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SUMMARY 

 
 

THE STUDY PURPOSE AND SPONSOR  
Severe acute respiratory syndrome associated Coronavirus-2 (SARS-CoV-2), which causes novel 
Coronavirus Disease 2019 (COVID-19), emerged in late 2019. By February 2020, increasing 
numbers of confirmed COVID-19 cases in the United States accelerated national- and state-level 
concerns regarding risk mitigation. As national- and state-level leadership began implementing 
strategies to slow the spread of disease within the United States, Army senior leaders issued 
guidance to reduce risk to force and mission while preparing to assist civil authorities. While 
reducing risk was a necessary goal, it challenged what was then the Army’s number one 
priority—Readiness. Therefore, the Army identified the need for objective and rigorous analysis 
to assist in making difficult decisions pitting readiness against COVID-19 risk. It was this—
assisting leaders across the breadth of the Army, Joint, and Department of Defense (DoD) 
enterprises in understanding the impact of COVID-19 and making well-informed decisions—that 
was CAA’s chief study purpose. 
 
The pandemic presented the Army with three unique challenges. First, few Army organizations 
had the expertise or tools to quickly assemble large amounts of disparately generated data and 
synthesize them to enable senior leader awareness, understanding, and action. Second, 
although many non-military organizations produced notable COVID-19 analyses, they did not 
tailor analyses to Army leaders nor were they responsive to leader input or requests. Third, and 
most importantly, Army leaders did not have COVID-19 studies at the level of granularity they 
needed, hindering them from managing resources effectively. The study team focused on 
alleviating these problems by producing tools, estimates, reports, and briefings to enable senior 
leadership to see, understand, and act in a complex and volatile environment. 
 
The Center for Army Analysis (CAA) COVID-19 Analysis Study team addressed these three 
challenges through decision support analysis and informational briefings. The Vice Chief of Staff 
of the Army (VCSA) charged CAA with synchronizing the Army’s COVID-19 modeling effort. He 
directed CAA to (1) provide nationwide COVID-19 analysis tailored to the Army’s needs and (2) 
synthesize data and information from multiple analytical organizations to inform Army senior 
leaders of the operating environment. CAA supported Army and Joint leaders, including (but 
not limited to) GEN Joseph Martin, 37th VCSA; LTG Charles Flynn, Deputy Chief of Staff of the 
Army, G-3/5/7; LTG Laura Richardson, Commander of U.S. Army North; LTG Lee Quintas, 
Deputy Commanding General, U.S. Army Forces Command (FORSCOM); MG Stephen Sklenka, 
Director of Strategic Planning and Policy Directorate, U.S. Indo-Pacific Command 
(USINDOPACOM); and MG Douglas Crissman, Deputy Commander of U.S. Army Central 
(USARCENT). 
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THE STUDY OBJECTIVES were to:  
(1) Create an SEIR forecast model to forecast future cases and hospitalizations for every 

U.S. county and 53 INDOPACOM countries.  
 

(2) Create SEIR projection models to answer focused Army policy and resource 
management questions.  
 

(3) Create an agent-based model to answer questions related to unit readiness. 
 
THE MAIN ASSUMPTION  
One overarching assumption was that a compartmental model was appropriate for forecasting 
COVID-19 cases. 
 
METHODS 
The study team’s core analytical functions were to (1) develop automated techniques to gather, 
consolidate, analyze, and visualize data related to public health COVID-19 and (2) develop 
original analysis and modeling on COVID-19. To accomplish these core functions, the study 
team employed a wide range of methods. Throughout the duration of the study, customer 
needs evolved, requiring the study team to continuously improvise and develop unique 
modeling solutions to satisfy demand and solve problems. These analytical tasks ranged from 
estimating medical supply orders for USARCENT, to creating heat maps for the Army Geospatial 
Center illustrating the amount of time until county hospitals were under stress due to demand, 
to studying COVID-19 cases across over 3,000 distinct geographic regions in the United States 
and Indo-Pacific region, to leading collaboration efforts among fellow analytical organizations. 
The study team consistently produced original analyses and models. Its two most lasting 
analytical efforts were its development of a nationwide COVID-19 forecast model and 
collaborating with two other agencies to develop an agent-based COVID-19 stochastic 
simulation.  
 
The study team’s COVID-19 forecast model estimated future active COVID-19 cases and their 
resulting hospitalizations nationwide at the U.S. county level. The model also forecasted cases 
for 53 countries in the USINDOPACOM area of responsibility. The model was, at its core, an SEIR 
(Susceptible, Exposed, Infectious, Removed) compartmental model. The SEIR model relied on 
static, deterministic parameters, with the exception of the contact rate, β. The model used a 
separate gradient boosted machine-learning algorithm to estimate the future βs for each 
county or country. The gradient boosted model was trained on 38 variables from data sets 
covering nationwide mobility, seasonality, geographic attributes, state policies, COVID-19 
testing results, and population demographics. This model produced valuable results on its own; 
but, more importantly, the model served as a driving analytical force, informing additional 
analytical methods. 
 
The study team also collaborated with the Army Public Health Center (APHC) and Lawrence 
Livermore Labs (LLNL) to develop an agent-based COVID-19 stochastic simulation. The model 
was a robust set of Monte Carlo simulations that modeled an Army brigade deploying to and 
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training at a Combat Training Center. The CAA study team and its partners built the model using 
the framework of the Susceptible, Infected, Removed (SIR) model, and integrated thoroughly 
researched epidemiological characteristics and individual and unit interaction dynamics.  
All of the study team’s analysis and modeling hinged on a critical component—a wealth of 
open-source data. The study team used the R programming language to scrape and clean 
data—a task that could take hours using common DoD tools—in seconds, every day. These data 
allowed the study team to pursue multiple analytical methods efficiently. 
 
IMPACT ON CUSTOMERS 
The study’s most notable customers were Army senior leaders in Headquarters, Department of 
the Army (HQDA); installation commanders and their staffs; USINDOPACOM; USARCENT; 
FORSCOM; and U.S. Special Operations Command. CAA rendered its analysis through two 
primary mechanisms: inclusion in senior-leader-focused dashboards and the development and 
delivery of briefings and reports. The impact of these mechanisms ranged from directly 
informing discrete resource management decisions to improving general situational awareness 
for organizational senior leaders. 
 
Study leadership briefed Army senior leaders during crisis-focused Army synchronization 
meetings chaired by the VCSA or the HQDA Deputy Chief of Staff, G-3/5/7. These briefings 
provided recent COVID-19 trends, highlighted areas where the study team projected stress on 
hospital infrastructure, and highlighted installations in areas where the study team projected 
significant COVID-19 surges. These briefings helped establish situational awareness among 
Army senior leaders. 
 
The study team supported Army installation commanders and their staffs across the Army with 
daily reports published by Army Vantage, the Army’s senior leader dashboard, on their COVID-
19 dashboard. These reports provided COVID-19-case projections around Army installations. 
Army Vantage reported 250-300 unique users view this dashboard daily and 700-800 users 
weekly. Additionally, the study team provided daily projections directly to the Army Materiel 
Command, U.S. Army Corps of Engineers, and U.S. Army North at various points during the 
pandemic. 
 
For USINDOPACOM, the study team produced a weekly report that included analysis of recent 
data in all countries in their area of responsibility (AOR) as well as 45 days of projections for 
each country in the AOR. USINDOPACOM used this report to brief ambassadors and flag 
officers. Planners also used the report to identify strategic, operational, and tactical risk. Finally, 
it informed decisions regarding COVID-19-response policies. 
 
The study supported USARCENT resource-management decisions through tailored modeling 
and analysis. Throughout the pandemic, USARCENT has ordered supplies based on the Centers 
for Disease Control and Prevention (CDC) estimates of U.S. COVID-19 supply requirements. The 
study team built multiple models to refine these estimates, allowing USARCENT to scale down 
excess medical supplies without incurring risk to ill Soldiers. 
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Supporting FORSCOM was a collaborative effort among multiple organizations. The CAA study 
team led the collaboration among FORSCOM, APHC, and LLNL, to develop a robust simulation 
that determines the optimal COVID-19 testing protocol within Army units. LLNL built the agent-
based simulation in the Python programming language to show the spread of a virus given 
various testing scenarios. The CAA study team provided (1) statistical expertise and an 
understanding of COVID-19 data to tune the model’s many parameters and (2) operational 
experience, helping to make LLNL’s model realistic. The results of this model shaped decisions 
regarding the best way to conduct surveillance testing for units conducting major training 
events at the Army’s Combined Training Centers. 
 
THE STUDY EFFORT was conducted by MAJ Chad Chapman, MAJ Maxine Drake, Mr. Collin 
Henley, MAJ Sandra Jackson, MAJ Scott Lynch, Mr. Kyle Minor, LTC Matthew Pacheco, MAJ 
Harvey Smith, MAJ Dusty Turner, Mr. Robert Ward, Mr. Michael Warme, and Ms. Michaela 
Zuber. 
 
COMMENTS AND QUESTIONS may be sent to the Director, Center for Army Analysis, ATTN:  
CSCA-OA, 6001 Goethals Road, Suite 102, Fort Belvoir, VA 22060-5230. 
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1 INTRODUCTION 

The severe acute respiratory syndrome associated coronavirus-2 (SARS-CoV-2), which causes 
novel coronavirus disease 2019 (COVID-19), emerged toward the end of 2019 in Wuhan, China. 
The severity of COVID-19 and the apparent high transmissibility caused international concern 
for the potential of a global pandemic. During February 2020, increasing numbers of confirmed 
COVID-19 cases in the United States accelerated national- and state-level concerns regarding 
risk mitigation. 

As national- and state-level leadership began implementing strategies to slow the spread of 
disease within the United States, Army senior leaders issued guidance to reduce risk to force 
and mission while preparing to assist civil authorities. A central theme in all guidance from 
senior leaders was readiness. Highly restrictive policies mitigating risk to Soldiers and 
communities restricted personnel availability and, thus, tactical unit readiness. Conversely, 
failing to act in response to the pandemic would have resulted in negative health consequences 
for Soldiers and communities, also degrading unit readiness. Senior leaders had to design a 
suite of policies to support the national COVID-19 response to ensure no long-term drop in 
readiness while also responding to the short-term health threat to readiness. Therefore, the 
Army identified the need for objective and rigorous analysis to assist in maximizing readiness in 
a constrained operating environment with little operational intelligence. It was this—assisting 
leaders across the breadth of the Army, Joint, and Department of Defense (DoD) enterprises in 
understanding the impact of COVID-19 and making well-informed decisions—that was CAA’s 
chief study purpose. 

CAA’s study team of operations researchers was junior in grade, had no epidemiological 
experience, and had no high-performance computing capability; these limitations, however, did 
not prevent them from developing the most influential COVID-19 model in the U.S. Army and 
becoming its lead analytical agency with respect to modeling the impacts of this pandemic. The 
study team accomplished this through extensive academic research, collaboration with 
epidemiologists, and cutting-edge data science techniques. 

Development of this model began in March 2020, when CAA created a large-scale Susceptible, 
Exposed, Infectious, Removed (SEIR) model to forecast COVID-19 cases and hospitalizations for 
each county in the United States. CAA then began presenting SEIR model insights and results to 
Army senior leaders, which built increasing appetite for CAA’s analysis at several commands. 
Section 2 will address the SEIR model and these relationships.  

In the summer of 2020, the study team began addressing more focused analytical problems, 
using an agent-based model to answer training- and deployment-specific COVID-19 questions 
from various Army commands and Army service component commands. Section 3 addresses 
this model and its associated sponsor relationships.  

Throughout both of these phases, the study team constantly adapted to changing senior leader 
priorities and requests, as well as the rapidly changing nature of the pandemic, to help Army 
leaders understand the impact of COVID-19 and make well-informed decisions. Ultimately, 
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CAA’s work enabled the Army to respond to the Nation in crisis and sustain the readiness of the 
Army to respond when needed. 

1.1 Literature Review 

Due to the ever-evolving nature of the pandemic and analytical needs of the project’s sponsors, 
the study team conducted the literature review in parallel with the modeling and analytical 
efforts. The study team constantly absorbed the most up-to-date information about COVID-19 
from academic research and collaboration with epidemiologists, and implemented it as quickly 
as was feasible in models and analysis—even when that meant changing or undoing work that 
had been informed by the best available information just days or weeks before. 

At the initial stages of modeling, the study team sought to understand Susceptible, Infectious, 
Removed (SIR) and other compartmental models.1 2 3 Once information became available about 
the lag between exposure to COVID-19 and full infectiousness, the study team researched 
compartmental models that were more elaborate, and chose to use a SEIR instead of a SIR 
model.4 The study team conducted further research to inform implementation of the SEIR 
model, including gathering estimates for key parameters, and then continued to refine these 
estimates based on emerging research.5 6 Simultaneously, the study team drew on research 
that guided the transition from 56 state/territory models to over 3,000 county models.7  

A key moment during model development was the realization that the transmissibility of 
COVID-19 could be broken down into behavioral and biological components. A number of 
authors provided insight regarding how to incorporate these findings into the SEIR model to 
ensure that it took account of variance in human behavior, prompting the creation of a sub-
model to predict future values of the effective reproductive number (𝑅𝑒𝑓𝑓).8 9 10  

Even after the model was in a more stable condition, the epidemiological community continued 
to publish new research that the study team incorporated into its models, thus maximizing the 
models’ accuracy and relevance to Army decision makers. For instance, the study team 
incorporated non-pharmaceutical interventions11 into the 𝑅𝑒𝑓𝑓 model as a proxy for actual 

                                                      
1 Massad et al. “Forecasting versus projection models in epidemiology” Medical hypotheses. 17-22. 
2 Lipsitch et al. “Estimating Case-Fatality Risks during Outbreaks.” PLoS Neglected Tropical Diseases. 
3 Hethcote, “The Mathematics of Infectious Diseases.” SIAM Review. 599-653. 
4 Nishiura, Linton, and Akhmetzhanov. “Serial interval of (COVID-19) infections.” International Journal of Infectious 

Diseases. 284-286.   
5 Lauer et al. “The Incubation Period of (COVID-19).” Annals of internal medicine. 577-582.  
6 Bar-On et al. “A quantitative compendium of COVID-19 epidemiology.” 1-10. 
7 Hu, Nigmatulina, and Eckhoff. “The scaling of contact rates for infectious disease models.” Mathematical 

biosciences, 125–134. 
8 Jones. “Notes on 𝑅0.”  
9 Nishiura and Chowell. “The Effective Reproduction.” Mathematical and Statistical Estimation Approaches in 

Epidemiology. 103–121. 
10 Delamater et al. “Complexity of the Basic Reproduction Number (R0).” Emerging Infectious Diseases. 1-4. 
11 Kucharski et al. “Early dynamics of transmission and control of COVID-19.” The Lancet Infectious Diseases. 553 - 

558. 
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human behavior and then added weekly flu patterns as a proxy for the seasonal effects on virus 
transmission.12 The study team also reviewed research on other dynamics of COVID-19 
transmissibility, such as heterogeneous mixing,13 but found that modeling these dynamics did 
not improve the model’s predictive accuracy. 

When adapting to more focused analytical questions in chapter 3 of the study, the study team 
conducted additional research on building higher-fidelity, smaller-scale agent-based models, 
first learning the basics of how to implement a SIR model in this framework,14 and then 
understanding how to represent various SIR parameters as random variables.15 16 17 

Even more than 9 months after the project began, the study team continued to improve the 
model using emerging research. Specifically, the study team reviewed work that informed their 
inclusion of vaccines into the SEIR model,18 updated methods to recalibrate the initial 
conditions,19 and assessed impact of different strains of COVID-19.20  

1.2 Laying the Groundwork  

CAA’s COVID-19 analysis was a response to a rapidly evolving global crisis. Because of this, the 
study team had little time to plan its internal organization, knowledge management, tools, and 
project management. Despite the lack of preparation time, study team leadership made a 
number of decisions in the initial stages of the project that enabled them to continue to expand 
their influence over the course of 14 months. These key decisions included the adoption of an 
Agile project management style, the division of coding and research into two sub-teams, the 
choice of a powerful open source coding language to power the models, the use of Git and 
GitLab to manage code, and the use of cloud-based systems to automate model runs.  

Typical Army operations research projects start with a clearly defined objective and due date. 
Study teams then create a glide path to deliver the project on the assigned due date. Agile 
project management, instead, focuses on continuous interaction with customers and delivering 
minimum viable products as rapidly as possible while improving them over time. This 
management style enabled the study team to meet the ever-changing requirements of Army 
senior leaders, who, at the start of the project, did not know what kind of analytical support 
they needed or what CAA could do for them. The study team leaders spent a large amount of 
time interfacing with various customers, communicating the modeling capabilities of the study 
team to find new Army organizations that could benefit from CAA’s modeling and analysis, and 
quickly tailoring products and analysis for new customers. The study team would not have been 

                                                      
12 Smit et al. “Winter Is Coming” International journal of environmental research and public health, 5634. 
13 Cui, Zhang, Feng. “Influence of non-homogeneous mixing on final epidemic size.” Journal of biological dynamics 

31–46. 
14 Kiskowski. “A three-scale network model.” 
15 Bar-On et al. “A quantitative compendium of COVID-19 epidemiology.” 1-10. 
16 He et al. “Temporal dynamics in viral shedding and transmissibility of COVID-19.” Nature Medicine. 672–675. 
17 Wikramaratna et al. “Estimating the false-negative test probability of SARS-CoV-2 by RT-PCR.” Euro Surveillance. 
18 IHME, “COVID-19 vaccine efficacy summary” 
19 IHME, “COVID-19 Results Briefing, The United States of America” 
20 Galloway et al. “Emergence of SARS-CoV-2 B.1.1.7 Lineage”  
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able to respond rapidly to such a wide range of stakeholders without Agile project 
management. 

Early in the project, the study team split into two efforts, research and model development. 
Members of the research team focused on understanding the rapidly emerging research by 
reading published journal articles and engaging with epidemiologists in the Army and in 
academia. The research team provided explicit direction to the model development team on 
what features should be included in the model and explained the mathematics required to 
develop those features. The model development team could then focus all of their efforts on 
building the model code. 

The study team chose to use the R programming language to implement its COVID-19 forecast 
model. This open-source programming language offers the advantages of being available on 
unclassified government laptops and in cloud-based environments. The study team used 
functional programming techniques to organize the over 10,000 lines of code required to run 
the model so that it could be efficiently maintained and expanded over time. Additionally, the 
study team was able to leverage parallelization, which performs distributing functions to 
multiple computer cores in parallel. This parallelization significantly reduced model run time 
from about 4 hours to 1 hour. 

The study team also chose to house the model in a sub-component of Army G-8’s Army 
Resource Cloud called cloud PROgrogramming, Budgeting, and Execution (cPROBE). Housing the 
model in the cloud meant further freeing up analyst time because running the model did not 
consume a study team members’ local computing power and because daily model runs in the 
cloud could be automated. This allowed the study team to focus on customer engagement and 
model improvement instead of generating daily outputs as study team membership fluctuated. 
Cloud computing is common in private industry, but it is seldom done on the Department of 
Defense (DoD) network due to network restrictions, which proved a continuous challenge 
throughout the project.  

The study team also used GitLab, hosted by the National Geospatial-Intelligence Agency (NGA), 
to manage the model code. This is a standard practice in software engineering, but is not 
common in the DoD. GitLab provides a suite of version control tools to allow multiple people to 
improve model code simultaneously, incorporate or discard model excursions rapidly, and 
prevent user created version issues. This allowed the study team to develop model features 
during all stages of the project rapidly.  

These five key decision made the study team much more efficient and responsive, which made 
rapid response to senior leader requests possible. With all of these tools and systems in place, 
the study team was typically able to answer a senior leader request in days or weeks, instead of 
months or years. 
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2 THE SEIR MODEL 

2.1 Modeling Methodology 

In support of the Army’s need to understand the likely path of the pandemic, mitigate the most 
severe threats to the force’s health and readiness, and prepare to support civil authorities, CAA 
developed a SEIR model to project future COVID-19 cases. The model runs for each U.S. county 
and 53 countries in the U.S Indo-Pacific Command area of responsibility. The model also has an 
option to consolidate multiple counties that span a single metropolitan area together to 
produce consolidated output for large cities like New York City. SEIR models are part of a set of 
standard epidemiological modeling approaches called compartmental population models. 
Compartmental population models decompose the totality of the populace into discrete 
compartments that characterize an individual’s progress through disease phases. A set of 
ordinary differential equations dictates movement from one compartment to the next over 
time Figure 1 shows a representation of movement between compartments in an SEIR model. 
The compartments are:  

Susceptible: Proportion of population at risk of becoming infected. 
Exposed: Proportion of population incubating COVID-19, but not yet contagious. 
Infectious: Proportion of contagious carriers of COVID-19, whether symptomatic or not. 
Removed: Proportion of population for whom infection has ended; made up of fatalities 
and recoveries. 

 

Figure 1. Graphical Depiction of an SEIR Model 

CAA’s model formulation obeyed assumptions standard to compartmental epidemiological 
models: 

1. The population within the discrete compartments accounts for the totality of a 
geographically bounded population. 

2. The total population intermixes uniformly regardless of compartment; geographically 
distinct populations do not intermix. 

3. The size of every population is static, meaning there are zero births, deaths, and cross-
border movements. 

4. All members of the population are equally susceptible to infection. 
5. The distribution of the infected compartment population among age cohorts is 

proportional to that of the total population. 
6. Demand for hospitalization manifests only while an individual is infected. 
7. SARS-CoV-2 is equally infectious for any given geographic population. 
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8. Infected individuals exhibit uniform behavior regardless of whether an individual is 
symptomatic or hospitalized. 

9. Recovered individuals are immune and no longer susceptible. 

10. The populace lacks widespread pre-existing immunity. The study team initially also 

assumed that there were no available effective vaccines, but later incorporated vaccine 

immunity.21 

11. The disease has a 6-day-long asymptomatic, non-contagious incubation period and 

communal spread patterns, indicating the need for an exposed compartment. 

12. COVID-19’s contagious period is 14.3 days, concluded by either recovery or death. 

The study team assessed the SEIR approach as suitable to reflect COVID-19 dynamics because 
of disease attributes the medical community identified during the first several months of the 
pandemic. Some of these assumptions weakened or even changed during the course of the 
project as the study team gathered updated information. The SEIR construct, however, proved 
adaptable enough that the study team could keep delivering useful forecasts even as new 
dynamics, such as mass vaccination, came into play.  

2.1.1 Model Formulation 

A system of ordinary differential equations governs a SEIR model. The derivatives represent 
how quickly the population moves through the SEIR compartments. Since the study team 
assumed the total population was static, the sum of the derivatives is zero. Since each variable 
represents a proportion of the population, the sum of the variables must always be one. Table 1 
shows the ordinary differential equations for each compartment. Note, the variable for the 
removed compartment is 𝑈(𝑡); this is to avoid confusion with one of the key parameters, 𝑅.  

Compartment Equations 

𝝁 
removed 
 

Simplified Equations 

Susceptible 
𝑑𝑠

𝑑𝑡
=  𝜇 − 𝛽𝐼(𝑡)𝑆(𝑡) − 𝜇𝑆(𝑡) 

𝑑𝑠

𝑑𝑡
=  −𝛽𝐼(𝑡)𝑆(𝑡) 

Exposed 
𝑑𝑒

𝑑𝑡
= 𝛽𝐼(𝑡)𝑆(𝑡) − (𝜎 + 𝜇)𝐸(𝑡) 

𝑑𝑒

𝑑𝑡
= 𝛽𝐼(𝑡)𝑆(𝑡) − 𝜎𝐸(𝑡) 

Infectious 
𝑑𝑖

𝑑𝑡
= 𝜎𝐸(𝑡) − (𝛾 + 𝜇)𝐼(𝑡) 

𝑑𝑖

𝑑𝑡
= 𝜎𝐸(𝑡) −  𝛾𝐼(𝑡) 

Removed 
𝑑𝑢

𝑑𝑡
= 1 − (

𝑑𝑠

𝑑𝑡
+

𝑑𝑒

𝑑𝑡
+

𝑑𝑖

𝑑𝑡
) 

𝑑𝑢

𝑑𝑡
= 1 − (

𝑑𝑠

𝑑𝑡
+

𝑑𝑒

𝑑𝑡
+

𝑑𝑖

𝑑𝑡
) 

Table 1. SEIR Ordinary Differential Equations System Formulation 

                                                      
21 CDC, “COVID-19 Frequently asked questions”  
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2.1.2 Model Initialization 

To initialize a SEIR model, one must first assign parameter values (i.e., 𝜎, 𝛾, and 𝛽) and second 
assign the initial proportions in each of the four SEIR compartments (i.e., 𝑆0, 𝐸0, 𝐼0, and 𝑈0).  

The parameters are defined as:  

 Incubation factor 𝜎: the inverse of the length of time (in days) before an exposed 

individual becomes infectious. 

 Infectious factor 𝛾: the inverse of the length of time (in days) before an infectious 

individual is removed. 

 Transmission Factor 𝛽: the inverse of the mean time (in days) between successive 

exposures of susceptible individuals by a single infectious individual. This can be thought 

of as how contagious a disease is at a given time. The more commonly known version of 

this parameter is the effective reproduction rate, 𝑅𝑒𝑓𝑓. 𝑅𝑒𝑓𝑓 =
𝛽

𝛾
, which means 𝛽 and 

𝑅𝑒𝑓𝑓 are directly correlated and, for the purpose of communication, interchangeable.  

Of these parameters, 𝛽—or 𝑅0—is the most complex and has the most impact on the SEIR 
model results. For 𝜎 and 𝛾, the study team used the Centers for Disease Control and Prevention 
(CDC) estimates. The study team continued to experiment with various values of 𝜎 and 𝛾, only 
to find that the other values did not result in significantly better case-projection accuracy than 
the CDC’s estimates. To estimate 𝛽, the study team relied on machine learning techniques, 
which are addressed in section 2.2. 

To assign initial proportions to each of the four compartments (at 𝑡𝑖𝑚𝑒 = 0), the study team 
interpolated values from the Johns Hopkins University (JHU) COVID-19 case data. JHU case data 
only provides daily numbers of total cumulative cases. Thus, all of the initial variable values 
(𝑆(𝑡 = 0), 𝐸(𝑡 = 0), 𝐼(𝑡 = 0) and 𝑈(𝑡 = 0)) originate with the daily cumulative cases for each 
county. Table 2 provides the equations for each initial variable. 

 

Table 2. Initial Conditions of the SEIR model 

Variable Calculations 

𝑆𝑗(𝑡 = 0) 
1 −

𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑 𝐶𝑎𝑠𝑒𝑠𝑡=0 + 𝑉𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑𝑡=0

𝑅𝑒𝑔𝑖𝑜𝑛 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗

 

𝐼𝑗(𝑡 = 0) (𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑 𝐶𝑎𝑠𝑒𝑠𝑡=0- 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑 𝐶𝑎𝑠𝑒𝑠𝑡=−14)

𝑅𝑒𝑔𝑖𝑜𝑛 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗

 

𝐸𝑗(𝑡 = 0) 𝛽 ∗ 𝐼(0) ∗ 𝑠(0)/𝜎

𝑅𝑒𝑔𝑖𝑜𝑛 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗

 

𝑈𝑗(𝑡 = 0) 1 − 𝑆(0) − 𝐸(0) − 𝐼(0) 

Where j is the county from 1 to 3,155 
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2.1.3 Time Horizon  

The study team initially made predictions a full year (365 days) into the future, but reduced the 
modeled period to 120 days after it became clear that the pandemic was evolving too quickly to 
put any trust in long-term forecasts. Eventually, the study team focused on releasing 
predictions 30-45 days into the future, based on the needs of customers and the confidence of 
the study team.  

2.1.4 Forecasting Stress on Hospital Infrastructure 

One of CAA’s more influential analytical outputs for Army senior leaders was its forecasts of 
requirements for medical infrastructure, which included the dates CAA expected demand for 
hospital and/or intensive care unit (ICU) beds to exceed supply in a given county. CAA produced 
these forecasts by applying age-weighted hospitalization rates to the predicted number of 
infectious individuals in each region over time. The study team considered integrating an 
additional “hospitalized” compartment and the associated parameters into the SEIR model 
itself, but chose not to. Such a method would have substantially increased the complexity of 
the model, but would likely not have resulted in significantly more accurate predictions, due to 
a lack of high-quality data on the parameters needed to represent a hospital compartment and 
the heightened difficulty of tuning a more complex model (particularly without access to high-
performance computing). CAA made three simplifying assumptions to enable this 
methodological choice: 

1. Hospitalization status does not affect the rate of interaction between the populations 

inside and outside the infectious compartment.22 

2. Demand for hospitalization manifests only while an individual is in the infectious 

compartment.23 

3. The distribution of the infectious compartment population among age cohorts is 

proportional to that of the total population.24 

CAA used age cohort-aligned rates for non-invasive inpatient hospitalization and ICU 
hospitalization provided by the CDC, shown in Table 3. 

                                                      
22 Enables fidelity of the SEIR model as previously characterized – absent this assumption, the model would 

require differentiated values for 𝛽for the populations at-large and hospitalized, respectively. 
23 Simplifies the overall problem – absent this assumption, the model would need to account for (e.g.,) time 

dispersion between the manifestation of the disease in an individual, his/her intent to seek medical care, and 
any complicating factors that might extend hospitalization after the acute infection has resolved. 

24 Enables the consideration of the total population as a whole – absent this assumption, the model would require 
a means to measure interaction rates between (e.g.,) demographic age cohorts; the limiting case of such a 
breakdown is an agent-based instantiation. 
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Age Group Hospitalization Rate ICU Rate 

0-44 1.7% 0.37% 

45-64 4.5% 1.3% 

65+ 7.4% 1.98% 

Table 3. Medical Infrastructure Demand Rates by Age Cohort25 

The remaining 𝐼(𝑡) proportion reflects individuals who do not require hospitalization. Using 
assumption 3, the study team applies these rates against the respective age cohort population 
in 𝐼(𝑡) to forecast demand for medical infrastructure. This produces a forecast for hospital and 
ICU bed demand by day for each region, which the study team then compared to the actual 
medical infrastructure available in the region. 

2.2 Inferring 𝜷 by Modelling 𝑹𝒆𝒇𝒇 

The study team found that 𝛽 (closely linked to 𝑅𝑒𝑓𝑓, the effective reproduction rate) was the 

most influential parameter in the SEIR model, and modeling it accurately was key to producing 
accurate forecasts of the spread of COVID-19. While the study team initially used a static 𝑅𝑒𝑓𝑓 

value of 2.5, provided by the CDC, this produced uniform and unrealistically dire forecasts 
across the country; given that the rate at which the disease spread varied greatly by time and 
place, the study team quickly abandoned this approach. Instead, the study team developed a 
sub-model that predicted 𝑅𝑒𝑓𝑓 by day for each region of interest, using a wide range of data 

representing demographics, environmental factors, human behavior, and data on the pandemic 
itself.  

This 𝑅𝑒𝑓𝑓 sub-model predicted future values of 𝑅𝑒𝑓𝑓 for each county. The study team used 

these predictions in the SEIR ordinary differential equations to create predictions of the size of 
various compartments at any time in the future. To find the best model, the study team 
focused on (1) error metrics, such as Poisson Deviance and 𝑅2 from the various models, and (2) 
more importantly, the SEIR model performance with the 𝛽 produced from the 𝑅𝑒𝑓𝑓 model. 

Section 2.4 discusses the study team’s extensive validation and verification efforts on the 
output of the SEIR model. 

The 𝑅𝑒𝑓𝑓 prediction model had two steps. First, the study team inferred the value of 𝑅eff for 

every previous day of the pandemic in each modeled region. Second, the study team fit a 
regression model that predicted 𝑅eff using past values and a wide range of other predictors.  

2.2.1 Estimating Historical 𝑹𝒆𝒇𝒇Values 

To calculate historical 𝑅𝑒𝑓𝑓 the study team derived the equation for 𝑅𝑒𝑓𝑓 from the set of 

ordinary differential equations used in the SIR model—a model similar to SEIR, but without an 
exposed compartment. In equation (1) below, the study team took all variable values directly 
from JHU case data. 

                                                      
25 CDC, “Planning Parameters for COVID-19 Outbreak Scenarios” 
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𝑅𝑒𝑓𝑓𝑡𝑗
=–

𝑑𝑆𝑗

𝑑𝑡

𝑆𝑡𝑗∗𝐼𝑡𝑗
∗

1

𝛾
 (1) 

where j is the county from 1 to 3,155 and  
t is the time from March 22, 2020 to the current day.  

2.2.2 Modeling Future 𝑹𝒆𝒇𝒇 Values with the eXtreme Gradient Boosted Tree 

(XGBoost) Algorithm 

After determining the values of 𝑅𝑒𝑓𝑓 for previous days, the study team used these values as a 

response variable to train a model that predicted values of 𝑅𝑒𝑓𝑓 using a cloud-based automated 

machine-learning tool called DataRobot. DataRobot allows users to input cleaned, pre-
processed data with indicated response and predictor variables, and then trains hundreds of 
different models using dozens of different machine learning techniques. DataRobot then 
recommended the model with the lowest cross-validation error, and provided tools for 
examining, visualizing, and understanding it. The study team used this program to predict 
future values of 𝑅𝑒𝑓𝑓. 

During the development phase, the CAA study team found that models created using XGBoost 
Regression with Early Stopping consistently performed the best. Though the study team would 
periodically revisit this process to verify that the XGBoost models remained the most effective, 
the study team was able to save hours of time by requesting DataRobot only create three 
different specifications of XGBoost and selecting the best one for each model run.  

XGBoost is a tree ensemble model, which means it builds many trees that all come together to 
produce one prediction for each row of data. Tree ensemble models are effective because a 
prediction from many trees is typically better than a prediction from one single tree, and many 
trees reduce the possibility of overfitting. Within tree ensemble models, XGBoost falls into a 
subclass of models called Gradient Boosting Machines (GBMs).  

GBMs are a generalization of Freund and Schapire’s AdaBoost (Adaptive Boosting) algorithm26 
to handle arbitrary loss functions. Similar to their better-known sister algorithm, Random 
Forest, GBMs fit individual trees to random samples of the rows and columns of the input data. 
While Random Forest uses the bootstrap aggregation (or bagging) technique, building all trees 
at once, GBMs build trees in series, fitting each successive tree to the residual errors from all 
the previous trees combined.  

Another unique feature of GBMs is that they can use one of several different loss functions to 
build each tree. That is, for each tree, the GBM algorithm builds branches and leaves to 
minimize the residuals of the selected loss function. Because the 𝑅𝑒𝑓𝑓 data were derived from 

case counts, the study team chose the Poisson loss function. 

𝐿𝑖 = 𝑅eff𝑖
− 𝑒�̂�𝑖 , (2) 

where �̂� is the result of the tree regression, 𝐿𝑖  is the Poisson loss function, and 𝑖 is the record in the data set 
that corresponds to a unique county and day of pandemic combination. 

                                                      
26 Freund and Schapire. “A decision-theoretic generalization of on-line learning and an application to boosting.” 

Journal of computer and system sciences. 119-139. 
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Compared to other GBMs, the XGBoost tree algorithm is more efficient and more accurate. One 
of these optimizations is “early stopping,” in which the model stops training earlier than usual if 
test-set predictive accuracy does not improve as it builds successive trees; beyond this point, 
the model would likely begin overfitting. In DataRobot’s implementation of XGBoost Tree 
Regression, there are 24 parameters. DataRobot handles the computationally intensive task of 
tuning the parameters, although users can set alternative values. The study team used all of 
DataRobot’s recommended parameter values tuned during the cross-validation model building 
process. Example parameters included maximum number of terminal leaves, maximum tree 
depth, number of trees, and learning rate. The number of trees and the learning rate are 
notable because they are key to preventing the GBM from overfitting.  

2.2.3 𝑹𝒆𝒇𝒇 Model Assumptions 

The study team made the following assumptions when designing and implementing the 
XGBoost model.  

1. Each randomly sampled row and column used to create each tree are representative of 

the entire data set. 

2. 𝑅𝑒𝑓𝑓 follows a Poisson distribution. 

3. Data that change from day to day (e.g., Google mobility data, state policy data, case 

trends) carries on last known values into the future. An alternative to this assumption 

would have been to develop a sub model to forecast all of these variable values into the 

future; however, this was too computationally intensive and would have baked in more 

uncertainty that would have been extremely complicated to dissect and communicate. 

2.3 Source Data 

The study team collected data from 19 public sources; all but three were open-source (i.e., 
publicly available). Thirteen of the 19 data sets were static and, thus, only required 
downloading once. These 13 data sets included U.S. Census Bureau tables covering county 
populations and age distributions27, county geographic information from the National Oceanic 
and Atmospheric Association28, state historical flu patterns from the CDC29, numbers of hospital 
beds in each county from the World Bank30, etc. The other six data sets were republished daily. 
These were:  

 case data from JHU; 

 case data from USAFacts; 

 vaccination data from Our World in Data; 

 state policy data from the COVID-19 U.S. State Policy Database; 

 community mobility reports from Google; and 

                                                      
27 United States Census Data; Customized Table. https://data.census.gov  
28 NOAA Integrated Surface Database Station History. https://www1.ncdc.noaa.gov/pub/data/noaa/isd-history.txt  
29CDC Flu Incidence Data. https://www.cdc.gov/flu/weekly/weeklyarchives2020-2021/data/NCHSData09.csv 
30 ERSI No longer publishes this data set. https://coronavirus-

disasterresponse.hub.arcgis.com/datasets/definitivehc::definitive-healthcare-usa-hospital-beds/ 

https://data.census.gov/
https://www1.ncdc.noaa.gov/pub/data/noaa/isd-history.txt
https://www.cdc.gov/flu/weekly/weeklyarchives2020-2021/data/NCHSData09.csv
https://coronavirus-disasterresponse.hub.arcgis.com/datasets/definitivehc::definitive-healthcare-usa-hospital-beds/
https://coronavirus-disasterresponse.hub.arcgis.com/datasets/definitivehc::definitive-healthcare-usa-hospital-beds/
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 testing data from the COVID-19 Tracking Project.  

In order to ensure the model was using the most up-to-date version of the aforementioned 
data, the study team used various application programming interfaces (APIs) to automate the 
process of checking for updates and downloading the latest data from each source. Several 
data sources were hosted on GitHub, whose API does not work reliably on the Non-classified 
Internet Protocol Routing Network (NIPRNET), so the study team created mirror repositories on 
the NGA-hosted GitLab instance and used GitLab’s extensive file API to check for and download 
updates. 

2.3.1 Data Limitations 

The study team had to address a few key limitations to the data. The COVID-19 case data were 
inconsistent across counties because of the heterogeneity in approaches to testing, treating, 
and reporting COVID-19 cases. JHU and USAFacts frequently revise historical observations to 
reflect emergent information and/or reclassification; on occasion, these revisions resulted in 
data showing negative new cases for a day in a particular county. There is also an observed 
cyclic component to the historical data in that reports corresponding to Mondays tend to show 
higher-than-anticipated new case counts; the study team assessed this phenomenon to be 
more likely due to workflow than to a characteristic of COVID-19. These limitations are all 
similar in that humans generally cause them and the study team was able to execute arithmetic 
corrections to these issues. For instance, to address the cyclical reporting patterns, the study 
team implemented a rolling average function to diminish the spikes and dips each week.  

The model was also limited because many COVID-19 cases were simply not recognized because 
the carriers were asymptomatic. This affected case data and testing data more than other data 
sets. To address this issue, the study team explicitly forecasted reported cases—not all cases. 
This made hospitalization forecasts more accurate because (1) forecasting all cases would have 
added more uncertainty and error into the decomposition of the infectious compartment into 
hospital projections, thus making hospitalization forecasts less accurate; and (2) 
hospitalizations are more tightly correlated with reported cases than they are with all cases.  

2.4 Model Validation and Model Improvement Strategy 

Acknowledging the need to rapidly improve the model and to incorporate the latest research 
into the modeling strategy, the study team created a Development-Operations workflow. This 
allowed the study team to produce daily modeling projections while simultaneously working to 
improve model accuracy. Whenever the study team gained new insights from emerging 
research or colleagues shared new methods, the model developers would incorporate the ideas 
into the SEIR model. GitLab enabled the study team to keep a working version of the model 
producing output daily, while model developers could build and test modifications to the model 
on separate “branches” of code. These modifications would rapidly, but deliberately, go 
through a formal review process and would either be discarded or adopted as the working 
version of the model.  

Part of this process was the development of a model registry and tools for automated error 
comparison. The study team built a set of functions that made it easy to track model 
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experiments: analysts simply had to choose a set of model parameters, and the code would: 
assign a unique model identifier (or retrieve an existing one from the model registry); generate 
and store predictions from previous weeks or months, using only the data that would have 
been available on those days; and calculate error metrics against past actual confirmed-case 
data. This made it easy to compare the past performance of different model specifications, 
including the study team’s current production model. The study team eventually created 88 
different versions of the SEIR model, accepting only 8 as official production models. 
Improvements were generally categorized as an attempt to improve the 𝑅𝑒𝑓𝑓 model—either 

through the inclusion of new predictor variables, the use of a new predictive model type, or the 
way that historical values of 𝑅𝑒𝑓𝑓 were calculated—or an attempt to improve the initialization 

of the model, either through new methods to calculate the initial conditions or changes in 
parameter values.  

2.4.1 Error Metrics 

The study team used four key error metrics to track and compare the performance of different 
model specifications. These four metrics were Mean Absolute Error, Mean Percentage Error, 
Mean Absolute Percentage Error, and Root Mean Squared Error. Each metric has various 
strengths and weaknesses; the study team used them in combination to determine the 
accuracy of a given model. 

Mean Absolute Error (MAE) calculates residuals at various time horizons, without accounting 
for over or under predictions.  

𝑀𝐴𝐸𝑖,𝑗 =  |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖,𝑡+𝑗 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖,𝑡+𝑗| (3) 

𝑀𝐴𝐸𝑗 =
∑ 𝑀𝐴𝐸𝑖,𝑗

𝑛
𝑖=1

𝑛
 (4) 

Where 𝑖 is a given county or geographic region, 𝑗 is a time horizon to evaluate measured in 
days, 𝑡 is the current time since the start of the pandemic measured in days, and 𝑛 is the 
number of counties or geographic regions modeled. This metric is simple to understand and 
calculate, but it could be difficult to interpret when comparing model performance across the 
entire country. This is because regions with very large populations tended to have high case 
counts and high absolute error, while regions with low populations tended to have low case 
counts and low absolute error. Thus, a few very large absolute error values could greatly 
influence the overall MAE, making the actual value somewhat difficult to interpret by itself, 
although it was still useful for comparing models.  

Mean Absolute Percentage Error (MAPE) calculates the absolute percentage error in each 
prediction at various time horizons. Since this metric is in absolute terms, it is not possible to 
have negative 𝑀𝐴𝑃𝐸, and lower 𝑀𝐴𝑃𝐸 indicates higher accuracy. Unlike MAE, this metric is 
proportional, so high-population/high-case-count regions are not unduly influential, and the 
value is more intuitively interpretable. However, MAPE has the opposite problem: regions with 
very small case counts may have surprisingly high MAPE even with very reasonable predictions. 
For instance, a county with one real case and three predicted cases would have 200% MAPE, 
despite its very low MAE of 2. In addition, MAPE exaggerates the effect of over prediction: 
under predicting by a factor of two produces 50% 𝑀𝐴𝑃𝐸, while over predicting by a factor of 
two produces 100% 𝑀𝐴𝑃𝐸.  
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𝑀𝐴𝑃𝐸𝑖,𝑗 =  
|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖,𝑡+𝑗−𝑎𝑐𝑡𝑢𝑎𝑙𝑖,𝑡+𝑗|

𝑎𝑐𝑡𝑢𝑎𝑙𝑖,𝑡+𝑗
 (5) 

𝑀𝐴𝑃𝐸𝑗 =
∑ 𝑀𝐴𝑃𝐸𝑖,𝑗

𝑛
𝑖=1

𝑛
 (6) 

 

Mean Percentage Error (MPE) calculates the percentage error in each prediction at various time 
horizons. This metric shows if there is systemic over or under prediction, but because all errors 
are averaged, the 𝑀𝑃𝐸 could be 0% despite the absolute error being extremely high. In 
addition, MPE suffers from the same asymmetry as MAPE in how it calculates over prediction 
and under prediction. 

𝑀𝑃𝐸𝑖,𝑗 =  
(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖,𝑡+𝑗−𝑎𝑐𝑡𝑢𝑎𝑙𝑖,𝑡+𝑗)

𝑎𝑐𝑡𝑢𝑎𝑙𝑖,𝑡+𝑗
 (7) 

𝑀𝑃𝐸𝑗 =
∑ 𝑀𝑃𝐸𝑖,𝑗

𝑛
𝑖=1

𝑛
 (8) 

 

Root Mean Squared Error (RMSE) is another absolute, non-proportional measure of predictive 
error, but is difficult to interpret as a raw number, because it emphasizes large absolute error 
values to a greater degree than MAE does. The study team used this mostly for comparative 
purposes. 

𝑅𝑀𝑆𝐸𝑗 = √
∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖,𝑡+𝑗−𝑎𝑐𝑡𝑢𝑎𝑙𝑖,𝑡+𝑗)2𝑛

𝑖=1

𝑛
 (9) 

 

2.4.2 Criteria for model adoption 

The study team developed a standardized model performance comparison report that it used 
upon completion of a promising developmental model specification. For each model 
specification, the report calculated the four error metrics above at 4, 7, 14, 21, and 28 days out 
from the prediction date, using the automated prediction history generation tools discussed in 
section 2.4. The study team generated multiple sets of prediction history for the developmental 
model and averaged its performance at each time horizon, to account for day-to-day variability 
in accuracy. The study team could then compare the accuracy of the developmental model to 
the current production model in a consistent manner. There was no fixed standard for accuracy 
improvement that the study team used to accept the developmental model as the new 
production model, because the wide variety of error metrics, time horizons, and dates of 
prediction meant that—after the major modeling innovations made early in the study—
developmental models were rarely, if ever, strictly better on all possible metrics. Instead, the 
study team considered all available metrics and made a decision based on the totality of the 
information. 

2.4.3 Other Model Development Experiments 

The study team was constantly developing model improvements; many of them specifically 
intended to address the limitations of the SEIR model. However, in most cases, making the 
model more complicated in an attempt to better reflect reality did not improve predictive 
accuracy. For example, the study team knew that not all COVID-19 infections were being 
reported, so the method of calculating 𝑅0 and 𝑆0 did not reflect the true number of removed or 
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susceptible people in a region at a given date. Reported data always reflected more people 
categorized as susceptible and fewer people categorized as recovered due to the non-reported 
infections. This was a negligible problem for the first few months of the project, but in the fall 
of 2020, the study team explored the idea of increasing the number of initial recovered to 
account for the missing infections. While the idea seemed promising in theory, it did not 
systematically improve model accuracy; thus, the study team only briefly implemented it in the 
production model. An imbalance in the amount of non-reported infections by geographic 
region and a lack of regionally specific data regarding non-reported infections may have caused 
this result.  

Other improvements considered but not implemented included using data on mass public 
protest attendance in the 𝑅𝑒𝑓𝑓 model, accounting for non-homogenous mixing of different 

population groups inside a geographic region, accounting for potential re-infection, adding a 
hospitalized or quarantined compartment with reduced contact frequency for very sick 
individuals, accounting for multiple strains of COVID-19, and accounting for infections across 
county or region borders.  

2.4.4 Comparison to other models 

In addition to calculating error metrics to understand the absolute error in the SEIR model, the 
study team compared its work to leading publicly available models. The CDC ensemble model 
was one of the best-known models that produced forecasts for new COVID-19 cases at the 
county level. This model produced weekly forecasts instead of daily forecasts, so the study 
team aggregated their own model results at the weekly level for comparison. The study team’s 
SEIR model had higher error based on all error metrics, but the differences in the error were 
relatively minor. The study team’s average MAE at 21 days from prediction was approximately 
35, while the average MAE for the CDC ensemble model was 30 cases per day. Similarly, the 
MAPE at 21 days from prediction, averaged across every county in the country for the study 
team’s model, was typically 75%–80%, while the CDC ensemble model’s MAPE was typically 
60%–70% for these same predictions. Despite this slight disadvantage in accuracy, the study 
team’s responsiveness to Army Senior Leaders, willingness to explain outputs and modelling 
decisions to them, and ability to adjust model inputs, outputs, visualizations, and reports to suit 
their desires made this product valuable across the Army and Joint enterprise. 

2.5 Impacts of the Model 

CAA’s SEIR model had a major impact on the Army’s response to the pandemic; it enabled the 
Army to respond to the national crisis while maintaining readiness in units across all 
components of the Army. The model informed and influenced approximately 10 different 
decisions and ongoing processes in organizations spanning the Joint and Army enterprise. The 
model also provided a common operating picture for senior Army leaders, up to and including 
the Vice Chief of Staff of the Army, helping them understand and respond to the COVID-19 
crisis as it emerged and developed. The study team remained relevant in an ever-changing 
environment by responding rapidly to changing customer demands, being able to explain model 
results succinctly, and being honest about the limitations of the model. The large number of 
consumers of CAA’s model output meant that there was not enough time for the study team to 
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document all the decisions the model informed, but even the impacts of which they were 
aware are quite substantial. 

2.5.1 Impacting U.S. Army North (USARNORTH) Crisis Response Decisions 

 

Figure 2. A heat map describing projected hospital stress in each county in the continental US 
according to the study team’s SEIR model. The study team provided this product to 

USARNORTH to inform their decisions regarding field hospitals and troop mobilization.  

One of the first tangible impacts of the SEIR model was helping USARNORTH and its 
subordinate units, the U.S. Army Corps of Engineers (USACE), and the Federal Emergency 
Management Agency (FEMA) decide where, when, and how to support areas of the United 
States experiencing hospital stress due to COVID-19. USARNORTH was in charge of the Army’s 
defense support of civil authorities (DSCA) mission in responding to the pandemic, and regularly 
made decisions regarding the activation of National Guard units to support COVID-19 testing 
and/or the construction of field hospitals in pandemic hotspots. The study team added the 
hospital projections based on a request from USARNORTH and then provided custom 
visualizations that enabled leaders to quickly understand where there was a need for Army 
support for a local COVID-19 outbreak. Figure 2 shows an example of output provided to 
USARNORTH.  
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2.5.2 Impacting U.S. Indo-Pacific Command (USINDOPACOM) Strategic and 
Multi-national Decisions 

 

Figure 3. New case predictions according to the study team SEIR model provided to 
USINDOPACOM as part of the 2 February 2021 report. 

USINDOPACOM became aware of the study team’s modeling effort through CAA’s Strategic 
Partner embedded at the command. They were immediately interested in the SEIR projection 
model and wanted to know if the study team could use it to forecast COVID-19 cases in each of 
the countries in the USINDOPACOM area of responsibility (AOR). The study team found new 
data sources and built them into the existing data processing and modeling code; due to the 
flexible nature of the model, it took just 3 weeks to modify the SEIR model to produce country-
level projections for the USINDOPACOM AOR. The study team packaged these projections in a 
weekly report for the command’s plans directorate, who used it to inform decisions about 
canceling or holding planned multi-national training exercises and key leader engagements at 
the flag officer and ambassador level. Figure 3 shows a sample of the output the study team 
provided to USINDOPACOM. The study team also shared these projections with U.S. Army 
Pacific (USARPAC), who used them to inform decisions about DSCA missions in the U.S. 
Territories of Guam and the Marianas Islands. According to MG Stephen Sklenka, 
USINDOPACOM J5, The study team was “instrumental in shaping the health, safety, and 
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security of the joint force operating across Indo-Pacific.”31 CAA contributed directly to 
USINDOPACOM’s ability to accomplish its mission, working with its partners to promote 
development, enhance security, and provide humanitarian assistance.  

2.5.3 Providing a Common Operating Picture across the Army Enterprise 

 

Figure 4. A snapshot of the Army Vantage COVID-19 dashboard, which displayed this 
projection of new cases in the Fort Bragg area on 5 April 2021. 

The study team’s initial customer relationship with the Deputy Chief of Staff, G-3/5/7 resulted 
in involvement with the Army COVID Campaign Plan (AC2P), which organized periodic briefs to 
all senior leaders in the Army, chaired by the Vice Chief of Staff and the Undersecretary of the 
Army. The study team routinely presented at these briefs to provide insight into trends, areas 
of concern, and the larger modeling community’s thoughts on how COVID-19 would evolve in 
the future. Because of the study team’s participation in these briefings, the Vice Chief of Staff 
mandated that the study team’s SEIR model be the forecast model of record for the entire 
Army. This created an opportunity to bring CAA’s model to Vantage, the Army’s leader 
dashboard, which is accessible directly by all mid-grade leaders and above. The Vantage team 
created a COVID-19-specific dashboard that enabled users to view the forecast for future cases 
in the area around each installation, along with other information about the state of the 
pandemic. This could inform decisions at the battalion, brigade, and installation levels, such as 
operating status of base quality of life facilities, mitigation protocols to use during daily 
activities, and scheduling of in-person social events. These decisions, made every day across the 
Army, had significant impact on unit readiness. CAA’s analysis enabled leaders to make 
informed decisions to balance the health and training aspects of readiness. Figure 4 shows an 
example of the output displayed in Vantage. Because the study team did not interact directly 
with Vantage users, there is no definitive record of what specific leader made what specific 
decision based on the SEIR forecast hosted on Vantage. However, user statistics showed that 
there were typically 750 unique users of the COVID-19 installation dashboard per week, 
indicating a strong usage of the SEIR forecast model. In addition, numerous other agencies such 

                                                      
31 Major General Stephen Sklenka. Letter of thanks to Center for Army Analysis, April 6 2020. 
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as Army Materiel Command, the Defense Threat Reduction Agency, and the White House 
COVID-19 Task Force used the study team’s SEIR forecast in conjunction with other forecast 
models to build situational awareness for their leaders. 

2.6 Using the SEIR Model for Focused Studies 

In the summer of 2020, there were regional surges of COVID-19, but many people began to 
believe that the worst of the pandemic was over. Senior leaders were still very interested in 
COVID-19 but were beginning to think beyond how they could support the national response. 
Instead, they were focusing on more on maintaining unit readiness in a COVID-19 environment. 
The connections the study team had made through its initial COVID-19 work, in combination 
with informal networking by other CAA personnel, led to new types of questions from 
organizations such as U.S. Army Central (USARCENT) and U.S. Special Operations Command 
(USSOCOM). The study team was able to use the SEIR model, with altered parameters or initial 
conditions, to answer specific policy and resource management questions from these 
organizations.  
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2.6.1 USARCENT 

 

Figure 5. Results of analysis regarding how closures of base facilities would impact the most 
likely and dangerous COVID-19 outcome  

Two different staff sections from USARCENT approached the study team looking for decision 
support analysis regarding different problems. In the summer of 2020, the Surgeon’s office was 
looking to try to quantify the risk of COVID-19 spread if the base commander at Camp Arifjan 
were to re-open quality of life facilities such as the gym and coffee shops. The study team used 
information from the 𝑅𝑒𝑓𝑓 model discussed in section 2.2 to estimate the effects of specific 

interventions on the spread of COVID-19, and then built a probabilistic model that produced 
possible distributions of future COVID-19 caseloads on Camp Arifjan under different policies. 
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The study team concluded that re-opening closed facilities would not greatly increase cases in 
the “most likely,” or median, set of potential outcomes, but it would expose the installation to a 
small possibility of a major surge in cases, which would be nearly impossible if the base 
commander kept COVID-19 restrictions in place. This analysis helped the base commander 
make decisions, weighing increased Soldier quality of life against potentially decreased short-
term readiness. Figure 5 shows the topline results the study team shared as part of this 
analysis.  

In the late fall of 2020, USARCENT G-4 requested CAA’s assistance with a supply inventory 
problem. USARCENT had built an internal model to project the number of COVID-19 cases in its 
AOR that the Medical Treatment Facilities (MTFs) would treat. This model resulted an over-
predicted future number of cases and, therefore, an extremely large oversupply of Personal 
Protective Equipment (PPE) in warehouses and at MTFs. The study team was able to use the 
SEIR model to create a probabilistic projection of future cases over a 4-month time horizon; 
combined this with DoD hospitalization data to determine the anticipated demand for care in 
terms of hospital days, ICU days, and isolation days; and then be translated this into projected 
PPE usage over a 4-month period, given a worst-case scenario for the spread of COVID-19. Even 
using this worst-case scenario, the study team recommended reducing the ordering rate of 
medical supplies in USARCENT by 95%–98%. The G-4 section used this information to brief the 
Deputy Commander of USARCENT, which led him to greatly reduce medical supply orders, 
freeing up resources and reducing waste. 

2.6.2 USSOCOM 

CAA offers continuous deployed support to USSOCOM. Because of the key placement of a 
forward deployed analyst from the organization, and that analyst’s familiarity with the COVID-
19 project, the study team had an opportunity to assist the deployed command with analysis 
regarding COVID-19 protocols. The command was interested in shortening the time that new 
arrivals spent in quarantine; depending on the country of origin and arrival method to the 
multi-national forward operating base, personnel would have to undergo a lengthy quarantine, 
which could account for almost 10% of a Soldier’s deployment. However, the command did not 
want to increase the risk of importing an active case onto the base, decreasing unit readiness. 
The study team was able to use the SEIR model, in combination with information about the 
time lag between COVID-19 exposure and likelihood of a positive test, to quantify the risk of 
importing an active case onto the base under various quarantine lengths. The study team then 
repeated this experiment to account for vaccinated arriving personnel. Implementation of the 
study team’s recommendations resulted in shortening the longest quarantines in all cases and 
shortening the quarantines for all vaccinated arrivals.  
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3 AGENT-BASED MODEL 

3.1 Introduction 

In the summer of 2020, the SEIR model was stabilizing. The study team continued improving the 
model, but found it increasingly difficult to improve accuracy. Simultaneously, the study team 
began to receive more questions that focused on Army policy and resources and fewer 
questions about how the Army could support the national response to the pandemic. In 
addition to answering those specific questions, the study team began to think of new ways to 
help inform leader decisions regarding COVID-19. One area that seemed ripe for study was 
COVID-19 spread in smaller Army units, specifically during training or deployment. The study 
team anticipated that the Army would return to normal training and deployment cycles, and 
leaders would need to understand the COVID-19 risk associated with higher operational tempo 
and develop mitigation strategies to maximize unit readiness by balancing training 
requirements with health risks. To be prepared to answer these types of questions, the study 
team set out to build a new model of COVID-19 spread in training or deployment scenarios. The 
study team leveraged an existing collaboration with Lawrence Livermore National Laboratory 
(LLNL) and the Army Public Health Center (APHC) to combine modeling expertise, medical 
expertise, and high performance computing skills in the construction of this model.  

3.2 Agent-based Model: Motivation and Challenges 

The study team chose to create a new model to understand how disease would spread in a 
military training environment because the existing SEIR model had limitations that made it less 
useful for this purpose. Specifically, the SEIR model represents large, homogeneous populations 
and assumes that each individual behaves and experiences the disease identically. When 
modeling at a large scale, this is computationally necessary. However, to model Army units, the 
study team set out to incorporate individual attributes and behaviors. The study team knew 
that most Soldiers in training interact exclusively, but very frequently, with a small number of 
other Soldiers, while leaders typically interact with a very high number of other Soldiers in the 
training unit, spanning multiple small, tight-knit groups. Furthermore, clinical research has 
shown that the disease course—how long it takes to become contagious and how long 
contagiousness lasts—varies greatly from person to person.32 A SEIR model cannot reflect 
either of these sets of dynamics, so the study team created an agent-base model, which would 
be able to incorporate individual disease and interaction profiles. 

3.3 Creating Disease Profiles 

Because of the small number of overall cases in a small- to medium-sized Army unit over the 
short time span of a training exercise, there is a wide range of possible outcomes, depending on 
random factors such as initial infections and the potential occurrence of a super-spreader event 
early in the exercise. To capture this randomness, the study team gave each agent in the agent-

                                                      
32 Walsh et al. “SARS-CoV-2 detection, viral load and infectivity over the course of an infection.” The Journal of 

infection. 357–371.  
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based model a specific disease profile. A disease profile includes six different factors, five time-
based and one binary, which create a timeline of each persons’ illness.  

1. Positive Generation Period: The amount of time from exposure until a person would test 

positive for COVID-19 

2. Positive Duration: The amount of time that from when a person will first test positive for 

COVID-19 until when they will stop testing positive for COVID-19  

3. Incubation Period: The amount of time from exposure until symptoms of COVID-19 present 

4. Latent Period: The amount of time from exposure until a person is contagious with COVID-

19 

5. Infectious Duration: The amount of time from when a person become contagious with 

COVID-19 until when they stop being contagious. 

6. Symptomatic Rate: The percentage of people with COVID-19 who present with symptoms.  

 

Figure 6. A sample disease profile *Note: The illness duration represents how long a person 
presents with symptoms and has no bearing on the spread of the disease under the study 

team’s assumptions and so was not modeled  

The study team gathered information from peer-reviewed scientific journals to determine 
distributions for each of the five periods described in Figure 6 as well as the symptomatic rate, 
or the percentage of cases that would present with any symptoms at all. The study team took 
some of these parameter values directly from clinical data published as part of a peer reviewed 
journal article; in other cases, they used raw data from published reports to create empirical 
cumulative distribution functions for the distributions. The study team treated the positive 
generation period and latent period as a joint distribution. Research showed that the viral load, 
a measure of how many virus molecules were in a given volume of bodily fluid, was strongly 
tied contagiousness. This same viral load is exactly what reverse transcription polymerase chain 
reaction (RT-PCR) tests measure to determine if a person has COVID-19. The study team, 
therefore, chose to model the viral load over time since exposure. They then used that output 
to determine what percentage of people would test positive and/or be contagious at a given 
time. The study team treated all parameters related to the physical illness associated with 
COVID-19 separately from the parameters related to returning a positive COVID-19 test or 
being contagious. This is because research showed that timing, presence, and severity were 
independent from how quickly a person became ill and not related to viral load. 
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3.3.1 Infectious Duration and Positive Duration 

The infectious duration and positive duration are both strongly linked to viral load, so the study 
team chose to estimate these durations based on a model of viral load over time. To create a 
model of viral load since infectiousness, the study team created synthetic data based on the 
trends and variance in the clinical data from He and Ferreti.33 34 The study team considered a 
synthetic data point to test positive if the viral load was above a threshold amount. The same 
point was assigned a probability of being contagious based on a finding from Scola et al.35 that 
showed a strong correlation between viral load and the probability of being contagious. The 
study team assigned points a status of either contagious or not based on a Monte Carlo 
simulation and their probability of being contagious. Summary statistics of how may synthetic 
data points were classified as testing positive and being contagious on each day after 
infectiousness were used to create a cumulative distribution for the infectious duration and 
positive duration. Figure 7shows the graph of the cumulative distribution functions (CDFs).  

3.3.2 Latent Period and Positive Generation Period 

The latent and positive generation periods have been less studied because it is rare to collect 
clinical data in the first few days after a COVID-19 exposure. Most people are not even aware 
that they have been exposed until some days after exposure. There has been little research that 
gives point estimates regarding the latent period,36 37 38 39 and even less regarding the positive 
generation period.40 The study team used the information available from the latent period 
research and knowledge of the variance of individual disease profiles from the author, He.41 
The study team created a second synthetic data set of viral load values at discrete time 
intervals since exposure to COVID-19—note that this data set recorded viral load versus time 
from exposure, not the beginning of infectiousness. The study team then used cumulative 
summary statistics of that synthetic data set to determine empirical CDFs for the latent period 
and positive generation period in the same way that the distribution of the infectious duration 
and positive duration. 

                                                      
33 He et al. “Temporal dynamics.” 672–675. 
34 Ferretti et al. “Quantifying SARS-CoV-2 transmission” Science. 
35 Scola et al. “Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 

patients from infectious disease wards.” European Journal of Clinical Microbiology & Infectious Diseases. 1059-
1061 

36 He et al. “Temporal dynamics.” 672–675. 
37 Li, et al. “Substantial undocumented infection.” Science  
38 Tian et al. “An Investigation of Transmission Control Measures.” Science   
39 Ma et al. “Epidemiological parameters of coronavirus disease 2019.” medRxiv. 

https://doi.org/10.1101/2020.03.21.20040329 
40 Kucirka et al. “Variation in False-Negative Rate SARS-CoV-2 Tests.” Annals of Internal Medicine 173. 262-267  
41 He et al. “Temporal dynamics.” 672–675. 
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Figure 7 Empirical CDFs of the time based elements disease profile 

 

3.3.3 Symptomatic Rate 

The symptomatic rate is difficult to discern because of reporting bias. Equation (10) shows the 
most straightforward way to calculate a symptomatic rate of COVID-19. 

𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐 𝑟𝑎𝑡𝑒 =  
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 𝑤𝑖𝑡ℎ 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 (10) 

 

However, because people with symptoms are more likely to be tested, any symptomatic rate 
calculated using equation (10) would be artificially high. An additional problem is pre-
symptomatic tests: many individuals report no symptoms at the time of their test, but some 
may report symptoms days or weeks later. Clinical records are unlikely to count these people as 
symptomatic because of the reporting time lag. Furthermore, symptoms do not present evenly 
across all demographics. Younger, healthier people typically tend to have fewer and less severe 
symptoms than those with underlying conditions. This led the study team to hypothesize that 
the symptomatic rate among the relatively young, healthy members of brigade combat teams 
(BCTs) would be quite low, which peer-reviewed academic research has confirmed.42 43 These 
sources shaped the study team’s decision to set the symptomatic rate at 10% in their 
simulations.  

3.3.4 Creating an Individual Disease Profile Using Monte Carlo Simulation 

Once all the various parameter values and distributions have been set, the agent-based model 
uses three independent Monte Carlo simulations and inverse transform methods to construct a 
disease profile. The first simulation draw determines if the new COVID-19 infected person will 
become symptomatic based on the symptomatic rate. The second random draw uses the 
inverse transform method to determine the incubation (if applicable) positive generation and 
latent periods. The final random draw again uses the inverse transform method to determine 

                                                      
42 Letizia et al. “SARS-CoV-2 Transmission among Marine Recruits during Quarantine.” New England Journal of 

Medicine. 2407-2416. 
43 Kasper et al. “An Outbreak of COVID-19 on an Aircraft Carrier.” New England Journal of Medicine. 2417-2426. 
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the infectious and positivity durations. These values can be stitched together to form a realistic 
disease profile for each agent in the simulation.  

3.4 Creating an Interaction Network 

One of the defining characteristics of any agent-based model is how the agents interact. The 
modeler can choose an entirely random interaction pattern, or a strictly structured one. In this 
model, the study team attempted to replicate the interactions of a combat unit. To do this, the 
study team used the unit Modified Table of Organization and Equipment (MTOE) to create an 
interaction network of all soldiers in the unit. An MTOE for a unit shows its organizational 
hierarchy, as well as the number of personnel at each level of command. The study team 
designated interaction levels between individual agents as high, low, or none, based on their 
place in the MTOE organizational hierarchy. High interaction generally refers to daily close 
contact. Low interaction generally refers to weekly close contact. The study team treated any 
contact rate that occurs less than weekly as no interaction.  

 

Figure 8. A sample unit hierarchy used to describe the process of building a unit interaction 
matrix 

Figure 8 shows a small example of a unit hierarchy to illustrate the rules the study team used to 
form the interaction matrix. Take the level-2 Soldier in sub-unit A, for instance. The rules assign 
this individual a high rate of interaction with his/her parents (level 1), children (level 3), and 
siblings (sub-unit B, level-2 Soldier). The rules assign this level-2 Soldier in sub-unit A a low rate 
of interaction with his/her nieces and nephews (level 3 of sub-unit B) as well as his/her cousins, 
aunts, uncles, grandchildren, and grandparents, none of which appear in Figure 8. Although the 
exact set of rules that formed the actual interaction matrix is more sophisticated, they generally 
follow this construct. Figure 9 displays the study team’s modeled individual interactions in an 
infantry BCT in matrix form and graph form.  
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Figure 9. The matrix (left) and graph (right) form of the interaction of an infantry brigade 
combat team. In the matrix, each person is both a row and a column. The values of the matrix 
represent the contact rate between two individuals. In the graph, each person is a node and 

each connection between nodes is weighted based on the contact rate between the two 
individuals.  

3.5 Initializing the Model 

The final elements required to initialize the model are the initial COVID-19 infection status of 
each agent and the actual interaction rates that correspond to the high/low/none values 
discussed in section 3.4.  

3.5.1 Initial COVID-19 Infection Status 

Because each infected person has a known infection age and a unique disease profile, there is 
no need for an exposed classification. It is then sufficient to designate each agent as 
susceptible, infectious, or removed. The first step was to estimate the true “removed” 
percentage of any given Army unit—not just the cases detected through testing. To do this, the 
study team scaled data on reported cases among uniformed DoD personnel using the Institute 
for Health Metrics and Evaluation (IHME) estimates for the infection detection rate; the study 
team calculated this value by dividing reported infections by an estimate of true infections, 
derived from seropositivity surveys and hospitalization data. Next, the study team calculated 
the number of infected individuals using an instantaneous measurement of the infection 
detection rate along with the recently reported number of uniformed DoD personnel. The 
number of susceptible individuals in the model is the remainder. Equations (11), (12), and (13) 
show the specific equations used to calculate the percentage of agents assigned as susceptible, 
infectious, and removed. 
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𝑆0 = 1 −  𝐼0 −  𝑅0(11) 

𝐼0 =
𝑇𝑜𝑡𝑎𝑙 𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑒𝑑 𝐷𝑜𝐷 𝐶𝑎𝑠𝑒𝑠 𝑖𝑛 𝑙𝑎𝑠𝑡 𝑡𝑤𝑜 𝑤𝑒𝑒𝑘𝑠

𝑇𝑜𝑡𝑎𝑙 𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑒𝑑 𝐷𝑜𝐷 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
∗  

1

𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒     
 (12) 

𝑅0 =
𝑇𝑜𝑡𝑎𝑙 𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑒𝑑 𝐷𝑜𝐷 𝐶𝑎𝑠𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑒𝑑 𝐷𝑜𝐷 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
∗  

1

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒     
 (13)  

3.5.2 Interaction Rate 

To initialize the model, the study team had to quantify the “high” and “low” interactions by 
assigning values that denote the probability of a contact between any pair of agents during 
each time step. The study team used the idea of an effective reproductive number to tune this 
parameter, using Kasper’s study regarding the spread of COVID-19 aboard an aircraft carrier to 
determine a reasonable effective reproductive number to target.44 The effective reproductive 
number during that outbreak was 1.4. The study team set the interaction rate on the agent-
based model such that, aggregated over repeated simulations, the initial seed cases each 
produced between 1.25 and 1.50 cases in the population. 

3.6 Running the Model 

Once initialized, the model steps through time using Monte Carlo methods to determine if 
certain events such as infection transmissions and testing positive occur. In general, the model 
first uses Monte Carlo simulations to determine if an interaction between two people occurs 
during a given time step. If one of the people in the interaction is infectious and the other is 
susceptible, then an effective transmission occurs. Second, the model assigns each newly 
infected person a disease profile according to the above parameters and inverse transform 
methods. Thirdly, the model simulates COVID-19 tests based on one of two criteria. If an 
infected person becomes symptomatic according to their personal disease profile during a 
given time step, they will voluntarily submit for testing. They will be identified as COVID-19 
positive after the time required to return a test result. If the mitigation policy in question 
designates that a surveillance test occur during that given time step, then personnel that are 
infected and would test positive at that time step according to their disease profile will be 
identified as a COVID-19 positive after the time required to return a test result. Finally, 
personnel are removed from the simulation and placed in a quarantine based on being a newly 
identified infected person, or having had a known interaction with a newly infected person in 
the past 7 days of the simulation. These people are place into quarantine for 14 days. These 
four primary tasks occur in each time step of the simulation and enable the extraction of the 
total number of infections and quarantines during the simulation.  

3.7 Impact 

The study team first used this model to answer questions for U.S. Army Forces Command 
(FORSCOM) related to the Combat Training Centers (CTCs). Brigade-sized units deploy to the 
CTCs to conduct a monthlong training exercise. This training event is typically the culmination of 
1–3 years of training. The CTCs were closed for the first 5 months of the pandemic, but in the 

                                                      
44 Ibid.  
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late summer of 2020, they re-opened for training. Although units continued to train at the CTCs 
for the fall and winter of 2020, there were significant issues with COVID-19 outbreaks.45 Data 
from the FORSCOM Surgeon’s office showed that, in the initial rotations, approximately 1% of 
Soldiers developed a symptomatic infection, suggesting a much higher number developed 
asymptomatic cases. Additionally, between 3%–10% of Soldiers had to quarantine due to being 
a close contact of a confirmed positive case during the rotation. These outcomes occurred even 
with all training units undergoing a 14-day restriction of movement (ROM) prior to travel and a 
100% surveillance RT-PCR test 5 days prior to travel to CTC. The study team’s analysis helped 
the FORSCOM surgeon’s office and Deputy Commander understand the tradeoff between 
training benefits and health risks in their effort to provide trained and ready units to geographic 
combatant commanders. 

 

Figure 10. Simulation results of experiments considering different testing protocols for units 
prior to a CTC rotation. Adding a rapid antigen surveillance test (green dots) after arrival to 
the training center reduced new exposures without increasing quarantines when compared 

to the current protocol (orange dots); the numbers and colors correspond to the various 
testing protocols examined 

The study team used the agent-based model to determine if changes to this testing protocol 
could reduce the number of infections without significantly increasing lost training time due to 
quarantines. APHC provided crucial information regarding different COVID-19 tests and Army 

                                                      
45 Cox, “82nd Disputes Claims of COVID-19 at Training Center.”  
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laboratory capabilities. The study team used this information to build two new mitigation 
strategies in the agent-based model and run experiments to compare their effectiveness to the 
current policy and a policy with reduced mitigation measures with regard to total COVID-19 
infections and total quarantined Soldiers. The protocols were:  

1. 14-day ROM, no surveillance testing (reduced mitigation policy); 

2. 14-day ROM, one 100% RT-PCR surveillance test 5 days prior to traveling to the CTC 

(current FORSCOM policy); 

3. Protocol 2, plus a second 100% RT-PCR surveillance test upon arrival at CTC; 

4. Protocol 2, plus 100% rapid antigen test (less sensitive than RT-PCR test and faster 

return time) upon arrival at CTC.  

LLNL analysts used a supercomputer to run hundreds of simulations of each protocol to 
generate a distribution of outcomes and estimate best case, worst case, and expected 
scenarios. The results of the simulation are in Figure 10. The study team recommended 
implementing a second rapid antigen test upon arrival (Protocol 4, green dots in Figure 10), 
which reduced COVID-19 exposure nearly as well as Protocol 3, but was much less costly in 
terms of training days lost to quarantine. Following the study team’s brief, FORSCOM decided 
to implement the use of rapid antigen tests as part of their mitigation efforts.  

Once the DoD started making COVID-19 vaccines available to Soldiers in large numbers, the 
study team also used the agent-based model to recommend a level of vaccinations in a training 
unit at which FORSCOM could safely discontinue surveillance testing without expecting an 
increase in total COVID-19 cases during the rotation. 

In addition to helping FORSCOM develop improved COVID-19 mitigation policies, the study 
team used the agent-based model to help USSOCOM understand the risk of an outbreak on 
their base, given an initial case imported from deployers or local national contractors. This 
helped them decide on the level of mitigation efforts, such as requiring masks and social 
distancing in headquarters buildings, to use at their base. 

Finally, the APHC leadership is in the process of becoming the owner of this model. They plan to 
use it as a framework to study larger and longer-term problems related to epidemics, such as 
the effects of various housing strategies on the spread of an infectious disease in a garrison 
environment. 
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4 CONCLUSION 

The study team faced an immense challenge in February of 2020: providing analytic grounding 
to senior leaders to use in making decisions in an extremely uncertain and ever-changing 
environment. The study team accomplished this by building two models: one that predicted 
how COVID-19 would spread through the general population at a large scale, and another that 
predicted how COVID-19 would spread through a military unit on a small scale. These models, 
their outputs, and the analysis communication done by the study team influenced countless 
decisions across Army and Joint commands at all echelons, on topics such as training, 
deployment, policy, supply management, and operations. This included small decisions, such as 
“should a battalion conduct, cancel, or postpone a unit social?” as well as much larger ones, 
such as “should a National Guard unit be activated and sent to operate a mobile field hospital in 
an area where hospital demand is expected to exceed supply in the next month?” Readiness 
was central to nearly all of these decisions. Leaders weighed the positive effects on readiness of 
training or morale against the negative effects on readiness of increased health risks in the 
short term, while planning defense support to civil authority missions to defeat the virus. With 
CAA’s analysis, these leaders made informed decisions that maximized the overall, long-term 
readiness of the Army and the health of the nation.  

To do all this, the study team developed predictive models that could be constantly improved 
and adapted to new information without pausing for major overhauls, and developed a 
workflow efficient enough that modeling capabilities could expand even as the study team 
staffing reduced. The study team did this with no prior experience in epidemiological modeling, 
no formal organizational structure at the outset, and a rotating cast of leaders and developers 
who had to balance competing priorities and missions. The study team used cutting edge tools 
and advanced analytic methods to do work that would have been impossible given the time 
and personnel constraints just a short time ago. The phrase “built the airplane in flight” is a 
common one in the Army, but it is very appropriate here. This study team not only built the 
airplane in flight, it developed a new and improved airplane in flight while delivering it ahead of 
schedule and under budget. 
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