understand, Ferrari’s code sacrifices performance for readability. In an effort to fur-
ther increase the performance of the program and generalize the program to solve
for objectives other than minimum compliance, t opTheWorks .m has been de-
veloped (see Appendix B). While topTheWorks .m has the same general imple-
mentation as the two Ferrari scripts, the structure of the code has been modified to
resemble Sigmund’s code more closely, utilizing multiple child functions, to allow

the algorithm to be more modular and extendable.

Starting from the published version of Ferrari’s code, several major structure and
implementation changes were made. These changes include the implementation of
the multigrid preconditioned conjugate gradients (MGCG) solver and the method
of moving asymptotes (MMA) optimizer, and restructuring the system to generalize

the script.

The MGCG solver® reduces the computational cost of assembling the displacement
vector, U. This is done by calculating the solution using a prescribed number of
grid levels at subsequently higher resolutions. The calculation is first carried out
on a low-resolution grid. As the grids become progressively higher resolution (in
this implementation, for a 2-D problem, each element of a grid is split into four
elements for the next grid), the solution is calculated using the coarser grid solution
as a template. The relevant functions were placed in the file multigrid.m and
modified to allow for the calculation of elements with different numbers of degrees
of freedom (DoFs) (see Appendix F). Unfortunately, due to the way the MGCG
solver is written, Ferrari’s speedup utilizing the symmetry of the global stiffness

matrix could not be used.

The MMA optimizer® has replaced the OC optimizer in this code. While the OC

optimizer is good as a heuristic approach for minimum compliance algorithms, it

is limited in function. The MMA optimizer is much more well known and well
used for design update. Additionally, the MMA optimizer works better for objective
functions other than minimum compliance. The relevant functions were placed in

the file mma . m.

The algorithm has also been generalized in several ways. The Ferrari code (as well
as its predecessors) was designed as functions, allowing the input arguments to be
changed readily, but some changes, such as the load conditions, have to be made
within the function. To remedy this, a template, templateTO.m (see Appendix
A), was created as a sister program for t opTheWorks . m, allowing multiple opti-
mization problems to be solved without adjusting the core functions. To accomplish
this, several changes needed to be made to how the optimization algorithm was
called. In addition to the standard input arguments for optimization (nelx, nely,
nelz,volfrac, penal, and rmin), several other parameters were pulled out of
the code and converted to input arguments. First, the assembly of the force (F') and
fixed vectors and the passive matrix, representing the applied load, supports,
and domain, respectively, have been made into input arguments. Additionally, the
material properties have been pulled out of the code and made into the input argu-
ment mat, which is a vector consisting of Fy (Young’s modulus of the solid), Fyn
(Young’s modulus of the void), v (Poisson’s ratio), oy (yield strength), oyrs (ul-
timate tensile strength), /Ky (thermal conductivity of the solid), and K;, (thermal
conductivity of the void). Additional input arguments have been introduced to add
functionality: obj, which defines the objective function; resol, which denotes
the resolution of the part in elements per unit length; £t, which defines the filter-
ing scheme being used; maxit, which defines the maximum allowable number of
iterations; and n1, which denotes the number of grid layers used in the MGCG

solver.

In addition, two more fundamental generalizations were made. The first was to ex-
pand the capability of a single code to solve both 2- and 3-D optimization problems.

The second was to allow multiple objective functions to be solved.

Finally, several smaller generalizations were made. First, the assembly of the el-
emental stiffness matrix, K€, has been generalized so that instead of this matrix
being calculated from a series of constants, the matrix is now calculated based off

the prescribed material properties and is no longer restricted to square elements.

This additional functionality, while more computationally expensive, is only done
once and makes the code more robust. It is worth noting that the use of an actual
instead of a unit Young’s modulus causes the multigrid calculations to take signifi-
cantly longer. Second, the code was expanded to solve for multiple load cases in the
same solution. Lastly, the MMA variables were scaled to allow for the optimizer to
properly work through the problem using actual material properties, instead of the

unit material properties that were used in the 99-line and subsequent codes.

To facilitate the use of multiple objective functions and filtering schemes, several
parts of the code were placed into child functions. This decision was made to in-
crease readability and allow for later expansion of the code without compromising

the working base function. The functions are structured as shown in Table 1.

Table 1 topTheWorks .m function structure

Function Description
templateTO.m Template for defining the optimization problem
topTheWorks.m TO algorithm
objective.m Calculates FEA solutions based on the defined objective function

objMatrices.m Assembles elemental property matrices based on the defined material properties
Applies a defined filter to the domain, ensuring adherence to the imposed
minimum length scale
multigrid.m Applies the MGCG solver to the problem
mma . m Applies the MMA optimizer to the problem

filtertype.m

The functions relating to solving the objective function, such as those used for
FEA, were placed in the file objective.m (see Appendix C). The functions
used for calculating the elemental stiffness matrix, constitutive matrix, strain dis-
placement matrix, and elemental conduction matrix were placed in the function
objMatrices.m(see Appendix D). The functions relating to the filtering scheme
were placed in the file filtertype.m (see Appendix E).

In addition to the optimization functions, several third-party MATLAB functions
were used in the creation of this algorithm. The £indND function acts similarly to
MATLAB’s built-in £ind function, but extends the functionality to more dimen-
sions (MATLAB’s find is restricted to two dimensions).!® This function is used
in the assembly of the load and support vectors. The vtkwrite function converts
a matrix to the VTK file format.!! This function is used to visualize the optimized

solutions in ParaView.!?

4. Extensions

A number of extensions were made to the base code including various filtering
schemes, the ability to optimize over arbitrarily complex geometries, and the ability

to optimize for thermal compliance (heat conduction).

4.1 Filtering Schemes

In Andreassen’s 88-line code two filtering methods were provided: sensitivity filter-
ing and density filtering. Ferrari’s code added the use of a projection-based filtering
method. Each of these methods focuses on controlling the minimum length scale
of the solid phase. While this functionality is very useful, it is sometimes desirable
to control the minimum length scale of the void phase, especially in applications

where sharp internal corners are not desired.

The Heaviside projection method (HPM) was originally developed to achieve im-

plicit control on the minimum length scale of the solid phase using Eq. 3.3

T =1—e P 4 (p)e?, 3)

where x.; represents the element density for the solid phase, 1°(¢) represents the
projection intensity of an element, and [represents the curvature of regularization.
To adjust this filtering method to project the void phase, a simple modification is

made, resulting in Eq. 4.'

zeg = ¢) — pf(¢)e”” @)

where z.(represents the element density for the void phase. Controlling only the
void phase can cause the resulting solution to have very thin features that are not
easily manufacturable. To achieve better results while still being able to control the
minimum length scale of the void phase, multiphase Heaviside projection can be
used, although it is more computationally expensive. In the multiphase projection
method, the minimum length scale of both the solid and void phases are controlled.

Equations 3 and 4 are superposed to create the combined projection equation.

o Teo 1 Tel

Te=—"7Q)

Since the elemental projection intensities of the solid and void phases are differ-
ent, the two projection equations do not cancel out. Instead, for each element, the
two elemental densities are averaged. In standard Heaviside projection algorithms,
beta is controlled by a continuation scheme to avoid convergence to poor local min-
ima.'>'* To make the HPMs more efficient, the beta continuation was eliminated
using a modified Heaviside filtering scheme.!> Examples of the sensitivity, density,

and the Heaviside filtering methods are displayed in Fig. 1.

SN S50\,

(c¢) Heaviside solid projec-
tion

SN\ N

(d) Heaviside void projec- (¢) Heaviside multiphase
tion projection

(a) Sensitivity filtering (b) Density filtering

Fig. 1 Optimal topologies for the simply supported beam with load on center problem with
various filtering and projection schemes applied

To accommodate use of all the mentioned filtering methods, filtertype.m was
developed. The second argument when calling the filtertype function is ft,
which defines the filtering method being used. The values of £t and their associated

filtering methods are listed in Table 2.

Table 2 Filtering methods

Value of £t Filtering method
Sensitivity
Density
Heaviside projection (solid phase)
Heaviside projection (void phase)
Multiphase Heaviside projection

DA W=

4.2 Complex Geometries

Since the Ferrari code and its predecessors are designed as learning tools, there is
a simplifying assumption made regarding the geometries of the components being
optimized. Generally, the geometries being solved take up the full domain of the
matrix (a rectangle for 2-D and rectangular prism for 3-D problems). This problem
can be fixed by defining passive elements (as opposed to active elements) in the
problem. Passive elements are user-defined elements that the solver cannot change
the density of. Elements can be defined as passive solid, passive void, or active (the
default state of an element). Ever since Sigmund’s code, the algorithm has had the
capability for adding passive elements, but their use, at least in literature, has been

relegated to examples such as passing a pipe through a beam.

The additional functionality of having complex geometries allows the user to solve
optimization problems of more complex parts. Additionally, this functionality al-
lows initial guesses to be imported into the optimizer, known as seeding. The seed-
ing process is used to promote feature growth in a certain way. For example, a

conventional finned heatsink can act as a possible seed for a heat transfer problem.

To find solutions for more complex geometries, a method has been developed using
passive elements to define the design space. As a proof-of-concept problem, the
GE bracket was used from GrabCAD’s “GE jet engine bracket challenge”.'® The
object of the challenge was to optimize a given component subjected to provided

load cases (shown in Fig. 2'%), making this problem a perfect test case.

Loas eaaonons | Lo Lot i)

(b) Design load cases

(a) Original GE bracket geometry

Fig. 2 Problem definition for the GE bracket challenge problem

10

The geometry was first imported into MATLAB using the VOXELISE function.
This function uses the READst 1 function and is designed to create a 3-D Boolean
matrix of voxels from an existing triangular-polygon mesh.!” A “voxelized” version

of the GE bracket displayed in ParaView is shown in Fig. 3.

Fig. 3 “Voxelized” GE bracket (268 x 92 x 160 elements)

The geometry displayed in Fig. 3 represents the active elements for the optimiza-
tion process. The “voxelized” GE bracket was then inverted to create the passive
matrix. This passive matrix defined the all elements that were not in the GE bracket
as passive void, allowing the complex geometry to be maintained through the opti-

mization process.

Using a technical drawing of the GE bracket drawn in SOLIDWORKS'® from the
provided STEP file, dimensions for the load interfaces were retrieved. Through use
of MATLAB’s permute and ipermute functions and several if statements and

for loops, the interfaces were “extruded” in MATLAB.

The load cases were defined using the same conventions as those in the Ferrari code.
The four given load cases were programmed in to make sure that the solutions were
coming out as expected. Finally, the combined load case was programmed in and

the program run, resulting in the optimized solution in Fig. 4.

11

Fig. 4 Optimized GE bracket topology

4.3 Heat Transfer

As alluded to earlier, the functionality of this algorithm has been extended to mul-
tiple objective functions. In particular, the heat conduction objective function was
looked at and added to the objective and objMatrices functions. The prob-
lem statement was proposed by Bejan and is as follows: “Consider a finite-size
volume in which heat is being generated at every point and which is cooled through
a small patch (heat sink) located on its boundary. A finite amount of high conduc-
tivity material is available. Determine the optimal distribution of material through
the given volume such that the highest temperature is minimized”.!” Realistically,
the solution can also be used as a heatsink from a point of high heat. This is done

by using the objective function shown in Eq. 6.%°

m(;n c(¢) = UTKU
subjectto: K(¢)U =F
ZeEQ x(¢)eve S f (6)
Vv

0< ¢ <™ Vieq,

where c is now the thermal compliance. U, F, and K represent the global tempera-

ture vector, global heat load vector, and global heat conduction matrix, respectively.

12

As shown in Eqgs. 1 and 6, the system of equations for structural and thermal com-
pliance are the same. To apply the heat conduction problem, the fixed vector is
considered the heatsink (1" = 0 condition) and all other elements have a heat flux

applied, becoming part of the F vector.

The implementation of the heat conduction objective function only required a cou-
ple of modifications. The first modification was to add the assembly of the heat con-
duction matrix to objMatrices. The heat conduction matrices were taken from
the 91-line MATLAB code for heat conduction! and the heat conduction modifi-
cation for Liu and Tovar’s 3-D optimization code?' for the 2- and 3-D conditions,
respectively. Next, the code was modified to generate one DoF for each element (in-
stead of the two or three for 2- or 3-D minimum compliance, respectively). Finally,

the appropriate FEA equations were added to objective.

To test the functionality, three load cases were programmed in: the sphere sink, the

cylinder sink, and the plate sink. The cylinder sink is shown in Fig. 5.

Fig. 5 Cylinder heat sink design case (1/4 domain)

13

Using the heat conduction objective function and a volume fraction of 0.25 (25%
of the original domain), the following solution was found for the cylinder load case
(Fig. 6).

Fig. 6 Optimized solution for the cylinder heatsink

As shown in Fig. 6, the solution generated dendritic structures, which agrees with
solutions in shown in literature for heat conduction optimization. There is a method
of optimization that reduces the dendritic structures,?? but this method was not ap-

plied in this research.

To allow for the use of multiple objective functions in one algorithm, objective.m
was developed. The first argument when calling the object ive function is ob 7,
which defines the objective function being used. The values of ob j and their asso-

ciated objective functions are listed in Table 3.

Table 3 Objective functions

Value of ob 7 Objective function
1 Structural compliance
2 Stress (WIP)
3 Thermal compliance (heat conduction)

14

24
25
26
27
28
29
30
31

32

5. The Works Problem Setup: GE Bracket Problem Example

As an example of the process used to set up an optimization problem, the GE
bracket problem is set up using templateTO.m (see Appendix G). First, the ge-
ometry must be imported into MATLAB. Before calling the VOXELISE function,
the following arguments need to be defined: x (the number of elements in the x-
direction), y, z, and the filename. For this process to be mesh independent, x, v,

and z are defined by the following lines of code:

stl = “original ’; % Filename of the geometry being imported

xd = 7.029; % x—dimension

yd = 2.461; % y—dimension

zd = 4.262; % z—dimension

resol = 15; % Part resolution (ele./unit)

nl = 3; % Number of grid levels used in TO (MGCG)

loadCase = 0; % Load condition

radj = 2”°(nl-1)*round(resol=[xd,yd,zd]/2"(nl-1)); %

— Convert dimensions to elements
[x,y,z] = deal(radj(1l),radj(2),radj(3));

The variables xd, yd, and zd represent the actual dimensions of the GE bracket
in inches. The variables resol and n1 (used in the calculation of radj) are used
to adjust the number of elements in each direction. Since the coarsest layer using
the MGCQG solver is made up of elements from the prescribed mesh, the number
of elements in each direction must be divisible by two to the power of the num-
ber of layers used in the solver minus one. Next, the filename of the geometry to
be imported is defined as a string in the variable st 1 without the file extension.
VOXELISE is called using the lines:

stldomain = VOXELISE(x,y,z,[stl,’.stl’]);
domain = double(~stldomain);

15

36

A few attempts will likely be required to make sure that the coordinate system being
used by the VOXEISE function is the same as is used by x, y, and z. If the coordi-
nate systems are not the same, the aspect ratios on the part will not be correct. This
error can be corrected by finding the correct permutation of x, y, and z. The do-
main is then defined by inverting the Boolean matrix that is output by VOXELISE
because the optimization function regards values of O in the passive matrix as ac-
tive elements, values of 1 as passive void, and values of 2 as passive solid. Finally,
since the entirety of the matrix is not being used, domainVol is calculated as a

correction factor for the prescribed volume fraction using the following statement:

domainVol = 1-mean(domain(:));

The next step in the formulation of the GE bracket problem is to define the loaded
and supported nodes. The load and support elements were then found and defined

as passive solid elements, as shown in Fig. 7.

Fig. 7 Defined support and load elements

Interface 1 in Fig. 2b was only defined as the inside ring of elements while interfaces
2-5 were defined to include the points where the bolt heads would interact with
the bracket. This is done by first defining the loaded and supported elements. The
support elements were found using the technical drawing of the GE bracket, where
the origin of the dimensions is the element with coordinates (1,1,1) in MATLAB.

To make the feature positions mesh independent, the lengths were divided by the

16

component length. The radii of the support holes and the counterbores were also

defined using this method. Lines 56—62 define these interfaces.

To define the elements that act as support elements, a cylindrical tube of support
elements with an inner diameter of the hole diameter and an outer diameter of the
counterbore diameter was ‘“extruded” through the geometry. First, the domain was
reoriented using MATLAB’s permute function. The support elements were ex-

truded using lines 63-85.

For each layer, an element is checked to make sure that the bracket is still being
looked at. For each element in the layer, that element is checked to see if the element
lies within any of the defined cylindrical tubes. If it does, then the element is defined
as a support element, which is later redefined as passive solid. Any elements within
the holes are redefined as passive void. Finally, the domain is put back into its initial
orientation. After the supported elements are defined, the DoFs at those elements
must be fixed and the support vector assembled using lines 87-92. Since each node
has three DoFs (one for each direction), all three DoFs must be fixed for each node,

achieved in line 92.

To define the loaded elements, the same process is used as was used to define the
supported elements, using lines 95—130. The main difference is that the “extrusion”
process is done twice. This was done so that the two sides of interface 1 can be
loaded in different directions for the torque load case (load condition 4 in Fig. 2b).
A simplifying assumption was made for load condition 4, allowing the torque to be
applied as two linear forces (one on each half of interface 1) in opposite directions.
The next step is to define the load DoFs from the loaded elements. This process
is completed in three steps: the definition of the loaded DoFs for the linear forces
(load conditions 1-3 in Fig. 2b), the definition of the loaded DoFs for the torque in
one direction, and the definition of the loaded DoFs for torque in the other direction.
This was done in lines 132—154. Then, the load vectors, F, were assembled using
lines 156-174.

In the first argument of fsparse, the DoFs are plugged in, but the direction is also
defined. The convention is to add —1 for a force parallel to the direction along which
nelx is defined, add O for nely, and add 1 for nelz. The values of 1oadcase
are equivalent to the load condition numbers from the GE bracket problem defini-

tion. The 1oadcase = 0 condition accounts for all of the load conditions in the

17

178
179

same solution. Finally, the optimization function is called using the line:

xPhys = topTheWorks(obj,mat,x,y,z,resol ,volfracxdomainVol, penal ,rmin, ft ,
maxit,nl, passive ,F, fixed); % Run

— topology optimization

6. Performance

Since the topTheWorks function is based off of Ferrari’s code, the performance
increases inherent in the Ferrari’s published code is present in this code. With the
addition of the MGCG solver and the MMA optimizer, the code is even more com-
putationally efficient. Figure 8 shows an informal comparison of the published 3-D
optimization algorithms from Liu and Tovar, Ferrari, and this code using the min-
imum compliance objective function and a unit Young’s modulus. For this testing,
a desktop with an AMD Ryzen 2600, 32 GB of RAM, running Windows 10 and
MATLAB R2018b was used.

1400 e ———
Liu & Tovar
1200 L Ferrari |
topTheWorks
1000 R
®
c
o 800 B
I
9
5 600 - .
o
[
IS
= 400 - i
200 r / |
0 | = — . SRR |

104 10° 106 107
Number of Degrees of Freedom

Fig. 8 Comparison of 3-D TO algorithms

The number of DoFs was increased until the algorithm became impractical to run or
the algorithm failed due to memory limitations. As shown, the Liu and Tovar code
became impractical to run at just over 400,000 DoFs due to the amount of time per
iteration the program was taking to run. At this same point, the Ferrari code failed
in the assembly of the I matrix. This code was able to get up to about 10 million

DoFs before running into memory issues.

7. Conclusion

This report presents a MATLAB code for TO that was developed to be used on a
wide array of optimization problems. Several design objectives for this code have

been achieved:

1. A high degree of control over the optimization process can still be used.
2. High-resolution solutions of approximately 10 million DoFs can be found.

3. The code has been restructured and a method developed to allow for opti-

mization problems with complex geometries to be solved.

4. The code is structured in a way allowing for modules such as different ob-
jective functions and filters to be used without modifying the optimization

framework.

This code allows for fast, high-resolution solutions to be found, providing smoother
solutions that can be easily manufactured using AM processes. With the readability
of MATLAB, and the ability of the code to run in both local computation and high-
performance computation environments, the barrier to entry for highly scalable,
fast, generalized TO is reduced. Additionally, the code’s ability to use different
objective functions and filtering methods make it very flexible. Using this code,
optimized solutions can be found and used in compliance with projects such as
the lightweighting of structural components in combat vehicles, allowing for the

modernization of systems.

19

10.

11.

12.

13.

References

Bendsge MP, Sigmund O. Topology optimization: theory, methods, and appli-
cations. Springer; 2004.

Sigmund O. A 99-line topology optimization code written in MATLAB. Struc-
tural and Multidisciplinary Optimization. 2001;21:120-127.

MATLAB. version r2018a. The MathWorks Inc.; 2018.

Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O. Efficient
topology optimization in MATLAB using 88 lines of code. Structural and Mul-
tidisciplinary Optimization. 2011;43:1-16.

Liu K, Tovar A. An efficient 3D topology optimization code written in MAT-
LAB. Structural and Multidisciplinary Optimization. 2014;50:1175-1196.

Ferrari F, Sigmund O. A new generation 99 line MATLAB code for compli-
ance topology optimization and its extension to 3D. Structural and Multidisci-
plinary Optimization. 2020;62:2211-2228.

Engblom S, Lukarski D. Fast matlab compatible sparse assembly on multicore

computers. Parallel Computing. 2016;56:1-17.

Amir O, Aage N, Lazarov B. On multigrid-CG for efficient topology opti-
mization. Structural and Multidisciplinary Optimization. 2014;48:815-829.

Svanberg K. The method of moving asymptotes—a new method for struc-
tural optimization. International Journal for Numerical Methods in Engineer-
ing. 1987;24(2):359-373.

Rik. findND. 2020. https://github.com/thrynae/findND.
CYY. vtkwrite. 2016. https://github.com/joe-of-all-trades/vtkwrite.
Kitware. ParaView, version 5.9.0. 2021. https://www.paraview.org/.

Guest JK, Prévost JH, Belytschko T. Achieving minimum length scale in
topology optimization using nodal design variables and projection functions.
International Journal for Numerical Methods in Engineering. 2004;61(2):238—
254.

20

14.

15.

16.

17.

18.

19.

20.

21.

22.

Guest JK. Topology optimization with multiple phase projection. Computer
Methods in Applied Mechanics and Engineering. 2009;199(1):123-135.

Guest JK, Asadpoure A, Ha SH. Eliminating beta-continuation from heavi-
side projection and density filter algorithms. Structural and Multidisciplinary
Optimization. 2011;44:443-453.

GrabCAD. GE jet engine bracket challenge. 2013.
https://grabcad.com/challenges/ge-jet-engine-bracket-challenge.

Aitkenhead AH. Mesh voxelisation. 2013. https://www.mathworks.com/

matlabcentral/fileexchange/27390-mesh-voxelisation.
Dassault Systemes. SOLIDWORKS. 2020.

Bejan A. Constructal-theory network of conducting paths for cooling a
heat generating volume. International Journal of Heat and Mass Transfer.
1997;40(4):799-816.

Gersborg A, Bendsge M, Sigmund O. Topology optimization of heat conduc-
tion problems using the finite volume method. Structural and Multidisciplinary
Optimization. 2006;31:251-259.

Liu K, Tovar A. Heat conduction. top3d; 2014. https://www.top3d.app/

/Itutorials/heat-conduction-top3d.

Yan S, Wang F, Sigmund O. On the non-optimality of tree structures for heat
conduction. International Journal of Heat and Mass Transfer. 2018;122:660—
680.

21

Appendix A. templateTO.m

22

noR W D =

© w9 o

23

24

25
26
27
28

29
30
3

n
33
34
3

[

36
37
38
39
40
41
4
43
44
45
46
47
4

o

49

9% TOPOLOGY OPTIMIZATION TEMPLATE %
% Created By: Benjamin S. Rathman, Montana Technological University

% Program Name: templateTO .m

9% Program Description %
% This program is designed to be utilized as a template for running a

% topology optimization problem using topTheWorks.m

9% Initialize Program %
clear; clc;
fprintf (’Program_Running\n’);

9% MATERIAL PROPERTIES %
scale = le-6; % Material scaling factor;

EO = 1.0; % Young’s modulus

Emin = EO=xscale; % Young’s modulus of void

nu = 0.3; % Poisson’s ratio

sigmaY = 1.0; % Yield strength

sigmaUTS = 1.0; % Ultimate tensile strength

kO = 1.0; % Thermal conductivity

kmin = kO=xscale; % Thermal conductivity of void

mat = [EO,Emin,nu,sigmaY ,sigmaUTS , kO, kmin];
9% PART GEOMETRY

stl = 0; % Filename of the geometry being imported (if applicable)

xd = 100; % x—dimension % NOTE
— : If this program is going to be used

yd = 100; % y—dimension %
— to find a 2D solution , populate yd

zd = 100; % z—dimension %
— and zd, leaving xd at 0.

resol = 1; % Part resolution (ele./unit)

nl = 3; % Number of grid levels used in TO (MGCG)

loadCase = 0; % Load condition

radj = 27(nl-1)*round(resol*[xd,yd,zd]/2*(nl-1)); %

— Convert dimensions to elements
[x,y,z] = deal(radj(1l),radj(2),radj(3));
if xd == 0, x = 1; end
9% TOPOLOGY OPTIMIZATION

obj = 3; % Objective function 1: Compliance
% 2: Stress (unfinished)
% 3: Heat Transfer
volfrac = 0.5; % Prescribed volume fraction
penal = 3; % Penalization factor
rmin0 = 3; % Minimum length scale of void
rminl = 1.5; % Minimum length scale of solid
ft = 2; % Filtering scheme 1: Sensitivity filter
% 2: Density filter
% 3: Heaviside filter
% 4: Heaviside void filter
% 5: Multiphase Heaviside filter
maxit = 5e3; % Maximum number of iterations
vtk = 0; % Filename to export the solution geometry to
rmin = [rmin0*x(ft == 4 || ft == 5) rminl*~(ft == 4 && ft == 5)];
rmin(rmin == 0) = [];
9% PART LOADS & SUPPORTS
P =1.0; % Applied load

23

50
51

52

53

54
55

56
57

58

59
60

6

62
63

64
65
66
67

68
69
70

orient = [2,3,1];

nD = 2+double (x*xyxz ~= y=xz); %
— Number of dimensions

nodeNrs = int32 (reshape (1:(x+1%(nD == 3))=*(y+1)=(z+1),y+1,z+1,x+1%(nD == 3))); %
< Nodes numbering

nDof = (y+1)*(z+1)*(x+1%(nD == 3))*(nDx(obj ~= 3)+1x(obj == 3)); %
<~ Total number of DOFs

% Supports Defined

fixed = []; %
<~ Define support DOFs

% Loads Defined

IcDof = []; %
— Define force DOFs
F = fsparse (lcDof’,1,-P,[nDof,1]); %

— Define force vector
% Assemble Passive Matrix
passive = []; %

— Define passive matrix
9% RUN TOPOLOGY OPTIMIZATION
xPhys = topTheWorks(obj,mat,x,y,z,resol,volfrac ,penal ,rmin, ft , maxit,nl,...

passive ,F, fixed); % Run
— topology optimization

xPhys = ipermute (xPhys, orient);

9% VIK FILE EXPORT %
if vtk ~= 0
vtkwrite ([vtk , . vtk’], structured_points’, TopOpt’ ,xPhys); %
— Export solution geometry
end
9% Closing Program %

fprintf (’Program_Finished\n’);

24

Appendix B. topTheWorks .m

25

noR W D =

© w9 o

39

40

4

42

43
4

=

45

46

% TOPOLOGY OPTIMIZATION FOR COMPLEX DOMAINS
function xPhysF

%
%
%
%
%

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

topTheWorks (obj ,mat, nelx ,nely ,nelz ,resol , volfrac ,...

penal ,rmin, ft , maxit,nl, passive ,F, fixed)

Created By:

Program Name:

Benjamin S. Rathman, Montana Technological University

topTheWorks.m

Program Description

This function applies topology

standard design envelope.

Variable Description

Return:
xPhysF
Given:
obj
mat
nelx
nely
nelz
resol
volfrac
penal
rmin
ft
maxit
nl
passive
F
fixed

«Disclaimer

optimization to a part with a non-

Final density distribution

Objective function

Material properties

Number of elements in the x—direction

Number of elements in the y—direction

Number of elements in the z—direction
Mesh density (ele./mm)

Volume fraction within the design envelope

Penalization factor

Minimum length

%

%

%

scale (for 2—phase, rmin = [void solid])

Filtering scheme

Maximum number
Number of grid
Array defining
Force vector

Support vector

The author reserves all rights

free from errors. Furthermore,

of iterations
levels in MGCG

the passive elements

but does not guarantee that the code
he shall not be liable in any event

caused by the use of the program.

is

% PRE.1) DISCRETIZATION FEATURES

nEl = nelx=#nelyxnelz;

— Number of elements

nD = 2+double(nelxsnelyxnelz ~= nely=nelz);

— Number of dimensions

type = l+double(nelx >= nelz);

— stress assumption
nodeNrs = int32 (reshape (1:(nely+1)=(nelz+1)=*(nelx+1%(nD == 3)) ,...

nely+1,nelz+1,nelx+1x(nD == 3)));

<~ Nodes numbering

[cMat ,nDof ,iK,jK] = objective.discrete (obj ,nD,nodeNrs,nelx ,nely ,nelz);
[EO,nu,k0] = deal(mat(1),mat(3),mat(6));
— Material properties

matrices = objMatrices (nD, resol ,E0,nu,type ,k0);

<~ Assemble elemental matrices
% PRE.2) PREPARE FILTER
filtertype .error (ft ,rmin);

26

%

%

%

%

%

%

% rmin

58
59
60
61
62

63

64

65

66
67

68

69

70
71

72

73

74

75

76

77

78

79

80

81
82

83

84

85
86

— configuration error
[h,Hs] = deal(cell(length(rmin) ,1));
for ff = 1:length(rmin)
di = —ceil (rmin(ff))+1:ceil (rmin(ff))-1;
if nD ==
[dy,dz] = meshgrid(di,di); dx = 0;
elseif nD ==
[dy,dz,dx] = meshgrid(di,di,di);

end
hF = max(0,rmin(ff)-sqrt(dx."2+dy.*2+dz."2));
HsF = imfilter (ones(nely,nelz,nelx) ,hF,’ ’symmetric’); %

— Matrix of weights (filter)
h{ff} = hF; Hs{ff} = HsF;
end
9% PRE.3) INITIALIZE ITERATION
x = zeros(nElxlength (rmin) ,1);

act = setdiff ((1:nEl)’,~logical (passive)); lact = l:length(act); %
— Define active elements

if ft == 5, act = [act;act+nEl]; end

x(act) = volfrac;

x(passive == 1) = 0; x(passive == 2) = 1; %

— Apply passive elements
xPhys = x(1:nEl);

[cK,dcK,dv0] = deal(zeros(nEl,1)); %
— Initialize vectors

U = zeros(nDof, size (F,2)); %
— Initialize displacement vector

dvO(act(lact)) = 1/nEl/volfrac; %

— Derivative of volume

[loop ,beta ,mu_max, change] = deal(0,0,1,1);

if ft ~= 1 && ft ~= 2, beta = 10; mumax = 1; end %
— Initialize Heaviside parameters

% PRE.4) INITIALIZE MMA OPTIMIZER

m= 1; % The number of general constraints
n = length (act); % The number of design variables x_j
xmin = zeros(n,l); % Column vector with the lower bounds for the

— variables x_j
Xmax = mu_maxxones(n,l); % Column vector with the upper bounds for the

<~ variables x_j

xoldl = x(act); % xval, one iteration ago (provided that iter >1)
xold2 = x(act); % xval, two iterations ago (provided that iter >2)
low = ones(n,1); % Column vector with the lower asymptotes from the

<~ previous iteration (provided that iter >1)

upp = ones(n,1); % Column vector with the upper asymptotes from the
— previous iteration (provided that iter >1)

a0 = 1; % The constants a_0 in the term a_0xz

a = zeros(m,1); % Column vector with the constants a_i in the terms
— a_i*z

¢ MMA = 10000*xones(m,1); % Column vector with the constants c_i in the terms

— c_ixy_i

d = zeros(m,1); % Column vector with the constants d_i in the terms
— 0.5%d_ix(y_i)"2

% PRE.5) INITIALIZE MGCG SOLVER

Pu = cell(nl-1,1);

27

99
100
101
102

103
104

106

107

108
109
110
111

112
113

114
115

116
117
118
119
120
121
122
123
124

125

126

127

128

for mm = 1:nl-1
Pu{mm,1} = multigrid.prepcoarse(obj,nD,nelz/2*(mm-1),nely /2 (mm-1) ,...
nelx /2A(mm-1)) ;
— Initialize multigrid cg
end
N = ones(nDof,1); N(fixed) = 0; Null = spdiags(N,0,nDof,nDof);
<~ space elimination of supports
maxiter = 100; miniter = max(ceil (abs(27(nl-2)-0.5-rmin/sqrt(2))));

— Maximum & minimum MGCG iterations

3| %% START ITERATION

while change > le-2 && loop < maxit
loop = loop+1;
% RL.1) SETUP AND SOLVE EQUILIBRIUM EQUATIONS
K = cell(nl,1);
sK = objective.prepfea(obj,nD,mat, matrices ,xPhys, penal);
— Prepare nodal stiffness matrix
K{1,1} = fsparse (iK,jK,sK,[nDof ,nDof]) ;
K{1,1} = Null ’«K{1,1}*Null -=(Null-speye (nDof,nDof));
for mm = 1:nl-1
K{mm+1,1} = Pu{mm,1} % (K{mm,1}*Pu{mm,1});
— Assemble nodal stiffness matrix
end
[Lfac,~] = chol(K{nl,1},’lower’); Ufac = Lfac’;
for kk = 1:size(U,2)

[cgiters ,~,U(:,kk)] = multigrid.mgcg(K,F(:,kk),U(:,kk),Lfac,Ufac,Pu,..

— Assemble displacement vector
nl,1,le—-6,maxiter , miniter);

— each load case

end
% RL.2) OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
[c,dc] = objective.objfunc (obj,mat, matrices ,xPhys,act,lact ,cK,dcK,...

penal ,U,cMat) ;
— Solve for the objective
[dec,dv] = filtertype .scheme(’ modsens’,ft,x,nelx ,nely,nelz,beta h,Hs,...
dc,dv0,mu_max) ;
— Modify sensitivities
% RL.3) METHOD OF MOVING ASYMPTOTES
scale = 10~-floor (log(abs(c))./log(10));
<~ Scale objective for MMA
xval = x(act);
fOval = scalexc;
df0dx = scale=xdc(act);
df0dx2 = 0xdfOdx;
fval = sum(xPhys(act(lact)))/(volfracsn)—-1-((1-volfrac)=(ft == 5));
dfdx = dv(act)’;
dfdx2 = 0Oxdfdx;

[xmma,~ ,~,~,~,~,~,~,~,low,upp] = mma.mmasub(m,n,loop,xval ,xmin,xmax,...

%

% Null

%

%

%

% for

%

%

%

xold1 ,xold2 , fOval ,df0Odx ,df0dx2 , fval ,dfdx ,dfdx2 ,low,upp,a0,a,c MMA,d, beta) ;% Run

— MMA
% Update MMA Variables
[xnew, xPhys] = filtertype .scheme(updtMMA" ,ft ,xmma, nelx ,nely ,nelz ,...
beta ,h,Hs, xPhys, act ,mu_max) ;
— Update solution
xPhys (passive == 1) = 0; xPhys(passive == 2) = 1;

28

%

%

129
130
131
132
133
134
135

136
137
138

139
140
14

— Apply passive elements

xPhys = xPhys(:);
xo0ld2 = xoldl (:); xoldl = x(act);
change = max(abs(xnew (:)—-x(:)));
X = xnew (:);
% RL.4) DISPLAY RESULTS
fprintf(’__It.:%4i__Obj.:%6.3e__Vol.:%6.3f__ch.:%4.2¢__,
loop ,c,mean(xPhys (:)),change, cgiters);
— Print iteration results
if nD == 2
imagesc(l-reshape (xPhys,nely ,nelz)); colormap(gray);
axis equal off; drawnow;
— Display iteration solution (2D)
end
end
xPhysF = reshape (xPhys,nely,nelz ,nelx);

cglt.:%3i\n’ ,...
%

caxis ([0 1]);
%

29

Appendix C. objective.m

30

21
2
23
24

25

26

27
28
29
30
31
32

33
34
35

36

37
38
39
40
41
42
43
44
45
46

classdef objective

methods (Static)
% %

% Created By: Benjamin S. Rathman, Montana Technological University
% Program Name: objective.m
%o %

% Program Description

% This function applies the chosen objective function equations to

% the optimization process.
% %

% DISCRETIZATION FEATURES
function [cMat,nDof,iK,jK] = discrete (obj,nD,nodeNrs ,nelx ,nely,nelz)
nEl = nelx=xnely=*nelz;
if obj == 1 Il obj == 2 % Structural compliance or Stress
cVec = reshape(nDsnodeNrs(1:nely,1:nelz,1:nelx)+1,nEl,1);
if nD == 2
cMat = cVec+int32([0,1,2%nely+[2,3,0,1],-2,-1]);
elseif nD == 3
cMat = cVec+int32([0,1,2,3%(nely+1)=(nelz+1)

— +[0,1,2,-3,-2,-1],-3,-2,-1,...
3x(nely+1)+[0,1,2],3%(nely+1)=*(nelz+2)+[0,1,2,-3,-2,-1],...
3x(nely+1)+[-3,-2,-11]);

end

nDof = (nely+1)#(nelz+1)=*(nelx+1%(nD == 3))=*nD; %
< Total number of DOFs

iK = reshape(kron(cMat(1:nEl,1:(16%nD-24)) ,0ones((16xnD-24),1,"int32"))
— 7,(16%nD-24)22xnEl,1);

jK = reshape(kron(cMat(1:nEl,1:(16%nD-24)) ,ones(1,(16xnD-24),’int32"))
— 7,(16%nD-24)72xnEl,1);

elseif obj == 3 % Thermal compliance
cVec = reshape(nodeNrs(1l:nely,l:nelz,1:nelx)+1,nEl,1);
if nD == 2

cMat = cVec+int32 ([0, nely+[1,0],-1]);
elseif nD == 3
cMat = cVec+int32 ([0, nely+[1,0],-1,(nely+1)=*(nelx+1)+[0,nely+[1,0],-1]])
— 3
end
nDof = (nely+1)#(nelz+1)=*(nelx+1x(nD == 3));
iK = reshape(kron(cMat(1:nEl,1:(27nD)) ,ones((2”nD) ,1,’int32’)) "’ ,(2”nD)" 2=

— nEl,1);
jK = reshape(kron(cMat(1:nEl,1:(27nD)) ,ones(1,(2”nD),’int32’)) "’ ,(2”nD)" 2=
— nEl,1);
end
end

% SETUP FINITE ELEMENT ANALYSIS EQUATION
function sK = prepfea(obj,nD,mat, matrices ,xPhys, penal)
nEl = length (xPhys(:));

if obj == 1 % Structural compliance
[EO,Emin] = deal(mat(1l),mat(2));
Ke = matrices {1};

sK = reshape(Ke(:) «(Emin/EO0+xPhys (:) .~ penal*(1-Emin/E0)) ,(16%nD-24)"2%nEl

31

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
7
73
74
75
76
77
78
79
80
81
82
83

— ,1);

elseif obj == % Stress
elseif obj == % Thermal compliance
[kO,kmin] = deal(mat(6) ,mat(7));
K = matrices {4};
sK = reshape (K(:) *(kmin/kO+xPhys (:) .~ penal*(1-kmin/k0)) ,(2*nD)*2+nEl,1);
end
end
% OBJECTIVE FUNCTION
function [c,dc] = objfunc(obj,mat, matrices ,xPhys,act,lact ,cK,dcK, penal ,U,cMat)
nEl = length (xPhys(:));
if obj == 1 % Structural compliance
[EO,Emin] = deal (mat(1),mat(2));
Ke = matrices {1};
¢ = 0; dc = zeros(nEl,1);
cK(act(lact)) = Emin/EO+xPhys(act(lact)).”penal*(1-Emin/E0);
dcK(act(lact)) = —penal*(1-Emin/EO)=*xPhys(act(lact)).*(penal-1);
for ii = 1:size(U,2)
Ui = U(:,1ii);
¢ = c+sum(sum(cK.xsum(Ui(cMat)«Ke.x Ui(cMat) ,2)));
dc = dc+dcK.xsum(Ui(cMat)=*xKe.* Ui(cMat) ,2);
end
elseif obj == 2 % Stress
elseif obj == 3 % Thermal Compliance
[kO,kmin] = deal (mat(6),mat(7));
K = matrices {4};
cK(act(lact)) = kmin/kO+xPhys (:) .~ penal*(l—-kmin/k0);
dcK(act(lact)) = —penal#(1-kmin/k0)=xPhys(act(lact)).~(penal-1);
¢ = sum(sum(cK.xsum(U(cMat)«K.*U(cMat) ,2)));
dc = dcK.xsum(U(cMat)«K.«U(cMat) ,2);
end
end
end
end

32

Appendix D. objMatrices.m

33

noR W D =

© w9 o

function matrices = objMatrices (nD, resol ,E,nu,type k)
% %
% Created By: Benjamin S. Rathman, Montana Technological University

% Program Name: objMatrices.m
% %

% Program Description

% This function outputs property matrices given material properties.
% Variable Description
% Return:

% matrices material matrices
% |-Ke Stiffness matrix
% |I-C Constitutive matrix
% |-B Strain—displacement matrix
% I-K Heat Conduction matrix
% Given:
% nD Number of dimensions
% resol Mesh density (ele./mm)
% E Young’s Modulus
% nu Poisson’s Ratio
% type 2D assumption (plane stress = 1, plane strain = 2)
% k Thermal Conductivity
% %
if nD == 2 % For 2D FEA
% Constitutive Matrix
if type == % Plane Stress
C = E/(1=nu”2)%[1 nu O;
nu 1 O;

0 0 (1-nu)/2];
elseif type == 2 % Plane Strain

C = E/(1-2%nu) *[1 nu/(1-nu) O;
nu/(1-nu) 1 0;
0 0 (1-2%nu)/(2%(1-nu))];
end

% Strain—-displacement Matrix
[a,b] = deal(1/(2%resol)); h = 1;
syms Ba(xi,eta)
dNdx (1/a)«[(eta—-1),(1-eta),(l+eta),—(l+eta)];
dNdy = (1/b) #[(xi-1),=(1+xi),(1+xi),(1-xi)];
for ii = 1:4
Bsym(:,:,ii) = [dNdx(ii) 0 ;
0 dNdy (ii);
dNdy(ii) dNdx(ii)];

end

Ba(xi,eta) = (1/4)=*reshape(Bsym,3,8);

B = double(Ba(0,0));

% Stiffness Matrix

Ke = double(axbshxint(int(Ba’«CxBa,xi,—-1,1),eta,-1,1));
% Heat Conduction Matrix

K = 1/6xk*[4 -1 -2 -1;

-1 4 -1 -2
-2 -1 4 -I;
-1 =2 -1 471;

34

54

56
57
58
59
60
61
62
63
64
65
66

67

68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

elseif nD == 3 % For 3D FEA
% Constitutive Matrix
C = E/((1+nu)*(1-2+nu))*[l-nu nu nu 0 0 O;
nu l-nu nu O O O;
000 (I-2%«nu)/2 0 0;
0000 (1-2%nu)/2
000O0O0 (1-2%nu)/
% Strain—-displacement Matrix
[a,b,c] = deal(1/(2«resol));
syms Ba(xi,eta,zeta)
dNdx = (1/a)=x[—(eta—-1)x(zeta—1),(eta—-1)x(zeta—1),—(l+eta)=x(zeta—-1),(l+eta)*x(zeta
—-1),(eta—-1)x(l+zeta),—(eta—-1)*(1+zeta) ,(l+eta)=*(1l+zeta),—(l+eta)=x(l+zeta)
1
dNdy = (1/b)=[—-(xi-1)*(zeta—1),(1+xi)=*(zeta—-1),—(1+xi)=(zeta—-1),(xi—-1)=(zeta—-1)
— L(xi-1)x(1l+zeta),—(1+xi)*x(1+zeta) ,(l+xi)=(l+zeta),—(xi—-1)x(1+zeta)];
dNdz = (1/c)=[—(xi—-1)=(eta—-1),(1+xi)=(eta—-1),-(1+xi)*(1+eta) ,(xi—-1)*x(1+eta) ,(xi
— —1)=(eta—-1),—(l+xi)=(eta—1),(1+xi)=(1+eta),—(xi—-1)=(l+eta)];
for ii = 1:8
Bsym(:,:,ii) = [dNdx(ii) 0 0 R
0 dNdy (ii) 0 ;
0 0 dNdz(ii);
0 dNdz(ii) dNdy(ii);
dNdz(ii) 0 dNdx (ii);
dNdy (ii) dNdx(ii) 0 1;

0
0
nu nu I-nu 0 0 O
0
0
2

13

—
—

end
Ba(xi,eta,zeta) = (1/8)=reshape(Bsym,6,24);
B = double(Ba(0,0,0));
% Stiffness Matrix
Ke = double(axbxcxint(int(int (Ba’«C«Ba,xi,-1,1),eta,-1,1),zeta,-1,1));
% Heat Conduction Matrix
Al = 4xeye(2); A2 = —-eye(2);
A3 fliplr (A2); A4 = -ones(2);
Kel = [Al A2;A2 Al];
Ke2 = [A3 A4;A4 A3];
K = 1/12xk*[Kel Ke2;Ke2 Kel];
end
matrices = {Ke,C,B,K};

35

Appendix E. filtertype.m

36

classdef filtertype
methods (Static)
% %
% Created By: Benjamin S. Rathman, Montana Technological University

% Program Name: filtertype.m
%o %

% Program Description

% This function applies the chosen filtering scheme to the

% optimization process.
% %

% FILTER VS RMIN MISMATCH ERROR
function error(ft,rmin)
if (ft == 1 Il ft == 2 Il ft == 3 |l ft == 4) &% length(rmin) ~= 1
error (' Variable_rmin_must_be_a_scalar_for_this_filter _type.’);
elseif ft == 5 && length(rmin) ~= 2
error ([’ Variable _rmin_must_be_a_vector _of_the_form_’ ,...
[rmin_void_rmin_solid]_for_this_filter_type.’]);
end
end

% FILTERING METHOD

function varargout = scheme(type, ft ,x,nelx ,nely,nelz, beta,h,Hs, varargin)
nEl = nelxs*nely=nelz;
% Define Filter
if ft == I ft == I ft == I ft ==
h = h{l}; Hs = Hs{1};
elseif ft ==
[hO,h1] = deal(h{1},h{2}); [HsO,Hsl] = deal(Hs{1},Hs{2});
end

% Extract Variables from ’varargin’
switch type
case ’'modsens’ % define derivatives
[dc,dv,mu_max] = deal(varargin{l},varargin{2},varargin{3});
case ‘updtMMA’ % define active elements
[xPhysOld , act ,mu_max] = deal(varargin{1},varargin{2},varargin{3});
if ft ==
xPhysOld = repmat(xPhysOld,2,1);
end
xPhysOld (act) = x;

end
% Apply Filter
if ft == 1 % sensitivity filter

switch type
case ’modsens’
dec = imfilter (reshape(x.xdc,nely ,nelz,nelx),h, symmetric’) ./...
Hs./reshape (max(le-3,x) ,nely ,nelz ,nelx);
case ’‘updtMMA’
xnew = reshape (xPhysOld, nely ,nelz ,nelx);
xPhys = xnew;
end
elseif ft == 2 % density filter
switch type

37

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90
91
92

93
94
95
96
97
98
99

100

101

102

103

104

105

case ’modsens’
dc = imfilter (reshape(dc,nely ,nelz,nelx),h,’symmetric’)./Hs;
dv = imfilter (reshape(dv,nely,nelz,nelx) ,h,’symmetric’)./Hs;
case ‘updtMMA’
xnew = reshape (xPhysOld, nely ,nelz ,nelx);

xPhys = imfilter (xnew./Hs,h,’ ’symmetric’);
end
elseif ft == 3 % heaviside solid projection
switch type

case ’modsens’
mu = imfilter (reshape(x,nely,nelz ,nelx)./Hs,h, symmetric’);
dx = reshape(betaxexp(—betazmu)+exp(—betasxmu_max)/mu_max,nEl,1);
dc = imfilter (reshape(dc.+dx,nely,nelz,nelx) ,h,’symmetric’)./Hs;
dv = imfilter (reshape(dv.xdx,nely ,nelz ,nelx),h,’ ’symmetric’)./Hs;
case ‘updtMMA’
xnew = reshape (xPhysOld,nely ,nelz ,nelx);

mu = imfilter (xnew./Hs,h, symmetric’);
xPhys = l-exp(—betasxmu)+(mu/mu_max)sxexp(—betasmu_max) ;
end
elseif ft == 4 % heaviside void projection

switch type
case ’modsens’
mu = imfilter (reshape(x,nely ,nelz ,nelx)./Hs,h,’ symmetric’);
dx = reshape(-betaxexp(—betasmu)—exp(—betasxmu_max)/mu_max,nEl,1);
dc = imfilter (reshape(dc.+dx,nely ,nelz,nelx),h,’ symmetric’)./Hs;
dv = imfilter (reshape(dv.xdx,nely ,nelz ,nelx),h,’ symmetric’)./Hs;
case ‘updtMMA’
xnew = reshape (xPhysOld, nely ,nelz , nelx);
mu = imfilter (xnew./Hs,h, symmetric’);
xPhys = exp(—betaxmu)—(mu/mu_max)+exp(—beta+mu_max) ;
end
elseif ft == 5 % heaviside multi—-phase projection
switch type
case ’modsens’
mu0 = imfilter (reshape(x(1:nEl),nely ,nelz,nelx)./Hs0O,h0, symmetric’);
dx0

reshape ((—betaxexp(—betaxmu0)—exp(—betasmu_max)/mu_max)/2,nEl,1)
— 3
dcO = imfilter (reshape(dc.xdx0,nely ,nelz,nelx),h0,’ symmetric’)./Hs0;

dv0 = imfilter (reshape(dv.xdx0,nely ,nelz,nelx),h0,’ symmetric’)./Hs0;

mul = imfilter (reshape(x(nEl+1:end) ,nely ,nelz,nelx)./Hsl,hl,’ symmetric
=)3

dx1 = reshape ((betaxexp(—betaxmul)+exp(—betaxmu_max)/mu_max)/2,nEl,1);

dcl = imfilter (reshape(dc.xdxl,nely ,nelz,nelx),hl,’symmetric’)./Hsl;

dvl = imfilter (reshape(dv.=dxl,nely ,nelz,nelx),hl,’symmetric’)./Hsl;

dc = [dcO dcl]; dv = [dv0 dvl];
case ‘updtMMA’
xnew(= reshape(xPhysOld(1:nEl) , nely,nelz,nelx);
mu0) = imfilter (xnew0O./HsO,hO, ’ symmetric’);
xPhysO = exp(—betas+mu0)—(mu0/mu_max)s=exp(—betasmu_max) ;
xnewl = reshape(xPhysOld(nEl+1:end) ,nely ,nelz,nelx);

mul = imfilter (xnewl./Hsl,hl,’symmetric’);
xPhysl = l-exp(—betaxmul)+(mul/mu_max)=exp(—betaxmu_max) ;
xnew = [xnew(0 xnewl];

xPhys = (xPhysO+xPhysl)/2;

38

106
107
108
109
110
111
112
113
114
115
116
117
118

end
end

% Insert Variables into ’varargout’

switch type
case ’modsens’
[varargout{1},varargout{2}]
case ‘updtMMA’
[varargout{1},varargout{2}]
end
end

end

end

deal (dc,dv);

deal (xnew, xPhys) ;

39

Appendix F. multigrid.m

40

classdef multigrid
methods (Static)

% PREPARE MG PROLONGATION OPERATOR

37

38
39
40
41
42
43
44
45
46

47

48

function [Pu] = prepcoarse (obj,nD,nex,ney,nez)

% Assemble state variable prolongation

maxnum = nexskneysxnez*20;
iP = zeros(maxnum,l); jP = zeros(maxnum,l); sP = zeros(maxnum,l1) ;
nexc = nex/2; neyc = ney/2; nezc = nez/2;

% Weights for fixed distances to neighbors on a structured grid
if nD == 2

vals = [1,0.5,0.25];
elseif nD == 3

vals = [1,0.5,0.25,0.125];

end
cc = 0;
for nx = l:nexc+l

for ny = l:neyc+l

for nz = l:nezc+l
if nD ==
col = (nx-1)*(neyc+1)+ny;
elseif nD ==

col = (nz-1)*((nexc+1)*(neyc+1))+(nx—1)*(neyc+1)+ny;
end
% Coordinate on fine grid
nxl = nx*2-1; nyl = ny*2-1; nzl = nzx2-1;
% Loop over fine nodes within the rectangular domain
for ii = max(nxl1-1,1):min(nx1+1,nex+1)
for jj = max(nyl-1,1):min(nyl+1,ney+1)
for kk = max(nzl-1,1):min(nzl+1,nez+1)
if nD == 2
row = (ii —=1)=(ney+1)+jj;
% Based on squared dist assign weights: 1.0 0.5 0.25
ind = I+((nxl-ii)"2+(nyl—-jj)"2);
if obj == 1 |l obj == 2

cc = cc+1l; iP(cc) = 2xrow-1; jP(cc) = 2=col-1; sP(cc) = vals
<~ (ind);

cc = cc+l; iP(cc) = 2xrow; jP(cc) = 2xcol; sP(cc) = vals
<~ (ind);

elseif obj == 3
cc = cc+1l; iP(cc) = row; jP(cc) = col; sP(cc) = vals(ind);
end
elseif nD == 3
row = (kk—1)=((nex+1)s=(ney+1))+(ii —1)=*(ney+1)+jj;
% Based on squared dist assign weights: 1.0 0.5 0.25 0.125
ind = I+((nx1-ii)"2+(nyl-jj)"2+(nzl-kk)"2);
if obj == 1 Il obj == 2

cc = cc+l; iP(cc) = 3xrow-2; jP(cc) = 3xcol-2; sP(cc) = vals
— (ind);

cc = cc+1l; iP(cc) = 3xrow—1; jP(cc) = 3=xcol—-1; sP(cc) = vals
— (ind);

cc = cc+l; iP(cc) = 3xrow; jP(cc) = 3xcol; sP(cc) = vals
— (ind);

41

49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99

100

101

elseif obj ==
cc = cc+1l; iP(cc)
=)3
end
end
end
end
end
end
end
end
% Assemble matrices

Pu = fsparse (iP(l:cc),jP(l:cc),sP(l:cc));

end

row ;

jP(cc) = col;

% MULTIGRID PRECONDITIONED CONJUGATE GRADIENTS

function [i,relres ,u] = mgcg(A,b,u,Lfac,Ufac,Pu,nl,nswp,tol ,maxiter, miniter)

r = b-A{l,1}x*u;

res0 = norm(b) ;

% Jacobi smoother
omega = 0.6;

invD = cell(nl-1,1);
for 1 = 1:nl-1

invD{1,1}= 1./spdiags(A{1,1},0);
end
for i = 1:maxiter

sP(cc) = vals(ind

z = multigrid.VCycle(A,r,Lfac,Ufac,Pu,1,nl,invD,omega,nswp) ;

rho = r’xz;
if i ==1

p =12z
else

beta = rho/rho_p;
p = betaxp + z;

end
q = A{1,1}x*p;
dpr = p’xq;

alpha = rho/dpr;
u = u+alphasxp;
r = r—alpha=xq;
rho_p = rho;
relres = norm(r)/resO;
if relres < tol & i >= miniter
break
end
end
end
% COARSE GRID CORRECTION

function [z] = VCycle(A,r,Lfac,Ufac,Pu,l,nl,invD,omega,nswp)

z = 01

z = multigrid.smthdmpjac(z,A{1,1},r,invD{1,1},omega,nswp);

Az = A{l,1}=xz;

d =1 - Az;

dh2 = Pu{l,1}’ =d;
if (nl == 1+1)

42

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

vh2
else

Ufac\(Lfac\dh2);

vh2 = multigrid.VCycle(A,dh2,Lfac,Ufac,Pu,1+1,nl,invD,omega,nswp);

end
v = Pu{l,1}*vh2;
Z = Z+V;

z = multigrid.smthdmpjac(z,A{1,1},r,invD{1,1},omega,nswp);

end
% DAMPED JACOBI SMOOTHER

function [u] = smthdmpjac(u,A,b,invD ,omega,nswp)

for i = l:nswp

u = u-—-omega*xinvD . (A%u)+omegaxinvD .xb;

end
end

end

end

43

Appendix G. GE Bracket Problem Setup

44

noR W D =

© w9 o

]

w

32
33
34
35
36
3

23

38
39
40
4

42
43
44
45
46
47
4

3

49
50
51

9% TOPOLOGY OPTIMIZATION TEMPLATE %
% Created By: Benjamin S. Rathman, Montana Technological University

% Program Name: GEbracket.m

% Created On: 03/23/2021

% Rev:——Modified By:—————————— Modified Date:————Notes: %
% r00 Benjamin S. Rathman 03/23/2021 Created template

% rol Benjamin S. Rathman 04/02/2021 GE bracket problem

9% Program Description %

% This program is designed for GE bracket TO

9% Initialize Program %
clear; clc;
fprintf (’Program_Running\n’);

9% MATERIAL PROPERTIES %
scale = le-6; % Material scaling factor;

EO = 16.51¢e6; % Young’s modulus

Emin = EO=xscale; % Young’s modulus of void

nu = 0.34; % Poisson’s ratio

sigmaY = 128e3; % Yield strength

sigmaUTS = 138e3; % Ultimate tensile strength

kO = 46.5; % Thermal conductivity

kmin = kOxscale; % Thermal conductivity of void

mat = [EO,Emin,nu,sigmaY ,sigmaUTS , kO, kmin];
%% PART GEOMETRY

stl = “original ’; % Filename of the geometry being imported

xd = 7.029; % x—dimension

yd = 2.461; % y—dimension

zd = 4.262; % z—dimension

resol = 15; % Part resolution (ele./unit)

nl = 3; % Number of grid levels used in TO (MGCG)

loadCase = 0; % Load condition

radj = 27(nl-1)*round(resol*[xd,yd,zd]/2*(nl-1)); %

— Convert dimensions to elements
[x,y,z] = deal(radj(1l),radj(2),radj(3));
if xd == 0, x = 1; end
stldomain = VOXELISE(x,y,z,[stl,’.stl’]);

domain = double(~stldomain);

domainVol = l-mean(domain (:));

%% TOPOLOGY OPTIMIZATION

obj = 1; % Objective function

volfrac = 0.25; % Prescribed volume fraction

penal = 3; % Penalization factor

rmin0 = 3; % Minimum length scale of void

rminl = 1.5; % Minimum length scale of solid

ft = 2; % Filtering scheme

maxit = 50; % Maximum number of iterations

vtk = *GEbracket’; % Filename to export the solution geometry to
rmin = [rmin0«(ft == 4 || ft == 5) rminl*~(ft == 4 && ft == 5)];
rmin(rmin == 0) = [];

9% PART LOADS & SUPPORTS

P =1.0; % Applied load

orient = [2,3,1];

nD = 2+double (xxy%z ~= y%z); %

— Number of dimensions

45

57

58

59

60
61

62

63
64
65
66

67
68
69

70
71
72
73

74
75

76
71
78
79
80
81
82
83
84

85
86
87

88
89
90
91

nodeNrs = int32 (reshape (1:(x+1%(nD == 3))=*(y+1)*(z+1),y+1,z+1,x+1%(nD == 3))); %
— Nodes numbering
nDof = (y+1)*(z+1)*(x+1%(nD == 3))=*(nD=*(obj ~= 3)+1x(obj == 3)); %
— Total number of DOFs
% Supports Defined
% Support Elements Defined
slx = 0.600/xd; slz = 0.602/zd; %
— Position of support hole 1
s2x = slx; s2z = 2.652/zd; %
— Position of support hole 2
s3x = 6.429/xd; s3z = 1.329/zd; %
— Position of support hole 3
sd4x = s3x; s4z = 2.829/zd; %
— Position of support hole 4
sh = [slx,s2x,83x,s4x,slz,s2z,s3z,s4z];
sRad = (0.406/xd)/2; %
— Radius of support holes
cRad = (0.830/xd)/2; %
— Radius of counterbores
domainS = permute (domain,[3,1,2]);
for layerS = 1l:y(end)
domainLayer = domainS (:,:,layerS);
if domainLayer(round(z/10) ,round(x/10)) == %
— Define edge of hole as active elements
for elzS = 1:z
for elxS = 1:x
for ii = 1:4 % For

<~ each support hole position
sx = sh(ii); sz = sh(ii+4);

if (round(sqrt((elxS—-xxsx)"2+(elzS—-z*sz)”2)) >= round(x*sRad+1) &&...

round (sqrt ((elxS —xxsx)"2+(elzS-zxsz)"2)) <= round(xxcRad+1))
domainLayer(elzS ,elxS) = 3; %
— Support ele. denoted as "3"
elseif round(sqrt((elxS—-x=xsx)”"2+(elzS-z%sz)”"2)) < round(x*sRad+1)

domainLayer(elzS ,elxS) = 1; %
— Clear support holes of stray elements
end
end
end
end
end
domainS (: ,:,layerS) = domainLayer;

end

domainS = ipermute (domainS,[3,1,2]);

domain (domainS == 3) = 2; %
— Assign passive solid to support elements

domainS = permute (domainS, orient);

% Assemble Support Vector

[iif ,jf ,kf] = findND (domainS == 3); %
— Coordinates

fixed = zeros(length(iif),1, int32");

for ii = Il:length(iif)

fixed(ii) = 3#xnodeNrs(iif (ii),jf(ii), kf(ii));
end

46

97

99
100

101
102
103
104

105
106

107
108
109
110
111
112
113
114
115

116
117
118
119

120
121

122
123
124
125
126
127
128

129

130
131
132
133
134

fixed = [fixed (:); fixed (:)-1; fixed (:) -2];
— Support(Fixed) DOFs
% Assemble Load Vector
% Load Elements Defined
ly = 1.761/yd; lz = 3.560/zd;
<~ Position of load hole
IRad = (0.753/xd)/2;
<~ Radius of load hole
domainL = permute (domain,[2,3,1]);
for layerL = 1:x/2
domainLayer = domainL (:,:,layerL);
if domainLayer(end,round(z=*5/6)) == 0
— Define edge of hole as active elements
for elzL = 1:z
for elyL = 1l:y
if round(sqrt((elyL-y=ly)”*2+(elzL-z+1z)”"2)) == round(x*1Rad+1)
domainLayer(elyL ,elzL) = -4;
— ele. denoted as "-4"
elseif round(sqrt((elyL-y=ly)”2+(elzL-z%1z)"2)) < round(x=IRad+1)
domainLayer (elyL ,elzL) = 1;
<~ Clear load holes of stray elements
end
end
end
end
domainL (: ,:,layerL) = domainLayer;
end
for layerL = x/2:x
domainLayer = domainL (:,:,layerL);
if domainLayer(end,round(z=*5/6)) == 0
— Define edge of hole as active elements
for elzL = 1:z
for elyL = 1l:y
if round(sqrt((elyL-y=ly)”*2+(elzL-z+1z)”"2)) == round(xx1Rad+1)
domainLayer(elyL ,elzL) = 4;
— ele. denoted as "4"
elseif round(sqrt((elyL-y=ly)”2+(elzL-z%1z2)”"2)) < round(x=IRad+1)
domainLayer(elyL ,elzL) = 1;
<~ Clear load holes of stray elements
end
end
end
end
domainL (:,:,layerL) = domainLayer;
end
domainL = ipermute (domainL ,[2,3,1]);
— Array defining loads and supports
domain (domainL == -4 | domainL == 4) = 2;

— Assign passive solid to support elements

domainL = permute (domainL , orient);

% Define Loads

if loadCase == Il loadCase == Il loadCase == Il loadCase ==
domainL (domainL. == -4) = 4;

[il_L ,jl ,kl] = findND (domainL == 4);

47

%

%

%

%

% Load

%

%

% Load

%

%

%

%

135
136
137
138
139

140
141
142

143
144
145
146
147

148

149
150
151
152
153

154
155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

177
178
179

— Coordinates
IcDof = zeros(length(il_L),1,’int32");
for ii = I1:length(il_L)
lcDof (ii) = 3#nodeNrs(il_L (ii),jl(ii),klI(ii));

end
IcDof_L = 1cDof (:) —-1;
— DOFs
end
if loadCase == 4 || loadCase == 0
[il_Tn,jl ,kl] = findND (domainL == -4);

— Coordinates
IcDof = zeros(length(il_Tn),1,’int327);
for ii = 1:length(il_Tn)
IcDof(ii) = 3%nodeNrs(il_Tn(ii),jl(ii), k1(ii));
end
IcDof_Tn = 1cDof (:) -1;
— DOFs
[il_Tp,jl,kl] = findND(domainL == 4);
— Coordinates
lcDof = zeros(length(il_Tp),l,’int32");
for ii = 1:length(il_Tp)
lcDof (ii) = 3#nodeNrs(il_Tp(ii),jl(ii), kI(ii));

end
IcDof_Tp = lcDof (:) —1;
— DOFs
end

% Assemble Load Vector
— =1, y =0, z = +I
if loadCase == 1
F = fsparse (lcDof_L,1,8000/length(il_L) ,[nDof,1]);
elseif loadCase == 2
F = fsparse (lcDof_L+1,1,8500/length(il_L) ,[nDof,1]);
elseif loadCase == 3
F = fsparse (lcDof_L,1,9500xcosd(42)/length(il_L) ,[nDof,1]) +...
fsparse (lcDof_L+1,1,9500%sind (42)/length(il_L) ,[nDof,1]);
elseif loadCase ==
F = fsparse (lcDof_Tn+1,1,(-5000/0.563)/length (il_Tn) ,[nDof,1]) +...
fsparse (lIcDof_Tp+1,1,(5000/0.563)/length (il_Tp) ,[nDof,1]);
elseif loadCase ==
F1 = fsparse (lcDof_L,1,8000/length(il_L) ,[nDof,1]);
F2 = fsparse (lcDof_L+1,1,8500/length(il_L) ,[nDof,1]);
F3 = fsparse (lcDof_L,1,9500xcosd(42)/length(il_L) ,[nDof,1]) +...
fsparse (lcDof_L+1,1,9500%sind (42)/length(il_L) ,[nDof,1]);
F4 = fsparse (lcDof_Tn+1,1,(-5000/0.563)/length(il_Tn) ,[nDof,1]) +...
fsparse (lcDof_Tp+1,1,(5000/0.563)/1length (il_Tp) ,[nDof,1]);
F = cat(2,F1,F2,F3,F4);
end
% Assemble Passive Matrix
passive = permute (domain, orient);
— Define passive matrix
9% RUN TOPOLOGY OPTIMIZATION

xPhys = topTheWorks(obj,mat,x,y,z,resol,volfracxdomainVol, penal ,rmin, ft ,...

maxit,nl, passive ,F, fixed);
— topology optimization

48

% Load

%

% Load

%

% Load

%

% Run

180
18

182
183

184
185
186

xPhys = ipermute (xPhys, orient);

9% VIK FILE EXPORT %
if vtk ~= 0
vtkwrite ([vtk,’.vtk’], structured_points’, TopOpt’ ,xPhys); %
— Export solution geometry
end
9% Closing Program %
fprintf (’Program_Finished\n’);

49

List of Symbols, Abbreviations, and Acronyms

2-D two-dimensional
3-D three-dimensional
AM additive manufacturing

DoF degree of freedom

FEA finite element analysis

MGCG multigrid preconditioned conjugate gradients
MMA method of moving asymptotes

oC Optimality Criteria

RAM random access memory

SIMP solid isotropic material with penalization

TO topology optimization

50

1 DEFENSE TECHNICAL 71 DIR DEVCOM ARL
(PDF) INFORMATION CTR (PDF) FCDDRLD S
DTIC OCA H MAUPIN

M TSCHOPP
1 DEVCOM ARL FCDD RIS E

(PDF) FCDD RLD DCI W BENARD

TECH LIB FCDD RLW

JNEWILL

S KARNA

A RAWLETT

S SCHOENFELD
FCDD RLW B

C HOPPEL

R BECKER

L VARGAS-GONZALAS

A TONGE

J CAMPBELL
FCDD RLW C

D LYON
FCDD RLW D

JROBINETTE

B MCWILLIAMS

E FORSYTH

S ISERT
FCDD RLW L

T SHEPPARD
FCDD RLW LD

R BEYER

M NUSCA

P CONROY

J SCHMIDT

Z WINGARD
FCDD RLW LE

J DESPIRITO
FCDD RLW LF

MILG

R HALL

B NELSON
FCDD RLW LH

E KENNEDY

M MINNICINO

J O’GRADY

R SUMMERS
FCDD RLW M

E CHIN

JLASCALA
FCDD RLW MA

J SANDS

T PLAISTED
FCDD RLW MB

B LOVE

D O’BRIEN

C FOUNTZOULAS

51

A GAYNOR

G GAZONAS

E HERNANDEZ

Z WILSON
FCDD RLW MD

K CHO

M PEPI

A KUDZAL

JBROWN

F KELLOGG

J TAGGART-SCARFF

R ROGERS

V CHAMPAGNE

C MOCK

I NAULT

D NIKOLOV

A NARDI

M GAMMAGE

JYU

B CHEESEMAN

W ROY

S CLUFF

D VANOOSTEN
FCDD RLW ME

S SILTON
FCDD RLW MF

K DOHERTY

B BUTLER

V HAMMOND

M DUNSTAN

P GOINS
FCDD RLW MG

JLENHART
FCDD RLW PA

S BILYK

J CLAYTON

JLLOYD

C MEREDITH

52

