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AFIT-ENY-21-S-093 

 

Abstract 

 

 To improve thermal efficiency and reduce fuel consumption, gas turbine engines 

typically operate at increasingly higher turbine inlet temperatures—well in excess of 

turbine blade material limits—and film cooling schemes are normally employed to 

reduce metal temperatures within acceptable limits and prevent structural failure. Cooling 

requirements vary across a blade surface, but there currently exists no means by which 

coolant temperatures can be locally adjusted to facilitate optimized usage across a blade. 

Ranque-Hilsch vortex tubes were investigated as a means of adjusting coolant 

temperatures solely by fluidic means, induced by the phenomenon of temperature 

separation.  

Analytical frameworks were developed to determine adiabatic and overall 

effectiveness in the presence of multiple coolant temperatures and validated via 

experiment. Through the integrated application of experimental, analytical, and 

computational investigations, the parameters which govern temperature separation were 

identified as well as the proper means of scaling temperature separation and the 

underlying physics behind the mechanism of temperature separation. Heat transfer 

characteristics of vortex tubes were determined and vortex tube performance near engine 

conditions was modeled. Findings were synthesized to estimate the net effect of multiple 

local coolant temperatures on turbine blades, including adiabatic wall temperatures and 

thermally conductive metal surface temperatures, and the effect was found under some 

circumstances to be operationally significant. 
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Nomenclature 
 

A = cross sectional area, (m2)  

A* = hypothetical nozzle area at which M = 1, (m2) 

ACR = advective capacity ratio, (
𝜌𝑐𝐶𝑝𝑐𝑈𝑐

𝜌∞𝐶𝑝∞𝑈∞
) 

𝐶𝑝 = specific heat at constant pressure, (J/kg-K) 

𝐶𝑣 = specific heat at constant volume, (J/kg-K) 

D = cooling hole diameter, (m) 

Dh = hydraulic diameter, (m) 

DR = density ratio, (
𝜌𝑐

𝜌∞
) 

e =  specific internal energy, (J/kg) 

Fi = acceleration due to body force, (m/s2) 

g = acceleration due to gravity, (m/s2) 

ℎ  = [heat transfer] heat transfer coefficient, (W/m2-K) 

ℎ  = [fluid property] specific enthalpy, (J/kg) 

k = thermal conductivity, (W/m-K) 

L = reference length, (m) 

I = momentum flux ratio, (
𝜌𝑐𝑈𝑐

2

𝜌∞𝑈∞
2 ) 

�̇� = mass flow rate, (kg/s) 

M = [film cooling] mass flux (blowing) ratio, (
𝜌𝑐𝑈𝑐

𝜌∞𝑈∞
) 

M = [flow property] Mach number 

ni = component of unit surface normal vector 

P = pressure, (Pa) 

Pe = Péclet number, Re×Pr 

Pr = Prandtl number, Cpµ/k 

𝑞 
′′  = heat flux, (W/m2) 

𝑞𝑖 = heat flux component in index notation, (W/m2) 

𝑞 = heat transfer, (W) 
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r = length, (m) 

R = [nondimensionalization] length scale, (m) 

R = [gas property] specific gas constant, (J/kg-K) 

R2 = coefficient of correlation 

Re = Reynolds number, (
𝜌𝑈𝐿

𝜇
) 

t = time, (s) 

𝑇 = temperature, (K) 

Tij = stress tensor, Pa 

U = velocity, (m/s) 

v = velocity, (m/s) 

V = velocity, (m/s) 

𝑉 = volume, (m3) 

VR = velocity ratio, (
𝑈𝑐

𝑈∞
) 

wi = surface velocity component, (m/s) 

w = work, (W) 

x = first ordinate, (m) 

y = second ordinate, (m) 

y+ = dimensionless wall distance 

Z = height above a reference plane, (m) 

𝛼 = [gas property] isothermal compressibility coefficient, (Pa-1) 

𝛼 = [vortex tubes] fraction of added heat retained in cold flow, (
𝑞𝑐𝑜𝑙𝑑

𝑞𝑡𝑜𝑡𝑎𝑙
) 

𝛽 = [gas property] isobaric thermal expansion coefficient, (K-1) 

𝛽 = [statistics] linear regression coefficient 

𝛾 = ratio of specific heats, (
𝐶𝑝

𝐶𝑣
) 

δij = Kronecker delta 

𝛿𝑇 = slight change or perturbation in temperature, (K) 

Δ  = difference or change in a property or measurement 

𝜀 = measurement uncertainty 
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𝜁  = coolant temperature variation parameter, (
(1−𝜇)Δ𝑇𝑐,2−𝜇Δ𝑇𝑐,1

𝑇∞−𝑇𝑚𝑒𝑎𝑛
) 

𝜂  = adiabatic effectiveness, (
𝑇∞−𝑇𝑎𝑤

𝑇∞−𝑇𝑐,𝑒𝑥𝑖𝑡
) 

�̅�   = laterally-averaged adiabatic effectiveness 

�̅̅�   = area-averaged adiabatic effectiveness 

�̂�   = adiabatic effectiveness with multiple coolant temperatures, (
𝑇∞−𝑇𝑎𝑤

𝑇∞−𝑇𝑟𝑒𝑓
) 

𝜇 = [fluid property] dynamic viscosity, (Pa-s) 

𝜇 = [film cooling] coolant enthalpy weighting parameter, (
�̇�𝑐,1𝐶𝑝,𝑐,1

�̇�𝑐,1𝐶𝑝,𝑐,1+�̇�𝑐,2𝐶𝑝,𝑐,2
) 

𝜇𝐶 = vortex tube cold fraction, (
�̇�𝑐𝑜𝑙𝑑

�̇�𝑖𝑛𝑙𝑒𝑡
) 

𝜇𝐽𝑇 = Joule-Thomson coefficient, (K/bar) 

𝜈𝑇 = turbulent viscosity, (m2/s) 

𝜉  = [film cooling] coolant temperature ratio parameter, (
𝑇∞−𝑇𝑐2

𝑇∞−𝑇𝑐1
) 

𝜉  = [vortex tubes] pressure loss coefficient, (
𝛥𝑃

1

2
𝜌𝑉2
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𝜋𝑏 = combustor pressure ratio, (
𝑃𝑡4

𝑃𝑡3
) 

𝜋𝑐 = compressor pressure ratio, (
𝑃𝑡3

𝑃𝑡2
) 

𝜌 = density, (kg/m3) 

𝜏𝑐 = compressor temperature ratio, (
𝑇𝑡3

𝑇𝑡2
) 

𝜏𝑖𝑗 = viscous stress tensor, (Pa) 

𝜙 = overall effectiveness, (
𝑇∞−𝑇𝑠

𝑇∞−𝑇𝑐,𝑖
)  

�̂�   = overall effectiveness with two coolant temperatures, (
𝑇∞−𝑇𝑠

𝑇∞−𝑇𝑚𝑒𝑎𝑛
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Ω = angular velocity, (1/s) 
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cold = evaluated at the vortex tube cold exit  

D = based on hole diameter 

Dh = based on hydraulic diameter  

exit = evaluated at the exit of the film cooling hole or vortex tube 

eff = effective property, including turbulent and molecular contributions 

f = in the presence of film cooling 

hot = evaluated at the vortex tube hot exit 

i = evaluated at internal cooling passages 

inlet = evaluated at vortex tube inlet 

mean = mean 

measured     =     based on experimental measurement 

nonadiabatic     =     with external heat addition 

nozzle = evaluated at vortex tube nozzle 

r = [film cooling] reduction 

r = [cylindrical coordinates] radial component 

ref = reference value 

s = [film cooling] evaluated on a thermally conductive surface 

s = [vortex tubes, historical] corresponding to isentropic expansion 
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static = static property 
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THE APPLICATION OF VORTEX TUBES TO GAS TURBINE FILM COOLING 

 

 

1 Introduction 

1.1 Motivation 

Since the conception of the gas turbine engine, designers have continuously pushed 

the state of the art to operate at ever-higher turbine inlet temperatures to increase engine 

performance. The gas turbine engine is most closely modeled using the Brayton 

thermodynamic cycle, and it can be shown that thrust specific fuel consumption (TSFC) 

can be reduced by increasing the compressor pressure ratio, which—due to the nature of 

the Brayton cycle—also increases turbine inlet temperatures; similarly, engine specific 

thrust can be increased with higher turbine inlet temperatures [1].  

As turbine inlet temperatures have progressively increased, a variety of turbine 

cooling schemes have evolved over several decades, enabling turbine blades to operate in 

freestream temperatures far greater than the temperature capability of their constituent 

materials. Maintaining this trend toward greater turbine inlet temperatures requires new 

options for the turbine designer: higher fidelity modeling techniques, greater efficiency of 

cooling methods, and more precise tailoring of cooling strategies to areas of concern. 

The need for precisely tailored cooling strategies provides the greatest impetus for 

the present research. To cool the exterior surfaces of turbine blades, designers have 

employed film-cooling techniques with great effect for many years. Turbine blade 

exterior surfaces are designed to perform optimally in complex flow fields and are 

therefore quite complex as well. Cooling requirements vary considerably across the 

surface of turbine blades; some regions—such as the leading edge—are known to have 
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especially significant cooling needs, while other local hot spots may exist which require 

additional film cooling. Temperature gradients within the turbine blade material present 

an additional cooling challenge. Such gradients contribute to low-cycle thermal fatigue, 

which can degrade the structural integrity of the part and ultimately reduce its life [2]. 

A designer would presumably want as close a match as possible between the 

cooling requirement of a particular site and the cooling characteristics of the technique 

applied to that site. For example, the coldest coolant ideally would be applied to regions 

with the greatest cooling requirement while regions with lesser requirements may 

sufficiently benefit from slightly warmer coolant. Options to match coolant temperatures 

to cooling requirements are currently somewhat limited in practice. Although coolant 

temperatures may vary across the blade due, for example, to heat transfer in the internal 

cooling passages, deliberate adjustments to coolant temperatures cannot be applied 

locally across a blade. This represents a limiting factor in cooling strategies: if coolant 

temperatures could be adjusted or rebalanced, the new options could potentially permit 

operation at higher temperatures or increase the life of the turbine blade.  

Indeed, several means do exist by which coolant temperatures might be adjusted, 

which fall into a category known as “temperature separation.” Temperature separation is 

a phenomenon in which a fluid at an initially uniform temperature is induced solely by 

fluidic means to non-uniform temperatures, with some regions at lower temperatures than 

initial and other regions at greater temperatures than initial. This peculiar behavior has 

been observed in different contexts and is attributable to different underlying physics. 

Eckert observed temperature separation in the wake of a cylinder in crossflow [3] and 

found regions on the cylinder surface that were colder than the freestream temperature; 
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Eckert attributed this to pressure forces acting in an unsteady flow. In Rakowski’s 

swirling annular cascade [4], a striking example of temperature separation accompanied 

by a deafening whistle was described by Kurosaka [5]; Kurosaka attributed this to 

“acoustic streaming.” Seol and Goldstein acoustically excited temperature separation in a 

jet [6]. Temperature separation induced in binary gas mixtures is known as the DuFour 

effect, in which a concentration gradient produces a temperature gradient [7,8].  

By far the most widely used and studied example of temperature separation is in 

the Ranque-Hilsch vortex tube, which will be referred to simply as a “vortex tube”. High 

pressure gas is injected tangentially into the device to induce a strong swirling motion in 

the flow. The highest velocity fluid in the outer layers of the vortex achieves a high total 

temperature while conversely the slower inner core of the vortex is brought to a low total 

temperature. The conventional vortex tube design exploits this temperate gradient by 

exhausting the cooler vortex core through an orifice at one end while exhausting the 

hotter outer region through an annular opening at the opposite end. Using only 

compressed air at nominal room temperature, commercially available vortex tubes can 

produce cold-side temperatures as low as 228 K (-50°F) and hot-side temperatures as 

high as 400 K (260°F) [9]. The device has no moving parts and depends exclusively on 

the behavior of high velocity fluids with a vortical flow structure, although a precise 

explanation for this effect remains a matter of debate.  

By carefully integrating vortex tubes into the cooling architecture of a gas turbine 

engine, it may be possible to leverage temperature separation and manipulate the 

temperature of many coolant streams. Exerting this control may allow, in turn, the skillful 

turbine designer to optimize cooling performance across the entire turbine section. 
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Neither vortex tubes nor other aspects of temperature separation have been deliberately 

exploited in film cooling or combustion environments and several unknowns must be 

resolved before such an application is possible.  

1.2 Problem Statement 

Explain how vortex tubes work and exploit that understanding to use vortex tubes 

to adjust turbine engine coolant temperatures. 

1.3 Investigative Questions 

In the pursuit of vortex tubes as a viable enhancement to gas turbine film cooling 

techniques, several investigative questions emerge: 

 How do vortex tubes work? In other words, what are the underlying 

physics that permit temperature separation? 

 How does vortex tube temperature separation scale? Can performance be 

nondimensionalized, and what are the governing parameters? 

 To what extent can the physics of temperature separation be exploited in 

the extreme environment of a gas turbine engine? 

 Would multiple local coolant temperatures be beneficial? 

 To what extent can we inform turbine cooling design decisions with this 

understanding? 

An improved understanding of the temperature separation phenomenon in vortex 

tubes is essential, particularly with respect to gas turbine environments, to facilitate 

design and prototyping. Next, because several temperature separation-based cooling 

architectures are possible, it is valuable to develop a means of characterizing film cooling 
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performance when multiple coolant temperatures are available; this will allow the 

designer to model the benefit of temperature separation in film cooling applications. 

Finally, it is desirable to demonstrate temperature separation under conditions that 

approach those downstream of the compressor in a gas turbine engine.  

1.4 Research Objectives 

Four principal research objectives will define the activities in this effort: 

1. Model turbine blade cooling performance with more than one local coolant 

temperature 

2. Characterize the phenomenon of temperature separation as observed in a vortex tube 

3. Quantify the degree of temperature separation achievable at engine conditions 

4. Apply vortex tube and film cooling findings to inform turbine engine design 

1.5 Methodology 

The present research is clearly multi-faceted, and thus will be approached from a 

multi-disciplinary perspective including analytical, experimental, and computational 

components. The film cooling work serves as a proof of concept to inform potential 

configurations and conduct a preliminary investigation of the manner in which vortex 

tubes could be applied to film cooling. The film cooling research will start with an 

analytical approach which will be borne out through experimentation. 

With respect to vortex tube characterization, experimental research will serve as 

the bedrock and computational methods will be applied with the intent to match 

experimental data with the highest fidelity practical. The computational results will then 

be used to substantiate a viable explanation of the physics of temperature separation. 
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Analytical methods are essential in developing new film cooling frameworks, in 

determining the appropriate nondimensionalization of temperature separation, and in 

identifying any governing parameters. Experimental and computational methods will then 

serve as a means of assessing performance under increasingly extreme environments and 

informing potential design changes as the understanding of the trade space evolves. 
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2 Research Objective 1: Model turbine blade cooling 

performance with multiple coolant temperatures available 

Because the fundamental aim of this research is to apply vortex tubes to gas 

turbine film cooling, it is first necessary to craft a basic framework in which vortex tube 

contributions may be analyzed. Models will be developed to assess adiabatic wall 

temperatures and thermally conductive metal surface temperatures in the presence of 

multiple local coolant temperatures. This will ultimately permit the synthesis of vortex 

tube performance characteristics and estimated coolant temperatures to predict film 

cooling performance when multiple local coolant temperatures are present.  

2.1 Literature Review: Gas Turbine Engine Cooling  

Modern aircraft gas turbine engines typically have turbine inlet total temperatures 

in the range of 2000 K (~1730°C) [1], which presents a considerable engineering 

challenge to the turbine blade designer. These extremely high temperatures are first 

addressed using materials-based solutions. Blades are manufactured from nickel-based 

superalloys and the most modern alloys used in first-stage high pressure turbine 

applications have melting points in the range of 1320°C – 1450°C [10]. However, a more 

appropriate metric is the “temperature capability” of a material, which accounts for its 

ability to withstand high stresses at high temperatures. With the use of clever metallurgy 

in the form of single-crystal blades, turbine manufacturers have been able to push the 

temperature capability of superalloys very close to their melting points such that modern 

first-stage superalloys have temperature capabilities in the range of 1100°C [10].  

Turbine inlet temperatures exceed the temperature capability of modern turbine 

blades by several hundred degrees, so it is clear that additional measures are required to 
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operate in such extreme freestream temperatures. Consequently, a variety of sophisticated 

turbine cooling schemes have evolved over several decades. First, coolant is directed 

through elaborate internal passages, which function essentially as miniature heat 

exchangers in which convective heat transfer from the metal to the coolant is maximized 

to reduce the metal temperature. An example of internal cooling passages is shown in 

Figure 1.  

 

Figure 1. Turbine blade internal cooling passages [11] 

Once the coolant passes through the internal cooling passages, it issues to the 

surface via cooling holes with a technique known as “film cooling”. Intricate patterns of 

carefully shaped cooling holes are found on modern high-performance turbine blades. As 

can be seen in Figure 2, cooling holes are much more closely spaced in regions with 

greater cooling requirements, such as the leading edge near the stagnation line. While it is 

important to cool the hottest parts of the turbine blade, there is also a need to avoid 

inducing strong temperature gradients across the blade. Such gradients give rise to the 
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phenomenon known as low-cycle thermal fatigue [12], which induces stress in the blade 

[13] and reduces the life of the turbine blade [2]. 

 

Figure 2. Turbine blade external film cooling [1] 

The purpose of film cooling is to minimize convective heat transfer between the 

freestream and the blade surface, and many of the foundational equations for film cooling 

are summarized in Bogard and Thole [14]. The heat flux with film cooling present, 𝑞𝑓
′′ , 

can be calculated using Eq (1), where Taw is the adiabatic wall temperature, Tw is the 

actual wall temperature, and hf is the heat transfer coefficient with film cooling present. 

𝑞𝑓
′′ = ℎ𝑓(𝑇𝑎𝑤 − 𝑇𝑤) (1) 

 

An array of options is available for the turbine designer to tailor the film cooling 

strategy to the cooling requirements. The shapes of the cooling holes are carefully 

designed and numerous varieties exist with various performance characteristics: a 2014 

review [15] found 130 different hole shapes in the literature, and variations of the 



10 

laidback fan-shaped hole were most common. Three hole shapes are shown in Figure 3, 

which are essentially stages in hole design evolution. Because the present research is not 

concerned with improving hole design, only laidback fan-shaped holes were used in the 

film cooling studies here. Details will be provided later with experimental methods. 

 

Figure 3. Common cooling hole shapes [16] 

The coolant flow rate leaving the cooling holes is typically characterized in terms 

of a ratio with respect to freestream properties. Several such ratios used in the literature 

include the density ratio (DR), mass flux or blowing ratio (M), the momentum flux ratio 

(I), the velocity ratio (VR), and, as defined in Rutledge and Polanka [17], the advective 

capacity ratio (ACR). These ratios are important for documenting the performance of a 

cooling hole; for instance, it is well known that high values of the momentum ratio, 𝐼, 

may cause a coolant jet to separate from the surface and reduce its cooling performance. 

However, these ratios also represent scaling parameters. Testing cooling performance 

near engine operating conditions may be expensive, impractical, and in many cases 

impossible; therefore, it is normally necessary to test cooling performance at low-speed, 

low-temperature conditions while matching the desired ratio value(s). Implicit is the 

assumption that matching such a ratio value appropriately predicts cooling performance 

at engine conditions. Novel investigations on scaling parameters remain a rich field of 
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research but are out of scope of the present effort. The present effort will use ACR as the 

experimental ratio of choice. 

𝐷𝑅 =
𝜌𝑐

𝜌∞
 (2) 

𝑀 =
𝜌𝑐𝑈𝑐

𝜌∞𝑈∞
 (3) 

𝐼 =
𝜌𝑐𝑈𝑐

2

𝜌∞𝑈∞
2

 (4) 

𝑉𝑅 =
𝑈𝑐

𝑈∞
 (5) 

𝐴𝐶𝑅 =
𝜌𝑐𝐶𝑝𝑐𝑈𝑐

𝜌∞𝐶𝑝∞𝑈∞
 (6) 

 

Figure 4 presents a generalized engine station arrangement. The coolant injected 

into the high-pressure turbine (HPT) section is bled from the high-pressure compressor 

(HPC) and bypasses the combustor; it is the only stream of air in the engine at a higher 

pressure than the turbine section.  The air in the HPC—and thus the coolant—is still quite 

hot; the temperature depends on the inlet air temperature and the compressor pressure 

ratio and a typical coolant temperature range is 800 K – 1000 K [1].  

 

Figure 4. Aircraft engine station diagram [1] 
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To cool the turbine section in a modern military aircraft engine, between 20% and 

30% of the compressor air is bled for coolant [11,18]. This is a substantial penalty, but 

one apparently worth the price for overall engine performance. However, the 

effectiveness of all cooling schemes is carefully evaluated with the aim of improving 

efficiency and effectiveness, since reducing the fraction of compressed air used as 

coolant also increases engine performance.  

Multiple measures of cooling effectiveness exist derived by nondimensionalizing 

key terms in the heat flux equation, Eq (1). The most frequently employed measure of 

cooling effectiveness is adiabatic effectiveness, defined in Eq (7). Adiabatic effectiveness 

is essentially a nondimensionalization of adiabatic wall temperature, 𝑇𝑎𝑤, in concert with 

the freestream temperature, 𝑇∞, and the coolant temperature at the exit of the coolant 

hole, 𝑇𝑐,𝑒𝑥𝑖𝑡. The 𝜂 distribution in a region is typically evaluated experimentally by 

measuring the surface temperature of a nearly adiabatic model—which is, by definition, 

nearly identical to 𝑇𝑎𝑤—as well as 𝑇∞ and 𝑇𝑐,𝑒𝑥𝑖𝑡. However, for early design 

investigations such as row spacings, experiments presumably require new models to be 

built for every conceivable configuration. 

𝜂 =
𝑇∞ − 𝑇𝑎𝑤

𝑇∞ − 𝑇𝑐,𝑒𝑥𝑖𝑡
 (7) 

 

The theory of superposition with respect to film cooling was first proposed by 

Sellers [19] and demonstrated that a relatively simple method could be implemented to 

estimate a complex interaction: the combined effects of successive film cooling stations. 

By applying this analytical technique, it became possible to vastly reduce the demand for 
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experimental resources at the initial stages of design. Adopting Sellers’ general approach, 

Muska et al. [20] developed further simplified equations which apply, for example, to a 

double row of cooling holes, which is a common cooling hole configuration. 

The procedure for applying superposition will be demonstrated for the case of a 

double row, such as that shown with a side view in Figure 5. When a single row is issuing 

coolant, the adiabatic effectiveness at a downstream location is given by Eq (8), where 𝜂1 

is the adiabatic effectiveness due to only the upstream row issuing coolant. Similarly, 𝜂2 

is that due to only the downstream row as seen in Eq (9). For the case when both rows are 

operating, the apparent freestream temperature in Eq (9) is approximated as the adiabatic 

wall temperature that would result if only the upstream row were operating, expressed as 

Eq (10). The adiabatic wall temperature with both rows operating is isolated by 

rearranging Eq (9) and substituting in Eq (10) to yield Eq (11). By substituting the 

expression for 𝑇𝑎𝑤,1 from Eq (8) into Eq (11) and then substituting the expression for 𝑇𝑎𝑤 

in Eq (11) into Eq (7), one arrives at the familiar equation for superposition with a single 

coolant temperature [20]. 

 

Figure 5. Double row cooling configuration with a single coolant temperature 
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𝜂1 =
𝑇∞ − 𝑇𝑎𝑤,1

𝑇∞ − 𝑇𝑐,𝑒𝑥𝑖𝑡
 (8) 

 

𝜂2 =
𝑇∞ − 𝑇𝑎𝑤,2

𝑇∞ − 𝑇𝑐,𝑒𝑥𝑖𝑡
 (9) 

 

𝑇∞ ≈ 𝑇𝑎𝑤,1 (10) 

 

𝑇𝑎𝑤 = 𝑇𝑎𝑤,1 − 𝜂2(𝑇𝑎𝑤,1 − 𝑇𝑐) (11) 

 

𝜂 = 𝜂1 + 𝜂2 − 𝜂1𝜂2 (12) 

The accuracy of superposition ultimately hinges entirely on the validity of Eq 

(10), since it is the only assumption in the derivation, and Eq (10) is unlikely to hold 

when there are significant hydrodynamic interactions between rows. The method of 

superposition has been shown to accurately predict the effectiveness of a multiple rows of 

cylindrical cooling holes with blowing ratios of less than 0.50, as shown by Sasaki et al. 

[21]. Saumweber demonstrated successful prediction by superposition for a double row 

of fan-shaped holes, particularly if the blowing ratios for the row remain below 1.0 [22]. 

Metzger et al. found that superposition adequately predicted cooling performance for 

multiple slots, although the method underpredicted performance with very low 

downstream blowing ratios, e.g. 𝑀2 < 0.1 [23]. Superposition has other known 

limitations, however, particularly with respect to complex hydrodynamic behavior. For 

example, Harrington et al. investigated the use of short normal injection holes and found 
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superposition estimates to be unsatisfactory for higher blowing ratios; the inaccuracy was 

attributed to jet separation and jet interaction [24].  

Another common measure of cooling effectiveness is overall effectiveness, 

defined in Eq (11), which is a nondimensionalization of the surface temperature of the 

metal blade, 𝑇𝑠, using the freestream temperature and the coolant temperature prior to 

entering the cooling holes, 𝑇𝑐,𝑖. Overall effectiveness is useful because it accounts for the 

contributions of both external film cooling and any cooling through internal passages.  

𝜙 =
𝑇∞ − 𝑇𝑠

𝑇∞ − 𝑇𝑐,𝑖
 (13) 

Frequently, overall effectiveness is experimentally evaluated at temperatures 

much lower than engine conditions, but careful consideration must be given to 

experimental techniques if low temperature findings are to be extensible to engine 

conditions. Researchers such as Albert et al. [25] and Martiny et al. [26] have shown the 

sensitivity of overall effectiveness to Biot number; thus, the utility of scaled overall 

effectiveness research depends critically on matching the Biot number of the research 

model and conditions to those representative of an engine. This requirement dictates a 

careful selection of model materials, and prior studies have used alumina [25], Corian™ 

[27], and Titanium 6-4 [28]. Stewart and Dyson [29] demonstrated that the thermal 

conductivity of Inconel 718 also varies in such a manner to make it suitable for scaling 

low-temperature studies.  

Overall effectiveness has been investigated by numerous workers in a variety of 

configurations. These include studies of a flat plate with backside impingement cooling 

[28] [29], the leading edge showerhead [25] [30] [31], and even fully cooled turbine 
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blades [32]. These previous investigations have focused on scenarios where it is 

reasonably assumed that there is one characteristic internal coolant temperature, 𝑇𝑐,𝑖, 

either because the coolant is fed from a single plenum or multiple plenums are fed from 

the same source.  

However, there may be scenarios in which multiple coolant temperatures are 

present. For example, coolant may be injected at a certain temperature from an upstream 

row or plenum and provide film cooling dozens of hole diameters downstream; 

meanwhile, other coolant from that same row or plenum may make several passes 

through internal channels before being exhausted from a separate row downstream at a 

greater temperature. An example of such a scenario can be seen in Figure 6, reflecting the 

current need for multiple temperature modeling. Additionally, engines may have multiple 

sources of coolant at various temperatures available for turbine designers to route the 

coldest coolant where it is required, whereas warmer coolant may be used in less 

demanding locations. In the present investigation, temperature separation induced by 

vortex tubes may also give rise to different coolant temperatures. 
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Figure 6. Cooling scenario with multiple local coolant temperatures  

(image adapted from [33], emphasis added) 

Very little research has been conducted on scenarios involving multiple coolant 

temperatures. Apart from the research contained herein, only a single known paper 

studied the topic, which was contemporary to the present effort: Alqefl et al. [34], whose 

work was contemporary with the present researched, investigated adiabatic effectiveness 

of a triple plenum cooling configuration on a turbine endwall and produced a 

superposition model. However, no studies have investigated the effect of multiple local 

coolant temperatures on overall effectiveness.  
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2.2 Adiabatic Effectiveness with Multiple Local Coolant Temperatures 

In the study of film cooling effectiveness, adiabatic effectiveness is a conventional 

starting point, and it is here that the research on the effect of two coolant temperatures 

begins, using a simple configuration of a double row in a flat plate. The framework of 

superposition was thought to be an especially suitable starting point for the construction 

of a multiple-temperature cooling model involving adiabatic effectiveness. By developing 

such a model, it will eventually become possible—for a given cooling scenario—to 

determine the influence of multiple coolant temperatures on adiabatic wall temperature 

compared to a single coolant temperature. 

2.2.1 Development of Multiple Temperature Film Cooling Superposition Theory 

Attention now turns to the fact that coolant issuing from different rows of cooling 

holes necessarily travels through different internal cooling paths prior to reaching the 

coolant holes. An extreme case could be the coolant that travels to the leading edge 

showerhead by way of serpentine internal leading edge coolant channels complete with 

impingement cooling compared to different paths taken by the coolant traveling to 

downstream rows on the suction or pressure surfaces of the blade. While such 

temperature differences have generally been ignored in past studies, it is recognized that 

greater fidelity in turbine thermal behavior is critical as temperatures rise and material 

distress becomes more sensitive to errors in thermal predictions. 

A double row of cooling holes, in which coolant is injected at different 

temperatures, is shown in Figure 7. To analyze such a scenario, it is necessary to modify 

Eq (12) and develop a new equation for adiabatic effectiveness using a new reference 

temperature, Tref, in place of Tc,exit since there is no longer a single value for Tc,exit. The 
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new representation is Eq (14); the symbol �̂� is used to distinguish from adiabatic 

effectiveness computed with a single coolant temperature. 

 

Figure 7. Double row cooling configuration with two coolant temperatures 

 

�̂� =
𝑇∞ − 𝑇𝑎𝑤

𝑇∞ − 𝑇𝑟𝑒𝑓
 (14) 

The proposed approach is to express �̂� as a piecewise function wherein the 

reference temperature, 𝑇𝑟𝑒𝑓, is the colder of the two coolant temperatures; if the 

temperature of the coolant issuing from downstream row, 𝑇𝑐2, is lower than that of the 

upstream row—i.e. 𝑇𝑐2 < 𝑇𝑐1—then 𝑇𝑟𝑒𝑓 = 𝑇𝑐2 and vice versa. This choice of reference 

temperature, despite precipitating a piecewise function, provides some convenient 

mathematical features. First, selecting the coldest temperature as the reference bounds the 

values of �̂� by 0 < �̂� < 1 and simplifies its interpretation. Next, as will be demonstrated 

later in this particular study, it becomes more straightforward to predict a surprising 

situation in which the coolant issuing from the second row can reduce cooling 

performance. 

Other choices of reference temperature are also possible, such as a mass-average 

of the two coolant temperatures; indeed, this was the author’s initial preference. Although 

it avoids a piecewise function, it introduces a new difficulty in that such a reference 
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temperature is necessarily warmer than the colder coolant and therefore �̂� is no longer 

bounded by 0 < �̂� < 1. The maximum value of �̂� increases unboundedly as the 

difference in temperatures increases and this “moving scale” complicates interpretation. 

Furthermore, this choice requires the explicit use of weighting parameters, such as the 

relative mass-fractions of coolant from each row. Obviously, one would need to employ 

scaling parameters—such as ACR or momentum flux ratio—in determining 𝜂1 and 𝜂2 no 

matter the choice of reference temperature, but the scaling parameters are independently 

selected in the coldest-reference approach with no need for separate weighting 

parameters. As will be demonstrated, this ultimately allows for a simple generalization to 

an arbitrary number of rows and coolant temperatures. 

With a modified equation for adiabatic effectiveness in the case of two coolant 

temperatures, it is now possible to elaborate on a theory of superposition. With only a 

single row blowing, the adiabatic effectiveness in a particular location is given by Eqs 

(15) or (16), where 𝑇𝑐1 is the exit temperature of coolant from the upstream row and 𝑇𝑐2 

is that of the downstream row. 

 
𝜂1 =

𝑇∞ − 𝑇𝑎𝑤,1

𝑇∞ − 𝑇𝑐1
 

 

(15) 

 
𝜂2 =

𝑇∞ − 𝑇𝑎𝑤,2

𝑇∞ − 𝑇𝑐2
 (16) 

 

Just as with classical superposition conceived by Sellers [19], the freestream 

temperature at a site affected by two rows of holes is replaced by the adiabatic wall 

temperature that would result with only the upstream row issuing, as in Eq (17). Applying 

a similar process of substitution as shown before, the adiabatic effectiveness is given by 
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the more complex Eq (18). Two different expressions for �̂� are possible, owing to the 

piecewise nature of the calculation. A nondimensional parameter, 𝜉, may be defined as 

the ratio of the differences between the freestream temperature and those of the 

respective coolants as shown in Eq (19).  

𝑇𝑎𝑤 = 𝑇𝑎𝑤,1 − 𝜂2(𝑇𝑎𝑤,1 − 𝑇𝑐2) (17) 

 

�̂� =
𝜂1(𝑇∞ − 𝑇𝑐1) + 𝜂2(𝑇∞ − 𝑇𝑐2) − 𝜂1𝜂2(𝑇∞ − 𝑇𝑐1)

𝑇∞ − 𝑇𝑟𝑒𝑓
 (18) 

 

𝜉 ≡
𝑇∞ − 𝑇𝑐2

𝑇∞ − 𝑇𝑐1
 (19) 

In the case where 𝑇𝑐2 < 𝑇𝑐1, 𝜉 > 1 and 𝑇𝑟𝑒𝑓 = 𝑇𝑐2. In the opposite case,       

𝑇𝑐1 < 𝑇𝑐2, 𝜉 < 1 and 𝑇𝑟𝑒𝑓 = 𝑇𝑐1. Equations of superposition for a double row with two 

coolant temperatures then reduce to Eqs (20) and (21) for 𝜉 > 1 and 𝜉 < 1, respectively. 

It can be verified that when the two coolant temperatures are identical, i.e. 𝑇𝑐1 = 𝑇𝑐2, 

then 𝜉 = 1 and Eqs (20) and (21) both reduce to Eq (12). It is the aim of this particular 

study to examine the extent to which adiabatic effectiveness is a function of the coolant 

temperature difference ratio, 𝜉, and the degree to which Eqs (20) and (21) accurately 

predict adiabatic effectiveness. 

�̂� =
1

ξ
(𝜂1 + 𝜉𝜂2 − 𝜂1𝜂2) (20) 

 

�̂� = 𝜂1 + 𝜉𝜂2 − 𝜂1𝜂2 (21) 
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2.2.2 Experimental Methodology 

A new test apparatus was constructed to support these experiments. A flat plate 

test insert manufactured from low thermal conductivity foam (k = 0.03 W/m-K) was 

installed in a fashion similar to Fischer [35] in the afterbody of the 8.89 cm diameter 

leading edge model of Wiese [36], as shown in Figure 8. Two rows of coolant injection 

consisted of a slot upstream of a row of holes. This geometry was selected to increase the 

likelihood that the superposition method would be valid since the slot was not expected to 

have complex hydrodynamic interactions with the row of holes. As noted by Bogard and 

Thole [18], the practical use of slots may be limited by structural concerns, but their use 

in establishing experimental baselines is ideal due to a high degree of flow uniformity. 

 

Figure 8. Test rig side view 

The slot had a metering width of 4.5 mm, a 30° injection angle, and a vertical 

extent of y/D = ±16.2. The downstream row consisted of five laid-back, fan-shaped holes 

of the 7-7-7 design proposed by Schroeder and Thole [15]. The 7-7-7 hole expands 7° 

laterally and in the forward direction, and has a 7° laid-back angle; it was chosen because 
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its baseline performance has been rigorously documented and its non-proprietary design 

is representative of current best practices. 

The holes had a metering diameter of 4.5 mm and were spaced with a pitch of 

y/D = 6.3; the upstream edges of the holes were located 9 diameters downstream of the 

trailing edge of the slot; the exact configuration is detailed in Figure 9. The two rows 

were supplied via two different plenums so the coolant temperatures of the rows could be 

independently varied. This permitted control over the coolant temperature ratio 

parameter, 𝜉. Thermocouples were placed in the entrance of the slot and holes to measure 

coolant temperatures. An infrared (IR) camera was positioned to view the surface from 

just upstream of the slot to 15 hole diameters downstream of the row of holes. A smaller 

region of interest was selected to avoid nonuniform areas of flow near the edges of the 

slot. The region of interest lies downstream of the middle three holes from 0 < x/D < 15 

and 9.5 < y/D < -9.5. 

The flat plate was installed in an open-loop, temperature-regulated wind tunnel, in 

a configuration identical to that of Fischer et al. [35]; a schematic is shown in Figure 10.  

The freestream temperature was monitored with a thermocouple and the freestream 

velocity was measured with a pitot-static system so that the tunnel Reynolds number, 

ReD, was monitored. Using a control circuit, ReD was adjusted to stay within 2% of 3000 

with a turbulence intensity of 0.67%. 



24 

 

Figure 9. Diagram of test surface and origin 

 

 

Figure 10. Wind tunnel schematic [35] 

Coolant was injected from the slot at a constant ACR of 0.50 and from the row of 

holes at a constant ACR of 0.75; these baseline ACR values were maintained for all runs. 

The coolant flow rates are characterized in terms of ACR since Fischer et al. [35] showed 

that ACR characterized the adiabatic effectiveness for a 7-7-7 shaped hole far better than 
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either blowing ratio or momentum flux ratio, provided that the momentum flux ratio was 

less than about 0.6, which is the case presently. The baseline ACR values were selected to 

ensure that neither row dominates the results and thus effects attributable to both rows are 

visible. The values were also selected to ensure that the coolant remained attached to the 

surface, thereby minimizing row interactions that interfere with superposition predictions. 

The coolant gas was air. Cases were run with freestream temperatures of 310K and 320K. 

While holding the tunnel freestream at the desired temperature and Reynolds number and 

baseline ACR values, the coolant temperatures of the rows were independently controlled. 

By varying 𝑇𝑐1 between 282 K and 310 K and 𝑇𝑐2 between 289 K and 305 K, the coolant 

temperature ratio parameter ranged an order of magnitude: from 0.40 < 𝜉 < 4.0. 

Three thermocouples were also mounted on the surface of the model directly 

downstream of the slot at 𝑦/𝐷 ≈ −14, a location which permitted variation of surface 

temperature via the slot but which was not directly upstream of the region of interest. 

Surface temperature measurements were correlated with infrared counts recorded by the 

camera to establish a calibration curve for the IR imagery. 

When experimentation was complete, the imagery data and thermal calibration 

curve were used to derive surface temperature across the region of interest. This was used 

in turn with the coolant exit temperature thermocouples and Eq (7) to compute values for 

the apparent 𝜂, and with Eqs (20) and (21) to compute the apparent �̂�. A one-dimensional 

conduction correction was then applied to the apparent values in a manner similar to that 

applied by Williams et al. [27]; based on an examination of the cooling scene, a 

correction value of 𝜂0 = 0.06 was found to be suitable. The uncertainties of 𝜂 and �̂� 

(when 𝜉 ≠ 1) within the region of interest, 𝜀𝜂 and 𝜀�̂�, were computed using the method of 



26 

Kline and McClintock [37]. It was found that 𝜀𝜂 and 𝜀�̂� are most strongly functions of the 

quantity 𝑇∞ − 𝑇𝑟𝑒𝑓 where small values of 𝑇∞ − 𝑇𝑟𝑒𝑓 yield the greatest 𝜀 values; the 

largest values of 𝜀𝜂 and 𝜀�̂� were found to be 0.037 and corresponded to cases where 

𝑇∞ − 𝑇𝑟𝑒𝑓 = 15 K. 

2.2.3 Results and Discussion 

2.2.3.1 Confirmation of Legacy Superposition 

The results begin with the single temperature case, in which 𝑇𝑐 = 𝑇𝑐1 = 𝑇𝑐2 and 

for which 𝜉 = 1. Verification cases were run with 𝑇∞ = 320 K, 𝑇𝑐 = 289 K, 295 K, and 

305 K as well as 𝑇∞ = 310 K, 𝑇𝑐 = 290 K and 295 K to establish that the experimental 

methods appropriately yield adiabatic effectiveness that is independent of coolant 

temperature. A selection of results is shown in Figure 11, which reveals extremely similar 

𝜂 profiles. Figure 12 indicates little variation in centerline adiabatic effectiveness 

between the five cases for the hole centered at 𝑦/𝐷 = 0. The 𝜂 values between the five 

cases are within ±0.025. 
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Figure 11. 𝜼 for various 𝑻∞ and 𝑻𝒄 

 

Figure 12. Centerline adiabatic effectiveness for cases of 𝑻𝒄𝟏 = 𝑻𝒄𝟐 
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Measurements were also acquired with each row operating separately at their 

respective baseline ACR values. This also afforded an opportunity to examine flow 

uniformity. Figure 13 depicts contours of adiabatic effectiveness which represent 𝜂1 and 

𝜂2 plots; the three coolant holes in the region of interest have uniform performance.  The 

presence of those holes, however, generates a small hydrodynamic effect on the upstream 

coolant flow causing that flow to be nonuniform in the y direction in Figure 13 (left). 

 

 

 

Figure 13. 𝜼𝟏 (left), 𝜼𝟐 (right) 

By applying Eq (9) to the datasets plotted in Figure 13, 𝜂 was estimated using 

standard superposition for both rows blowing and plotted in Figure 14.  By visual 
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inspection, the estimated 𝜂 profile under superposition agrees well with the experimental 

findings shown in Figure 11. To more quantitatively evaluate the efficacy of 

superposition,  the difference between the superposition prediction and the measured 

values of  𝜂 is defined according to Eq (22). 

Δ𝜂 = 𝜂𝑠𝑢𝑝𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝜂𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (22) 

Contours of Δ𝜂 were constructed to more precisely reveal regions of relative 

accuracy and are shown in Figure 15. Positive values indicate that superposition has over-

predicted 𝜂 and negative values indicate the superposition underestimates effectiveness. 

The areas of least accuracy are within five hole diameters immediately downstream of the 

cooling holes, where superposition overpredicts effectiveness by up to 0.08. The regions 

between the holes tend to underpredict effectiveness, and the effect increases in the 

streamwise direction: beyond ten hole diameters, superposition often underpredicts 

effectiveness by up to 0.08. The areas of greatest accuracy are between the cooling holes 

and more than five hole diameters downstream of the cooling holes. Recall that the 

accuracy of superposition, broadly speaking, hinges on the validity of Eq (10) and the 

local variations exhibited in Figure 15 are a physical manifestation of this principle. 

When 𝜂 is area-averaged across the region of interest, �̅̅� can be calculated; Table 

1 lists values of �̅̅� for each case where 𝜉 = 1 as well as 𝜀𝜂, the uncertainty in 𝜂 associated 

with each case. For the present configuration, the regions in which superposition 

overestimates 𝜂 are averaged with the regions in which superposition underestimates 𝜂.  

The greatest difference between estimated and measured area-averages is Δ�̅̅� = 0.042, 

which is comparable to the uncertainty in 𝜂 expected for any particular point, i.e. 𝜀𝜂, 
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which is 0.036. This does not suggest that superposition is perfect—after all, it was seen 

that Δ𝜂 can vary in certain locations by up to ±0.08—but the net effect is that, in 

aggregate, the values of Δ�̅̅� are small enough that �̅̅� of the superposition estimate is a 

strong predictor of measured �̅̅�. 

 

Figure 14. Superposition estimate for  𝝃 = 𝟏,  𝑨𝑪𝑹𝟏 = 𝟎. 𝟓𝟎, 𝑨𝑪𝑹𝟐 = 𝟎. 𝟕𝟓 
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Figure 15. Contours of 𝚫𝜼 = 𝜼𝒔𝒖𝒑𝒆𝒓𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 − 𝜼𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 for various 𝑻∞ and 𝑻𝒄 

 

Table 1. Comparison of 𝝃 = 𝟏 cases to superposition estimate (�̅̅�𝒔𝒖𝒑𝒆𝒓 = 𝟎. 𝟓𝟔𝟖) 

𝑻∞ (K) 𝑻𝒄 (K) �̅̅�𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 𝚫�̅̅� 𝜺𝜼 

320 289 0.575 -0.007 0.018 

320 295 0.593 -0.025 0.022 

320 305 0.610 -0.042 0.036 

310 290 0.567 +0.002 0.027 

310 295 0.583 -0.015 0.036 
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2.2.3.2 Multiple Coolant Temperature Results 

Having established that the present geometry of interest and flow conditions are 

amenable to traditional superposition, attention turns to the new situation of present 

interest in which the coolant temperatures do not match.  Cases with 𝑇𝑐1 ≠ 𝑇𝑐2 were run 

with the baseline ACR values and �̂� was computed using Eq (14). To establish that �̂� is a 

function of 𝜉, four cases are compared in which 𝜉 values are nearly identical but values 

of 𝑇∞, 𝑇𝑐1, and 𝑇𝑐2 are different as shown in Table 2. This initial view is somewhat 

anecdotal with respect to 𝜉, but comprehensive with respect to the region of interest. A 

more comprehensive view of �̂� with respect to 𝜉 will follow. 

Table 2. Comparison cases with 𝝃 ≈ 𝟏. 𝟑 and 𝝃 ≈ 𝟎. 𝟖 

𝝃 𝑻∞ (𝐊) 𝑻𝒄𝟏 (𝐊) 𝑻𝒄𝟐 (𝐊) �̅̅̂� 𝒎𝒆𝒂𝒔
 �̅̅̂� 𝒔𝒖𝒑𝒆𝒓

 𝚫�̅̅̂� 

1.33 320.2 305.3 300.4 0.496 0.469 -0.028 

1.33 309.4 295.0 290.2 0.477 0.469 -0.008 

0.80 320.3 288.8 295.1 0.543 0.535 -0.008 

0.79 320.0 295.0 300.3 0.557 0.533 -0.023 

 

Due to the piecewise nature of �̂�, two cases each were selected for 𝜉 > 1 and 

 𝜉 < 1 to test validity of Eqs (20) and (21), respectively, and these cover 𝜉 ≈ 1.3 and  

𝜉 ≈ 0.8. A comparison in Table 2 indicates that for 𝜉 ≈ 1.3, values of �̅̅̂�  differ by less 

than 0.02; the differences are even smaller between the 𝜉 ≈ 0.8 cases. Contour plots of �̂� 

for the 𝜉 ≈ 1.3 cases are compared in Figure 16 and the two plots bear a strong 

qualitative resemblance.  

Similarly, contour plots of �̂� for the 𝜉 ≈ 0.8 cases are shown in Figure 17 and 

also bear a very strong likeness.  Aside from showing the independence of �̂� from the 
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choice of 𝑇∞, 𝑇𝑐1, and 𝑇𝑐2 for fixed 𝜉, a comparison of Figure 16 and Figure 17 allow one 

to clearly see that �̂� is indeed a strong function of 𝜉 as predicted earlier.  This is the first 

known demonstration of this effect in the literature. 

 

 

Figure 16. Comparison of cases with 𝝃 ≈  𝟏. 𝟑 

 

 

Figure 17. Comparison of cases with 𝝃 ≈ 𝟎. 𝟖 
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The two-temperature method of superposition in Eqs (20) and (21) was applied to 

the original 𝜂1 and 𝜂2 distributions from Figure 13 using corresponding values of 

 𝜉 = 1.33 and 𝜉 = 0.80. The results are plotted in Figure 18 and it is apparent that the 

superposition estimates for 𝜉 =  1.33 and 𝜉 =  0.80 are similar to the respective 

measured �̂� profiles. By subtracting �̂� for the two cases in Figure 16 (𝜉 = 1.33) from the 

corresponding superposition estimate in Figure 18, similar to the method of Eq (22), Δ�̂� 

values were determined and plotted in Figure 19. Similarly, Δ�̂� values were determined 

for the 𝜉 ≈ 0.8 cases and plotted in Figure 20.   

There is broad similarity between the trends of Δ�̂� evidenced in Figure 19 and 

Figure 20 and the trends of Δ𝜂 seen in Figure 15. The trends are the same as those 

observed in the Δ𝜂 plots of Figure 15. The superposition estimates of �̂� are closest to the 

measured values at least five hole diameters downstream of the row of holes, with broad 

swaths of |Δ�̂�| < 0.01. The estimates overpredict �̂� in regions within five diameters of 

the hole exits though typically by |Δ�̂�| < 0.05. Superposition underpredicts �̂� between 

holes, especially beyond five hole diameters downstream of the holes. This is most 

prominently seen in the white patch in the Figure 19 for 320.2 K, where plot blue area 

exceeds the color bar bounds; the minimum value is -0.087. To be clear, the 

shortcomings in the modified superposition theory are the same as those for conventional 

single-temperature superposition theory: hydrodynamic interactions between the rows 

reduce the accuracy of the estimates. For the present configuration, these appear most 

pronounced within five hole diameters of the hole exit, and beyond five hole diameters in 

the regions between the holes. Referring to Table 2, it is evident that Δ�̅̅̂� values are small 
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and therefore the two-temperature superposition estimates are fairly accurate in 

predicting area-averaged adiabatic effectiveness, at least for the baseline ACR values used 

in the present scenario. 

 

 

Figure 18. Superposition estimates of �̂� for 𝝃 = 𝟏. 𝟑𝟑 and 𝝃 = 𝟎. 𝟖𝟎;  

𝑨𝑪𝑹𝟏 = 𝟎. 𝟓𝟎,  𝑨𝑪𝑹𝟐 = 𝟎. 𝟕𝟓 

 

 

Figure 19. Comparison of 𝚫�̂� for cases with 𝝃 ≈ 𝟏. 𝟑 
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Figure 20. Comparison of 𝚫�̂� for cases with 𝝃 ≈ 𝟎. 𝟖 

The comparisons between �̅̅̂�𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑   and �̅̅̂�𝑠𝑢𝑝𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 can be extended to every 

experimental case, for  𝑇∞ = 310 K and 𝑇∞ = 320 K. An aggregate of these results is 

plotted together in Figure 21. The resulting “spike” shape is quite distinctive and is a 

consequence of the piecewise function used to compute �̂�: for 𝜉 > 1, the difference 

 𝑇∞ − 𝑇𝑎𝑤 is nondimensionalized by 𝑇∞ − 𝑇𝑐2, while for 𝜉 < 1,  it is nondimensionalized 

by 𝑇∞ − 𝑇𝑐1. Nevertheless, Figure 21 indicates that �̅̅̂� is a very strong function of 𝜉 and 

appears essentially independent of 𝑇∞. Superposition provides fairly accurate estimates—

generally within 0.03—even out to extreme values of 𝜉 = 0.4 and 𝜉 = 4.0. 
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Figure 21. �̅̅̂� vs. 𝝃 for measured data and superposition estimates 

However, the variation of �̅̅̂�  values for the cases of 𝜉 ≈ 1 deserves additional 

analysis; a zoomed-in version of Figure 21 centered on these five cases is shown in 

Figure 22 along with error bars corresponding to the uncertainty in 𝜂, i.e. 𝜀𝜂. These are 

the verification cases shown above in Figure 11, Figure 12, and Table 1, and the values of 

𝜀𝜂 are drawn from Table 1. For those particular data points, the values of 𝜉 were bounded 

by 1.00 < 𝜉 < 1.01. The greatest and least measured �̅̅̂�  values differ by 0.044; however, 

the uncertainty of measurements made with a large 𝑇∞ − 𝑇𝑟𝑒𝑓 is smaller than that of 

measurements with a small 𝑇∞ − 𝑇𝑟𝑒𝑓. The error bars of each sample overlap, although 

the samples with highest confidence lie closest to the line of superposition estimates and 

therefore imply that the new method of superposition provides a high fidelity �̅̅̂�  estimate. 
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Figure 22. �̅̅̂� vs. 𝝃 for measured data and superposition estimates near 𝝃 = 𝟏 

Returning to Figure 21, the cases where 𝜉 < 1 offer an interesting insight in that 

the trend implies that adiabatic effectiveness decreases as 𝜉 decreases below 1.0. This 

would be the case if, for example, coolant injected from the downstream row had passed 

through a serpentine internal cooling passage and heated up to a temperature greater than 

that of the upstream row. The decrease in �̂� with decreasing 𝜉 occurs simply because 

warmer coolant issues from the downstream row of holes providing less of a benefit than 

if that downstream row issued coolant at the same lower temperature as the upstream 

coolant injection. 

More interesting is the observation that if the value of 𝜉 becomes too low, sites 

within a region of interest downstream of the second row would be better off with only 

the first row issuing, i.e. the second row becomes altogether a detriment. This is 

demonstrated with a careful review of Figure 23, which depicts the value of �̂� at a 

location downstream of a coolant hole in the second row—in this case, the centerline 
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location at 𝑥/𝐷 = 7.0, 𝑦/𝐷 = 0. Compare the value of 𝜂1, drawn as a horizontal red 

dashed line, to the values of �̂� for 𝜉 < 1. When �̂� decreases below 𝜂1, the downstream 

row actually introduces a negative effect. It is important to notice that �̂� and 𝜂1 are both 

computed by referencing the quantity (𝑇∞ − 𝑇𝑐1) so their comparison is meaningful, 

although the parameter 𝜉 is meaningless with respect to 𝜂1 because 𝜂1 assumes only the 

upstream row is issuing coolant. The measured data at the location of interest suggests 

that �̂� = 𝜂1 at 𝜉 ≈ 0.60, while the superposition curve suggests �̂� = 𝜂1 at 𝜉 ≈ 0.50. 

 

Figure 23. �̂� at 𝒙/𝑫 = 𝟕. 𝟎, 𝒚/𝑫 = 𝟎. 𝟎, baseline ACR values 

The very low 𝜉 cases yield distinctive �̂� contour plots, as shown in Figure 24. To 

more fully orient the reader to this unusual case, the plot is zoomed out slightly to also 

show the slot on the first left side and more fully show the gaps between the cooling 

holes. Regions of low �̂� are visible immediately downstream of the cooling holes, with 
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higher �̂� values in between holes, quite opposite the usual behavior of adiabatic 

effectiveness downstream of cooling holes. 

 

Figure 24. Contours of �̂� for 𝝃 = 𝟎. 𝟒𝟐;  𝑨𝑪𝑹𝟏 = 𝟎. 𝟓𝟎, 𝑨𝑪𝑹𝟐 = 𝟎. 𝟕𝟓 

To interpret this low 𝜉 behavior in context, at engine conditions with a nominal 

value of 𝑇∞ = 2000 K, one possible 𝜉 = 0.60 equivalency is to have an upstream row 

coolant exit temperature of 𝑇𝑐1 = 900 K and a downstream row coolant exit temperature 

of 𝑇𝑐2 = 1340 K. This would be quite an extreme situation, and publishable data on the 

realistic upper and lower bounds of 𝜉 are not available at this time. However, the point 

remains that there could be circumstances under which the second row of coolant holes 
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may detract from overall cooling performance. That is, even though Tc2 is less than T∞, 

blowing from the second row could have detrimental effects.  That situation should be 

avoided perhaps by routing that warmer coolant through the upstream row, if such an 

option were available without altering the reason for the coolant temperature difference in 

the first place.  Nevertheless, the value of 𝜉 under which these conditions exist would 

depend upon the coolant hole configuration and ACR, and also varies spatially on the 

airfoil surface. 

One will notice in Figure 23 that �̂� also falls below 𝜂1 at large 𝜉 values as well.  

However, some care should be taken in interpreting Figure 23 with respect to 𝜉 values 

greater than 1.0. At first glance, the plot implies that there is a 𝜉 value above which the 

second row of cooling holes detracts from cooling performance; in Figure 23, this is at 

𝜉 ≈ 3.5. However, this would be an erroneous conclusion since 𝜂1 is referenced to the 

quantity 𝑇∞ − 𝑇𝑐1, while �̂� is referenced to 𝑇∞ − 𝑇𝑐2 for 𝜉 > 1; therefore, a direct 

comparison between the two would not be appropriate. Instead, �̂� for 𝜉 > 1 could be 

compared to 𝜂2, and it can be found by examining Eq (20) that �̂� asymptotically 

approaches 𝜂2 as 𝑇𝑐1 approaches 𝑇∞. Therefore, any coolant from the upstream row with 

𝑇𝑐1 < 𝑇∞ benefits �̂� with respect to 𝜂2. 

Figure 23 revealed that the measured �̂� values track the superposition estimates 

fairly well at 𝑥/𝐷 = 7.0, 𝑦/𝐷 = 0.0, although this had been anticipated after 

examination of Figure 19 and Figure 20. Even for a complex temperature scenario with 

an extreme 𝜉 value, the revised superposition method provides a qualitatively 

representative estimate of the �̂� distribution, as seen in Figure 25, with local accuracy 

between −0.02 < Δ�̂� < 0.06 (Δ�̂� contour plot not shown). 
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Figure 25. Contours of superposition estimates for 𝝃 = 𝟎. 𝟒𝟐;  

 𝑨𝑪𝑹𝟏 = 𝟎. 𝟓𝟎, 𝑨𝑪𝑹𝟐 = 𝟎. 𝟕𝟓 

Because superposition holds so well under the present circumstances, it is reasonable to 

use superposition to estimate—for every location in the region of interest—the minimum 

value of 𝜉 at which the second row would still be expected to bring a benefit; this benefit 

is present when �̂� ≥ 𝜂1. Recalling Eq (21), it may be seen that the substitution of �̂� = 𝜂1 

yields the solution: 𝜉 = 𝜂1.  In other words, such a field of minimum 𝜉 values has already 

been estimated with the 𝜂1 calculations presented in Figure 13, and one must merely 

replace 𝜂 with 𝜉 to arrive at the answer. The interpretation is that any site in the 𝜂1 field 
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may be vulnerable to degradation if the temperature of the coolant issuing from the 

second row yields a 𝜉 value less than 𝜂1; whether this is manifested at any site in the 

region of interest depends of course on the actual locations of downstream holes. 

For the present scenario, the minimum 𝜂1 value throughout the region of interest 

shown in Figure 13 is 𝜂1 = 0.68 (Figure 13 upper left corner), although the values 

downstream of the holes are closer to 𝜂1 = 0.66. Thus, one would expect a second row of 

cooling holes with 𝜉 > 0.68 to improve �̂� in comparison to 𝜂1. This is precisely what is 

observed in Figure 17 for 𝜉 = 0.80: �̂� reaches a maximum of �̂� = 0.76 at the exits of the 

downstream holes and nowhere is �̂� < 𝜂1. Contrariwise, one would expect for 𝜉 < 0.68 

that one would find regions where �̂� < 𝜂1 and this is plainly evident in Figure 24. A 

minimum of �̂� = 0.40 is found at the hole exits, and wide swaths of �̂� < 0.45 are also 

visible. 

This is further corroborated by examining the 𝜂1 distribution in Figure 13 at 

𝑥/𝐷 = 7.0, 𝑦/𝐷 = 0.0, it is found that 𝜂1 = 0.500. This aligns well with the value of 𝜉 

at which �̂� drops below 𝜂1 as seen in Figure 23, which appears to be 𝜉 ≈ 0.50. This is a 

strikingly simple method of estimating the effects of coolant issuing at multiple 

temperatures, assuming one is able to estimate the temperatures of the coolant issuing 

from each row. 

2.2.3.3 Applicability of these findings 

These findings are expected to remain valid for a much broader set of film cooling 

scenarios than were investigated in this study. Recall that the fundamental assumption of 

superposition, shown in Eq. (10), is that the freestream temperature perceived by the 
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downstream row is approximately equal to the adiabatic wall temperature when only the 

upstream row is issuing coolant. This approximation is reasonable in the absence of 

significant hydrodynamic disturbances such as cooling jet separation or secondary flows 

resulting from the interaction between successive rows. 

The proposed theory relies on the same assumption as conventional superposition 

and has been experimentally validated for the specific case of two rows. In fact, the 

conventional superposition theory—in which a single coolant temperature is assumed—

could be considered a special case of the more general superposition theory presented in 

this paper. In essence, if conventional superposition is found to be valid for a cooling 

scenario, then the multi-temperature extension will also be valid. For example, based on 

the findings of Saumweber [22], this would include the more familiar geometry of a 

double-row of fan-shaped cooling holes. 

2.2.3.4 Extending the Theory to Multiple Rows 

The present theory can also be extended to an unlimited number of rows, each 

issuing coolant at a different temperature. The original generalization of superposition to 

𝑛 rows comes from Muska [20], in Eq (23), where 𝜂0 = 0. Superposition estimates are 

then represented as expressions consisting of several terms that include all product 

combinations of the rows’ 𝜂𝑖 values. For example, expanding the expression for 𝑛 = 2 

rows results in Eq (12). 

𝜂 = ∑𝜂𝑖 ∏(1 − 𝜂𝑗)

𝑖−1

𝑗=0

𝑛

𝑖=1

 (23) 
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The basic form of the generalized superposition theory with multiple coolant 

temperatures, given in Eq (24) is similar. However, each term in the expanded expression 

will have one leading coefficient, 𝜉𝑘, for each row 𝑘, defined by Eq (25), where 𝑇𝑟𝑒𝑓 is 

still defined as the coldest of the 𝑛 coolant temperatures. There are more than 𝑛 terms in 

a superposition expression, but only 𝑛 different coefficient values, and a rules-based 

approach is necessary to assign coefficient values to the terms in the expression. The rule 

is actually quite simple: the value of 𝜉𝑘 for any term corresponds to the furthest upstream 

row involved in that term. For example, in a triple row superposition expression, one 

would find the product term 𝜂1𝜂2𝜂3, which is led by the coefficient corresponding to row 

1, i.e. 𝜉1. The complete triple row expression is given in Eq (26). 

�̂� = 𝜉𝑘 ∑𝜂𝑖 ∏(1 − 𝜂𝑗)

𝑖−1

𝑗=0

𝑛

𝑖=1

 (24) 

 

𝜉𝑘 ≡
𝑇∞ − 𝑇𝑐,𝑘

𝑇∞ − 𝑇𝑟𝑒𝑓
 (25) 

 

�̂� = 𝜉1𝜂1 + 𝜉2𝜂2 + 𝜉3𝜂3 − 𝜉1𝜂1𝜂2 − 𝜉1𝜂1𝜂3 − 𝜉2𝜂2𝜂3 + 𝜉1𝜂1𝜂2𝜂3 (26) 

With a double row, a single value of 𝜉 as defined in Eqn (20) can be used for a 

simplified form. It can be verified, for the case in which Row 1 has the colder coolant, 

that 𝜉1 = 1 and the expression reduces to Eq (21) (with no subscript on 𝜉2). One must 

exercise care in discerning that in Eq (20), the value of 𝜉 is actually the reciprocal of 𝜉1 

that would be defined by Eqn (25). For the analysis of more than two rows, it is essential 

to use the more complete notation with 𝜉𝑘 coefficients. 
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2.2.3.5 Conclusions regarding adiabatic effectiveness 

The present research adds to the body of knowledge through its development of 

the analytical tools needed to evaluate adiabatic effectiveness in a region under the 

influence of multiple rows of coolant at different temperatures. The theory that was 

developed predicted that the adiabatic effectiveness would be a function of a new 

nondimensional parameter, 𝜉, which characterizes the two coolant temperatures relative 

to the freestream temperature. Additionally, a new superposition technique was devised 

that would allow prediction of the adiabatic effectiveness under conditions for which 

Tc1 ≠ Tc2. 

By independently varying the coolant temperatures issuing from a double row 

cooling configuration, this study experimentally explored the effect of dual-temperature 

coolant configurations on adiabatic effectiveness. These measurements were made using 

consistent, baseline ACR values for coolant injection, and it was first demonstrated that 

the experimental setup and data reduction methodology yield results consistent with film 

cooling literature: that adiabatic effectiveness is independent of the coolant and 

freestream temperature, provided the various cases do not have temperature differences 

large enough to have significant variable property effects. 

Next, it was demonstrated that the legacy method of superposition can be used to 

estimate 𝜂 for this configuration. It should be noted that there were regions identified 

where the superposition under- or over-estimated local 𝜂 by up to 0.08, but these 

variations were largely eliminated through the use of area-averaging. Having confirmed 

that the necessary condition of applicability of conventional superposition to the film 

cooling configuration, the new superposition technique was confirmed across a wide 
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range of 𝜉 values, achieved through different combinations of Tc1, Tc2, and T∞. The 

experimental study revealed that revised adiabatic effectiveness as computed for a dual-

temperature cooling scenario, �̂�, is indeed a function of 𝜉, as anticipated from theoretical 

development. The maximum value of �̂� occurs at 𝜉 = 1 and corresponds to both coolant 

streams having identical temperatures. 

It was further found that adiabatic effectiveness estimates derived from the new 

superposition methodology described in this dissertation share strong agreement with the 

experimental data. This was found to be true in terms of site-specific performance within 

a region of interest and in aggregate by computing �̅̅̂� as an area-average across the region 

of interest. The differences in �̂� between superposition estimates and measured quantities 

were examined for cases with 𝜉 > 1 and 𝜉 < 1 and were found to be qualitatively similar 

to those for 𝜉 = 1. 

It was discovered that in situations with warmer coolant issuing from the 

downstream row, it is possible to encounter a circumstance in which the downstream 

row, in combination with the upstream row, yields poorer adiabatic effectiveness than 

that of the upstream row alone. It was found that a minimum acceptable 𝜉 can be 

computed for every site within a region of interest; if the value of 𝜉 for the cooling 

scenario drops below the minimum acceptable value at any site, then one may expect that 

adiabatic effectiveness at that site will be worse than for single-row cooling. By applying 

superposition theory, it was found that the minimum acceptable value of 𝜉 can be closely 

approximated with the single row measurement of 𝜂1.  

Finally, the theory was extended from the double row configuration to an 

arbitrary number of rows with different coolant temperatures. Because the underlying 
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assumptions are identical between conventional superposition theory—in which all 

coolant temperatures are modeled as equal—and this extended theory with different 

coolant temperatures, it is expected that this theory will be valid for any film cooling 

scenario in which conventional superposition is found to be valid. 
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2.3 Overall Effectiveness with Two Local Coolant Temperatures 

A logical next step in the investigation of film cooling effectiveness is the evaluation 

of overall effectiveness. As was observed in the literature review, no research exists 

describing overall effectiveness in the presence of two local coolant temperatures and 

hence this is an important step in determining the utility of vortex tubes in film cooling 

scenarios. Knowledge of the overall effectiveness distribution also has some immediate 

practical benefits: it can be used to estimate surface temperatures and, implicitly, surface 

temperature gradients for a given scenario. 

2.3.1 Two-Temperature Analytical Model 

For the case with a single local coolant temperature, such as the double row 

shown in Figure 26, Eq (13) remains applicable. However, the case with two local 

coolant temperatures may be depicted as the double row shown in Figure 27. Here, it is 

not so straightforward to use Eq (13) and it becomes necessary to decide a value for the 

internal coolant temperature, 𝑇𝑐,𝑖. The proposed approach is to determine an enthalpy-

averaged mean temperature from the two coolant streams, defined in Eq (27), where 𝜇 is 

the relative fraction of coolant enthalpy advected from the upstream row, defined in Eq 

(28).  

For cases in which the temperatures of the coolant streams are not drastically 

different, 𝜇 approximates a mass fraction of coolant injecting from the upstream row. The 

coolant fraction, 𝜇, bears a relationship to the advective capacity ratio (ACR) of the two 

rows. ACR, as proposed by Rutledge and Polanka [17], shown in Eq (29). Fischer et al. 

[35] showed that by accounting for specific heat differences between the freestream and 
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the coolant, ACR was far superior to blowing ratio and the momentum flux ratio at 

scaling adiabatic effectiveness downstream of a 7-7-7 cooling hole. 

 

Figure 26. Double row cooling configuration with a single coolant temperature 

 

 

Figure 27. Double row cooling configuration with two coolant temperatures 

𝑇𝑚𝑒𝑎𝑛 = 𝜇𝑇𝑐,1 + (1 − 𝜇)𝑇𝑐,2 (27) 

 

𝜇 ≡
�̇�𝑐,1𝐶𝑝,𝑐,1

�̇�𝑐,1𝐶𝑝,𝑐,1 + �̇�𝑐,2𝐶𝑝,𝑐,2
 (28) 

 

𝐴𝐶𝑅 =
𝜌𝑐𝐶𝑝,𝑐𝑈𝑐

𝜌∞𝐶𝑝,∞𝑈∞
 (29) 

 

When the mass flow rate of coolant issuing from a row is expressed in the 

familiar terms of the one-dimensional continuity equation, that is, Eq (30), it can be 

found with some algebraic manipulation that 𝜇 may be expressed in terms of the ACR 
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values of each row and the total cross-sectional areas of the respective rows, as in Eq 

(31). If the two rows use identical holes, the area ratio is simply the ratio of the number of 

holes in each row. For a theoretical case with two staggered rows of infinite width and 

identical holes, 𝐴𝑐,2/𝐴𝑐,1 → 1 and the coolant fraction reduces to Eq (32). 

�̇�𝑐 = 𝜌𝑐𝐴𝑐𝑈𝑐 (30) 

 

𝜇 =
1

𝐴𝑐,2𝐴𝐶𝑅2

𝐴𝑐,1𝐴𝐶𝑅1
+ 1

 
(31) 

 

𝜇 =
1

𝐴𝐶𝑅2
𝐴𝐶𝑅1

+ 1
 

(32) 

The representation of coolant fraction in terms of ACR is useful although in 

practice, of course, such an infinitely extended row of holes cannot exist. However, it can 

be approximated when 𝐴𝑐,2/𝐴𝑐,1 ≈ 1 and it can be shown that edge effects are 

minimized. The net effect is that mean temperature, 𝑇𝑚𝑒𝑎𝑛, can be computed as a 

function of the two rows’ temperatures and their respective ACRs. 

The enthalpy-averaged mean temperature is used in place of 𝑇𝑐,𝑖 in a revised 

expression for overall effectiveness, given by Eq (33). There remains some ambiguity 

though, since 𝑇𝑚𝑒𝑎𝑛 is not unique: even while holding ACR constant, infinite 

combinations of 𝑇𝑐,1 and 𝑇𝑐,2 exist for a given 𝑇𝑚𝑒𝑎𝑛. Another parameter must be 

introduced to measure the relative difference between the two coolant temperatures, since 

it is hypothesized that the difference between the two coolant temperatures is of interest; 



52 

it would be desired for a robust model that �̂� is not dependent on 𝑇𝑚𝑒𝑎𝑛 in the same sense 

that 𝜙 should not depend on 𝑇𝑐,𝑖. The coolant temperature variation parameter, 𝜁, which 

quantifies the dimensionless difference between coolant temperatures, is defined in Eq 

(34). The expression for 𝜁 also includes terms representing the difference between the 

coolant temperatures and the mean temperature, defined in Eq (35) and Eq (36). Using 

the convention in Eq (34), positive values of 𝜁 correspond to the upstream row issuing 

the colder coolant and the downstream row issuing the warmer coolant, while negative 

values of 𝜁 reflect the opposite. 

�̂� =
𝑇∞ − 𝑇𝑠

𝑇∞ − 𝑇𝑚𝑒𝑎𝑛
 (33) 

 

𝜁 =
(1 − 𝜇)Δ𝑇𝑐,2 − 𝜇Δ𝑇𝑐,1

𝑇∞ − 𝑇𝑚𝑒𝑎𝑛
 (34) 

 

Δ𝑇𝑐,1 = 𝑇𝑐,1 − 𝑇𝑚𝑒𝑎𝑛 (35) 

Δ𝑇𝑐,2 = 𝑇𝑐,2 − 𝑇𝑚𝑒𝑎𝑛 (36) 

Eq (34) was constructed to weight the temperature differences according to the 

same enthalpy weighting parameter, 𝜇, used in determining the mean temperature. While 

there remains much work to be done between the film cooling and any eventual 

application to vortex tubes, this structure lends itself well to the eventual application of 

vortex tubes because 𝜇 would be expected to be very similar to a key vortex tube 

parameter known as the cold fraction. The second term in the numerator, 𝜇Δ𝑇𝑐,1, is 

subtracted from the first term to ensure that both terms in the numerator contribute to the 
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overall magnitude of 𝜁, although the sign of 𝜁 depends on whether colder coolant is being 

exhausted from the upstream or downstream row. The principal objective of the 

following experimental work is to determine the extent to which the dual-temperature 

overall effectiveness, �̂�, is a function of the coolant temperature variation parameter, 𝜁, 

for different values of 𝑇𝑚𝑒𝑎𝑛, two values of ACR, and two row spacings. 

2.3.2 Experimental Methodology 

Two new wind tunnel models were constructed to investigate the effect of 

multiple coolant temperatures on overall effectiveness. Each model consisted of a flat 

plate of Inconel 718 mounted in a frame of high-density foam (Last-a-FoamTM FR-7120). 

The Inconel plates were 6.4 mm (0.25 in) thick and each had two rows of laid-back, fan-

shaped cooling holes of the 7-7-7 design prescribed by Schroeder and Thole [15] with a 

metering diameter of D = 2.1 mm (1/12 in). Each row of holes was evenly spaced with a 

pitch of 6 D, with 12 holes in the upstream row and 13 holes in the downstream row. This 

design was selected to be a close analog to an infinite row, with 𝐴𝑐,2/𝐴𝑐,1 = 1.08 and 

anticipated minimal edge effects at a region in the lateral middle, the area of interest. As 

such, Eq (32) was used in this paper to calculate 𝜇 since non-unity effects of 𝐴𝑐,2/𝐴𝑐,1 

would be confined outside the region of interest. The plates differed only in the spacing 

between the two rows; the first model featured a close spacing of 7 D while the second 

model had more distantly spaced rows at 15 D. The configurations are shown in greater 

detail in Figure 28 and Figure 29. 
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Figure 28. Test rig side view with double row spacing of 7 D 

 

Figure 29. Test rig side view with double row spacing of 15 D 

Two plenums were installed behind the Inconel model to provide backside 

cooling and separately feed the two rows of cooling holes at independently controlled 
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temperatures. This permitted control of the coolant temperature variation parameter, 𝜁. 

Each plenum was instrumented with thermocouples to measure the coolant temperature 

in the internal passages. The plenums were constructed from low-density, low thermal 

conductivity foam (k = 0.03 W/m-K); this foam also formed a sealed thermal barrier 

between the two plenums. Coolant was supplied to each plenum via a 6.4 mm (0.25 in) 

diameter copper feeder bar with 1.6 mm (1/16 in) holes. This configuration provided for 

some impingement in the immediate vicinity of the feeder bar and conventional backside 

convective cooling everywhere else. 

The plenum configurations differ between the two models, as shown in Figure 30. 

The model with a row spacing of 15 D features a fairly symmetrical configuration in that 

the two plenums are identically sized and are positioned approximately in the streamwise 

middle of the region of interest. The model with a row spacing of 7 D features a short 

upstream plenum and a long downstream plenum, in which the backside coolant flows 

upstream from the feeder bar before being exhausted through the film cooling holes. The 

back of the Inconel models apart from the plenums was insulated with low density foam 

such that the coolant’s effect would be largely confined to a region visible to an infrared 

camera. 
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Figure 30. Plenum configurations for models  

with row spacing of 15 D (top), 7 D (bottom) 

Because the plenums were to be maintained at different temperatures, i.e. 𝑇𝑐,1 and 

𝑇𝑐,2, some heat transfer across this barrier was unavoidable and expected to be a function 

of the difference in plenum temperatures. This heat transfer would be expected, in turn, to 

cause a slight change in temperature, 𝛿𝑇, to the coolant in the plenums. It is important to 

estimate and minimize this effect. Using a one-dimensional heat transfer model based on 

the resistance analogy and assuming equal heat transfer coefficients on each side of the 

barrier, the heat transfer between the plenums can be approximated using Eq (37), where 

𝐿 is the thickness of the plenum barrier and 𝐴 is its cross-sectional area. The change in 

coolant temperature, 𝛿𝑇, attributable to this heat transfer can be estimated using Eq (38). 
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The change in coolant temperature to either side as a fraction of the difference in coolant 

temperatures can then be expressed using Eq (39). 

𝑞 =
(𝑇𝑐,1 − 𝑇𝑐,2)

𝐿
𝑘𝐴

+
2
ℎ𝐴

 (37) 

 

𝑞 = �̇�𝑐𝐶𝑝,𝑐𝛿𝑇 (38) 

 

𝛿𝑇

𝑇𝑐,1 − 𝑇𝑐,2
=

𝑘𝐴

�̇�𝑐𝐶𝑝 (𝐿 +
2𝑘
ℎ

)
 (39) 

The thickness of the barrier, 𝐿, in both models was 8.9 mm (0.35 in) and the 

cross-sectional area, 𝐴, was 0.0068 m2 (10.60 in2). A worst-case analysis, in which     

ℎ → ∞ while using an ACR of 1.0 for the upstream row (into a freestream ReD of 1100), 

reveals that 
𝛿𝑇

𝑇𝑐,1−𝑇𝑐,2
= 0.05. For a typical experimental case with 𝜇 = 0.5 and             

𝑇∞ − 𝑇𝑚𝑒𝑎𝑛 = 30 K, this contributes an error of approximately 0.001 to the measurements 

of 𝜁 (which varied between −0.26 < 𝜁 < 0.27 in the present work). This suggests that 

the practical contribution of heat transfer across the plenum barrier is quite small, and 

even smaller for cases with an ACR of 2.0. 

The Inconel and foam test assemblies were installed in a low-speed, open-loop, 

temperature-controlled wind tunnel in a manner similar to Fischer et al. [35] and in the 

afterbody of the 8.89 cm diameter leading edge model of Wiese et al. [36], as seen in 

Figure 31. The freestream temperature was measured with a thermocouple and the 

freestream velocity was monitored with a pitot-static system. The freestream Reynolds 



58 

number based on cooling hole metering diameter, ReD, was monitored and controlled to 

stay within 2% of 1100 with a turbulence intensity of 0.67%. 

 

Figure 31. Tunnel test section configuration 

An infrared camera was positioned with a line of sight through a viewing window 

to the Inconel plate.  A region of interest with minimal edge effects was selected for this 

study with a lateral extent of -9.0 < y/D < 9.0. The region of interest had a streamwise 

extent of 100 diameters, with an x-origin located at the trailing edge of the downstream 

row of holes. The position of the downstream row of holes within the area differed 

slightly between models and hence the x/D coordinates also differed slightly between 

model; the entire extent was from -47 < x/D < 53 or -56 < x/D < 44 as seen in Figure 28 

and Figure 29.  

Due to constraints imposed by the size of the viewing window and focal length of 

the camera, the entire streamwise extent of the region of interest was not visible in a 

single image.  Instead, measurements were repeated in successive experiments with the 

camera repositioned to collect overlapping upstream and downstream views, which were 

brought together in postprocessing to form a composite image. In addition to broadening 

the net field of view, these successive tests served as checks for day-to-day repeatability. 
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ACR values of 1.0 and 2.0 were used, and coolant was always injected from both 

rows at the same ACR, which kept a constant value of 𝜇 = 0.50. Air was used for the 

coolant and freestream; the freestream temperature was held at 330K. By varying 𝑇𝑐1 and 

𝑇𝑐2 between 294 K and 318 K, 𝑇𝑚𝑒𝑎𝑛 was varied from 297 K to 316 K. The coolant 

temperature variation parameter ranged from −0.26 < 𝜁 < 0.27. 

Three thermocouples were mounted on the surface of the model directly 

downstream of the cooling holes at 𝑦/𝐷 ≈ −18, a location which permitted variation of 

surface temperature via the cooling holes but which did not affect the region of interest. 

Surface temperatures measured with thermocouples were then mapped to infrared counts 

from the camera to produce a calibration curve for the IR imagery, as shown in Figure 32. 

 

Figure 32. Infrared camera thermal calibration curve 

After experimentation, the thermal calibration curve was applied to the IR 

imagery to estimate surface temperatures across the region of interest. Because all data 
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was taken under similar ambient conditions on successive days with a room temperature 

of approximately 300 K, and only a single tunnel freestream temperature was used, the 

same IR calibration curve was applied to all data. Due to time restrictions—taking data 

for all necessary 𝜁 values for a single ACR and camera angle took approximately 15 

hours each day—the thermal calibration curve could not be re-accomplished each day.  

Plenum thermocouples and computed ACR values were used to compute 𝜇, 

𝑇𝑚𝑒𝑎𝑛, and 𝜁. Derived surface temperatures, the computed 𝑇𝑚𝑒𝑎𝑛, and the measured 

freestream temperature were then used with Eq (33) to compute values of �̂�. The 

accuracy of the thermocouples was 0.5 K, and the uncertainty of the IR measurements 

was also found to be 0.5 K. The uncertainty of �̂� within the region of interest, 𝜀�̂�, was 

computed using the method of Kline and McClintock [37]. It was found that  𝜀�̂� is most 

strongly a function of the quantity 𝑇∞ − 𝑇𝑚𝑒𝑎𝑛 where small values of 𝑇∞ − 𝑇𝑚𝑒𝑎𝑛 yield 

the greatest 𝜀 values; these generally occurred for the ACR = 1.0 cases when lower mass 

flow rates yielded higher mean coolant temperatures. The largest value of  𝜀�̂� for ACR = 

1.0 was 0.040 and corresponded to 𝑇∞ − 𝑇𝑚𝑒𝑎𝑛 = 14.5 K. The largest value of 𝜀�̂� for 

ACR = 2.0 was 0.024 and corresponded to 𝑇∞ − 𝑇𝑚𝑒𝑎𝑛 = 24.3 K.  

A significant contributor to repeatability—which cannot be explicitly captured in 

estimates of uncertainty—is the need for a steady-state condition when taking data. A 

transient condition may introduce errors in computed �̂�, which are difficult to quantify. 

For this reason, experimental conditions were permitted to stabilize prior to sampling—

typically 25 minutes or more for each test point; steady-state conditions were determined 

by examining the time history of thermocouples mounted on the test article surface. 
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Repeatability was confirmed with several experiments performed on different days with 

ACR = 2 and multiple values of 𝜁.  The worst-case repeatability in spatially resolved �̂� 

was within 0.025.  Additionally, it should be noted that the worst-case repeatability was 

obtained with an experiment employing a different 𝑇𝑚𝑒𝑎𝑛. While constant property film 

cooling theory suggests that 𝜙 (or adiabatic effectiveness, 𝜂) is not a function of 𝑇∞ − 𝑇𝑐 

(or 𝑇∞ − 𝑇𝑚𝑒𝑎𝑛), smaller values of 𝑇∞ − 𝑇𝑐 tend to cause greater experimental 

uncertainty. 

 

2.3.3 Results and Discussion 

2.3.3.1 Double Row, Double Coolant Temperature Experimental Results 

This study begins by examining the model with 15 D row spacing, using the 

downstream camera view across -30 < x/D < 44. Using an ACR of 2.0, 𝑇∞ = 330 K, and 

mean temperatures near 300 K and 305 K, �̂� was computed for three 𝜁 values: 0.1, 0.0, 

and -0.1. Conditions for these six cases are summarized in Table 3. 

Table 3. Cases evaluating temperature dependence 

Case  𝜻 𝑻𝒎𝒆𝒂𝒏 (K) 𝑻𝒄𝟏 (K) 𝑻𝒄𝟐 (K) 𝝁 ACR 

1 0.103 299.7 296.6 302.9 0.497 2.0 

2 0.100 304.9 302.4 307.5 0.500 2.0 

3 -0.003 300.4 300.5 300.3 0.497 2.0 

4 0.000 304.8 304.8 304.8 0.499 2.0 

5 -0.102 298.0 301.3 294.8 0.498 2.0 

6 -0.103 305.9 308.4 303.4 0.498 2.0 

 

An examination of the results, shown in Figure 33, reveals strong similarities 

between the �̂� plots for a given 𝜁 value, irrespective of mean temperature. The 

comparisons between Cases 1 and 2 as well as Cases 5 and 6 (𝜁 = 0.1 and 𝜁 = −0.1, 
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respectively) indicate extremely strong agreement: when  𝜁 = 0.1, the two cases agree to 

within ±0.005 for virtually the entire frame. For Cases 3 and 4, in which 𝜁 = 0.0, the �̂� 

values between the two cases are within ±0.025 and this represents the contrast with the 

greatest differences1. The strong agreement between results for any given 𝜁 value 

suggests two encouraging findings: first that �̂� appears to not be a function of mean 

temperature; second, that the repeatability of �̂� as a function of 𝜁 was also reliable. 

The invariance of �̂� with 𝑇𝑚𝑒𝑎𝑛is expected for the same reason that 𝜙 is invariant 

with 𝑇𝑐. This is simply a consequence of 𝜙 being the appropriate nondimensionalization 

of the surface temperature, 𝑇𝑠, for constant property flow since for such a situation the 

relation between 𝑇𝑠, 𝑇∞ and 𝑇𝑐 is linear.  This fundamental independence of cooling 

effectiveness with selection of 𝑇∞ and 𝑇𝑐 is a convenience upon which many an 

experimentalist has come to rely since accounting for variable property effects present in 

real engines can generally be accomplished through proper coolant flow rate scaling. 

 

                                                 
1 The differences between Cases 3 and 4 are not, however, as large as the contours in Figure 33 seem to suggest; rather, the �̂� 

values in the region between the two rows of holes are close to the contours. Thus, small differences appear magnified in the plot: Case 3 

appears to feature a wide swath between rows where 0.70 < �̂� < 0.75, while Case 4 sees only a tiny region of comparable values 

immediately upstream of the middle hole in the downstream row. To illustrate this point, at the location x/D = -3.4, y/D = 3.0, midway 

between the upstream breakout of two holes in the downstream row (marked in Figure 33 with a red x), �̂� = 0.708 for Case 3 and     

�̂� = 0.690 for Case 4—a minor difference. Detailed analysis of the region confirms this trend. 
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Figure 33. �̂� for various 𝜻 and 𝑻𝒎𝒆𝒂𝒏, 15 D row spacing 

An important deviation from the generally accepted temperature independence of 

cooling effectiveness becomes apparent when multiple coolant temperatures are present.  

Indeed, as Figure 33 demonstrates, �̂� depends upon 𝜁. Regions of increased cooling 
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effectiveness are shifted upstream (to the left) with increasing 𝜁 values. This is an 

expected result, since positive 𝜁 values correspond to colder coolant being exhausted 

upstream and negative 𝜁 values being exhausted downstream, but it also highlights an 

important distinction between the �̂� parameter developed in this dissertation and the 

conventional parameter, 𝜙.  

The relationship between �̂� and 𝜁 has thus far been demonstrated 

comprehensively with respect to the region of interest, but anecdotally with respect to 𝜁. 

While these findings illuminate a fundamental characteristic of the variation of �̂� as a 

function of 𝜁, it would be of great practical interest to better understand the mechanics of 

this relationship. For this, it is instructive to compile plots of laterally-averaged �̂�, i.e. �̅̂�, 

across the region of interest for an ACR of 2.0 and a variety of 𝜁 values. These are plotted 

for the 15 D row spacing model in Figure 34 and for the 7 D row spacing model in Figure 

35. Both figures include an overlap region from the upstream camera position, which 

accentuates the high degree of repeatability and dependence of �̂� on 𝜁. For further 

processing, a linear weighting function was applied across an 8 D span to smoothly join 

the data collected from the upstream and downstream viewing; Figure 34 and Figure 35 

are plotted without the joining function to highlight repeatability between experiments. 
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Figure 34. Laterally averaged effectiveness for 15 D row spacing  

(plenum diagram overlaid for reference) 

 

Figure 35. Laterally averaged effectiveness for 7 D row spacing  

(plenum diagram overlaid for reference) 
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The most salient overall trend is that �̅̂� increases in regions of decreased coolant 

temperature; for upstream regions, this corresponds to positive 𝜁 values of increasing 

magnitude while for downstream regions, this corresponds to negative 𝜁 values of 

increasing magnitude. For the model with 15 D row spacing, the greatest �̅̂� values are in 

the immediate vicinity of the holes. The model with 7 D row spacing sees an additional �̅̂� 

increase in the region where the coolant feeder bar supplies the downstream plenum and 

coolant impinges directly on the internal surface of the model (see Figure 30). 

An interesting feature of both plots is the existence of a streamwise location at 

which �̅̂� remains constant, regardless of the value of 𝜁, and that this feature exists for 

each model despite significant differences between the two configurations. Such a 

location will be referred to as the pivot point. For the model with 15 D row spacing, the 

pivot point is at x/D = -10.2, intuitively positioned above the barrier between plenums. 

For the model with 7 D row spacing, the pivot point is at x/D = -7.0, approximately at the 

exit of the upstream row of holes. 

The location of the pivot point may be deduced without the simultaneous use of 

both plenums. It can also be seen in Figure 34 and Figure 35 that by evaluating �̅� with a 

single row issuing coolant at a given ACR (and the other row blocked), and then repeating 

the process with the other row, the location where �̅� is equal between the two evaluations 

is actually the pivot point. Significantly, this observation holds for both row spacings 

examined herein. At this unique x location, the thermal state of the model is influenced 

equally by both the upstream and downstream coolant flows. To the authors’ knowledge, 
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the existence of such locations on a film cooled component have never before been 

documented in the open literature. 

Care must be exercised when interpreting Figure 34 and Figure 35. Changing 

either Tc1 or Tc2 alone will influence Tmean, and therefore the denominator in Eq (33). For 

that reason, �̂� can shift up or down even without a change in Ts.  For instance, in Figure 

35, �̅̂� decreases with increasing 𝜁 in the vicinity of x/D = 20. While one way to increase 𝜁 

is to simply increase Tc2 (thereby causing an actual increase in surface temperature at 

x/D = 20), another way would be to decrease Tc1.  That would obviously have the effect 

of decreasing the surface temperature; however, �̅̂� would decrease at x/D = 20 due to the 

larger denominator in Eq (33). 

2.3.3.2 The Variation of �̂� with 𝜻 

The variation of �̅̂� with 𝜁 was evaluated at several streamwise locations on both 

models for ACR = 1.0 and 2.0. The findings suggest that �̅̂� varies linearly with 𝜁 for both 

ACR values and models for −0.26 ≤ 𝜁 ≤ 0.27. A representative portion of this analysis 

is shown in Figure 36 using the same data set as Figure 34, which covers −0.20 ≤ 𝜁 ≤

0.20; the same trend was observed for −0.26 ≤ 𝜁 ≤ 0.27 for the 7 D row spacing. 

This linear variation of �̅̂� was not confirmed outside the range -0.26 ≤ 𝜁 ≤ 0.27. 

Nevertheless, the given range of 𝜁 values is actually quite large: for a scenario involving 

a freestream temperature of approximately 2000 K, a mean coolant temperature of 

approximately 1000 K, and a coolant enthalpy weighting of 𝜇 = 0.50, it can be seen that 

𝜁 = 0.20 corresponds to an upstream coolant temperature of 800 K and a downstream 

temperature of 1200 K. One can see that the presented range of 𝜁 values is quite wide. 
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Figure 36. Variation of �̅̂� with 𝜻 at selected streamwise locations, 15 D row spacing 

Adopting the premise that the change in �̅̂� with respect to 𝜁 is linear across the 

available range of data, it follows that the partial derivative, 
𝜕�̅̂�

𝜕𝜁
, can be computed at each 

streamwise position using a simple linear regression model. The variation of 
𝜕�̅̂�

𝜕𝜁
 at each 

x/D location is plotted for the two models in Figure 37. This plot represents functions 

unique to the respective cooling configurations, indicating the relative sensitivity of each 

streamwise location to changes in 𝜁. Notice that �̅̂� becomes more sensitive to 𝜁 at the 

higher ACR, which would generally be expected to correspond to greater heat transfer 

coefficients, particularly in the internal passages. This suggests a possible relationship 

between heat transfer coefficients and sensitivity to 𝜁. 
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Figure 37. Sensitivity of �̅̂� to 𝜻 with streamwise location, 15 D row spacing 

Given a baseline measurement of �̅� when 𝜁 = 0 and the empirical function 

𝜕�̅̂�

𝜕𝜁
(𝑥/𝐷), it is possible to estimate the laterally averaged �̂� for any 𝜁 (within the linear 

range) at any x/D position using Eq (40). An extension of this model involves using the 

partial derivative function derived from the lateral averages, i.e. 
𝜕�̅̂�

𝜕𝜁
(𝑥/𝐷) to describe 

changes in �̂� at each (𝑥/𝐷, 𝑦/𝐷) position within the region of interest. This takes the 

mathematical form of Eq (41). 

�̅̂�(𝑥/𝐷) = �̅�(𝑥/𝐷) + 𝜁 [
𝜕�̅̂�

𝜕𝜁
(𝑥/𝐷)] (40) 

 

�̂�(𝑥/𝐷, 𝑦/𝐷) = 𝜙(𝑥/𝐷, 𝑦/𝐷) + 𝜁 [
𝜕�̅̂�

𝜕𝜁
(𝑥/𝐷)] (41) 
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For the model with 15 D row spacing, the function 
𝜕�̅̂�

𝜕𝜁
(𝑥/𝐷) is used to build an 

estimate of spatially resolved �̂� by using 𝜙 with 𝜁 = 0.20 for ACR = 2.0. The estimate is 

compared to the experimental results of �̂� when 𝜁 = 0.20. The results are plotted in 

Figure 38, which indicates that the estimate is quite accurate, within ±0.005 for the 

majority of the downstream region and within ±0.020 in the upstream region. A 

conceivable enhancement to the model described by Eq (41) might involve producing a 

derivative field function across the entire region of interest, i.e. 
𝜕�̂�

𝜕𝜁
(𝑥/𝐷, 𝑦/𝐷), by 

computing a least squares regression at each (𝑥/𝐷, 𝑦/𝐷) position rather than adopting the 

simplified 
𝜕�̅̂�

𝜕𝜁
(𝑥/𝐷) model. While that may be more appropriate or even essential for 

more complex geometries and cooling scenarios, such an approach hardly seems 

necessary under the present circumstances. 

Experimental �̂� for 𝜁 = 0.20 

 

Estimated �̂� for 𝜁 = 0.20 

 

Figure 38. Estimated vs. experimental �̂� for 𝜻 = 𝟎. 𝟐𝟎, ACR = 2.0, 15 D row spacing 
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That 
𝜕�̅̂�

𝜕𝜁
 is approximately constant at any (𝑥/𝐷) suggests that the minimum 

number of experimental runs required to develop a high-fidelity model—for a given 

ACR—is two. Ideally, one of these would be at 𝜁 = 0, but even this is not essential. The 

limits of linear variation of �̂� with 𝜁 are not known, but the present data already suggest a 

wide envelope. Despite the variations of local and laterally-averaged �̂� with 𝜁, the area-

averaged �̂� values across the region of interest, i.e. �̅̂�
̅
, are remarkably insensitive to 

changes in 𝜁. As seen in Figure 39, �̅̂�
̅
 remains essentially constant across −0.20 ≤ 𝜁 ≤

0.20 for the model with 15 D row spacing. The model with 7 D row spacing sees a slight 

increase in �̅̂�
̅
 for decreasing 𝜁, an effect attributable to its large downstream plenum. 

 

Figure 39. Area averaged �̂� variation vs. 𝜻 

This observation introduces an intriguing premise: that area-averaged cooling 

effectiveness might be increased with non-zero 𝜁 values for some cooling configurations. 

Exploiting this potential through optimization could prove rewarding but challenging 
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since it would require degrees of freedom on both the mechanism of coolant temperature 

change and the internal geometry—design elements which are often tightly coupled via 

internal heat transfer characteristics. 

2.3.3.3 The Effect of 𝜻 on Temperature Gradients 

While the magnitudes of metal temperature on a turbine blade are of considerable 

concern, spatial temperature gradients also warrant interest because of their contribution 

to thermal stress. A cursory review of Figure 34 and Figure 35 suggests that 𝜁 modifies 

the temperature gradients as well, an effect which will be examined more closely. 

Scaled, streamwise temperature gradients based on the lateral-mean surface 

temperature are related to streamwise �̅̂� gradients by Eq (42). The data shown in Figure 

34 and Figure 35 is numerically differentiated and a Savitzky-Golay smoothing filter with 

a third-order polynomial is applied to reduce numerical noise. Non-physical gradient 

spikes were also removed: based on the viewing angle, there is a three-dimensional 

viewing discontinuity between the sharp upstream breakout and the inside of the hole. 

The resulting scaled temperature gradients, 
𝑑�̅̂�

𝑑(𝑥/𝐷)
, are plotted in Figure 40 for the 15 D 

row spacing and Figure 41 for 7 D row spacing. 

𝑑�̅�𝑠

𝑑(𝑥/𝐷)
= −

𝑑�̅̂�

𝑑(𝑥/𝐷)
(𝑇∞ − 𝑇𝑚𝑒𝑎𝑛) (42) 
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Figure 40. Temperature gradients vs. streamwise location for a range of 𝜻 values,  

15 D row spacing (plenum diagram overlaid for reference) 

 

 

Figure 41. Temperature gradients vs. streamwise location for a range of 𝜻 values,  

7 D row spacing (plenum diagram overlaid for reference) 
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The variation of temperature gradients with 𝜁 becomes more apparent in Figure 

40 and Figure 41. Some regions where temperature gradients are most sensitive to 

variations in 𝜁 correspond to regions where gradients are already relatively high, such as 

those near the boundaries of backside cooling. For those regions, some general trends 

emerge. For instance, positive 𝜁 values increase temperature gradients in the region 

upstream of the upstream plenum; for both models, this region is where the greatest 

temperature gradients are found. Negative 𝜁 values have a similar effect on temperature 

gradients downstream of the downstream plenum, though the magnitudes are smaller. 

This suggests, for the regions at the boundaries of backside cooling, that negative 𝜁 

values are preferred to positive values—if one has any choice in the matter.  

Interestingly, there are also locations where the temperature gradients are 

approximately invariant with 𝜁; these correspond to the locations where �̂� is most 

sensitive to 𝜁, as seen in Figure 37. In Figure 40 these can be seen near x/D = -20 and 0, 

and in Figure 41 these can be seen near x/D = -20 and 29. The apparent increase near 

x/D = -56 in Figure 40 is an artifact arising from the combined effects of noisy numerical 

derivatives at the edge of the domain and a limited filtering window. 

Although not shown, inspection reveals that the variation of the streamwise 

temperature gradient, 
𝑑�̅̂�

𝑑(𝑥/𝐷)
, with 𝜁 is also fairly linear. This again permits a linear 

regression to determine, at every streamwise location, the values of 
𝜕2�̅̂�

𝜕(𝑥/𝐷)𝜕𝜁
, i.e. the 

sensitivity of the streamwise temperature gradient to the value of 𝜁. The results are seen 

in Figure 42. 
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Figure 42. Sensitivity of streamwise temperature gradients to coolant temperature 

differences, 7 D and 15 D row spacing 

The sensitivity of temperature gradients in the region between the rows is seen 

quite starkly and it should be noted that the point of greatest sensitivity corresponds to the 

“pivot point” where �̅̂� is constant, seen earlier in Figure 34 and Figure 35. The sensitivity 

of temperature gradients to 𝜁 is generally very similar for ACR = 1.0 and 2.0, although a 

greater ACR does increase the sensitivity between the rows. This sensitivity does not 

differ substantially when the rows are more closely spaced: the 15 D row spacing sees a 

value of 
𝜕2�̅̂�

𝜕(𝑥/𝐷)𝜕𝜁
 of -0.063 while the 7 D row spacing sees -0.057. 

The largest temperature gradients in the region between rows actually occur with 

negative 𝜁 values, and are nearly identical between the models: for 𝜁 = -0.20, the 

maximum gradient—which occurs above the plenum wall for the respective models—is 

0.0171 for the 7 D row spacing and 0.0176 for the 15 D row spacing. The values are also 

comparable between models for 𝜁 = -0.10 and 𝜁 = 0, suggesting that row spacing 



76 

apparently has little effect for this range of 𝜁 values. For 𝜁 > 0, row spacing has a 

pronounced effect: peak gradients increase in magnitude by 51% for 𝜁 = 0.1 and by 23% 

for 𝜁 = 0.2. This is perhaps another argument for avoiding 𝜁 > 0, if possible. Minimizing 

temperature gradients in the region between rows is, intuitively, best accomplished by 

matching the coolant temperatures to achieve  𝜁 = 0. That said, it should be clear that any 

𝜁 value has costs and benefits that apply to these regions of interest; although 𝜁 > 0 

causes larger temperature gradients, it also minimizes the surface temperature in a 

particular region. 

In a manner similar to Eq (40), it is also possible to estimate the temperature 

gradient at a particular streamwise location as a function of 𝜁 using Eq (43). Because 

𝜕2�̅̂�

𝜕(𝑥/𝐷)𝜕𝜁
 is approximately constant at any (𝑥/𝐷), only two experiments using different 𝜁 

values will be necessary to produce a model of streamwise temperature gradients. 

𝑑�̅̂�

𝑑(𝑥/𝐷)
=

𝑑�̅�

𝑑(𝑥/𝐷)
+ 𝜁 [

𝜕2�̅̂�

𝜕(𝑥/𝐷)𝜕𝜁
(𝑥/𝐷)] (43) 

 

Two additional metrics may be useful in characterizing the effect of  𝜁 on 

temperature gradients. First, the maximum or greatest magnitude (in the case of negative 

values) streamwise temperature gradient within the region of interest; second, the root 

mean square (RMS) or standard deviation of the streamwise temperature gradients, which 

aggregates non-zero gradients across the region of interest and avoids positive and 

negative gradients offsetting each other in a mean value. The maxima may be read 

directly from Figure 40 and Figure 41, while the same data is used to compute RMS 
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values; the results are presented in Figure 43. Because the RMS value represents an 

aggregate measure of the temperature gradients in a region of interest, it may serve as an 

auxiliary metric in combination with measures of local maxima. 

 

Figure 43. RMS temperature gradients vs. 𝜻, 7 D and 15 D row spacing 

Several interesting similarities and differences emerge in this analysis. For these 

geometries, the maximum temperature gradient is more sensitive to positive values of 𝜁 

than to negative values, but across a range of −0.1 ≤ 𝜁 ≤ 0.1, the maximum temperature 

gradient can vary by approximately ±10% for ACR = 2.0. It is intuitive that the 

temperature gradient RMS increases as the difference between the two temperatures 

increases, i.e. for large 𝜁 values, but it is not as sensitive to 𝜁 as is the maximum gradient. 

It is somewhat surprising that the minimum RMS value is effectively constant across  

0 ≤ 𝜁 ≤ 0.1 for the 7 D model and −0.1 ≤ 𝜁 ≤ 0 for the 15 D model. 

This highlights an unexpected finding: that non-zero 𝜁 may, under certain 

circumstances, present an advantage with respect to temperature gradients. Consider, for 

the 15 D row spacing example with ACR = 2.0, how the 𝜁 = −0.1 case offers an 11% 
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reduction in peak temperature gradient and no effective change in RMS, while having no 

effect on area-averaged �̂�. This, of course, must be balanced against cooling 

requirements based on surface temperatures in the region of interest since a value of    

𝜁 = −0.1 reduces �̂� upstream of the pivot point. Nevertheless, this would suggest the 

possibility of permitting warmer coolant to issue from the upstream row without 

deleterious effects, if such an option is desired. 

2.3.3.4 Modeling complex scenarios 

This methodology could also be applied to more complex configurations, though 

some adjustments would need to be made. Significantly, if it is desired to evaluate a 

model with significant spanwise variations, a more general version of Eq (41) will be 

needed. Eq (41) considered the overall effectiveness at any streamwise location to be 

essentially homogenous and therefore well-represented by a spanwise average. Close 

examination of the experimental values in Figure 38 reveals that this is approximately 

true, but not exactly, as evidenced by the contours of �̂� that are curved in the spanwise 

direction. (As an aside, the configuration of cooling holes and plenum feeder bars was 

designed to achieve laterally uniform cooling performance, though this was obviously not 

entirely achieved. The exact reasons for this are not known, but potentially include 

unintended lateral variations in coolant issuing from the holes drilled in the plenum 

feeder bar.) However, for a broader spanwise region of interest, prominent edge effects, 

or configurations such as the mixed use of slots and cooling holes, it may not be 

reasonable to assume a homogenous spanwise �̅̂�, and instead to let �̂� at each location be 

modeled separately with its own linear model. This would involve producing a derivative 
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field function across the entire region of interest, i.e. 
𝜕�̂�

𝜕𝜁
(𝑥/𝐷, 𝑦/𝐷), by computing a least 

squares regression at each (𝑥/𝐷, 𝑦/𝐷) position. Thus, for more complex scenarios, Eq 

(44) is likely more applicable. 

�̂�(𝑥/𝐷, 𝑦/𝐷) = 𝜙(𝑥/𝐷, 𝑦/𝐷) + 𝜁 [
𝜕�̂�

𝜕𝜁
(𝑥/𝐷, 𝑦/𝐷)] (44) 

Although no data are currently available for a scenario where 𝜇 ≠ 0.50, consider 

the following. First, assuming the rows have identical cross-sectional areas, Eq (32) may 

be used to compute 𝜇 for any combination of ACRs. Publishable data are not available on 

the range of 𝜇 values in actual turbine engines, but the range is finite: even with 

dissimilar ACRs of 0.50 and 2.00, 𝜇 is still bounded by 0.20 and 0.80, assuming equal 

row areas. In the event that the areas are not equal, such as unequal hole diameters, Eq 

(31) may be used. Although changes to 𝜇 would directly modify the values of 𝑇𝑚𝑒𝑎𝑛 and 

𝜁, the author sees no reason why that would alter the more fundamental relationships 

identified, such as the linear nature of 
𝜕�̂�

𝜕𝜁
 and 

𝜕2�̂�

𝜕(𝑥/𝐷)𝜕𝜁
, especially since it has been 

determined that �̂� is independent of 𝑇𝑚𝑒𝑎𝑛. 

2.3.3.5 Conclusion regarding overall effectiveness 

The present research expands our understanding of turbine cooling scenarios 

wherein different temperature coolants issue from different plenums. The analysis 

requires the turbine blade surface temperature to be nondimensionalized using a new 

reference temperature based on the mean coolant enthalpy of the two rows. The new 

theory developed here hypothesized that overall effectiveness in the presence of two 
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coolant temperatures would be a function of 𝜁, a new parameter characterizing the 

difference between the coolant temperatures. 

The new theory was tested at a variety of reference temperatures and across a 

wide range of 𝜁 values using two experimental configurations. Each contained two 

coolant plenums at independently controllable temperatures set behind a flat plate of 

Inconel 718, with different plenum sizes and row spacings. The experiments confirmed 

that overall effectiveness is not dependent on the reference temperature but is indeed a 

function of the coolant temperature variation parameter, 𝜁. Because overall effectiveness 

conveniently captures the combined effects of internal and external cooling as well as 

conduction, with no underlying assumptions regarding hydrodynamic behavior, and 

because the material used in these experiments has been shown to scale well to engine 

conditions, the trends observed in this study are expected to remain valid at engine 

conditions. 

Several significant trends emerged with the use of two coolant temperatures. 

Notably, a location between the two rows was observed at which the overall 

effectiveness, �̂�, remains constant with 𝜁; the existence of this location was seen on the 

two different models, but its placement varied with cooling configuration. Away from 

this point, it was found that overall effectiveness varies linearly across a wide range of 𝜁 

values, permitting the estimation of �̂� at any location in the region of interest with 

minimal required experimentation. 

Although area-averaged �̂� values were found to be insensitive to dual-

temperature cooling scenarios, streamwise temperature gradients were found to be 

heavily influenced by 𝜁. This is most apparent in the region between the rows, where the 
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sensitivity of temperature gradient to 𝜁 is greatest—reaching a maximum at the same 

location where �̂� remains constant. Similar to the variation of �̅̂� with 𝜁, the streamwise 

temperature gradient, 
𝑑�̅̂�

𝑑(𝑥/𝐷)
, was also found to vary linearly with 𝜁—permitting the 

estimation of temperature gradients at various locations with minimal experimental data. 

Compared to the baseline (𝜁 = 0) case, it was found that  𝜁 = ±0.1 can increase 

or decrease peak temperature gradients by approximately 10%. Interestingly, non-zero 𝜁 

values may present advantages in terms of reducing the maximum temperature gradient 

in a region of interest as well as the root mean square of the temperature gradient. 

Regardless of whether this phenomenon can be deliberately exploited, the turbine 

designer should be aware of the influence that differing local coolant temperatures hold 

with respect to overall effectiveness, temperature gradients, and—ultimately—blade life. 

 

2.4 Conclusion of Film Cooling Investigations 

The two studies presented here—on adiabatic effectiveness in the presence of 

multiple local coolant temperatures and on overall effectiveness with two local coolant 

temperatures—have introduced new methodologies for predicting surface temperatures 

and adiabatic wall temperatures that may be used to evaluate the contribution that a 

vortex tube has on film cooling performance. For a given film cooling configuration, it 

may be possible to predict a distribution of adiabatic wall temperatures and actual surface 

temperatures, the latter of which is directly connected to the blade life.  
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3 Research Objective 2: Characterize the phenomenon of 

temperature separation as observed in a vortex tube. 

Research Objective 2 was accomplished using experimental, analytical, and 

computational methods, and culminates in a viable theory of vortex tube operation—both 

in terms of the underlying physics and the manner in which the performance can be 

scaled. This contributes to Research Objectives 3 and 4, investigate temperature 

separation under conditions more representative of an engine and how vortex tubes might 

be best applied to film cooling purposes, respectively.  

3.1 Literature Review: Vortex Tubes 

3.1.1 Invention and Initial Research 

The vortex tube was invented by French engineer Georges Ranque, who gained a 

French patent in 1933 [38] and a US patent in 1934 [39]. The device languished in 

obscurity for several years before Hilsch adopted the design for laboratory use and wrote 

an article describing his experiments [40] [41]; upon its translation into English in 1947, 

the publication fomented international interest and triggered a flurry of research. Patents 

for improved designs were awarded in the following decades, such as those to Fulton [42] 

[43], which served as close forerunners to modern implementations. Vortex tube 

efficiency is low compared to conventional refrigeration methods. This limitation was 

recognized immediately by Hilsch [41] and Fulton computed its efficiency as a 

refrigerator at approximately 1% [44], so its use has been limited primarily to small-scale 

industrial applications where compressed gas is readily available. Applications include 

spot cooling in machine shops, cabinet cooling, personal air conditioning, and gas 

separation.  
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The most common configuration is the counterflow vortex tube, which uses a 

central orifice on the cold side and an annular exit on the hot side, as seen in Figure 44. 

An alternate configuration is the uniflow vortex tube, in which the hot annular exit and 

cold central orifice are concentric and located on the same side of the tube, opposite the 

inlets. Although the uniflow configuration is frequently described in the literature and 

often assumed in theoretical analyses, it is seldom used in actual research and does not 

appear to be sold commercially.  

 

Figure 44. Counterflow vortex tube (left); uniflow vortex tube (right) 

Temperature separation is typically manipulated in a counterflow vortex tube by 

adjusting the inlet pressure and the “cold fraction”, 𝜇𝐶, which is defined as the fraction of 

the incoming mass flow rate that exits out the cold side; the cold fraction is typically set 

using a valve on the hot exit, such as the brass piece on the right side of Figure 45. 

Increasing the inlet pressure corresponds to an increasing degree of temperature 

separation. Temperature separation varies considerably with cold fraction and although 

the exact results vary between vortex tubes, the maximum cold side temperature drop is 

usually achieved with a cold fraction of 0.2 ≤ 𝜇𝐶 ≤ 0.5. 
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Figure 45. Commercial vortex tube, ExairTM 3208 

Figure 46, from Stephan et al. [45], depicts a typical performance diagram for a 

counterflow vortex tube. The curves indicate changes in total temperature compared to 

the inlet; the hot and cold exits are shown above and below the horizontal axis, 

respectively. The horizontal axis indicates cold fraction. Several curves of temperature 

separation can be seen, which correspond to inlet gauge pressures. Temperature 

separation can thus be seen as a strong function of cold fraction and inlet pressure, where 

increased inlet pressures correspond to greater temperature separation for all cold 

fractions. The maximum temperature drop measured on the cold side occurs at 𝜇𝐶 ≈ 0.3; 

the greatest observed temperature change is approximately -37 K with an inlet pressure of 

5.0 bar gauge. Notice that the hot and cold temperature extremes occur at different cold 

fractions and therefore do not occur simultaneously. The maximum hot exit temperature 

increase observed occurs at a cold fraction of approximately 0.9, and is nearly 80 K with 

an inlet pressure of 5.0 bar gauge. 
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Figure 46. Typical performance curves of a counterflow vortex tube [45] 

There remains to this day no consensus on an exact explanation of the mechanism 

by which the vortex tube achieves temperature separation, but to appreciate the wide 

array of theories of its operation, it is instructive to understand the progression of early 

research. Initial experiments, such as those by Hilsch [41], Fulton [44], Schultz-Grunow 

[46], and Elser [47], were dedicated to system-level performance, such as the influence of 

inlet pressure, cold fraction, and geometric proportions on temperature separation. Thus 

the first theories emerged without the benefit of internal flow field measurements; instead 

they depended primarily on thermodynamic hypotheses, conjecture regarding the flow 

field, and an influential theoretical paper by Kassner and Knoernschild [48].  
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The original explanation by Hilsch [41] attributes temperature separation to the 

simultaneous expansion of gas and transfer of kinetic energy between layers in the 

vortex. Fulton [44] elaborated on this somewhat, assuming the velocity profile proposed 

by Kassner and Knoernschild [48]. According to Fulton, the explanation is as follows. As 

gas enters the vortex tube via the nozzles, the gas in the core expands and its static 

temperature is reduced. The gas in the periphery does not significantly expand and 

maintains a higher static temperature. Meanwhile, based on the velocity profile 

conjectured by Kassner and Knoernschild and assumed by Fulton, the flow of gas causes 

a nearly free vortex (i.e. in which angular momentum in conserved) to form wherein the 

core flow has a high velocity and the periphery has a lower velocity. The core, by viscous 

action, transfers kinetic energy to the periphery so that it accelerates and the fluid 

behaves increasingly like a forced vortex—i.e. solid-body-like rotation with uniform 

angular velocity. Simultaneously, the warmer periphery transfers heat to the cooler core; 

however, the rate at which the core performs work on the periphery is greater than the 

rate at which the periphery transfers heat to the core. The net effect, according to the 

explanation, is that the core has transferred energy to the periphery and thus has a lower 

total temperature. As will be seen, however, there are some inconsistencies between this 

hypothesis and subsequent experimental findings—particularly with respect to the 

assumed development of the velocity profile. 

3.1.2 Internal Flow Examinations 

A number of researchers, starting in the early 1950s, began to investigate the 

inner workings of vortex tubes and measured the velocity, pressure, and temperature 

distributions.  For counterflow vortex tubes of conventional design, the findings of 
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Scheper [49], Scheller [50], Takahama [51], and Bruun [52] agree that the flow field is 

dominated by a forced vortex; the lower-resolution data of Martynovskii and Alekseev 

[53] is also in broad accord. Lay [54] used a uniflow configuration but did not extract a 

cold fraction and similarly Hartnett and Eckert [55] used a counterflow vortex tube but 

closed the cold side so it was functionally a uniflow vortex tube; both researchers found a 

forced vortex. The uniflow experiments were not fully equivalent to the other 

experiments but are still of a limited analytical utility, as will be seen later. 

Figure 47 shows the tangential velocity profile of Hartnett and Eckert [55] and 

Figure 48 shows the velocity profile of Scheller [50]; both evince compound vortex 

behavior. The data of Hartnett and Eckert depict the tangential velocity with black dots 

(the white dots will become relevant later in the analysis) as a function of radius at an 

axial location 20% of the tube length, i.e. relatively close to the nozzles. Their findings 

indicate forced vortex behavior extending to 60% of the tube radius (0.9 in), a peak 

velocity at approximate 80% of the radius (1.2 in), and a rapid decrease in velocity close 

to the walls.  

 

Figure 47. Tangential velocity profile of Hartnett and Eckert (black dots) [55] 
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Figure 48. Tangential velocity profile of Scheller [50] 

The data of Scheller [50] is presented as contours of velocity with radial position 

on the vertical axis and axial position on the horizontal axis. The profile suggests a forced 

vortex at all axial locations, though its peak velocity appears to decrease with distance 

from the nozzles. The velocity decreases toward the tube wall, but is not shown with 

sufficient resolution to clearly indicate the no-slip condition. 

In aggregate, the experimental evidence indicates that the velocity profile inside 

the tube is that of a forced vortex for its entire length; there is no clear evidence of a free 

vortex nor a conversion into a forced vortex. The departure from a forced vortex toward 

the wall simply appears to be a consequence of the gas approaching a no-slip condition. 

In essence, this demonstrates that the velocity profile hypothesized by Kassner and 

Knoernschild [48] was not strictly accurate.  

This is significant because the assumed direction of the heat transfer in Fulton’s 

explanation—from periphery to core—was based on the higher-velocity fluid being in the 

core and corresponding to lower static temperatures. However, based on the velocity 

distributions observed through experiment, one would easily conclude that the opposite 

must be the case: with higher velocities in the periphery and lower velocities in the core, 
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that the static temperature profile must lend itself to heat transfer from the core to the 

periphery. As will be seen, the temperature distribution also became the subject of 

experimental investigation. Nevertheless, these types of inconsistencies within the 

theories have proven to be quite persistent and have generally contributed to the diversity 

of thought surrounding vortex tubes; for example, the direction of heat transfer remained 

a source debate for over two decades following the study by Kassner and Knoernschild 

[48]. 

Hartnett and Eckert also found that subtle changes to exit geometries can have 

pronounced effects: by modifying the hot exit nozzle in a vortex tube, the hot exit 

temperature and pressure profiles were shown to exhibit significant variation [55]. They 

concluded that these changes to exit geometry likely modified the entire internal flow 

field, but complete data were not taken.  

There is a demonstrable explanation for the fundamental qualitative error 

regarding the assumed velocity distribution and progression by early theorists, such as 

Kassner and Knoernschild [48]. The influence of exit geometry on other confined vortex 

flows can be profound. The cyclone separator, which uses a vortex to separate 

particulates from a fluid, had also been a widely studied system at the time and was 

possibly an inspiration for Ranque’s original invention [44]. Velocity distributions in 

cyclone separators, such as those observed by Smith [56], are typically dominated by free 

vortices with a narrow forced vortex at the core due to viscous effects. This trend may 

explain the original assumption that flow in a vortex tube begins as free vortex.  

A demonstration by Chiné [57] reveals the importance of the exit configuration to 

the flow pattern. Chiné configured two hydrocyclones—both with tangential inlets—with 



91 

two different exit geometries. One cyclone featured a central exit orifice on the axis, 

which is typical of a conventional cyclone separator, while the other had an annular exit, 

which is typical of the hot exit in a counterflow vortex tube. Although Chiné’s working 

fluid was water, the effect on the velocity distributions was nevertheless quite clear. The 

velocity profile in the cyclone with the exit orifice was dominated by a free vortex (with a 

narrow forced vortex at the core), while the cyclone with the annular exit was dominated 

by a forced vortex extending nearly to the wall. 

The vortex tube flow patterns of Reynolds [58] are considerably different than the 

others and because they are sometimes cited in the literature, they deserve a careful 

review. Reynolds experimented with a variety of hot and cold exit geometries, no 

combination of which corresponds to the conventional counterflow design (nor to the 

uniflow). These included, for example, configurations with orifice exits at both hot and 

cold ends, an orifice exit at the cold end and a completely open hot exit, and an orifice 

exit at the cold end and an arrangement of small holes in a plate at the hot end. The 

configuration of greatest interest to the present study is that with the orifice exits at both 

hot and cold sides. This unconventional design has a very simple geometry; it could 

prove useful if it yields appreciable temperature differences. Unfortunately, several 

factors render Reynolds’ results effectively unusable.  

Reynolds found—for the case of twin orifice exits—a flow pattern reminiscent of 

a strong free vortex, although there were some apparent measurement issues near the 

core. For the case of the open hot exit, he found a flow pattern more consistent with a 

forced vortex; this finding is expected, given the exit geometry. Although Reynolds did 

measure radial variation of total temperature at a selection of axial stations for a subset of 
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cases, he did not measure total temperature at the exits for any cases, so the net 

temperature separation resulting from these internal distributions is poorly quantified. 

Moreover, no attempt was made to measure or control the cold fraction in the 

experiments. Most significantly, Reynolds acknowledged that several cases—including 

that of greatest practical interest to the present study—featured the reverse flow of 

ambient air back into the vortex tubes, making an energy balance between hot exit, cold 

exit, and inlet streams extremely difficult. Ultimately, it seems that Reynolds’ most 

significant contribution was illustrating the diversity of flow patterns and internal 

temperature and pressure distributions that result from unconventional configurations 

[58]. 

Researchers also measured internal static and total temperature distributions. At 

axial stations relatively close to the inlets, most data indicate higher static temperatures in 

the core of the vortex than in the mid-periphery, with an increase again toward the wall. 

Scheper [49] found this trend, as did Takahama [51], Scheller [50], and Lay [54]. Figure 

49 presents the experimentally measured static and total temperature distributions of 

Scheper at three axial locations, labeled (1), (2), and (3), at approximately 5%, 10%, and 

15% of the tube length, respectively. The profiles closest to the inlet indicate locations of 

elevated static temperature near the core and the wall—which correspond to the regions 

of lower tangential velocity identified in the velocity studies. Two regions in particular, 

circled in red, represent regions where the static temperature gradient with respect to 

radial position lends itself to heat transfer from the inner layers to the outer layers. 
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Figure 49. Static temperature distribution adapted from Scheper [49],  

circles indicate regions where temperature distribution may drive heat transfer 

Hartnett and Eckert also measured the temperature distribution, but plotted it as 

the “temperature depression”, i.e. the difference between inlet static temperature and 

local static temperature [55]. These are the white dots seen in Figure 47 at 20% of the 

axial length of the tube; they suggest that the static temperature is higher near the wall 

and decrease away from it. Unlike the other researchers, they did not observe another 

static increase toward the core; however, their data did not go all the way to the axis.  

All researchers found that the radial static temperature gradients became much 

smaller at axial locations further from the inlets. Total temperature was universally found 

to be at a minimum at the axis and increased significantly toward the wall; this trend was 

true at all axial locations. The apparent disagreement between the static temperature 

measurements of Hartnett and Eckert [55] and those of other researchers does not appear 

to have been explicitly addressed, and explanations of vortex tubes proposed by 
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subsequent researchers depended greatly on which experimental data were studied. 

Lastly, static and total pressures were found by all researchers to be at a minimum at the 

core. 

These experimental findings invigorated new theories. Scheper’s [49] discovery 

of higher static temperatures near the core precipitated a theory of heat transfer from the 

core to the periphery. However, Scheper’s theory was presented essentially as an analogy 

to a counterflow heat exchanger; his fluids model was rough and the underlying analysis 

made use of correlations for heat transfer coefficients and effectiveness parameters and 

was not well-received [59]. Other researchers were also espousing heat transfer theories: 

Scheller [50] posited an unsubstantiated theory of “forced convection”, Schultz-Grunow 

[46] theorized “forced convection in a stratified flow”.  

Simultaneously, new theoretical efforts were applied to unravel the mystery of the 

vortex tube. These authors included Rott [60], who wrestled with developing a theoretical 

static temperature distribution in a compressible, turbulent, viscous core. Van Deemter 

[61] matured the analysis of energy transfer in a turbulent vortex. He recognized that 

energy transfer between the cold and hot streams could be attributed only to heat transfer 

and viscous stresses. The viscous stresses apply only insofar as the velocity profile 

departs from a forced vortex. Regarding heat transfer, he identified two components. The 

first was caused by conduction due to a primarily radial temperature gradient within the 

flow and, like others, van Deemter assumed that the static temperature in the core was 

lower than at the periphery. The second heat transfer component is unique to a 

compressible, turbulent flow and suggests that a pressure gradient normal to the direction 

of flow can also contribute to heat transfer.  
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The principle—according to van Deemter [61]—is that an eddy at a particular 

static temperature may be buffeted to a region of slightly higher pressure and be slightly 

compressed. Assuming isentropic compression of the eddy, if that new, compressed 

temperature is greater than that of the surrounding fluid then heat will be transferred from 

the compressed eddy as it approaches thermal equilibrium with the surroundings; the 

reverse would apply to eddies expanded in regions with slightly lower pressure. In this 

manner, turbulent heat transfer is intensified in the presence of a pressure gradient if the 

initial static temperature distribution does not adiabatically correspond to the static 

pressure distribution. Hartnett and Eckert endorsed the pressure-conduction principle 

[55]; Bruun was also persuaded by this and although he declared that “turbulent heat 

transport” was the cause of temperature separation, he attributed this primarily to the 

compression and expansion of eddies [52].  

Deissler and Perlmutter [62] agreed with the role of pressure-conduction, 

extended van Deemter’s analysis, and performed limited comparison with experimental 

work. The temperature distributions in their theoretical analysis qualitatively matched the 

results of Hartnett and Eckert [55] for static temperature, which they speculated was 

lower in the core (in contrast to other contemporary experimental findings). In turn, they 

concluded that the static temperature gradient causes heat transfer from the periphery to 

the core, while assuming that the static pressure gradient causes heat transfer from the 

core to the periphery (insofar as the pressure-conduction term is of practical 

significance). They then asserted that although the two heat transfer mechanisms are each 

potentially quite large, they act opposite each other and effectively cancel each other out. 

They ultimately concluded that temperature separation must be primarily attributable to 
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the viscous stresses between the cold core and the hot periphery, which they described as 

“shear work” [62]. 

However, it should be reiterated that other experimental data (i.e. Scheper [49], 

Takahama [51], Scheller [50], and Lay [54]) indicated that the static temperature 

distribution was higher in the core, suggesting that heat would be transferred from the 

core to the periphery, at least at axial stations close to the inlets. In this way, the 

temperature-gradient and pressure conduction terms would instead be additive in 

transferring heat from the core to the periphery, rather than canceling each other out. That 

said, it does not appear that the contribution by the pressure conduction term has ever 

been mathematically nor experimentally quantified, so its equivalency to any form of 

energy transfer cannot be concretely established. 

Other issues also limit the analysis of Deissler and Perlmutter [62] from broader 

generalization. First, their treatment did not account for axial variation of flow properties 

such as pressure, temperature, and velocity; this variation was identified by other 

researchers such as Sibulkin [63] and Bruun [52] as being so significant that it is essential 

to a robust analysis. This is especially true since, as Sibulkin [63] observed, “widely 

divergent theories have given performance curves which agree with Hilsch’s 

measurements”.  

3.1.3 Internal Flow Boundaries 

A second limitation of Deissler and Perlmutter [62] speaks to another challenge of 

vortex tube analysis: defining the interface between the portion of the inlet flow that will 

exit via the hot side and that which will exit via the cold side. The earliest speculations 

regarding the internal flow pattern, such as Fulton’s [44] in Figure 50, implied that an 
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internal cold flow would be bounded approximately by a paraboloid, wherein the cold 

flow reaches a maximum axial location and then turns around.  

 

Figure 50. Hypothesized flow pattern from Fulton [44] 

Scheper [49] also incorporated in his heat transfer theory the general premise that 

a defined interface exists between hot and cold flows inside the vortex tube, though the 

interface was characterized as an "imaginary tube", i.e. a cylinder. Deissler and 

Perlmutter [62] used a two-layer model which implied a uniflow vortex tube wherein the 

hot and cold flows were modeled as concentric cylinders. Some modern researchers such 

as Dutta et al. [64] and Xue et al. [65] still imply a paraboloid interface in a counterflow 

vortex tube. Computational results vary and several researchers, such as Behera [66], 

have concluded that the cold flow extends to the hot exit as shown in Figure 51, though it 

does not actually flow out of the hot exit.  
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Figure 51. Vortex tube internal streamlines (top);  

Hot and cold flows with streamline-derived interface (bottom) [66] 

It is surprising that although the community had more or less coalesced on various 

theories involving transfer of kinetic energy by viscous action, heat transfer, and 

adiabatic compression and expansion, there had been very little work done on accurately 

defining the boundaries between the flows and computing the energy transfer across that 

boundary. Presumably, if this interface were fully defined, then energy transfers across it 

could be quantified, leading to an overall internal energy balance. Although the general 

distributions of temperature, pressure, and tangential velocity had been measured, those 

could only be fully leveraged to solve the problem if the temperature, pressure, and 

velocity gradients could be determined at the interface.  

If the interface between hot and cold flows is indeed approximated by a 

paraboloid, one would expect to find exclusively positive axial flow (in the direction of 

the hot end) past the maximum cold flow axial station. Unfortunately, the available 
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experimental data is of very limited resolution, and only two researchers took data that 

might be used for this purpose—and even that data is incomplete. Takahama’s [51] 

results, taken at 𝜇𝐶 = 0.50, appear consistent with a paraboloid interface, although 

measurements were only taken to approximately 10% of the length of the tube and thus 

do not entirely confirm it. To be clear, the analysis of the flow and how it might relate to 

a notional interface is this author’s: Takahama did not draw any conclusions in the 

original paper regarding an interface. Because of their uniflow configurations, the data of 

Hartnett and Eckert [55] as well as Lay [54] are not applicable. The only other available 

and otherwise relevant dataset is that of Bruun [52], taken at 𝜇𝐶 = 0.23. Bruun’s velocity 

profile implies stagnation on the central axis between approximately 30 – 50% of the tube 

length. However, there also appears to be an area of reverse flow in the mid-periphery, 

traveling in the opposite direction of the fast-moving air headed toward the hot exit. 

Thus, the bounds of the hot and cold flows were poorly defined from an experimental 

perspective.  

The matter of the interface was further complicated by experimental 

measurements made by Ahlborn and Groves [67] in 1997, who claimed to have identified 

a “secondary flow” in the vortex tube. This secondary flow was manifested as a reverse 

axial flow, i.e. back toward the cold side, of fluid that would otherwise exit the hot side 

and instead caused some recirculation. Although Bruun had previously found similar 

flow features for a low cold fraction, Ahlborn and Groves were surprised to find this for 

𝜇𝐶 = 0. In fact, this was not an entirely new finding: Hartnett and Eckert found a similar 

reverse axial flow for 𝜇𝐶 = 0 [55]. In any event, the alleged existence of this flow was 

hypothesized to be generalizable to all cold fractions and somehow contributing to the 
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temperature separation. However, it must be emphasized that this speculation has not 

been borne out and the secondary flow does not appear to be as generalizable as Ahlborn 

and Groves believed. Unfortunately, this added yet another theory and created some 

confusion in the manner in which an internal energy balance might be accomplished. 

3.1.4 Computational Investigations 

Computational fluid dynamics (CFD) has also been applied to the understanding 

of vortex tubes. Perhaps the earliest attempt was by Sibulkin [63] in 1962 who, for a 

uniflow configuration, approximated the axial progression of temperature separation 

using numerical techniques with a reduced, nondimensionalized form of the energy 

equation. Sibulkin’s results were qualitatively similar to the experimental results of Lay 

[54], and Sibulkin concluded that the roles of gas expansion and heat conduction were 

most significant, while the role of viscous stress was not. 

In a more modern sense, the first application of CFD to vortex tubes appears to be 

Fröhlingsdorf in 1998 [68], who attributed most of the temperature separation to viscous 

shear and found that the turbulent Prandtl number had a pronounced effect. With some 

manipulation, he was able to produce a tangential velocity profile that agreed with 

Bruun’s experiments [52]. Early CFD studies focused on proving the emerging 

techniques by matching experimental data and examining which modeling choices, such 

as the turbulence model, were best-suited to vortex tube predictions. Skye et al. worked 

on matching macroscopic performance to experiments [69]. Behera et al. investigated 

whether they could find Ahlborn’s secondary flow with CFD and found that it only 

existed for very small cold fractions [70]; Oliver et al. also found secondary flow [71], 

though it was close to the inlets and not in the region originally suggested by Ahlborn. 
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Eiamsa-ard and Promvonge [72] varied turbulence models and upwinding 

schemes in an effort to match the experimental results of Hartnett and Eckert [55] and 

found that the algebraic stress model (ASM) outperformed the standard k-ε turbulence 

model. Interestingly, their total temperature distribution closely matched the experimental 

data, although the CFD static temperature distribution disagreed qualitatively with the 

experimental data of Hartnett and Eckert [55], but agreed qualitatively with the other 

experimental findings, such as Lay [54], indicating that static temperature is higher in the 

core than in the mid-periphery. Thakare matched the experimental results of Hartnett and 

Eckert in terms of tangential and axial velocity profiles and observed the same trend of 

static temperature being higher in the core near the inlets [73].  

Dutta et al. [74] also investigated turbulence models and found that the standard 

k-ε turbulence model closely matched macroscopic experimental performance, although 

internal flow distributions were not examined. Farouk pioneered the use of large eddy 

simulation (LES) to model vortex tube performance [75] and seemed to find evidence of 

secondary flows. However, the hot exit featured a radial exit, which is different from 

other experiments, and the resulting flowfield is comparatively messy with considerable 

microvortices and the extent to which the simulation is representative of an actual flow 

remains unclear. No plots of static temperature were shown. Secchiaroli et al. [76] 

modeled a vortex tube using a Reynolds Stress Model (RSM) and LES but did not 

validate its performance against experimental results. 

The first attempt to compute energy transfer across the boundary between hot and cold 

flows was conducted by Aljuwayhel et al. [77] using a two-dimensional, axisymmetric 

model with standard and renormalization group (RNG) k-ε turbulence models. The 
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interface derived from the standard k-ε model with a cold fraction of      𝜇𝐶 = 0.3 is 

presented in Figure 52. The flow pattern, at least near the inlets, does not correspond well 

to that of Bruun or Takahama and includes a large recirculation region inside the cold 

flow. It is unclear whether this is an artifact of CFD or a consequence of their 

unconventional inlet geometry, which was used for simulation purposes. The researchers 

claimed to predict macro-level temperature separation within 14% of their own 

experimental data using a slightly different configuration with similar dimensions.  

 

Figure 52. Vortex tube hot/cold interface from CFD (𝝁𝑪 = 𝟎. 𝟑) [77] 

The study by Aljuwayhel et al. [77] estimated the viscous work and heat transfer 

components of the energy transfer between the flows, shown in Figure 53. The viscous 

work included both tangential and axial components, though they concluded that the 

tangential component contributed positively to temperature separation while the axial 

component contributed negatively. The findings also suggested a large heat transfer 

component as well, though they concluded that the net contribution of heat transfer to 

temperature separation was actually negative.  
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Figure 53. Vortex tube energy transfer components from CFD (𝝁𝑪 = 𝟎. 𝟑) [77] 

Behera et al. [66] conducted a subsequent computational investigation similar to 

that of Aljuwayhel et al. [77], but differed in that the study by Behera et al. [66] was 

three-dimensional with an axisymmetric flow profile enforced by modeling a 1/6 

circumferential wedge—enough to represent a single nozzle—rather than modeling the 

entirety of the vortex tube in a single mesh. Like Aljuwayhel et al. [77], Behera et al. [66] 

modeled air as an ideal gas, but Behera et al. [66] only employed the RNG k-ε turbulence 

model. The two studies examined different cold fraction ranges: Aljuwayhel et al. [77] 

investigated 0.1 ≤ 𝜇𝐶 ≤ 0.3 but Behera et al. [66] investigated 0.65 ≤ 𝜇𝐶 ≤ 0.85. While 

both studies purported to be experimentally validated, in each case the validation was 

incomplete with respect to cold fraction and some qualitative differences were observed 

between the CFD flow profiles and those of experimental investigations. 

The energy transfer components estimated by Behera et al. [66] are shown in 

Figure 54. By comparing the estimated energy transfer components of Behera et al. [66] 
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in Figure 54 with those of Aljuwayhel et al. [77] in Figure 53, it is clear that the 

contributions of the components with respect to axial position differ considerably 

between the studies. However, it should be noted that the two sets of curves result from 

different vortex tube geometries and cold fractions and the former resulted from a 

standard k-ε turbulence model while the latter is from a RNG k-ε turbulence model. 

Nevertheless, the findings are qualitatively similar between the two studies, with both 

research teams concluding that the tangential viscous work drives heat transfer, while the 

axial work component acts in the opposite direction of the tangential component and 

therefore decreases temperature separation. Significantly, heat transfer was thought to be 

of a significant magnitude—around 30% of the tangential work, and larger in magnitude 

than the axial work component—and also served to decrease the temperature separation.  

 

Figure 54. Vortex tube energy transfer components from CFD (𝝁𝑪 = 𝟎. 𝟕𝟒) [66] 
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3.1.5 The Role of Gas Properties 

It has always been understood that the temperature separation effect is enhanced 

by a large pressure drop across the vortex tube. However, the roles of inlet gas and inlet 

temperature have received considerably less attention and no exhaustive research. 

Experiments with different gases have generated inconsistent explanations of the role of 

gas properties. Elser and Hoch [47] experimented with air, H2, Ar, CH4, and CO2 and 

found that the gases yielded different temperature separation values. H2 yielded the 

greatest temperature separation followed by Ar, then air, then CH4, and CO2 yielded the 

least. Elser concluded that the gas properties were probably not very significant because 

the flow was turbulent, and ultimately no concrete explanation was offered. Martynovskii 

and Alekseev [53] experimented with air, CO2, NH3, and CH4 and found that air 

generated the greatest temperature separation, followed by CH4, then CO2, and NH3 had 

the least. Stephan et al. [78] experimented with air, O2, and He; He yielded the greatest 

temperature separation while the temperature separation of air and O2 at various pressures 

were virtually identical. Stephan et al. [78] attributed the differences in performance to 

molecular weight.  

The experiments of Elser and Hoch [47] and Martynovskii and Alekseev [53] do 

not directly support the molecular weight theory. Elser and Hoch’s results appear 

independent of molecular weight in that the temperature separation of air was greater 

than CO2 and less than Ar, both of which have greater molecular weights than air. 

Martynovskii and Alekseev found that air generated the greatest temperature separation 

of the gases despite being in the middle of the pack in terms of molecular weight. It is 

worth noting that for both the Elser and Hoch [47] and Martynovskii and Alekseev [53] 
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experiments, the inlet temperatures of the gases spanned a range of approximately 23 K; 

Stephan et al. [78] provided no information regarding inlet temperature. 

Others have speculated that additional gas properties play a role. Deissler and 

Perlmutter [62] suggested that temperature separation will increase with decreasing 𝐶𝑝 of 

a gas. Entov [79] held the view that gas properties are not generally significant due to the 

turbulent flow, with the exception of the ratio of specific heats, 𝛾. Fulton [44] 

hypothesized a relation to predict the maximum temperature drop in a vortex tube using 

the maximum isentropic temperature drop that would occur with isentropic expansion, 

ΔTs, and the turbulent Prandtl number of the flow; large values of each would increase 

the maximum possible temperature drop. Note that it can be shown that ΔTs will increase 

with 𝛾. Fulton’s use of the turbulent Prandtl number was based on an assumed 

relationship between work flux and heat flux, where work flux was assumed to pass from 

the cold flow to the hot flow and heat flux was assumed to pass from the hot flow to the 

cold flow. Martynovskii and Alekseev [53] also subscribed to Fulton’s simplified model, 

though it ultimately provided very little in actually explaining the physics. This author 

introduces previous attempts at identifying the underlying mechanism of temperature 

separation for context, and will not necessarily defend all manner of early analytical 

choices.  

In fact, Fulton did perform some initial calculations using an assumed turbulent 

Prandtl number of 0.75 based on contemporary research on the topic and found that the 

actual temperature separation was nearly double the maximum predicted value. This 

difference is probably due at least in part to his faulty assumptions regarding an alleged 

free vortex velocity distribution and the notion that heat conduction works opposite the 
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viscous stress; it should be reiterated that the net direction of heat conduction has been a 

matter of debate. However, the theory seemed to give some credence to the roles of 𝛾 and 

turbulent Prandtl number. Nevertheless, there are stark differences in the performance of 

different gases that are not explained by variations in 𝛾. For example, 𝛾 is nearly identical 

for air and hydrogen, but Elser demonstrated that hydrogen yields enhanced temperature 

separation compared to air. In other words, there is a body of experimental evidence 

suggesting that other gas properties must influence temperature separation. 

The turbulent nature of the flow does seem to complicate the debate regarding the 

role played by molecular gas properties in temperature separation. Pope notes that eddy 

diffusivity values for momentum and heat transfer are significantly greater than their 

corresponding molecular values, to the point where molecular values are often neglected 

[80]. This, of course, reflects the prevailing sentiment regarding the flow in a vortex tube. 

However, Pope places an important caveat on the generalization: this applies particularly 

for high Reynolds number flows and away from walls. In the case of the vortex tube, 

tangential velocity—by far the greatest component—increases sharply away from the 

wall but then decreases toward the core. Under these conditions, perhaps there are 

regions in which molecular properties are not negligible compared to turbulent properties. 

Moreover, perhaps the relationship between turbulent and molecular properties in such a 

complex flow has contributed to the challenge of modeling temperature separation in 

various gases with CFD. In fact, CFD studies repeatedly produce results that are 

qualitatively inconsistent with experimental findings. Pourmahmoud [81] and Rafiee [82] 

computationally determined that CO2 yields greater temperature separation than air; this 
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stands in contrast to the experimental results of Elser and Hoch [47] and Martynovskii 

and Alekseev [53].  

Thakare [73] attempted to match the results of Hartnett and Eckert using CFD; 

recall that Hartnett and Eckert [55] did not extract a cold fraction and thus did not have 

separate hot and cold streams. Thakare’s metrics of temperature separation instead were 

the maximum and minimum in the total temperature distribution in the simulated vortex 

tube. The velocity and total temperature profiles were qualitatively representative, but 

underpredicted internal total temperature profiles in air by at least 25%; this number 

increased at different axial stations and with different turbulence models. Because the 

entirety of the flow was exhausted from a single exit and no theoretical interface existed 

between hot and cold flows, an internal energy balance was not applicable for this 

configuration. However, Thakare’s results with different gases are qualitatively 

inconsistent with other experimental data. (Hartnett and Eckert [55] did not experiment 

with other gases, so this author’s comparisons are drawn against the relative magnitudes 

of temperature separation between gases by other researchers.)  

Thakare’s CFD model successfully predicted that He and H2 yield greater 

temperature separation than air, and that air yields greater than CO2, but predicted that 

CH4 yields greater than air—in contradiction to the results of Elser and Hoch [47] and 

Martynovskii and Alekseev [53], and with Elser and Hoch controlling for inlet 

temperature. With respect to gas properties, Thakare concluded that molecular thermal 

diffusivity is the most significant predictor of temperature separation. It is this author’s 

observation that a correlation between thermal diffusivity and temperature separation 
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suggests that heat transfer plays a significant role, although Thakare’s result should still 

come with some skepticism based on the other inconsistencies.  

Thakare [73] also observed a very close correlation between the temperature 

separation in a gas and its tangential velocity distribution in the simulated vortex tube. 

Though unstated by Thakare, it is also clear that the relative tangential velocities are—

without exception—perfectly correlated to molecular weight where, as one might expect, 

the lighter gases have higher velocities. Moreover, it can be seen in Thakare’s results that 

molecular weight is, with respect to relative rankings, correlated with relative 

temperature separation (with H2 as the only exception). Since the turbulent viscosity, 𝜈𝑇,  

is essentially identical between gases at high Reynolds numbers—especially for the 

standard k-ε model—faster velocities naturally correspond to greater shear stresses and it 

is not then a great leap to conclude that for Thakare’s CFD study, the dominant mode of 

temperature separation is shear work. However, He was shown to have a slightly higher 

temperature separation than H2—the only exception to the molecular weight rule—

indicating that the CFD results are factoring in another energy transfer mode such as heat 

transfer. No researcher has ever compared He and H2 experimentally, so the CFD 

findings cannot be independently evaluated.  

It is not entirely clear why there are qualitative inconsistencies between the CFD 

and the experiments. One possibility is that the vortex tube configuration, which in this 

case was essentially a uniflow tube with no cold fraction, does not lend itself well to 

comparisons with conventional counterflow vortex tubes. In any event, this is clearly a 

gap in the literature and a more rigorous comparison between experimental and 
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computational results with respect to working gas and temperature separation would be 

helpful.   

3.1.6 The Role of Inlet Temperature 

The role of gas inlet temperature has also received little attention. Elser and Hoch 

[47] first investigated the effect of inlet temperature and found approximately 30% 

greater temperature separation when the inlet air was heated to 90°C compared to their 

baseline case of 25°C [47] but no explanation was offered. Martynovskii and Alekseev 

[53] anticipated increased temperature separation at higher temperatures, presumably 

because of their theory relating temperature separation to ΔTs, since it can also be shown 

that a greater inlet temperature corresponds to a greater isentropic temperature drop. 

However, they investigated the effect of inlet temperature across the limited range of 

7°C – 25°C and found that it “did not cause any measurable effect” [53]. Torrella [83] 

experimentally investigated the effect of inlet air temperature ranging from 14°C – 39°C 

and claimed to have found that increased inlet temperature enhances temperature 

separation, though the change in performance was not robustly quantified. Pourmahmoud 

[84] numerically investigated the effect of inlet temperature across the range 

21°C – 197°C and found that temperature separation increased by 15 K at the cold exit 

and 10 K at the hot exit with greater inlet temperature, for a cold fraction of 𝜇𝐶 = 0.30. 

The most noticeable effect of inlet temperature in the data of Pourmahmoud was greater 

tangential velocities, which increased by 23% – 26% across the temperature range, 

though no explicit connection was drawn to increased temperature separation. 

Unfortunately, no static temperature distributions were shown, nor were any internal 

energy balances conducted. The research on the variation of temperature separation with 
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respect to inlet temperature remains somewhat anecdotal, and no published studies have 

investigated the interactions between gas and inlet temperature.  

3.1.7 The Effect of Geometric Scale 

The size of vortex tubes found in the literature varies considerably. Modern 

commercially available vortex tubes tend to be a few inches long, but Hilsch’s original 

tube was 30 cm long [41], and Scheper used a 36 inch vortex tube [49]. Nevertheless, the 

effect of geometric scale on vortex tube temperature separation has not been directly 

evaluated in the literature in that no research has ever been conducted whereby two 

geometrically identical vortex tubes, differing only in scale, have been compared.  

The variation of geometric proportions of a vortex tube can have a significant 

influence on the behavior, and numerous researchers such as Martynovskii and Alekseev 

[53], Soni [85], and Saidi and Valipour [86] have expended considerable effort to 

optimize vortex tube performance. Such research typically takes the form of parametric 

studies of geometric proportion such as the ratios of tube length to diameter, tube 

diameter to cold exit orifice diameter, and total inlet area to tube cross sectional area; 

other geometric factors such as the shape and number of inlets, tapering of the tube, and 

hot exit geometry are also sometimes considered.  

Limited research has been performed on small vortex tubes: Dyskin [87] claimed 

success in testing vortex tubes with diameters down to 1 mm, although the usual 

performance curves were not presented and the degree of temperature separation was not 

clear. Hamoudi et al. examined small vortex tubes and small pressure drops [88,89] and 

the results are much more illuminating. With a tube diameter of 2 mm and an inlet 
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pressure of 200 kPa, a cold side temperature drop of approximately 9°C was achieved; 

actual performance was further modulated by varying geometric proportions.  

Hamoudi et al. also investigated the effects of inlet pressures in the range of 

2.5 kPa – 82 kPa (0.36 – 11.9 psi) for a 2 mm diameter vortex tube. They found that 

temperature separation disappeared altogether when the inlet pressure dropped below 

25 kPa gauge (3.6 psig), and rose to approximately 2°C for an inlet pressure of 69 kPa 

gauge (10.0 psi). They also considered the influence of inlet channel Reynolds number on 

temperature separation in that the inlet channel Reynolds number is a function of the 

pressure difference between the inlet channel and the vortex tube exit. They hypothesized 

that as the pressure drop and the channel Reynolds number increase, the flow will 

transition to turbulent flow and that turbulent flow is conducive to temperature 

separation. 

3.1.8 A Summary of Vortex Tube Explanations in the Literature 

At this point, it is worth recapping the extant theories. The mainstream of 

researchers recognize viscous shear and heat transfer as the dominant modes of energy 

transport between the hot and cold flows, and heat transfer was also hypothesized to be 

enhanced by a pressure gradient when the flow is turbulent. The majority saw viscous 

work as the dominant mode, with a substantial minority viewing heat transfer as the 

dominant mode. The conflicting views arose primarily from different understandings of 

the velocity and temperature distributions inside the tube. This was complicated by a 

diversity of experimental configurations, some unresolved inconsistencies in measured 

data, a lack of definition of the boundary between hot and cold flows, and possibly by 

delays in disseminating the latest results.  
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Fringe theories have also been proposed; these will not be exhaustively reviewed, 

but the most prominent will be briefly summarized. Eckert [3], decades after collecting 

experimental data, attributed temperature separation in vortex tubes to unsteady 

phenomena; he specifically emphasized the contribution of unsteady pressure forces over 

that of heat transfer or viscous stress and assumed that the flow inside a vortex tube must 

be unsteady. A related and oft-cited theory is the “acoustic streaming” hypothesis 

proposed by Kurosaka [5], which attributes temperature separation to unsteady acoustic 

interactions that apparently modify vortex behavior and device performance. This 

fascinating phenomenon is apparently not essential for vortex tube operation and remains 

beyond the scope of this paper. In recent years, several more theories have emerged 

which do not directly explain vortex tube operation, such as Ahlborn’s secondary flow 

[67], the cumulative effect of Görtler vortices [45], partial stagnation and multi-

circulation [65], and angular propulsion [90]. None of these will be seriously considered. 

The present research will only consider explanations that are rooted in the energy 

equation and therefore will attempt to determine the relative contributions of work and 

heat transfer inside the vortex tube based on a rigorous characterization of the velocity 

and temperature distributions. 

3.2 Characterization of the Phenomenon of Temperature Separation 

as Observed in a Vortex Tube 

The second research objective, “Characterize the phenomenon of temperature 

separation as observed in a vortex tube”, is multi-faceted and successful completion 

depended upon analytical, experimental, and computational methods. First and foremost, 

it was important to establish as rigorous an experimental footing as possible. Therefore, 
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research began via experimental investigations into governing properties in vortex tubes. 

Following the initial experimental investigation, all results were nondimensionalized 

using a methodology established in a subsequent analytical study. Computational 

methods, validated through favorable comparison with experimental results, were also 

applied to determine the underlying mechanism of temperature separation and to identify 

any influences of geometric scale on temperature separation. 

Conventional vortex tube configurations apply an inlet pressure of several 

atmospheres and vent to ambient pressure. Temperature separation may be manipulated 

by adjusting the cold fraction, 𝜇𝐶, defined as the fraction of the inlet mass flow rate 

exhausted via the cold exit. The cold fraction is typically adjusted using a valve on the 

hot exit, and the greatest temperature drop is usually achieved with 0.2 < 𝜇𝐶 < 0.5. 

Performance characteristics are conventionally plotted as a set of curves in which the 

difference in temperature between exits and inlet are plotted as a function of cold 

fraction; the hot exit results will be seen as a curve of positive values, while the 

corresponding cold exit curve will be a set of negative values. The results herein will be 

reported in this fashion, similar to that of Figure 46. 

 

3.2.1 Experimental methodology: characterization of vortex tube performance 

The experimental evidence indicates that inlet flow conditions and gas properties 

are significant to temperature separation, but little progress has been made in 

understanding these dependencies. The present effort experimentally investigates the 

contribution of inlet flow conditions and gas properties to temperature separation and two 
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properties will be considered, which have not historically been of interest in vortex tube 

investigations: nozzle velocity and volumetric heat capacity, 𝜌𝐶𝑝.  

The degree of temperature separation in a vortex tube is at least partially linked to 

the intensity of the vortex. Since the flow profile inside the tube is established by the 

high-velocity flow passing through the nozzles, it stands to reason that nozzle velocity is 

of considerable interest in an investigation of temperature separation. Nozzle velocity has 

not historically been of interest in vortex tube investigations; only Sibulkin [63] measured 

the velocity at the nozzle, and even then the purpose was to verify boundary conditions 

for a numerical study rather than as a parameter to vary. The volumetric heat capacity, 

𝜌𝐶𝑝, reflects a combination of flow properties, such as temperature and pressure, and gas 

properties such as molecular weight and 𝐶𝑝. Moreover, wherever density is found in the 

energy equation, it is multiplied by 𝐶𝑝; see Panton [91]. The present study examines the 

effects of inlet temperature, pressure, mass flow rate, and working gas on nozzle velocity 

and 𝜌𝐶𝑝 and—in turn—on temperature separation. 

The model of vortex tube used in this study was a commercially available Exair™ 

3208, shown in Figure 55, which indicates the locations and flow paths for the inlet, hot 

exit, and cold exit. A component known as a vortex generator, which contains the 

tangential nozzles that impart the swirl of the vortex, was installed internally at the site 

depicted in Figure 55. The vortex generator was the ExairTM model 8R, seen in Figure 56. 

The 8R vortex generator contains six rectangular-channel nozzles, each of which has a 

height of 0.794 mm, a width of 0.660 mm, and a hydraulic diameter of 0.721 mm. The 

outside diameter of the vortex generator matches the inside diameter of the cavity near 
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the cold exit, so when the vortex generator is sealed inside the cavity, the annular recess 

forms an annular chamber. Gas flows into the vortex tube via the inlet and then into the 

annular chamber. Next, it passes through the nozzles and into the tube, where the 

complex vortical flow occurs. A fraction of the gas exits the vortex tube via the nearby 

cold exit, while the rest exits via the hot exit at the opposite end of the tube.  

 

 

Figure 55. ExairTM 3208 vortex tube used in the study 

 

Figure 56. ExairTM 8R vortex generator 
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For this investigation, it was necessary to independently control the mass flow 

rate, static temperature, and static pressure of a gas through the nozzles. A vortex tube 

laboratory was assembled to meet these requirements as shown in Figure 57. Pressurized 

dry air and bottled CO2 were used in the experiments. The gas was passed through a 

manual pressure regulator to set the inlet pressure, and then through a heat exchanger to 

achieve the desired inlet temperature. At the inlet to the vortex tube, a NetScanner 

pressure transducer measured static pressure and an Omega grounded-junction K-type 

thermocouple measures temperature.   

 

Figure 57. Vortex Tube Laboratory Configuration 

The gas was exhausted through both ends of the vortex tube where the pressure 

and temperature were measured using identical pressure sensors and thermocouples as at 

the inlet. The mass flow rate through each side of the vortex tube was independently 

controlled with a dedicated Omega 2612A digital mass flow controller; these can control 

flow rates of up to 500 standard liters per minute (SLPM). The mass flow controllers 

have an operating range of -10°C to +50°C, so the gas was passed through a heat 

exchanger upstream of the controllers to remain within this range. The location of the 

mass flow controllers was a unique feature of this laboratory: by installing them 
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downstream of both exits, the inlet pressure and mass flow rates were largely decoupled. 

Whereas conventional experiments could not set a high inlet pressure and a low mass 

flow rate, such independent variation was possible here. Obviously, some minimum inlet 

pressure was still required for a particular mass flow rate. 

For each test point, ten samples of temperature and pressure at the inlet and exits 

as well as mass flow rate at the exits were collected at a rate of 1 Hz and then averaged. 

The nominal accuracy of the thermocouples and pressure sensors were 0.5°C and 

0.05 psi, respectively. However, the thermocouple standard error for each test point was 

typically less than 0.05°C and rarely greater than 0.07°C; note that the standard error 

reflects the experimental precision of the measurement technique, not the underlying 

accuracy of the measurements. Nominal accuracy of pressure measurements was 

0.05 psi; the standard error was typically less than 0.01 psi and rarely above 0.02 psi. The 

nominal accuracy of the mass flow controllers was the sum of 0.2% of full scale 

(500 SLPM) and 0.8% of measured; because most experiments used flow rates between 

50 – 100 SLPM, this corresponded to a nominal accuracy of 1.1 – 2.6% for each flow 

meter where lower flow rates have a higher percentage error. Uncertainty in nozzle 

velocity was estimated using the method of Kline & McClintock [37]. Using the nominal 

accuracies of the sensors yielded typical velocity uncertainties between 2 – 4% of the 

calculated value; this was dominated by uncertainty in mass flow rate. In essence, it was 

more difficult to reliably match nozzle velocity for low mass flow rates. 

Precision uncertainty of the results was analyzed with an assessment of 

repeatability. The three cases of greatest interest—Cases 5.1 – 5.3, to be introduced in 

Section 3.2.2—were repeated after a period of several days. For example, the Case 5.1 
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temperature separation curves for both days are shown in Figure 58. The repeatability 

was aggregated for hot and cold curves across all cold fractions for all three repeated 

cases and normalized by observations. The results are presented as a histogram in Figure 

59, which reveals that their distribution is approximately normal with a nearly zero 

(0.0012 K) mean. 64.1% of the data points had repeatability within ±0.05 K, while 97.4% 

were within ±0.15 K. The remaining two data points, within ±0.25 K, occurred on the 

cold exit curves for a cold fraction of 0.20, which is an especially challenging data point 

due to corresponding mass flow rates. 

 

Figure 58. Day-to-day repeatability of experimental test cases 
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Figure 59. Histogram of experimental precision uncertainty 

The experiments require control of the flow conditions through the nozzles, 

including a means of determining the velocity and 𝜌𝐶𝑝, but the size and placement of the 

nozzles made direct instrumentation prohibitive; moreover, instrumenting an inlet was 

expected to distort the flow path. Flow conditions were instead measured slightly 

upstream of the nozzles at the vortex tube inlet; in Figure 57, this location is between the 

heat exchanger and the vortex tube. Nozzle flow conditions were computed using 

compressible flow relations based on foundational thermodynamic and fluids theory; see 

John [92] for Eqs (45)  – (49), which outline the solution process for nozzle properties.  

The path from the instrumented inlet to the vortex tube nozzles is approximately 

7 cm long and consists mostly of tubing followed by a constriction inside the vortex tube 

as the flow enters the nozzles, which are 2.5 mm in length, and is accelerated; the flow in 

this study does not exceed Mach 0.30. The total pressure losses along this path are 

certainly not zero but, based on these observations, the losses are expected to be small 
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enough that the flow path is modeled ideally as an isentropic converging nozzle. 

However, once the flow exits the nozzles, the total pressure losses inside the tube are 

substantial. To avoid confusion, the term “inlet” refers to the instrumented station 

upstream of the vortex tube, while the term “nozzles” will be reserved for the passages 

through which gas is injected to form the vortex. 

At the inlet, total temperature and static pressure are measured, and mass flow 

rate is computed as the sum of the mass flow rates measured at the tube exits. Inlet bulk 

velocity, static temperature, and Mach number were computed using the two total 

temperature relations in Eq (45) and (46). The combined cross-sectional area of the 

nozzles is  3.144×10-6 m2. The area ratio between all of the nozzles and the inlet is 

𝐴𝑛𝑜𝑧𝑧𝑙𝑒𝑠

𝐴𝑖𝑛𝑙𝑒𝑡
= 0.172. The Mach number at the nozzles is computed by calculating the 

nozzles’ critical ratio from the inlet critical ratio in Eq (47) and relating the critical area 

ratio to Mach number with Eq (48) [92]. Nozzle static temperature is computed using Eq 

(45), and finally nozzle bulk velocity is calculated from the Mach number using Eq (49). 

Through experimentation with air, it was found that the Mach numbers through the inlet 

and exits were low—in all cases, 𝑀 ≤ 0.061—implying that the thermocouple measured 

total temperature. Due to mass flow rate limits imposed by the lab configuration, the 

Mach number through the nozzles could not exceed 0.40 and remained at 0.35 or below 

for the cases of interest. 
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𝑇𝑡 = 𝑇 (1 +
𝛾 − 1

2
𝑀2) (45) 

𝑇𝑡 = 𝑇 +
𝑉2

2𝐶𝑝
 (46) 

 

𝐴𝑛𝑜𝑧𝑧𝑙𝑒𝑠

𝐴∗
=

𝐴𝑖𝑛𝑙𝑒𝑡

𝐴∗

𝐴𝑛𝑜𝑧𝑧𝑙𝑒𝑠

𝐴𝑖𝑛𝑙𝑒𝑡
 (47) 
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2(𝛾−1)
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𝛾 − 1
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2(𝛾−1)

𝑀
 

(48) 

 

𝑉𝑛𝑜𝑧𝑧𝑙𝑒𝑠 = √𝛾𝑅𝑇𝑛𝑜𝑧𝑧𝑙𝑒𝑠𝑀𝑛𝑜𝑧𝑧𝑙𝑒𝑠 (49) 

 

Two data sets were taken separately using this laboratory configuration: a     

multi-𝜇𝐶 set and a single-𝜇𝐶 set, which were used for slightly different purposes. For the 

multi-𝜇𝐶 set, comparison cases were developed for six scenarios and data was taken for 

cold fractions across a range of 0.20 ≤ 𝜇𝐶 ≤ 0.80. The first five scenarios use air, while 

the last extends the investigation using CO2. For air, the first three scenarios involved 

varying either mass flow rate, temperature, or pressure while holding the other two 

quantities constant. These are the three operating conditions that are directly adjusted, 

and these were independently varied at first. The fourth scenario investigated temperature 

separation while matching nozzle velocity and varying 𝜌𝐶𝑝, while the fifth matched 

nozzle velocity and 𝜌𝐶𝑝 for three different combinations of inlet temperature and 

pressure. Finally, the sixth scenario matched nozzle velocity and 𝜌𝐶𝑝 in CO2. For brevity, 
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experiments were named according to the scenario and the comparison case; for example, 

the third case within the fifth scenario was named Case 5.3. 

For multi-𝜇𝐶 experiments in air, mass flow rates varied from 0.945 – 1.776 g/s 

(47.9 – 90.0 SLPM), inlet total temperatures ranged from 20°C to 60°C, and inlet static 

gauge pressures varied 2.00 – 5.00 bar (29.01 – 72.52 psig). Combinations of these 

parameters were carefully set to achieve nozzle velocities ranging from 62.85 to 

98.95 m/s, with Mach numbers ranging from 0.183 to 0.295. Several sets of experimental 

data were taken using carefully selected combinations of mass flow rates, temperatures, 

and pressures. The resulting curves of temperature separation are plotted against cold 

fraction for each of the comparison cases. 

The single-𝜇𝐶 data set was taken only for a cold fraction of 𝜇𝐶 = 0.40, which is in 

the range of cold fractions near which the coldest temperatures are typically observed, 

and thus was expected to yield readily discernable results. The inlet temperatures were set 

to 20°C, 40°C, or 60°C; inlet static pressures ranged from 2.0 to 5.0 bar (gauge), and 

mass flow rates varied from 9.85×10-4 to 2.37×10-3 kg/s (approximately 50 – 120 SLPM). 

36 data points were collected using combinations of these settings. Nozzle velocities 

ranged from 44.4 to 127.5 m/s, Reynolds numbers from 11,222 to 30,112, and Mach 

numbers from 0.130 to 0.353. The only use for the single-𝜇𝐶 data set in the dimensional 

investigation of temperature separation is to characterize the relationship with nozzle 

velocity; however, the full utility of this data set will become clear following the 

nondimensionalization of temperature separation in Section 3.2.4. 

Nozzle velocity uncertainty was most significantly affected by uncertainty of the 

mass flow controllers, which was computed as 0.2% of full scale (500 SLPM) plus 0.8% 
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of the measured value. For the cases with the lowest flow rates of 9.85×10-4 kg/s 

(50 SLPM), velocity uncertainty ranged from 3.4% to 3.9% of the computed velocity. 

This decreased to 2.3% or less for flow rates of 1.97×10-3 kg/s (100 SLPM) and higher. 

3.2.1.1 Heat Loss Correction 

To minimize heat losses, the vortex tube and the instrumentation stations were 

wrapped with foam insulation. However, heat losses from the vortex tube were inevitable 

at elevated inlet temperatures and it was necessary to account for these losses to avoid 

distorting the results, especially when comparing results from different inlet 

temperatures. Heat losses were computed using Eq (50), where heat lost through the 

vortex tube was equal to the difference in specific total enthalpy between the inlet and 

exits, where total enthalpy is defined by convention as ℎ𝑡 ≡ ℎ +
𝑉2

2
. 

𝑞 = �̇�ℎ𝑜𝑡ℎ𝑡,ℎ𝑜𝑡 + �̇�𝑐𝑜𝑙𝑑ℎ𝑡,𝑐𝑜𝑙𝑑 − �̇�𝑖𝑛𝑙𝑒𝑡ℎ𝑡,𝑖𝑛𝑙𝑒𝑡 (50) 

Values of specific enthalpy, ℎ, and specific heat at constant pressure, 𝐶𝑝, were 

computed at the inlets and exits as functions of static temperature and pressure from the 

data of NIST REFPROP 9.1 for air [93], and from the data of NIST Webbook for CO2 

[94]. Moreover, to ensure accurate calculations of heat losses, conditions were monitored 

for steady-state operation prior to data collection. This typically took two minutes or 

more, depending on mass flow rate and was determined by monitoring the exit 

thermocouple time histories. 

To correct for heat losses, a function was devised to apportion a fraction of the 

overall lost heat back to each exit as appropriate; as expected, this apportionment fraction 

was a function of the cold fraction, 𝜇𝐶, and is described by Eq (51), where 
𝑞ℎ𝑜𝑡

𝑞
 is the 
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fraction of lost heat apportioned to the hot exit. This simple linear function performs well 

for 0.20 ≤ 𝜇𝐶 ≤ 0.90 and is remarkably robust against variations in inlet temperature, 

mass flow rate, and degree of insulation. The function was validated for flow rates from 

20 – 100 SLPM, inlet temperatures of 20°C – 60°C, and for both insulated and 

uninsulated cases. A temperature correction was then computed based on the 𝐶𝑝 and mass 

flow rate and added to the temperature measured at the hot and cold exits. For example, 

the hot side temperature correction was computed using Eq (52). 

𝑞ℎ𝑜𝑡

𝑞
= −0.60𝜇𝐶 + 0.88 (51) 

  

Δ𝑇𝑡,ℎ𝑜𝑡 =
𝑞ℎ𝑜𝑡

�̇�ℎ𝑜𝑡𝐶𝑝,ℎ𝑜𝑡
 (52) 

An extreme example of the corrected versus uncorrected results is shown in 

Figure 60, where the inlet total temperature is 60°C, inlet static gauge pressure is 

5.00 bar, and mass flow rate is 0.00197 kg/s (100 SLPM). Tests were run with and 

without insulation on the vortex tube: in the top plot of Figure 60, insulated and 

uninsulated cases are shown before correction. After the same heat loss correction 

function was applied to both results, nearly identical corrected curves can be seen in the 

bottom plot. All subsequent results are corrected for heat losses. 



126 

 

  

Figure 60. Comparison of Temperature Separation Curves:  

Uncorrected (top), with Heat Loss Correction (bottom) 
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3.2.2 Results and discussion: experimental characterization of vortex tubes 

3.2.2.1 Analysis of the multi-𝝁𝑪 data set 

The results of the multi-𝜇𝐶 data set will be reviewed first. Scenario 1 investigated 

the influence of varying mass flow rate while holding inlet total temperature and static 

gauge pressure constant at 20°C and 3.0 bar. This had the effect of directly varying 

nozzle velocity; the increased velocity slightly decreased nozzle static pressure and 

temperature, causing a small net decrease in nozzle density and hence 𝜌𝐶𝑝 across the 

cases. Nozzle properties were carefully maintained at target values with respect to cold 

fraction; see for example the plot of nozzle velocity in Figure 61. Therefore, key values 

will be averaged across the cold fractions and tabulated for each case, such as in Table 4. 

  

Figure 61. Constant nozzle bulk velocity with cold fraction for three mass flow rates 
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Table 4. Flow conditions for Scenario 1: varied mass flow rate, constant 𝑻𝒕 and 𝑷𝒔𝒕𝒂𝒕𝒊𝒄 

 Case 1.1 Case 1.2 Case 1.3 

Mass flow rate (kg/s) 9.454×10-4 1.183×10-3 1.420×10-3 

Inlet 𝑇𝑡𝑜𝑡𝑎𝑙 (K) 293.3 293.3 293.2 

Inlet 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (bar, gauge) 3.001 3.001 3.000 

Velocity (m/s) 64.39 81.38 98.95 

𝝆𝑪𝒑 (kJ/m3-K) 4.724 4.676 4.616 

Mach number 0.188 0.238 0.291 

𝑅𝑒𝐷ℎ
  11910 14955 18034 

𝜌 (kg/m3) 4.669 4.622 4.563 

𝐶𝑝 (kJ/kg-K) 1.012 1.012 1.012 

𝜇 (μPa-s) 18.20 18.14 18.05 

Nozzle 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 (K) 291.3 290.0 288.3 

Nozzle 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (Pa, absolute) 390293 384687 377571 

 

As seen in Figure 62, the increase in mass flow rate—and consequently 

velocity—correlates with a large increase in temperature separation. Intuitively, the 

increased temperature separation is also correlated with increased nozzle Mach number 

and Reynolds number based on hydraulic diameter, 𝑅𝑒𝐷ℎ
. The value of 𝜌𝐶𝑝 is nearly 

constant between the cases, decreasing by only 2.3%. 

 



129 

  

Figure 62. Temperature separation in air for varied mass flow rates (Scenario 1) 

Scenario 2 examined the influence of inlet temperature on temperature separation. 

Temperature profiles are shown in Figure 63 and, consistent with other findings, 

temperature separation increased with inlet temperature. However, it now appears 

probable that the contribution of inlet temperature was primarily attributable to its 

corresponding influence on nozzle velocity, which increased by 14% between Cases 2.1 

and 2.3, and potentially also to its influence on 𝜌𝐶𝑝, which decreased by 12% between 

the cases. Counterintuitively, temperature separation correlates with decreasing 𝑅𝑒𝐷ℎ
, as 

can be seen by reading the values of 𝑅𝑒𝐷ℎ
 corresponding to the cases from Table 5, 

suggesting that nozzle Reynolds number alone is a poor predictor of temperature 

separation. 
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Table 5. Flow conditions for Scenario 2: varied 𝑻𝒕, constant mass flow rate and 𝑷𝒔𝒕𝒂𝒕𝒊𝒄 

 Case 2.1 Case 2.2 Case 2.3 

Mass flow rate (kg/s) 1.183×10-3 1.184×10-3 1.184×10-3 

Inlet 𝑇𝑡𝑜𝑡𝑎𝑙 (K) 293.3 312.7 332.7 

Inlet 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (bar, gauge) 3.001 3.000 3.003 

Velocity (m/s) 81.38 87.11 92.86 

𝝆𝑪𝒑 (kJ/m3-K) 4.676 4.372 4.105 

Mach number 0.238 0.247 0.255 

𝑅𝑒𝐷ℎ
  14955 14251 13602 

𝜌 (kg/m3) 4.622 4.322 4.056 

𝐶𝑝 (kJ/kg-K) 1.012 1.012 1.012 

𝜇 (μPa-s) 18.14 19.05 19.96 

Nozzle 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 (K) 290.0 308.9 328.4 

Nozzle 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (Pa, absolute) 384687 383127 382210 

 

  

Figure 63. Temperature separation for air with varied inlet temperatures (Scenario 2) 
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Scenario 3 investigated the effect of pressure; these cases highlight both a unique 

capability of this laboratory and a potential challenge in using vortex tubes in high 

pressure environments. Typical vortex tube configurations feature an intrinsic coupling 

between the inlet pressure and the mass flow rate: higher inlet pressures are inherently 

linked to greater mass flow rates due to a lack of flow rate control at both exits; typical 

control is exerted by adjusting a valve only at the hot exit. The linkage between inlet 

pressure and mass flow rate means that higher pressures are conventionally linked to 

higher nozzle velocities and greater temperature separation.  

For the configuration with dual mass flow controllers at the exits, an increase in 

inlet pressure effectively increases the pressure at the exits as well, which increases the 

flow density at the nozzle. When the mass flow rate is held constant, the increased nozzle 

density causes a reduction in nozzle velocity, as seen in Table 6. The consequence, as 

seen in Figure 64, is reduced temperature separation with increased nozzle pressure as 

long as mass flow rate is held constant. The effect of inlet pressure on temperature 

separation for this configuration obviously stands in contrast to conventional vortex tube 

configurations and reiterates the roles of nozzle velocity in inducing temperature 

separation. Notice that 𝑅𝑒𝐷ℎ
 was the same for Cases 3.1 and 3.2, again indicating that 

Reynolds number alone cannot be used to predict temperature separation. 

 

 

Table 6. Flow conditions for Scenario 3: varied 𝑷𝒔𝒕𝒂𝒕𝒊𝒄, constant mass flow rate and 𝑻𝒕 

 Case 3.1 Case 3.2 
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Mass flow rate (kg/s) 1.382×10-3 1.383×10-3 

Inlet 𝑇𝑡𝑜𝑡𝑎𝑙 (K) 293.4 293.8 

Inlet 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (bar, gauge) 5.001 3.000 

Velocity (m/s) 62.80 96.59 

𝝆𝑪𝒑 (kJ/m3-K) 7.102 4.604 

Mach number 0.183 0.283 

𝑅𝑒𝐷ℎ
  17366 17520 

𝜌 (kg/m3) 6.996 4.551 

𝐶𝑝 (kJ/kg-K) 1.015 1.012 

𝜇 (μPa-s) 18.24 18.09 

Nozzle 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 (K) 291.4 289.1 

Nozzle 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (Pa, absolute) 585213 377643 

 

 

  

Figure 64. Temperature separation for air with varied inlet pressures (Scenario 3) 

The three scenarios thus far have found that increases in temperature separation 

correlate with increases in nozzle velocity, as expected. The scenarios have also found, 
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without exception, that temperature separation is correlated with decreasing 𝜌𝐶𝑝. What is 

thus far lacking, however, is an indication of the sensitivity of temperature separation to 

𝜌𝐶𝑝 alone. Scenario 4 tested just that: nozzle bulk velocity was held constant for three 

cases, while nozzle 𝜌𝐶𝑝 was varied by using combinations of mass flow rate and inlet 

pressure. This permitted a 42% decrease in 𝜌𝐶𝑝 between Cases 4.1 and 4.3, shown in 

Table 7. 

Table 7. Flow conditions for Scenario 4: matched 𝑽 but varied 𝝆 𝑪𝒑
  

 Case 4.1 Case 4.2 Case 4.3 

Mass flow rate (kg/s) 1.776×10-3 1.420×10-3 1.027×10-3 

Inlet 𝑇𝑡𝑜𝑡𝑎𝑙 (K) 293.3 293.3 293.4 

Inlet 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (bar, gauge) 4.183 3.154 2.000 

Velocity (m/s) 95.29 95.04 95.21 

𝝆𝑪𝒑 (kJ/m3-K) 6.009 4.808 3.463 

Mach number 0.280 0.279 0.279 

𝑅𝑒𝐷ℎ
  22508 18010 13029 

𝜌 (kg/m3) 5.928 4.751 3.429 

𝐶𝑝 (kJ/kg-K) 1.014 1.012 1.010 

𝜇 (μPa-s) 18.09 18.08 18.06 

Nozzle 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 (K) 288.8 288.8 288.8 

Nozzle 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (Pa, absolute) 491365 393842 284320 

 

Figure 65 suggests that temperature separation is a function of the product 𝜌𝐶𝑝, 

but not a strong function. Greater temperature separation appears correlated with lower 

𝜌𝐶𝑝. Case 4.3 yields a small but consistent increase: at a cold fraction of 𝜇𝐶 = 0.4, at 

which the greatest cold exit temperature separation is observed the difference between 

Case 4.3 and Case 4.1 is 0.51 K at the cold exit and 0.55 K at the hot exit. However, the 

differences between Cases 4.1 and 4.2 are so slight that they are on the same order as the 
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standard error of the experiment. This scenario ultimately reveals that the performance of 

the vortex tube is not sensitive to changes in 𝜌𝐶𝑝 of the magnitude seen in these 

Scenarios, which further implies that the differences between cases in Scenarios 2 and 3 

are largely attributable to differences in nozzle velocity. 

  

Figure 65. Temperature separation for air with  

constant nozzle bulk velocity but varied 𝝆𝑪𝒑 (Scenario 4) 

Scenario 5 presents a novel comparison: the nozzle bulk velocity and 𝜌𝐶𝑝 are 

matched for all three cases by varying temperature and pressure while holding mass flow 

rate constant, as presented in Table 8. Mach number and Reynolds number vary slightly 

between the cases. The net effect, shown in Figure 66, is striking: the performance curves 

are essentially identical between the three cases. This is the first instance in the known 

literature in which temperature separation in a vortex tube has been matched between 
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cases with dissimilar pressures and temperatures. This also suggests that dimensional 

temperature separation is governed by two dimensional parameters: nozzle velocity and 

𝜌𝐶𝑝, though nozzle velocity has a vastly stronger influence than 𝜌𝐶𝑝. Moreover, velocity 

apparently provides the link between temperature and pressure that has thus far proven 

elusive. It has been long understood that increasing inlet pressure or inlet temperature 

alone will increase temperature separation, but no explanation has thus far been offered 

regarding any possible relationship between the two. Using standard fluid dynamics 

analysis techniques, the relationship between the two is now clear—they both serve to 

modify nozzle velocity by means of compressible flow relations. 

Table 8. Flow conditions for Scenario 5: matched nozzle velocity and 𝝆 𝑪𝒑
  

 Case 5.1 Case 5.2 Case 5.3 

Mass flow rate (kg/s) 1.420×10-3 1.420×10-3 1.421×10-3 

Inlet 𝑇𝑡𝑜𝑡𝑎𝑙 (K) 293.2 313.3 333.1 

Inlet 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (bar, gauge) 3.000 3.275 3.549 

Velocity (m/s) 98.95 98.79 98.52 

𝝆𝑪𝒑 (kJ/m3-K) 4.6163 4.6262 4.6452 

Mach number 0.291 0.280 0.271 

𝑅𝑒𝐷ℎ
  18034 17111 16322 

𝜌 (kg/m3) 4.563 4.571 4.587 

𝐶𝑝 (kJ/kg-K) 1.012 1.012 1.013 

𝜇 (μPa-s) 18.05 19.03 19.96 

Nozzle 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 (K) 288.3 308.4 328.2 

Nozzle 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (Pa, absolute) 377571 404644 432078 
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Figure 66. Temperature separation for air with matched 𝑽 and 𝝆𝑪𝒑 (Scenario 5) 

Scenario 6 repeated the investigation of varying temperature and pressure while 

maintaining nozzle bulk velocity and 𝜌𝐶𝑝 constant, but with CO2 instead of air, shown in 

Table 9. Based on the findings in air, one might expect that the temperature separation 

curves would again be exactly aligned. However, this time the hot exit curves in Figure 

67 collapse as expected but the cold exit curves reveal a variation such that temperature 

separation decreases with increasing inlet temperatures and pressures.  
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Table 9. Flow conditions for Scenario 5: matched nozzle velocity and 𝝆 𝑪𝒑
  

 Case 5.1 Case 5.2 Case 5.3 

Mass flow rate (kg/s) 1.420×10-3 1.420×10-3 1.421×10-3 

Inlet 𝑇𝑡𝑜𝑡𝑎𝑙 (K) 293.2 313.3 333.1 

Inlet 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (bar, gauge) 3.000 3.275 3.549 

Velocity (m/s) 98.95 98.79 98.52 

𝝆𝑪𝒑 (kJ/m3-K) 4.6163 4.6262 4.6452 

Mach number 0.291 0.280 0.271 

𝑅𝑒𝐷ℎ
  18034 17111 16322 

𝜌 (kg/m3) 4.563 4.571 4.587 

𝐶𝑝 (kJ/kg-K) 1.012 1.012 1.013 

𝜇 (μPa-s) 18.05 19.03 19.96 

Nozzle 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 (K) 288.3 308.4 328.2 

Nozzle 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (Pa, absolute) 377571 404644 432078 

 

  

Figure 67. Temperature separation for CO2 with matched 𝑽 and 𝝆𝑪𝒑 (Scenario 5) 

This intriguing result indicates that at least one other relevant gas or flow property 

has not been matched. Reynolds number and Mach number seem unlikely culprits, since 

the variations between the cases are comparable to those in Scenario 5 in air. However, 
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the Joule-Thomson coefficient, 𝜇𝐽𝑇, which has not thus far been under consideration, is a 

likely contributor to this finding because its value is known to be much larger in CO2 than 

in air and it inherently governs temperature changes across a pressure drop. Table 10 lists 

the values of 𝜇𝐽𝑇 at the nozzle for each case in K/bar. The variation of 𝜇𝐽𝑇 between cases 

for air (Scenarios 1 – 5) is approximately 0.06 K/bar at most, while Scenario 6 sees a 

total variation of 0.32 K/bar from 20°C to 60°C—a difference which alone is larger than 

the entire magnitude of 𝜇𝐽𝑇 in air in any of the previous cases. 

Table 10. Joule-Thomson coefficients at the nozzle for each scenario and case 

 𝜇𝐽𝑇 (K/bar) Case 1 Case 2 Case 3 

Scenario 1 0.2343 0.2345 0.2348 

Scenario 2 0.2345 0.2043 0.1776 

Scenario 3 0.2327 0.2338 - 

Scenario 4 0.2337 0.2344 0.2351 

Scenario 5 0.2348 0.2034 0.1768 

Scenario 6 1.1466 0.9634 0.8260 

 

The Joule-Thomson coefficient relates a change in pressure to a corresponding 

isenthalpic change in temperature. For a given pressure change, a larger value of 𝜇𝐽𝑇 

results in a larger temperature change, and the observations in CO2 at the cold exit are 

consistent with this trend. For example, consider how the cold exit curves of Case 6.1, 

where   𝜇𝐽𝑇 = 1.1466, depict a greater temperature drop than those of Case 6.3, where         

𝜇𝐽𝑇 = 0.8260. Figure 68 reveals the static pressure drop between the nozzle and the 

exits. 
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Figure 68. Static pressure drop between nozzle and exits: cold (diamonds) and hot (dots) 

A decrease in pressure upon exiting the nozzle will also decrease the temperature 

of the gas. The static pressure drop between the nozzle and the cold exit is larger for all 

cases than the pressure drop between the nozzle and hot exit, so it is not surprising that 

the temperatures at the cold exit are more sensitive to changes in 𝜇𝐽𝑇 than are 

temperatures at the hot exit. However, that these variations in 𝜇𝐽𝑇 have no discernable 

effect on the hot exit temperatures is somewhat surprising. While the present findings 

suggest that 𝜇𝐽𝑇 is indeed a governing property for temperature separation, deducing the 

exact manner in which it modulates the temperature separation likely requires a detailed 

internal flow analysis. The role of 𝜇𝐽𝑇 will be further examined during the 

nondimensionalization of temperature separation, starting in Section 3.2.3. 
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3.2.2.2 Analysis of the single-𝝁𝑪 data set 

The dimensional investigation concludes with a direct investigation of the 

relationship between temperature separation and nozzle velocity. Recall that the single-

𝜇𝐶 data set was taken for 𝜇𝐶 = 0.40 at various combinations of inlet temperatures, 

pressures, and mass flow rates to achieve a wide range of nozzle velocities. Inlet 

temperatures were 20°C, 40°C, and 60°C, inlet gauge pressures ranged from 2.0 – 

5.0 bar, and mass flow rates varied from 9.85×10-4 to 2.37×10-3 kg/s (approximately 50 – 

120 SLPM). The temperature separation for the test points has been aggregated and 

plotted in Figure 69.  

 

Figure 69. Temperature separation vs. nozzle velocity (𝝁𝑪 = 𝟎. 𝟒𝟎) 

The results form essentially a single curve for either the hot or cold exit 

temperature separation, which indicates that nozzle velocity is indeed a strong governing 
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parameter for dimensional temperature separation rather than solely pressure or 

temperature. Moreover, the strong curvature implies that temperature separation is a 

higher-order function of nozzle velocity. This result also implies that the sensitivity of 

temperature separation to nozzle velocity increases at higher velocities or, by association, 

higher mass flow rates. 

3.2.2.3 Conclusions on dimensional investigation of temperature separation 

The present study extends our understanding of vortex tubes by identifying gas 

and flow properties which at least partially govern temperature separation in a vortex 

tube. Using a novel vortex tube laboratory configuration, experiments were conducted in 

which mass flow rate, inlet pressure, inlet temperature were independently varied, 

permitting by extension independent control of the nozzle velocity and volumetric heat 

capacity, 𝜌𝐶𝑝. It was found through experiments in air that temperature separation 

increases with increasing nozzle velocity and decreasing values of 𝜌𝐶𝑝, though the results 

are relatively insensitive to changes in 𝜌𝐶𝑝. It was also found that the greater temperature 

separation observed with greater inlet temperatures is actually attributable to the greater 

nozzle velocities associated with the higher inlet temperatures and, to a lesser extent, the 

slightly lower values of 𝜌𝐶𝑝. This is the first explanation ever offered regarding the 

influence of inlet temperature on temperature separation.  

Most notably, it was demonstrated that by matching nozzle velocity and 𝜌𝐶𝑝 

between cases—even though the pressures, temperatures, Reynolds numbers, and Mach 

numbers differ—the resulting temperature separation curves are identical. This is the first 

known demonstration of such a principle, and it suggests that nozzle velocity is 
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fundamental to scaling the performance of a vortex tube, while the nozzle volumetric heat 

capacity is also relevant to its behavior. Counterintuitively, it was found that nozzle 

Reynolds number apparently has little influence on temperature separation. 

An investigation with CO2 also found that temperature separation could be 

closely—but not exactly—matched when nozzle velocity and 𝜌𝐶𝑝 were matched. 

Observable differences between the cases seem attributable to the Joule-Thomson 

coefficient of CO2, and its relatively high sensitivity to nozzle temperature compared to 

air. This suggests that real gas effects can influence the temperature separation 

characteristics of a vortex tube and yield pronounced differences between gases.  

Finally, it appears that temperature separation has a higher-order dependency on 

nozzle velocity, as discovered through a data set taken for 𝜇𝐶 = 0.40. Although the data 

were taken at a variety of inlet pressures, temperatures, and mass flow rates, the results 

reveal that the temperature separation points collapse almost entirely into a single curve 

with respect to nozzle velocity. Moreover, even a cursory visual examination reveals a 

prominent curvature signaling a higher-order increase in temperature separation with 

nozzle velocity. These findings and those from the multi-𝜇𝐶 data set suggest that, in air, 

temperature separation is almost exclusively a function of nozzle velocity and that the 

influence of mass flow rate, pressure, or temperature on temperature separation is largely 

due to the influence of that parameter on nozzle velocity. The analysis of the dimensional 

data sets must now transition to a more fundamental review. The results will be examined 

in greater detail as a part of a nondimensionalization study to understand the influence of 

governing dimensionless parameters on dimensionless temperature separation. This will 
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then permit a deeper understanding of the scaling of the temperature separation 

phenomenon. 

3.2.3 Developing a method of nondimensionalization for vortex tubes 

While the previous findings represent significant developments, their dimensional 

nature still belies an incomplete characterization of temperature separation. To 

demonstrate a more complete understanding of the phenomenon, it is essential to cast it 

in dimensionless terms. Some partial nondimensionalizations of the governing equations 

have been undertaken previously, although these have typically relied upon assumed 

velocity profiles—the realism of which has been debated over the years—with the aim of 

modeling the internal flow field and explaining the underlying mechanism of temperature 

separation. These efforts largely predate modern computational codes and include classic 

works by Kassner and Knoernschild [48], Deissler and Perlmutter [62], and perhaps most 

comprehensively, Sibulkin [63].  

Dimensionless descriptions of temperature separation results have also emerged 

over the decades, with varying degrees of physical connection to the problem. For 

instance, Stephan et al. [78] normalized temperature separation curves by the maximum 

observed change in temperature and found that the performance curves involving 

different inlet pressures and gases were geometrically similar—an intriguing result that 

nevertheless offers little prescriptive power. Likewise, Ahlborn et al. [95] and Hamoudi 

et al. [89] normalized the temperature changes by the inlet temperature, though the basis 

for this choice of temperature scale appears arbitrary. 

The present effort identifies the nondimensional parameters which govern 

temperature separation as well as the appropriate reference scales for temperature 
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separation, and proposes a means by which results may be nondimensionalized according 

to meaningful experimental properties. However, this study makes no assumptions 

regarding the internal flow field nor the actual mechanism of temperature separation; it 

does not require constant properties, nor even that the working gas behaves ideally. To 

that end, it does not include the momentum equations, within which several flow field 

assumptions must be applied. Rather, the analysis focuses on the total energy equation, 

which accounts for the contributions of work, heat transfer, and real gas effects in a 

compressible fluid. While the principal aim herein is to identify the defining 

nondimensional parameters which govern temperature separation in a vortex tube, the 

resulting equation is valid for a broad range of applications. 

But what use is nondimensionalizing temperature separation without probing its 

underlying mechanism? Supposing for a moment that the underlying mechanism behind 

temperature separation were identified for a particular case—and it will be in Section 

3.2.9 by computational investigation —it still would not necessarily answer a broader 

question of practical concern: the question of scaling. Given what is known about a 

vortex tube’s performance in one scenario, what conclusions can be drawn about scaling 

its performance to other scenarios? For the designer with finite experimental and 

computational resources, this question is significant and can be answered via proper 

nondimensionalization of the problem. 

3.2.3.1 Energy Equation Analysis 

The differential form of the total energy equation in index notation, see Panton 

[91], is Eq (53) where 𝜕0() represents the time derivative, 
𝜕()

𝜕𝑡
, and 𝜕𝑖() is the spatial 
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derivative, 
𝜕()

𝜕𝑥𝑖
 . The left-hand side of the equation may be distributed and the product rule 

applied such that the left-hand side is rewritten using eight terms, each of which is 

lettered as seen below in Eq (54). Eq (55) represents the continuity equation in index 

notation. 

𝜕0 [𝜌 (𝑒 +
1

2
𝑣2)] + 𝜕𝑖 [𝜌𝑣𝑖 (𝑒 +

1

2
𝑣2)] = −𝜕𝑖𝑞𝑖 + 𝜕𝑖(𝑇𝑖𝑗𝑣𝑗) + 𝜌𝑣𝑖𝐹𝑖 (53) 

 

            A        B       C          D              E    F      G        H 

𝜌𝜕0𝑒 + 𝑒𝜕0𝜌 +
𝑣2

2
𝜕0𝜌 + 𝜌𝜕0 (

𝑣2

2
) + 𝑒𝜕𝑖(𝜌𝑣𝑖) + 𝜌𝑣𝑖𝜕𝑖𝑒 +

𝑣2

2
𝜕𝑖(𝜌𝑣𝑖) + 𝜌𝑣𝑖𝜕𝑖 (

𝑣2

2
)

= −𝜕𝑖𝑞𝑖 + 𝜕𝑖(𝑇𝑖𝑗𝑣𝑗) + 𝜌𝑣𝑖𝐹𝑖 

(54) 

 

𝜕0𝜌 + 𝜕𝑖(𝜌𝑣𝑖) = 0 (55) 

It can be seen, by way of Eq (55), that Terms B and E in Eq (54) sum to zero, as 

do Terms C and G. The remaining terms may then be rewritten as Eq (56). The left side 

of Eq (56) may alternatively be expressed using the substantial derivatives of internal and 

kinetic energy, as shown in Eq (57). It may also be shown, such as in Panton [91], that 

the substantial derivative of internal energy has the equivalency shown in Eq (58), where 

𝛽 is the isobaric thermal expansion coefficient and T represents static temperature (not to 

be confused with the stress tensor, 𝑇𝑖𝑗). Substituting this equivalency into the energy 

equation yields, with some rearranging, Eq (59). 

𝜌𝜕0𝑒 + 𝜌𝑣𝑖𝜕𝑖𝑒 + 𝜌𝜕0 (
𝑣2

2
) + 𝜌𝑣𝑖𝜕𝑖 (

𝑣2

2
) = −𝜕𝑖𝑞𝑖 + 𝜕𝑖(𝑇𝑖𝑗𝑣𝑗) + 𝜌𝑣𝑖𝐹𝑖 (56) 
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𝜌𝜕0𝑒 + 𝜌𝑣𝑖𝜕𝑖𝑒 + 𝜌𝜕0 (
𝑣2

2
) + 𝜌𝑣𝑖𝜕𝑖 (

𝑣2

2
) = −𝜕𝑖𝑞𝑖 + 𝜕𝑖(𝑇𝑖𝑗𝑣𝑗) + 𝜌𝑣𝑖𝐹𝑖 (57) 

 

𝐷𝑒

𝐷𝑡
= 𝐶𝑝

𝐷𝑇

𝐷𝑡
−

𝛽

𝜌
𝑇

𝐷𝑃

𝐷𝑡
−

𝑃

𝜌
𝜕𝑖𝑣𝑖 (58) 

 

𝜌𝐶𝑝

𝐷𝑇

𝐷𝑡
+ 𝜌

𝐷 (
𝑣2

2 )

𝐷𝑡
= −𝜕𝑖𝑞𝑖 + 𝜕𝑖(𝑇𝑖𝑗𝑣𝑗) + 𝜌𝑣𝑖𝐹𝑖 + 𝛽𝑇

𝐷𝑃

𝐷𝑡
+ 𝑃𝜕𝑖𝑣𝑖 

(59) 

It is worth recalling that manipulating the energy equation to the form in Eq (59) 

required no assumptions and is applicable to all fluids. It is here that the first assumption 

is introduced: the fluid in question is Newtonian, with stress tensor defined by Eq (60), 

where 𝜏𝑖𝑗 are the components of the viscous stress tensor. With some substitution and by 

applying the product rule and the appropriate index notation manipulations, the work 

done by fluid stresses can be represented using the equivalency in Eq (61). Substituting 

this expression back into the energy equation, recalling that the substantial derivative of 

static pressure can be expressed as  
𝐷𝑃

𝐷𝑡
= 𝜕0𝑃 + 𝑣𝑖𝜕𝑖𝑃, yields Eq (62). 

𝑇𝑖𝑗 = −𝑃𝛿𝑖𝑗 + 𝜏𝑖𝑗 (60) 

 

𝜕𝑖(𝑇𝑖𝑗𝑣𝑗) = −𝑣𝑖𝜕𝑖𝑃 − 𝑃𝜕𝑖𝑣𝑖 + 𝜕𝑖(𝑣𝑗𝜏𝑖𝑗) (61) 

 

𝜌𝐶𝑝

𝐷𝑇

𝐷𝑡
+ 𝜌

𝐷 (
𝑣2

2 )

𝐷𝑡
= −𝜕𝑖𝑞𝑖 + 𝜕𝑖(𝑣𝑗𝜏𝑖𝑗) + (𝛽𝑇 − 1)𝑣𝑖𝜕𝑖𝑃 + 𝛽𝑇𝜕0𝑃 + 𝜌𝑣𝑖𝐹𝑖 

(62) 
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Body forces such as gravity are expected to be insignificant to vortex tube 

operation, nor is there any expectation that the presence of a gravitational field is required 

for the operation, so it is assumed that 𝜌𝑣𝑖𝐹𝑖 = 0. Using standard thermodynamic 

relations (for example, see Demirel and Gerbaud [96]), the isobaric thermal expansion 

coefficient may be expressed using the Joule-Thomson coefficient, 𝜇𝐽𝑇, where 𝛽𝑇 − 1 =

𝜌𝐶𝑝𝜇𝐽𝑇. With these substitutions, the energy equation may now be represented using Eq 

(63). 

𝜌𝐶𝑝

𝐷𝑇

𝐷𝑡
+ 𝜌

𝐷 (
𝑣2

2 )

𝐷𝑡
= −𝜕𝑖𝑞𝑖 + 𝜕𝑖(𝑣𝑗𝜏𝑖𝑗) + 𝜕0𝑃 + 𝜌𝐶𝑝𝜇𝐽𝑇

𝐷𝑃

𝐷𝑡
 

(63) 

Next, the equation may be nondimensionalized by choosing appropriate scales for 

length, 𝑟, velocity, 𝑣, density, 𝜌, specific heat at constant pressure, 𝐶𝑝, Joule-Thomson 

coefficient, 𝜇𝐽𝑇, dynamic viscosity, 𝜇, and thermal conductivity, 𝑘. Nondimensionized 

values of temperature, pressure, time, viscous work, and heat transfer employ a 

combination of these scales and are indicated in Table 11. The appropriate scale for 

viscous work arises from the form of the viscous stress tensor for a Newtonian fluid in Eq 

(64). Likewise, the scale for heat transfer is obvious from Fourier’s law, in Eq (65). The 

temperature scale, 
𝑉0

2

𝐶𝑝,0
, follows naturally from the aforementioned scales. 

𝜏𝑖𝑗 = −
2

3
𝜇𝜕𝑘𝑣𝑘𝛿𝑖𝑗 + 𝜇(𝜕𝑖𝑣𝑗 + 𝜕𝑗𝑣𝑖) (64) 

 

𝑞𝑖 = −𝑘𝜕𝑖𝑇 (65) 
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Table 11. Nondimensionalization of relevant gas and flow properties 

𝑟∗ =
𝑟

𝑅0 

 
𝑣∗ =

𝑣

𝑉0
 

 

𝜌∗ =
𝜌

𝜌0
 𝐶𝑝 

∗ =
𝐶𝑝

𝐶𝑝,0
 

𝜇𝐽𝑇
∗ =

𝜇𝐽𝑇

𝜇𝐽𝑇,0
 

𝑇∗ =
𝑇 − 𝑇0

𝑉0
2

𝐶𝑝,0

 

 

𝑃∗ =
𝑃 − 𝑃0

𝜌0𝑉0
2  𝑡∗ =

𝑡𝑉0

𝑅0
 

𝜕𝑖
∗(𝑣𝑗

∗𝜏𝑖𝑗
∗ ) =

𝑅0
2

𝜇0𝑉0
2 𝜕𝑖(𝑣𝑗𝜏𝑖𝑗) 

𝜕𝑖
∗𝑞𝑖

∗ =
𝑅0

2

𝑘0
𝑉0

2

𝐶𝑝,0

(𝜕𝑖𝑞𝑖) 

 

Substitution of the nondimensionalized values yields Eq (66). The terms in the brackets 

may be rewritten as the substantial derivative of total temperature plus a new term 

involving the substantial derivative of 𝐶𝑝 

∗, using the equivalency of Eq (67) and the 

substantial derivative of the total temperature defined using Eq (68). 

𝜌∗𝐶𝑝
∗

[
 
 
 
 
𝐷𝑇 

∗

𝐷𝑡∗
+

1

𝐶𝑝
∗

𝐷 (
𝑣∗2

2
)

𝐷𝑡∗

]
 
 
 
 

=
𝑘0

𝜌0𝐶𝑝,0𝑉0𝑅0

(−𝜕𝑖
∗𝑞𝑖

∗) +
𝜇0

𝜌0𝑉0𝑅0
 𝜕𝑖

∗(𝑣𝑗
∗𝜏𝑖𝑗

∗ ) + 𝜕0
∗𝑃∗ + 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0𝜌

∗𝐶𝑝
∗𝜇𝐽𝑇

∗
𝐷𝑃∗

𝐷𝑡∗
 

(66) 

 

1

𝐶𝑝
∗

𝐷 (
𝑣∗2

2
)

𝐷𝑡∗
=

𝐷 (
𝑣∗2

2𝐶𝑝
∗)

𝐷𝑡∗
+

𝑣∗2

2𝐶𝑝
∗2

𝐷𝐶𝑝 

∗

𝐷𝑡∗
 

(67) 

 

𝐷𝑇𝑡
∗

𝐷𝑡∗
=

𝐷𝑇 
∗

𝐷𝑡∗
+

𝐷 (
𝑣∗2

2𝐶𝑝
∗)

𝐷𝑡∗
 

(68) 
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While arbitrary, the reference property values used in the scales identified in 

Table 11 will be defined at the nozzle for convenience. Since the nozzle velocity drives 

the internal velocity profile, it will be used for the velocity scale, 𝑉0. The length scale, 𝑅0, 

will be the nozzle hydraulic diameter, 𝐷ℎ.The gas properties will each be evaluated at the 

static pressure and temperature in the nozzle unless specified otherwise. In this way, the 

Reynolds number will be defined using Eq (69) and the Prandtl number using Eq (70). 

With these substitutions, the reader at last arrives at Eq (71). This dimensionless form is 

valid for any Newtonian fluid with negligible work done by body forces; it does not 

assume steady flow nor any constant properties and because it is in a differential form, it 

is valid for any point in the flow. 

𝑅𝑒 =
𝜌0𝑉0𝐷ℎ

𝜇0
 (69) 

𝑃𝑟 =
𝐶𝑝,0𝜇0 

𝑘0 

 (70) 

 

𝜌∗𝐶𝑝
∗ (

𝐷𝑇𝑡
∗

𝐷𝑡∗
+

𝑣∗2

2𝐶𝑝
∗

𝐷𝐶𝑝 

∗

𝐷𝑡∗
)

= (
𝑘0

𝜌0𝐶𝑝,0𝑉0𝐷ℎ
) (−𝜕𝑖

∗𝑞𝑖
∗) + (

𝜇0

𝜌0𝑉0𝐷ℎ
 ) 𝜕𝑖

∗(𝑣𝑗
∗𝜏𝑖𝑗

∗ ) + 𝜕0
∗𝑃∗ + (𝜌0𝐶𝑝,0𝜇𝐽𝑇,0)𝜌

∗𝐶𝑝
∗𝜇𝐽𝑇

∗
𝐷𝑃∗

𝐷𝑡∗
 

(71) 

The left side of Eq (71) contains the substantial derivative of total temperature, 

𝐷𝑇𝑡
∗

𝐷𝑡∗ , as well as the substantial derivative of the specific heat, 
𝐷𝐶𝑝 

∗

𝐷𝑡∗ . The latter term may 

appear unfamiliar, but it is necessary in the case of variable properties; for a scenario with 

a near-constant 𝐶𝑝, its value approaches zero. Eq (71) reveals that changes in the total 

temperature of a fluid depend on the contributions of the four terms on the right side: heat 
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transfer, work due to viscous stresses, pressure fluctuations, and the effects of 

intermolecular forces introduced via the Joule-Thomson coefficient, 𝜇𝐽𝑇. 

The term 
𝑘0

𝜌0𝐶𝑝,0𝑉0𝐷ℎ
 is readily identifiable as the reciprocal of the Péclet number, 

which is simply the product of the reciprocals of the Prandtl and Reynolds numbers, as in 

Eq (72). A slight rearrangement yields the final equation, Eq (73). Three nondimensional 

parameters are evident: the Reynolds number, the Prandtl number, and a new parameter, 

𝜌0𝐶𝑝,0𝜇𝐽𝑇,0. 

1

𝑃𝑒
= (

1
𝑃𝑟

) (
1

𝑅𝑒
 ) (72) 

 

𝜌∗𝐶𝑝
∗ (

𝐷𝑇𝑡
∗

𝐷𝑡∗
+

𝑣∗2

2𝐶𝑝
∗2

𝐷𝐶𝑝 

∗

𝐷𝑡∗
) = (

1

𝑅𝑒
 ) [(

1

𝑃𝑟
) (−𝜕𝑖

∗𝑞𝑖
∗) + 𝜕𝑖

∗(𝑣𝑗
∗𝜏𝑖𝑗

∗ )] + 𝜕0
∗𝑃∗ + (𝜌0𝐶𝑝,0𝜇𝐽𝑇,0)𝜌

∗𝐶𝑝
∗𝜇𝐽𝑇

∗
𝐷𝑃∗

𝐷𝑡∗
 (73) 

 

3.2.3.2 The Roles of Gas and Flow Properties in Temperature Separation 

All of the gas and flow properties relevant to temperature separation can be found 

in the three dimensionless parameters in Eq (73) and in the associated scales in Table 11. 

Eq (73) indicates that the diffusion of kinetic energy in the flow, 𝜕𝑖
∗(𝑣𝑗

∗𝜏𝑖𝑗
∗ ), is governed 

by 
1

𝑅𝑒
, and that the diffusion of heat, −𝜕𝑖

∗𝑞𝑖
∗, is governed by 

1

𝑅𝑒
 and 

1

𝑃𝑟
. The contribution of 

intermolecular forces, 𝜌∗𝐶𝑝
∗𝜇𝐽𝑇

∗ 𝐷𝑃∗

𝐷𝑡∗ , to a change in total temperature along a streamline—

which, for a gas, is equivalent to real-gas effects—is governed by the parameter 

𝜌0𝐶𝑝,0𝜇𝐽𝑇,0. However, 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 has distinctly different behavior than 𝑅𝑒 and 𝑃𝑟 due to 

the nature of 𝜇𝐽𝑇. For gases below the inversion point, 𝜇𝐽𝑇 > 0 and a pressure decrease 

drives a corresponding decrease in temperature. At the inversion point 𝜇𝐽𝑇 = 0, as does 
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𝜌0𝐶𝑝,0𝜇𝐽𝑇,0. For gases above the inversion point, 𝜇𝐽𝑇 < 0, which serves to increase the 

temperature with a pressure drop. In fact, it is conceivable that 𝜇𝐽𝑇 < 0 and 𝜇𝐽𝑇 > 0 at 

different points in the flow field inside a vortex tube, if the inlet temperature is 

sufficiently close to the inversion point. This qualitatively different variation presents a 

slight challenge in reporting differences in 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 between cases. For example, while 

differences in 𝑅𝑒𝐷ℎ
 are often reasonably reported as a percentage of a reference value, it 

is not hard to imagine two contrasting cases near the inversion point in which the value of 

𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 decreases by more than 100% (or more perplexingly, increases in magnitude 

by a negative percentage), even if the actual magnitude of differences is very small. For 

this reason, differences in 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 will simply be compared simply in terms of 

magnitude. 

In theory, vortex tube flows with identical 𝑅𝑒, 𝑃𝑟, and 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 should yield 

identical nondimensional profiles of 𝜌∗𝐶𝑝
∗ (

𝐷𝑇𝑡
∗

𝐷𝑡∗
+

𝑣∗2

2𝐶𝑝
∗2

𝐷𝐶𝑝 
∗

𝐷𝑡∗
), though the dimensional profiles 

may differ. However, a subtle but important limit to nondimensional scaling lies in the 

manner in which dimensionless parameters vary with respect to each other. For example, 

𝜇𝐽𝑇 for air is much more sensitive to temperature near 300 K than 500 K; if the variation 

of 𝜇𝐽𝑇
∗  with respect to 𝑇∗ differs between cases, then even the nondimensional profiles of 

𝜌∗𝐶𝑝
∗ (

𝐷𝑇𝑡
∗

𝐷𝑡∗ +
𝑣∗2

2𝐶𝑝
∗2

𝐷𝐶𝑝 
∗

𝐷𝑡∗ ) will differ between cases. Significantly, the temperature scale was 

found to be 
𝑉2

𝐶𝑝
, suggesting that dimensional temperature differences compared to a 

reference temperature scale with the square of nozzle velocity and inversely with 𝐶𝑝. 
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Eq (73) has broad application to compressible and incompressible flows of 

Newtonian fluids including many liquids, such as water. Because 𝜇𝐽𝑇 < 0 for liquid 

water under most conditions, the contribution of 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 serves to increase 

temperature across a pressure drop. This may help explain why cases in which one fluid 

stream becomes colder than the inlet temperature and the other becomes hotter have not 

thus far been observed in incompressible fluids. 

Pressure fluctuations also show up in the equation via the term 𝜕0
∗𝑃∗ and in the 

time component of the substantial derivative 
𝐷𝑃∗

𝐷𝑡∗ . The assumption of steady flow could be 

made on the logical basis that pressure fluctuations have a zero mean, i.e. 𝜕0𝑃 = 0, but 

such a choice should not be made arbitrarily: there has been considerable discussion of 

the potential contribution of unsteady pressure fluctuations to temperature separation, 

such as Eckert [3]. There has also been a rich study of the complex interaction between 

acoustic phenomena and temperature separation, such as Kurosaka [5] and Seol and 

Goldstein [6]. Although the role of acoustic interactions is out of scope of the present 

research, perhaps a non-zero-mean coupling of pressure fluctuations into the fluid may 

indeed contribute to temperature separation via the term (𝜌0𝐶𝑝,0𝜇𝐽𝑇,0)𝜌
∗𝐶𝑝

∗𝜇𝐽𝑇
∗ 𝐷𝑃∗

𝐷𝑡∗ . 

One must still interpret the analytical findings with caution. The total temperature 

differences across a vortex tube are certainly attributable to the combined action of the 

terms identified in the energy equation. However, due to the complexity of the flow in a 

vortex tube, it should not be assumed that increasing or decreasing any of the parameters 

automatically or universally relates to increased or decreased temperature separation. The 

signs of the nondimensional terms, i.e. −𝜕𝑖
∗𝑞𝑖

∗, 𝜕𝑖
∗(𝑣𝑗

∗𝜏𝑖𝑗
∗ ), 𝜕0

∗𝑃∗, and 𝜌∗𝐶𝑝
∗𝜇𝐽𝑇

∗ 𝐷𝑃∗

𝐷𝑡∗ , could 
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be positive or negative in different parts of the flow, and the relative magnitudes of the 

governing parameters may serve to alternately intensify or diminish the temperature 

separation. 

3.2.3.3 Selecting a Dimensionless Form 

The application of Eq (73) has not yet been fully specified. The hot and cold 

vortex tube exits are points on the solution at which flow properties have been measured, 

and at least two relevant choices are available to nondimensionalize the results. The first 

is more straightforward: compare the dimensionless changes in total temperature, 𝑇𝑡
∗, 

where 𝑇𝑡
∗ =

𝑇𝑡,𝑒𝑥𝑖𝑡−𝑇𝑡,𝑖𝑛𝑙𝑒𝑡

𝑉 
2

𝐶𝑝

. This bears a resemblance to historical dimensional temperature 

separation plots and is justified on the basis that 𝑇𝑡
∗ alone is inside the substantial 

derivative in Eq (73). 

There is also a theoretical basis for evaluating the dimensionless product 𝜌∗𝐶𝑝
∗𝑇𝑡

∗, 

effectively the dimensionless volumetric energy density, since the left side of Eq (73)—

with some manipulation and use of Eq (55)—has the equivalency shown in Eq (74). Eq 

(74) shows that indeed, the product 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ may be treated as a dependent variable itself. 

With this method, exit static pressure and temperature are used to compute exit density 

and 𝐶𝑝, which are then converted to 𝜌∗ and 𝐶𝑝
∗ using nozzle properties. Both methods of 

nondimensionalizing temperature separation will be compared. 

𝜌∗𝐶𝑝
∗ (

𝐷𝑇𝑡
∗

𝐷𝑡∗
+

𝑣∗2

2𝐶𝑝
∗2

𝐷𝐶𝑝 

∗

𝐷𝑡∗
) =

𝐷(𝜌∗𝐶𝑝
∗𝑇𝑡

∗)

𝐷𝑡∗
+ 𝜌∗ (𝑇𝑡

∗ −
𝑣∗2

2𝐶𝑝
∗
)

𝐷𝐶𝑝 

∗

𝐷𝑡∗
+ 𝜌∗𝐶𝑝

∗𝑇𝑡
∗𝜕𝑖

∗𝑣𝑖
∗ (74) 
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3.2.4 Nondimensionalization of experimental vortex tube results 

The method of nondimensionalization is now applied to the experimental data 

sets, each of which serves a different analytical purpose. First, results for the twelve cases 

using air in the multi-𝜇𝐶 data set, which stem from the investigations of the influence of 

mass flow rate, temperature and pressure, are plotted in Figure 70, and these will help 

establish the most appropriate method of nondimensionalizing results. The corresponding 

nozzle flow conditions are listed in Table 12 where they are now labeled as Cases A – L.  

The results for each of the cases were then nondimensionalized; curves of 𝑇𝑡
∗ are 

presented in Figure 71 and curves of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ are in Figure 72. The latter reveals a tighter 

collapse of the performance curves and remarkable insensitivity to changes in flow 

conditions for a single working gas. The range of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ values at the hot and cold exits 

is a function of cold fraction such that the range of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ is larger at the cold exit for 

small cold fractions and larger at the hot exit for large cold fractions. In essence, the 

spread of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ values at an exit appears to increase with decreasing mass flow through 

that exit. At the cold exit, the range of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ values is at a minimum of 0.0189 for  

𝜇𝐶 = 0.75 and a maximum of 0.104 for 𝜇𝐶 = 0.20 while the mean values range from      

-0.31 to -0.55; this equates to being within ±4% of the mean value for most cold 

fractions, and up to ±12% at 𝜇𝐶 = 0.20. At the hot exit, the range of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ values is at a 

minimum of 0.0235 for 𝜇𝐶 = 0.25 and a maximum of 0.087 for 𝜇𝐶 = 0.80 while the 

mean values range from 0.06 to 1.10; this equates to being within ±5% of the mean value 

for most cold fractions except for cold fractions of 𝜇𝐶 ≤ 0.30 where the mean values of 

𝜌∗𝐶𝑝
∗𝑇𝑡

∗ are small. Contrast this with the curves of 𝑇𝑡
∗, which feature larger, though also 
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qualitatively different, variations of 𝑇𝑡
∗. For example, values of 𝑇𝑡

∗ at the cold exit feature 

a larger spread for the middle cold fractions and smaller variations at the extremes: for 

𝜇𝐶 = 0.40, 𝑇𝑡
∗ remains within ±14% of the mean value, but at 𝜇𝐶 = 0.80, 𝑇𝑡

∗ remains 

within ±8% of the mean value. This analysis suggests that 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ is the more appropriate 

method for nondimensionalizing temperature separation. This is the first instance in the 

known literature in which a diverse set of vortex tube performance curves have been 

reduced to similarity based on the intrinsic fluid properties of the experiment. 

  

Figure 70. Summary plot of temperature separation for air cases 
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Table 12. Cases for nondimensionalization of temperature separation curves 

Case: A B C D E F G H I J K L 

Mass flow rate 

(kg/s) 
1.183×10-

3 
1.183×10-3 1.420×10-3 1.184×10-3 1.184×10-3 1.382×10-3 1.383×10-3 1.776×10-3 1.420×10-3 1.027×10-3 1.420×10-3 1.421×10-3 

Inlet 𝑇𝑡𝑜𝑡𝑎𝑙 

(K)  
293.3 293.3 293.2 312.7 332.7 293.4 293.8 293.3 293.3 293.4 313.3 333.1 

Inlet 𝑃𝑠𝑡𝑎𝑡𝑖𝑐  

(bar, gauge) 
3.001 3.001 3.000 3.000 3.003 5.001 3.000 4.183 3.154 2.000 3.275 3.549 

𝑹𝒆  14955 14955 18034 14251 13602 17366 17520 22508 18010 13029 17111 16322 

𝑷𝒓  0.721 0.721 0.721 0.718 0.716 0.722 0.721 0.722 0.721 0.720 0.718 0.716 

𝝆𝟎𝑪𝒑,𝟎𝝁𝑱𝑻,𝟎  0.011 0.011 0.0108 0.0089 0.0073 0.0165 0.0108 0.0140 0.0113 0.0081 0.0094 0.0082 

Velocity (m/s) 
81.38 81.38 98.95 87.11 92.86 62.80 96.59 95.29 95.04 95.21 98.79 98.52 

Mach number 
0.238 0.238 0.291 0.247 0.255 0.183 0.283 0.280 0.279 0.279 0.280 0.271 

𝜌 (kg/m3) 4.622 4.622 4.563 4.322 4.056 6.996 4.551 5.928 4.751 3.429 4.571 4.587 

𝜇 (μPa-s) 18.14 18.14 18.05 19.05 19.96 18.24 18.09 18.09 18.08 18.06 19.03 19.96 

𝑘  
(mW/m-K) 

25.45 25.45 25.32 26.83 28.23 25.64 25.38 25.40 25.37 25.33 26.81 28.24 

𝐶𝑝 (kJ/kg-K) 1.012 1.012 1.012 1.012 1.012 1.015 1.012 1.014 1.012 1.010 1.012 1.013 

𝜇𝐽𝑇 (K/bar) 0.2345 0.2345 0.2348 0.2043 0.1776 0.2327 0.2338 0.2337 0.2344 0.2351 0.2034 0.1768 

Nozzle 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 

(K) 291.3 290.0 288.3 308.9 328.4 291.4 289.1 288.8 288.8 288.8 308.4 328.2 

Nozzle 𝑃𝑠𝑡𝑎𝑡𝑖𝑐  
(Pa, absolute) 390293 384687 377571 383127 382210 585213 377643 491365 393842 284320 404644 432078 
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Figure 71. Summary nondimensional total temperature profiles, 𝑻𝒕
∗, for all air cases 

  

Figure 72. Summary nondimensional total temperature profiles, 𝝆∗𝑪𝒑
∗𝑻𝒕

∗, for all air cases 
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3.2.4.1 Temperature Separation Sensitivity to Governing Nondimensional 

Parameters 

Although it has been shown analytically that 𝑅𝑒, 𝑃𝑟, and 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 would be 

expected to govern temperature separation, and demonstrated with experimental data that 

𝜌∗𝐶𝑝
∗𝑇𝑡

∗ is an appropriate nondimensionalization of temperature separation, it is not yet 

clear how sensitive the dimensionless profiles actually are to variations in 𝑅𝑒, 𝑃𝑟, and 

𝜌0𝐶𝑝,0𝜇𝐽𝑇,0. A major objective of the present study is to more fully understand the 

influence of 𝑅𝑒 and 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 on 𝜌∗𝐶𝑝
∗𝑇𝑡

∗; the Prandtl number of air is nearly constant 

across the range of achievable flow conditions and thus its influence cannot be 

independently evaluated. The single-𝜇𝐶 data set taken at 𝜇𝐶 = 0.40 was analyzed for this 

purpose, due to a wider range and higher resolution of 𝑅𝑒. Recall that Figure 69 (see page 

140) revealed that the temperature separation increased as a higher order function of 

nozzle velocity. This is now expected, given the analytical finding that dimensional 

temperature separation scales with 
𝑉0

2

𝐶𝑝,0
 based on nozzle properties. 

The data from Figure 69 were nondimensionalized to 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ and plotted against 

nozzle Reynolds number in Figure 73. There is some noticeable dispersion in 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ 

values for the lower Reynolds numbers between 11,000 and 15,000, which is probably 

attributable to the increased experimental uncertainty associated with lower mass flow 

rates. However, on the whole, the results do not imply a generalizable trend of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ 

with respect to 𝑅𝑒, and even suggest that 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ is not a function of Reynolds number 

across the range of observed values. It is surprising that a governing parameter like the 

Reynolds number does not apparently exert a strong influence on dimensionless 
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temperature separation, but this is consistent with the earlier finding that Reynolds 

number is not a consistent predictor even of dimensional temperature separation. 

Although the nondimensionalization process did not yield Mach number as a governing 

parameter, the influence of Mach number on 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ is shown in Figure 74 for the tested 

range of approximately 0.13 to 0.35. Figure 74 reveals that Mach number does not have a 

discernable influence on 𝜌∗𝐶𝑝
∗𝑇𝑡

∗. 

  

Figure 73. Dimensionless temperature separation 𝝆∗𝑪𝒑
∗𝑻𝒕

∗ vs. 𝑹𝒆 (𝝁𝑪 = 𝟎. 𝟒𝟎) 
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Figure 74. Dimensionless temperature separation 𝝆∗𝑪𝒑
∗𝑻𝒕

∗ vs. Mach number (𝝁𝑪 = 𝟎. 𝟒𝟎) 

The investigation was extended by plotting 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ against 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 in Figure 

75 for a tested range of 0.00532 ≤ 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 ≤ 0.0167. In a similar fashion, the data 

do not reveal any trends in 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ with respect to 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 and likewise imply that 

𝜌∗𝐶𝑝
∗𝑇𝑡

∗ is not a function of 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 across this range of values, in which the 

maximum is approximately triple the smallest value. It is again surprising that a 

governing parameter does not strongly influence dimensionless temperature separation, 

but less so than with respect to Reynolds number. It is well known that real gas effects, 

including the influence of 𝜇𝐽𝑇, are not prominent in air and therefore air is frequently—

and reasonably—modeled as an ideal gas in various fluids problems. 
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Figure 75. Dimensionless temperature separation 𝝆∗𝑪𝒑
∗𝑻𝒕

∗ vs. 𝝆𝟎𝑪𝒑,𝟎𝝁𝑱𝑻,𝟎 (𝝁𝑪 = 𝟎. 𝟒𝟎) 

Finally, the investigation returns to the data set in which experiments were 

conducted using CO2 as the working gas for a variety of cold fraction (see Section 

3.2.2.1). The nozzle flow parameters are listed in Table 13; also listed are two cases from 

the cases using air, which feature comparable nozzle Reynolds numbers as the CO2 cases. 

The Prandtl number differs by 8% between CO2 and air. However, the most striking 

difference lies in the magnitude of 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0, which is approximately six times greater 

for the CO2 cases than those using air; it also varies by up to 0.0172 across the cases, 

nearly twice the greatest variations seen in air (see cases E and F in Table 12). 
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Table 13. Flow conditions for compared cases using CO2
 and Air 

Case: M (CO2) N (CO2) O (CO2) H (Air) I (Air) 

Mass flow rate (kg/s) 1.410×10-3 1.420×10-3 1.393×10-3 1.776×10-3 1.420×10-3 

Inlet 𝑇𝑡𝑜𝑡𝑎𝑙 (K) 292.9 313.6 333.5 293.3 293.3 

Inlet 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (bar, gauge) 2.771 3.040 3.216 4.183 3.154 

𝑹𝒆  22196 20920 19336 22508 18010 

𝑷𝒓  0.780 0.770 0.762 0.722 0.721 

𝝆𝟎𝑪𝒑,𝟎𝝁𝑱𝑻,𝟎  0.0652 0.0560 0.0480 0.0140 0.0113 

Velocity (m/s) 68.13 68.44 68.26 95.29 95.04 

Mach number 0.256 0.248 0.240 0.280 0.279 

𝜌 (kg/m3) 6.580 6.599 6.489 5.928 4.751 

𝜇 (μPa-s) 14.56 15.56 16.52 18.09 18.08 

𝑘 (mW/m-K) 16.12 17.79 19.44 25.40 25.37 

𝐶𝑝 (kJ/kg-K) 0.864 0.880 0.896 1.014 1.012 

𝜇𝐽𝑇 (K/bar) 1.1466 0.9634 0.8260 0.2337 0.2344 

Nozzle 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 (K) 290.1 310.8 330.7 288.8 288.8 

Nozzle 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (Pa, 

absolute) 
360604 387422 405373 491365 393842 

 

The curves of dimensional temperature separation of Cases M, N, and O from the 

original study were shown originally in Figure 67 as Cases 6.1, 6.2, and 6.3, respectively. 

The differences between the dimensional cold exit curves were attributed to differences 

in 𝜇𝐽𝑇 between cases, which are approximately four to six times greater in CO2 than in 

air. However, when reduced to 𝜌∗𝐶𝑝
∗𝑇𝑡

∗, as shown in Figure 76 the resulting CO2 curves 

reveal the same dimensionless similarity to each other that was found in air. That is not to 

say that the curves for air and CO2 are identical; on the contrary: curves of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ for 

cases H and I—which used air—are also shown in Figure 76 and illustrate that the two 

gases yield pronounced differences in dimensionless performance. 
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Figure 76. Nondimensional temperature separation, 𝝆∗𝑪𝒑
∗𝑻𝒕

∗, for CO2 and air 

The reason for the differences seems most likely related to 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0, which 

ranges from 0.0480 to 0.0652 for CO2, but only between 0.0113 and 0.0165 for air. If 

𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 is indeed responsible for the different curves, it is interesting that the 

differences in 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 between the gases are large enough to manifest as different 

shaped curves, though the differences in 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 between cases of the same gas—

particularly CO2—are not large enough to cause a noticeable dispersion. 

3.2.4.2 Conclusions regarding nondimensionalization 

The present study extends our understanding of vortex tubes first through a 

nondimensionalization of the total energy equation, which casts variations in total 

temperature in terms of viscous work, heat transfer, pressure changes, and real gas 
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effects. This form identified three dimensionless parameters which govern changes in 

total temperature and, in turn, contribute to the temperature separation phenomenon: 

Reynolds number, Prandtl number, and a new parameter, 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0, which governs the 

contribution of real gas effects. The inherent temperature scale for temperature separation 

is 
𝑉2

𝐶𝑝
, based on the bulk velocity and specific heat at the nozzle. A set of experimental 

temperature separation curves were nondimensionalized using two methods: first, by 

converting the temperature differences between the exits and the inlet to a dimensionless 

total temperature difference, 𝑇𝑡
∗; second, by converting differences in the volumetric 

energy density between the inlet and exits to the novel dimensionless product 𝜌∗𝐶𝑝
∗𝑇𝑡

∗.  

When the experimental results are converted to 𝜌∗𝐶𝑝
∗𝑇𝑡

∗, the performance curves 

spanning cold fractions from 0.20 ≤ 𝜇𝐶 ≤ 0.80 collapse tightly to nearly a single 

curve—much more so than those of 𝑇𝑡
∗—suggesting that 𝜌∗𝐶𝑝

∗𝑇𝑡
∗ is the more appropriate 

dimensionless characterization of temperature separation. Variations of the governing 

parameters did not strongly influence the dimensionless performance of the vortex tube 

for a single gas; in air, 𝑅𝑒 ranged from approximately 12,000 to 22,500. This is the first 

such nondimensionalization of vortex tube performance curves based on fluid properties 

relevant to the flow problem.  

The addition of a new high-resolution experimental data set collected for a cold 

fraction of 𝜇𝐶 = 0.40 permitted an analysis of the variation of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ in air with respect 

to Reynolds number across 11222 ≤ 𝑅𝑒 ≤ 30112 and with respect to the new parameter 

𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 across 0.0053 ≤ 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 ≤ 0.0167. The findings revealed that 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ 

was nearly constant with no discernable trends across these ranges with respect to either 
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parameter. This does not imply that 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ is entirely independent of 𝑅𝑒 and 

𝜌0𝐶𝑝,0𝜇𝐽𝑇,0; rather, it suggests that this range of values is may not be broad enough to 

evince any underlying dependence. It is surprising that the governing parameters hold 

such little influence on dimensionless temperature separation for this device, across the 

given range of values, in air, but this finding is consistent with the investigation of 

dimensional temperature separation, in which Reynolds number had virtually no 

predictive power. Such robustness may actually serve to increase the utility of the product 

𝜌∗𝐶𝑝
∗𝑇𝑡

∗ in predicting dimensional temperature separation—an application which will be 

investigated in Section 3.2.6. It should not be expected that the curves of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ will be 

identical between vortex tubes; rather, curves of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ are likely tied to a specific 

geometry.  

Investigations with CO2 also found that nondimensionalizing according to 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ 

is appropriate. The dimensional experimental results differed between cases due to 

differences in 𝜇𝐽𝑇, but despite substantial differences in 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 between the CO2 

cases—twice those in air—the curves of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ similarly collapsed to nearly a single 

curve. However, the curves of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ with respect to cold fraction for air and CO2 are 

markedly different, revealing a more fundamental dissimilarity in behavior between 

gases. The cases compared between CO2 and air featured nearly identical Reynolds 

numbers, Prandtl numbers differing by 8%, and differences in 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 by a factor of 

4.66; this led to the conclusion that the nondimensional differences between gases should 

be attributed to the contribution of 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 and hence real gas effects. 
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3.2.5 Pressure drop across the vortex tube 

The vortex tube contains, of course, an example of a pressure-driven flow and the 

pressure drop across the device is relevant to modeling its performance and ultimately to 

its utility in a turbine engine. Conventional vortex tube configurations vent both exits to 

atmospheric pressure and the pressure drop is typically characterized as the inlet gauge 

pressure. However, in keeping with the present convention of referencing flow properties 

to the nozzle, the following analysis will consider the static pressure at the nozzle as the 

entering pressure, and the exiting pressure as the static pressure at the respective exits.  

The pressure drop for flow exiting via the hot exit is slightly different than that 

exiting via the cold exit, and both pressure drops vary as a function of cold fraction. A 

plot of dimensional pressure drop as a function of cold fraction for three different cases is 

shown in Figure 77; these correspond to the cases in Scenario 1 in the dimensional 

characterization of temperature separation, see Table 4 and Figure 62 starting on page 128 

for their corresponding inlet properties and temperature separation curves. As one might 

expect, a greater pressure drop corresponds to a greater degree of temperature separation. 

The relationship between the pressure drop and nozzle velocity is evidently based 

partly—but not exclusively—on the square of nozzle velocity, a trend seen in Figure 78 

based on the experimental single-𝜇𝐶 data set from Section 3.2.2.2 on page 140. This is 

consistent with the modeling of a pressure drop by means of a pressure loss coefficient, 𝜉, 

which relates a change in pressure to the density and velocity through a device via the 

relationship shown in Eq (75). Such a relationship will be drawn in the present analysis; 

however, because the flow through a vortex tube is compressible with considerable 
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variations in velocity, a suitable reference density and velocity must be chosen. These 

will be evaluated at the nozzle. 

𝛥𝑃 = 𝜉(
1

2
𝜌𝑉2) (75) 

 

 

Figure 77. Pressure drops across vortex tube for cases in air (see page 128) 

 

Figure 78. Pressure drop vs. nozzle velocity for cases in air (see page 140) 
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The data from Figure 78 are further analyzed in Figure 79, which illustrates the 

relationship between pressure drop between the nozzle and hot exit and nozzle dynamic 

pressure, 
1

2
𝜌𝑉2. A constant value of the loss coefficient would be manifested as a straight 

line; Figure 79 reveals a quasi-linear trend, but it is evident from the dispersion that the 

loss coefficient is not constant and may be a function of the nozzle properties. 

 

Figure 79. Hot exit pressure drop as a function of nozzle dynamic pressure 

It was hypothesized that the loss coefficient might be a function of nozzle 

Reynolds number, but the large scatter in Figure 80 reveals that Reynolds number does 

not dominate the coefficient value. However, modeling the pressure drop across much 

simpler devices—never mind a vortex tube—is still challenging: even for an asymmetric 

T-junction, the pressure loss coefficient between the inlet and the dual exits is not a 

straightforward function of inlet Reynolds number.  
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Figure 80. Loss coefficient as a function of Reynolds number 

The experimental data set under present review was taken at a variety of pressures 

and temperatures, so it was thought that some empirical relationship could be deduced 

between the loss coefficient and the static temperature and pressure at the nozzle; this is 

shown in a general sense in Eq (76). A multiple linear regression model was developed 

for the data set using a zero-intercept construct described by Eq (77). The regression 

statistics and resulting coefficients are presented in Table 14. Both pressure and 

temperature were found to be significant to estimating the loss coefficient, though their 

contributions were opposite: nozzle static temperature was found to increase 𝜉 by 

0.01606/K, while nozzle static pressure was found to decrease 𝜉 by 3.0126×10-6/Pa. 
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𝛥𝑃

(
1
2

𝜌𝑉2)
= 𝜉(𝑃, 𝑇) (76) 

 

𝜉 = 𝛽𝑇𝑇 + 𝛽𝑃𝑃 (77) 

 

Table 14. Statistics of linear model for hot exit loss coefficient 

  Coefficients Standard Error t Stat P-value 

Temperature 0.01606 0.00035 46.515 3.344×10-66 

Pressure -3.0126×10-6 2.6461×10-7 -11.385 2.532×10-19 

     

Regression Statistics    

Multiple R 0.9950    

R Square 0.9900    

Adjusted R Square 0.9791    

Standard Error 0.3883    

Observations 95    

 

Figure 81 demonstrates a verification of the model. For each data point, the loss 

coefficient is estimated as a function of static temperature and pressure, which permits 

estimation of the pressure drop. The estimate is plotted against the experimentally 

observed pressure drop; perfect equality would be indicated by a linear relationship with 

a slope of 1.0. The data indeed collapses to a near line with slight dispersion. A zero-

intercept best-fit line is plotted through the data, which reveals a near-identity between 

the estimated and actual pressure drops with R2 = 0.9945. This suggests that the linear 

model is quite adequate across this range of pressures and temperatures. The process was 

completed for both the multi-𝜇𝐶 and single-𝜇𝐶 experimental data sets and both exits. The 

resulting model coefficients are listed in Table 15. 
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Figure 81. Verification of linear model of pressure loss coefficient for hot exit 

 

Table 15. Temperature and pressure parameters for pressure loss coefficient 

  Temperature 

coefficient, 

𝛽𝑇 (1/K) 

Pressure 

coefficient, 

𝛽𝑃 (1/Pa) 

Multi-𝜇𝐶 

data set 

Hot exit 0.02090 -3.3496×10-6 

Cold exit 0.02261 -3.4225×10-6 

Single-𝜇𝐶 

data set 

Hot exit 0.01606 -3.0126×10-6 

Cold exit 0.01730 -2.9934×10-6 

 

This linear regression ultimately provides the user with a means of anticipating 

the pressure drop across the vortex tube for a given inlet condition, and the inlet condition 

can be determined uniquely as a function of inlet pressure, temperature, and mass flow 

rate. This is of practical concern and speaks to the utility of scaling temperature 

separation. For example, perhaps a particular application requires a certain cold exit 

temperature and is constrained by pressure drop—it may be possible to investigate 
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operating conditions that would be suitable for such an application based on known 

dimensionless performance curves of temperature separation for a particular vortex tube. 

However, to complete such an analysis, a method must be devised to estimate 

dimensional exit temperatures based on dimensionless curves. It is this problem which 

will be solved next. 

 

3.2.6 Reconstituting dimensional temperature separation from dimensionless curves 

That differing dimensional temperature separation curves from a particular vortex 

tube can be reduced to nearly identical dimensionless curves of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗|𝑒𝑥𝑖𝑡—i.e. 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ 

evaluated at the exits—was a revelation, but the greatest utility of this discovery lies in 

the potential ability to predict dimensional temperature separation without the need for 

additional experiments. The method for such a prediction is laid out here. The full 

expansion of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗|𝑒𝑥𝑖𝑡 is shown in Eq (78). For a particular vortex tube, the value of 

𝜌∗𝐶𝑝
∗𝑇𝑡

∗|𝑒𝑥𝑖𝑡 is known for both hot and cold exits across a range of cold fractions. The 

nozzle conditions, including the product 𝜌𝑛𝑜𝑧𝑧𝑙𝑒, 𝑉𝑛𝑜𝑧𝑧𝑙𝑒
2 , and 𝑇𝑡,𝑛𝑜𝑧𝑧𝑙𝑒, correspond to the 

scenario of interest. The goal is to determine 𝑇𝑡,𝑒𝑥𝑖𝑡. By rearranging Eq (78), one arrives 

at Eq (79). By adopting the ideal gas law as the equation of state and substituting the sum 

of static temperature and velocity components at the exit in place of the total temperature, 

one arrives at Eq (80). One more rearrangement permits a solution for the static 

temperature at the exits, as shown in Eq (81). 

𝜌∗𝐶𝑝
∗𝑇𝑡

∗|𝑒𝑥𝑖𝑡 = (
𝜌𝑒𝑥𝑖𝑡

𝜌𝑛𝑜𝑧𝑧𝑙𝑒
) (

𝐶𝑝,𝑒𝑥𝑖𝑡

𝐶𝑝,𝑛𝑜𝑧𝑧𝑙𝑒
)

(

 
 𝑇𝑡,𝑒𝑥𝑖𝑡 − 𝑇𝑡,𝑛𝑜𝑧𝑧𝑙𝑒

𝑉𝑛𝑜𝑧𝑧𝑙𝑒
2

𝐶𝑝,𝑛𝑜𝑧𝑧𝑙𝑒 )

 
 

 (78) 
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𝜌𝑛𝑜𝑧𝑧𝑙𝑒𝑉𝑛𝑜𝑧𝑧𝑙𝑒
2

𝜌𝑒𝑥𝑖𝑡𝐶𝑝,𝑒𝑥𝑖𝑡
𝜌∗𝐶𝑝

∗𝑇𝑡
∗|𝑒𝑥𝑖𝑡 = 𝑇𝑡,𝑒𝑥𝑖𝑡 − 𝑇𝑡,𝑛𝑜𝑧𝑧𝑙𝑒 (79) 

 

(
𝑅𝑇𝑒𝑥𝑖𝑡

𝑃𝑒𝑥𝑖𝑡
)
𝜌𝑛𝑜𝑧𝑧𝑙𝑒𝑉𝑛𝑜𝑧𝑧𝑙𝑒

2

𝐶𝑝,𝑒𝑥𝑖𝑡
𝜌∗𝐶𝑝

∗𝑇𝑡
∗|𝑒𝑥𝑖𝑡 = 𝑇𝑒𝑥𝑖𝑡 +

𝑉𝑒𝑥𝑖𝑡
2

2𝐶𝑝,𝑒𝑥𝑖𝑡
− 𝑇𝑡,𝑛𝑜𝑧𝑧𝑙𝑒 (80) 

 

𝑇𝑒𝑥𝑖𝑡 =

𝑇𝑡,𝑛𝑜𝑧𝑧𝑙𝑒 −
𝑉𝑒𝑥𝑖𝑡

2

2𝐶𝑝,𝑒𝑥𝑖𝑡

1 −
𝜌𝑛𝑜𝑧𝑧𝑙𝑒𝑉𝑛𝑜𝑧𝑧𝑙𝑒

2 𝑅𝜌∗𝐶𝑝
∗𝑇𝑡

∗|𝑒𝑥𝑖𝑡

𝑃𝑒𝑥𝑖𝑡𝐶𝑝,𝑒𝑥𝑖𝑡

 (81) 

Considerable experimentation has revealed that the velocities and Mach numbers 

at the exits are small and therefore the total temperature at the exit can be approximated 

using the static temperature at the exit. In the most extreme case, observed during initial 

testing of the vortex tube lab configuration, helium achieved sonic flow through the 

nozzles but still only saw Mach 0.11 flow through the exits. In other words, the term 

𝑉𝑒𝑥𝑖𝑡
2

2𝐶𝑝,𝑒𝑥𝑖𝑡
 is negligible, leading to Eq (82). 

𝑇𝑒𝑥𝑖𝑡 =
𝑇𝑡,𝑛𝑜𝑧𝑧𝑙𝑒

1 −
𝜌𝑛𝑜𝑧𝑧𝑙𝑒𝑉𝑛𝑜𝑧𝑧𝑙𝑒

2 𝑅(𝜌∗𝐶𝑝
∗𝑇𝑡

∗|𝑒𝑥𝑖𝑡)
𝑃𝑒𝑥𝑖𝑡𝐶𝑝,𝑒𝑥𝑖𝑡

 
(82) 

Eq (82) is not entirely a closed form solution, since the specific heat at the exit 

is—strictly speaking—a function of the static temperature at the exit. However, if the 

specific heat does not vary significantly across the vortex tube such that               

𝐶𝑝,𝑒𝑥𝑖𝑡 ≈ 𝐶𝑝,𝑛𝑜𝑧𝑧𝑙𝑒, then a value of 𝑇𝑒𝑥𝑖𝑡 may be determined analytically; obviously, a 

more rigorous solution will be achieved numerically by determining 𝐶𝑝,𝑒𝑥𝑖𝑡 = 𝑓(𝑇𝑒𝑥𝑖𝑡). 
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The author does have a means of performing such refinement, but the practical difference 

is negligible for most applications. 

To determine the static pressure at the exit, 𝑃𝑒𝑥𝑖𝑡, it becomes necessary to 

incorporate the pressure drop model such that 𝑃𝑒𝑥𝑖𝑡 = 𝑓(𝑇𝑛𝑜𝑧𝑧𝑙𝑒, 𝑃𝑛𝑜𝑧𝑧𝑙𝑒). The earlier 

pressure drop models were determined for 𝜇𝐶 = 0.40. Greater fidelity may be achieved 

by expanding the model to additional cold fractions, assuming sufficient data exists. 

However, Figure 77 revealed that the pressure drop associated with 𝜇𝐶 = 0.40 lies 

approximately in the middle of the range of expected values. The model will be evaluated 

while assuming a constant pressure drop for all cold fractions based on 𝜇𝐶 = 0.40.  

Figure 82 plots the estimated dimensional temperature separation against the actual 

experimental values for Case 1.3, first seen in Figure 62 (see p129). In this plot, the 

dimensional estimate is reconstituted from the curve of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗|𝑒𝑥𝑖𝑡 from the exact same 

case. The estimated and actual temperature separation curves differ slightly between the 

cold curves at low cold fractions and the hot curves at high cold fractions due to the use 

of constant exit pressure; the differences at each end are less than 1 K.  



175 

 

Figure 82. Estimated dimensional temperature separation vs. actual (Case 1.3) 

With dimensionless temperature separation curves of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗|𝑒𝑥𝑖𝑡 and a relevant 

pressure drop model at hand, it has now become possible to predict the temperature 

separation for a vortex tube at desired nozzle conditions. Some experimentation is 

required to initially determine the curves of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗|𝑒𝑥𝑖𝑡, though this could be as little as a 

single sweep through the desired cold fractions. The use of a single cold fraction to 

establish the pressure drop model is evidently adequate, since the assumption of a 

constant pressure drop with respect to cold fraction yielded a favorable comparison with 

experiment in Figure 82 with minor deviations at the extreme cold fractions. The use of 

validated linear models for the purposes of interpolation comes with confidence intervals 

and other metrics of uncertainty, but the same cannot be said for extrapolation. Therefore, 
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to maximize the accuracy of temperature separation estimates, the pressure drop model 

should encompass as broad an extent of relevant pressures and temperatures as possible.  

An obvious use of dimensional temperature separation estimates, however, is 

extrapolation: to predict the performance of a vortex tube at conditions that cannot be 

achieved experimentally, such as conditions approaching those of a turbine engine 

compressor section. It is not known how well the pressure drop function will perform 

beyond the range of temperatures and pressures used in the lab, and this presents a risk to 

the accuracy of the estimates. 

 

3.2.7 Experimental investigation of modified vortex tube performance 

Several research tasks involve the use of CFD to simulate vortex tube 

performance, and it was desired to validate the CFD results with a favorable comparison 

to experimental results. Ideally, such a comparison would be based on identical 

geometries for both the experimental and computational efforts. However, the off-the-

shelf ExairTM 3208 vortex tube hardware incorporates several complex features that made 

exact computational replication difficult. These included a component known as a “taper 

sleeve”, which is located adjacent to the 8R nozzles, a cruciform metal insert set inside 

the tube near the hot exit, and a set of “steps” on the 8R nozzles, and a radial hot exit 

valve. The cruciform insert and original hot exit geometry are shown in Figure 83. The 

brass fitting is identical to that installed at the hot exit in Figure 55 and can be adjusted 

like a valve to limit flow from the hot exit and thereby adjust the cold fraction. The 

original set of experimental investigations incorporated all of the complex features 

described here except the brass hot exit valve, which was removed since the mass flow 

controllers were used to adjust the cold fraction.  
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Figure 83. ExairTM 3208 vortex tube cruciform insert (left)  

and original hot exit geometry (right) 

To assist with experimental validation of the subsequent computational effort, the 

vortex tube hardware was modified slightly. The taper sleeve and cruciform blades were 

removed, a simplified 8R nozzle was manufactured, and a hot exit geometry was 

installed. This could be replicated almost exactly in the CFD software. The original and 

modified versions of the 8R nozzles—with and without the “steps”, respectively—can be 

seen in Figure 84. 

  

Figure 84. Nozzles for ExairTM 3208 vortex tube: original (left) and simplified (right) 

Two new new hot exit geometries were machined: one included an annular exit 

and one used an orifice exit, as seen in Figure 85. The annular exit has an outside 

diameter of 5.7 mm and an inside diameter of 2.2 mm. The conical axial obstruction has a 
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60° half-angle and blocks 15% of the area circumscribed by the outer diameter, not 

counting the spokes, which are 0.6 mm wide. The diameter of the orifice exit is 4.0 mm. 

  

Figure 85. Modified hot exit geometries for ExairTM 3208 vortex tube 

The simplified vortex tube, when equipped with the two new hot exit geometries, 

essentially constituted two new configurations. The operating conditions, in Table 16, 

were identical between the three configurations: the unmodified vortex tube and the 

modified tube with each exit geometry. Figure 86 compares dimensional performance of 

the three configurations. The dimensional temperature separation of the original 

configuration exceeded that of each modified configuration. 

 

 

 

 

Table 16. Operating conditions for original and modified vortex tubes 

 Original Annulus Orifice 

Mass flow rate (kg/s) 1.420×10-3 1.421×10-3 1.420×10-3 

Inlet 𝑇𝑡𝑜𝑡𝑎𝑙 (K) 293.2 293.3 293.1 

Inlet 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (bar, gauge) 3.000 3.001 3.004 

𝑅𝑒𝐷ℎ
  18034 18045 18041 
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𝑃𝑟  0.721 0.721 0.721 

𝜌𝐶𝑝𝜇𝐽𝑇  0.0108 0.0108 0.0108 

Nozzle bulk velocity (m/s) 98.95 99.30 99.07 

Nozzle Mach number 0.291 0.292 0.291 

𝜌 (kg/m3) 4.563 4.551 4.558 

𝜇 (μPa-s) 18.05 18.05 18.05 

𝑘 (mW/m-K) 25.32 25.33 25.31 

𝐶𝑝 (kJ/kg-K) 1.012 1.012 1.012 

𝜇𝐽𝑇 (K/bar) 0.2348 0.2346 0.2349 

Nozzle 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 (K) 288.3 288.3 288.2 

Nozzle 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (Pa, absolute) 377571 376614 377051 

 

 

Figure 86. Dimensional temperature separation across modified vortex tubes 

The magnitudes of temperature separation yielded by the geometries are quite 

different, especially between the modified and original tubes. It was established in the 

literature review that the hot exit geometry exerts an influence on the entire velocity 

distribution in a vortex tube, and the modified vortex tube with its new brass hot exit 
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geometries differs from the otherwise open hot exit of the “original” configuration. 

However, the metal insert in the tube is likely driving the large difference in performance 

between the original and modified configurations. The insert straightens out the flow—

eliminating the tangential component of velocity and constraining the flow to almost 

entirely axial flow. This would be expected to dramatically influence the velocity profile 

and may serve to enhance tangential components upstream of the insert, thereby 

intensifying the vortex in that region and increasing overall temperature separation. 

Because the internal flow fields between the vortex tubes are do not share a dynamic 

similarity, it is not surprising that the dimensionless temperature separation curves of 

𝜌∗𝐶𝑝
∗𝑇𝑡

∗ are also different, as seen in Figure 87.  

 

Figure 87. Dimensionless temperature separation across modified vortex tubes  

The pressure drops associated with the three configurations are shown in Figure 

88. The pressure drops across the modified vortex tubes are significantly less than for the 

original design—on the order of 20-30% of the original pressure drop, depending on cold 

fraction. This is evidently correlated with a reduction in temperature separation. 



181 

 

Figure 88. Pressure drops across original and modified vortex tubes 

 The purpose of the modifications to the vortex tube geometry was to establish a 

simple configuration that could be easily replicated in CFD and therefore provide an easy 

means of experimental validation for the CFD results, and this objective was 

accomplished. However, gathering this additional data provided some insights into vortex 

tube operation. First, it reveals that there is an intrinsic relationship between a particular 

flow pattern in a vortex tube and the resulting temperature separation. The collapse of the 

nondimensional temperature separation curves of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ in Figure 72, which were all 

gathered for the same vortex tube geometry but with different nozzle conditions, 

suggested a dynamic similarity between the flow patterns. However, when the vortex 

tube geometry was altered, such as by removing the cruciform tube insert and adding a 
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new hot exit geometry, the flow pattern is no longer dynamically similar and the curves 

of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ are no longer the same. This implies that geometry governs flow patterns, 

which in turn govern 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ in a vortex tube. Lastly, the investigation revealed a 

relationship between pressure drop and temperature separation in a vortex tube, where 

increased pressure drop is evidently correlated with increased temperature separation. 

 

3.2.8 Computational characterization of vortex tube performance 

3.2.8.1 Geometry and solution methodology 

Vortex tube performance was modeled with ANSYS FLUENT v17.2 

computational fluid dynamics (CFD) software, and a major objective was to validate the 

computational effort by matching the experimental work as closely as possible. To that 

end, the computational geometry was based on the modified vortex tube with the annular 

exit, which was straightforward to implement in the software. Figure 89 depicts the 

geometry implemented, with tube walls in gray, inlet faces in green, cold exit orifice face 

in blue, and hot exit annulus face in red; these are the faces at which nozzle and exit 

properties are computed. 
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Figure 89. Geometry used for computational investigations: walls in gray,  

cold exit face in blue (top), hot exit face in red (bottom), nozzle faces in green 

A three-dimensional unstructured mesh was created from the basic geometry 

using Pointwise v18.0 via its automated hybrid mesh generation method known as 

anisotropic tetrahedral extrusion, or “T-Rex”. A closeup view of the mesh is shown in 

Figure 90; however, for reasons to be described, the mesh required further modification 

at the exits to achieve satisfactory solutions. 

 

Figure 90. Unstructured mesh used for CFD modeling (cold orifice exit face in red) 



184 

The CFD code ANSYS FLUENT v17.2.0 was used to model the flow. The 

intrinsic complexity of the flow field inside a vortex tube greatly complicated the 

computational study, and considerable effort was exerted to identify the most appropriate 

turbulence model, solver settings, gas model, and boundary conditions. In many cases, it 

was not possible to reach a converged solution, or else the solution yielded distorted 

temperature distributions that were visibly asymmetric and yielded virtually no 

temperature separation.  

Ultimately, a turbulence model and solver settings were identified which yielded 

reliable, stable temperature separation profiles. The standard k-ε model was implemented 

with a standard wall function; viscous heating and compressibility effects were enabled. 

A pressure-based solver was adopted with a semi-implicit method for pressure-linked 

equations (SIMPLE) pressure-velocity coupling scheme. Spatial discretization was 

accomplished with the Green-Gauss node-based method for gradients, the FLUENT 

v17.2 “standard” method for pressure, second-order upwinding for density and 

momentum, and Quadratic Upstream Interpolation for Convective Kinematics (QUICK) 

for turbulent kinetic energy, turbulent dissipation rate, and energy. A real gas model was 

applied based on the NIST REFPROP database resident in FLUENT.  

The use of the wall function in the turbulence model dictated a needed range of 

wall y+ values; in FLUENT 17.2, this range was approximately 30 to 500. Figure 91 

illustrates the actual y+ values for the mesh that was actually utilized in the study, which 

generally lie in the desired range except for the region closest to the hot exit. 
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Figure 91. Dimensionless wall distance, y+, along the vortex model tube walls 

The CFD boundary conditions represented a challenging aspect of matching the 

experimental characteristics. One of the most fundamental variables to control when 

modeling vortex tube operation is the cold fraction, and building a characteristic set of 

performance curves requires precise prescription of both the mass flow rate entering the 

vortex tube and that exiting from the cold side. Because the mesh inlet faces were 

actually the nozzles, the terms “inlet” and “nozzles” are synonymous here; this contrasts 

with the distinction between terms with respect to the experimental configuration.  

The inlet boundary condition is best modeled using a mass flow rate condition. In 

FLUENT, the total temperature of the entering fluid is also specified, which is convenient 

because this is also a known experimental boundary condition. The pressure at the inlet 

(or nozzles), however, is not known a priori and emerges from the flow solution. The exit 

boundary conditions introduced a new wrinkle. Because it is essential to model the flow 
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using a compressible solver, the exit boundary conditions available in the software are 

somewhat restricted. FLUENT prohibits the use of “outflow” boundary conditions—in 

which the mass flow rate at the exits would be defined—for compressible flow.  

However, a workaround is available to achieve a desired mass flow rate at the 

exits: both exits must be defined as pressure outlet boundary conditions—which are 

permissible for the compressible flow solver—and FLUENT offers a capability to 

automatically adjust the exit static pressure at a pressure outlet to achieve a target mass 

flow rate across that boundary. In practice, the inlet mass flow rate is set to the desired 

value and the cold exit is set to a pressure outlet with a target mass flow rate that 

corresponds to the desired cold fraction. FLUENT then makes the necessary adjustments 

to achieve this cold fraction during the course of iterating to a converged solution. The 

simultaneous processes of converging the flow solution for a complex flow field while 

modifying it by adjusting the cold fraction contributes to a greatly protracted solution 

time. This is particularly true when using a real gas model, which approximately doubles 

the time required for each solver iteration. Nevertheless, this process guarantees that a 

desired cold fraction will be achieved. 

However, there are some remaining boundary conditions that must be specified. 

The hot exit pressure outlet must be specified to an arbitrary static pressure. The choice is 

significant because it directly affects the pressure that emerges at the nozzles, although 

the relationship between the two is not straightforward. Consider the following: a typical 

use case for the CFD investigations herein is to achieve a desired nozzle velocity or value 

of 𝜌𝐶𝑝, which in turn would permit deliberate control of the nozzle’s governing 

dimensionless parameters. However, this requires a precise nozzle static pressure which, 
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thus far, cannot be directly set and can only be determined a posteriori from the flow 

solution.  

The procedure then is to set the hot exit static pressure according to an anticipated 

static pressure drop between the nozzle and the hot exit, which is also very much an 

empirical finding. After iterating the solution to completion, i.e. achieving the desired 

cold fraction, an inspection of the properties at the nozzle reveals whether the target 

pressure and velocity were achieved. If not, the hot exit static pressure is adjusted and the 

solution process is repeated. Unfortunately, this is not a matter of simply adjusting the hot 

exit static pressure and running for a few more iterations. Adjustment to the hot exit 

pressure outlet reinitiates FLUENT’s goal-seeking process at the cold exit pressure outlet, 

and a large number of iterations—typically 6000 or more—must be completed if the 

target cold fraction will be reliably achieved with a converged flow solution. 

There is still another set of boundary conditions that requires close attention. With 

pressure outlet boundary conditions, there is the possibility that the overall pressure 

distribution may cause a reverse flow condition wherein gas is ingested into the flow field 

from beyond the exits. Because the reverse flow obviously originates from the mesh, this 

requires arbitrary specification of the total temperature of the reverse flow. This, in turn, 

presents an interesting challenge in replicating experimental results. If such a reverse 

flow pattern actually existed under experimental conditions—and it should be 

emphasized that evaluating such flow patterns is beyond the scope of the present 

research—the reverse flow temperatures would clearly be based on the temperatures of 

the gas being exhausted from the exits. Unfortunately, such a linkage cannot be 

established in the software being utilized. Instead, after achieving a converged flow 
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solution, the temperature profile at each exit plane must be inspected for reverse flow and 

mismatches between the exiting flow and the reverse flow.  

Mismatches essentially represent an arbitrary energy source or sink. Imagine, for 

example, a non-physical situation in which the reverse flow entering the cold exit is much 

warmer than the solution flow; the warm gas would mix with the cold gas, pass back out 

of the cold exit again, and distort the temperature separation results. Because the flow at 

each exit has a radial temperature profile, even in the absence of reverse flow, it is not 

entirely straightforward to determine what the appropriate reverse flow temperature 

actually should be and some subjective judgment is required to establish the reverse flow 

boundary conditions. Because of the non-physical nature of this artifact, “perfect” 

settings may not even be achievable. 

However, to mitigate the influence of reverse flow on the solution, extensions 

were added to the exits in the computational mesh. These extensions, 3.0 mm on the hot 

exit and 5.0 mm on the cold exit, permitted some reverse flow circulation to take place 

beyond the original exit plane and reduced its influence on the main body of the solution. 

The original and extended meshes can be seen in Figure 92, which depicts three planes: 

1) extending along the axial length of the tube, labeled the “Axial-diametric plane”, 2) the 

circular cold exit plane, and 3) the annular hot exit plane. Please note that the contours of 

axial velocity are not necessary to interpret the figure. 
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Figure 92. Exit extensions on vortex tube unextended (left) and extended (right) 

Although the original exit planes were no longer, strictly speaking, the actual exit 

planes of the solution, they remained the locations at which exit properties were 

evaluated. In principle, if the exit extensions were made infinitely long, then the reverse 

flow would never re-enter the vortex tube and its contribution would be completely 

eliminated. Unfortunately, the extensions represented an additional computational burden 

and their length had to be limited. The new procedure for adjusting the reverse flow 

temperature was then an inspection of the temperature profiles at both the measurement 

plane (the original exit plane) and the solution exit plane (at the end of the extension), 

and changing the reverse flow temperature if it appeared that the solution exit plane had 

an exaggerated influence on the measurement plane. 

The nature of the boundary conditions meant that each solution was typically run 

at least twice: first, with the desired nozzle mass flow rate and total temperature, cold 

fraction exactly achieved, and guesses for the hot exit static pressure and both exits’ 

reverse flow temperatures; second, with updated guesses for the hot exit static pressure 
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and both exits’ reverse flow temperatures. With some experience, two runs were often 

sufficient to achieve the target nozzle conditions while minimizing reverse flow effects to 

an acceptable degree. 

Once the proper solution settings were identified and procedures were developed 

to set the boundary conditions, a mesh sensitivity study could be conducted. Five meshes 

were prepared, with cell counts of 1.6×106, 2.5×106, 5.2×106, 9.4×106, and 16×106, 

respectively. Inlet boundary conditions were specified with a mass flow rate of 

0.00142 kg/s (72 SLPM) and a total temperature of 293.4 K. The cold exit pressure outlet 

was set to achieve a cold fraction of 0.40, which typically yields the greatest cold exit 

temperature change. The hot exit pressure outlet used a static pressure of 345 kPa. The 

meshes were compared in terms of temperature separation, quantified as the difference in 

mass-averaged total temperature between the exit measurement planes and the inlet 

plane. An additional measurement was included to assess net changes in the flow field: a 

volume-integrated x-vorticity. This was selected because the x-vorticity is one of the 

most prominent indicators of the swirl of the vortex; in the present configuration, the x-

axis spans the length of the vortex tube. By integrating the x-vorticity across the volume 

of the mesh, a single indicator could aggregate large-scale changes in the flow pattern. 

The results of the sensitivity study are presented in Figure 93. Hot and cold exit 

temperature separation are shown in the red and blue traces, respectively, scaled with the 

left vertical axis. The x-vorticity is scaled according to the right vertical axis. 

Temperature separation and integrated x-vorticity are fairly sensitive to mesh size from 

1.6×106 to 5.2×106 cells, but much less sensitive from 5.2×106 to 16×106 cells. Hot exit 

and cold exit temperature separation increase by 32% and 28% from 1.6×106 to 5.2×106 
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cells, while they increase by only 5.7% and 5.9%, respectively, from 5.2×106 to 16×106 

cells. Similar trends occur in x-vorticity, though the maximum observed value is at 

9.4×106 cells. Since the purpose of the mesh sensitivity is to balance concerns of 

accuracy with computational cost, it was decided to use the mesh with 5.2×106 cells for 

all subsequent investigations. The average cell size for this grid was 5.31×10-4 mm3. The 

run time with available resourcing was sixteen hours to achieve a converged solution for 

a single cold fraction in an adiabatic vortex tube with 6000 iterations; creating a cold 

fraction curve from 0.2 ≤ 𝜇𝐶 ≤ 0.8 thus required 112 hours of run time. 

 

Figure 93. Vortex tube mesh sensitivity results (𝝁𝑪 = 𝟎. 𝟒𝟎) 

 

3.2.8.2 Examination of internal flow field for CFD solution 

The internal flow field was examined in terms of temperature, pressure, and 

velocity and compared to historical experimental data. The CFD vortex tube geometry 
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was constructed to match the author’s experimental geometry, not any specific historical 

geometry; therefore, the purpose of the comparison to historical data is to qualitatively 

determine the extent to which the CFD flow profiles are consistent with previously 

observed trends. No single source contained a complete set of desired temperature, 

pressure, and velocity profiles; therefore, three sources of experimental data were used 

for comparison. The examination consisted of contours across a plane spanning the axial 

and radial extent, as well as a set of radial cuts at axial positions of 2.9 mm, 5.8 mm, 11.6 

mm, 29.05 mm, and 40.7 mm, which correspond to 5%, 10%, 20%, 50%, and 70% of the 

tube length, respectively; see Figure 94. Note that a plane extending radially from the 

zero axial location is coincident with the side of the nozzles nearest the cold exit, and the 

hot exit plane lies at an axial position of 58.1 mm. The radius of the tube is 3.1 mm.  

 

Figure 94. Vortex tube CFD model cross-section 

Experimental data on static and total temperature along the tube cross section at 

various axial positions comes from Scheper [49]. Figure 95 depicts static and total 

temperatures profiles from experiment (left) and this author’s CFD (right). In the left 

plot, the solid lines of static temperature and dashed lines of total temperature are taken 

for axial positions (1), (2), and (3), which correspond approximately to 5%, 10%, and 

15% of the tube length, respectively; experimental data are only shown for one half of the 
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radial profile. The measurements and CFD results display a strong qualitative 

consistency, especially the relative curvature of the static and total temperature in the 

radial direction as well as the progression of the profiles in the axial direction. 

  

Figure 95. Comparison of temperature profiles from  

experiment [49] (left) to CFD (right) 

Experimental pressure data were taken from Hartnett and Eckert [55]. Radial 

profiles of static and total pressure are compared between experiment and CFD in Figure 

96. The experimental data was taken at an axial position of 40% of the tube length 

(measured from the nozzles toward the hot exit), while this author’s CFD data is shown 

for axial positions of 20% and 50% of tube length. The CFD curves again bear a strong 

resemblance to the experimental data, particularly the distinctly different curvatures of 

static and total pressure with respect to radial position. Static and total pressure 

distributions are also shown for additional axial positions in Figure 97. An experimental 

profile of tangential velocity is also drawn from the results of Hartnett and Eckert [55] 
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and compared to CFD in Figure 98. Qualitatively speaking, there is yet again a strong 

resemblance, though the experimental data does not extend all the way to the central axis 

of rotation inside the vortex. 

  

Figure 96. Comparison of static and total pressure profiles from  

experiment [55] (left) to CFD data (right) 

  

  

Figure 97. Static pressure (left) and total pressure (right) profiles from CFD results 
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Figure 98. Comparison of tangential velocity profiles from  

experiment [55] (left) to CFD data (right) 

The experimental data of Scheller [50], which was originally plotted as a set of 

contours, also forms a basis for comparison. Scheller’s data were taken for a cold fraction 

of 0.506 and, given a tube length of 43 inches, are only shown for the first 17% of the 

tube. Contours were prepared from the CFD data, both to acquaint the reader with a 

broader characterization of the flow and to further establish that the CFD results are 

representative of experimentally evaluated vortex tube flow. Contours of static 

temperature from experiment [50] are shown in Figure 99 and CFD results are in Figure 

100. Elevated static temperatures near the core are plainly evident in both figures, though 

this effect becomes less pronounced near the hot exit. 
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Figure 99. Contours of static temperature (°F) from experiment [50] 

 

Figure 100. Contours of static temperature (K) from CFD 

Contours of total temperature from experiment [50] are shown in Figure 101 and 

CFD results are in Figure 102. In contrast to the static temperature profiles, the total 

temperature plots reveal that the temperature along the axis of rotation is universally 

colder than the surrounding gas, though in some regions the total temperature decreases 

again toward the wall—a finding also observed earlier in Figure 95. The experimental 

and computational results again compare favorably in a qualitative sense. 
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Figure 101. Contours of total temperature (°F) from experiment [50] 

 

Figure 102. Contours of total temperature (K) from CFD 

Contours of static pressure from experiment [50] are shown in Figure 103 and 

CFD results are in Figure 104, while total pressure is compared between experiment and 

CFD in Figure 105 and Figure 106, respectively. Most striking in these plots is the 

fidelity by which CFD replicates the pressure distributions near the cold exit, which are 

distinct. The static pressure forms a depression near the cold exit, though there is 

apparently a slight adverse static pressure gradient for the flow exiting via the cold side, 
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evidenced by an increase in static pressure along the axis of rotation as the cold exit is 

approached; for example, follow the “Tube Center Line” in Figure 103 from 4.0 inches 

toward 0.0 inches. This is apparently manifested at axial locations less than 5% of the 

tube length, which is why it is not seen in Figure 97. The total pressure does not exhibit 

this type of variation along the central axis and again the CFD successfully replicates the 

experimental profile. 

 

Figure 103. Contours of static pressure (in. Hg) from experiment [50] 

 

 

Figure 104. Contours of Static Pressure (Pa) from CFD 
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Figure 105. Contours of constant total pressure (in. Hg) from experiment [50] 

 

 

Figure 106. Contours of Total Pressure (Pa) from CFD 

Contours of tangential velocity from experiment [50] are shown in Figure 107 and 

CFD results are in Figure 108. The comparison is again favorable. In all CFD-derived 

profiles of temperature, pressure, and velocity, the flow displays axisymmetry. In 

summary, a detailed review of the CFD-derived profiles of temperature, pressure, and 

velocity suggests that the flow is qualitatively representative of historical experimental 
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findings. Furthermore, this indicates that this CFD solution is likely suitable for detailed 

internal flow analysis, including deducing the underlying physics of temperature 

separation; this assumes a favorable comparison with experiment regarding device-level 

temperature separation. 

 

Figure 107. Contours of constant tangential velocity (ft/s) from experiment [50] 

 

Figure 108. Contours of Tangential Velocity (m/s) from CFD 
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3.2.8.3 Examination of temperature separation performance 

The CFD case was then compared to experiment with respect to quantified 

temperature separation. By adjusting the cold fraction, it was possible to create the 

characteristic vortex tube performance curves. Figure 109 compares the CFD results to 

experiment, indicating a very close match and a strong experimental validation. The hot 

curves consistently differ by approximately 0.4 K. The most prominent difference 

between CFD and experiment is for the cold exit at low cold fractions, especially 𝜇𝐶 =

0.2 and 0.3, which differ by up to 1.5 K. It is likely that the differences are attributable to 

reverse flow, the effects of which are strongest for these cold fractions and are almost 

entirely absent by 𝜇𝐶 = 0.4. The hot exit does have some reverse flow that increases at 

higher cold fractions, although this apparently does not have a strong influence on the 

result. 

 

Figure 109. CFD vs. experimental temperature separation, matched hot exit static pressure 
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The boundary conditions play an important role in matching CFD to experiment. 

The hot exit pressure outlet, which is the only manually adjustable pressure boundary 

condition available, was carefully matched to the experimentally measured hot exit static 

pressures. This is shown with the red traces in Figure 110. The resulting static pressure at 

the cold exits compares favorably with the experiment, within 10 kPa. The most 

prominent difference between CFD and experiment is for the static pressure at the inlet. 

The CFD solution apparently predicts that the static pressure drop between the nozzles 

and the exits is essentially constant with respect to cold fraction, while the experimental 

findings suggest that the pressure drop decreases with increasing cold fraction. FLUENT 

overpredicts the pressure drops in each case, though it is especially glaring at high cold 

fractions. An important effect is that the computed nozzle static pressure increases with 

cold fraction; in turn, this increases density and—perhaps most significantly—decreases 

nozzle velocity. This becomes evident when nozzle velocity is plotted as a function of 

cold fraction, as in Figure 111. 



203 

 

Figure 110. CFD vs. experimental static pressures, matched hot exit static pressure 

 

 

Figure 111. CFD vs. experimental nozzle velocities, matched hot exit static pressure 
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Since the predicted pressure drop across the vortex tube is basically constant, an 

alternative approach is to specify a constant hot exit static pressure to achieve a target 

nozzle static pressure—ideally equal to the experimental value. With these boundary 

conditions applied, the resulting pressure curves can be seen in Figure 112. In this case, 

the static pressure at the nozzle is essentially constant and is closely matched to the 

experimental values. The predicted static pressure at the exits is up to 40 kPa lower than 

the experimental values. The nozzle velocities, shown in Figure 113, are nearly identical 

between CFD and experiment for the range of cold fractions. 

 

Figure 112. CFD vs. experimental static pressures, matched nozzle static pressure 
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Figure 113. CFD vs. experimental nozzle velocities, matched nozzle static pressure 

Nozzle properties for the CFD and experimental cases with matched nozzle static 

pressures are averaged across cold fractions and presented in Table 17, which indicates 

that the nozzle properties between CFD and experiment are nearly identical. This was not 

computed for the CFD case with the matched hot exit static pressure boundary condition 

since it yielded variations of nozzle properties with respect to cold fraction; averaging the 

properties across cold fraction would have masked these modeling nuances. It can be 

seen in Figure 114 that by matching nozzle static pressure, the CFD solution overpredicts 

temperature separation, resulting in a less favorable comparison with experiment. This 

highlights the importance of boundary conditions in matching dimensional temperature 

separation. It also appears that the trend of overpredicting the pressure drop across vortex 

tubes is correlated with the overprediction of dimensional temperature separation. 
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Table 17. Nozzle properties, CFD vs. Experiment (matched nozzle static pressure) 

 Experiment CFD 

Mass flow rate (kg/s) 1.421×10-3 1.420×10-3 

Inlet 𝑇𝑡𝑜𝑡𝑎𝑙 (K) 293.3 293.4 

Inlet 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (bar, gauge) 3.001 - 

𝑹𝒆𝑫𝒉
  18045 18027 

𝑷𝒓  0.721 0.721 

𝝆𝑪𝒑𝝁𝑱𝑻  0.0108 0.0112 

Velocity (m/s) 99.30 98.58 

Mach number 0.292 0.289 

𝜌 (kg/m3) 4.551 4.582 

𝜇 (μPa-s) 18.05 18.06 

𝑘 (mW/m-K) 25.33 25.34 

𝐶𝑝 (J/kg-K) 1011.6 1010.8 

𝜇𝐽𝑇 (K/bar) 0.2346 0.2424 

Nozzle 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 (K) 288.3 288.5 

Nozzle 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (Pa, absolute) 376614 378890 

 

 

Figure 114. CFD vs. experimental temperature separation (matched nozzle pressure) 
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The most favorable comparison between CFD and experiment—the cases with 

matched hot exit static pressures—are compared in terms of non-dimensionalized 

temperature separation, with 𝑇𝑡
∗ in Figure 115 and 𝜌∗𝐶𝑝

∗𝑇𝑡
∗ in Figure 116; the curves of 

𝜌∗𝐶𝑝
∗𝑇𝑡

∗ compare slightly more favorably than those of 𝑇𝑡
∗. The inaccuracy of CFD in 

predicting the relative magnitudes of temperature and pressure changes across a vortex 

tube is manifested in a disparity between the dimensionless CFD and experimental 

results; nevertheless, the comparison in Figure 116 suggests that the fundamental 

characteristics of vortex tube temperature separation are indeed replicated in CFD and 

that this simulation forms a legitimate basis for the investigation of its underlying 

behavior. 

 

Figure 115. Dimensionless temperature separation, 𝑻𝒕
∗, CFD vs. experiment 

(matched hot exit static pressures) 
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Figure 116. Dimensionless temperature separation, 𝝆∗𝑪𝒑
∗𝑻𝒕

∗, CFD vs. experiment 

(matched hot exit static pressures) 

In general, when evaluating temperature separation for a variety of CFD test cases 

where experimental data is not available, it is simpler to use the same hot exit boundary 

condition for each cold fraction rather than speculate about a potential pressure drop 

function. Changing the boundary conditions—matching either the hot exit static pressure 

or nozzle static pressure to experiment—obviously changed the dimensional temperature 

separation characteristics between the CFD cases, which are now directly compared in 

Figure 117. It is also a matter of interest to see how much these changes altered the non-

dimensional temperature separation characteristics of the solution. It turns out that the 

two solutions yield virtually identical results in terms of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗, as seen in Figure 118; 

hence, at a fundamental, dimensionless level, it does not matter whether the hot exit static 

pressure is varied or kept constant. 
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Figure 117. Dimensional CFD temperature separation with static pressures matched 

to experiment at either nozzle or hot exit 

 

  

Figure 118. Dimensionless CFD temperature separation, 𝝆∗𝑪𝒑
∗𝑻𝒕

∗, with static 

pressures matched to experimental values at either nozzle or hot exit  
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Interestingly, a comparison of 𝑇𝑡
∗ between the two CFD cases, shown in Figure 

119, finds that the results are essentially identical. Because the dimensionless profiles are 

essentially identical regardless of boundary condition strategy, subsequent CFD test cases 

will employ a constant hot exit static pressure boundary condition for all cold fractions. 

  

Figure 119. Dimensionless CFD temperature separation, 𝑻𝒕
∗, with static pressures 

matched to experimental values at either nozzle or hot exit 

 

3.2.9 The underlying mechanism of temperature separation 

Attention now turns to deducing the underlying mechanism of temperature 

separation. This endeavor requires a complete picture of all flow properties throughout 

the vortex tube—a job best suited for CFD. A previous study by Aljuwayhel et al. [77] 

was conducted in two dimensions, while Behera et al. [66] performed a study in three 

dimensions but with a periodic boundary. Both sets of researchers enforced axisymmetric 

conditions but incorporated very limited experimental validation. This is the first such 

analysis using a full three-dimensional flow characterization based on robust 

experimental validation, no flow constraints, and incorporating real-gas effects. The flow 
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solution used in the analysis corresponds to that in Figure 109 on page 201, which was 

shown to compare favorably with experiment, for a cold fraction of 𝜇𝐶 = 0.40.  

The analysis will incorporate an energy balance conducted for an appropriate 

control volume, one surface of which must be the interface between hot and cold regions 

of the flow. The “hot region” of the vortex tube contains flow which enters via the 

nozzles and exits exclusively via the hot exit. It is an annulus bounded on the outside by 

the tube walls and it circumscribes the “cold region” on the inside via an interface, 

though the radius of the interface between the two regions varies with axial position.  

The control volume will be assigned to the fluid in the hot region. The flow in this 

region has four surfaces: (1) an annular “inlet” face adjacent to the nozzles, (2) an annular 

“outlet” face at the hot exit, (3) the interface between the hot and cold flows, and (4) the 

tube wall, which is defined in CFD as adiabatic and therefore has no energy transferred 

across it. The energy advected via the inlet and outlet surfaces will be quantified along 

with the energy transfer across the interface. The energy transfer across the interface is of 

primary interest since this is expected to explain the mechanism of temperature 

separation. 

The integral form of energy equation will be used for the analysis. The differential 

form in Eq (73) can be converted to an integral form, Eq (83), for an arbitrary region (see 

Panton [91]). Although the total internal energy term, 𝑒𝑡, is conventionally defined as            

𝑒𝑡 ≡ 𝑒 +
1

2
𝑣2 + 𝑔𝑍, the gravitational potential energy, 𝑔𝑍, will not be considered. 
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𝑑

𝑑𝑡
∫ 𝜌𝑒𝑡𝑑𝑉

 

𝐴𝑅

+ ∫𝑛𝑖(𝑣𝑖 − 𝑤𝑖)𝜌𝑒𝑡𝑑𝑆

= −∫𝑛𝑖𝑞𝑖𝑑𝑆 + ∫ 𝑛𝑖𝜏𝑖𝑗𝑣𝑗𝑑𝑆
 

𝑓𝑙𝑢𝑖𝑑

− ∫ 𝑛𝑖𝑣𝑖  𝑃 𝑑𝑆
 

𝑓𝑙𝑢𝑖𝑑

+ ∫ 𝑛𝑖𝑇𝑖𝑗𝑣𝑗𝑑𝑆
 

𝑠𝑜𝑙𝑖𝑑

 

(83) 

 The analysis will assume steady flow, i.e. 
𝑑

𝑑𝑡
∫ 𝜌𝑒𝑡𝑑𝑉

 

𝐴𝑅
= 0; this is both a 

principled and pragmatic decision. The possibility exists that short-period fluctuations 

occur which may temporarily increase or decrease the energy in the control volume; 

however, the present analysis assumes that these fluctuations have a zero mean. From a 

pragmatic standpoint, the mesh that was validated against the experimental data is not 

well suited to a transient CFD solution. Experimentation with transient solutions revealed 

immediate instabilities for time steps greater than one nanosecond. Assuming the results 

of a nanosecond-scale time step simulation are satisfactory, the computational time 

required to achieve a flow-relevant time scale vastly exceeded time available for this 

research. The results shown are therefore the result of a steady CFD simulation. 

Since the boundaries of the control volume are stationary, all components of the 

surface velocity vector, 𝒘, are zero. The control volume encompasses only a fluid region, 

so no solid regions will be considered. Finally, by applying the definition of total 

(stagnation) enthalpy [92], shown in Eq (84), the flow work term, ∫ 𝑛𝑖𝑣𝑖 𝑝 𝑑𝑆
 

𝑓𝑙𝑢𝑖𝑑
, is 

combined with the advection term on the left side of the equation. The integral form 

which will be used is Eq (85), which contains three terms: the term −∫𝑛𝑖𝑣𝑖 𝜌 ℎ𝑡 𝑑𝑆 

represents the total enthalpy advected across the surfaces; the term −∫𝑛𝑖𝑞𝑖𝑑𝑆 represents 

heat transfer by conduction across the surfaces; and finally ∫ 𝑛𝑖𝜏𝑖𝑗𝑣𝑗𝑑𝑆
 

 
 represents the 

viscous work performed at the surfaces. 
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ℎ𝑡 ≡ 𝑒 +
𝑝

𝜌
+

1

2
𝑣2 (84) 

 

0 = −∫𝑛𝑖𝑣𝑖 𝜌 ℎ𝑡 𝑑𝑆 − ∫𝑛𝑖𝑞𝑖𝑑𝑆 + ∫𝑛𝑖𝜏𝑖𝑗𝑣𝑗𝑑𝑆
 

 

 (85) 

The form of the energy equation represented by Eq (85) is especially well-suited 

to the present task because it requires only surface integrals to be computed, and any real 

gas effects are incorporated into the variation of specific enthalpy by means of the real 

gas model resident in the CFD code. By contrast, the conversion of Eq (63) on page 147 

to integral form yields two volume integrals—a flow work term involving spatial 

gradients of static pressure and the Joule-Thomson coefficient, and another term 

necessary to correct the total temperature distribution for spatial variations in 𝐶𝑝—the 

evaluation of which would complicate the analysis considerably.  

Many of the terms in Eq (85) are readily available from the CFD solution, 

including velocity, density, and specific total enthalpy, which permit the evaluation of the 

advection integral for a defined surface. However, evaluation of the heat conduction and 

viscous work terms requires additional information not provided explicitly by the CFD 

solution. For instance, heat flux is defined using Eq (86). Evaluation of the heat flux at 

any point requires a measure of effective thermal conductivity, 𝑘𝑒𝑓𝑓, which is also 

directly available from the CFD, and the static temperature gradients, 𝜕𝑖𝑇, which must be 

calculated separately based on the distribution of static temperature. Effective thermal 

conductivity accounts for contributions from both the molecular gas property as well as 

its turbulent counterpart. 
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𝑞𝑖 = −𝑘𝑒𝑓𝑓𝜕𝑖𝑇 (86) 

 

The components of the viscous stress tensor, 𝜏𝑖𝑗, will be computed based on 

cylindrical, three dimensional coordinates using Eqs (87) – (93) [91]; the axis of rotation 

runs down the length of the tube and the positive 𝑧 direction is oriented toward the hot 

exit. The effective viscosity, 𝜇𝑒𝑓𝑓, is drawn from the CFD solution and likewise accounts 

for both molecular and turbulent properties. 

𝜏𝑟𝑟 = 𝜇𝑒𝑓𝑓 [2
𝜕𝑣𝑟

𝜕𝑟
−

2

3
(∇ ∙ 𝒗)] (87) 

𝜏𝜃𝜃 = 𝜇𝑒𝑓𝑓 [2 (
1

𝑟

𝜕𝑣𝜃

𝜕𝜃
+

𝑣𝑟

𝑟
) −

2

3
(∇ ∙ 𝒗)] (88) 

𝜏𝑧𝑧 = 𝜇𝑒𝑓𝑓 [2
𝜕𝑣𝑧

𝜕𝑧
−

2

3
(∇ ∙ 𝒗)] (89) 

𝜏𝑟𝜃 = 𝜏𝜃𝑟 = 𝜇𝑒𝑓𝑓 (𝑟
𝜕

𝜕𝑟
(
𝑣𝜃

𝑟
) +

1

𝑟

𝜕𝑣𝑟

𝜕𝜃
) (90) 

𝜏𝜃𝑧 = 𝜏𝑧𝜃 = 𝜇𝑒𝑓𝑓 (
𝜕𝑣𝜃

𝜕𝑧
+

1

𝑟

𝜕𝑣𝑧

𝜕𝜃
) (91) 

𝜏𝑧𝑟 = 𝜏𝑟𝑧 = 𝜇𝑒𝑓𝑓 (
𝜕𝑣𝑧

𝜕𝑟
+

𝜕𝑣𝑟

𝜕𝑧
) (92) 

∇ ∙ 𝒗 =
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟) +

1

𝑟

𝜕𝑣𝜃

𝜕𝜃
+

𝜕𝑣𝑧

𝜕𝑧
 (93) 

The inlet and outlets to the control volumes are simply defined as annular faces 

with outside radii equal to the tube radius of 3.1 mm and internal radii equal to radius of 

the interface at the corresponding axial locations. Because the solutions of Aljuwayhel et 

al. [77] and Behera et al. [66] enforced an axisymmetric flow constraint, the interface 

separating hot and cold regions is easily defined by selection of the proper streamline. 

Although the three-dimensional spiraling flow in the present solution is nearly 

axisymmetric (a characteristic consistently observed in the internal flow examinations), 

the solution was not constrained as such during its development. Therefore, it is not—
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formally-speaking—an axisymmetric flow and the streamline technique cannot be 

applied here. The consequence is that defining the interface for this flow is not a 

straightforward process. 

The adopted approach was to generate a set of high-resolution, three-dimensional 

pathlines in FLUENT, which were separated into those exiting via the hot side and those 

exiting the cold side. A total of 1,105 hot pathlines and 569 cold pathlines were produced, 

each using a step size of 0.01 mm; this was the maximum feasible resolution with the 

given solution. The pathlines were analyzed and the innermost hot pathline and the 

outermost cold pathline were identified, shown in Figure 120, which illustrates the paths 

in a two-dimensional plane of lateral position against axial position. The two pathlines 

originate from separate nozzles and spiral down the length of the tube and the cold 

pathline reverses direction at the hot exit of the tube before traversing back the entire 

length again to leave via the cold exit. Although the two spirals are offset 

circumferentially—the number of pathlines available was high but nonetheless finite—

this method was believed to closely approximate the interface. 

 

Figure 120. Hot and cold pathlines used to define hot/cold interface 

The radius of each pathline was computed for each axial position and, upon 

further examination, it was verified that the radii lie exceptionally close to each other at 
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any given axial location, generally separated by less than 0.04 mm. The actual two-

dimensional interface curve was defined by the mean radius of the hot and cold pathlines 

for each axial location. The three radius lines—hot, cold, and mean interface—are shown 

in Figure 121. Because the hot, cold, and mean lines are so close as to be nearly 

indistinguishable at the scale of Figure 121, a closeup view of a region near the hot exit is 

also provided in Figure 122, in which the pathlines lie particularly far apart and are more 

readily distinguishable. Also shown in Figure 121 are the axial extents of the control 

volume, with the inlet face depicted as a blue dotted line and the outlet face as a red 

dotted line. The axial position origin is coincident with the side of the nozzles nearest the 

cold exit, and the axial extent of the nozzles is 0.70 mm. The flow at the immediate exit 

of the nozzles is chaotic and disordered, and the large-scale flow features have not yet 

been established in this region. The inlet face of the control volume was therefore 

specified at an axial location of 1.0 mm to improve the quality of the interface, the 

principal measure of which is the magnitude of the mass flux through it. 

 

 

Figure 121. Unrevolved hot/cold interface 



217 

 

Figure 122. Closeup revealing innermost "hot" pathline, outermost "cold" pathline, 

and mean interface line 

Ideally, the interface would have zero mass flux; however, because it is a notional 

interface in a turbulent flow, this can never be truly the case. Moreover, the interface was 

defined here on an empirical basis from computed pathlines and its quality may be 

impacted by computational artifacts. Nevertheless, for the accuracy of the calculations, it 

is important to select an interface such that its axial extent is maximized to ensure all 

contributions to temperature separation are included, while minimizing the mass flux and 

corresponding advection. The outlet face was positioned at an axial location of 57.5 mm, 

upstream of the hot exit geometry features that begin at 57.7 mm and the hot exit plane at 

58.1 mm. The region bounded by the tube wall, the inlet face, the outlet face, and the 

mean interface line, labeled “Control volume (unrevolved)” in Figure 121, was revolved 

around the central axis to form a full three-dimensional control volume. 

For practical use, the interface surface and all equations were discretized. The 

inlet and outlet annular faces were divided radially and circumferentially into a set of 
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polar rectangles. The three-dimensional interface surface was sliced into a set of axial 

segments, each of which was approximated as the lateral surface of a conical frustum. 

Each of the frusta was further subdivided into a set of circumferential faces in a manner 

similar to that shown in Figure 123. 

 

Figure 123. Notional conical frustum with circumferential faces [97] 

Although the near-axisymmetry of the flow would imply that the circumferential 

subdivision into separate faces was unnecessary and rather, the flow properties for the 

entire frustum could be adequately deduced from a single point anywhere on the frustum, 

it was understood that computational artifacts might cause small circumferential 

variations. To mitigate this influence, the subdivision was deemed necessary and had a 

net effect of averaging out the properties at each face.  

The FLUENT solution was imported into the software package Tecplot 360 EX 

2020 R2, which permitted the interpolation of flow properties at any point in the domain. 

This was important because the locations at which flow data was desired did not 

generally correspond exactly to the cell centroids of the FLUENT solution, which was 

generated for an unstructured mesh. An example low-resolution point cloud of inlet, 

outlet, and interface centroids is shown in Figure 124. The inlet, whose face centroids are 

plotted in blue, contains 250 faces at 5 radial stations and 50 circumferential stations. The 
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interface is in yellow with 50 circumferential stations and 40 longitudinal stations, and 

hence 2000 faces. The outlet is in red with 10 radial stations and 50 circumferential 

stations, and 500 faces. 

 

Figure 124. Example low-resolution point cloud of face centroids on inlet (blue), 

interface (yellow), and outlet (red) 

Flow properties were interpolated at the desired locations using an inverse 

distance algorithm in Tecplot. Flow properties for each face on the inlet, outlet, and 

interface were evaluated at the corresponding centroid, including velocity components, 

density, total enthalpy, effective thermal conductivity, and effective viscosity. Advection, 

heat flux, and work computations need a surface unit normal vector for each face. For the 

inlet and outlet faces, each normal vector was aligned entirely in the axial direction. For 

the faces on the interface, the process was more involved. The two-dimensional curve of 

radius as a function of axial position was numerically differentiated to determine the 

slope, 
𝑑𝑟

𝑑𝑧
, at the centroid, essential to computing the normal vector. Numerical 
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differentiation is an inherently noisy process, and a smoothing algorithm was applied to 

minimize erratic surface normal vectors. 

The heat flux and viscous stress tensor calculations also use gradients of static 

temperature and velocity, which required interpolated values at locations offset some 

distance from the face. In every case, gradients were computed using central difference 

approximations. For example, the viscous stress tensor component 𝜏𝑟𝑧 was computed 

using Eq (94). Suitable offset distances were found to be Δ𝑟 = Δ𝑧 = 0.05 mm. 

𝜏𝑟𝑧 = 𝜇𝑒𝑓𝑓 (
𝜕𝑣𝑧

𝜕𝑟
+

𝜕𝑣𝑟

𝜕𝑧
) ≈ 𝜇𝑒𝑓𝑓 (

𝑣𝑧(𝑟 + Δ𝑟, 𝜃, 𝑧) − 𝑣𝑧(𝑟 − Δ𝑟, 𝜃, 𝑧)

2Δ𝑟
+

𝑣𝑟(𝑟, 𝜃, 𝑧 + Δ𝑧) − 𝑣𝑟(𝑟, 𝜃, 𝑧 − Δ𝑧)

2Δ𝑧
) (94) 

 

The use of faces distributed across the inlet, outlet, and interface surfaces 

introduces a “grid-within-a-grid” concept. To that end, the results are introduced with a 

brief grid sensitivity study to ensure that the overlaid grid resolution is not unduly 

influencing the results. The inlet and outlet are varied from 2,500 to 100,000 faces, while 

the interface is varied from 5,000 to 2,000,000 faces. The mass flow rate and advection 

across the surfaces are monitored for convergence for all three surfaces, and mass-

averaged (bulk) total temperature is also monitored for the inlet and outlet, as seen in 

Table 18. 

Table 18. Grid sensitivity study 

Inlet 

Circumferential 

segments 
Radial 

segments 
Total 

faces 
Mass flow 

rate (kg/s) 
Advection 

(W) 
Tmean 

(K) 
50 50 2500 -9.080×10-4 -380.52 293.53 

200 100 20000 -9.082×10-4 -380.59 293.53 
500 200 100000 -9.083×10-4 -380.63 293.53 

       

Outlet 
Circumferential 

segments 
Radial 

segments 
Total 

faces 
Mass flow 

rate (kg/s) 
Advection 

(W) 
Tmean 

(K) 
50 50 2500 8.319×10-4 350.9744 296.20 
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200 100 20000 8.320×10-4 351.0158 296.20 
500 200 100000 8.319×10-4 350.9906 296.20 

       

Interface 

Axial segments 
Radial 

segments 
Total 

faces 
Mass flow 

rate (kg/s) 
Advection 

(W)  

100 50 5000 -1.052×10-4 -44.016  

500 200 100000 2.802×10-5 11.8094  

1000 500 500000 6.549×10-5 27.5542  

2000 1000 2000000 6.232×10-5 26.2828  

 

The inlet and outlet are almost entirely insensitive to grid resolution across this 

range, with negligible changes in the response values; the increase in total temperature 

across the control volume remains constant at ΔT = 2.67 K. The interface, however, is 

quite sensitive to changes in resolution: between 5,000 and 100,000 faces, the net mass 

flow rate and advection reverse directions; between 500,000 and 2,000,000 faces, the 

mass flow rate and advection have apparently stabilized. Recall that the entire mesh in 

the FLUENT solution consists of approximately 5,200,000 cells, so characterizing the 

interface alone with 2,000,000 faces is needlessly oversampling the surface. Thus, the 

interface with 500,000 faces will be used for the analysis with the inlet and outlets with 

2,500 faces. 

A note regarding sign convention: the surface unit normal vectors point outward 

from the control volume. In the advection term, ∫𝑛𝑖𝑣𝑖 𝜌 ℎ𝑡 𝑑𝑆 in Eq (85), repeated 

below, mass flow into the control volume via a surface is seen as positive, while flow out 

is seen as negative. On the right side of Eq (85), positive values of −∫𝑛𝑖𝑞𝑖𝑑𝑆 and 

∫ 𝑛𝑖𝜏𝑖𝑗𝑣𝑗𝑑𝑆
 

 
 refer to heat transfer and work into the control volume. 

0 = −∫𝑛𝑖𝑣𝑖 𝜌 ℎ𝑡 𝑑𝑆 − ∫𝑛𝑖𝑞𝑖𝑑𝑆 + ∫𝑛𝑖𝜏𝑖𝑗𝑣𝑗𝑑𝑆
 

 

 (85) 
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The continuity balance is shown in Table 19. The mass flow rate via the inlet is 

greater than that via the outlet, suggesting that there must be a net positive mass flux via 

the interface. In other words, some mass is entering via the inlet but leaving via the 

interface before it reaches the outlet; this obviously implies that the quality of the 

interface is imperfect. 

Table 19. Continuity balance for control volume 

Surface Mass flow rate (kg/s) 

Inlet 9.080×10-4 

Outlet -8.319×10-4 

Interface -6.549×10-5 

Sum 1.063×10-5 

 

The difference in mass flow rates between the inlet and outlet indicate that there 

should be 7.612×10-5 kg/s flowing out of the interface, equivalent to 8.4% of the flow 

that entered via the inlet, but calculations at the interface find only 6.549×10-5 kg/s, or 

7.2% of the inlet mass flow rate, actually crossing the interface. This means that present 

analysis cannot account for 1.063×10-5 kg/s or 1.2% of the mass flow entering via the 

inlet. The apparent sensitivity of the interface fluxed to grid resolution and the relatively 

complex math required for the calculations (compared to the inlet and outlet) suggest that 

the error may be attributable to computational challenges at the interface. Naturally, the 

mass flow rate is very sensitive to the pointing angle of the surface normal vectors with 

respect to the local flow velocity, and any pointing errors will result in an apparent mass 

flow rate across the interface. This is compounded somewhat in three dimensions since 

the surface normal vectors are a revolved version of the two-dimensional interface. 



223 

The mean mass flux values for each of the 1000 axial frusta are plotted in Figure 

125. The occasional large values are likely due to unusual angles of surface normal 

vectors, despite efforts to reduce this effect. The majority of the mass flux apparently 

occurs nearest the nozzles and although the magnitude decreases toward the hot exit, it is 

never entirely eliminated. 

 

Figure 125. Mass flux across interface vs. axial location 

The contributions of each of the nine components of the viscous stress tensor as 

well as the heat transfer were summed across the surface area of the interface. The results 

are listed in Table 20. The calculated energy transfer across the interface by means of 

work and heat transfer is 2.893 W, of which 0.294 W (10.1%) is via heat transfer and 

2.597 W is via viscous work. Note that the computed values of ∫𝑛𝑟 𝜏𝑟𝜃𝑣𝜃𝑑𝑆 and 

∫𝑛𝑟 𝜏𝑟𝑧𝑣𝑧𝑑𝑆 are not as sensitive to pointing errors in the normal vector as are the mass 

flux computations. This is due partly to the fact that in the region where the greatest work 

is done, 𝑛𝑟 ≈ 1; it is also partly because the shear stress terms, 𝜏𝑟𝜃 and 𝜏𝑟𝑧, are driven by 
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calculated velocity gradients—and small computational artifacts in the velocity field are 

damped out somewhat by the central differencing method. 

Table 20. Contributions of heat and stress tensor components to energy transfer 

Contributing 

component 

Power across 

interface (W) 

∫𝑛𝑟 𝑞𝑟𝑑𝑆  0.3077 

∫𝑛𝑧 𝑞𝑧𝑑𝑆 -0.0133 

∫𝑛𝑟 𝜏𝑟𝑟𝑣𝑟𝑑𝑆  1.9653×10-4 

∫𝑛𝑟 𝜏𝑟𝜃𝑣𝜃𝑑𝑆  4.2827 

∫𝑛𝑟 𝜏𝑟𝑧𝑣𝑧𝑑𝑆 -1.6860 

∫𝑛𝜃 𝜏𝜃𝑟𝑣𝑟𝑑𝑆 0 

∫𝑛𝜃 𝜏𝜃𝜃𝑣𝜃𝑑𝑆 0 

∫𝑛𝜃 𝜏𝜃𝑧𝑣𝑧𝑑𝑆 0 

∫𝑛𝑧 𝜏𝑧𝑟𝑣𝑟𝑑𝑆  9.3779×10-4 

∫𝑛𝑧 𝜏𝑧𝜃𝑣𝜃𝑑𝑆  2.2129×10-3 

∫𝑛𝑧 𝜏𝑧𝑧𝑣𝑧𝑑𝑆 -1.3585×10-3 

Heat flux as a function of axial position is presented in Figure 126. Close to the 

nozzles, positive values of heat flux—in which heat is transferred into the control 

volume—are quite large, approaching 20 kW/m2, though the heat flux decreases rapidly 

down the length of the tube. At approximately 5 mm, the heat flux reverses direction and 

heat is transferred from the hot flow to the cold flow, though at much smaller 

magnitudes. This effect disappears around an axial location of 20 mm, beyond which the 

contribution of heat transfer is negligible. 
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Figure 126. Heat flux across interface vs. axial location 

The overall work flux from all viscous stress tensor components is plotted against 

axial location in Figure 127. Just beyond the nozzles, work is transferred from the hot 

region to the cold, but past 1.7 mm this trend reverses in dramatic fashion as the work 

flux spikes to 11,000 W/m2 near an axial location of 5 mm and then slowly decreases 

with axial location. At 25 mm, the work flux is at less than 20% of its peak value, and 

slowly approaches zero toward the hot exit, becoming negligible beyond approximately 

40 mm. 
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Figure 127. Work flux from all viscous stress tensor components vs. axial location 

Only two components of the viscous stress tensor contribute significantly: 𝜏𝑟𝜃 and 

𝜏𝑟𝑧, though the two components perform work in opposite directions, with 𝜏𝑟𝜃 

contributing to increased temperature separation and 𝜏𝑟𝑧 decreasing it. The heat flux and 

the work flux of the significant components is plotted in Figure 128. Recall that the 

experimental validation of the present CFD solution included examinations of radial 

profiles of velocity and temperature taken at a variety of axial locations (see Figure 94); 

the vertical dot-dashed lines indicate axial locations of 1.45 mm (2.5% of 58.1 mm tube 

length), 2.9 mm (5%), 5.8 mm (10%), 11.6 mm (20%), and 29.05 mm (50%). 
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Figure 128. Heat and work flux from significant components: 𝒒𝒊, 𝝉𝒓𝜽, and 𝝉𝒓𝒛 

These findings are broadly in line with those of Aljuwayhel et al. [77] and Behera 

et al. [66], who similarly identified that viscous work in the tangential direction was most 

significant, while the work in the axial direction partially counteracted its contribution; 

see Figure 53 and Figure 54. However, recall that both sets of researchers suggested a 

much larger role of heat transfer, with a net contribution out of the control volume with a 

magnitude equivalent to 30% of the tangential work component transfer into the control 

volume; in other words, they concluded that the effect of heat transfer is to significantly 

reduce temperature separation. Moreover, they assessed that the magnitude of the heat 

transfer was comparable to or greater than that of the axial work, though the two efforts 

used different cold fractions and cannot be compared directly. The most significant 

difference between the previous works and the present study is that heat transfer has been 

found here to contribute positively to temperature separation, though the magnitude 
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estimated herein is much smaller, at 7% of the tangential work component and 10% of 

the overall energy transfer. 

Radial profiles of tangential velocity and angular velocity taken at the planes 

indicated in Figure 128 are shown in Figure 129 and Figure 130, respectively, with the 

radial locations of the interface marked in black on each respective curve. 

 

Figure 129. Tangential velocity profiles with radial position of hot/cold interface 

 

Figure 130. Angular velocity profiles with radial position of hot/cold interface 
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The work is dominated by the 𝜏𝑟𝜃 component, and its contribution is not surprising. 

Tangential velocity, 𝑣𝜃, can be defined in terms of angular velocity, Ω , and radial 

position, 𝑟, according to 𝑣𝜃 = Ω𝑟. Assuming axisymmetric flow, substituting this 

definition into Eq (90), yields Eq (95). 

𝜏𝑟𝜃 = 𝜇𝑒𝑓𝑓 (𝑟
𝜕Ω

𝜕𝑟
) (95) 

Eq (95) reveals that the viscous work of the component 𝜏𝑟𝜃 depends on the extent 

to which the angular velocity is not constant with respect to radius, i.e. the extent to 

which the velocity profile deviates from solid body like rotation. The interface, as seen in 

Figure 130, consistently lies at a radial position just beyond the solid body like rotation, 

when the tangential velocity begins to decrease toward the no-slip condition at the wall. 

Radial profiles of static temperature with interfaces are shown in Figure 131. The 

original discovery of elevated static temperatures in the core of the vortex by Scheper 

[49] led to a hypothesis that heat transfer may be a significant factor in temperature 

separation. Figure 131 reveals that the radial position of the interface does not generally 

coincide with the regions of greatest radial static temperature gradients; in fact, for axial 

locations at 5% of the tube length and beyond, the radial position of the interface is such 

that the radial temperature gradient is at nearly a minimum. However, at regions very 

close to the nozzle, such as at 2.5%, the interface lies near the maximum static 

temperature gradient and therefore the local heat flux is quite large. 
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Figure 131. Static temperature profiles with radial position of hot/cold interface 

 

The mean total temperature, as seen in Table 18, increased by ΔT = 2.67 K 

between the inlet and the outlet. The power required to raise the temperature of the outlet 

mass flow rate, 8.319×10-4 kg/s, by 2.67 K may be easily approximated from bulk 

transport properties by Eq (96). The mean 𝐶𝑝 across the inlet and outlet is 1010.4 J/kg-K. 

𝑤 + 𝑞 = �̇�𝐶𝑝Δ𝑇 (96) 

Assuming a constant 𝐶𝑝, a ΔT of 2.67 K requires that 𝑤 + 𝑞 = 2.244 W. If 

instead this were applied to the entire flow rate through the inlet, a ΔT of 2.67 K requires 

that 𝑤 + 𝑞 = 2.450 W. This compares favorably with the calculated 2.893 W transferred 

across the interface, especially given the mass flux is greatest in the region where the 

most energy transfer takes place, accounting for 7.2% of the inlet mass flow rate. 
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The calculations of heat and work crossing the interface also compare favorably 

with experimental data. In the experimental case used to validate the CFD solution, 

shown in Figure 109, the difference in total temperature between the inlet and the hot exit 

was 2.38 K; this is similar to but obviously slight less than the computational result. The 

mass flow rate through the hot exit was 8.523×10-4 kg/s and the mean 𝐶𝑝 value of the 

inlet and hot exits was 1011.5 J/kg-K. Applying Eq (96), the experimental data suggests 

that 2.05 W must have crossed the interface.  

The energy balance is presented in Table 21. Work and heat transfer were also 

calculated for the inlet and outlet surfaces, which were shown to be negligible. There is 

more energy advected in via the inlet than out via the outlet, which is due to the net mass 

flow rate out of the interface; the 27.554 W advection across the interface corresponds to 

7.2% of that advected in via the inlet—identical to the fraction of the inlet mass flow rate 

that crosses the interface. The overall energy balance error is 4.887 W, or 1.28% of that 

advected in via the inlet face. This is comparable to the 1.17% discrepancy in the mass 

flow balance, and it would appear that the two discrepancies are related. In other words, 

the energy balance error is most likely attributable to difficulties computing the mass flux 

and advection across the interface rather than wild inaccuracies in calculating the work 

and heat transfer across the interface. 
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Table 21. Energy balance within the vortex tube control volume 

Surface Mode Energy rate (W) 

Inlet Advection 380.523 

 Work      2.86×10-5 

 Heat transfer    -9.42×10-5 

Outlet Advection -350.974 

 Work     2.32×10-4 

 Heat transfer     3.49×10-4 

Interface Advection   -27.554 

 Work     2.599 

 Heat transfer     0.294 

 Sum    4.887 

 

While the energy balance was not closed as tightly as desired, it should be noted 

that the estimate of heat and work transfer—derived from a complex set of numerical 

surface integrals over an interface defined empirically from flow patterns—differs from 

the estimate derived from a bulk transport approximation by only 0.443 W to 0.649 W 

(depending on the calculation method used, as described on page 230). If the energy 

balance were to be tightened such that the overall energy balance discrepancy was 

reduced to within 10% of the combination of work and heat transfer derived from the 

surface integrals, or 0.29 W, this would correspond to 0.076% error—as a percentage of 

the energy advected in via the inlet—a stringent standard indeed. 

This is the first full, unconstrained, three-dimensional analysis of the energy 

transfer within a vortex tube. It was developed to incorporate the greatest realism 

practicable, including real gas effects. The solution has been rigorously validated against 

experiments: qualitatively, the flow profiles compare favorably with historical 

experiments; quantitatively, the temperature separation characteristics compare favorably 

with current experiments across a range of cold fractions. Through numerical integration 
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across an empirically-defined internal interface between hot and cold portions of the 

flow, contributions of heat transfer and viscous work were quantified and examined. 

Based on these results, the phenomenon of temperature separation appears attributable 

primarily to viscous work, with a lesser contribution by heat transfer. 

3.2.10 Computational investigation of the influence of geometric scale on vortex tube 

temperature separation 

Geometric scale represents an important consideration for the practical 

application of vortex tubes. To that end, it is important to understand the extent to which 

geometric scale influences temperature separation. The nondimensionalized total energy 

equation, Eq (73), revealed that length scale appears in one of the governing parameters, 

the Reynolds number, which influences the contributions of both viscous work and heat 

transfer to changes in total temperature. However, the findings thus far have suggested 

that the influence of Reynolds number on dimensionless temperature separation is low, 

and that the appropriate temperature scale is 
𝑉2

𝐶𝑝
 at the nozzle.  

The effect of geometric scale was investigated computationally, while considering 

both the dimensional and dimensionless aspects of performance. Three CFD cases were 

compared. The first is the same case as originally shown in Table 17, in which the static 

pressure was matched to experiment. The scale of the mesh was then doubled such that 

the reference length scale—the hydraulic diameter—was also doubled and the cross-

sectional area of the nozzles was quadrupled. Solutions were then computed for two 

additional cases. One used a mass flow rate approximately four times the original flow 

rate in order to closely match the nozzle velocity of the original case, but yielding a 𝑅𝑒𝐷ℎ
 

approximately double the original. The other used a mass flow rate approximately double 
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the original flow rate to match the nozzle 𝑅𝑒𝐷ℎ
, though with approximately half of the 

original nozzle velocity. The other dimensionless governing properties, 𝑃𝑟 and 𝜌𝐶𝑝𝜇𝐽𝑇, 

were matched between cases. The flow and gas properties and key parameters for all 

three cases are shown in Table 22. 

Table 22. CFD cases used to investigate the effect of geometric scale 

 

1x scale 

2x scale, 

matched 

velocity 

2x scale, 

matched  
𝑅𝑒𝐷ℎ

 

Hydraulic 

diameter, Dh (m) 7.21×10-4 1.442×10-3 1.442×10-3 

Mass flow rate 

(kg/s) 1.42×10-3 5.60×10-3 2.86×10-3 

Inlet 𝑇𝑡𝑜𝑡𝑎𝑙 (K) 293.40 293.40 293.40 

𝑹𝒆𝑫𝒉
 18027 35623 18013 

𝑃𝑟 0.721 0.721 0.720 

𝜌𝐶𝑝𝜇𝐽𝑇 0.01123 0.01102 0.01094 

Velocity (m/s) 98.58 99.02 49.64 

Mach number 0.289 0.290 0.145 

𝜌 (kg/m3) 4.582 4.497 4.581 

𝐶𝑝 (J/kg-K) 1010.8 1010.7 1010.9 

𝜇 (μPa-s) 18.06 18.06 18.24 

𝑘 (mW/m-K) 25.34 25.34 25.61 

𝜇𝐽𝑇 (K/bar) 0.2424 0.2425 0.2362 

Nozzle 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 (K) 288.54 288.50 292.17 

Nozzle 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 

(Pa, absolute) 378890 371810 383651 

ΔPhot (Pa) 52973 52378 13115 

 

The dimensional temperature separation curves of the three cases are shown in 

Figure 132, in which the curves of the two cases with matched velocity are nearly 

identical, while the resulting temperature separation from the matched Reynolds number 

but reduced velocity is considerably lower. The dimensionless curves of 𝑇𝑡
∗ and 𝜌∗𝐶𝑝

∗𝑇𝑡
∗ 
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are shown in Figure 133 and Figure 134, respectively, and reveal that—despite the large 

dimensional differences between curves—the dimensionless characteristics are very 

similar. Interestingly, the dimensionless 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ results for the scaled-up cases are 

virtually identical despite the differences in 𝑅𝑒𝐷ℎ
, while the 1x and 2x scale cases with 

identical 𝑅𝑒𝐷ℎ
 still show slight differences. The 1x and 2x scale cases with matched 

velocity are clearly not exactly identical, though the two sets of curves are vertically 

offset by approximately 0.5 K. The reason for this is not precisely known, but is likely 

attributable to computational artifacts—the two grids are, after all, geometrically similar 

but are nevertheless distinct. 

  

Figure 132. Dimensional temperature separation for different scales 
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Figure 133. Dimensionless temperature separation, 𝑻𝒕
∗, for different scales 

  

Figure 134. Dimensionless temperature separation, 𝝆∗𝑪𝒑
∗𝑻𝒕

∗, for different scales 

In essence, this appears to demonstrate that the influence of geometric scale on 

dimensionless temperature separation, at least for the range of values considered here, is 
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small.  The influence of geometric scale on dimensional temperature separation is also 

small, provided that sufficient mass flow is provided to maintain the same nozzle 

velocity. However, this raises an important, if obvious, point: since all areas in the 

configuration (such as the cross-sectional area of the nozzles) scale with the square of the 

change in length scale, the geometric scale still plays a significant practical role with 

respect to mass flow rate requirements.  

These findings do not necessarily imply that the role of Reynolds number could 

never be significant—in fact, there are important qualitative changes in fluid behavior at 

low Reynolds numbers. Significantly, 𝑅𝑒𝐷ℎ
≈ 2300 is a typical benchmark for the onset 

of transition from laminar to turbulent internal flow [98]. However, the 1x scale vortex 

tube would need to be scaled down considerably before encountering such a scenario. For 

instance, assuming an approximately 1/9 scale vortex tube with the mass flow rate 

reduced to 1/81 of its value in the full-scale case, one would find 𝑅𝑒𝐷ℎ
≈ 2000 and the 

potential for fully laminar flow may exist, which might fundamentally modify the 

dimensionless characteristics of the vortex tube. However, the nozzles of such a vortex 

tube would have a hydraulic diameter of 80 µm, placing them into the distinctive 

category of microfluidic devices which, according to convention, lie in the range of 

0.1 𝜇m ≤ 𝐷ℎ ≤ 100 𝜇m [98] and would require additional analysis. Moreover, it would 

remain to be seen what mass flow rates could be achieved through such small channels. 

In any event, such microfluidic devices are at smaller scales than would be of interest in 

film cooling applications. 
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4 Research Objective 3: Quantify the degree of temperature 

separation achievable at engine conditions 

Research Objective 3 centers on the characteristics of vortex tubes at engine 

conditions. The temperatures and pressures inside a gas turbine engine present formidable 

operating conditions, and it remains to be seen how well a vortex tube might perform in 

such an environment. The experimental findings in Section 3.2.2 (see page 127) revealed 

that the contribution of inlet temperature to temperature separation was to increase the 

nozzle velocity; it has also been found that the appropriate temperature scale for 

temperature separation is based on the square of nozzle velocity. The temperatures in an 

engine are very high and this, on its face, provides inspiration for the practical use of 

vortex tubes in gas turbine engines.  

It is also important to consider operational factors and constraints that may affect 

temperature separation in an engine, and two distinctive characteristics leap to mind. 

First, recall that the research herein has been performed using adiabatic or corrected-to-

adiabatic vortex tubes; however, it seems unrealistic to expect an adiabatic tube wall for a 

vortex tube installed in an engine. In fact, for a vortex tube installed anywhere near a 

turbine section, it seems reasonable that some amount of heat would be conducted into 

the vortex tube. The influence of such a boundary condition on temperature separation is 

of great interest. 

Second, it should be emphasized that a vortex tube operates as a pressure-driven 

flow, and the pressure drop available has a direct influence on the achievable mass flow 

rates and nozzle velocities. This represents an important constraint in its application—one 

that must be carefully considered within the context of gas turbine engines. 
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4.1 Literature review: application of vortex tubes to gas turbine 

engines 

Because the application of vortex tubes to gas turbine engine cooling is a novel 

concept, no literature exists to directly quantify vortex tube performance at engine 

conditions. The highest temperature experimentally achieved in air was 363 K (90°C) by 

Elser and Hoch [47], while Takahama et al. achieved 494 K in steam [99]. No literature 

was found describing temperature separation under the conditions of heat addition.  

However, it is possible to describe the pressure drop available in the cooling 

architecture of a gas turbine engine, which is dictated by the pressure difference between 

the high pressure compressor section and the high pressure turbine section. Using 

representative engine performance figures, it is possible to estimate this difference 

analytically based on methods described in Mattingly [1]. 

The difference between the total pressure exiting the high-pressure compressor, 

𝑃𝑡3, and the total pressure entering the high-pressure turbine, 𝑃𝑡4, represents the 

maximum total pressure drop available to a vortex tube if used in the cooling 

architecture. This can be expressed using Eq (97). The value of 𝑃𝑡3 can be computed with 

respect to the total pressure entering the compressor section, here assumed to be 𝑃𝑡1 (the 

inlet total pressure considering ram effect), using the total pressure ratio across the 

compressor, 𝜋𝑐, as described by Eq (98). The value of 𝑃𝑡4 can be computed with respect 

to the total pressure exiting the compressor section using the total pressure ratio across 

the combustor, 𝜋𝑏, as described by Eq (99). By combining Eqs (97) – (99), it can be seen 

that the total available pressure difference is a function of the compressor pressure ratio, 

the combustor pressure ratio, and the inlet pressure as in Eq (100). 
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𝛥𝑃𝑡  = 𝑃𝑡3 − 𝑃𝑡4 (97) 

 

𝑃𝑡3 = 𝜋𝑐𝑃𝑡1 (98) 

 

𝑃𝑡4 = 𝜋𝑏𝑃𝑡3 (99) 

 

𝛥𝑃𝑡  = 𝜋𝑐(1 − 𝜋𝑏)𝑃𝑡1 (100) 

 

Some relevant performance figures are found in Mattingly [1]. Modern high-

performance military aircraft engines may have an overall pressure ratio on the order of 

30. A typical modern combustor pressure ratio, 𝜋𝑏, is approximately 0.95, and future 

combustors may have a pressure ratio of 0.96. Consider an aircraft at 30,000 ft altitude, 

though hypothetically with zero airspeed (this simplification will be improved upon in the 

methodology presented in Section 4.2.4.1). The ambient static pressure for a standard 

atmosphere at 30,000 ft is 30,148 Pa (4.37 psia). Using modern nominal values of 𝜋𝑐 =

30 and 𝜋𝑏 = 0.95, 𝛥𝑃𝑡 = 45,222 Pa (6.56 psid). With future nominal values of 𝜋𝑐 = 50 

and 𝜋𝑏 = 0.96, 𝛥𝑃𝑡 = 60,296 Pa (8.74 psid). At sea level static conditions on a standard 

day, 𝑃𝑡1 = 101325 Pa (14.7 psia) and the pressure drop increases to 𝛥𝑃𝑡 = 151,988 Pa  

(22.1 psid) for modern aircraft. 

The severity of the constraints imposed on vortex tubes by engine operating 

conditions are now much more apparent. At sea level static conditions—a reasonable 

approximation for ground taxi or even for takeoff and landing—the maximum pressure 

drop is approximately 1.5 bar. Recall Figure 46 (page 86) with typical counterflow vortex 

tube performance curves—the lowest inlet gauge pressure used was 1.5 bar, and Stephan 
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et al. [45] achieved a cold-side temperature drop of 10°C. It has been shown that the 

pressure drop available at altitude is approximately 30% of that at takeoff, not 

considering the contribution of airspeed. However, additional contributions to pressure 

drop between the compressor and turbine sections besides that of a vortex tube have not 

been considered either. It appears that for vortex tubes to be viably applied to film 

cooling, the performance will need to be improved compared to the cases in the literature 

thus far.  

4.2 Quantification of temperature separation at engine conditions 

Completion of the third research objective, “Quantify the degree of temperature 

separation available at engine conditions”, depends primarily upon experimental and 

computational methods while incorporating some analytical methods developed thus far, 

such as the principles of dimensional and dimensionless scaling. The efforts here will 

focus primarily on three research strands. First is a characterization of temperature 

separation under the conditions of heat addition. Second is an experimental investigation 

of the extent to which the scaling principles identified at low temperatures can be 

reproduced at high temperatures using a new laboratory configuration. Finally, a 

computational investigation quantifies the temperature separation expected for a notional 

vortex tube at conditions approximating those of air exiting a high-pressure compressor 

in the absence of heat addition.  
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4.2.1 Experimental characterization of temperature separation with heat addition 

The use of vortex tubes in a gas turbine engine would likely expose the devices to 

elevated temperatures of varying magnitudes, depending on the chosen embodiment. This 

would be especially severe if, for instance, tiny vortex tubes were incorporated directly 

into the cooling passages in a turbine blade. Under those circumstances, one would 

expect—by design—a large heat flux from the turbine blade into the gas inside the vortex 

tube. This is a novel configuration and no published research was found describing the 

effects of heat addition on temperature separation and vortex tube performance. In the 

present body of research, pains have been taken to model the vortex tube as adiabatic, 

such as the experimental heat loss correction function and the choice of boundary 

conditions in CFD. Attention now turns to characterizing vortex tube behavior under the 

more realistic assumption of heat addition. This was investigated first via experiment and 

then computationally.  

4.2.1.1 Experimental Methodology 

The experimental configuration for this investigation is largely identical to that 

employed in the experimental work in Section 3.2.1 (see page 114). The laboratory was 

modified to incorporate an Omega HTC-030 heater cord and a Staco 3PN1510B variable 

transformer to drive the heater. A length of 50.8 cm of the heater cord was coiled tightly 

around the length of the vortex tube. This modified configuration can be seen in Figure 

135. 
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Figure 135. Vortex tube configuration for heat addition investigation 

Heat addition to the vortex tube was controlled by adjusting the voltage output by 

the variable transformer to the heater cord, specified as a percentage of the transformer’s 

rated voltage of 120 VAC. Test cases were run in increments of 20% of the rating, from 

0% to 80%. The baseline case of 0% voltage, i.e. with the heater off, was conducted 

using an inlet temperature that was closely matched to ambient conditions, nominally 

302 K, to minimized heat transfer between the tube and the surroundings; the vortex tube 

was also insulated with foam rubber. This inlet temperature was then held approximately 

constant for all tests. The flow rate for the tests was nominally 1.420×10-3 kg/s 

(72 SLPM) and inlet gauge pressure was nominally 3.0 bar. Actual nozzle conditions for 

all cases, averaged across the cold fractions, are shown in Table 23. 
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Table 23. Nozzle conditions for heat addition cases 

Case: 0% rating 20% 40% 60% 80% 

Mass flow rate 

(kg/s) 1.420×10-3 1.422×10-3 1.421×10-3 1.419×10-3 1.419×10-3 

Inlet 𝑇𝑡𝑜𝑡𝑎𝑙 (K)  301.9 301.6 301.7 302.0 302.2 

Inlet 𝑃𝑠𝑡𝑎𝑡𝑖𝑐  

(bar, gauge) 3.001 2.999 2.999 3.000 2.999 

𝑅𝑒  17638 17675 17654 17616 17612 

𝑃𝑟  0.720 0.720 0.720 0.720 0.720 

𝜌0𝐶𝑝,0𝜇𝐽𝑇,0  0.0098 0.0099 0.0099 0.0098 0.0098 

Velocity (m/s) 102.33 102.42 102.38 102.28 102.44 

Mach number 0.296 0.297 0.296 0.296 0.296 

𝜌 (kg/m3) 4.413 4.415 4.413 4.411 4.405 

𝜇 (μPa-s) 18.46 18.44 18.45 18.46 18.47 

𝑘 (mW/m-K) 25.94 25.92 25.93 25.95 25.96 

𝐶𝑝 (kJ/kg-K) 1.012 1.012 1.012 1.012 1.012 

 

Measurements for the heated cases were taken at cold fractions of 𝜇𝐶 = 0.3, 0.4, 

0.5, and 0.7. The heat loss correction function, described in Eqs (51) and (52), was not 

applied to this analysis since its purpose—to correct the curves to approximately 

adiabatic conditions—is not relevant here. However, the techniques developed for that 

function are still applicable. Using Eq (50), shown again here, it is possible to calculate 

the heat added to the flow. 

𝑞 = �̇�ℎ𝑜𝑡ℎ𝑡,ℎ𝑜𝑡 + �̇�𝑐𝑜𝑙𝑑ℎ𝑡,𝑐𝑜𝑙𝑑 − �̇�𝑖𝑛𝑙𝑒𝑡ℎ𝑡,𝑖𝑛𝑙𝑒𝑡 (50) 

Another property of interest is the fraction of the heat added to the flow which 

remains in the flow leaving via the hot exit. This can be estimated by referencing an 

adiabatic condition, if such an uncorrected condition can be found to exist. The process 

begins by recognizing that the heat added to an adiabatic vortex tube is zero; this is seen 

in Eq (101). Eq (101) can be subtracted from Eq (50), as seen in Eq (102). Assuming for 

the experiments of interest that the energy advected in with subsequent heat addition, 
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�̇�𝑖𝑛𝑙𝑒𝑡ℎ𝑡,𝑖𝑛𝑙𝑒𝑡, is identical to its adiabatic equivalent, �̇�𝑖𝑛𝑙𝑒𝑡,𝑎𝑑ℎ𝑡,𝑖𝑛𝑙𝑒𝑡,𝑎𝑑, and the mass 

flow rates exiting both sides are also equal for both conditions, Eq (102) can be reduced 

to Eq (103). The fractions of the total heat added to the hot and cold flows, respectively, 

then sum to unity as seen by further rearranging to Eq (104). 

𝑞𝑎𝑑 = �̇�ℎ𝑜𝑡,𝑎𝑑ℎ𝑡,ℎ𝑜𝑡,𝑎𝑑 + �̇�𝑐𝑜𝑙𝑑, 𝑎𝑑ℎ𝑡,𝑐𝑜𝑙𝑑,𝑎𝑑 − �̇�𝑖𝑛𝑙𝑒𝑡,𝑎𝑑ℎ𝑡,𝑖𝑛𝑙𝑒𝑡,𝑎𝑑 = 0 (101) 

 

𝑞 − 𝑞𝑎𝑑 = (�̇�ℎ𝑜𝑡ℎ𝑡,ℎ𝑜𝑡 + �̇�𝑐𝑜𝑙𝑑ℎ𝑡,𝑐𝑜𝑙𝑑 − �̇�𝑖𝑛𝑙𝑒𝑡ℎ𝑡,𝑖𝑛𝑙𝑒𝑡)

− (�̇�ℎ𝑜𝑡,𝑎𝑑ℎ𝑡,ℎ𝑜𝑡,𝑎𝑑 + �̇�𝑐𝑜𝑙𝑑, 𝑎𝑑ℎ𝑡,𝑐𝑜𝑙𝑑,𝑎𝑑 − �̇�𝑖𝑛𝑙𝑒𝑡,𝑎𝑑ℎ𝑡,𝑖𝑛𝑙𝑒𝑡,𝑎𝑑) 

(102) 

 

𝑞 − 𝑞𝑎𝑑 = �̇�ℎ𝑜𝑡(ℎ𝑡,ℎ𝑜𝑡 − ℎ𝑡,ℎ𝑜𝑡,𝑎𝑑) + �̇�𝑐𝑜𝑙𝑑(ℎ𝑡,𝑐𝑜𝑙𝑑 − ℎ𝑡,𝑐𝑜𝑙𝑑,𝑎𝑑) (103) 

 

1 =
�̇�ℎ𝑜𝑡(ℎ𝑡,ℎ𝑜𝑡 − ℎ𝑡,ℎ𝑜𝑡,𝑎𝑑)

𝑞 − 𝑞𝑎𝑑
+

�̇�𝑐𝑜𝑙𝑑(ℎ𝑡,𝑐𝑜𝑙𝑑 − ℎ𝑡,𝑐𝑜𝑙𝑑,𝑎𝑑)

𝑞 − 𝑞𝑎𝑑
 (104) 

In practice, Eq (104) only yields an approximation. In theory, 𝑞𝑎𝑑 = 0 but if a 

near-adiabatic case is used as a basis for comparison, then a small but non-zero value 

should be used for 𝑞𝑎𝑑. Moreover, the advection through the inlet may not be exactly 

matched between the adiabatic and non-adiabatic cases if the mass flow rates and inlet 

temperatures are not exactly identical, i.e. �̇�𝑖𝑛𝑙𝑒𝑡ℎ𝑡,𝑖𝑛𝑙𝑒𝑡 ≠ �̇�𝑖𝑛𝑙𝑒𝑡,𝑎𝑑ℎ𝑡,𝑖𝑛𝑙𝑒𝑡,𝑎𝑑. 

Nevertheless, the approximation can offer some insight into quantifying the fraction of 

the added heat that is found to be retained in the hot and cold flows of the vortex tube. 
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4.2.1.2 Results and Discussion 

The temperature separation curves corresponding to the heat addition cases are 

presented in Figure 136. Most notably, the addition of heat to the vortex tube causes a 

dramatic increase to the temperature of the flow exiting via the hot exit, while only 

slightly increasing the temperature at the cold exit. For example, at a cold fraction of 

𝜇𝐶 = 0.50, the temperature change at the cold exit decreases in magnitude by 2.1 K from 

the 0% rating case (heater off) to the 80% case, while that of the hot exit increases by 

23.2 K. 

  

Figure 136. Temperature separation curves with heat addition 

It is not surprising that the hot exit flow is more sensitive to external heat addition 

than the cold exit flow; the hot exit flow is, after all, immediately adjacent to the tube 

wall and any heat added to the gas must first be conducted through the hot exit flow 
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before it can be transferred to the cold exit flow. However, the temperature difference 

between the hot and cold exit flows across a 3.1 mm inside radius tube is nevertheless 

striking. 

By now, it is understood that the flow inside a vortex tube can be divided into hot 

and cold flows separated by a notional interface, across which energy is transferred and 

the phenomenon of temperature separation emerges. The trend in Figure 136  appears to 

be consistent with the explanation for the mechanism of temperature separation: that 

viscous work is responsible for the vast majority of the energy transfer across the hot/cold 

interface and that heat conduction plays only a minor role. If contribution of heat transfer 

were strong enough to dominate the phenomenon, then one might expect under the 

present circumstances that trend could be reversed when a large heat flux is applied to the 

vortex tube, and that the cold exit temperature would experience a significant temperature 

rise. As it stands, the temperature increase at the cold exit is less than one tenth that at the 

hot exit for 𝜇𝐶 = 0.50 between the 0% and 80% cases and, indeed, internal heat 

conduction appears to be quite limited in magnitude even when the direction is from the 

periphery to the core. 

The total heat added to the flow was computed using Eq (50). The findings, 

shown in Figure 137, indicate that heat addition is a function of cold fraction, where less 

heat is added at higher cold fractions. This is because the hot exit flow sees a steep rise in 

temperature with increasing cold fraction—a classic vortex tube characteristic—and the 

tube wall likewise gets hotter at high cold fractions. The resulting temperature gradient is 

then lower, which serves to reduce the heat flux at the tube wall; the remainder of the 
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heat from the cord heater is conducted through the insulation and is passed to the 

environment. 

  

Figure 137. Heat transferred to vortex tube for each case 

The heater off case only experiences heat loss from the tube wall; this, of course, 

was part of the motivation behind the heat loss correction function applied during the 

initial experimental characterization of vortex tubes. Interestingly, the 20% rating case is 

actually nearest to an uncorrected adiabatic condition: the elevated temperature of the 

vortex tube due to the hot flow and the warm temperature of the heater very nearly offset 

each other, apparently minimizing the temperature gradients—at a cold fraction of 0.40, 

the heat transfer for the 20% case is calculated to be 0.22 W. The tube has an inside 

diameter of 6.2 mm and a length of approximately 58 mm, so the surface area of the tube 

wall is 1.13×10-3 m2, so the quasi-adiabatic case still corresponds to a mean surface heat 

flux of 195.0 W/m2, which is small in comparison to the other cases but clearly not zero. 
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It should be noted that the heat transfer into the vortex tube is computed from bulk 

transport properties, so it is possible that the local heat flux is positive in one part of the 

tube and negative in another and, in aggregate, the heat transfer sums to the specified 

amount. The heat added for each heater-on case, as well as the corresponding mean heat 

flux, is compiled in Table 24. Using the 20% case as the near-adiabatic baseline, the 

fractions of heat remaining in the hot flow and cold flow, 
�̇�ℎ𝑜𝑡(ℎ𝑡,ℎ𝑜𝑡−ℎ𝑡,ℎ𝑜𝑡,𝑎𝑑)

𝑞−𝑞𝑎𝑑
 and  

�̇�𝑐𝑜𝑙𝑑(ℎ𝑡,𝑐𝑜𝑙𝑑−ℎ𝑡,𝑐𝑜𝑙𝑑,𝑎𝑑)

𝑞−𝑞𝑎𝑑
, respectively, are shown for the 40%, 60%, and 80% cases. If the 

baseline case were truly adiabatic and the inlet conditions truly identical between cases, 

the fractions of heat retained in the hot and cold flows would sum to unity; as it stands, 

they do not—but they are close. The errors associated with this estimation method, 

defined as the difference between the sum of the fractions of heat retained in the hot and 

cold flows and unity, remain within 5%.  

Table 24. Heat added to each case with fraction retained in hot and cold flows (𝝁𝑪 = 𝟎. 𝟒𝟎) 

Case 𝑞 (W) 𝑞𝑚𝑒𝑎𝑛
′′  

(W/m2) 
�̇�ℎ𝑜𝑡(ℎ𝑡,ℎ𝑜𝑡 − ℎ𝑡,ℎ𝑜𝑡,𝑎𝑑)

𝑞 − 𝑞𝑎𝑑
 

�̇�𝑐𝑜𝑙𝑑(ℎ𝑡,𝑐𝑜𝑙𝑑 − ℎ𝑡,𝑐𝑜𝑙𝑑,𝑎𝑑)

𝑞 − 𝑞𝑎𝑑
 

Error 

20% 0.22 195.0 — — — 

40% 3.42 3026.8 0.980 0.064 4.4% 

60% 9.13 8078.2 0.962 0.077 3.9% 

80% 16.89 14947.9 0.969 0.077 4.6% 

 

Table 24 reveals that more than 90% of the heat added to the vortex tube is 

estimated to remain in the hot flow for each of the cases. From Figure 137, it was seen 

that the cold fractions other than 𝜇𝐶 = 0.40 do not have as suitable an adiabatic baseline 

point, so quantitative estimates of the fraction of added heat remaining in the hot flow 
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will be of poorer quality. Nevertheless, the temperature separation curves in Figure 136 

qualitatively imply a similar trend for all cases. This is remarkable. Consider the case 

where 𝜇𝐶 = 0.70: it is possible that a large, though thus far uncalculated, majority of the 

added heat is contained in 30% of the total mass flow rate through the tube—a fraction 

that is easily separated upon exiting the vortex tube. 

The pressure loss accompanying the heat transfer cases is slightly higher than 

when no heat is added, as can be seen in Figure 138, which depicts the dimensional 

pressure drop across the vortex tube; this is possibly due to Rayleigh losses. For these 

cases, the change is small: the highest heat gain case corresponds to a 2% increase in 

pressure drop over the unheated case at 𝜇𝐶 = 0.30, and increasing by 4% at 𝜇𝐶 = 0.70. 

 

Figure 138. Pressure drop variations for a vortex tube with heat addition 
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The discovery that heat added externally to a vortex tube remains overwhelmingly 

in the flow exiting the hot end is quite interesting from a heat transfer perspective, and it 

adds another dimension—figuratively speaking—to the concept of temperature 

separation. Up to this point, temperature separation in a vortex tube has been considered 

exclusively as a phenomenon in which a single stream of gas is separated into two 

streams, one hotter and the other colder. The present findings add to this by revealing that 

the temperature of the hot stream in a vortex tube can be dramatically increased, while 

still remaining, for the most part, thermally separated from the adjacent cold stream. One 

might even consider this phenomenon an adjunct to temperature separation whereby a 

difference in temperatures induced by heat addition is sustained by fluidic means. The 

most extreme example demonstrated here is that for 𝜇𝐶 = 0.70, in which the hot stream 

was increased by nearly 35 K compared to the unheated case, while the cold stream 

increased by only 2.5 K. The exact manner in which this phenomenon might be exploited 

deserves careful consideration. 

 

4.2.2 Computational characterization of temperature separation with heat addition 

4.2.2.1 Methodology 

To gain further insight into the operating characteristics of a vortex tube 

experiencing heat addition, a similar scenario was investigated computationally. The 

CFD methodology for the heat addition scenario was identical to that initially established 

in Section 3.2.8 (see page 182), with an identical mesh and solver method. The baseline 

CFD case, with an adiabatic wall boundary condition, is that first introduced during the 

experimental validation in Section 3.2.8.3 featuring a nozzle static pressure matched to 
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experimental conditions; it was reused as the 1x scale case in Section 3.2.10 during the 

investigation of geometric scaling. The present study compares the adiabatic baseline 

case to one with identical nozzle conditions in which a uniform heat flux of 2500 W/m2 is 

applied to the walls. 

There are some important differences between the CFD and experimental heat-

addition scenarios. The results of the two approaches cannot be directly compared, since 

the experimental investigation used the unmodified commercial vortex tube geometry and 

the CFD geometry was the simplified form for computational investigation. Furthermore, 

in the experimental case, the cord heater was only wrapped around the length of the tube. 

While there was certainly some degree of three-dimensional internal conduction within 

the metal of the vortex tube, it was expected that the vast majority of heat addition likely 

occurred through the tube wall, as opposed to other metal features in the vortex tube. No 

information was available regarding the uniformity of the experimental heat flux. 

By contrast, the heat flux in the CFD scenario was uniform and was applied to the 

entirety of the interior wall boundary of the mesh, which includes the tube wall as well as 

the surface area near the cold exit. The overall heat added was still dominated by the flux 

at the tube wall. Figure 139 depicts the geometry of the vortex tube near the cold exit—

the uniform heat flux was applied at the tube wall, the side wall, and the perimeter 

surfaces surrounding the nozzles and cold exit. The cold exit face and nozzle faces 

remained as a pressure exit and mass flow inlets, respectively. 
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Figure 139. CFD vortex tube geometry near the cold exit 

4.2.2.2 Results and Discussion 

The nozzle conditions were carefully controlled to be nearly identical to those of 

the adiabatic case, and exact values are listed in Table 25. When the temperature 

separation curves of the case with uniform heat flux and the adiabatic case are plotted 

side-by-side, as shown in Figure 140, it is evident that the temperature of the gas exiting 

via the hot exit increased dramatically while the gas exiting via the cold exit increased 

only marginally—a trend distinctly reminiscent of the experimental cases. Even for equal 

hot and cold mass flow rates, i.e. 𝜇𝐶 = 0.50, the hot flow increased in temperature by 3.9 

K, while the cold exit increased by 0.46 K—nearly the order of magnitude increase on 

the hot exit observed in the experimental investigation. 
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Table 25. Nozzle conditions for CFD heat addition and adiabatic cases 

 Heat addition Adiabatic 

Hydraulic diameter, Dh (m) 7.21×10-4 7.21×10-4 

Mass flow rate (kg/s) 1.420×10-3 1.420×10-3 

Inlet 𝑇𝑡𝑜𝑡𝑎𝑙 (K) 293.40 293.40 

𝑅𝑒𝐷ℎ
  18024 18027 

𝑃𝑟  0.7206 0.7206 

𝜌𝐶𝑝𝜇𝐽𝑇  0.01124 0.01123 

Velocity (m/s) 98.41 98.58 

Mach number 0.289 0.289 

𝜌 (kg/m3) 4.589 4.582 

𝐶𝑝 (J/kg-K) 1010.8 1010.8 

𝜇 (μPa-s) 18.07 18.06 

𝑘 (mW/m-K) 0.025 0.025 

𝜇𝐽𝑇 (K/bar) 0.2424 0.2424 

Nozzle 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 (K) 288.56 288.54 

Nozzle 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (Pa, absolute) 379537 378890 

 

 

 

Figure 140. Temperature separation of adiabatic and uniform heat flux CFD cases 
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The technique developed through Eqs (101) – (104) to identify the fraction of 

added heat which exits via the hot and cold exits was applied to assess the behavior with 

respect to cold fraction, with 𝑞𝑎𝑑 truly equaling zero for the adiabatic case. The CFD 

results are shown in Table 26. The errors in this technique—i.e. the difference between 

the sum 
𝑞ℎ𝑜𝑡

𝑞
+

𝑞𝑐𝑜𝑙𝑑

𝑞
 and unity—are small, ranging from 0.1% to 1.5%. The fraction of 

heat retained in the hot flow is greatest for lower cold fractions and decreases 

monotonically with increasing cold fraction, from 95.7% at 𝜇𝐶 = 0.20 to 78.5% at 𝜇𝐶 =

0.70. The CFD compares more favorably with experimental estimates for fraction of heat 

retained in the cold flow than that retained in the hot flow. For example, for 𝜇𝐶 = 0.40, 

CFD with a uniform heat flux of 2.5 kW/m2 estimated 
𝑞𝑐𝑜𝑙𝑑

𝑞
= 0.077 and 

𝑞ℎ𝑜𝑡

𝑞
= 0.912, 

while the experiment with a mean heat flux of 3.0 kW/m2, estimated  

�̇�𝑐𝑜𝑙𝑑(ℎ𝑡,𝑐𝑜𝑙𝑑−ℎ𝑡,𝑐𝑜𝑙𝑑,𝑎𝑑)

𝑞−𝑞𝑎𝑑
= 0.064 and 

�̇�ℎ𝑜𝑡(ℎ𝑡,ℎ𝑜𝑡−ℎ𝑡,ℎ𝑜𝑡,𝑎𝑑)

𝑞−𝑞𝑎𝑑
= 0.980. 

Table 26. Fractions of heat retained in the hot and cold flows (𝒒′′ = 2.5 kW/m2) 

Cold 

fraction 
𝑞 (W) 𝑞ℎ𝑜𝑡

𝑞
 

𝑞𝑐𝑜𝑙𝑑

𝑞
 

Error 

0.20 3.101 0.957 0.036 0.6% 

0.30 3.101 0.943 0.057 0.1% 

0.40 3.101 0.912 0.077 1.2% 

0.50 3.101 0.893 0.107 0.1% 

0.60 3.101 0.848 0.144 0.8% 

0.70 3.101 0.785 0.200 1.5% 

 

In any analysis involving convective heat transfer, it is usually of practical interest 

to quantify the heat transfer coefficient, ℎ (not to be confused with enthalpy). The manner 

in which this might be accomplished is not entirely straightforward, and multiple 
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approaches exist. In general, the heat transfer coefficient defines the relationship between 

the local heat flux and a driving temperature difference, normally the difference between 

the wall temperature, 𝑇𝑤, and some appropriate reference temperature, 𝑇𝑟𝑒𝑓, such as in Eq 

(105). 

𝑞 
′′ = ℎ (𝑇𝑟𝑒𝑓 − 𝑇𝑤) (105) 

The appropriate reference temperature varies by scenario. For example, internal 

flows with uniform heat flux might make use of the bulk (mass-averaged) temperature at 

a given axial position, 𝑇𝑚𝑒𝑎𝑛, in a process outlined by Kays et al. [7]. As the flow in the 

vortex tube is indeed an internal flow and the present analysis does involve a uniform 

heat flux, it might at first seem that 𝑇𝑚𝑒𝑎𝑛 is an appropriate reference. This approach 

quickly breaks down, however, on practical grounds. If one were indeed to use 𝑇𝑚𝑒𝑎𝑛 as 

a reference, across which flow should the temperature be mass-averaged? Across the 

entire tube cross section? Or perhaps only the flow exiting via the hot exit? The latter 

carries stronger physical reasoning, but the analysis then requires repeating much of the 

effort included earlier in the explanation for the mechanism of temperature separation—

particularly the definition of the notional hot/cold interface.  

Instead, it seems more appropriate—and straightforward—to employ the 

approach espoused by Bogard and Thole [14], in which the reference temperature is the 

adiabatic wall temperature, 𝑇𝑎𝑤, and hence the driving potential for local heat flux is the 

difference between the wall temperatures under adiabatic conditions and under nonzero 

heat flux. This is expressed with Eq (1), repeated here without film cooling notation. 

𝑞 
′′ = ℎ (𝑇𝑎𝑤 − 𝑇𝑤) (1) 
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Eq (1) is straightforward to implement, and enough data has already been taken 

for a complete characterization. The temperature along the tube wall is extracted for both 

the adiabatic and uniform heat flux cases, and it is easy to compute ℎ at any location. 

This is shown in Figure 141, which includes the main part of the tube wall from 1.0 mm 

to 54.8 mm (94.3% of the length of the 58.1 mm tube) as well as the surface surrounding 

the cold exit face, which extends from a zero axial location back to -1.0 mm. A gap is 

seen in the axial region of the nozzles. 

 

Figure 141. Local heat transfer coefficient inside vortex tube walls  

for uniform heat flux of 2500 W/m2 

The local heat transfer coefficient is greatest near the nozzles—where the 

tangential velocity is also greatest—and decreases rapidly down the axial length of the 

tube. The maximum value of h is 2132 W/m2-K and its value is not sensitive to cold 
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fraction in the region closest to the nozzles, but from an axial location of 4.5 mm it 

becomes clear that h decreases with increasing cold fraction. The minimum observed h 

value for 𝜇𝐶 = 0.20 is 446 W/m2-K and the minimum for 𝜇𝐶 = 0.70 is 271 W/m2-K. The 

behavior on the surface surrounding the cold exit orifice is similar but operates somewhat 

in reverse. The range of magnitudes is within those seen on the tube walls—the 

maximum is 1824 W/m2-K and the minimum is 1185 W/m2-K —but the magnitudes of h 

increase with cold fraction on this surface. 

The heat transfer coefficient in the tube is much higher than would be seen in 

other relevant scenarios using a similar geometry. For example, consider a 6.2 mm 

diameter tube with a mass flow rate of 1.42 g/s—both identical to those of the vortex 

tube—and the same entering total temperature and total pressure as the vortex tube 

nozzles. The flow is fully developed and the tube walls are subjected to a uniform heat 

flux. For such a scenario, the entering static temperature is 293.35 K, the bulk velocity is 

9.67 m/s, 𝑅𝑒𝐷ℎ
= 15564, and 𝑃𝑟 = 0.721.  Eq (106), an empirical correlation 

introduced by Kays et al. [7], may be used to estimate the Nusselt number for a circular 

tube with a fully-developed flow of gases with a Prandtl number between 0.5 – 1.0 and a 

uniform heat flux. The correlation finds a uniform 𝑁𝑢 = 42.17 on the tube walls; using 

the definition  𝑁𝑢 ≡ ℎ𝐷/𝑘, the heat transfer coefficient is ℎ = 174.8. The flow in the 

vortex tube is obviously not fully developed, so the comparison to fully developed flow is 

not ideal. 

𝑁𝑢 = 0.022𝑃𝑟0.5𝑅𝑒0.8 (106) 

It is known that 𝑁𝑢 is greater in the entry region than for fully developed flow, 

and therefore it may be more appropriate to compare the vortex tube to the pipe flow 
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entry region. This can be accomplished by first by quantifying the increase in local 

Nusselt number of the vortex tube over fully developed pipe flow, i.e. 
𝑁𝑢𝑣𝑜𝑟𝑡𝑒𝑥

𝑁𝑢∞,𝑝𝑖𝑝𝑒
; next, by 

determining the increase in Nusselt number in the thermal entry region compared to fully 

developed pipe flow, i.e. 
𝑁𝑢𝑝𝑖𝑝𝑒

𝑁𝑢∞,𝑝𝑖𝑝𝑒
; and then comparing the two at a point along the axial 

length of the tube since the ratio of the two is 
𝑁𝑢𝑣𝑜𝑟𝑡𝑒𝑥

𝑁𝑢𝑝𝑖𝑝𝑒
. A value of 𝑁𝑢∞,𝑝𝑖𝑝𝑒 = 42.17 is 

used for the fully developed pipe flow. For consistency, the vortex tube heat transfer 

coefficient is nondimensionalized using 𝑘 = 25.7 mW/m-K, the same value for thermal 

conductivity used for the pipe flow and the pipe diameter of 6.1 mm. 

It is known that in the entry region for pipe flow, local 𝑁𝑢 → ∞ as 𝑥 → 0, and 

Figure 142 suggests the same trend for 𝑁𝑢𝑣𝑜𝑟𝑡𝑒𝑥 near the nozzles. The dashed red line 

indicates 
𝑁𝑢𝑣𝑜𝑟𝑡𝑒𝑥

𝑁𝑢∞,𝑝𝑖𝑝𝑒
= 1. Solutions for uniform heat flux along the entry length of a circular 

tube are drawn from the data of Notter and Sleicher [100]; the same are plotted in terms 

of 
𝑁𝑢𝑝𝑖𝑝𝑒

𝑁𝑢∞,𝑝𝑖𝑝𝑒
 along the entry length for Reynolds number of 50,000 – 200,000 in Figure 

143, which is drawn from Kays et al. [7] for 𝑃𝑟 = 0.7. Although 𝑅𝑒𝐷ℎ
= 15564 in the 

pipe flow analogy and is thus outside the range in Figure 143, it can also be seen that 

𝑁𝑢𝑝𝑖𝑝𝑒

𝑁𝑢∞,𝑝𝑖𝑝𝑒
 is not a strong function of 𝑅𝑒. 
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Figure 142. 
𝑵𝒖𝒗𝒐𝒓𝒕𝒆𝒙

𝑵𝒖∞,𝒑𝒊𝒑𝒆
 development along vortex tube wall, uniform 𝒒′′ 

 

Figure 143. 
𝑵𝒖𝒑𝒊𝒑𝒆

𝑵𝒖∞
 along circular pipe thermal entry length, uniform heat flux (𝑷𝒓 = 𝟎. 𝟕) [7] 
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A comparison between Figure 142 and Figure 143 reveals that the vortex tube 

offers increased local heat transfer compared to a pipe flow entry region. At 
𝑥

𝐷
= 5, the 

pipe flow finds 
𝑁𝑢𝑝𝑖𝑝𝑒

𝑁𝑢∞,𝑝𝑖𝑝𝑒
= 1.15, while the vortex tube finds 2.86 ≤

𝑁𝑢𝑣𝑜𝑟𝑡𝑒𝑥

𝑁𝑢∞,𝑝𝑖𝑝𝑒
≤ 4.07 and        

2.49 ≤
𝑁𝑢𝑣𝑜𝑟𝑡𝑒𝑥

𝑁𝑢𝑥,𝑝𝑖𝑝𝑒
≤ 3.54, depending on cold fraction. Figure 144, drawn from Notter and 

Sleicher [100], depicts the Nusselt number progression along the thermal entry length for 

a uniform surface temperature circular pipe and is included for reference. While clearly 

distinct, the uniform surface temperature and uniform heat flux results are quite similar, 

which is expected for turbulent flows. 

 

Figure 144. 
𝑵𝒖𝒙

𝑵𝒖∞
 along circular pipe thermal entry length,  

uniform surface temperature (𝑷𝒓 = 𝟎. 𝟕𝟐) [100] 

At 
𝑥

𝐷
= 1, 

𝑁𝑢𝑥,𝑝𝑖𝑝𝑒

𝑁𝑢∞,𝑝𝑖𝑝𝑒
≈ 1.5 and 8.37 ≤

𝑁𝑢𝑥,𝑣𝑜𝑟𝑡𝑒𝑥 𝑡𝑢𝑏𝑒

𝑁𝑢∞,𝑝𝑖𝑝𝑒
≤ 8.77, or 5.58 ≤

𝑁𝑢𝑥,𝑣𝑜𝑟𝑡𝑒𝑥 𝑡𝑢𝑏𝑒

𝑁𝑢𝑥,𝑝𝑖𝑝𝑒
≤ 5.85. At 

𝑥

𝐷
= 4, 

𝑁𝑢𝑥,𝑝𝑖𝑝𝑒

𝑁𝑢∞,𝑝𝑖𝑝𝑒
≈ 1.15 and 8.37 ≤

𝑁𝑢𝑥,𝑣𝑜𝑟𝑡𝑒𝑥 𝑡𝑢𝑏𝑒

𝑁𝑢∞,𝑝𝑖𝑝𝑒
≤ 8.77, or 3.56 ≤

𝑁𝑢𝑥,𝑣𝑜𝑟𝑡𝑒𝑥 𝑡𝑢𝑏𝑒

𝑁𝑢𝑥,𝑝𝑖𝑝𝑒
≤ 4.18. The 

vortex tube thus offers heat transfer performance several times that of regular pipe flow. 
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With respect to the integration of vortex tubes into the cooling architecture of a 

gas turbine engine, the finding that a vortex tube yields a considerable increase in Nusselt 

number over comparable tube geometries is potentially significant. Generally speaking, 

the concept of adding heat to a vortex tube is novel and its properties as a heat exchanger 

with its surroundings—as opposed to the internal temperature separation—have not thus 

far been exploited. The installation of a vortex tube could be used in areas of interest to 

increase the local heat flux and potentially improve internal cooling performance—

provided a sufficient pressure difference is available to motivate the vortex. 

4.2.3 Experimental characterization of temperature separation at elevated inlet 

temperatures 

The experimental investigation of vortex tube temperature separation has thus far 

only witnessed the performance at relatively low inlet temperatures of 293 K – 333 K. In 

anticipation of applying vortex tubes in a gas turbine engine, it was highly desired to 

characterize the performance at temperatures closer to those of the coolant flow taken 

from a compressor section. The desired temperature range for high-temperature 

investigations was 600 K – 750 K; temperatures up to 500 K were achieved due to 

equipment limitations.  

The original, low-temperature vortex tube laboratory configuration adjusted the 

gas temperature with a brazed-plate heat exchanger connected to a temperature bath, 

which used a mixture of water and ethylene glycol as the working fluid. The choice of 

working fluid placed a theoretical upper limit on achievable temperatures near 100°C 

(373 K)—the boiling point of water—although equipment limitations drove this limit 

even lower. The net effect was that the original laboratory configuration could not be 
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used for the high-temperature investigations and, due to its tight integration with other 

sensitive laboratory elements, could not be modified for this purpose either. 

4.2.3.1 Experimental Methodology 

A new vortex tube laboratory was assembled to investigate performance at higher 

temperatures. The high-temperature lab still required the capability to independently 

control the inlet temperature, pressure, and mass flow rate and therefore mirrored the 

low-temperature configuration in many respects. The high-temperature lab configuration 

is shown in Figure 145. 

 

Figure 145. High-temperature vortex tube experimental configuration 

An ExairTM model 3208 vortex tube was used; an 8R vortex generator machined 

from brass was installed in place of the standard plastic component. The identical Omega 

2612A digital mass flow controllers were installed downstream of the vortex tube exits, 

thus again decoupling the inlet pressure and mass flow rate. To achieve the desired inlet 

temperatures, a TutcoTM 4 kW in-line electric heater was installed upstream of the vortex 

tube inlet. The heater was installed with its own feedback and control apparatus 
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consisting of a K-type thermocouple, a proportional-integral-derivative (PID) 

temperature controller and silicon-controlled rectifier (SCR) power controller to maintain 

the desired inlet temperature. 

In practical terms, the upper limit of achievable temperatures was governed by the 

material limits of the seals installed in the hottest parts of the laboratory: from the heater 

through the vortex tube exits. Ultimately, the capability of the two O-rings in the vortex 

tube—one near the cold exit and one near the hot exit—became the limiting factor. The 

silicone O-rings used in testing had a limit of 505 K (450°F), and thus the upper limit of 

mean inlet temperatures was decided to be 500 K. As an aside, it became evident during 

assembly of the lab that the use of O-rings with a commercial vortex tube placed a firm 

limit on achievable temperatures. Specialty O-rings with a temperature limit of 600 K—

the most capable identified during design—did not become available while the lab 

capability was active. 

The method of instrumentation was essentially identical to the low-temperature 

lab as well. The total temperature and static pressure were measured at an instrumented 

inlet immediately upstream of the vortex tube, and at the respective exits, also using 

Omega grounded K-type thermocouples and the same NetScanner pressure transducer. 

To minimize heat losses, the hot section—all the way from the heater to the vortex tube 

exit instrumentation—was wrapped in alkaline earth silicate ceramic fiber insulation. 

An early design consideration for the high-temperature lab was the desire to 

achieve greater mass flow rates than could be achieved on the low-temperature lab. To 

that end, ½-inch diameter tube was used for the flow paths—in contrast to many runs of 

¼-inch tubing used in the low-temperature rig—and this had the desired effect. However, 
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it also had unintended consequences: the larger tubing significantly increased the size and 

thermal mass of the fittings attached to the vortex tube, and this contributed to greatly 

protracted times to achieve steady state in the experiments—10 to 20 minutes per data 

point, depending on the degree of the change between points. Fortunately, the heat loss 

correction function developed for the low-temperature lab was found to be valid for the 

high-temperature lab as well. 

A prominent feature of the high-temperature lab was the heat exchanger 

downstream of the vortex tube exits. In the low-temperature lab, brazed-plate heat 

exchangers were used to protect the mass flow controllers from the elevated temperatures 

of the vortex tube, but due to the possibility of exceeding the temperature limit of the heat 

exchangers or insufficiently protecting the mass flow controllers, this approach was not 

adopted for the high-temperature rig. 

To protect the mass flow controllers, a new heat exchanger was designed and built 

featuring a 55-gallon drum filled with water. The water in the drum functioned as an 

intermediate heat transfer medium, and immersed in the drum were three stainless steel 

coils. The first was a cooling line passing 278 K (40°F) water, the other two contained 

the exit flows from the vortex tube enroute to the mass flow controllers. The heat 

exchanger was found to sufficiently reduce the exiting gas temperature to an acceptable 

range and likely had considerable excess capacity.   

The experiments required detailed estimates of the flow properties at the nozzle, 

and the same compressible flow relations—Eqs (45) – (49) (see page 122)—were 

applied. However, the cross-sectional area of the inlet was 8.52×10-5 m2 and the ratio of 

the area between all of the nozzles and the instrumented inlet was 
𝐴𝑛𝑜𝑧𝑧𝑙𝑒𝑠

𝐴𝑖𝑛𝑙𝑒𝑡
= 0.0369. 
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Mass flow rates were varied from 1.18 – 2.96 g/s (60 – 150 SLPM), inlet total 

temperatures ranged from 350 K to 500 K, and inlet static gauge pressures varied 3.41 – 

5.10 bar (49.41 – 74.01 psig). Combinations of these parameters were carefully set to 

achieve nozzle velocities ranging from 48.4 – 246.5 m/s, Reynolds numbers from 6,692 

to 33,443, and Mach numbers ranging from 0.121 to 0.572. 

During the initial operational evaluation of the lab, a peculiar characteristic of the 

configuration was observed. Temperature oscillations were observed at the inlet with a 

period of approximately 5 sec and an amplitude that increased as a function of inlet 

temperature; the greatest observed were ±9 K at 500 K. Oscillations were also observed 

at the vortex tube exits which were of smaller amplitudes than at the inlet but a similar 

period. 

Three factors were identified as potentially contributing to the oscillations. First, 

the PID temperature controller was said by the supplier to have overshoot characteristics 

which generate periodic fluctuations, though the amplitude of these fluctuations was 

thought to be on the order of 1 K (2°F). Temperature oscillations were observed in the 

temperature controller with the same period and amplitude as seen in the data acquisition 

equipment, but it is not known if the temperature controller was driving these oscillations 

or merely observing them. Second, the plumbing surrounding the vortex tube installation 

was believed to have some resonant characteristics based on distinctive short-period 

pressure fluctuations at certain mass flow rates. Finally, oscillations were also seen in the 

flow rate recorded by the mass flow controllers. The period of the mass flow rate 

fluctuations was about five seconds and, interestingly, the hot and cold mass flow rates 

were essentially in phase with each other, but approximately 180° out of phase with the 
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temperature oscillations. In other words, the oscillations in the two mass flow controllers 

were constructive, leading to higher amplitude overall mass flow rate oscillations, and the 

trough of the overall mass flow rate corresponded to a peak in inlet temperature. 

A likely explanation for the inlet temperature oscillations, then, seems to be that 

the mass flow controllers—acting under the influence of system dynamics—caused mass 

flow rate oscillations through the in-line heater which, in turn, drove the temperature 

oscillations. However, the oscillations were not observed when the in-line heater was 

turned off, suggesting that the heater itself may have been part of the system dynamics 

affecting the mass flow controllers. Regardless of the cause, the practical effect was to 

significantly increase the sampling window for each measurement. Sampling was still 

conducted at a frequency of 1 Hz, but the number of collected samples was increased to 

30 for each data point to ensure a representative mean value. This approach yielded 

increased standard errors of temperature measurements compared to those seen in the 

low-temperature lab (which were typically 0.05 K for all thermocouples), but this effect 

was greater at the inlet than the exits. The high temperature rig saw inlet standard errors 

ranging from 0.3 – 1.0 K, depending on inlet temperature, mass flow rate and cold 

fraction; standard errors at the exits ranged from 0.07 – 0.25 K and typically from 0.04 – 

0.15 K for a cold fraction of 𝜇𝐶 = 0.40. 

4.2.3.2 Results and Discussion 

The high-temperature experimental investigation consisted of three parts: first, a 

demonstration of the effect of inlet temperature on temperature separation; second, an 

examination of whether the dimensional scaling principles first identified on the low-

temperature rig are extensible to higher temperatures; and lastly, a more direct study of 
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the effect of nozzle velocity on temperature separation. A review of dimensionless 

characteristics follows the dimensional effort. 

The investigation of the effect of inlet temperature on temperature separation was 

conducted through the use of three cases, labeled H1, H2, and H3, with target inlet 

temperatures of 350 K, 400 K, and 450 K, respectively. Exact values of nozzle properties 

are listed in Table 27. It was not possible to achieve the target mass flow rate of 

2.960×10-3 kg/s (150 SLPM) for most cold fractions at an inlet temperature of 450 K, and 

the achievable mass flow rate decreased with increasing cold fraction, as can be seen in 

Figure 146. The mass flow rate was not a limiting factor for the cases with inlet 

temperatures of 350 K and 400 K. 

As a result, the velocity, Reynolds number, and Mach number at the nozzle each 

decreased with increasing cold fraction for the case with an inlet temperature of 450 K, as 

can be seen in Figure 147; volumetric heat capacity, 𝜌𝐶𝑝, increased with cold fraction. It 

bears some emphasis that the mass flow rate and nozzle values listed in Table 27 are 

mean values across all cold fractions. 

Table 27. Nozzle conditions for cases evaluating effect of increased inlet temperature 

Case: H1 H2 H3 

Mass flow rate (kg/s) 2.960×10-3 2.959×10-3 2.900×10-3 

Inlet 𝑻𝒕𝒐𝒕𝒂𝒍 (K)  350.7 401.2 451.4 

Inlet 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (bar, gauge) 5.001 5.000 5.000 

𝑅𝑒  33451 30444 27508 

𝑃𝑟  0.739 0.733 0.730 

𝜌0𝐶𝑝,0𝜇𝐽𝑇,0  0.0087 0.0052 0.0031 

Velocity (m/s) 177.14 207.35 232.55 

𝜌𝐶𝑝 (kJ/m3-K) 5.563 4.753 4.164 

Mach number 0.482 0.530 0.563 

𝜌 (kg/m3) 5.313 4.538 3.967 
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𝜇 (μPa-s) 20.29 22.28 24.18 

𝑘 (mW/m-K) 28.74 31.82 34.77 

𝐶𝑝 (kJ/kg-K) 1.047 1.047 1.050 

𝜇𝐽𝑇 (K/bar) 0.1557 0.1086 0.0737 

Nozzle 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 (K) 335.0 379.8 424.4 

Nozzle 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (Pa, absolute) 510980 494688 483202 

 

 

Figure 146. Mass flow rate for cases evaluating effect of inlet temperature 
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Figure 147. Nozzle conditions for cases evaluating effect of inlet temperature,  

as a function of cold fraction 

In spite of the decrease in nozzle velocity as a function of cold fraction for Case 

H3 (𝑇𝑖𝑛 = 450 K), the resulting dimensional temperature separation curves, shown in 

Figure 148, still display a distinct increase with inlet total temperature. At the cold exit 

for a cold fraction of 𝜇𝐶 = 0.50, the change in total temperature compared to the inlet 

more than doubles—from -23.9 K to -53.5 K—with an increase in inlet temperature of 

100 K. The increasing temperature separation associated with increased inlet temperature 

was previously identified as a consequence of the greater nozzle velocities. In an indirect 
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sense, the curves of Case H3 reinforce the role of nozzle velocity as a scaling factor for 

dimensional temperature separation: the apparent inflection point in the hot exit curve 

and the observation that it bows toward the curve of H2 at high cold fractions are clear 

manifestations of the relationship. 

 

Figure 148. Temperature separation curves for cases evaluating effect of inlet 

temperature 

Next, the investigation regarding the ability to match dimensional temperature 

separation despite differing inlet temperatures and pressures included three cases, dubbed 

H4, H5, and H6 with inlet temperatures of 350 K, 400 K, and 500 K, respectively. Data 

were collected for 𝜇𝐶 = 0.3, 0.4, 0.5, and 0.7. Based on the results of cases H1 – H3, it 

was clear that matching the nozzle velocity for cases H4 – H6 across such a wide 

temperature range for all cold fractions required the use of a smaller mass flow rate, and 

all three used a nominal mass flow rate of 1.89×10-3 kg/s (95.9 SLPM). Actual nozzle 

properties for Cases H4 – H6 are shown in Table 28, which confirms closely matched 
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nozzle velocities and 𝜌𝐶𝑝 between cases. The mass flow rate was held constant with 

respect to cold fraction for all three cases, as is evident in Figure 149. 

Table 28. Nozzle conditions for cases evaluating matched nozzle velocity and 𝝆𝑪𝒑 

Case: H4 H5 H6 

Mass flow rate (kg/s) 1.892×10-3 1.890×10-3 1.874×10-3 

Inlet 𝑇𝑡𝑜𝑡𝑎𝑙 (K)  350.3 400.7 501.0 

Inlet 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (bar, gauge) 3.407 3.997 5.103 

𝑅𝑒  21197 19080 16028 

𝑃𝑟  0.738 0.732 0.728 

𝜌0𝐶𝑝,0𝜇𝐽𝑇,0  0.0066 0.0046 0.0020 

Velocity (m/s) 148.93 148.55 148.68 

𝝆𝑪𝒑 (kJ/m3-K) 4.222 4.237 4.238 

Mach number 0.403 0.375 0.335 

𝜌 (kg/m3) 4.039 4.045 4.008 

𝜇 (μPa-s) 20.46 22.71 26.81 

𝑘 (mW/m-K) 29.00 32.47 38.94 

𝐶𝑝 (kJ/kg-K) 1.045 1.047 1.057 

𝜇𝐽𝑇 (K/bar) 0.1567 0.1091 0.0471 

Nozzle 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 (K) 339.3 389.7 490.0 

Nozzle 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (Pa, absolute) 393269 452474 563711 

 

 

Figure 149. Mass flow rates for cases evaluating effect of matched nozzle velocity and 𝝆𝑪𝒑 
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The resulting temperature separation curves, shown in Figure 150, indicate that it 

is indeed possible to dimensionally match temperature separation characteristics with 

dissimilar inlet temperatures and pressures, as long as the nozzle bulk velocity and 

volumetric heat capacity are matched. The matched curves are quite close: the interval 

containing the points of 350 K and 400 K is ±0.3 K, and much less for many cold 

fractions; the interval containing 350 K, 400 K, and 500 K is ±0.6 K. The principle of 

dimensionally matching temperature separation was first introduced across a range of 

40 K, but this demonstrates that the principle still works for a different configuration 

across a much wider range of 150 K. Moreover, the favorable comparison between the 

curves at higher nozzle Mach numbers than previously achieved—here, ranging between 

0.335 and 0.403—implies that the technique of employing compressible flow relations to 

estimate nozzle velocity while approximating the flow constriction as an isentropic 

converging nozzle is fundamentally sound. 

 

Figure 150. Temperature separation curves for cases with matched nozzle velocity and 𝝆𝑪𝒑 
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To characterize the relationship between nozzle velocity and temperature 

separation, a set of higher-resolution data was collected for a cold fraction of 𝜇𝐶 = 0.40. 

For a thorough investigation, a variety of cases was tested using combinations of inlet 

temperatures of 350 K, 400 K, and 500 K, an inlet gauge pressure of 5 bar (72.52 psi), 

and mass flow rates of 0.00118 – 0.00296 kg/s (60 – 150 SLPM). This also afforded the 

opportunity to gather repeatability points to compare with those from cases H1 and H2 at 

𝜇𝐶 = 0.40. Figure 151 depicts the curves of dimensional temperature separation as a 

function of nozzle velocity. 

 

Figure 151. Temperature separation as a function of nozzle velocity for all cases (𝝁𝑪 = 𝟎. 𝟒) 

The points generally collapse into curves of hot and cold exit temperature 

separation, indicating consistent behavior between the cases across inlet temperatures and 

mass flow rates. Moreover, the comparison points for cases H1 and H2—indicated on the 

plot with ellipses and rectangles, respectively—indicate strong repeatability of the data. 
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The prominent curvature of the data indicates that temperature separation scales as a 

higher order function of nozzle velocity, which is consistent with the trend observed 

experimentally on the low-temperature rig. This is also broadly in line with the analytical 

finding from the nondimensionalization of the energy equation that the appropriate 

temperature scale includes the square of velocity. 

The dimensionless characteristics of the high-temperature rig are also of interest. 

When the temperature separation of Cases H1 – H3 is nondimensionalized to 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ at 

the exits, as shown in Figure 152, it is seen that the curves do not collapse into a single 

curve; this unexpected result stands in contrast to the results from the low-temperature rig 

in which the curves of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ do collapse to nearly a single curve. A reduction of Cases 

H4 – H6 to 𝜌∗𝐶𝑝
∗𝑇𝑡

∗, in Figure 153, reveals similar behavior. When curves of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ for 

Cases H1 – H6 are all plotted together in Figure 154, the surprising diversity of the 

performance curves is fully in view. 

 

Figure 152. Dimensionless temperature separation, 𝝆∗𝑪𝒑
∗𝑻𝒕

∗, for cases evaluating 

effect of increasing inlet temperature 
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Figure 153. Dimensionless temperature separation, 𝝆∗𝑪𝒑
∗𝑻𝒕

∗, for cases evaluating 

effect of increasing inlet temperature 

 

 

Figure 154. Dimensionless temperature separation, 𝝆∗𝑪𝒑
∗𝑻𝒕

∗, for cases evaluating 

effect of increasing inlet temperature, and matched nozzle velocity and 𝝆𝑪𝒑 
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To better understand this behavior, it is necessary to examine the relationships 

between the dimensionless temperature separation parameter, 𝜌∗𝐶𝑝
∗𝑇𝑡

∗, at the hot and cold 

exits and the governing parameters. The role of Reynolds number is first investigated, 

and Figure 155 indeed reveals an apparent influence between on 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ at the exits such 

that 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ generally seems to decrease with 𝑅𝑒. 

 

Figure 155. Dimensionless temperature separation, 𝝆∗𝑪𝒑
∗𝑻𝒕

∗,  

as a function of nozzle Reynolds number for all cases (𝝁𝑪 = 𝟎. 𝟒) 

Next, adopting the same analysis methodology as for the low-temperature rig, the 

effect of 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 on 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ is investigated, as shown in Figure 156. Although there 

are certainly wide variations 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ in Figure 156, it does not appear that they are a 

systematic function of 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0; moreover, the wide variation of 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 associated 

with Cases H1 – H6 does not seem to yield a correspondingly large or systematic 
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variation of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗. Overall, it does not appear that 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 has a prominent nor 

consistent role in determining 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ for the high-temperature configuration. It should 

also be noted that the values of 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 achieved here span 1.17×10-3 to 9.36×10-3 for 

an overall range of 8.18×10-3; this is smaller than the range of 11.4×10-3 achieved on the 

low-temperature configuration and therefore the negligible influence of 𝜌0𝐶𝑝,0𝜇𝐽𝑇,0 on 

𝜌∗𝐶𝑝
∗𝑇𝑡

∗ for the high-temperature rig is not surprising. 

 

Figure 156. Dimensionless temperature separation, 𝝆∗𝑪𝒑
∗𝑻𝒕

∗,  

as a function of nozzle Reynolds number for all cases (𝝁𝑪 = 𝟎. 𝟒) 

Finally, the variation of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ with nozzle Mach number is considered, though 

this relationship was examined during the analysis of the low-temperature rig and found 

not to be significant. Mach number was not present in the nondimensionalization of the 

energy equation as originally cast in Table 11 and Eq (73) (see pages 148 and 150) and 

was therefore not considered a governing parameter. However, the Mach number can be 
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introduced into the nondimensionalization by way of a reduction of thermodynamic 

derivatives, a key result of which is drawn from Panton [91] and shown in Eq (107). 

𝑉0
2

𝐶𝑝,𝑇0
=

𝑀0
2𝛾0

𝛼0𝜌0𝐶𝑝,0𝑇0
 (107) 

The original nondimensionalization used a temperature scale of 
𝑉0

2

𝐶𝑝,0
, which is 

clearly equivalent to the term 
𝑀0

2𝛾0

𝛼0𝜌0𝐶𝑝,0
, where 𝛼0 is the isothermal compressibility 

coefficient. By extension, the static temperature can be nondimensionalized according to 

Eq (108), which is valid for real gases. Similarly, it is possible to accomplish an alternate 

nondimensionalization of the energy equation in terms of a temperature scale based on 

the Mach number, although that will not be done here. 

𝑇∗ =
𝑇 − 𝑇0

𝑀0
2𝛾0

𝛼0𝜌0𝐶𝑝,0

 
(108) 

 

When 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ at the exits is plotted as a function of Mach number, as shown in 

Figure 157, the data points from the high-temperature rig collapse to nearly a single curve 

and reveal that, for the high-temperature vortex tube configuration, 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ is a strong, 

continuous function of Mach number, decreasing with increasing Mach number. The 

dispersion at very low Mach numbers is likely attributable to experimental uncertainty at 

low flow rates and possibly also to difficulty in achieving steady state operation. Figure 

157 indicates that the disparity among the curves of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ at the exits among Cases H1 

– H6, seen in Figure 154, is due to differing Mach numbers. However, recall from Figure 

74 that the 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ points from the low-temperature rig were seen to be independent of 
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Mach number; those points are now plotted in yellow in Figure 157. Although the range 

of Mach numbers involved in the high-temperature lab is considerably wider than in the 

low-temperature lab, which achieved Mach 0.13 – 0.35, the relationship between 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ 

and Mach number is clearly different between the two. This behavior is likely a feature of 

the hardware configuration in the high-temperature rig. The exact reason is not known; 

however, the tubing runs at the exits were considerably longer in the high-temperature rig 

than the low-temperature rig—more than six meters compared to less than three meters—

and this may have been a contributing factor. 

 

Figure 157. Dimensionless temperature separation, 𝝆∗𝑪𝒑
∗𝑻𝒕

∗,  

as a function of nozzle Mach number for all cases (𝝁𝑪 = 𝟎. 𝟒) 
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The high-temperature and low-temperature configurations also feature 

qualitatively different pressure drop characteristics. In Figure 158, the static pressure 

drop between the nozzle and both exits is plotted as a function of the cold fraction. 

Because Cases H4 and L feature different nozzle velocities and the pressure drop is a 

function of the square of nozzle velocity, it is not entirely appropriate to directly compare 

the magnitude of pressure drop. Instead, the difference in trends between the two cases 

should be considered. Some similarities are present, such as the fact that the pressure 

drop between the nozzle and cold exit is larger than that between the nozzle and the hot 

exit. Also, the difference between the two pressure drops increases with cold fraction. 

 

Figure 158. Comparison of pressure drop characteristics between comparable cases 

on high- and low-temperature laboratory configurations 
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However, the glaring difference between the two cases is the observation that the 

pressure drop between the nozzle and both exits increases with cold fraction for the high-

temperature rig but decreases with cold fraction for the low-temperature rig. A practical 

consequence of this behavior has already been seen in Figure 146 in the comparison of 

the mass flow rates of Cases H1 – H3, where Case H3 saw that smaller mass flow rate 

could be achieved at increasing cold fractions for a given inlet pressure. At the time, this 

was considered an unexpected result since experience with the low-temperature 

configuration had suggested that if a particular mass flow rate could be achieved at   

𝜇𝐶 = 0.20, it could be achieved for greater cold fractions as well. 

The investigation of the high-temperature configuration will be concluded with an 

analysis of the pressure drop characteristics. Recall that the pressure drop across any 

device or fitting can be described in terms of a pressure loss coefficient and the dynamic 

pressure, as in Eq (75) repeated here. 

𝛥𝑃 = 𝜉(
1

2
𝜌𝑉2) (75) 

It should be reiterated that the flow physics surrounding the pressure drop are 

complicated even for a relatively simple device such as an asymmetric T-junction and 

therefore it is unsurprising that they are quite nuanced for a more complex device like a 

vortex tube. However, the data sets gathered can be used to illustrate some broad trends 

regarding the pressure loss coefficient for 𝜇𝑐 = 0.4. First, the loss coefficient is plotted as 

a function of Mach number, as shown in Figure 159. This yields an unusual “notch” at 

Mach 0.48, and the discontinuous nature of the data—in the absence of a more detailed 
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physics-based explanation—implies that the phenomenon may not actually be due to a 

Mach number effect. 

 

Figure 159. Pressure loss coefficient as a function of Mach number (𝝁𝑪 = 𝟎. 𝟒) 

The pressure loss coefficient is plotted as a function of 𝑅𝑒 in Figure 160, and it 

appears that the loss coefficient is more appropriately characterized as a function of the 

nozzle Reynolds number. At the cold exit, it is fairly constant between 3.4 and 3.5 for 

Reynolds numbers in the range of 10,000 to 25,000 and decreases somewhat beyond that 

range. However, the fact that the rapid decrease in 𝜉 with respect to 𝑅𝑒 occurs for the 

single greatest value makes a conclusive determination of this trend impossible. 
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Figure 160. Pressure loss coefficient as a function of Reynolds number (𝝁𝑪 = 𝟎. 𝟒) 

A few salient points regarding vortex tube operation have been revealed with the 

investigation of high-temperature vortex tube operation. First, it has been demonstrated 

that the practice of dimensionally matching vortex tube temperature separation curves is 

possible at temperatures up to 500 K—higher than any known, published, experimental 

work—and across a range of 150 K. Additionally, the result that dimensional temperature 

separation scales as a higher order function of nozzle velocity is broadly consistent with 

the theoretical finding that the temperature scale includes velocity squared. 

However, some important lessons regarding the integration of vortex tubes into a 

complex, high-temperature apparatus have also been observed. It is possible that some of 

the findings from the low-temperature rig are perhaps not as universal as previously 

thought. Different hardware configurations may feature qualitatively different trends 
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regarding performance, such as trends of pressure drop with respect to cold fraction, 

which were exactly opposite between the high-temperature and low-temperature lab 

configurations. While the pressure loss coefficient in the low-temperature rig could be 

empirically correlated with temperature and pressure, though not very well with Reynolds 

number, the high-temperature rig saw the pressure loss coefficient as a reasonable 

function of Reynolds number. Additionally, the dimensionless temperature separation,  

𝜌∗𝐶𝑝
∗𝑇𝑡

∗, of the high-temperature rig was a strong and continuous function of Mach 

number—an unexpected result, given the insensitivity of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ on the low-temperature 

results to Mach number or any other governing parameters. The dependence of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ 

on Mach number in the high temperature rig does appear amenable to the derivation of an 

engineering correlation between the two, which would serve as an intermediate step in 

estimating dimensional temperature separation across a wide range of nozzle conditions.  

The reasons for the differing qualitative trends between high- and low-

temperature configurations were not precisely determined. However, a key takeaway 

from this research is that important, practical characteristics of a vortex tube are 

significantly affected by its installation. The identical commercial vortex tube, when 

installed in two different lab configurations, produced qualitatively different behaviors 

despite several commonalities between the two setups. Ultimately, it is essential that 

some initial investigation of performance characteristics for a particular embodiment—

the vortex tube and its installation—should be undertaken to understand the qualitative 

trends and how they might affect a desired application. 
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4.2.4 Computational investigation vortex tube performance at engine-representative 

pressures and temperatures 

Finally, it is essential to estimate the performance of vortex tubes in an actual 

turbine engine. As has become amply clear, the performance of a vortex tube varies 

considerably with nozzle conditions and thus the nozzle conditions must be appropriately 

defined. In this section, it is expected that the intended application is for a gas turbine 

engine installed on an aircraft and the nozzle conditions are derived from this assumption. 

4.2.4.1 Methodology 

The process of determining nozzle conditions begins with defining flight 

conditions, then applying assumptions regarding the performance of the engine, and 

finally joining these findings with a specified vortex tube geometry to compute the nozzle 

conditions. The notional flight conditions correspond approximately to those of an 

airliner in a cruise leg at an altitude of 30,000 ft and a flight Mach number of 0.80. Static 

pressure and temperature were drawn from the 1976 U.S. Standard Atmosphere [101] at 

geometric altitudes. The engine inlet was assumed to be lossless, and therefore the total 

temperature and pressure entering the compressor, 𝑇𝑡2 and 𝑃𝑡2, respectively, were 

computed using the compressible flow relations in Eq (45), repeated below, and Eq (109), 

using 𝛾 = 1.402, drawn from the data of NIST REFPROP 9.1 [93] corresponding to 

flight level conditions. 

𝑇𝑡2 = 𝑇 (1 +
𝛾 − 1

2
𝑀2) (45) 

𝑃𝑡2 = 𝑃 (1 +
𝛾 − 1

2
𝑀2)

𝛾
𝛾−1

 (109) 
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The compressor section was modeled after an ideal, isentropic compressor. Total 

properties exiting the compressor were determined using a specified pressure ratio, 𝜋𝑐, 

defined as the ratio of the total pressure exiting the compressor, 𝑃𝑡3, to the total pressure 

entering the compressor, 𝑃𝑡2, and a total temperature ratio, 𝜏𝑐, defined as the ratio of the 

total temperature exiting the compressor, 𝑇𝑡3, to the total temperature entering the 

compressor, 𝑇𝑡2. The value of 𝜏𝑐 was computed from the compressor pressure ratio using 

Eq (110) [1] and the same value of 𝛾. 

𝜏𝑐 = 𝜋𝑐

𝛾−1
𝛾

 (110) 

Pressures and temperatures at sea level static, altitude static, altitude at Mach 0.8, 

and exiting compressor sections with pressure ratios of 20 and 30 are listed in Table 29. 

Table 29. Pressures and temperatures for modeling vortex tubes at engine conditions 

 Condition 

Property 
Sea 

level 

static 

Altitude  

30 kft, 

static 

Altitude  

30 kft,  

Mach 0.8 

Post-compressor, 

𝝅𝒄 = 𝟐𝟎 

30 kft, Mach 0.8 

Post-compressor, 

𝝅𝒄 = 𝟑𝟎 

30 kft, Mach 0.8 

Static 

pressure (Pa) 101325 30148 30148   

Total 

pressure (Pa)   45956 919120 1378680 

Static temp 

(K) 288.15 228.80 228.80   

Total temp 

(K)   258.23 609.62 684.78 

 

It should be noted that the total temperatures exiting the compressors are 

considerably lower than the notional range of coolant temperatures of 800 K to 1000 K 

[1]. This discrepancy is due to additional factors such as non-isentropic compression and 

heat addition. Furthermore, the present analysis does not account for pressure losses nor 
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heat addition between the compressor bleed and the entrance to the turbine section or 

wherever a vortex tube might be installed. Nevertheless, this method does provide a 

sufficiently detailed characterization to proceed with the next step of the analysis and the 

flexibility to accommodate additional engine data, should it become available. 

The total properties exiting the compressor stage were then used to set boundary 

conditions for the CFD solution. Due to the nature of the CFD code, this was 

accomplished through a combination of direct and indirect methods. Recall that the total 

temperature at the inlet—which, in the CFD mesh, is equivalent to the nozzle—is 

explicitly specified as a boundary condition and therefore can be easily matched to the 

corresponding value in Table 29. However, the total pressure at the inlet is not an explicit 

boundary condition and must be indirectly matched. Here, the specific vortex tube 

geometry becomes important. 

The vortex tube geometry is based on a simplified form of the ExairTM model 

3208 vortex tube, with a hydraulic diameter of 0.721 mm; see Section 3.2.1 on page 114 

for additional details. The CFD mesh and solution method are identical to those described 

in Section 3.2.8 on page 182. The only explicit inlet boundary conditions are the mass 

flow rate and total temperature—the total pressure at the inlet is derived from the 

resulting solution, which is also defined by the static pressure boundary conditions at the 

exits. To fully define the boundary conditions, it is necessary to specify a mass flow rate. 

Using the compressible flow relations described in Section 3.2.1, a mass flow rate 

was predicted which would correspond to the target total pressure. Estimates of nozzle 

static pressure, static temperature, and velocity were also produced and were used to 

adjust the hot exit static pressure boundary condition such that the desired nozzle 
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conditions could be achieved indirectly in CFD. The compressible flow relations used to 

identify a target mass flow rate employed a constant 𝛾 = 1.402 but the CFD used a real 

gas model and therefore there was not a perfect match between predicted nozzle 

properties and those actually manifested in the CFD solution. However, using this 

method, it was possible to match the CFD solution to an anticipated nozzle velocity 

within 0.2% – 0.3%, static pressure within 0.1% – 0.5%, and total pressure within 2.7% – 

5.5%. A final criterion was that the boundary conditions should yield a total pressure 

drop across the vortex tube that is relevant to a pressure drop between the compressor and 

turbine sections in an engine. For the given geometry, a mass flow rate of 1.84 g/s was 

considered reasonable for this purpose. 

CFD solutions were sought for cold fractions of 0.20 ≤ 𝜇𝐶 ≤ 0.80, but the 

demanding conditions and real gas model prevented the solution from reaching 

convergence for some of these cold fractions for each scenario. For both scenarios, the 

walls of the vortex tube were modeled as adiabatic. This permitted the analysis to 

determine the degree of temperature separation achieved solely by virtue of the nozzle 

conditions and without the need to estimate nor model a more realistic distribution of 

local heat flux across the vortex tube. 

4.2.4.2 Results and Discussion 

The nozzle properties corresponding to the cases at engine conditions and to a 

baseline case at laboratory conditions are shown in Table 30, each for 𝜇𝐶 = 0.40. The 

total pressure ratio between the hot exit and nozzle is a rough approximation of the 

maximum combustor pressure ratio, 𝜋𝑏, which would drive the flow; if 𝜋𝑏 exceeds this 

value in an engine, the required pressure difference to drive the flow is no longer 
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available and a lower mass flow rate and nozzle velocity results. Generally speaking, 

high 𝜋𝑏 values are desired in an engine and this goal presents a fundamental constraint on 

vortex tube performance in a turbine engine. From Table 30, it can be seen that         

𝜋𝑏 = 0.893 and 0.944 for the compressors with 𝜋𝑐 = 20 and 30, respectively. While 

𝜋𝑏 = 0.944 is reasonable for a modern compressor, 𝜋𝑏 = 0.893 would be considered 

low—implying that the mass flow rate and nozzle velocity corresponding to the 𝜋𝑐 = 20 

case are probably higher than could be achieved in practice. 

Table 30. CFD nozzle properties for engine conditions and lab baseline (𝝁𝑪 = 𝟎. 𝟒𝟎) 

Property at nozzle  

(or specified site) 

Engine, 𝝅𝒄 = 𝟐𝟎 

30 kft / M0.8  

Engine, 𝝅𝒄 = 𝟑𝟎 

30 kft / M0.8 

Lab 

baseline  

Mass flow rate (kg/s) 0.00184 0.00184 0.00142 

Total temperature (K) 609.62 684.78 293.40 

Total pressure (Pa) 970451 1416238 401617 

Total pressure, hot exit (Pa) 866243 1337094 328421 

Total pressure ratio, 𝜋𝑏 0.893 0.944 0.818 

Static pressure (Pa) 863140 1391907 378890 

Static temperature (K) 604.04 681.60 288.54 

𝜌 (kg/m3) 5.393 7.078 4.582 

𝐶𝑝 (J/kg-K) 1054.7 1073.5 1010.8 

𝜇 (μPa-s) 31.05 33.73 18.06 

𝑘 (mW/m-K) 45.80 50.24 25.34 

𝜇𝐽𝑇 (K/bar) 0.0081 -0.0118 0.2424 

Velocity (m/s) 108.51 82.68 98.58 

Reynolds number 13589 12508 18027 

Prandtl number 0.715 0.721 0.721 

𝜌𝐶𝑝𝜇𝐽𝑇  0.00046 -0.00090 0.01123 

Mach number 0.221 0.159 0.289 

The dimensional temperature separation curves for the engine condition cases are 

compared to the baseline case in Figure 161. As expected, the case with 𝜋𝑐 = 30 yields a 

lesser degree of temperature separation owing to its lower nozzle velocity and slightly 

greater 𝐶𝑝. The dimensional temperature separation achieved at engine conditions is 
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small: at 𝜇𝐶 = 0.40, the case with 𝜋𝑐 = 20 yielded a cold exit ΔTc of -5.3 K while the 

case with 𝜋𝑐 = 30 yielded ΔTc = -2.8 K. At the hot exit, the case with 𝜋𝑐 = 20 yielded 

ΔTh = +8.6 K for 𝜇𝐶 = 0.70 and although the 𝜋𝑐 = 30 case could not be solved for   

𝜇𝐶 = 0.70, it otherwise is estimated to yield half that of the 𝜋𝑐 = 20 case. 

 

Figure 161. Dimensional temperature separation at engine conditions (and lab baseline) 

When the temperature separation is nondimensionalized to 𝜌∗𝐶𝑝
∗𝑇𝑡

∗, as shown in 

Figure 162, the lines collapse to nearly a single curve—including the baseline case. This 

result suggests that the CFD cases all bear a fundamental similarity and therefore 

additional CFD may not be necessary to estimate dimensional temperature separation for 

new cases of interest. Instead, it may be possible to estimate results for any nozzle 

condition using two curves of 𝜌∗𝐶𝑝
∗𝑇𝑡

∗ generated from a CFD solution—one evaluated at 

the hot exit and the other at the cold exit, each for a range of cold fractions—and the 

method prescribed in Section 3.2.6 on page 172 based on experimental results. Of course, 
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the prescribed method also requires a model of the pressure drop and this could be 

established using data from experimental or computational methods. 

 

Figure 162. Dimensionless temperature separation, 𝝆∗𝑪𝒑
∗𝑻𝒕

∗, at engine conditions 

(and lab baseline) 
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5 Research Objective 4: Apply vortex tube and film cooling 

findings to inform turbine engine design 

Research Objective 4 considers the potential effects of vortex tube temperature 

separation on film cooling performance and, to that end, represents a synthesis of the 

findings from the respective investigations. No new computational or experimental 

investigations were conducted in pursuit of this research objective; rather, the models 

developed in the research thus far were applied. The analytical frameworks developed as 

a part of Research Objective 1 form the basis for the film cooling evaluation and the 

computational results of Research Objective 3 are used as a starting point in estimating 

the coolant temperatures involved. Gas turbine film cooling scenarios present notoriously 

difficult conjugate heat transfer problems, and some simplifying assumptions were 

applied in order to lay the foundation for a tractable first-order analysis.  

5.1 Methodology 

Analyses of the effect of temperature separation on the adiabatic wall 

temperature, 𝑇𝑎𝑤, and on the metal surface temperature, 𝑇𝑠, were conducted for the CFD 

results corresponding to engine conditions with 𝜋𝑐 = 20 and 𝜋𝑐 = 30. In those cases, the 

inlet temperature was 609.62 K for 𝜋𝑐 = 20 and 684.78 K for 𝜋𝑐 = 30. A notional two-

row cooling scenario is presented, shown in Figure 7 (repeated from page 19). The 

general configuration was assumed for assessments of 𝑇𝑎𝑤 and 𝑇𝑠 though only 𝑇𝑎𝑤 is 

shown in Figure 7. In the scenario, the upstream row issued the colder coolant at 

temperature 𝑇𝑐1 while the downstream row issued the warmer coolant at temperature 𝑇𝑐2. 

The freestream temperature was 𝑇∞ = 2000 K. 
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Figure 7. Double row cooling configuration with two coolant temperatures 

 

5.1.1 Determining coolant temperatures 

The coolant temperatures 𝑇𝑐1 and 𝑇𝑐2 depended on whether the temperature 

separation was adiabatic or nonadiabatic; in other words, whether they were induced 

solely by the action of the vortex tube or also in combination with external heat added via 

the tube walls. Without any heat addition, the coolant temperatures drawn from the 

adiabatic vortex tube were the coldest that could be expected, since they were derived 

from an ideal, isentropic compressor with no heat added between the compressor and the 

turbine blade. A vortex tube with heat addition, therefore, likely yields a more realistic 

scenario for modelling cooling effectiveness in engine conditions, so both adiabatic and 

nonadiabatic cases were included in the analysis. 

In Sections 4.2.1.1 and 4.2.2, it was discovered via experimental and 

computational investigations that when the exterior of a vortex tube is heated, causing net 

heat transfer to the flow within, the flow exiting the hot exit sees a disproportionately 

large increase in temperature compared to the flow exiting the cold exit. The fraction of 

the heat added via the tube walls that is retained in the cold flow will be defined as 𝛼, and 

Eqs (111) and (112) define the relationships between the total heat added, that retained in 

the cold flow, and that retained in the hot flow. The computational findings of Section 
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4.2.2 produced a set of 𝛼 = 𝑓(𝜇𝐶) for one uniform heat flux case, and those values will 

be applied in this analysis as presented in Table 31 (extracted from Table 26, page 255). 

𝛼 =
𝑞𝑐𝑜𝑙𝑑

𝑞𝑡𝑜𝑡𝑎𝑙
 (111) 

(1 − 𝛼) =
𝑞ℎ𝑜𝑡

𝑞𝑡𝑜𝑡𝑎𝑙
 (112) 

 

Table 31. Cold flow heat retention as a function of cold fraction 

Cold 

fraction, 𝝁𝑪 

Cold flow heat 

retention fraction, 𝜶 

0.20 0.036 

0.30 0.057 

0.40 0.077 

0.50 0.107 

0.60 0.144 

0.70 0.200 

 

In the absence of more detailed information, it will be assumed that 𝛼 is not a 

function of the total heat added. There is reason to doubt this assumption: the 

experimental findings presented in Table 24 suggest that, for 𝜇𝐶 = 0.40, values of 𝛼 are 

not constant with increasing 𝑞𝑡𝑜𝑡𝑎𝑙; however, the 5% error associated with the analysis of 

experimental results is large enough that the relationship between 𝛼 and 𝑞𝑡𝑜𝑡𝑎𝑙 is not 

conclusive. In any event, the present study will assume that 𝛼 is only a function of 𝜇𝐶. 

For cases where the temperature increase resulting from heat addition is small, the 

change in temperature can be modeled with a constant 𝐶𝑝, as in Eqs (113) and (114). By 

substituting in the cold fraction and rearranging, the temperature changes can be 

represented using Eqs (115) and (116). However, it has been seen that increases in the 
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temperature of the hot flow are much greater than those of the cold flow, and it may be 

possible that 𝐶𝑝,ℎ𝑜𝑡 is appreciably greater than 𝐶𝑝,𝑐𝑜𝑙𝑑. In such a case, it is more 

appropriate to determine the exiting temperature from exit enthalpies, as in Eqs (117) and 

(118). All nonadiabatic data in this study was generated from the enthalpy method. In 

practice, it was assumed that the exit pressures were identical for the adiabatic and 

nonadiabatic cases; this is reasonable in view of the experimental finding that the changes 

in the exit pressures as a result of heat addition are small and the empirical understanding 

that the enthalpy of air is a very weak function of pressure. 

�̇�𝑐𝑜𝑙𝑑𝐶𝑝,𝑐𝑜𝑙𝑑Δ𝑇𝑐𝑜𝑙𝑑 = 𝛼𝑞𝑡𝑜𝑡𝑎𝑙 (113) 

�̇�ℎ𝑜𝑡𝐶𝑝,ℎ𝑜𝑡Δ𝑇ℎ𝑜𝑡 = (1 − 𝛼)𝑞𝑡𝑜𝑡𝑎𝑙 (114) 

 

𝐶𝑝,𝑐𝑜𝑙𝑑Δ𝑇𝑐𝑜𝑙𝑑 = (
𝛼

𝜇𝐶
) (

𝑞𝑡𝑜𝑡𝑎𝑙

�̇�𝑡𝑜𝑡𝑎𝑙
) (115) 

𝐶𝑝,ℎ𝑜𝑡Δ𝑇ℎ𝑜𝑡 = (
1 − 𝛼

1 − 𝜇𝐶
) (

𝑞𝑡𝑜𝑡𝑎𝑙

�̇�𝑡𝑜𝑡𝑎𝑙
) (116) 

 

ℎ𝑐𝑜𝑙𝑑,𝑛𝑜𝑛𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 − ℎ𝑐𝑜𝑙𝑑,𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 = (
𝛼

𝜇𝐶
) (

𝑞𝑡𝑜𝑡𝑎𝑙

�̇�𝑡𝑜𝑡𝑎𝑙
) (117) 

ℎℎ𝑜𝑡,𝑛𝑜𝑛𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 − ℎℎ𝑜𝑡,𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 = (
1 − 𝛼

1 − 𝜇𝐶
) (

𝑞𝑡𝑜𝑡𝑎𝑙

�̇�𝑡𝑜𝑡𝑎𝑙
) (118) 

 

A reference temperature 𝑇𝑒𝑥𝑖𝑡,𝑛𝑜𝑛𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 was also determined for a notional case 

with identical heat addition but no temperature separation—such as for flow in a tube 

with the same exposed surface area and mean heat flux; nuances of this equivalency will 
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be discussed later. This was accomplished starting with Eq (119) and using the value of 

ℎ𝑖𝑛𝑙𝑒𝑡 entering the vortex tube, where ℎ𝑖𝑛𝑙𝑒𝑡 refers to enthalpy. The total heat added, 

𝑞𝑡𝑜𝑡𝑎𝑙, was the product of the mean heat flux, 𝑞′′, and the total exposed surface area. For 

the CFD solution, from which the adiabatic temperature separation curves were derived, 

the surface area was 1.241×10-3 m2 and this was used for the analysis. Five cases of heat 

addition were incorporated into the analysis: an adiabatic case where 𝑞′′ = 0 kW/m2 and 

cases with 𝑞′′ = 10, 20, 30, and 40 kW/m2. These five heat flux cases equated to 𝑞𝑡𝑜𝑡𝑎𝑙 

values of 0, 12.41, 24.82, 37.23, and 49.64 W, respectively. 

ℎ𝑒𝑥𝑖𝑡 − ℎ𝑖𝑛𝑙𝑒𝑡 =
𝑞𝑡𝑜𝑡𝑎𝑙

�̇�𝑡𝑜𝑡𝑎𝑙
 (119) 

 

5.1.2 Assessing adiabatic wall temperature in the presence of two coolant 

temperatures generated by a vortex tube 

To determine the effect of two coolant temperatures on adiabatic wall 

temperature, it was necessary to first determine the temperature ratio parameter, 𝜉, using 

Eq (19), repeated below, where 𝑇𝑐1 is the temperature of the coolant issuing from the 

upstream row and 𝑇𝑐2 is that from the downstream row; recall that here 𝑇𝑐1 < 𝑇𝑐2. Next, 

the effect of the two coolant temperatures on adiabatic effectiveness was evaluated using 

Eq (21)—the form corresponding to the scenario where 𝜉 < 1, repeated below—where 

𝜂1 and 𝜂2 represent the adiabatic effectiveness at a point resulting from only the upstream 

or downstream row issuing coolant, respectively. 

 

𝜉 ≡
𝑇∞ − 𝑇𝑐2

𝑇∞ − 𝑇𝑐1
 (19) 
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�̂� = 𝜂1 + 𝜉𝜂2 − 𝜂1𝜂2 (21) 

The value of the overall effectiveness in the presence of two coolant temperatures, 

�̂�, depends on the values of 𝜂1 and 𝜂2; that is, the adiabatic effectiveness resulting from 

only the upstream row issuing coolant and only the downstream row issuing coolant, 

respectively. Plausible values of 𝜂1 and 𝜂2 may be drawn from experimental results; 

consider, for instance, the results of the adiabatic effectiveness study presented in Section 

2.2.3. Reading from Figure 13, reproduced below, it can be seen that at a location of 

x/D = 10, y/D = 0, 𝜂1 ≈ 0.45 and 𝜂2 ≈ 0.30. 

 

 

Figure 13. 𝜼𝟏 (left), 𝜼𝟐 (right) 
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This is a special situation in that the effectiveness of the upstream row is greater 

than that of the downstream row, due to the outsized effectiveness of the upstream slot 

compared to the downstream 7-7-7 holes. Alternatively, one might be interested in a 

scenario in which the effectiveness of the downstream row at a location of interest is 

greater than that of the upstream row. Two cases will be included in the analysis: one 

with 𝜂1 = 0.45 and 𝜂2 = 0.30, based on the experimental configuration, and a second 

with arbitrary values of 𝜂1 = 0.15 and 𝜂2 = 0.30. 

However, recall that the reference temperatures are not the same for the single- 

and dual-temperature and cases, as indicated by Eqs (7) and (14) for the single-

temperature and dual-temperature cases, respectively, repeated below. Please note that 

subscripts of 2𝑇 and 1𝑇 have been added to refer to dual- and single-temperature cases, 

respectively, but that both the upstream and downstream rows are issuing coolant for both 

cases. 

𝜂 =
𝑇∞ − 𝑇𝑎𝑤,1𝑇

𝑇∞ − 𝑇𝑐,𝑒𝑥𝑖𝑡
 (7) 

�̂� =
𝑇∞ − 𝑇𝑎𝑤,2𝑇

𝑇∞ − 𝑇𝑟𝑒𝑓
 (14) 

For Eq (7), 𝑇𝑐,𝑒𝑥𝑖𝑡 is equal to the vortex tube inlet temperature for adiabatic 

temperature separation, but 𝑇𝑒𝑥𝑖𝑡,𝑛𝑜𝑛𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 for the case with heat addition. For Eq (14), 

𝑇𝑟𝑒𝑓 is always equal to 𝑇𝑐1 since the cold row is upstream in the present analysis. The 

value of 𝑇𝑎𝑤 was computed for the dual-temperature scenario and the corresponding 

single-temperature scenario for each heating case, though the difference,             

(𝑇𝑎𝑤,2𝑇 − 𝑇𝑎𝑤,1𝑇), was generally considered of greater interest. It should be reiterated 
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that this method of determining adiabatic effectiveness in the presence of two coolant 

temperatures is only valid where the principle of superposition applies and therefore 

presupposes relatively low ACRs. 

5.1.3 Assessing metal surface temperature in the presence of two coolant 

temperatures generated by a vortex tube 

Determining the effect on the surface temperature of a conductive metal blade is a 

more straightforward process in some respects, and a more convoluted process in others. 

The temperature difference parameter is 𝜁, defined in Eq (34) and repeated here. For 

adiabatic temperature separation, the differences in coolant temperature relative to the 

mean temperature, Δ𝑇𝑐,1 and Δ𝑇𝑐,2, can be read directly from the dimensional temperature 

separation plot. Recall also that a weighting parameter, 𝜇, defined by Eq (32), is used to 

determine mean temperature, defined by Eq (27). 

𝜁 =
(1 − 𝜇)Δ𝑇𝑐,2 − 𝜇Δ𝑇𝑐,1

𝑇∞ − 𝑇𝑚𝑒𝑎𝑛
 (34) 

 

𝜇 ≡
�̇�𝑐,1𝐶𝑝,𝑐,1

�̇�𝑐,1𝐶𝑝,𝑐,1 + �̇�𝑐,2𝐶𝑝,𝑐,2
 (32) 

 

𝑇𝑚𝑒𝑎𝑛 = 𝜇𝑇𝑐,1 + (1 − 𝜇)𝑇𝑐,2 (27) 

An important clarification must be made here, since experimental data on overall 

effectiveness are only available for 𝜇 = 0.50, but it was desired to investigate the effects 

of temperature curves corresponding to a wider range than just 𝜇𝐶 = 0.50. Two 

analytical approaches were identified to accommodate 𝜇 ≠ 𝜇𝐶. The first approach is to 

use a fixed 𝜇 = 0.50 with the variety of 𝜇𝐶 values and their corresponding coolant 
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temperatures. A physical realization of this might involve two plenums supplied by the 

exits of one or more vortex tubes such that the mass flow rates are identical—as are the 

ACRs, assuming the rows are identical—with the assumption that any “excess” mass flow 

from the vortex tubes is exhausted outside the region of interest. A benefit of this 

approach is that realistic values of �̂� and 
𝜕�̂�

𝜕𝜁
 can be chosen which have been found to 

exist on an experimental configuration. However, as a result of forcing 𝜇 = 0.50 when 

𝜇 ≠ 𝜇𝐶, 𝑇𝑚𝑒𝑎𝑛 is always the arithmetic mean of 𝑇𝑐1 and 𝑇𝑐2 and thus varies with 𝜇𝐶.  

 The second approach is to model the coolant temperatures using 𝜇 ≈ 𝜇𝐶 with 

some assumptions regarding the applicability of the results. For this approach to be 

physically realized, one might imagine two identical rows or cooling holes fed from the 

exits of the same vortex tube according to the cold fraction; when the upstream row 

issues the colder coolant, then 𝜇 ≈ 𝜇𝐶. Recall that when 𝜇 = 0.50 for identical rows or 

holes, the ACRs are identical. Assuming ACR1 = 2.0 for two identical rows, ACR2 ranges 

from 4.67 – 0.86 while 𝜇𝐶 varies from 0.3 to 0.7. Alternatively, one might recall Eq (31), 

repeated below, which involves the ratios of the cross-sectional areas of the two rows. 

𝜇 =
1

𝐴𝑐,2𝐴𝐶𝑅2

𝐴𝑐,1𝐴𝐶𝑅1
+ 1

 
(31) 

One might assume various ratios between the cross-sectional areas of the two 

rows, 
𝐴𝑐,2

𝐴𝑐,1
, such that ACR1 = ACR2 for any 𝜇 without any assumptions about excess 

coolant being vented to another region of interest. Moreover, 𝑇𝑚𝑒𝑎𝑛 is constant with 

respect to 𝜇𝐶. The primary drawback of this approach is that the ranges of realistic �̂� and 
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𝜕�̂�

𝜕𝜁
 have not been determined experimentally; however, given the theoretical flexibility of 

its implementation, it is not hard to imagine that some location might be found in a region 

of interest with 𝜇𝐶 ≠ 0.50 in which �̂� and 
𝜕�̂�

𝜕𝜁
 can found that are comparable to those 

found experimentally for 𝜇𝐶 = 0.50. In other words, the risk of using unrealistic values 

appears low; moreover, achievable values of �̂� and 
𝜕�̂�

𝜕𝜁
 still vary considerably from model 

to model. For these reasons, the second approach was adopted in the analysis. 

The adopted approach uses 𝜇 ≈ 𝜇𝐶, but the exactness of this near equality 

depends on the variation of the specific heat. Since the cold fraction is defined as       

𝜇𝐶 ≡
�̇�𝑐,1

�̇�𝑐,1+�̇�𝑐,2
, the equivalency in Eq (120) can be found through algebraic manipulation. 

When it is reasonable to expect that the temperature differences across a vortex tube are 

not sufficient to appreciably change 𝐶𝑝, i.e. 𝐶𝑝,𝑐,1 ≈ 𝐶𝑝,𝑐,2, then 𝜇 = 𝜇𝐶 almost exactly. 

When 𝐶𝑝,𝑐,2 > 𝐶𝑝,𝑐,1, it can be shown that 𝜇 < 𝜇𝐶. The extent of the difference depends 

on 𝜇𝐶: for example, using 𝐶𝑝,𝑐,2 = 1.05𝐶𝑝,𝑐,1, it can be found that 𝜇 = 0.96𝜇𝐶 for      

𝜇𝐶 = 0.20, but 𝜇 = 0.99𝜇𝐶 when 𝜇𝐶 = 0.80. 

𝜇 = 𝜇𝐶 [
𝐶𝑝,𝑐,1

𝐶𝑝,𝑐,2 + 𝜇𝐶(𝐶𝑝,𝑐,1 − 𝐶𝑝,𝑐,2)
] (120) 

 

The mean temperature, 𝑇𝑚𝑒𝑎𝑛, is equal to the single-coolant reference 

temperature, i.e. 𝑇𝑚𝑒𝑎𝑛 = 𝑇𝑐,𝑖 (although this is actually a feature of both analytical 

approaches).  For the case of adiabatic temperature separation, this is simply the inlet 

temperature to the vortex tube. This convenient identity means that the change in surface 
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temperature at any location in a region of interest can be determined by subtracting the 

overall effectiveness with a single coolant temperature from that with two coolant 

temperatures, i.e. �̂� − 𝜙. By subtracting Eq (121) from Eq (33), both repeated below, 

Eq (123) follows; note the subscripts of “1T” and “2T” to indicate single- and dual-

temperature cases, respectively. 

𝜙 =
𝑇∞ − 𝑇𝑠,1𝑇

𝑇∞ − 𝑇𝑐,𝑖
 (122) 

�̂� =
𝑇∞ − 𝑇𝑠,2𝑇

𝑇∞ − 𝑇𝑚𝑒𝑎𝑛
 (33) 

�̂� − 𝜙 =
𝑇𝑠,1𝑇 − 𝑇𝑠,2𝑇

𝑇∞ − 𝑇𝑚𝑒𝑎𝑛
 (123) 

The same principle applies to determining the laterally averaged surface 

temperature, �̅�𝑠, from a laterally averaged overall effectiveness, �̅� or �̅̂�. Additionally, it 

can also be seen that the relationship between �̅� and �̅̂� at any streamwise position can be 

expressed in terms of 𝜁 and the sensitivity of �̅̂� to 𝜁 at that location, i.e. 
𝜕�̅̂�

𝜕𝜁
(𝑥/𝐷), as seen 

in Eq (40), repeated below. By combining Eq (123)—when considered with respect to a 

lateral average—and Eq (40) and applying some manipulation, the resulting equation, Eq 

(124), shows exactly how the difference in laterally averaged surface temperatures 

between scenarios, (�̅�𝑠,2𝑇 − �̅�𝑠,1𝑇), can be computed at any 𝑥/𝐷 location. Significantly, it 

was found that 
𝜕�̅̂�

𝜕𝜁
 appeared to be constant with respect to 𝜁. Some information is 

required, of course, regarding the distribution of 
𝜕�̅̂�

𝜕𝜁
 across a region of interest and this 

can be drawn from experimental data. 
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�̅̂�(𝑥/𝐷) = �̅�(𝑥/𝐷) + 𝜁 [
𝜕�̅̂�

𝜕𝜁
(𝑥/𝐷)] (40) 

 

�̅�𝑠,2𝑇 − �̅�𝑠,1𝑇 = −(𝑇∞ − 𝑇𝑚𝑒𝑎𝑛) {𝜁 [
𝜕�̅̂�

𝜕𝜁
(𝑥/𝐷)]} (124) 

 

The mean temperature with heat addition is not the same as the inlet temperature 

for adiabatic temperature separation and therefore must be computed separately. The 

single-coolant reference temperature and 𝑇𝑚𝑒𝑎𝑛 should be extremely close, if not 

identical; in practice, they differed by between 0.9×10-4 K and 0.40 K across all cases. 

The two temperatures were still assumed to be equal, permitting Eq (124) to be used for 

nonadiabatic temperature separation with the values of 𝑇𝑚𝑒𝑎𝑛 actually used in the 

calculations. 

5.2 Results and Discussion 

5.2.1 Coolant temperatures from a vortex tube 

Ten cases were considered, based on the adiabatic temperature separation curves 

produced from the computational effort that used compressor pressure ratios of 𝜋𝑐 = 20 

and 𝜋𝑐 = 30, first seen in Figure 161 (see page 291). By applying the heat addition 

model derived from the computational investigation of a nonadiabatic vortex tube, 

temperature separation curves were produced for each engine condition; these are seen in 

Figure 163 for 𝜋𝑐 = 20 and Figure 164 for 𝜋𝑐 = 30. 
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Figure 163. Temperature separation curves for 𝝅𝒄 = 𝟐𝟎 

 

 

Figure 164. Temperature separation curves for 𝝅𝒄 = 𝟑𝟎 
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Also seen in Figure 163 and Figure 164 are the mean temperatures, shown on the 

left side; these range from 609.62 K for the unheated case with 𝜋𝑐 = 20 up to 721.51 K 

for the 𝑞′′ = 40 kW/m2 case with 𝜋𝑐 = 30. The differences in coolant temperatures are 

quite pronounced: at 𝜇𝐶 = 0.60 and 𝑞′′ = 40 kW/m2, 𝑇𝑐2 − 𝑇𝑐1 = 81.7 K for 𝜋𝑐 = 20 

and 𝑇𝑐2 − 𝑇𝑐1 = 75.5 K for 𝜋𝑐 = 30. These temperature profiles were then used to 

determine the effects on adiabatic wall temperature and metal surface temperature. 

 

5.2.2 Effect of vortex tube temperature separation on adiabatic wall temperature 

Values of 𝜉 as a function of cold fraction and 𝑞′′ are plotted for both 𝜋𝑐 = 20 and 

𝜋𝑐 = 30 in Figure 165. As might be expected, the coolant temperature ratio parameter, 𝜉, 

is a strong function of the amount of heat added to the flow and the cold fraction, which 

dictates the fraction of heat retained in the hot and cold streams. Both the hot and cold 

streams increase in temperature with increasing heat flux, but the fact that a large 

majority is retained in the hot stream means that 𝑇𝑐1 increases by a comparatively small 

amount while 𝑇𝑐2 increases by a comparatively large amount—and this tends to decrease 

𝜉 with increasing 𝑞′′. This effect is also intensified with increasing cold fraction. 
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Figure 165. Variation of 𝝃 with heat addition as a function of cold fraction 

The effect of the two temperatures on adiabatic wall temperature depends greatly 

on the details of the cooling scenario, i.e. the values of 𝜂1 and 𝜂2 in a region of interest. 

Figure 166 contains four plots: on the upper left side, curves of �̂� are shown for a point in 

a notional region of interest dominated by downstream row effects at which (𝜂1, 𝜂2) =

(0.15,0.30); on the upper right side, curves of �̂� are shown for a point dominated by 

upstream row effects at which (𝜂1, 𝜂2) = (0.45,0.30). The trends between the two are 

identical and they differ only in magnitude; this is intuitive based on the mechanics of 

Eq (21). The variations of �̂� do not appear large: the entire span of values is less than 

0.03; however, even small differences can have a pronounced effect at elevated 

temperatures. 
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Figure 166. Variations of �̂� and changes in 𝑻𝒂𝒘 with 𝒒′′ and 𝝁𝑪 

Below the respective plots of �̂� are the corresponding changes in adiabatic wall 

temperature, (𝑇𝑎𝑤,2𝑇 − 𝑇𝑎𝑤,1𝑇), reflecting the difference in 𝑇𝑎𝑤 observed with the rows 

issuing coolant at two different temperatures versus the 𝑇𝑎𝑤 observed with the rows 

issuing coolant at 𝑇𝑚𝑒𝑎𝑛. On the left, the curves of (𝑇𝑎𝑤,2𝑇 − 𝑇𝑎𝑤,1𝑇) indicate that as the 

downstream row increases in temperature relative to the upstream row, the value of 𝑇𝑎𝑤 

at that point also increases; this makes sense because the point is much more strongly 

affected by the downstream row than the upstream row. The downstream-dominated 

point on the left sees the adiabatic wall temperature increase by up to 18 K with         

𝜇𝐶 = 0.70, 𝑞′′ = 40 kW/m2, and 𝜋𝑐 = 20. 
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On the bottom right, the situation is more complicated. The point in question is 

dominated by the upstream row, i.e. the cold exit, and the temperatures associated with 

smaller cold fractions are colder—hence, the reduced adiabatic wall temperature. At very 

high cold fractions, the greatly elevated coolant temperatures issuing from the 

downstream row serve to increase the adiabatic wall temperature in spite of the fact that 

𝜂2 < 𝜂1. However, the bottom right plot contains a distinctive feature where the 

differences in temperature apparently have no effect on the adiabatic wall temperature. 

These notional temperature differences are associated with a cold fraction of 𝜇𝐶 = 0.512 

and reflect a balance between the low temperatures and high influence of the upstream 

row with the high temperatures and low influence of the downstream row. The range of 

(𝑇𝑎𝑤,2𝑇 − 𝑇𝑎𝑤,1𝑇) observed for the upstream-dominated point is comparable to the other 

scenario, but the existence of this balance point tempers the maximum difference, which 

is 11.5 K with 𝜇𝐶 = 0.70, 𝑞′′ = 40 kW/m2, and 𝜋𝑐 = 20.  

On a final note, it is worth pointing out that the unusual phenomenon first 

observed in Section 2.2.3.2, in which it is better not to have a second row at all, did not 

come into play here—nor was it even close. That phenomenon becomes important in 

scenarios where the downstream row is issuing the warmer coolant—which was the case 

here—but a film cooling scenario is only vulnerable to that issue when the value of 𝜉 

drops below that of 𝜂1. The minimum 𝜉 value here was 0.93—much more temperature 

separation would be required before that phenomenon became practically significant. 

5.2.3 Effect of vortex tube temperature separation on metal surface temperature 

The trends of the coolant difference parameter, 𝜁, are plotted Figure 167. 

Intuitively, the temperature curves associated with increased cold fractions correlate with 
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increasing 𝜁 values. The 𝜁 values in Figure 167 appear fairly small in comparison to the 

range explored in the development of the analytical framework: the maximum value seen 

here is  𝜁 = 0.031 with 𝜇𝐶 = 0.70, 𝑞′′ = 40 kW/m2, and 𝜋𝑐 = 20. However, the 

contribution of these values to surface temperature must be assessed in the context of the 

assumed film cooling scenario. 

 

Figure 167. Variation of coolant temperature variation parameter, 𝜻, with 𝒒′′ and 𝝁𝑪 

 One might be interested in variations of �̅̂�, the laterally averaged overall 

effectiveness in the presence of two coolant temperatures. However, this requires some 

assumptions regarding overall effectiveness with a single coolant temperature, �̅�, and the 

sensitivity of �̅̂� to changes in 𝜁, i.e. the partial derivative 
𝜕�̅̂�

𝜕𝜁
. Some information is 

required, of course, regarding the distribution of 
𝜕�̅̂�

𝜕𝜁
 across a region of interest and this 
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can be drawn from experimental data. Moreover, since the overall effectiveness 

experiments in Section 2.3 were conducted using Inconel 718, a material with a Biot 

number matched between lab and engine conditions, it is reasonable that the cooling 

characteristics can be scaled up to engine conditions. The ranges of 
𝜕�̅̂�

𝜕𝜁
 were found to be 

approximately  −0.30 ≤
𝜕�̅̂�

𝜕𝜁
≤ 0.5 and −0.45 ≤

𝜕�̅̂�

𝜕𝜁
≤ 0.4 for the 15 D and 7 D models, 

respectively. Near the regions of maximum sensitivity, it was found that �̅� ≈ 0.50. For a 

notional cooling scenario, it was assumed that �̅� = 0.50 and 
𝜕�̅̂�

𝜕𝜁
= 0.40 at some location 

for each cold fraction. Figure 168 shows the trends of �̅̂� with the coolant temperatures 

associated with the cold fractions; the range of �̅̂� values is less than 0.02. 

It must be emphasized that different experimental configurations were used to 

determine parameters related to adiabatic effectiveness and overall effectiveness; 

therefore, the influence of the temperature separation profiles on overall effectiveness and 

surface temperature must be interpreted separately from the analysis of adiabatic 

effectiveness and adiabatic wall temperature. Obviously, for a single experimental 

configuration, 𝜂 and 𝜙 would be related. 

 



312 

 

Figure 168. Variation of overall effectiveness with film cooling from a vortex tube, 

at a location where �̅� = 𝟎. 𝟓𝟎, 
𝝏�̅̂�

𝝏𝜻
= 𝟎. 𝟒𝟎 

The resulting changes in surface temperature are more pronounced, however, with 

differences of up to -17 K, as seen in Figure 169. The differences in Figure 169 are, of 

course, somewhat optimistic in that they are all cast as reductions in surface temperature. 

However, it was seen for both experimental models used in the original experimental 

study that there are locations where 
𝜕�̅̂�

𝜕𝜁
> 0 and thus 𝜁 > 0 leads to a reduction in surface 

temperature, as well as locations where 
𝜕�̅̂�

𝜕𝜁
< 0, and then 𝜁 > 0 leads to increased surface 

temperatures. Therefore, while Figure 169 does reveal some of the promise of 

temperature separation with respect to film cooling, one must more roundly consider its 

potency and the need for deliberation in where best to apply it. 
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Figure 169. Changes in laterally averaged surface temperature with film cooling 

from a vortex tube, at a location where �̅� = 𝟎. 𝟓𝟎, 
𝝏�̅̂�

𝝏𝜻
= 𝟎. 𝟒𝟎 

 

5.2.4 General trends and practical applications 

Some general conclusions can be drawn regarding the performance of vortex 

tubes in a film cooling scenario. First, the temperature separation induced by an adiabatic 

vortex tube seem unlikely to have an appreciable effect on a film cooling scenario: values 

of 𝑇𝑎𝑤 and �̅�𝑠 changed by 2 K or less for temperatures corresponding to a relatively low 

value of 𝜋𝑏 = 0.89 for the 𝜋𝑐 = 20 cases, and about half that for a more realistic      

𝜋𝑏 = 0.94 for the 𝜋𝑐 = 30 cases. On the other hand, the differences between the hot and 

cold coolant temperatures become quite significant with increasing levels of heat flux. 
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This generally suggests that if vortex tubes are to be introduced to a gas turbine engine, 

that they should be installed in regions of high heat flux.  

The coolant differences associated with nonadiabatic temperature separation are 

quite pronounced, and this is a potentially fruitful avenue of further investigation. To be 

sure, assessing the practical significance of the temperature changes seen in this analysis 

is out of scope of this study since it requires detailed knowledge of the metallurgy and 

stresses involved. That said, reducing the metal temperature of turbine blades in 

terrestrial power generation equipment by 25 K can double the life of the part [14]. Given 

that degree of sensitivity to metal temperatures, perhaps scenarios can be identified in 

which even the temperature curves resulting from adiabatic temperature separation can be 

of practical interest. 

However, the temperature separation resulting from a vortex tube with heat 

addition can, for the same scenario, contribute potentially significant changes to 𝑇𝑎𝑤 and 

𝑇𝑠. For the cases herein, it may be possible to modify the values of 𝑇𝑎𝑤 and �̅�𝑠 by up to 

18 K. The heated cases studied here had mean temperatures of up to 721.5 K, which is on 

the low side of the practical range of coolant temperatures; with more heat added, it is 

easy to see that the changes to 𝑇𝑎𝑤 and �̅�𝑠 may become even more substantial. 

Naturally, there are caveats to the results—these are for a given flight condition 

and engine performance parameters and a specific hypothetical cooling scenario with 

assumed values for 𝜂1, 𝜂2, �̅�, 
𝜕�̅̂�

𝜕𝜁
, and 𝑇∞. Still, some care should be taken in interpreting 

these findings. For the analysis of the effects on adiabatic wall temperature, the streams 

exhausted from the vortex tube exits were assumed to exit immediately from the film 
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cooling holes and thus were surrogates for 𝑇𝑐,𝑒𝑥𝑖𝑡. In such a scenario, the relative ACRs 

issuing from the two coolant holes is linked to the cold fraction. The cold fraction, of 

course, is further linked to the relative temperatures of the coolant streams. Moreover, the 

magnitude of adiabatic and nonadiabatic temperature separation is directly linked to the 

mass flow rate entering the vortex tube and increasing this flow rate will increase the 

magnitude of the ACR at each cooling hole even if 𝜇𝐶 is held constant.  

Even more complex scenarios are possible, such as feeding a single plenum with 

the cold exhaust from multiple vortex tubes while diverting the hot exit coolant to other 

regions; this probably would have been necessary to drive the slot in the �̂� scenario, for 

example, since the coolant flow rate weighting parameter stemming from its large mass 

flow rate was 𝜇 = 0.85. The findings of the present study are encouraging and may 

inspire some system-level configuration studies to more exhaustively investigate the 

combined relationships between 𝜇𝐶, 𝐴𝐶𝑅, temperature separation curves, and 𝑇𝑎𝑤. 

Caveats also apply to the analysis of the effects on metal surface temperature. The 

exact arrangement of vortex tubes in a cooling scheme would be expected to significantly 

affect the result, and the manner in which various aspects of the design are coupled would 

be manifested in different ways. It must be stressed that this analysis modeled the 

integration of a vortex tube into the cooling scenario as simply filling two plenums with 

different temperature coolants without changing the underlying heat transfer 

characteristics; this was essential to assuming the vortex tube exit temperatures were 

equivalent to 𝑇𝑐,1 and 𝑇𝑐,2. The location at which the heat was added was not specified 

but it was not located in the region of interest. 
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It may be a slight logical artifice to assume 𝑇𝑚𝑒𝑎𝑛 = 𝑇𝑐,𝑖, where 𝑇𝑐,𝑖 was the single 

coolant temperature resulting from the same heat addition as the vortex tube, because it 

has already been seen that the heat transfer coefficient in a vortex tube is much greater 

than that seen in circular pipe flow. However, cooling channels are constantly being 

devised to increase heat transfer and one can simply imagine an internal passage with 

sufficient length and heat flux such that the overall heat addition is the same as that 

induced by the vortex tube. Additionally, it was assumed that the fraction of heat retained 

in the cold fraction, 𝛼, was independent of the amount of heat added, 𝑞. While that was 

necessary to begin this analysis, the maximum heat flux used in the foregoing 

calculations was 16 times that of the heat flux used in determining the values of 𝛼. If 

subsequent study reveals that 𝛼 is indeed a function of 𝑞, then the results may be affected 

considerably. 

It is not a great leap to consider the effect of installing a vortex tube to provide 

backside internal cooling in the same region covered by the film cooling holes. Although 

such a study is outside the scope of the present effort, it seems likely that regions of high 

local heat transfer coefficient, ℎ, would be more sensitive to the effects of different 

coolant temperatures, i.e. the local values of 
𝜕�̂�

𝜕𝜁
 would potentially be of greater 

magnitudes. Moreover, because the elevated ℎ values—compared to pipe flow—are 

almost certainly due to the high-velocity swirl, it is expected that there is a strong 

relationship between ℎ and nozzle velocity; by extension, this implies a relationship 

between ℎ and ACR. However, the tightly coupled nature of vortex tube temperature 

separation, ACR, 𝜇𝐶, ℎ, 
𝜕�̂�

𝜕𝜁
, 𝜁, and �̂� suggest that fully investigating the relationships in 
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the context of overall effectiveness would be quite a complex endeavor. The present 

study cannot investigate all of these practical interdependencies but perhaps will inspire a 

design study to do just that. 

Three embodiments of vortex tubes have been considered for integration into gas 

turbine engines. First is a “master” vortex tube, likely the only one in an engine, and 

which separates a large amount of coolant into warmer and cooler streams which could 

be made available to cool a large number of components, such as all or part of a turbine 

stage, routing the warmer and cooler streams according to known requirements. Second is 

a smaller, intermediate vortex tube, which would separate a supply of coolant on the 

order of that required for a single turbine blade, making two temperature coolants 

available only for the one component. Third is a micro vortex tube, on the scale of a 

single film cooling hole. Several might exist in a turbine blade and generate two coolant 

temperatures in a very localized cooling scenario. 

Based on the findings here, the first embodiment seems especially impractical. By 

its nature, the more centralized design concept would prevent it from being installed near 

the regions where the greatest heat flux is desired. It would also require a large mass flow 

rate and create a large pressure drop, but would likely offer comparably little temperature 

separation in return.  

Nonadiabatic temperature separation is apparently the most effective means of 

inducing large differences between coolant temperatures, but achieving this is best 

accomplished by placing vortex tubes in regions where high local heat fluxes are desired. 

Thus, to make best use of the coolant, it appears that the second or third embodiments are 

more worthwhile. Due to the scales involved and limitations on manufacturing 
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techniques, the second embodiment seems more readily realizable than the third. While 

the third embodiment obviously faces fabrication challenges, it also has the potential for 

installation in regions where the highest heat fluxes are desired. However, it remains to 

be seen whether the associated small-channel mass flow rates are sufficient to sustain the 

nonadiabatic temperature separation.  

It is important not to be naïve regarding the exceptional value of the pressure 

difference available in an engine; it is, after all, the potential that makes film cooling—

and thus modern turbine engines—possible. It also is amply clear by now that 

conventional vortex tubes are no ordinary pressure-driven flow: they require very large 

pressure drops to deliver the degree of temperature separation for which they became so 

well known. A means of reconciling the two applications, that is, the narrow pressure 

margins of turbine engines with the pressure-hungry vortex tubes, is not entirely 

straightforward. However, two novel approaches may yield some common ground here. 

First, recall that the simplified vortex tube used as a basis for comparison with 

CFD was tested with two hot exit geometries: one was an annular exit further used in the 

CFD comparison; the other was an orifice exit. The orifice is a novel configuration for a 

vortex tube hot exit and is the most basic possible implementation—which is also of 

benefit from a manufacturing standpoint. Interestingly, it did yield noticeable temperature 

separation, though it was considerably less than either the commercial or annular exits. 

However, the orifice also featured the lowest pressure drop of the configurations, lower 

than that of the simplified annular exit by 25 – 33%, depending on cold fraction (see 

Figure 86 on page 179 and Figure 88 on page 181 for dimensional plots of temperature 

separation and pressure drops, respectively). It may be possible to leverage that simple 
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design to induce nonadiabatic temperature separation for comparatively low pressure 

losses, perhaps even acceptable to turbine engines.  

Broadly speaking, the use of compressor bleed air as turbine section coolant 

represents merely a tolerable penalty in the pursuit of greater turbine inlet temperatures 

and overall engine performance. However, nonadiabatic temperature separation may be 

of use in another way. If the hot stream can be heated enough, it may be usable as a 

source of oxygen for combusting excess hydrocarbons in the turbine section by venting 

the “coolant” normal to the surface. Meanwhile, a relatively cold coolant stream would 

also be available locally, due to the temperature separation, to prevent overheating from 

the combustion. If successful, this would accomplish two objectives simultaneously: cool 

the hot turbine parts and add energy to the freestream; perhaps such a concept would be 

worth the corresponding pressure loss. A similar principle could be applied to the design 

of a combustor liner. Additional information would be required to fully inform such a 

design, such as a more complete characterization of heat transfer into the hot flow as a 

function of the total heat added, a fuller understanding of the operating characteristics of 

a vortex tube with an orifice hot exit, and detailed knowledge of the minimum flow rates 

required to sustain nonadiabatic temperature separation. 

  



320 

 

 

 

 

This page is intentionally left blank 

  



321 

6 Conclusions and Recommendations 

6.1 Conclusions of Research 

 In the most overarching sense, the present research aspired to explain how vortex 

tubes work and to use that understanding to adjust gas turbine coolant temperatures. As 

has been demonstrated in the present research—conducted with a computational 

investigation and validated with experiments—the explanation for the temperature 

separation in a vortex tube is simple. At any radial position in the vortex where the 

velocity profile does not follow solid body like rotation, the part of the flow with a higher 

angular velocity performs viscous work on an adjacent part at a lower angular velocity 

and this represents a transfer of energy among the radial “layers” of fluid. This energy 

transfer passes from the inner part of the flow eventually exhausted as the cold stream to 

that which becomes the hot stream due to the relative positions of the angular velocity 

gradients and the notional internal boundary between the two streams. This behavior is 

manifested through a difference in total temperature at the exits. Conductive heat transfer 

is present due to the static temperature gradients, but its magnitude is insignificant 

compared to that of viscous work. The present work is the first to demonstrate this with 

an unconstrained three-dimensional flow solution using a real gas model, and with the 

most robust experimental validation of any previous study. 

 Research investigating “how vortex tubes work” has favored explanations of the 

mechanics of vortex tubes, but have not generally appreciated the importance of scaling 

as a contributing factor. As was shown, speculation in the literature regarding the role of 

gas properties—which is certainly part of the scaling problem—was inconclusive. 
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Particularly distinctive to the present work are the investigations regarding governing 

parameters and scaling. A novel nondimensionalization of the energy equation was 

completed, which identified the governing parameters and appropriate reference scales 

for temperature separation. Most significantly, it was found that dimensional temperature 

separation scales primarily with the square of the bulk velocity of the gas passing through 

the vortex tube nozzles. This was verified by experiment with a novel laboratory 

configuration, which confirmed the appropriate nondimensionalization and, in a notable 

first, demonstrated that dimensional temperature separation characteristics could be 

matched even when inlet pressures and temperatures were not matched.  

Three governing dimensionless parameters were identified: Reynolds number, 

Prandtl number, and a new parameter introduced in this dissertation, 𝜌𝐶𝑝𝜇𝐽𝑇, which 

indicates the contribution of real gas effects. It was found that temperature separation is 

not a strong function of Reynolds number nor of 𝜌𝐶𝑝𝜇𝐽𝑇 for air, but that real gas effects 

likely drive performance differences between different gases such as air and CO2. A 

proper understanding of the scaling of vortex tube temperature separation permits a 

researcher, using a small initial data set, to quickly and easily estimate dimensional 

performance under a wide variety of conditions without the need for additional 

experiments or CFD. 

 Experiments conducted under conditions increasingly representative of those 

found in a gas turbine engine identified some important additional trends. First, 

experiments at high temperatures revealed that most of the findings from the low 

temperature experiments continued to be applicable: dimensional temperature separation 

scaled as a higher order function of nozzle velocity, and dimensional temperature 



323 

separation was matched between dissimilar inlet temperatures and pressures when nozzle 

velocity and volumetric heat capacity were also matched. However, it was also found that 

nondimensionalized temperature separation can follow slightly different trends for the 

same vortex tube when installed in different configurations. Because historical vortex 

tube experiments featured fairly similar configurations but with different vortex tubes, the 

role of the surrounding installation was not generally appreciated; this should be 

considered in performance estimates and prototyping activities for novel applications.  

 Experiments with a vortex tube to which an external heat flux was applied 

revealed a surprising trend: the vast majority of the heat added to the flow—in excess of 

90% for 𝜇𝐶 = 0.40—remained in the hot stream, and the temperature of the stream 

leaving the cold exit increased little. A subsequent computational study was in agreement 

with these findings and additionally quantified the fraction of the heat retained in the hot 

and cold streams as a function of cold fraction. Even when the hot stream accounted for 

only 30% of the overall mass flow rate, 80% of the heat added remained in that stream 

and its temperature increased dramatically compared to the cold stream. It was also 

discovered that the Nusselt number along the tube wall was several times greater than 

that in the thermal entry region for circular pipe flow. In a novel twist, this suggests the 

possibility that a vortex tube could be a very effective means of facilitating external heat 

transfer into the hot flow. Moreover, this observation represents an interesting extension 

to the principle of temperature separation: by virtue of its flow structure, a vortex tube 

can also sustain a separation of temperatures which was induced by external heat addition 

rather than solely by internal fluidic means. 
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 CFD investigations were also conducted at inlet temperatures and pressures 

corresponding to the compressor exit in a gas turbine engine installed in an aircraft at a 

notional altitude of 30,000 ft and a flight Mach number of 0.80. The scenarios were 

computationally demanding and converged solutions could not be generated for as many 

cold fractions as desired, but temperature separation curves were nevertheless produced. 

The temperature differences were relatively small: no more than +12 K at the hot exit and 

less than -6 K at the cold exit. 

 However, the temperature differences introduced by a vortex tube are only 

entering arguments in determining the effect on a turbine blade. Two new analytical 

models were devised to assist with this task. The first is a generalization of superposition 

theory, with respect to adiabatic effectiveness, for an arbitrary number of rows issuing 

coolant at different temperatures. With knowledge of the performance of separate film 

cooling holes or slots, the model allows a designer to synthesize the experimental data to 

estimate the adiabatic effectiveness and, by extension, adiabatic wall temperature at any 

point of interest for a film cooling scenario; this is accomplished by using a new 

dimensionless parameter, 𝜉, known as the coolant temperature ratio parameter. The 

model works anywhere that superposition theory is valid, though this generally 

corresponds to lower ACRs. The second analytical model is valid for a double row and is 

not limited to superposition scenarios: it extends the determination of overall 

effectiveness to cooling scenarios with two coolant temperatures. The model introduces 

two new parameters, a coolant enthalpy weighting parameter, 𝜇, and a coolant 

temperature variation parameter, 𝜁. This model permits a designer to completely 

characterize surface temperatures and temperature gradients for a particular combination 
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of ACRs and any combination of coolant temperatures based on only two experimental 

data points.  

 By integrating the computational results of temperature separation expected at 

engine conditions with the trends observed regarding the heat retained in the hot and cold 

streams, a set of notional coolant temperatures were estimated for various cold fractions 

and levels of heat flux. For the cases with significant heat addition, the coolant 

temperature differences were found to induce potentially significant differences in 

adiabatic wall temperature and metal surface temperature when compared to a similar 

scenario with only a single coolant temperature.  

6.2 Significance of Research 

 It has long been understood that a vortex tube yields greater temperature 

separation when a higher pressure is applied to the inlet, assuming it is vented to the same 

ambient conditions. This large pressure drop—another of its defining features—also 

presents a challenge to its application in new domains. This challenge is acute for gas 

turbine engines, in which the pressure difference between compressor and turbine is low 

by design, and thus offers a fraction of the pressure drop available in more conventional 

applications. It was also understood that temperature separation increases with inlet 

temperature, though the reason for this was not initially known. At the outset of this 

research, without fully understanding the mechanism of temperature separation nor its 

scaling parameters, it was hoped that operating at elevated temperatures in an engine 

would compensate for the decreased performance associated with the lower pressure 

drop.  
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 Some key findings now temper this expectation. First, it was discovered that 

increases in temperature served to increase the nozzle velocity, and that temperature 

separation scales with the square of nozzle velocity; this is the entire contribution of inlet 

temperature. Next, in a fashion similar to that of other pressure-driven flows, it was 

confirmed that the pressure drop across the vortex tube also scales with the square of 

nozzle velocity. It is therefore effectively impossible to overcome the drawbacks of a 

small pressure difference by operating at an increased inlet temperature; this obviously 

limits the temperature separation achievable in the absence of heat addition. 

 It was a surprise that heat conduction is evidently a weak mechanism in the vortex 

tube, and this discovery appears consistent with the very high degree of heat retention in 

the hot flow. It is also this feature that may feasibly permit the application of vortex tubes 

in high temperature environments such as turbines or combustors. It is well known that 

heat transfer rates and pressure losses are correlated; however, if the hot stream can be 

preferentially heated and then directed to release further energy in the flow—such as 

through combustion of unburned hydrocarbons—then perhaps the use of vortex tubes 

may be worthwhile. 

The principal objectives—explain how vortex tubes work and use that 

understanding to adjust gas turbine coolant temperatures—have been met. A theory of 

operation, derived from the energy equation, based on computational investigation, and 

consistent with experiment, has been established. A means of inducing significant coolant 

temperature differences despite poor adiabatic temperature separation has also been 

proposed, including the embodiments most likely to achieve this. However, the question 
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of whether to pursue application is less clear and the answer must come from 

practitioners. 

6.3 Recommendations for Future Research 

Several avenues of potential future research remain, with varying degrees of 

complexity. The ultimate goal, if the present path is to be continued, is a working model 

incorporating at least one embodiment of a vortex tube into a film cooling scenario—

either for experimental or computational investigation. This might include, for example, 

gathering data points sufficient to expand or apply the two-temperature overall 

effectiveness model for use in such a scenario. Although a computational model would 

allow greater flexibility in terms of achievable temperatures, this would be no small feat 

if different turbulence models are desired for modeling film cooling or vortex tubes.  

Short of modeling the entire film cooling scenario, several discrete research 

efforts could improve the fidelity of the applied analysis in Section 5.2 and lend 

additional insight into the feasible use of vortex tubes. First, experimental data could be 

gathered for coolant enthalpy weighting parameters other than 𝜇 = 0.50. This would 

permit a characterization of surface temperatures across an entire region of interest as a 

function of cold fraction, assuming 𝜇 ≈ 𝜇𝐶.  

Also, more must be known about heat transfer into the vortex tube. A 

computational investigation of the fraction of added heat retained in the cold flow, 𝛼, as a 

function of heat added, 𝑞, would be especially valuable; with a definitive function, it may 

be possible to extrapolate coolant temperatures significantly beyond the current values. 

Such research likely has two potential branches. First, it would be desirable to know, for 

a given vortex tube inlet condition, how 𝛼 varies with increasing 𝑞. Equally interesting 
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would be a study of how 𝛼 varies, for a given 𝑞, with decreasing nozzle velocities—this 

would provide some idea of the minimum nozzle conditions required to adequately 

sustain nonadiabatic temperature separation. Alternate boundary conditions should also 

be investigated: the computational effort thus far has only used a uniform heat flux 

condition, but further efforts should also apply a uniform surface temperature boundary 

condition to determine corresponding local 𝑁𝑢 values.  

The hot exit orifice geometry was included in the present research essentially as a 

target of opportunity and was not central to the research objectives. That said, its 

potential for use, in view of its simplicity and low pressure drop, may pair well with 

nonadiabatic temperature separation. Further study should include this configuration.  

While the understanding of vortex tube performance has progressed considerably 

as a result of this research, additional questions remain. First, the Mach numbers used in 

the low temperature rig were generally low—at or below Mach 0.35. Mass flow rate 

restrictions imposed by the installation prevented Mach numbers higher than 0.40 from 

being used in air. Orientation tests on the low temperature rig using He found that sonic 

flow could be achieved at the nozzles; however, the data collected were very anecdotal 

and unsuitable for evaluating any trends. Investigations could be conducted on the 

nondimensionalization of temperature separation at higher Mach numbers using He. A 

variety of gases could also be used to investigate real gas effects across a much wider 

range of the new dimensionless parameter, 𝜌𝐶𝑝𝜇𝐽𝑇. 

During the initial installation of the ExairTM 3208 vortex tube, prior to the 

integration of the mass flow controllers, the temperature separation effect was 

investigated by manually setting the hot exit valve to adjust the cold fraction. It was 
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found that at very high—but unquantified—cold fractions, the temperature separation 

reversed and the colder air was exhausted from the end that had previously exhausted the 

hotter air and vice versa. The temperature of the air exhausted from “hot” end was then 

approximately 2 K colder than the inlet, while that from the “cold” end was 10 K warmer 

than the inlet. The reason for this is not known, nor was it ever observed computationally. 

A similar finding was encountered by Martynovskii and Alekseev [53]. It is possible that 

the internal interface between hot and cold streams was so displaced from its usual 

location that different components of work and heat transfer became dominant; for 

example, it has been shown that the axial viscous work component, ∫𝑛𝑟 𝜏𝑟𝑧𝑣𝑧𝑑𝑆, acts 

such that work is performed by the hot stream on the cold stream. This unusual mode of 

temperature separation has not been conclusively investigated. 

A final avenue of future research involves the specific vortex tube installations in 

the laboratory. During the investigations of the high-temperature configuration, a peculiar 

phenomenon that could be best described as an alternate vortex “mode” was anecdotally 

encountered. In the alternate mode, temperature separation was found to increase 

substantially for a given mass flow rate. However, this mode was periodically 

encountered by accident, normally during abrupt changes in experimental conditions, and 

it was thought not to be stable—small changes in commanded mass flow rate, for 

example, could cause the operation to revert to the normal mode. A detailed investigation 

of this behavior could not be undertaken in the time available for the present research, so 

it was never determined how one might deliberately induce, characterize, or control the 

alternate mode. None of the data presented herein was knowingly taken in that mode. If it 

is indeed a valid flow solution, it is possible that it is a driven by Reynolds number 
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effects—which are known to contribute to flow stability. This mode was also believed to 

have been encountered on the low-temperature rig as well, so the possibility also exists 

that the local hardware, such as the mass flow controllers, may also have been a factor. 
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