
INSTABILITIES OF OVERTURNED
TRAVELING WAVES

DISSERTATION

Tyler B. Pierce, Maj, USAF
AFIT/ENC

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT/ENC

INSTABILITIES OF OVERTURNED TRAVELING WAVES

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of PhD in Applied Mathematics

Tyler B. Pierce, B.S.Ch.E., M.B.A., M.S.O.R.

Maj, USAF

10 July 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT/ENC

INSTABILITIES OF OVERTURNED TRAVELING WAVES

DISSERTATION

Tyler B. Pierce, B.S.Ch.E., M.B.A., M.S.O.R.
Maj, USAF

Committee Membership:

Dr. Benjamin Akers
Chairman

Dr. Mark Oxley
Member

Dr. Dana Morrill
Member

Dr. Tony Liu
Member

Dr. Daniel Emmons
Member, out-of-department

Dr. Raymond Hill
Dean’s Representative



AFIT/ENC

Abstract

In this work, we consider the interface between two incompressible, irrotational fluids.

Traveling waves, including overturned waves (those which are not functions of the hor-

izontal coordinate), can occur at this interface. The vortex sheet equations [17][33][34]

and conformally-mapped Euler equations [42] model this physical phenomenon and

have been the subject of numerous studies. With the exception of Crapper waves

[47], the stability of overturned waves have not been studied. This dissertation fills

this research gap by analyzing the stability of overturned traveling capillary ripples

at various Bond numbers using the conformally-mapped Euler equations.

Two separate techniques for computing the spectrum of waves, here referred to

as Spectral Stability Analysis (SSA) and Dynamic Stability Analysis (DSA), are pre-

sented. These techniques are demonstrated with proof of concept experiments using

the pendulum equation and the Akers-Milewski equation. Various techniques for re-

ducing the stiffness of PDEs are also presented. These techniques are demonstrated

on the Korteweg-de Vries equation. The SSA and DSA are then used to compute

the spectrum of branches of traveling waves in the conformally-mapped Euler equa-

tions. Both methods are verified against the known stability of Crapper waves [47].

No super-harmonic instabilities were found for gravity-capillary ripples whose Bond

number is less than two. Both methods identified unstable eigenvalues for waves with

Bond numbers greater than or equal to two. The results were used to create a ‘surface

of instability,’ the magnitude of the largest unstable eigenvalue for waves whose Bond

number is in r0, 3q.
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INSTABILITIES OF OVERTURNED TRAVELING WAVES

I. Introduction

The study of water waves dates back to Isaac Newton, who made one of the earliest

attempts at a theory on the topic [43]. Some of those who contributed to the field

include Euler, Laplace, Lagrange, Poisson, Cauchy, Russel, and Stokes. Euler derived

the equations of motion for hydrodynamics [27][28][29]. Laplace proposed the first

initial value problem with water waves [22]. Lagrange derived linearized equations

for small-amplitude waves and solved the system for shallow water [38]. Poisson and

Cauchy furthered the development of the initial value problem and assessed waves in

deep water [16][15]. Russell performed extensive experiments with waves and made

the first recorded observation of a solitary wave [45]. Stokes gave an analysis of waves

of finite amplitude and expanded the wave profile with a power series [46]. A more

thorough review of the origins of water wave theory is found in [19][20].

Since the origins of water wave theory, extensive work has been done, both ana-

lytically and numerically. A review of more recent research pertinent to the current

work is found in [26]. This review addresses bifurcation, stability, and the evolution

of gravity and capillary-gravity waves.

A fundamental topic of interest in the study of traveling waves is stability. De-

coninck and Kutz state, “The investigation of the stability of solutions of a given

mathematical model is an essential aspect of understanding the physical system con-

sidered. Stability analysis is important for at least three reasons. First, if a physical

phenomenon is observable and persists, then the corresponding solution to a valid

mathematical model should be stable. Second, if instability is established, the nature

1



of the unstable modes might hint at what patterns may develop from the unstable

solutions. Third, for many problems of physical interest, fundamental mathematical

models are well established. However, in many cases these fundamental models are

too complicated to allow for detailed analysis, thus leading to the study of simpler

approximate models using reductive perturbation methods. Consequently, the stabil-

ity analysis can be used to validate or to suggest modifications to the mathematical

models used for a given application [24].”

Examples of water wave stability analysis include the following. In the 1960’s

Benjamin and Feir showed analytically that, under a weakly nonlinear assumption,

periodic gravity waves on deep water are unstable with respect to long-wave per-

turbations [11][10]. In the 1970’s Longuet-Higgins initiated numerical studies of the

spectral stability of deep waves with sub- and super-harmonic perturbations [39][40].

Numerical studies of spectral stability were later extended to water waves in finite

depth [31][37]. In 2011, Deconinck and Oliveras used a Fourier-Floquet decomposi-

tion technique to estimate the full spectrum of various traveling wave solutions (in

shallow water and deep water) [25]. In a series of articles, Akers and Nichols used

a ‘Transformed Field Expansions’ method to simulate the spectrum as a function of

the wave amplitude under various conditions [7][5][6][8].

Of particular interest to the work in this dissertation are overturned waves, or

waves whose profiles are not a function of the horizontal spatial coordinate. G.

D. Crapper developed a closed-form solution for capillary waves of arbitrary ampli-

tude in water of infinite depth. As the wave amplitude increases, the wave becomes

steeper, eventually overturning. The amplitude of Crapper waves are limited to 0.730

wavelengths. For larger waves, the interface intersects, enclosing air bubbles in the

troughs [21]. Figure 1 shows Crapper’s original figure portraying the profile of several

Crapper waves. Tiron and Choi have studied the stability of Crapper waves, finding

2



that they are stable to super-harmonic perturbations but unstable to sub-harmonic

perturbations; both results applying to the entire amplitude range [18][32][47].

Some wave models have been shown to have solutions with overturned waves. One

such model is the vortex sheet formulation of the water wave problem. A vortex sheet

is the interface between two irrotational fluids, where the only vorticity (∇¨u “ 0) is at

the interface. Traveling waves may form at this interface. The existence of overturned

traveling waves in vortex sheets have been shown [3][2][4][41][44]. Milewski, Vanden-

Broeck, and Wang developed a water wave model based on a conformal mapping of

the Euler equations. Solutions to the conformally-mapped Euler equations include

overturned traveling waves [42]. While the existence of overturned traveling waves

have been demonstrated with the vortex sheet equations and the conformally-mapped

Euler equations, the stability of these waves (except for Crapper waves) have not yet

been determined.

The fundamental contribution of this dissertation is numerically computing the

spectrum of overturned, traveling, gravity-capillary waves. The spectrum establishes

the stability of these waves. Two different techniques are developed here. The first

technique will be called ‘Spectral Stability Analysis’ (SSA). This technique mimics

the Fourier-Floquet approach used by Deconinck and Oliveras in which the wave

problem is converted into an eigenvalue problem. It is then solved in Fourier space,

giving the full spectrum of the wave in the limit as the number of Fourier modes goes

to infinity [25].

The second technique will be called ‘Dynamic Stability Analysis’ (DSA). In this

technique, a solution is perturbed then evolved numerically with a time-stepping

algorithm. If the wave is unstable, then a lower bound for the real part of the largest

positive eigenvalue is recoverable from the data.

In this dissertation, both of these techniques are demonstrated on two systems
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Figure 1. Profile of Crapper Waves. The values on the left give the parameters for the
adjacent wave, where a is the amplitude, λ is the wavelength, ψ is the stream function,
and c is the wave speed.

whose stabilities are already established. The first system is a simple pendulum. The

second system is the Akers-Milewski equation. These demonstrations are used as a

proof of concept for SSA and DSA. The techniques are then applied to the vortex

sheet equations and the conformally-mapped Euler equations.

An additional topic woven throughout is PDE stiffness. The linear spectrum of

some PDEs leads to stiff dynamics. This makes numerical time-stepping algorithms

computationally expensive. Several techniques have been developed to reduce this

problem. Kassam and Trefethen give a comparison of various techniques [36]. These

techniques include, but are not limited to, integrating factors, splitting schemes, and

implicit-explicit (IMEX) schemes [9]. In this work, integrating factors are used with

the Akers-Milewski equation. Additionally, all three techniques are explored with the

Korteweg-de Vries equation. The method of integrating factors was implemented with

the vortex sheet equations and the conformally-mapped Euler equations. However,

in both instances, it resulted in poor performance. Due to the complexity of these
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models, there is a high likelihood that an error was made during the derivation and/or

implementation. This leaves an area for additional work.

Stability analysis of overturned traveling water waves does not have direct mil-

itary application. However, the demonstrated techniques can be adapted to other

dynamical systems whose application is military-centric. An example is lasers, whose

propagation is characterized by waves.
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II. Background

This section begins with a basic overview of dynamical systems. Then, a hand-

ful of experiments are presented to develop and demonstrate a general approach to

characterizing instabilities of equilibria of dynamical systems and traveling waves. It

begins with an analysis of a simple pendulum. Then, the stability of traveling waves

associated with the Akers-Milewski (AM) equation are assessed and stiffness reduc-

tion techniques are demonstrated on the Korteweg-de Vries (KdV) equation. Finally,

the vortex sheet equations and conformally-mapped Euler equations are presented.

2.1 Dynamical Systems

Dynamical systems are those in which mathematical formulas are used to charac-

terize a physical phenomenon whose state changes with time [23]. Dynamical systems

are often modeled with differential equations. For example,

xt “ F pxq (1)

where xt is the derivative of function x with respect to time, t (i.e., xt “ dx
dt

).

When possible, analytical solutions allow a user to identify the state of the system

at any point in time. However, many differential equations are too complex to solve

analytically. In these cases, numerical methods can be used to sequentially step

forward in time, solving for the system state at each iteration.

2.2 Pendulum

The pendulum is a simple physical apparatus that can be modeled to demonstrate

the concepts of dynamical systems. In Figure 2, a bob is connected to a pivot point
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via a stiff, weightless rod. The bob is allowed to swing 360o around the pivot point.

If damping effects are ignored, then the equation governing the pendulum is given by

Equation 2 [12].

θtt `
g

L
sinpθq “ 0 (2)

where θ is the angular displacement from the downward vertical position, g is the

gravitational constant, and L is the length of the rod. To simplify the presentation,

assume that L “ g. Therefore,

θtt ` sinpθq “ 0. (3)

In order to get Equation 2 into the form of Equation 1, define x “
“

x1
x2

‰

“
“

θ
θt

‰

. So,

xt “

»

—

–

x1t

x2t

fi

ffi

fl

»

—

–

x2

´ sinpx1q

fi

ffi

fl

“ F pxq (4)

which is in the form of Equation 1.

Equilibrium Points of the Pendulum.

The equilibrium points of the pendulum equation will now be calculated. First,

xt is set equal to the zero vector to yield,

xt “

»

—

–

0

0

fi

ffi

fl

“

»

—

–

x2

´ sinpx1q

fi

ffi

fl

. (5)

Solving this system gives x1 “ nπ and x2 “ 0, where n P Z. Therefore, the bob

of the pendulum is at an equilibrium point when it is positioned exactly below the

pivot point (i.e., θ “ 2nπ) or above it (i.e., θ “ 2nπ ` π). See Figure 3. Looking

at how the pendulum responds to small perturbations from the equilibrium points
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Figure 2. Diagram of a Pendulum.

..
Figure 3. Equilibrium Points of a Pendulum.
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determines the stability of these points. Intuitively, the equilibrium point that is

positioned below the pivot point is stable. In other words, when the bob is slightly

perturbed away from this equilibrium point, it will move back toward the equilibrium

point and oscillate around it. When damping effects are present, the oscillation will

shrink as the bob eventually comes to rest at the equilibrium point. Conversely, the

equilibrium point that is positioned above the pivot point is unstable; when slightly

perturbed it will move away. The following sections provide the analysis to verify this

intuition.

Linear Stability Analysis of the Pendulum.

In order to analytically determine the stability, consider small perturbations of

an equilibrium point. Let x “ x ` δ ω, where x is an equilibrium point, δ is a small,

scalar constant, and ω is a perturbation vector. Substituting this expression into

Equation 1 yields

px ` δ ωqt “ F px ` δ ωq (6)

���
0

xt ` δ ωt “ F px ` δ ωq. (7)

Generating a Taylor series expansion of the right-hand side and canceling higher order

terms gives the following result.

ωt “ Jpxqω ` Opδq (8)
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where Jpxq is the Jacobian of F pxq evaluated at the equilibrium points x̄ “
“

nπ
0

‰

.

Now, evaluating the Jacobian using the definition of F pxq in Equation 4 gives,

Jpxq “

»

—

–

0 1

´ cospx1q 0

fi

ffi

fl

. (9)

If the Opδq term of Equation 8 is ignored, then the resulting equation is a homogeneous

linear system of ODEs,

ωt ´ Jpxqω “ 0. (10)

Inserting the equilibrium points result in a homogeneous linear system of ODEs with

constant coefficients, the solution of which is,

ωj “ vje
λj t (11)

where vj and λj are the eigenvectors and eigenvalues of the Jacobian matrix, respec-

tively [13]. The real part of the eigenvalues indicate the stability of the equilibrium

point. If there exists λj such that Repλjq ą 0, then the equilibrium point is unstable.

Conversely, if Repλjq ď 0 @λj P Λ, where Λ is the spectrum, then it is stable [14].

The stability of the equilibrium points of the pendulum are calculated next.

Case 1: x1 “ r2nπ, 0sT (i.e., the point directly below the pivot point):

Start by calculating the Jacobian matrix,

Jpx1q “

»

—

–

0 1

´ cosp2nπq 0

fi

ffi

fl

(12)

“

»

—

–

0 1

´1 0

fi

ffi

fl

. (13)
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Then, calculate the eigenvectors and eigenvalues of the Jacobian matrix,

v1 “ c

»

—

–

´i

1

fi

ffi

fl

(14)

v2 “ c

»

—

–

i

1

fi

ffi

fl

(15)

where c is an arbitrary constant. Also,

Λpx1q “ i,´i. (16)

Finally, take the real part of the eigenvalues to get

RepΛpx1qq “ r0, 0sT . (17)

Since the eigenvalues are pure imaginary, x1 is stable. This result confirms the intu-

ition that the equilibrium point just below the pivot point is stable.

Case 2: x2 “ r2nπ ` π, 0sT (i.e., the point directly above the pivot point):

Following the same steps as in Case 1 gives the following result,

v1 “ c

»

—

–

1

1

fi

ffi

fl

(18)

v2 “ c

»

—

–

´1

1

fi

ffi

fl

(19)
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where c is an arbitrary constant.

RepΛpx2qq “ r1,´1sT (20)

Since Repλjpx2qq are of opposite signs, x2 is a saddle point, which is unstable. This

result confirms the intuition that the equilibrium point directly above the pivot point

is unstable.

Dynamic Stability Analysis of the Pendulum.

The pendulum equation is evolved with a fourth order Runge-Kutta time-stepping

algorithm. Figure 4 shows the Cauchy error of the first perturbed equilibrium point

as a function of the time step, ∆t. Since the Runge-Kutta method is fourth order,

the Cauchy error should match up to a line with a slope of four on a log-log plot.

Therefore, the figure includes lines of slope one, two, three, and four for comparison.

In the plot, the Cauchy error data do line up with the fourth order line. The plot

reaches a minimum, after which the Cauchy error is fairly flat. This minimum is at

or below machine precision. This observation is an indication that the algorithm has

been implemented correctly. A similar analysis was made for the other equilibrium

point with similar results.

A phase portrait and associated plots provide a qualitative depiction of the sta-

bility of the equilibrium points. A few points are selected close to the equilibrium

points. These points are evolved through the time-stepping algorithm to determine

the trajectories. Figure 5 shows the phase portraits of the pendulum’s equilibrium

points. Also included are plots of the evolution of the pendulum’s angle, θ.

The phase portrait for x1 “ r0, 0sT shows elliptical trajectories around the equi-

librium point. This depiction is indicative of a system whose eigenvalues are pure

imaginary [14]. The figure on the right shows that the perturbed point immediately
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Figure 4. Cauchy Error of Pendulum Equation using RK4. The data indicates that the
algorithm is fourth order, as expected for RK4.

begins moving toward the equilibrium point. This trajectory then oscillates around

the equilibrium point, as intuition suggests. These observations indicate that the

equilibrium point below the pivot point is stable.

The phase portrait for x2 “ rπ, 0sT is that of a saddle point. This portrait is

indicative of a system with eigenvalues that are both positive and negative [14]. The

figure on the right shows that the perturbed point moves away from the equilibrium

point. These observations suggest that the equilibrium point above the pivot point

is unstable.

Next, the eigenvalues of the pendulum equation are numerically estimated. To

do so, let xo “ x ` δv, where δ is a small positive constant and v is a perturbation

vector. Then, using a linearization ansatz and ignoring Opδ2q terms,

xptq « x ` δ
2

ÿ

j“1

αjvje
λjt (21)

where αj are constants, vj are eigenfunctions, and λj are eigenvalues. Because this is

a two-dimensional system, there are only two indices. Rearranging the equation and
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taking norms gives the following derivation,

xptq ´ x « δ
2

ÿ

j“1

αjvje
λjt (22)

}xptq ´ x} « δ}
2

ÿ

j“1

αjvje
λjt}. (23)

Using the triangle inequality to take the norm inside the summation yields

}xptq ´ x} À δ
2

ÿ

j“1

|αj|}vj}|eλjt|. (24)

Splitting the eigenvalue into real and imaginary parts yields

}xptq ´ x} « δ
2

ÿ

j“1

|αj|}vj}|epRepλjq`iImpλjqqt| (25)

« δ
2

ÿ

j“1

|αj|}vj}e
Repλjqt|eiImpλjqt|. (26)

Note that |eiImpλjqt| “ 1, so that

}xptq ´ x} « δ
2

ÿ

j“1

|αj|}vj} e
Repλjqt. (27)

Multiplying and dividing each index, j, by eRepλmaxqt, where Repλmaxq is the eigenvalue

with the largest real part yields

}xptq ´ x} « δ
2

ÿ

j“1

|αj|}vj}e
Repλmaxqt

ˆ

eRepλjqt

eRepλmaxqt

˙

(28)

« δ
2

ÿ

j“1

|αj|}vj}e
Repλmaxqt

ˆ

eRepλjq

eRepλmaxq

˙t

. (29)
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Note that
´

eRepλjq

eRepλmaxq

¯t

Ñ 0 as t Ñ 8 for j ‰ max. Therefore,

}xptq ´ x} « δ|αmax|}vmax}eRepλmaxqt

�������*1
ˆ

eRepλmaxq

eRepλmaxq

˙

t (30)

« δ|αmax|}vmax}eRepλmaxqt. (31)

Now, take the log of both sides to get

log }xptq ´ x} « log
“

δeRepλmaxqt|αmax|}vmax}
‰

(32)

« log rδ|αmax|}vmax}s ` log
“

eRepλmaxqt
‰

(33)

« C ` Repλmaxqt (34)

where C “ log rδ|αmax|}vmax}s is a constant. Therefore, plotting time vs. log }xptq ´

x} should generate a linear relationship, whose slope is Repλmaxq. It is necessary,

however, that the errors, }xptq ´x}, remain small relative to the size of δ. Also, when

the time-stepping begins, all of the eigenvalues affect the dynamics of the system.

It is only when time increases enough, that the affect of λmax dominates that of the

other eigenvalues. Therefore, the beginning and end of a plot are to be excluded when

determining λmax from the data.

For the initial DSA of the pendulum equation, a perturbation vector of v “ r1, 0sT

is used. Figure 6 shows the time evolution of log }xptq ´x1} for the equilibrium point

x1 “ r0, 0sT . However, there does not appear to be a linear portion in the plot.

Rather, log }xptq ´ x1} “ Opδq, which indicates possible stability at the equilibrium

point. From the linear stability analysis, we know this equilibrium point is spectrally

stable.

Figure 6 also shows the time evolution of log }xptq ´x2} for the equilibrium point
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x2 “ rπ, 0sT. From the plots, it appears that there is a linear relationship within

a given time range. A least squares solution of the data in this range provides the

Repλmaxq estimation. As the value of δ approaches zero, the numerical approximation

of Repλmaxq improves (i.e., limδÑ0Repλqpδq “ Repλmaxq). Figure 7 shows Repλmaxq

converging to a value 1.2 ˆ 10´6 less than 1.0, the correct eigenvalue determined

previously in the linear stability analysis section.

It should be noted that the perturbation vector, v “ r1, 0sT, used in the above

analysis is not equal to the eigenvector, r1, 1sT, determined previously in the linear

stability analysis. In order to determine the sensitivity of Repλmaxq to the perturba-

tion vector, consider a series of perturbation vectors, v “ rcospθq, sinpθqsT in which θ

varies from 0 to 2π. Figure 8 shows 1 ´ Repλmaxq as a function of θ.

Pendulum Conclusion.

The pendulum was the first dynamical system used as a proof of concept for the

research used in this thesis. The equilibrium points were identified as the two points in

which the bob of the pendulum is positioned directly below and above the pivot point

(i.e., x1 “ r0, 0st and x2 “ rπ, 0st). Linear stability analysis identified x1 as stable,

with eigenvalues that are purely imaginary. It then identified x2 as unstable, with

eigenvalues of ˘1. The Dynamic Stability Analysis identified x1 as possibly stable

and x2 as unstable. The accuracy of the maximum eigenvalue estimation depended

on the perturbation vector used. The error of the estimated values for Repλmaxq

ranged from 6.2 ˆ 10´6 to 2.1 ˆ 10´9, depending on the perturbation vector used.

Therefore, both SSA and DSA identified x2 as unstable.
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2.3 Akers-Milewski Equation

The Akers-Milewski equation is a PDE of traveling waves in deep water. Its basic

form is

ut ´ cux ` H u ´ H uxx ´ 3{2uux “ 0 (35)

where u represents the height of the wave and H is the Hilbert transform. Note

that this form of the Akers-Milewski equation has the wave represented in a traveling

frame of refence. The Hilbert transform [35] is formally defined as

H upxq “
1

π

ż 8

´8

upτq

x ´ τ
dτ. (36)

In frequency domains, the Hilbert transform generates a ´π{2 phase shift. Thus, in

Fourier space, the Hilbert transform applied to u becomes ´i signpkqûpkq.

The Akers-Milewski equation supports depression wave and elevation wave so-

lutions. Figure 9 plots a depression wave solution and an elevation wave solution.
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CFL Condition of the Akers-Milewski Equation.

The CFL condition defines the relationship between the space discretization and

the time discretization: ∆t ď Op∆xpq. The CFL condition is based on the numerical

method being used and the PDE being solved. The fourth order Runge-Kutta method

is the one used in these demonstrations. Most of the time discretization restriction

comes from the linear terms of the PDE. Therefore, to estimate the CFL condition,

consider the linear portion of the Akers-Milewski equation

ut ´ cux ` H u ´ H uxx “ 0 (37)

with a Fourier space representation of

ût “ i
`

ck ` signpkq ` signpkqk2
˘

û. (38)

Accordingly, λ “ i pck ` signpkq ` signpkqk2q, which is pure imaginary. Next, the

stability regions for several Runge-Kutta methods are shown in Figure 10 [1]. The

figure shows that the fourth-order method is stable for ´2.9 ď Impλ∆tq ď 2.9 on the
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imaginary axis. Applying this constraint to the Akers-Milewski equation gives the

following result,

´2.9 ď Im
“

ipck ` signpkq ` signpkqk2q
‰

∆t ď 2.9 (39)

´2.9 ď Opk2q∆t ď 2.9. (40)

Note that k ď OpNq. Therefore,

´2.9 ď OpN2q∆t ď 2.9 (41)

∆t ď Op2.9{N2q (42)

∆t ď Op∆x2q. (43)

Numerical Implementation of the Akers-Milewski Equation.

Due to the presence of linear and nonlinear terms in the Akers-Milewski equation,

there is a stiffness problem with the numerical implementation, as seen in the CFL

condition above. Thus, integrating factors are incorporated to minimize the stiffness

of the equation. The derivation of the integrating factors method follows. First,

convert the equation into Fourier space, where û denotes the Fourier transform of u.

put ´ c pux ` Ĥ û ´ Ĥ xuxx ´ 3{2yuux “ 0 (44)

put ´ cpikqû ´ i signpkqû ´ i signpkqk2û “ 3{2yuux (45)

where k is the wave number. Note that p0.5u2qx “ uux. Therefore, yuux “ {p0.5u2qx “

pikq{0.5u2 “ pikqF rF ´1p0.5 ûq2s “ N pûq, where F is the Fourier transform, F ´1 is

the inverse Fourier transform, and N pûq denotes the nonlinear equation. Using this
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Figure 10. The plot shows the stability region for first-order through fifth-order Runga-
Kutta methods [1]. The x-axis is Re(λ∆t) and the y-axis is Im(λ∆t).
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in the equation yields

put ´ irck ` signpkqp1 ` k2qsû “ 3{2N pûq. (46)

Now multiplying both sides by eγt, where γ ” ´irck ` signpkqp1 ` k2qs yields

eγt put ` eγtγû “ 3{2 eγtN pûq. (47)

Let B ” eγtû. Consequently, û “ e´γtB. Also, note that d
dt

pBq “ Bt “ eγt put`e
γtγû,

the left-hand side of Equation 47. Thus,

Bt “ 3{2 eγtN pe´γtBq (48)

a new PDE with only a nonlinear term. Thus, the linear stiffness might be removed,

as is observed numerically.

The system of ODEs (Equation 46) and the version incorporating integrating

factors (Equation 48) are implemented with a fourth order Runge-Kutta time-stepping

algorithm. Note that the initial data being provided to the algorithm is generated

from a Newton solver. Figure 11 shows the Cauchy error plots of the output. Since

the data points run parallel to a line of slope four, this is an indication that the

methods have been implemented correctly.

As mentioned, the integrating factors are incorporated in the equation to counter

the effects of stiffness in the equation. Figure 12 shows a plot of N (the number of

spacial points) vs ∆tmax. Note that ∆tmax is the maximum time step for which the

system evolves stably. Larger time steps cause the evolution to become unstable.

The plot of N vs ∆tmax is done for both the original form of the equation and the

version with integrating factors. The slope of the plot gives the CFL condition for the
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Figure 11. Cauchy Error of Akers-Milewski Equation using Fourth Order Runge-Kutta
method. The figure on the left uses a direct implementation. The figure on the right
uses integrating factors. The figures indicate that both sets of code have been imple-
mented correctly

numerical method. The CFL conditions for the direct RK4 implementation and the

RK4 with integrating factors are ∆t ď Op∆x2.06q and ∆t ď Op∆x1.25q, respectively.

Spectral Stability Analysis of the Akers-Milewski Equation.

A derivation of the SSA method is first presented, followed by experiments and

numerical results. Starting with the Akers-Milewski equation in a traveling frame of

reference,

ut ´ cux ` H u ´ H uxx ´ 3{2uux “ 0. (49)

First, consider the steady solution, solving

���
0

ũt ´ cũx ` H ũ ´ H ũxx ´ 3{2ũũx “ 0. (50)

Now, consider a perturbation to the system, upx, 0q “ ũpxq ` δvpxq, where ũpxq is a

steady solution, δ is a small constant, and vpxq is a perturbation across the system.

Next, consider the perturbed system, evolved in time: upx, tq “ ũpxq ` δvpxqeλt. Let

this system be applied to Equation 49. [Note: the dependence of u and v on x and t
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will be dropped in the notation for brevity.]

0 “ δ0r´cũx ` H ũ ´ H ũxx ´ 3{2ũũxs

` δ1rvλeλt ´ cvxe
λt ` H veλt ´ H vxxe

λt ´ 3{2pũvxe
λt ` ũxve

λtqs

` δ2r´3{2vvxe
2λts. (51)

Note that the δ0 terms equal Equation 50, which equals zero. If the δ2 term is ignored,

then the system reduces to the following,

λv “ cvx ´ H v ` H vxx ` 3{2pũvx ` ũxvq (52)

λv “

„

c
B

Bx
´ H ` H

B2

Bx2
` 3{2

ˆ

ũ
B

Bx
` ũx

˙ȷ

v. (53)

Now, consider all of the terms preceding v on the right side of the equation as an

operator acting on v. Thus,

λv “ Av (54)

where A is a linear operator as described. Equation 54 is a general spectral problem.

Operator A is infinite dimensional. To approximate A, change both sides of the
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equation into Fourier space.
xλv “ xAv (55)

where xAv is truncated to a finite number of wave numbers. Now, consider F as

a linear operator that transforms a vector in normal space into a vector in Fourier

space. Applying F and an identity operator to the right side of the equation gives

the following result,

λv̂ “ FAF´1Fv. (56)

Let FAF´1 be replaced by another linear operator, A . Also, note that Fv “ v̂.

Therefore,

λv̂ “ A v̂. (57)

This equation is also in the form of a general spectral problem. Furthermore, operator

A is similar to operator A (i.e., they have the same spectrum).

Although operator A is also unknown, there is a technique to determine its ele-

ments, column by column. First, note that xAv “ A v̂. Now, consider a perturbation

vector, v1, whose Fourier transform is v̂1 “ r1 0 0 ¨ ¨ ¨ sT “ e1 “ cannonical basis

vector for the first coordinate. Therefore, v1 “ F ´1pv̂1q. Now, plugging this vector

into the right hand side of Equation 52 results in Av1. Taking the Fourier transform

of this result gives yAv1. Therefore,

xAv1 “ cpikqF rF ´1pv̂1qs ´ p´iqsignpkqF rF ´1pv̂1qs ` p´iqsignpkqpikq2F rF ´1pv̂1qs

` 3{2ũpikqF rF ´1pv̂1qs ` 3{2pikqũF rF ´1pv̂1qs (58)

“ cpikqv̂1 ` piqsignpkqp1 ` k2qv̂1 ` 3pikqũv̂1. (59)
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Finally, note that A v̂1 “ A r1 0 0 ¨ ¨ ¨ sT “ A1, the first column of A . Therefore,

A1 “ cpikqv̂1 ` piqsignpkqv̂1p1 ` k2q ` 3pikqũv̂1. (60)

Similarly,

A2 “ cpikqv̂2 ` piqsignpkqv̂2p1 ` k2q ` 3pikqũv̂2 (61)

where v̂2 “ r0 1 0 0 ¨ ¨ ¨ sT . This process is then repeated for each column of A . This

process is allowed because v1 is a smooth function in real space. After A is fully

determined, the eigenvalues are calculated via MATLAB’s ‘eig’ function. Figure 13

shows a plot of the eigenvalues (real part vs. imaginary part).

Dynamic Stability Analysis of the Akers-Milewski Equation.

A derivation of the DSA method is first presented. Begin with the Akers-Milewski

equation in a travelling frame of reference.

ut ´ cux ` H u ´ H uxx ´ 3{2uux “ 0 (62)

Now consider a perturbation to the system, upx, 0q “ ũpxq ` δbpxq, where ũpxq is a

steady solution, δ is a small constant, and bpxq is a perturbation across the system.

Because bpxq can take any form, a finite approximation is used. Consider,

bpxq “

N
ÿ

j“1

αjvjpxq (63)

where αj are constants, vjpxq are eigenfunctions, and N is the number of Fourier

modes. This approximation of bpxq presents an issue for estimating Repλmaxq. Since

bpxq is infinite dimensional, the N eigenfunctions are not a complete basis. Therefore,

the actual vmax may not map onto the eigenspace. So, the largest eigenfunction, and
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Figure 13. Steady Spectral Stability Analysis of the Akers-Milewski Equation: Eigen-
value Estimates. The figures on the left and right have different levels of zoom on the
x-axis to show the relative size of the values.

associated eigenvalue, in the basis may not represent the actual maximum.

Returning to the derivation, plug the approximation of bpxq into the perturbed

system,

upx, 0q “ ũpxq ` δ
N
ÿ

j“1

αjvjpxq (64)

The derivation from this point forward mimics that which was presented in the DSA

section for the pendulum. The result is,

log}upx, tq ´ ũpxq} « C ` Repλmaxqt (65)

where C is a constant and Repλmaxq is the largest eigenvalue (real part) associated

with an eigenfunction which is mapped to the eigenspace. Let upx, 0q “ ũpxqp1 ` δq.

Therefore, the perturbation δbpxq “ δũpxq. Using this initial condition and evolving

the system with the numerical time stepper, the values of }upx, tq´ũpxq} are collected

as a function of time. When Repλmaxq ď 0, a plot of }upx, tq ´ ũpxq} vs time should

form a linear relationship due to an estimation error of the wave speed which is

used to establish the frame of reference. Because of this estimation error, the value

of }upx, tq ´ ũpxq} will grow linearly with time. When Repλmaxq ą 0, a plot of
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log }upx, tq ´ ũpxq} vs. time should form a linear relationship, whose slope is a lower

bound for the value of Repλmaxq.

Figure 14 shows this type of plot for a depression wave (amplitude = -0.4). [Note

that amplitude is defined as the distance from a flat wave to the largest peak/trough.]

The plot on the left has linear axes, whereas the plot on the right has the y-axis in

log scale. The plot on the left has an apparent linear relationship, whereas the plot

on the right does not. Therefore, the data indicates that this depression wave is

stable. However, the perturbation vector that was used, δũpxq, may or may not be in

the same space as the eigenvector with the largest eigenvalue. Therefore, we cannot

conclude that the wave solution is stable.

Figure 15 shows a similar set of plots for an elevation wave (amplitude = 0.4). The

plot on the left does not show an apparent linear relationship, whereas the plot on

the right does have a range in which there appears to be a linear relationship. It also

shows periods of nonlinearity at the beginning and end of the plot. The nonlinearity

at the beginning of the plot can be attributed to the non-maximum eigenvalues, whose

effect is not yet diminished by the growth of time. The nonlinearity at the end of

the plot can be attributed to the nonlinear terms (opδ2q ` opδ3q ` ¨ ¨ ¨ q, which were

ignored in the derivation of this method.

As δ shrinks, the estimation of Repλmaxq improves. Figure 16 shows the asymp-

totic estimation of Repλmaxq “ 0.0963. Since Repλmaxq ą 0, this elevation wave is

unstable, as expected.

Comparison of Spectral Stability Analysis and Dynamic Stability Anal-

ysis.

Figure 17 shows a plot of the estimated Repλmaxq values for SSA and DSA using

several different amplitudes of elevation waves.

29



0 100 200 300 400 500 600 700 800 900 1000

Time

0

1

2

3

4

5

6

7

8

9

||
 u

(x
,t

) 
- 

u
o
 |
|

10
-7

0 100 200 300 400 500 600 700 800 900 1000

Time

10
-8

10
-7

10
-6

||
 u

(x
,t

) 
- 

u
o
 |
|

Figure 14. Dynamic Stability Analysis of a Depression Wave of the Akers-Milewski
Equation. The figure on the left shows the linear plot of }upx, tq ´ ũpxq} vs. time. The
figure on the right shows the data with semi-log axes. The apparent linearity in the left
figure indicates that the solution may be stable, though no conclusion can be made.
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Figure 15. Dynamic Stability Analysis of an Elevation Wave of the Akers-Milewski
Equation. The figure on the left shows the linear plot of }upx, tq ´ ũpxq} vs. time.
The figure on the right shows the data with semi-log axes. The apparent linearity in
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The SSA and DSA methods both have pros and cons. A clear advantage of the SSA

is that it can reveal the full spectrum of a wave solution; giving both eigenvectors and

eigenvalues. However, this comes at a computational cost. Calling the ‘eig’ function

in MATLAB involves a QR factorization, which costs O(N3) flops.

One of the advantages of the DSA is the greater ease of implementing. As long as

a time-stepping algorithm can be implemented for a traveling wave, the DSA can be

used. Also, the computational cost is potentially less than that of the SSA. The CFL

condition determines the computational cost of the time-stepper. For the Akers-

Milewski equation, the CFL conditions were ∆t ď Op∆x2.06q and ∆t ď Op∆x1.25q

for the direct RK4 and RK4 with integrating factors algorithms, respectively. Now,

looking at this relationship in terms of time steps: Op1{∆tq „ Op1{∆x2.06q “ OpN2.06q

and Op1{∆tq „ Op1{∆x1.25q “ OpN1.25q. Additionally, a fast Fourier transform,

which costs O(N log N) flops, is performed at each iteration of the algorithm. Thus,

the total cost for the DSA is O(N2.06)O(N log N) = O(N3.06 log N) flops for the

direct RK4 algorithm and O(N1.25)O(N log N) = O(N2.25 log N) flops for the RK4

with integrating factors algorithm. This cost assessment highlights the importance of

using integrating factors, or some other method, to reduce the stiffness of the system.

Despite potential cost savings, the DSA provides less information in the stability

analysis. It provides a lower bound for the eigenvalue with the largest real part. If

the estimate that it provides is positive, then the wave can be identified as being

unstable. However, an estimate that is less than or equal to zero does not lead to

any conclusion. Finally, the DSA allows the dynamics of the wave to be analyzed as

it evolves.
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2.4 Korteweg-de Vries Equation

The experiments in this section are not associated with stability. Rather, they

focus on various methods for mitigating the stiffness of the equation. The methods

explored are: integrating factors, Ruth splitting, and IMEX. As mentioned in the

previous section, the stiffness of the equation directly affects the CFL condition, which

determines the computational cost of the DSA algorithm. The following sections

detail these methods.

The Korteweg-de Vries (KdV) equation is a PDE of waves in shallow water. Its

basic form is,

ut “ uxxx ` uux (66)

where u represents the height of the wave. Note that u is a function of x and t (i.e.,

upx, tq). A transformation to change the traveling wave into a stationary wave could

be performed, similar to that which was done with the Akers-Milewski equation.

However, the form of Equation 66 is used in the following experiments. Various wave

profiles can be used as the initial data for the KdV equation. The experiments in this

section will use α cospxq for the initial data, where α is the amplitude of the wave.

Integrating Factors Applied to Korteweg-de Vries Equation.

The KdV equation has a linear term and a nonlinear term: uxxx and uux, respec-

tively. From Equation 66, first convert into Fourier space,

ût “ ûxxx ` xuux (67)

“ pikq3û ` p yu2{2qx (68)

where k is the wave number. Note that p0.5u2qx “ uux. Therefore, yuux “ {p0.5u2qx “

pikq{0.5u2 “ pikqF rF ´1p0.5 ûq2s “ N pûq, where F and F ´1 are the Fourier trans-
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form and inverse Fourier transform, respectively. Using this in the equation,

ût ´ pikq3û “ N pûq (69)

Next, multiply both sides by eγt, where γ “ ´pikq3

eγtût ` eγtγû “ eγtN pûq (70)

Now, let B “ eγtû. Consequently, û “ e´γtB. Also, note that B
Bt

pBq “ eγtût ` eγtγû,

the left hand side of Equation 70. Thus,

Bt “ eγtN pe´γtBq (71)

the new PDE with only a nonlinear term. This PDE is implemented in MATLAB with

a fourth order Runga-Kutta time-stepping algorithm. Figure 18 shows the Cauchy

error of this implementation. The data matches up to a fourth order line, which

indicates that the code has been implemented correctly. Also shown in Figure 18

is a CFL plot. The data shows the experimentally determined values of ∆tmax for

various space discretizations. A least squares fit of the data gives a CFL condition

of: ∆t ď OpN0.90q. This is a remarkable improvement over the CFL condition for a

direct RK4 implementation, which is ∆t ď Op∆x3q. More plots were made for waves

of varying amplitude with similar results.

Ruth Splitting Applied to the Korteweg-de Vries Equation.

The procedure presented by Forest and Ruth [30] is an example of a split-step

method. Following their procedure, let α “ 1´21{3, A “ 1
2p1`αq

, B “ 1
1`α

, C “ α
2p1`αq

,
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Figure 18. Cauchy Error and CFL Condition of the Korteweg-de Vries Equation with
Integrating Factors. The initial condition is uopxq “ 0.1 cospxq. The figure on the left
shows that the Cauchy data is fourth order, as expected for RK4. The figure on the
right shows the CFL condition. Lines with slopes of 1.0 and 1.5 are given for reference.
The data has a least squares fit of 0.90.

and D “
pα´1q

pα`1q
. Then,

upt ` ∆tq “ S1pA∆tqS2pB∆tqS1pC∆tqS2pD∆tqS1pC∆tqS2pB∆tqS1pA∆tquptq

(72)

where S1 is the nonlinear term of the KdV equation (i.e., ût “ pikq F rF ´1p0.5ûq2s)

and S2 is the linear term (i.e., ût “ pikq3û). Note that both terms are solved in

Fourier space. S1 is solved with a fourth order Runga-Kutta time-stepping algorithm.

S2 is solved directly. Figure 19 shows the Cauchy error and CFL plots for the KdV

equation with Ruth splitting. The Cauchy error tracks closely to the fourth order

line, indicating that the code is implemented correctly. A least squares fit of the data

in the CFL plot gives a CFL condition of ∆t ď Op∆x0.84q.

Implicit-Explicit Methods Applied to Korteweg-de Vries Equation.

Ascher, Ruuth, and Wetton present equations for solving PDEs which include

linear and nonlinear terms. These schemes are called Implicit-Explicit (IMEX) meth-

ods [9]. They present first-order through fourth-order schemes. The first-order and
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Figure 19. Cauchy Error and CFL Condition of the Korteweg-de Vries Equation with
Ruth Splitting. The initial condition is uopxq “ 0.1cospxq. The figure on the left shows
that the Cauchy data is fourth order. The figure on the right shows the CFL condition.
Lines with slopes of 1.0 and 1.5 are given for reference. The data has a least squares
fit of 0.84.

second-order schemes are listed below.

First-order:
un`1 ´ un

∆t
“ fpunq ` Z1gpunq (73)

Second-order:

un`1 ´ un

∆t
“ 3{2fpunq ´ 1{2fpun´1q ` Z1{2rgpun`1q ` gpunqs (74)

where f and g are the nonlinear and linear terms, respectively, and Z1 is a non-

negative parameter.

The schemes were coded in MATLAB. The first-order and second-order schemes

both performed as expected. Figure 20 shows the Cauchy error plots. The third-

order and fourth-order schemes were attempted, but both were unstable. Kassam

and Trefethen also found intermittent stability for IMEX schemes [36].

IMEX schemes are stable for any size time step. This was verified by increasing

the size of the time steps for the second order IMEX scheme. It remained stable up

to ∆t “ 1.0. Larger time steps were not attempted.
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Figure 20. Cauchy Error for Korteweg-de Vries Equation with First-order and Second-
order IMEX schemes. The figure on the left is the first-order IMEX scheme. The
figure on the right is the second-order IMEX scheme

2.5 Vortex Sheet Equations

This section describes the vortex sheet problem and the associated equations of

motion. This subject is treated in greater detail in [17][33][34]. Portions are repeated

below for greater context.

Let there be two inviscid, incompressible, and irrotational fluids separated by

an interface, Γ, as in Figure 21 [34]. The parameterized interface, Γ, is defined by

Xpα, tq “ pxpα, tq, ypα, tqq, while n is the unit normal vector, s is the unit tangent

vector, and α is the parameterization variable. The velocity, u, on both sides of the

interface are described by the Euler equations, as follows,

ujt ` puj ¨ ∇quj “ ´
1

ρj
∇ppj ` ρjgyq (75)

∇ ¨ uj “ 0 (76)

where the subscript j denotes fluid 1 or fluid 2, ρ is the fluid density, p is the fluid

pressure, and g is the gravitational constant. The system is also governed by the
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Figure 21. Diagram of a Fluid Interface for the Vortex Sheet Problem [33].

following boundary conditions,

rusΓ ¨ n “ 0, the kinematic boundary condition (77)

rpsΓ “ τκ, the Laplace-Young boundary condition (78)

ujpx, yq Ñ p˘V8, 0q as y Ñ ˘8, the far-field boundary condition (79)

where r¨sΓ denotes a jump from above to below Γ, τ is the surface tension, and kappa

is the local curvature. V8 satisfies the equality ´γ{2 “ V8, where γ is the vortex

sheet strength and γ is the average of γ in a period of the vortex sheet. While

the normal component of fluid velocity, Upαq, is continuous across Γ, the tangential

velocity of the fluid, V F pαq, is typically discontinuous. The tangential velocity of the

interface, V , is made up of the tangential fluid velocity, V F and an arbitrary velocity

value, V A, by the relationship V “ V F ` V A. The selection of V A establishes the

parameterization. This type of interface is called a vortex sheet. The fluid velocity is

defined by

U “ W ¨ n (80)

V F “ W ¨ s (81)
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where W, the Birkhoff-Rott integral, is defined as

W “
1

4iπ
P.V.

ż 2π

0

γpα1qcot1
2

pzpαq ´ zpα1qqdα1 (82)

where P.V. denotes the Cauchy principal value integral and zpαq “ xpαq`iypαq is the

complexification of the interface position. The curve evolves according to the normal

and tangential velocities by the following equation.

Xt “ Un ` V s. (83)

Now consider the interface curve described by the geometric variables θ and sα rather

than x and y, where θ is the tangent angle from the x-axis and sα is the arclength

metric. These variables are defined by the following relationships,

θ “ tan´1

ˆ

yα
xα

˙

(84)

sα “
a

x2α ` y2α. (85)

Consequently, given θ and sα, pxα, yαq “ sαpcospθq, sinpθqq from which px, yq can

be determined (up to a translation) by integration. The evolution of θ and sα are

described in the following equations,

θt “
Uα ` V θα

sα
(86)

psαqt “ Vα ´ θαU. (87)

As mentioned previously, V A is an arbitrary selection that determines the parame-

terization. For convenience, let V A be chosen such that Vα “ θαU .
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Next, let the length of the curve be defined by

L “ 2πsα. (88)

Then, the evolution of L is defined by

Lt “ 2πpsαqt (89)

“ 2πpVα ´ θαUq. (90)

By implementing the chosen definition of the tangential velocity, Vα “ θαU , the

right hand side of Equation 90 falls out, except for the wavenumber k “ 0. At

this wavenumber, Vα “ 0 and θαU equals its average value over the interval, i.e.,

pθαUqk“0 “ 1
2π

ş2π

0
θαUdα. Thus,

Lt “ ´

ż 2π

0

θαUdα. (91)

Finally, using this parameterization, the evolution of γ is

γt “
2π

L
θαα `

2π

L
ppV ´ W ¨ sqγqα

´ 2A

„

2π

L
Wt ¨ s `

σL

2π
sinpθq `

π2

L2
γγα ´ pV ´ W ¨ sqpWα ¨ sq

ȷ (92)

where A is the Atwood number and σ is the Bond number, defined as

A “
∆ρ

2ρ
(93)

σ “
g

k2τ
(94)

where g is the gravitational constant and k is the typical wavenumber.
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Numerical Implementation of the Vortex Sheet Equations.

A concise summary of the previous section shows that the pertinent equations to

evolve the vortex sheet are

Lt “ ´

ż 2π

0

θαUdα (95)

θt “
Uα ` V θα

sα
(96)

γt “
2π

L
θαα `

2π

L
ppV ´ W ¨ sqγqα

´ 2A

„

2π

L
Wt ¨ s `

σL

2π
sinpθq `

π2

L2
γγα ´ pV ´ W ¨ sqpWα ¨ sq

ȷ (97)

The vortex sheet equations were implemented with a fourth order Runga-Kutta

method. However, the implementation never reached fourth order. In fact, the

Cauchy error plots never improved past first order. The main reason for this is

the presence of the ‘Wt’ term. The steps of the Runga-Kutta methods require ref-

erence to variable values at previous time steps and previous algorithm steps. The

‘Wt’ term itself required a time-differences method to estimate its value. This, in

effect, created a hybrid Runga-Kutta method that never performed well. Addition-

ally, the computational cost is OpN2q flops per iteration. If the CFL condition is

taken as that of the RK4 method, then ∆t ď Op∆x1.5q. Therefore, the cost of the

scheme is OpN3.5q, which is greater than that of SSA (OpN3qq. These two factors

combined made the vortex sheet equations too computationally expensive. Overall,

the numerical implementation never allowed the waves to evolve long enough to ob-

tain eigenvalue estimates. Therefore, the conformally-mapped Euler Equations were

used as another system of equations to analyze overturned traveling waves.
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2.6 Conformally-Mapped Euler Equations

Milewski, Vanden-Broeck, and Wang developed model equations for a two-dimensional

solitary wave traveling on a fluid of infinite depth with gravity and capillary forces.

Their model reformulates the Euler equations using a conformal map. The conformally-

mapped Euler (CME) Equations [42] are:

Xξ “ 1 ´ H pYξq, (98)

Ψξ “ H pΦξq, (99)

Yt “ YξH

ˆ

Ψξ

J

˙

´ Xξ

ˆ

Ψξ

J

˙

, (100)

Φt “
Ψ2

ξ ´ Φ2
ξ

2J
´ Y `

XξYξξ ´ XξξYξ
J3{2

` ΦξH

ˆ

Ψξ

J

˙

, (101)

where ξ is the parameterization variable, X and Y are the positional coordinates,

Φ and Ψ are the velocity potential and its harmonic conjugate, respectively, and

J “ X2
ξ ` Y 2

ξ . The CME equations in a moving frame of reference, coinciding with

the speed of the wave, c, are

Yt “ YξH

ˆ

Ψξ ´ cYξ
J

˙

´ Xξ

ˆ

Ψξ ´ cYξ
J

˙

, (102)

Φt “ ´
1

2

ˆ

Ψ2
ξ ` Φ2

ξ

J

˙

´ BY `
XξYξξ ´ XξξYξ

J3{2
` ΦξH

ˆ

Ψξ ´ cYξ
J

˙

` Ψξ

ˆ

Ψξ ´ cYξ
J

˙

`
cpXξΦξ ` ΨξYξq

J
,

(103)

while the closures for Xξ and Ψξ remain unchanged. Note that the first set of CME

equations are written specifically for a surface water wave with Bond number, B,

equal to one. The CME equations written in a moving frame incorporate B as a

variable.
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III. Numerical Results

The goal is to determine the stability of several branches of waves from the CME

equations. First, the numerical methods to calculate the eigenvalues of these waves

via SSA and DSA are developed. Numerical problems with each method are ad-

dressed along with techniques to ameliorate the issues. Verification and validation

experiments are used to estimate accuracy limits and create confidence in the imple-

mentation of the methods. The overall results will be presented in the next chapter.

3.1 Spectral Stability Analysis of the Conformally-Mapped Euler Equa-

tions

A derivation of the SSA method applied to the CME equations is long and tedious.

The reader is directed to Appendix A for the detailed presentation.

Computed Spectrum vs. Exact Spectrum.

One validation of the SSA method is to compare the output from the code to the

known, exact solution for flat, linear waves. The flat wave is generated by the Newton

solver with an amplitude of zero. The linear wave is derived as follows. First, the

nonlinear portions of the CME equations must be removed. Start by identifying the

linear terms of the equations using small amplitude analysis. Let,

Y pξq “ δY1pξq ` Opδ2q (104)

Xξpξq “ 1 ´ δH pY1ξpξqq ` Opδ2q (105)

Φpξq “ δΦ1pξq ` Opδ2q (106)

Ψξpξq “ δH pΦ1ξpξqq ` Opδ2q. (107)
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Now, apply these definitions to the CME equations and identify the Opδq terms as

follows,

Yt “ pδY1qH

ˆ

δH pΦ1ξq ´ cδY1ξ
J

˙

´ p1 ´ δH pY1ξqq

ˆ

δH pΦ1ξq ´ cδY1ξ
J

˙

(108)

“ ´

ˆ

δH pΦ1ξq ´ cδY1ξ
pδXξq

2 ` pδY1ξq2

˙

` Opδ2q (109)

“ ´

ˆ

δH pΦ1ξq ´ cδY1ξ
p1 ´ δH pY1ξqq2 ` pδY1ξq2

˙

(110)

“ ´pδH pΦ1ξq ´ cδY1ξq ¨

«

1

p1 ´
`

2δH pY1ξq ´ δ2H pY1ξq2 ´ δ2Y 2
1ξ

˘

ff

. (111)

Note that the bracketed portion on the right can be estimated with a geometric series:
1

1´x
“

ř8

n“0 x
n. Thus,

Yt “ ´pδH pΦ1ξq ´ cδY1ξq ¨ p1 ` 2δH pY1ξq ` Opδ2qq (112)

“ ´δH pΦ1ξq ` cδY1ξ ` Opδ2q. (113)

Additionally,

pYlqt “ ´H pΦξq ` cYξ. (114)

Continuing with the next equation,

Φt “ ´1{2

ˆ

pδΦ1ξq
2 ` pδH pΦ1ξqq2

J

˙

´ BδY1

`
p1 ´ δH pY1ξqqδY1ξξ ´ p1 ´ δH pY1ξqqξδY1ξ

J3{2

` δΦ1ξH

ˆ

δH pΦ1ξq ´ cδY1ξ
J

˙

` δH pΦ1ξq

ˆ

δH pΦ1ξq ´ cδY1ξ
J

˙

` c
p1 ´ δH pY1ξqqδΦ1ξ ` δH pΦ1ξqδY1ξ

J
.

(115)
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Note that the geometric series expansion in the previous equation resulted in the J

terms being eliminated from the linear equation. Thus,

Φt “ ´BδY1 ` δY1ξξ ` cδΦ1ξ ` Opδ2q. (116)

Consequently,

pΦlqt “ ´BY ` Yξξ ` cΦξ. (117)

Now, converting these linear equations into Fourier space yields

Ŷt “ ´isignpkqΦ̂ξ ` cŶξ (118)

“ ´isignpkqpikqΦ̂ ` cpikqŶ (119)

“ |k|Φ̂ ` ickŶ , (120)

Φ̂t “ ´BŶ ` Ŷξξ ` cΦ̂ξ (121)

“ ´BŶ ` pikq2Ŷ ` cpikqΦ̂ (122)

“ ´BŶ ´ k2Ŷ ` ickΦ̂. (123)

Now, combining these linear equations in matrix form yields

»

—

–

Ŷ

Φ̂

fi

ffi

fl

t

“

»

—

–

ick |k|

´pB ` k2q ick

fi

ffi

fl

»

—

–

Ŷ

Φ̂

fi

ffi

fl

(124)

“ A

»

—

–

Ŷ

Φ̂

fi

ffi

fl

. (125)

The eigenvalues of matrix A are,

λ “ ick ˘ i
a

|k|pB ` k2q. (126)
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Figure 22 shows a plot of these two spectra for a Crapper wave (B=0). Their similarity

is an indication that the SSA code has been implemented correctly.

Removing Artifactual Eigenvalues.

The SSA method relies on matrix A being similar to matrix A . However, in

the implementation, matrix A is necessarily finite dimensional, whereas matrix A

is infinitely dimensional. Therefore, matrix A is a numerical approximation of an

infinite dimensional matrix Ã . The assumption is that the most unstable eigenvalues

from Ã will be present in A . As the size of the dimensions for A increases, the

resolution of ΛA should increase. However, there are numerical artifacts which create

eigenvalues that are not part of ΛÃ . Figure 23 shows ΛA for different dimensions.

The eigenvalues are not converging. This is true across the branch of waves and

becomes more pronounced as the amplitude increases.

It is possible to discern between valid eigenvalues and spurious ones (ones that are

not yet fully resolved) by analyzing the eigenvectors associated with each eigenvalue.

Valid eigenvalues should have a smooth eigenvector, evidenced by larger support

in the smaller frequency wavenumbers and smaller support in the higher frequency

wavenumbers, relative to the grid size defined by N. Figure 24 shows the plots of a

spurious eigenvector and a valid one.

Some simple code comparing the support at each wavenumber allows each eigen-

vector to be assessed for relative smoothness. Creating a threshold of allowed smooth-

ness is a subjective decision and one that can be the subject of experimentation to

determine the effect on the overall outcome of SSA. I found success by eliminating

eigenvectors that violated the following rule:

max
ką3N{4

|ŷpkq| ď 10´3 ˆ max
kă3N{4

|ŷpkq| (127)
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Figure 22. Computed Spectrum vs. Exact Spectrum of a Crapper Wave (B=0). The
figure on the left shows the full spectrum. The figure on the right is zoomed in to show
the overlay of individual spectra points.
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Figure 23. Computed Spectrum of Capillary Ripples via Spectral Stability Analysis
with Numerical Artifacts. The figure on the left shows the spectrum for a solution to
the CME equations (B=2, Amplitude=0.915) for multiple values of N. The figure on
the right shows Repλmaxq for a branch of MVW waves (B=2) at multiple values of N.
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Figure 24. Spurious Eigenvector vs. Valid Eigenvector. The figure in the top left shows
the support at each wavenumber of a spurious eigenvector. The figure in the top right
shows the support at each wavenumber of a valid eigenvector. The figure in the bottom
left shows a plot of the spurious eigenvector in real space. The figure in the bottom
right shows a plot of the valid eigenvector in real space.
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In other words, divide the wavenumbers into two groups. Group one consists of the

25% that have the highest frequency. Group two are all others. If the support at

any of the wavenumbers in group one is more than 0.1% of the wavenumber with

the largest support in group two, than the eigenvector and its associated eigenvalue

are eliminated. Figure 25 shows the same spectrum as above but with the numerical

artifacts removed. The plots show good convergence for multiple values of N, which

provides additional verification for the SSA implementation.

SSA of Crapper Waves.

The Crapper wave is known to be stable to super-harmonic perturbations along

its entire branch of waves[47]. Consequently, there should be no eigenvalues with

positive real parts. Therefore, another validation method is to compare the SSA

results for Crapper waves to this known maximum. Figure 26 shows the eigenvalues

with maximum real part from SSA for a branch of Crapper waves. When the y-axis

is in linear scale, the results appear to conform to the predicted stability. When the

y-axis is in logarithmic scale, the eigenvalues have positive real parts that are less

than 10´4. This is used as a baseline for the accuracy threshold for SSA.

3.2 Dynamic Stability Analysis for Conformally-Mapped Euler Equations

The fourth order Runge-Kutta method is used as the numerical time stepper for

the CME equations. For the experiments in this dissertation, a direct implementation

of the CME equations is used. The complexity of the equations prevented the use

of an integrating factors method or other methods to improve the stiffness of the

equations to a stable, verified state. These methods can be the subject of future

research efforts. The initial data for the time stepper comes from a Newton solver.

Figure 27 shows the initial wave profile and the evolution of an overturned Crapper
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Figure 25. Computed Spectrum of Capillary Ripples via Spectral Stability Analysis
with Numerical Artifacts Removed. The figure on the left shows the spectrum for a
solution to the CME equations (B=2, Amplitude=0.915) for multiple values of N. The
figure on the right shows Repλmaxq for a branch of waves (B=2) at multiple values of N.
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Figure 26. Computed Repλmaxq for a Branch of Crapper Waves (B=0, N=256) via
Spectral Stability Analysis. The figure on the left has the y-axis in linear scale. The
figure on the right has the y-axis in log scale.
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wave.

Eigenvalue Estimation via Dynamic Stability Analysis for Conformally-

Mapped Euler Equations.

Most of the theoretical groundwork for DSA as a method for estimating eigenval-

ues was detailed in the Background chapter and will not be repeated here. It will

suffice to repeat the result with pertinent variables from the CME equations. Start

with a slightly perturbed initial condition: Yo “ Ỹ p1 ` δq, where Ỹ is a solution to

the CME equations from the Newton solver. Using this initial condition, evolve the

system with the RK4 time stepper. The values of }pX,Y q ´ pXo, Yoq}8 are collected

as a function of time. Then,

log }pX,Y q ´ pXo, Yoq}8 « C ` Repλmaxqt (128)

where C is a constant. When Repλmaxq ď 0, a plot of }pX,Y q ´ pXo, Yoq}8 vs time

should form a linear relationship due to an estimation error of the wave speed which

is used to establish the frame of reference. Because of this estimation error, the value

of }pX,Y q ´ pXo, Yoq}8 will grow linearly with time. When Repλmaxq ą 0, a plot of

log }pX,Y q ´ pXo, Yoq}8 vs. time should form a linear relationship, whose slope is a

lower bound to the value of Repλmaxq.

CFL Condition.

From the SSA section above, it was shown that

λ “ ick ˘ i
a

|k|pB ` k2q (129)

“ Opi|k|3{2q (130)
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Figure 27. Crapper Wave Evolution. The figure on the left shows the intial wave profile
from the Newton solver. The figure on the right shows the evolution using the RK4
time stepper. (N=128)

which are pure imaginary. Therefore, the fourth order Runge-Kutta method is stable

for ´2.9 ď Imagpλq∆t ď 2.9. Therefore,

´2.9 ď |k|3{2∆t ď 2.9. (131)

Since k ď OpNq,

´2.9 ď OpN3{2q∆t ď 2.9 (132)

∆t ď 2.9Op1{N3{2q (133)

∆t ď Op∆ξ3{2q. (134)

In order to confirm this result experimentally, Figure 28 shows a plot of the largest

possible ∆t values for different discretizations of two Crapper waves. The slope of the

lines for the small amplitude wave and the large amplitude wave are 1.49 and 1.53,

respectively. These results match closely with the predicted value of 1.5, which is one

form of verification for the implementation of the time stepper.
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Figure 28. CFL Condition of Conformally-Mapped Euler Equations Using a Fourth
Order Runga-Kutta Algorithm. The slope of the line determines the exponent of the
CFL condition: ∆t ď Cp∆ξqslope, where C is a constant. Two Crapper waves are plotted.
The small amplitude wave (amp = 0.02) has a slope of 1.49. The large amplitude,
overturned wave (amp = 4.58) has a slope of 1.53. Both values coincide closely with a
theoretical value of 1.5.

Dealiasing.

The fourth order Runge-Kutta algorithm advances the wave in Fourier space. A

finite number of Fourier modes are evolved. The modes are computed via a discrete

Fourier transform. A consequence of this is that the higher frequency wave numbers

(beyond the largest that is kept) are mapped to lower frequency wavenumbers. As

the wave evolves in time, some of the higher frequency content becomes incorrectly

inflated, leading to instability in the time-stepping algorithm. Figure 29 shows the

growth in aliasing errors and the overall growth in error that results in the evolution

of an overturned Crapper wave.

Various dealiasing methods are available. A pseudo-dealiasing method, and the

one employed in my code, is simply setting the support for the highest frequency

wavenumbers to zero. This is done at each time step. In doing this, care must be taken

to ensure that the wavenumbers whose support are set to zero do not become necessary

to characterize the profile of the wave as it evolves. Figure 30 shows the evolution

of the same Crapper wave as above but with the ‘dealiasing’ code incorporated. As
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Figure 29. Aliasing Errors in the Time-Stepping Evolution of an Overturned Crapper
Wave (N=256, amplitude=4.58). The figure in the top left shows the evolution of the
overturned wave. The figure in the top right shows the support for each wavenumber
at three time steps. The figure in the bottom left shows the support at the highest
wavenumber as a function of time. The figure in the bottom right shows the overall
growth in error.
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can be seen in the figures, dealiasing effectively prevents errors from growing in the

high-frequency range. This stabilizes the algorithm, allowing longer, more accurate

simulations. Note that the evolution without dealiasing is unstable for a simulation

time of less than 0.02 time units. Conversely, the evolution with dealiasing is stable

after 1000 time units.

Dynamic Stability Analysis of Crapper Waves.

Figure 30 shows a long time evolution of a Crapper wave with nothing more than

linear growth in the errors. Similar experiments were conducted for Crapper waves

of other amplitudes with similar results. The linear growth in error can result from a

combination of translation error from the wave speed and truncation error. Figure 31

shows the growth in error for the evolution of a Crapper wave with linear axes. It also

includes a line with a slope of 10´14. The tolerance for the Newton solver is 10´11.

Therefore, the growth in error is within the tolerance of the wave speed estimation.

DSA is not able to conclude that a wave is stable. It can only give a lower bound

for Repλmaxq. However, the fact that the DSA code did not detect any instability

in Crapper waves, which are known to be super-harmonically stable is an additional

validation of the implementation of the method.

3.3 Spectral Stability Analysis vs Dynamic Stability Analysis for Wilton

Ripples

SSA and DSA were run for various amplitudes of a Wilton ripple (solutions to the

CME equations with B = 2.0). Figure 32 shows the profile and evolution of a Wilton

ripple. Figure 33 shows the DSA error plot for a Wilton ripple lacking evidence of

instability and one showing instability. Note that the instability does not present

as a flat, linear line (in logarithmic scale). Rather it is an oscillating line with an
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Figure 30. Evolution of a Crapper Wave with Dealiasing. The figure on the left shows
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overall linear profile. Figure 34 shows the SSA and DSA estimations of Repλmaxq

for several amplitudes of Wilton ripples. The difference in their estimated values are

within 10´3 of one another for all amplitudes. This is very good agreement and the

final validation of the methods.

In conclusion, both DSA and SSA agreed in their predictions of stability/instabil-

ity of various waves from the CME equations. They predicted the stability of Crapper

waves to within 10´4 and agreed with one another within 10´3 on the eigenvalue esti-

mates of Wilton ripples. The validation experiments were done for multiple waves of

various amplitudes. The experiments establish high confidence in the methods within

the stated accuracy ranges.

3.4 Instabilities of Gravity-Capillary Waves with B>0

The ultimate aim of this dissertation is to develop numerical methods and then

determine the stability of overturned waves. Now that the methods are created,

verified, and validated, the stability of these waves can be assessed. The DSA method

takes significantly longer than SSA. A more thorough comparison of processing times

is presented later. However, in order to maximize the number of waves being assessed,

SSA was used for the majority of evaluations. DSA was used randomly to verify the

SSA results.

In order to evaluate a large number of waves, a sequence of Bond numbers from

zero to three was used. Initially, the Bond numbers includedB P t0, 0.1, 0.2, ¨ ¨ ¨ , 2.9u.

A branch of waves for each Bond number was evaluated. While overturned waves are

the area of focus, these branches naturally include many non-overturned waves as

well. For regions with interesting results, additional branches of waves were evalu-

ated in order to create greater fidelity. A 3-D plot of Bond number vs. Amplitude

vs. Repλmaxq create a smooth “surface of instability.”
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shows the initial wave profile. The figure on the right shows the time evolution of the
wave.
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Figure 33. Dynamic Stability Analysis of Wilton Ripples (B=2, N=256). The figure
on the left shows the DSA error plot of a Wilton ripple (amplitude=1.02) with linear,
rather than exponential, growth in errors. The figure on the right shows the DSA error
plot of a Wilton ripple (Amplitude=1.1) with evidence of instability.
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Figure 34. Spectral Stability Analysis vs. Dynamic Stability Analysis of Wilton Ripples
(B=2, N=256). The figure on the left shows the SSA and DSA estimations of Repλmaxq

for several amplitude waves. The figure on the right shows the difference between the
estimated values of SSA and DSA.
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IV. Results

In this chapter, the stability analysis of gravity-capillary waves is presented. It is

important to note that all experiments are performed with super-harmonic perturba-

tions. Therefore, when results state that a given wave is stable, it is only referring

to stability with respect to super-harmonic perturbations; not sub-harmonic pertur-

bations. Stability with respect to sub-harmonic perturbations is addressed in the

chapter for future research. Additionally, any stability conclusions are subject to the

caveat that it is spectral stability. A comparison of SSA and DSA is also given.

4.1 Stability of Gravity-Capillary Waves

Initially, the Crapper waves (B=0) and Wilton ripples (B=2.0) were evaluated.

These branches of waves were used for the verification and validation of SSA and DSA

in the previous section. Crapper waves are already known to be stable. However, the

stability of overturned Wilton ripples was unknown. Therefore, it is worthwhile to

restate the results for the Wilton ripples. Figure 35 shows the areas of stability

and instability for this branch of waves. It is interesting to observe that the Wilton

ripples with smaller amplitudes are spectrally stable. As the amplitude increases

beyond 0.85, they become unstable. However, there is a narrow range of waves with

amplitudes between 1.02 and 1.03 which are stable. Beyond these amplitudes, the

waves become increasingly unstable. The overturned Wilton ripples are in this region

of unstable waves. Both SSA and DSA were in agreement for these results.

SSA was then run on branches of gravity-capillary waves withB P t0, 0.1, 0.2, ¨ ¨ ¨ , 2.9u.

Figure 36 shows the results of these experiments. The first, immediate observation

is that all branches of waves with B ă 2.0 are stable. Each of these branches in-

cludes overturned waves. Thus, in addition to the overturned Crapper wave, there
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Figure 35. Spectral Stability Analysis vs. Dynamic Stability Analysis of Wilton Ripples
(B=2, N=256). The figure on the left shows the SSA and DSA estimations of Repλmaxq

for the whole range of amplitudes. The figure on the right shows the results for those
waves with larger amplitude. The overturned waves are identified in the right figure.

are several other overturned gravity-capillary waves that are stable to super-harmonic

perturbations. Figure 37 shows the results of DSA applied to an overturned wave with

B “ 1.9. This experiment supports SSA’s result of stability.

Another observation from Figure 36 is that there are “bubbles of instability” on

the branches of waves approximately in the range of 2.0 ď B ď 2.5. It is helpful to

see the shape of these bubbles in greater detail. Therefore, branches of waves were

investigated with Bond numbers between 2.0 and 2.99 with increments of 0.01. The

resulting plot is shown in Figure 38. This plot overall depicts a “surface of instability.”

Within it, there are a few uniquely shaped “bubbles of instability.” There is also a

“wall of instability.” All gravity-capillary waves (with B ě 2.0) become unstable

when their amplitudes reach this wall. The threshold of this wall changes for each

branches of waves. The wall begins at an amplitude of about 1.04 for the branch of

waves with B “ 2.0. The threshold gradually changes to an amplitude of about 0.71

for the branch of waves with B “ 2.99. This figure graphically represents my unique

contribution to the mathematical community.

The branch of waves with B “ 1.99 was also investigated to see if the “bubbles of
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Figure 36. Stability of Gravity-Capillary Waves. The figure on the left shows the stabil-
ity results for the branches of waves on the entire range of Bond numbers investigated
(0 ď B ď 2.9). The figure on the right only shows the results for those branches of waves
with larger Bond numbers (2.0 ď B ď 2.9). The waves that are stable are marked with
a black dot. The waves with an instability are marked with a colored dot.
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Figure 37. Dynamic Stability Analysis of an Overturned Gravity-Capillary Wave
(B=1.9, N=256, Amplitude=1.16). The figure on the left shows the evolution of the
wave. The figure on the right shows the error.
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Figure 38. “Surface of Instability” for Gravity-Capillary Waves. The figure in the top
right shows the Surface of Instability for the entire region of waves investigated. The
other three figures show different views of the Surface of Instability for those waves
with 2.0 ď B ď 2.99. The red line shows where the waves begin to overturn on the
branches.
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instability” extend into the region of B ă 2.0. This entire branch is also stable. Thus,

all branches of gravity-capillary waves with B ě 2 have waves that are unstable. All

overturned waves in this region are unstable. All branches of waves with B ă 2 are

stable on the entire branch.

4.2 Spectral Stability Analysis vs Dynamic Stability Analysis

SSA and DSA (as they are coded for this dissertation) were both developed as a

means to determine the instability of gravity-capillary waves. This section compares

the two methods. First, the computation time is compared, followed by some general

pros and cons of each method.

Computation Time.

For SSA, the computational demand is dominated by the call to MATLAB’s ‘eig’

function. This function involves a QR iteration, which uses OpN3q flops. Fortu-

nately, this part of the code is only executed one time per wave. Thus, the overall

computational demand is,

CostSSA “ OpN3q flops (135)

“ C1N
3 flops (136)

where C1 is a constant. Now, assume that the computational time is proportional to

the number of flops. Therefore,

TimeSSA “ C̃1N
3 (137)

where C̃1 is a constant.

The DSA code is computationally dominated by several calls to MATLAB’s ‘fft’
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and ‘ifft’ functions, which use OpN logNq flops per function call. This code is repeated

for each time step. Thus,

CostDSA “ OpN logNq ˆ M flops (138)

where M is the number of time steps. Now,

M “
T

∆t
(139)

where T is the total time of the simulation and ∆t is the size of each time step. Note

that the CFL condition dictates that ∆t ď Op1{N3{2q. Therefore,

CostDSA “ OpN logNq ˚ OpTN3{2q flops (140)

“ OpTN2.5logNq flops (141)

“ C2TN
2.5logNflops (142)

where C2 is a constant. Converting this to computational time gives,

TimeDSA “ C̃2TN
2.5logN (143)

where C̃2 is a constant. Using these definitions, it is possible to determine T as a

function of N so that SSA and DSA are comparable computationally.

TimeDSA “ TimeSSA (144)

C̃2TN
2.5logN “ C̃1N

3 (145)

T pNq “

˜

C̃1

C̃2

¸

ˆ

?
N

logN

˙

(146)
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Assume that C̃1{C̃2 is Op1q. Therefore,

T pNq «

?
N

logN
(147)

The following table gives values of T for several values of N based on this analysis.

N T

128 1.6

256 2.0

512 2.5

1024 3.2

Figure 39 shows a plot of N vs T. This figure includes the theoretical values

derived above. It also includes the experimentally determined values for small ampli-

tude Crapper waves and large amplitude Crapper waves. Experiments were run on

the Wilton ripples with similar break-even times. These two experimentally deter-

mined lines give an upper and lower bound for the break-even times between SSA and

DSA for gravity-capillary waves. The figure also includes the experimentally deter-

mined simulation time required to recover the eigenvalue for large-amplitude Wilton

ripples. This gives a lower bound for the necessary time. By comparison, there are

no instances (in the bounds used) in which DSA is computationally faster than SSA.

If extrapolation of the plot proved to be valid, then DSA would become comparable

to SSA when N « 6000.

As mentioned previously, DSA was implemented directly with the RK4 scheme,

without any stiffness reducing methods. If the integrating factors method were used,

the CFL condition would likely become ∆t ď Op1{Nq, which would give DSA an

overall computational time of,

TimeDSA{IF “ OpTN2logNq (148)
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Figure 39. SSA vs DSA: Break-Even Analysis. The figure shows the time units (T) for
DSA so that it has the same processing time as SSA, as determined experimentally. A
line for small amplitude waves and large amplitude waves is given; providing bounds
for the break-even simulation time, T. It also has the theoretical values for reference.
Additionally, the simulation time required to recover the eigenvalues for large amplitude
waves is given. Because these lines do not cross, DSA is never computationally faster
than SSA within the values of N used.

and a theoretical break-even time of,

T pNq «
N

logN
(149)

which would make DSA more computationally competitive.

Pros and Cons.

One of the advantages of SSA is that it gives the full spectrum (truncated to N and

minus the spurious ones) of the eigenvalues, whereas DSA only gives a lower bound

for the eigenvalue with the largest real part. Additionally, SSA gives the eigenvectors

associated with each eigenvalue; DSA does not. The main advantage of DSA is that

it presents the dynamics of the wave as it evolves. Should the wave change into a

different, stable wave, DSA would show this evolution. Figure 40 shows the dynamics

of an unstable Wilton ripple as the instability is manifested. This wave does not

evolve into a different, stable wave.
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Figure 40. Dynamics of an Unstable Wilton Ripple (B=2, N=256, Amp=1.05). The
figure in the top left shows a mesh plot of the ripple as it evolves. The other three
plots show the profile of the ripple at different times.
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V. Future Research

The research in this dissertation naturally lends itself to future research avenues.

An initial area would be analyzing the stability of gravity-capillary waves to sub-

harmonic perturbations. The research in this dissertation exclusively used super-

harmonic perturbations. Super-harmonic perturbations have a period equal to (or an

integer multiple of) the wave being perturbed. Sub-harmonic perturbations have a

period differing that of the wave. Research by Choi and Tiron found that Crapper

waves were stable to super-harmonic perturbations but unstable to sub-harmonic

perturbations. It would be natural to determine if this pattern continues for gravity-

capillary waves whose Bond number is greater than zero.

Another area for future research is in analyzing the stability of other types of

overturned waves. For example, additional effort could prove effective in simulating

the Vortex Sheet equations. If so, many additional wave profiles would be available

for stability analysis.
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VI. Conclusion

In an effort to determine the stability of overturned traveling waves, two meth-

ods were developed: (1) Spectral Stability Analysis (SSA) and (2) Dynamic Stability

Analysis (DSA). These two methods were validated on the pendulum equation and

the Akers-Milewski equation, two systems with known stabilities. The Vortex Sheet

equations were considered as a system to investigate overturned traveling waves.

However, complications associated with the Vortex Sheet equations led to using the

conformally-mapped Euler (CME) equations. The SSA and DSA methods were suc-

cessfully adapted to the CME equations. The SSA method faced the challenge of

spurious eigenvalues emerging from numerical artifacts. The DSA method faced the

challenge of aliasing errors. Numerical methods to overcome these challenges were

successfully implemented. The DSA and SSA methods were validated by implemen-

tation on Crapper waves with known stability. The estimated eigenvalues given by

SSA and DSA for gravity-capillary waves agreed in their predictions of stability. The

stability of a sequence of branches of gravity-capillary waves with Bond numbers vary-

ing from 0.0 to 2.99 was investigated. Those branches of waves with a Bond number

less than two were shown to be spectrally stable to super-harmonic perturbations,

including the overturned waves. The branches of waves with a Bond number greater

than or equal to two were shown to have amplitude ranges of instability. All of the

overturned waves with Bond numbers greater than or equal to two were unstable.

The SSA and DSA methods were also compared as methods in evaluating the stabil-

ity of waves. The SSA method was found to be faster and to give more information

about the spectrum of a wave, whereas the DSA method provides the dynamics of a

wave as it evolves. Lastly, areas for future research were presented.
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Appendix A. Derivation of Spectral Stability Analysis for
Conformally-Mapped Euler Equations

Assume there is a steady wave, whose variables are X0, Y0, Ψ0, Φ0, and J0. Since

this is a steady wave, the time derivative of these variables is zero. Now, consider a

small perturbation to each of these variables,

Xpξ, 0q “ X0pξq ` δX1pξq (150)

Y pξ, 0q “ Y0pξq ` δY1pξq (151)

Ψpξ, 0q “ Ψ0pξq ` δΨ1pξq (152)

Φpξ, 0q “ Φ0pξq ` δΦ1pξq (153)

Jpξ, 0q “ J0pξq ` δJ1pξq (154)

where δ is a small constant, and X1, Y1, Ψ1, Φ1, and J1 are perturbations of X, Y ,

Ψ, Φ, and J respectively. Now assume this system evolved in time. The perturbed

variables become,

Xpξ, tq “ X0pξq ` δeλtX1pξq (155)

Y pξ, tq “ Y0pξq ` δeλtY1pξq (156)

Ψpξ, tq “ Ψ0pξq ` δeλtΨ1pξq (157)

Φpξ, tq “ Φ0pξq ` δeλtΦ1pξq (158)

Jpξ, tq “ J0pξq ` δeλtJ1pξq. (159)

Using these definitions, expand the closures for Xξ, Ψξ, and J .

Xξ “ 1 ´ H pYξq (160)

X0ξ ` δeλtX1ξ “ 1 ´ H pY0ξq ´ δeλtH pY1ξq, (161)
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Ψξ “ H pΦξq (162)

Ψ0ξ ` δeλtΨ1ξ “ H pΦ0ξq ` δeλtH pΦ1ξq, and (163)

J “ X2
ξ ` Y 2

ξ (164)

J0 ` δeλtJ1 “
`

1 ´ H pY0ξq ´ δeλtH pY1ξq
˘2

` pY0ξ ` δeλtY1ξq
2 (165)

“ 1 ´ 2H pY0ξq ` H pY0ξq
2 ` Y 2

0ξ (166)

` δeλtp´2H pY1ξq ` 2H pY0ξqH pY1ξq ` 2Y0ξY1ξq (167)

` Opδ2q. (168)

Next, use the definitions to expand the CME equations. Due to the length of the

equations, start by expanding smaller groups of terms which will subsequently be

combined to fill out the full equations.

pΨξ ´ cYξq

J
“

H pΦ0ξq ` δeλtH pΦ1ξq ´ cY0ξ ´ cδeλtY1ξ
J0 ` δeλtJ1

(169)

“
H pΦ0ξq ´ cY0ξ ` δeλtpH pΦ1ξq ´ cY1ξq

J0
¨

»

–

1

1 ´ δeλt
´

´J1
J0

¯

fi

fl . (170)

Use a geometric series expansion for the bracketed terms on the right. NOTE: this

technique will be used repeatedly in future equations without explanation.

pΨξ ´ cYξq

J
“

H pΦ0ξq ´ cY0ξ ` δeλtpH pΦ1ξq ´ cY1ξq

J0
¨

„

1 ´ δeλt
J1
J0

` Opδ2q

ȷ

(171)

“
H pΦ0ξq ´ cY0ξ

J0
(172)

` δeλt
„

H pΦ1ξq ´ cY1ξ
J0

´
J1
J2
0

pH pΦ0ξq ´ cY0ξq

ȷ

` Opδ2q, (173)
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YξH

ˆ

Ψξ ´ cYξ
J

˙

“ Y0ξH

ˆ

H pΦ0ξq ´ cY0ξ
J0

˙

(174)

` δeλt
„

Y1ξH

ˆ

H pΦ0ξq ´ cY0ξ
J0

˙

(175)

` Y0ξH

ˆ

H pΦ1ξq ´ cY1ξ
J0

´
J1
J2
0

pH pΦ0ξq ´ cY0ξq

˙ ȷ

(176)

` Opδ2q, (177)

Xξ

ˆ

Ψξ ´ cYξ
J

˙

“ p1 ´ H pY0ξqq

ˆ

H pΦ0ξq ´ cY0ξ
J0

˙

(178)

` δeλt
„

´ H pY1ξq
H pΦ0ξq ´ cY0ξ

J0
(179)

` p1 ´ H pY0ξqq

ˆ

H pΦ1ξq ´ cY1ξ
J0

´
J1
J2
0

pH pΦ0ξq ´ cY0ξq

˙ ȷ

(180)

` Opδ2q, (181)

Φ2
ξ ` Ψ2

ξ

J
“

pΦ0ξ ` δeλtΦ1ξq
2 ` pH pΦ0ξq ` δeλtH pΦ1ξqq2

J0 ` δeλtJ1
(182)

“
Φ2

0ξ ` H pΦ0ξq
2 ` δeλtp2Φ0ξΦ1ξ ` 2H pΦ0ξqH pΦ1ξqq

J0
(183)

¨

»

–

1

1 ´ δeλt
´

´J1
J0

¯

fi

fl (184)

“
Φ2

0ξ ` H pΦ0ξq
2 ` δeλtp2Φ0ξΦ1ξ ` 2H pΦ0ξqH pΦ1ξqq

J0
(185)

¨

„

1 ´ δeλt
J1
J0

` Opδ2q

ȷ

(186)

“
Φ2

0ξ ` H pΦ0ξq
2

J0
(187)

` δeλt
„

2pΦ0ξΦ1ξ ` H pΦ0ξqH pΦ1ξqq

J0
´
J1
J2
0

`

Φ2
0ξ ` H pΦ0ξq

2
˘

ȷ

(188)

` Opδ2q. (189)
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For the next group of terms let J̃ “ J3{2. Therefore,

pJ̃0 ` δeλtJ̃1q “ pJ0 ` δeλtJ1q
3{2 (190)

pJ̃0 ` δeλtJ̃1q
2 “ pJ0 ` δeλtJ1q

3 (191)

J̃2
0 ` δeλt2J̃0J̃1 ` Opδ2q “ J3

0 ` δeλt3J2
0J1 ` Opδ2q. (192)

Now solve for J̃0 and J̃1 in terms of J0 and J1,

J̃0 “ J
3{2
0 (193)

J̃1 “ 3{2J
1{2
0 J1. (194)

Now, use J̃ in place of J3{2,

XξYξξ ´ XξξYξ

J̃
“

p1 ´ H pY0ξq ´ δeλtH pY1ξqqpY0ξξ ` δeλtY1ξξq

J̃
(195)

´
p1 ´ H pY0ξq ´ δeλtH pY1ξqqξpY0ξ ` δeλtY1ξq

J̃
(196)

“
Y0ξξ ´ Y0ξξH pY0ξq ` Y0ξH pY0ξqξ

J̃
(197)

` δeλt
„

Y1ξξ ´ Y1ξξH pY0ξq ´ Y0ξξH pY1ξq

J̃
(198)

`
Y1ξH pY0ξqξ ` Y0ξH pY1ξqξ

J̃

ȷ

(199)

` Opδ2q. (200)
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For simplicity, let all of the Op1q terms be replaced by S0 and the Opδq terms be

replace by S1,

XξYξξ ´ XξξYξ

J̃
“
S0 ` δeλtS1

J̃0
¨

»

–

1

1 ´ δeλt ´J̃1
J̃0

fi

fl (201)

“
S0 ` δeλtS1

J̃0
¨

«

1 ´ δeλt
J̃1

J̃0
` Opδ2q

ff

(202)

“
S0

J̃0
` δeλt

«

S1

J̃0
´
J̃1

J̃2
0

S0

ff

` Opδ2q. (203)

Now, substitute back in for J0 and J1,

XξYξξ ´ XξξYξ
J

“
S0

J
3{2
0

` δeλt

«

S1

J
3{2
0

´
3{2J

1{2
0 J1

pJ
3{2
0 q2

S0

ff

(204)

“
S0

J
3{2
0

` δeλt

«

S1

J
3{2
0

´
3J1

2J
5{2
0

S0

ff

, (205)

ΦξH

ˆ

Ψξ ´ cYξ
J

˙

“ Φ0ξH

ˆ

H pΦ0ξq ´ cY0ξ
J0

˙

(206)

` δeλt
„

Φ1ξH

ˆ

H pΦ0ξq ´ cY0ξ
J0

˙

(207)

` Φ0ξH

ˆ

H pΦ1ξq ´ cY1ξ
J0

´
J1
J2
0

pH pΦ0ξq ´ cY0ξq

˙ ȷ

(208)

` Opδ2q, (209)
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Ψξ

ˆ

pΨξ ´ cYξq

J

˙

“ H pΦ0ξq

ˆ

H pΦ0ξq ´ cY0ξ
J0

˙

(210)

` δeλt
„

H pΦ1ξq

ˆ

H pΦ0ξq ´ cY0ξ
J0

˙

(211)

` H pΦ0ξq

ˆ

H pΦ1ξq ´ cY1ξ
J0

´
J1
J2
0

pH pΦ0ξq ´ cY0ξq

˙ ȷ

(212)

` Opδ2q, (213)

XξΦξ ` ΨξYξ
J

“
p1 ´ H pY0ξq ´ δeλtH pY1ξqqpΦ0ξ ` δeλtΦ1ξq

J0 ` δeλtJ1
(214)

`
pH pΦ0ξq ` δeλtH pΦ1ξqqpY0ξ ` δeλtY1ξq

J0 ` δeλtJ1
(215)

“

ˆ

1

J0

˙

´

Φ0ξ ´ H pY0ξqΦ0ξ ` H pΦ0ξqY (216)

` δeλtrΦ1ξ ´ H pY0ξqΦ1ξ ´ H pY1ξqΦ0ξ ` H pΦ0ξqY1ξ (217)

` H pΦ1ξqY0ξs
¯

¨

«

1

1 ´ δeλt ´J1
J0

ff

(218)

` Opδ2q (219)

“

ˆ

1

J0

˙

´

Φ0ξ ´ H pY0ξqΦ0ξ ` H pΦ0ξqY (220)

` δeλtrΦ1ξ ´ H pY0ξqΦ1ξ ´ H pY1ξqΦ0ξ ` H pΦ0ξqY1ξ (221)

` H pΦ1ξqY0ξs
¯

¨

„

1 ´ δeλt
J1
J0

` Opδ2q

ȷ

(222)

“
Φ0ξ ´ H pY0ξqΦ0ξ ` H pΦ0ξqY0ξ

J0
(223)

` δeλt
„

Φ1ξ ´ H pY0ξqΦ1ξ ´ H pY1ξqΦ0ξ

J0
(224)

`
H pΦ0ξqY1ξ ` H pΦ1ξqY0ξ

J0
(225)

´
J1
J2
0

pΦ0ξ ´ H pY0ξqΦ0ξ ` H pΦ0ξqY0ξq

ȷ

(226)

` Opδ2q. (227)
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Now, combine all of the terms into the CME equations, converting everything into

terms of Y and Φ,

Yt “ YξH

ˆ

Ψξ ´ cYξ
J

˙

´ Xξ

ˆ

Ψξ ´ cYξ
J

˙

(228)

Y0t ` δeλtλY1 “

«

Y0ξH

ˆ

H pΦ0ξq ´ cY0ξ
J0

˙

(229)

` p1 ´ H pY0ξqq

ˆ

H pΦ0ξq ´ cY0ξ
J0

˙

ff

(230)

` δeλt

«

Y1ξH

˜

H pΦ0ξq ´ cY0ξ
1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2

0ξ

¸

(231)

` Y0ξH

„

H pΦ1ξq ´ cY1ξ
1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2

0ξ

(232)

´
´2H pY1ξq ` 2H pY0ξqH pY1ξq ` 2Y0ξY1ξ

p1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2
0ξq

2
pH pΦ0ξq ´ cY0ξq

ȷ

(233)

´ H pY1ξq
H pΦ0ξq ´ cY0ξ

1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2
0ξ

(234)

` p1 ´ H pY0ξqq

„

H pΦ1ξq ´ cY1ξ
1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2

0ξ

(235)

´
´2H pY1ξq ` 2H pY0ξqH pY1ξq ` 2Y0ξY1ξ

p1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2
0ξq

2
pH pΦ0ξq ´ cY0ξq

ȷ

ff

.

(236)

Note that the Op1q terms are associated with the steady wave. Therefore, their values

are unchanged with time and can be removed. The remaining terms all have δeλt,
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which can be canceled through the equation. The result is,

λY1 “ Y1ξH

˜

H pΦ0ξq ´ cY0ξ
1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2

0ξ

¸

(237)

` Y0ξH

„

H pΦ1ξq ´ cY1ξ
1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2

0ξ

(238)

´
´2H pY1ξq ` 2H pY0ξqH pY1ξq ` 2Y0ξY1ξ

p1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2
0ξq

2
pH pΦ0ξq ´ cY0ξq

ȷ

(239)

´ H pY1ξq
H pΦ0ξq ´ cY0ξ

1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2
0ξ

(240)

` p1 ´ H pY0ξqq

„

H pΦ1ξq ´ cY1ξ
1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2

0ξ

(241)

´
´2H pY1ξq ` 2H pY0ξqH pY1ξq ` 2Y0ξY1ξ

p1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2
0ξq

2
pH pΦ0ξq ´ cY0ξq

ȷ

ff

(242)

“ G1pY1,Φ1q. (243)

Note that G1 is not a function of Y0 and Φ0 because these terms are fixed from the

steady wave solution. Next, combine terms for the second CME equation. As with the

previous equation, the Op1q terms can be omitted and the δeλt term can be cancelled.
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Thus,

λΦ1 “ ´p1{2q

„

2pΦ0ξΦ1ξ ` H pΦ0ξqH pΦ1ξqq

1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2
0ξ

(244)

´
´2H pY1ξq ` 2H pY0ξqH pY1ξq ` 2Y0ξY1ξ

p1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2
0ξq

2

`

Φ2
0ξ ` H pΦ0ξq

2
˘

ȷ

(245)

´ BY1 (246)

`
Y1ξξ ´ Y1ξξH pY0ξq ´ Y0ξξH pY1ξq ` Y1ξH pY0ξqξ ` Y0ξH pY1ξqξ

p1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2
0ξq

3{2
(247)

´

ˆ

3

2

˙

´2H pY1ξq ` 2H pY0ξqH pY1ξq ` 2Y0ξY1ξ
p1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2

0ξq
5{2

¨ (248)

pY0ξξ ´ Y0ξξH pY0ξq ` Y0ξH pY0ξqξq (249)

` Φ1ξH

˜

H pΦ0ξq ´ cY0ξ
1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2

0ξ

¸

(250)

` Φ0ξH

„

H pΦ1ξq ´ cY1ξ
1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2

0ξ

(251)

´
´2H pY1ξq ` 2H pY0ξqH pY1ξq ` 2Y0ξY1ξ

p1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2
0ξq

2
pH pΦ0ξq ´ cY0ξq

ȷ

(252)

` H pΦ1ξq

˜

H pΦ0ξq ´ cY0ξ
1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2

0ξ

¸

(253)

` H pΦ0ξq

„

H pΦ1ξq ´ cY1ξ
1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2

0ξ

(254)

´
´2H pY1ξq ` 2H pY0ξqH pY1ξq ` 2Y0ξY1ξ

p1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2
0ξq

2
pH pΦ0ξq ´ cY0ξq

ȷ

(255)

` c

„

Φ1ξ ´ H pY0ξqΦ1ξ ´ H pY1ξqΦ0ξ

1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2
0ξ

(256)

`
H pΦ0ξqY1ξ ` H pΦ1ξqY0ξ

1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2
0ξ

(257)

´
´2H pY1ξq ` 2H pY0ξqH pY1ξq ` 2Y0ξY1ξ

p1 ´ 2H pY0ξq ` H pY0ξq2 ` Y 2
0ξq

2
¨ (258)

pΦ0ξ ´ H pY0ξqΦ0ξ ` H pΦ0ξqY0ξq

ȷ

(259)

“ G2pY1,Φ1q. (260)
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Now, combine the two CME equations into a matrix representation,

λ

»

—

–

Y1

Φ1

fi

ffi

fl

“

»

—

–

G1

G2

fi

ffi

fl

»

—

–

Y1

Φ1

fi

ffi

fl

(261)

λv “ A v (262)

where v is a vector of the eigenvectors Y1 and Φ1 and matrix A can be considered

an operator acting on v. This in now in the form of a general eigenvalue problem.

The procedure from this point forward is identical to that which was presented in

the Akers-Milewski equation. It is repeated here for completeness. The operator A

is infinitely dimensional. To approximate A, change both sides of the equation into

Fourier space,
xλv “ xAv. (263)

Now, consider F as a linear operator that transforms a vector in normal space into a

vector in Fourier space. Applying F and an identity operator to the right side of the

equation gives the following result,

λv̂ “ FAv (264)

“ FAIv (265)

“ FAF´1Fv. (266)

Let FAF´1 be replaced by another linear operator, A . Also, note that Fv “ v̂.

Therefore,

λv̂ “ A v̂. (267)

This equation is in the form of a general spectral problem. Furthermore, operator A

is similar to operator A (i.e., they have the same spectrum). Although operator A
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is also unknown, there is a technique to determine its elements, column by column.

First, note that xAv “ A v̂. Now, consider a perturbation vector, v1, whose Fourier

transform is v̂1 “ r1 0 0 ¨ ¨ ¨ sT “ e1 “ canonical basis vector for the first coordinate.

Therefore, v1 “ F ´1pv̂1q. Now, plugging this vector into the right hand side of

Equations 243 and 260 results in Av1. Taking the Fourier transform of this result

gives yAv1. Finally, note that A v̂1 “ A r1 0 0 ¨ ¨ ¨ sT “ A1, the first column of A .

Similarly, A v̂2 “ A r0 1 0 ¨ ¨ ¨ sT “ A2, the second column of A . This process is

then repeated for each column of A . This process is allowed because v1 is a smooth

function in real space. After A is fully determined, the eigenvalues are calculated via

MATLAB’s ‘eig’ function.
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