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Abstract

Emissive plumes are commonly leveraged in laser ablation as optical signatures that reflect

physical processes that occur during a laser ablation event. The purpose of this work is

to improve the interpretation of common diagnostic techniques used to characterize pulsed

laser ablation, to find simple but universal scaling relationships for comparing ablation dy-

namics across different target materials and ablation conditions, and to provide a compre-

hensive and systematic analysis of emissive plume and shock wave dynamics for graphite

across a range of experimental conditions. Three experiments were performed using two

pulsed laser sources: a 4 J/cm2 nm KrF laser (λ = 248 nm), and a 5.70 J/cm2 frequency-

doubled Nd:YAG laser (λ = 532 nm). Gas backgrounds consisted of air, argon, nitrogen,

helium, and a mixed gas of 70% CO2 and 30% N2 for pressures ranging from 1–180 Torr.

Emissive plumes from ablation with a KrF laser were observed with a fast-gated ICCD

camera to find and validate new scaling relationships for common ablation diagnostic pa-

rameters. Plume shock front trajectories were found and characterized with free expansion,

Sedov-Taylor blast wave, and drag models. Initial plume expansion velocities of 1.37–1.98

cm/µs corresponded to plume kinetic energies between 12–25 eV/atom. The plume ex-

pands with initial Mach numbers of M ∼ 48, decreasing to M ∼ 7 as the emission becomes

too weak to detect. The plumes begin with a planar shock front and thickness of a few mean

free paths, but evolve to higher dimensionality depending on pressure and mass of the back-

ground gas. Non-dimensional factors from a recent study were validated for graphite. The

Sedov-Taylor energy released in the sudden ablation is typically 33% the laser pulse en-

ergy. Blast energy and plume dimensionality were found to be correlated with stopping

distances, which are typically greater than 103 mean free paths. A new scaling method for

Sedov-Taylor energy ratio was proposed and validated for graphite and other target ma-
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terials from the literature, enabling comparisons of laser-plume energy coupling between

different target materials ablated under varying environmental and system conditions.

Emissive plumes and shock waves were observed with a fast-gated ICCD camera and

schlieren imaging to develop and validate an improvement to Sedov-Taylor laser-plume en-

ergy coupling analyses. Initial plume expansion velocities of 1.9–3.45 cm/µs corresponding

to kinetic energies between 26–74 eV/atom. The emissive plume expands with initial Mach

numbers up to M ∼ 54 at t = 62 ns, decreasing to M ∼ 12 as the emission becomes too weak

to detect after several microseconds. The shock wave expands with initial Mach numbers

up to M ∼ 55 at t = 62 ns, decreasing to M ∼ 1 at t = 20 µs. Shock detachment loca-

tions were determined and then used to define a new limit for sectioning emissive plume

data during Sedov-Taylor analysis, improving the accuracy of laser-plume coupling en-

ergy estimates. The technique was validated over a range of experimental conditions, with

detachment-limited Sedov-Taylor energy values for the emissive plume in agreement with

the shock wave energy to within 3–5%. The Sedov-Taylor energy released in the sudden

ablation was typically 55–75% of the laser pulse energy. Shock detachment was found to

scale with mean free path, which may allow prediction for other gases and pressures.

Emissive plumes and shock waves were observed with a fast-gated ICCD camera and

schlieren imaging to examine the morphology of the emissive plume and corresponding

ablation shock wave. The imagery was used to determine dependence of plume and shock

wave expansion on rectangular and circular laser footprint geometry. Radii of curvature

ratios were developed using shock wave imagery and compared to the Sedov-Taylor di-

mensionality. The 10 Torr shock waves for both geometries exhibit mostly spherical shock

fronts, but the Sedov-Taylor dimensionality decreases to planar-cylindrical for the rectangle

geometry and cylindrical-spherical for the circular geometry.
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IMPROVEMENTS TO EMISSIVE PLUME AND SHOCK WAVE DIAGNOSTICS AND

INTERPRETATION DURING PULSED LASER ABLATION OF GRAPHITE

I. Introduction

Pulsed laser ablation of various materials has a wide variety of industrial, research, and

military applications. Optical diagnostics of pulsed laser ablation plume trajectories are

routinely used to determine and characterize ablation parameters such as laser-plume en-

ergy coupling, plume stopping distances, kinetic energies, and velocities, and these param-

eters are essential to most material processing control strategies [1, 2]. These characteristic

parameters reflect ablation conditions and are an important piece of the puzzle towards

understanding how plume dynamics evolve and relate to laser ablation [2, 3]. However,

a challenge with plume diagnostics has been the ability to compare results from different

materials across different ablation conditions in order to achieve a unified understanding

of the physical processes of laser ablation. This challenge is compounded by the use of

imperfect diagnostic techniques to analyze the emissive plume, such as Sedov-Taylor blast

energy analysis that was originally created to describe shock wave dynamics [4, 5]. An-

other related issue is that little literature exists regarding pulsed laser ablation dynamics in

varied conditions using a single experimental apparatus, resulting in researchers potentially

attributing differences between results to experimental setup differences instead of physical

processes. The end result is significant gaps in the knowledge base that inhibit a unified

understanding of the ablation processes which influence emissive plume and shock wave

plume dynamics. This leads to the purpose of this work: to improve the interpretation of

common diagnostic techniques used to characterize pulsed laser ablation, to find simple

but universal scaling relationships for comparing ablation dynamics across different target
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materials and ablation conditions, and to provide a comprehensive and systematic analysis

of emissive plume and shock wave dynamics to fill some of the gaps in the literature.

Graphite was chosen as the target material for this work since it has been less studied in

pulsed laser ablation than other materials such as metals or polymers. In addition, pulsed

laser ablation of graphite has a wide variety of useful applications, due to its unique thermal

and material properties, including production of thin films and nano-materials including

diamond-like carbon and silicon carbide carbon nitride composites [6, 7], characterization

and testing of hypersonic thermal protection materials [8], and laser battle damage [9, 10].

Deficiencies in the diagnostic comparisons of ablation plumes across varied experi-

mental conditions and target materials are evident. The use of Sedov-Taylor analysis for

determining laser-plume coupling is common across laser ablation studies. However, the

physical processes influencing laser coupling energies are difficult to interpret and decou-

ple across different environment conditions such background gases, pressures, laser fluence

and laser spot size. Reducing the dimensionality of comparisons across materials and con-

ditions would improve the understanding of fundamental laser ablation processes and allow

for predictions of effects without having to obtain data for every possible combination of

experimental and environmental conditions [11]. In addition, inadequacies in the diag-

nostics provide an area for improvement. This is evident in the use of emissive plume

Sedov-Taylor analysis, which can be greatly influenced by the choice of data sectioning

limits. If data points in the plume trajectory for the non-shock region are included in the

Sedov-Taylor fitting, the fit coefficients can be affected as the trajectory has diverged from

the model assumptions, leading to reduced accuracy of laser-plume coupling energy esti-

mates. Improvements to plume diagnostic parameter interpretation and estimation are key

to enabling universal comparisons of plume dynamics between target materials that reveal

the physical processes governing laser ablation.

The existing literature for pulsed laser ablation of graphite, and other target materials in
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general, is fragmented with little comprehensive or systematic investigations into laser cou-

pling to plume overpressure and how that overpressure drives expansion for both emissive

plumes and shock waves. A fairly extensive body of literature exists on pulsed laser abla-

tion of graphite to include ablation with lasers at 248 nm [12–16] and 1064 nm [17–20], as

well as studies focusing on spectroscopic analyses of specific plume species such as C2 and

CN molecules [21–24]. However, the prior literature is dominated by characterization of

emissive plumes [25–33], and there are no studies that explore both emissive plumes and

shock wave dynamics in systematic detail. In addition, most studies limit their focus to a

single gas or pressure with very few studies [15, 22, 34] exploring a range of gases, thus

providing little overarching insight into the evolving plume and shock wave dynamics for

different conditions.

The key research objectives in this work are as follows:

1. Find simple but universal scaling relationships for optical diagnostic parameters such

as laser-plume energy coupling for comparing emissive plume ablation dynamics

across different target materials and conditions.

1.1 Determine if the laser-plume energy coupling ratio can be scaled using plume

stopping distance normalized by mean free path. Compare the energy scaling to

other target material data in the literature, such as graphite, aluminum, titanium,

barium that have provided Sedov-Taylor coefficients ready for scaling.

1.2 Validate a recently developed method that proposed novel non-dimensional

variables for comparing ablation results across disparate materials and exper-

imental conditions [11]. Test with the current graphite data and extend the

non-dimensional factor results, which previously did not include graphite as a

target material.

1.3 Explore the relationship between shock strength and Mach number to determine
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if a normalized shock strength to Mach number curve is universal for different

background gases and target materials.

2. Develop a technique using shock detachment for sectioning emissive plume trajec-

tory data for Sedov-Taylor analysis to obtain a more meaningful interpretation of the

laser energy deposited into the plume.

1.1 Determine shock detachment distances using emissive plume and shock wave

imagery. Utilize detachment-limited trajectories to improve Sedov-Taylor data

sectioning for laser-plume energy coupling estimates.

1.2 Determine key propagation parameters for the emissive plume including ve-

locities and kinetic energies, and compare plume and shock wave laser-plume

energy coupling with Sedov-Taylor blast theory analysis.

3. Conduct a systematic analysis of graphite emissive plume and shock wave morphol-

ogy across a range of experimental conditions.

1.1 Compare effects of rectangular and circular laser spot geometry on plume and

shock morphology including dependence on pressure and background gas.

1.2 Explore plume and shock morphology viewed in two angles for the rectangular

laser spot. Correlate emissive plume structure to shock wave imagery.

1.3 Compare shock wave Sedov-Taylor dimensionality to a visual analysis of the

shock wave curvature in the schlieren imagery.

The format of this dissertation is as follows: Chapter 2 provides an overview of the vari-

ous process regimes in pulsed laser ablation including laser-target interactions, laser-plume

interactions, plume and shock wave propagation, and a brief overview of the techniques uti-

lized in this work. A review of relevant literature is presented. Detailed literature reviews

of relevant prior work are also presented within each chapter as necessary.
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Chapter 3 presents a study of emissive plume dynamics using fast-gated imagery to

improve the interpretation of optical diagnostic parameters for plume trajectory characteri-

zation and laser-plume energy coupling efficiency. A new scaling method is developed and

validated that enables comparisons of laser-plume energy coupling between different tar-

get materials ablated under varying environmental and system conditions. In addition, an

analysis is presented leveraging the emissive plume to explore shock thickness and shock

strength. Chapter 3 was published as a paper in Optical Engineering in May 2021 [35].

Chapter 4 details the dynamics of the ablation shock wave and emissive plume using

fast-gated and schlieren imagery with a focus on characterizing shock detachment in order

to enhance data sectioning for Sedov-Taylor analysis. Shock wave and emissive plume

trajectories are characterized with Sedov-Taylor analysis. The Sedov-Taylor energies for

the emissive plume are shown to be significantly improved by using shock detachment to

inform data sectioning, resulting in more accurate laser-plume energy estimates. Chapter 4

was submitted to the peer-reviewed journal, Applied Physics A, in July 2021.

Chapter 5 documents a study examining morphology of emissive plumes and corre-

sponding shock waves during pulsed laser ablation of graphite comparing rectangular and

circular laser spots. Plume and shock morphology are discussed including examination of

temporal propagation, shock curvature, and the effect of viewing angle on plume and shock

appearance. Chapter 5 has been prepared for submission to a peer-reviewed journal.

Chapter 6 provides the conclusion to the dissertation and discusses suggested future

research that could further enhance this area of work. Finally, while Chapters 3–5 have

been or will be published with co-authors, Major Timothy Calver is the primary author and

principal investigator for all the works.
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II. Background

2.1 Laser Ablation Process Regimes

Research in pulsed laser ablation of materials focuses primarily on three main physical

process regimes that include interactions between the laser and the target material, interac-

tions between the laser and the plume after the material is ablated from a surface, and the

dynamics of the plume of ablated materials as it propagates away from the target through

vacuum or a background gas.

2.1.1 Laser-Target Interaction

In pulsed laser ablation of a solid target, photons from the laser interact with the material

absorbing into and reflecting off the material. The attenuation of light in a material is

described by the Beer-Lambert law given as:

I(z) = Io(1 −R)e−αz (1)

where I(z) is the laser intensity at a penetrative depth z, R is the material reflectivity, I0 is

the laser intensity at the material surface, and α is the absorption coefficient for the material

[36]. The absorption coefficient is given by:

α =
4πκ0
λ0

(2)

where λ0 is the vacuum wavelength and κ0 is the attenuation coefficient of the material

[36]. The attenuation coefficient of a material is highly dependent upon the incident photon

wavelength [37]. The optical penetration depth is the distance into a material for which the

intensity of incident electromagnetic radiation drops to 1/e of the original intensity. The

optical penetration depth can be found by taking the inverse of the absorption coefficient,

6



yielding:

ldepth =
λ0

4πκ0
. (3)

As a result, the optical penetration depth, ldepth, is dependent upon the laser wavelength

and the target material’s properties [36]. Absorption of laser photons is a key process of

pulse laser ablation since the absorption directly influences the transfer of energy into the

material through two processes: photoionization and phonon transfer. It is possible for laser

photon interaction to liberate electrons from an atom through photoionization. This effect

can occur with high intensity lasers when a laser photon interacts with and ionizes an atom,

if the photon has sufficient energy to cross the ionization threshold [38]. It is possible for

multi-photon photoionization to occur as well, with two or more photons interacting with

an atom. However, photoionization requires high photon energies to occur efficiently, and

the reaction cross section for multiphoton photoionization decreases dramatically for each

additional photon that interacts in a single event [39].

The most common energy transfer process in a target material is through phonon in-

teractions which appear as heat in the material. When laser photons are absorbed into a

material, the energy of the photon is transferred to phonons within the material which in-

crease lattice vibrations leading to heating. As the heat in a material increases, eventually

it will reach a melting point at which the material will begin to change phase from solid

to liquid. The melted material will absorb more energy from the laser photons, eventually

reaching the material vaporization point and the material will transition to a vapor phase.

During the vaporization of material from the liquid surface, the temperature of the vapor

particles will be determined by the Knudsen layer. The Knudsen layer is a region just

above the liquid-gas interface point where the plume begins to form and where the laser

can interact with the plume species. The Knudsen layer thickness is described by:

lKnudsen =
kBT

πd2Pb
(4)
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where kB is the Boltzmann constant, T is the temperature, d is the diameter of the gas

species, and Pb is the background gas pressure [40]. Depending upon the material and

laser characteristics, it is possible for the laser to induce a direct phase change from solid

to vapor as well. For example, aluminum and titanium will melt and then vaporize as more

energy is deposited into the material by the laser. However, graphite has no melting point

under the conditions explored in this work, and will transition directly from a solid to a

vapor [41, 42]. As a result of the laser interaction processes during ablation, the primary

process for ablating material into a plume will be thermal effects induced in the material

by the laser irradiation.

Although thermal processes account for much of the material ablated from a target, ev-

idence is mentioned in the literature for additional ablation due to non-thermal processes

including phase explosion and Coulomb explosion. Phase explosion is a process that oc-

curs in the nanosecond laser pulse duration regime when the temperature of a material

approaches the critical temperature which results in a liquid-gas meta-phase that explo-

sively boils off the material, enhancing the total ablation volume [43]. The laser fluence

threshold for phase explosion in graphite has been shown to be 3.75 to 4.5 J/cm2 in air [19,

44], while a recent study found that the mass ablated from phase explosion was negligible

at fluences less that 25 J/cm2 [45]. Coulomb explosion, also known as electronic ablation,

is a process that occurs in cases where the laser pulse duration is less than the material

thermal relaxation time [2]. In the Coulomb explosion process, outer valence electrons can

be removed from the target atoms by the incident laser pulse, leaving the affected atoms

with a positive charge. The Coulomb repulsion force then explosively propels the atoms

away from the surface and from each other. Coulomb explosion in graphite is dominant in

the picosecond and femtosecond laser pulse width regimes due to the smaller timescales

compared to the thermal relaxation time [46, 47].
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2.1.2 Laser-Plume Interaction

Once a portion of the target material has vaporized from thermal effects and other laser-

target processes, the constituent species of particles in the plume can interact with the in-

cident laser if it is still lasing. Phonon heating can occur with clusters of material that

have ablated off target. Another process for laser-plume interaction is photoionization,

which can occur between the laser and species of the plume containing bound electrons

through the same process as described above. Laser photons can excite and ionize plume

constituents, freeing electrons into the plume. The dominant process of laser-plume in-

teraction is the inverse-Bremsstrahlung process where free electrons in the ablation plume

couple with the field of the laser by absorbing photons and then experience acceleration

from the energy that is transferred to them [48]. The accelerated electrons can then ex-

perience collisions with neutral or ionic species in the plume resulting in excitation, or

ionization if enough energy is transferred in the collision. The energy transfer process of

inverse-Bremsstrahlung is the most efficient when the laser frequency is near the plasma

frequency, given by

νp = (4πnee2/me)1/2 (5)

where νp is the resonant plasma frequency, ne is the electron number density, e is the

electron charge, and me is the electron mass [49]. The plasma can continue to absorb

energy from the laser until the plasma density is greater than the critical density. The

plasma critical density is given by:

nc =
πmec

2

e2λ2L
(6)

where nc is the critical plasma density, me is the electron mass, c is the speed of light, e is

the electron charge, and λL is the laser wavelength [50]. Once the plasma critical density

is exceeded, the laser cannot propagate through the plasma and will scatter or reflect off
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the plasma surface. The plume will become optically thick to the laser and will effectively

shield the target from further material ablation. Plume absorption and scattering processes

both result in plume shielding that decreases ablation from the target. The coupling of the

laser energy into the ablation plume via inverse-Bremsstrahlung and photoionization results

in high temperatures, velocities and Mach numbers for plume species excited through these

processes. Once the laser pulse duration has ended, the plume enters the plume propagation

regime.

2.1.3 Plume Propagation

The overall dynamics of the plume expansion are not completely understood as multi-

ple complex processes are involved between the start of a laser ablation event and the time

the plume stops in the background gas if present. Plume dynamics can be explored using

intensified charge-coupled device (ICCD) imagery or spectroscopic techniques to charac-

terize the plume expansion. Plume trajectories are created by plotting the position of the

shock front for each time step allowing for the analysis of the plume shock front propa-

gation over time and distance. In a vacuum, the plume is considered to be collision-free

and adiabatic [51]. The dynamics of an ablation plume are also highly dependent on the

background gas and pressure. Plume expansion is typically characterized into three distinct

regions including the free expansion region, the blast wave region typically characterized

by the Sedov-Taylor equation, and the drag region characterized by the drag model [2].

At very early times within the plume expansion, ablated material has not had enough

time to interact with any background gas. As a result, a free expansion model can be used

to characterize the expansion of the plume for both a vacuum case and for early plume

expansion times in a background gas [52]. In the free expansion region, the plume con-

stituents will experience constant velocities. It is important to note that in ablation into a

vacuum without a background gas, intra-plume collisions still occur due to some plume
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species having faster initial velocities than others [53]. However, vacuum cases are still

characterized with the free expansion model in the literature. The plume near the end of

the free expansion region acts as a mechanical piston which compresses the background

gas, leading to the formation of a shock front [54]. Since the plume is typically expanding

with velocities greater than the local sound speed of the background gas, a shock wave is

formed. The formation of the shock front is typically considered the boundary between the

free expansion region and the shock region where the shock front has developed.

At the shock front, collisions between the plume species and the gas result in increased

emission as faster moving material is collisionally excited, emits photons and then slows

due to the loss of energy. Slower moving material behind the contact front then catches up,

collides with the background gas, and then also excites, emits photons, and slows. Plume

emission is primarily the result of translational-to-electronic energy (T-E) excitation. The

plume dynamics in middle region in which the shock front is well-developed can be char-

acterized using blast wave theory with the Sedov-Taylor model [4, 5]. The Sedov-Taylor

model is valid when the mass displaced by the shock front is larger than the mass inside

the plume and when the pressure behind the shock front is still very large compared to the

background gas pressure [55]. The Sedov-Taylor model is useful for estimating the amount

of energy from the ablation laser that couples into the plume during the explosive ablation

event. The Sedov-Taylor model is described in more detail in Chapter 3 and Chapter 4.

The final region of an ablation plume expansion is dominated by drag as the expanding

plume encounters more collisions with the background gas and slows, lacking the energy

to continue to plow through the gas. The plume of vaporized, ablated material from the

laser interactions expands outwards into the background gas and is eventually slows to a

stopping distance. The stopping distance of the plume is heavily dependent on the pressure

of the background gas and decreases as pressure is increased [52]. The drag model is useful

for estimating the initial expansion velocity of the plume [52]. Details and application of
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the drag model are given in Chapter 3.

A common assumption in pulsed laser ablation literature is that the emissive contact

front, at the leading edge of the plume, is located at or very near to the shock wave for a

significant portion of the plume expansion, until the shock wave detaches from the plume as

the plume slows due to collisions with the background gas [2]. The emissive plume contact

front ceases to propagate in a shock-like trajectory after this point. Shock detachment

is the point in the propagation where there is not enough energy left in plume to reach

the Translation-Electronic energy cross section for excitation. Since the emissive plume

contact front is much easier to experimentally locate than the shock wave, the emissive

contact front location is used as a surrogate for the shock wave location, which requires

more complexity to capture experimentally. As a result, it is more common for researchers

to study the plume emissive contact front using optical emission imaging (see Section 2.3).

2.2 Optical Plume Imaging Techniques

2.2.1 Fast Optical Emission Imaging

Fast optical emission imaging using ICCD cameras can be used to conduct time-resolved

spectroscopy and morphological examination of plume constituents [56]. ICCD camera

systems use an intensifier to amplify the faint signals from emissive species, allowing them

to be detectable. Some intensifiers can be gated down to picosecond time scales for ultrafast

imaging [57]. A benefit of fast ICCD imaging is that the plume dynamics for kinetics and

plume morphology can be captured in two-dimensional images. This allows for the imag-

ing of the full plume at various times during the plume’s propagation from the target and

through the background gas or vacuum. Emissions from the excited material are captured

with the camera at different time delays, enabling the capture of a plume’s propagation as a

function of time and allowing for the creation of plume trajectories that can be used to de-

termine propagation speeds, stopping distances, laser-plume coupling energies, and other
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plume dynamics features using various plume expansion modeling. ICCD systems allow

for the visualization of shock wave formation and propagation during the ablation event

when utilized with a shock imaging apparatus such as schlieren or shadowgraph optical

systems.

2.2.2 Schlieren Imaging

Schlieren photography or imaging, named for the German word, “schliere,” which

translates to “streak,” is an optical technique for flow visualization of density changes in

transparent media such as a gas or fluid [58]. Schlieren imaging is useful for pulsed laser

ablation diagnostics as it allows for the visualization of the invisible ablation shock wave.

Coupled with a fast-gated ICCD camera, schlieren imaging can capture the propagation dy-

namics of the ablation shock wave, allowing for the direct comparison of emissive plume

dynamics to shock wave dynamics during a pulsed laser ablation event. Schlieren imaging

exploits the fact that density differences in a gas or fluid result in a gradient in the index

of refraction. Light passing through the index gradient is then deflected from its original

path. In schlieren imaging, the amount of refraction of the light is proportional to the first

derivative of the optical density field. Schlieren imagery is also useful in that it results in

a focused optical image, allowing for the schlieren target area to form a 1:1 image of the

object in question [58]. A schlieren imaging apparatus utilize mirrors or lenses to direct

the light from a light source through a target area and then onto an imager, which can be a

screen or a camera system.

Figure 1 shows a schematic of the schlieren setup used in this dissertation, called a

dual-field-lens system, although other configurations exist [58]. For this setup, a schlieren

light source is passed through a condenser lens and is focused onto a pinhole. The pinhole

acts as a point source and the light exiting the pinhole enters a collimating lens, typically

a cemented-asphere lens to reduce spherical aberration. The collimated light rays travel
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Figure 1: Schematic of a dual-field-lens schlieren imaging apparatus.

parallel to each other through the test cell which contains the object of interest and are de-

flected when they encounter a density gradient, such as occurs near a shock wave. The light

is then passed to another lens and focused onto a knife edge, typically a razor blade, or a

graded filter. The knife edge acts as a spatial frequency filter, blocking a portion of the light

which has not been deflected. The deflected light passes above the knife edge and is imaged

onto a screen or camera, resulting in the appearance of a dark schlieren object. The knife

edge can be positioned vertically or horizontally, resulting in the visualization of either the

vertical components of the schlieren object or the horizontal components respectively.

Typical schlieren light sources include monochromatic lasers and quasi-monochromatic

or polychromatic white light emitting diodes (LED). For a white light LED source, all the

lenses in the system need to be achromatic to avoid differential focusing of the extended

wavelengths which will smear out the schlieren image. Laser sources are typically used in

conjunction with bandpass filters at the imaging system in order to filter out any unwanted

light from bright sources such as the emissive plume, allowing the schlieren object to be

clearly visible. The dual-field-lens system constructed for this work allows for the imaging

of both the emissive plume when the schlieren light source is turned off, and the corre-

sponding ablation shock wave when the light source is turned on. In this way, plume and
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shock wave imagery can be acquired and their propagation dynamics directly compared.

2.3 Previous Work

2.3.1 Emissive Plume Dynamics, Shock Strength, and Shock Thickness

Graphite ablation studies, and pulsed laser ablation studies of other materials, have

largely focused on the formation and dynamics of neutral and ionized atomic and molecular

species such as carbon [12, 17, 21, 24–27, 29, 30, 59]. Claeyssens et. al. observed emission

from neutral and ionized carbon only for nanosecond pulse durations [59]. In 2018, Yousfi

et. al. observed C2 formation in a reflected shock and CH visible emission with methane

and argon background gas [21]. More recently, Diaz and Hahn investigated the effects of

background gas type on the formation of atomic and molecular species in graphite ablation

plumes using time-resolved emission spectroscopy [60]. Several studies have investigated

the effects of background gas pressure on graphite plume expansion dynamics ranging from

vacuum to 300 Torr [12, 17, 24, 29, 30, 61]. The most recent graphite plume ablation

studies were conducted by Nica et. al., who studied the dynamics of ions in graphite

ablation plumes [62, 63]. The intense focus on emissive plume dynamics has been mirrored

in the greater pulsed laser ablation community for other materials.

In addition to spectroscopic studies of plume species, studies have investigated graphite

plume expansion dynamics using Sedov-Taylor modeling to estimate laser-plume energy

coupling [17, 21, 24, 25, 61, 64]. Singh studied expansion dynamics of graphite in 760 Torr

nitrogen with emission imaging and shadowgraphy, finding that the initial Sedov-Taylor

energy to be 40% of the laser pulse energy, [64].

The characterization of shocks in a gas, particularly shock thickness, is largely limited

to older shock tube studies where the Mach number, M , is typically less than 10 and the

background pressure is high compared to typical laser ablation conditions [65–70]. Stan-

dard models for the influence of temperature dependent viscosity on shock thickness can
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lead to physically unreasonable results when extrapolated to higher Mach numbers [70],

such as those seen in laser ablation, and the prediction of increased shock thickness for M

> 3 is weakly validated only for a small range of flow speeds [68, 69]. Only two prior

studies in the overall literature of pulsed laser ablation literature have specifically explored

plume shock thickness and shock strength for pulsed laser ablation [52, 71]. Phelps et. al.

studied pulsed shock thickness and strength of barium plumes in an oxygen background

gas using emissive plume imagery [52]. George et. al. explored shock velocity and shock

strength during the ablation of lithium fluoride-carbon targets in oxygen, argon, and helium

gases using emissive plume imagery [71].

2.3.2 Shock Wave Propagation and Shock Detachment

Shock wave propagation is commonly indirectly studied by characterizing emissive

plume contact front propagation trajectories with the Sedov-Taylor blast model along with

the assumption that the emissive contact front is co-located with the shock wave. The bulk

of the emission in the emissive contact front of the plume is assumed to have resulted from

the passing of the shock wave through the plume material, resulting in enhanced emission

[17, 24, 61, 64]. In emissive plume contact front characterization, the Sedov-Taylor limits

are often used to partition fitting, with the low limit used to bound the early propagation and

the high limit used to bound the later propagation [72]. However, the Sedov-Taylor high

limit is often many lengths further than the plume stopping distance [4, 5, 72]. The point

where the emissive plume begins to slow in comparison to the shock wave is the shock

detachment point [73, 74]. After the shock detachment occurs, the emissive contact front

trajectory no longer follows a blast-like trajectory, and the Sedov-Taylor model is no longer

sufficient to describe the propagation after this point. As a result, Sedov-Taylor fits to the

emissive contact front beyond the shock detachment point will result in poorer estimates of

the Sedov-Taylor blast energy and resulting laser-plume coupling efficiency.
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Although a several studies have explored the shock wave produced during pulsed laser

ablation in a limited fashion [64, 75], very few studies have focused on the effects of shock

wave propagation in conjunction with the emissive plume in detail. In 1999, Kokai et.

al. explored graphite ablation in ambient argon with shadowgraphy, fast imaging, and

emission spectroscopy, focusing on darkened region in the interior of the plume [75]. In

2013, Singh, Gupta, and Thareja investigated plume and some shock wave dynamics for

graphite ablation in ambient nitrogen using fast imaging, emission spectroscopy, and an

interferometer to characterize the location of C2 and CN species within the plume [64].

Neither of these studies characterized detachment of the shock from the emissive plume.

No prior graphite studies were found that examine the dynamics of both the emissive plume

contact front and the shock front in detail, and no studies that examine shock detachment

and its effects on Sedov-Taylor modeling of emissive plumes.

2.3.3 Plume and Shock Morphology

There has been some prior exploration of the laser ablation shock wave in graphite [64,

75, 76], although most studies focus on emissive plume structure. Kokai et. al. explored

laser ablation of graphite in argon with shadowgraphy, emission imaging, and emission

spectroscopy, focusing on characterizing the formation carbon clusters near the target sur-

face [75]. Singh, Gupta, and Thareja explored graphite ablation using fast imaging, emis-

sion spectroscopy, shadowgraphy, and interferometry [64]. They found that velocity esti-

mates for emissive imaging were comparable to shadowgraphy estimates, and determined

that the shock wave expansion was spherical from the shadowgraphy imagery. Ursu et. al.

characterized a specific plasma plume morphology [25–27]. In 2021, Eliceiri and Grig-

oropoulos used shadowgraphy, laser probing, and spectroscopy to explore graphite plume

plasma shielding and density [76].

Plume morphology studies have been performed for other target materials including
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metals such as copper [77] and aluminum [78], or to study parameters such as laser spot

size [79] or the effects of background gas [80]. However most studies in the overall laser

ablation literature rely only on fast imaging and optical emission spectroscopy to explore

the dynamics of the emissive plume. Very few studies have been conducted for pulsed

laser ablation of graphite or other target materials that directly compare the shock wave

curvature and morphology to the emissive plume morphology using multiple laser footprint

geometries. For graphite in particular, no prior studies have been found that examine the

morphology of both the emissive plume and the shock wave in comprehensive detail for

multiple gases and pressures.
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III. Shock front behavior during pulsed laser ablation of graphite

Pulsed laser ablation of pyrolytic graphite with a 4 J/cm2 KrF laser in backgrounds

of air, argon, nitrogen, and helium at pressures up to 10 Torr was performed to find and

validate new scaling relationships for common ablation diagnostic parameters. Optical

emission imaging with a 2 ns gated ICCD camera was used to determine shock front po-

sitions and plume trajectories for characterization by free expansion, Sedov-Taylor blast

and drag models. The plume expands with initial Mach numbers of M ∼ 48, decreasing

to M ∼ 10 as the emission becomes too weak to detect. The plumes begin with a planar

shock front and thickness of a few mean free paths, but evolve to higher dimensionality, n,

depending on pressure and mass of the background gas. The Sedov-Taylor energy released

in the sudden ablation is typically 33% the laser pulse energy. Blast energy and plume

dimensionality are correlated with stopping distances which are typically greater than 103

mean free paths. High estimates for the mass ablated (0.36–0.76 µg/pulse) and hole depth

(∼37–77 nm) are inferred from the emissive plume kinetic energy relative to laser pulse en-

ergy. The inferred hole depth ranges from 14–28 percent of the thermal diffusion length as

the pressure increases from 1 to 10 Torr for these conditions where the fluence is just above

twice the ablation threshold. A new scaling method was proposed and validated, enabling

comparisons of laser-plume energy coupling between different target materials ablated un-

der varying environmental and system conditions. The data analyzed in this study was

acquired at the end of Dr. William Bauer’s dissertation research in 2017 [54].

3.1 Introduction

Pulsed laser ablation (PLA) of graphite materials has a wide variety of useful applica-

tions including thin film and nano-material production including diamond-like carbon and

carbon nitride films [2, 43], characterization of hypersonic thermal protection materials
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[8], and defining laser weapon effects [9, 10]. Optical characterization of plume dynam-

ics including trajectories, stopping distances, and kinetic energies of atomic and molecular

species are essential to most material processing control strategies [1, 2, 81] and reflect ab-

lation conditions [2, 3]. Sublimation of carbon, silicon carbide and other materials provides

thermal protection for aerospace vehicles at high speed, leading to highly ionized plumes

and strong emission [8, 82, 83]. The vulnerability of carbon composites to laser weapons

systems also requires fundamental studies of heating and oxidation [41, 84].

The production of thin films by pulsed ablation of graphite often employs pulse dura-

tions of 10 - 100 ns in the ultraviolet (UV). More recently, ablation with shorter pulses and

longer wavelengths have been studied [85–87]. Laser fluences near the ablation threshold

(∼ 1.8 J/cm2 for graphite) are often desirable for materials processing to avoid the high ion

content and the long plume stopping distances observed at high fluence (∼ 1 kJ/cm2) [61,

88–90].

Prior graphite ablation studies have largely focused on the formation and dynamics of

neutral and ionized atomic and molecular carbon [12, 17, 21, 24–27, 29, 30, 59]. Yousfi et.

al. recently observed C2 formation in a slow, reflected shock and CH visible emission with

methane and argon background gases using time of flight spectrometry [21]. Claeyssens

et. al. observed emission from neutral and ionized carbon only for nanosecond pulse

durations, with emission dominated by molecular ions for shorter pulses [59]. Al-Shboul

et. al. compared the effects of femtosecond and nanosecond ablation of graphite, indicating

the role of three-body recombination in the production of C2 emission [30]. Diaz and Hahn

investigated the effects of background gas type on the formation of atomic and molecular

species in graphite ablation plumes using time-resolved emission spectroscopy, finding that

CN molecules exhibit two emission intensity local maxima as opposed to an exponential

decay [60]. Several studies have investigated the effects of background gas pressure on

graphite plume expansion dynamics ranging from vacuum to 300 Torr [12, 17, 24, 29, 30,
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61]. Ursu et. al. characterized a specific plasma plume morphology [25–27]. The most

recent graphite ablation studies were conducted by Nica et. al., who studied the dynamics

of ions in graphite ablation plumes [62, 63].

A few studies have investigated plume shock front dynamics using blast wave expan-

sion (Sedov-Taylor) modeling [17, 24, 61, 64]. Others have used blast modeling in nitro-

gen backgrounds to characterize ionized atomic nitrogen and CN [21, 25]. Singh studied

expansion dynamics of graphite in 760 Torr nitrogen with emission imaging and shadowg-

raphy, finding that the initial Sedov-Taylor energy to be 40% of the laser pulse energy, [64]

confirming the current preliminary result [91, 92].

Pulsed laser ablation offers an opportunity to study shock propagation under extreme

conditions. Shock propagation within the solid target has been studied primarily by moni-

toring the defects of rear surfaces of thin films [93, 94]. These shocks are produced from the

rapidly expanding plume interacting with the target surface. Through Thin Film Ablation

(TTFA) is effective in the production of nanoparticles and also depends on shock propa-

gation in the condensed phase [95]. Pulsed ablation in thin liquid films produces shock

waves and cavitation bubbles [96]. The liquid film constrains the plasma plume expan-

sion and produces stronger gas shocks. The more generalized characterization of shocks

in the gas phase, particularly shock thickness, is largely limited to older shock tube studies

where the Mach number (M) is typically less than 6 and the background pressure is high

[65–70]. Indeed, standard models for the influence of temperature dependent viscosity on

shock thickness can lead to physically unreasonable results when extrapolated to higher

Mach numbers [70]. Furthermore, the prediction of increased shock thickness for M > 3

is weakly validated only for a small range of flow speeds [68, 69]. Pulsed laser ablation

offers high Mach, M > 50, in evolving, three-dimensional flows. Only two prior studies of

PLA plume shock thickness have been conducted [52, 71].

This work focuses on the PLA of graphite, comparing the experimental results to prior
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studies of carbon, metal, superconductor, and semiconductor targets. Free expansion, drag,

and Sedov-Taylor blast models are used to quantify the ablation plume dynamics. Non-

dimensional hole depths are estimated from plume dynamics and compared with metals

and semiconductors [11]. A correlation between blast energy and plume dimensionality

with stopping distances is developed using the mean free path in the unshocked gas. An

exploration of the dependence of shock thickness and shock strength on Mach number and

gas pressure is compared with prior studies of YBCO and C-LiF [52, 71]. This research is

part of a larger study focusing on the characterization of spatial and temporal dynamics of

continuous wave and pulsed laser effects on graphite and carbon fiber targets [41, 84, 97].

3.2 Apparatus and Methodology

A Lambda Physik LPX 305 pulsed KrF laser (λ =248 nm) with a 1 Hz repetition rate

was used to deliver an average energy of 170 mJ, and up to 180 mJ, per pulse onto a

graphite target in a vacuum chamber backfilled with various gases and pressures as shown

in Fig. 2. The average energy of 170 mJ is used in the analysis that follows. The laser

energy at the target was measured using a Coherent LMP10I detector positioned inside the

target chamber. The spot size of the laser on the target was approximately a 9 by 0.5 mm

rectangle. The laser pulse has a full width half max of 25 ns and a rise time of 5 ns, yielding

an intensity of 151 MW/cm2 and fluence of 4 J/cm2. The plume propagates normal to the

target in the z-direction with a Princeton Instruments PIMAX I gated intensified charged-

coupled device (ICCD) camera recording the emissive plume in the xz-plane as shown in

Fig. 3. ICCD imagery were observed with a series of band pass filters: 375 nm (CN),

394 nm (C+), 520 nm (C2), 760 nm (Ar) and 830 nm (C). Filter bandwidths varied from

8.9–10.8 nm. Spectrally integrated images without filters were also obtained.

The laser was focused onto the target inside a 25.4 cm vacuum chamber. A 300 mm

focal length plano-convex fused silica lens was used to focus the beam onto the target at an
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Figure 2: Experimental apparatus includes a vacuum chamber containing a sample target carousel,
vertically mounted PIMAX I ICCD camera, and ports for other diagnostic equipment. The target is
ablated using a KrF pulsed laser source (λ = 248 nm, 25 ns pulse width, average energy 170 mJ per
pulse at target).

Figure 3: ICCD camera field of view. The ICCD camera images the xz-plane, capturing the plume’s
propagation from the target to a distance 5.24 cm from the target.
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angle of incidence of 45 degrees to the target normal. The targets were 25.4 mm diameter

by 6.3 mm thickness pyrolytic graphite sputtering target discs (99.999% C) sourced from

the Graphite Store with properties provided in Table 1. A 6-target carousel was used to hold

the targets and rotated at 10 rpm (z-axis) to minimize cratering on the target surface. The

chamber was evacuated to a pressure of 10−6 Torr with a turbomolecular pump and then

backfilled to either 1 Torr or 10 Torr of 99.999% nitrogen, argon, helium, air, or vacuum

at T = 298 K. A Varian 572 ionization gauge was used for near-vacuum monitoring and

an MKS model 626 capacitance manometer with a 1000 Torr range was used for higher

pressures.

Table 1: Thermodynamic and transport properties of pyrolytic graphite samples.

Property Value Ref.

Density, ρ (g/cm3) 2.2 [98]
Thermal Conductivity, K (W/m⋅K) (across layers) 3.5 [98]
Specific Heat, Cp (J/kg⋅K) (T = 3500 K) 2135 [99]
Sublimation Temperature, T (K) 3923 [100]
Heat of Sublimation, hs (kJ/g) 61.3 [100]
Diffusivity, κ (cm2/s) 0.0075 calculated
Diffusion length, lD (nm) 273 calculated
Ablation Threshold Fluence, Fth (J/cm2) 1.84 calculated

A Princeton Instruments PIMAX I with a 512 x 512 Gen III ICCD camera with a

Nikon AF Nikkor 60 mm micro f/2.8 lens was used to capture fast imagery of the plume

from above. The quantum efficiency of the 16-bit camera is higher than 20% from 410 to

890 nm, with a peak efficiency of approximately 40% near 700 nm. Saturation occurs at

65,536 counts with a dark signal of 68 counts. The field of view of the lens was 5.24 by

5.24 cm with 0.102 mm per ICCD pixel. The camera was gated with delays of up to 11.5 µs

after the laser shot and gate widths (integration time) from 2 to 150 ns. For each run, 100

shots were taken with nonlinearly varying gate widths and delays having 2 ns widths at the

start of the collection and 150 ns widths at the end of the collection to improve signal to
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noise when the plume emission significantly dimmed as it propagated away from the target

surface. Four identical runs were collected and the images at each time step were averaged

together to account for shot-to-shot variations. The camera was triggered using a signal

from the laser electronics. For initial velocities of 2 cm/µs, a 2 ns integration time yields a

maximum of 40 µm motion during image integration corresponding to 0.39 pixels. At late

plume propagation times where the plume speed is reduced, a 100 ns gate width typically

corresponds with a maximum motion of less than 3.5 pixels, or about 0.357 mm. Images

exhibited < 5% pulse-to-pulse laser flicker and < 10 ns pulse-to-pulse laser timing jitter.

Shot-to-shot variation in laser pulse energy was < 1.5%.

3.3 Results

3.3.1 Plume Imagery and Shock Front Propagation Speeds

A typical plume image with no bandpass filter at a delay of 369 ns for an air background

pressure of 10 Torr is shown as an intensity contour plot in Fig. 4. The dimension of the

plume parallel to the target surface is 8.3 mm, only slightly smaller than the 9 mm laser

footprint. The leading edge of the plume is located at 0.354 cm, corresponding to a speed of

0.46 cm/µs. Most of the emission occurs near the shock front, with minimal emission from

the interior of the plume. In earlier frames, the plume transverse dimension is 8.1 mm with

an initial speed of 1.44 cm/µs. The speed of sound in the background air is 0.0346 cm/µs,

yielding an initial Mach number of M ∼ 42 slowing to M ∼ 7 in Fig. 4. At later frames,

t > 1 µs, the emissive plume comes to a stop at 0.5 cm, with a component of the emissive

plume rebounding off the gas and reflecting backwards to the target surface. The mean free

path in air at 10 Torr is ∼ 5 µm (see Eq. 22 in Sec. 3.4.4), suggesting ∼ 104 collisions

to stop the emissive plume. Two primary factors influence the stopping distance: (1) the

fraction of plume kinetic energy converted to atom electronic excitation (Translational to

Electronic) per collision, and (2) the fraction of the kinetic energy distribution engaged in
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the shock front (the size of the velocity group in the time-of-flight spectra in the leading

edge of the emissive plume).

The shock front location is identified in Fig. 5 where a 5-pixel row average of the

emission intensity is plotted along the center line of the plume. The leading edge of the

emission is identified where the intensity rises to 50% of the peak at z = 0.35 cm. The

shock front and this luminous contact front are likely coincident for most of the plume

propagation, with separation generally occurring at t < 1 µs, as discussed below. The shock

is moderately strong in Fig. 5, with a rapid rise in intensity at the leading edge. The

thickness of the emissive plume shock front is defined as δ, the distance between 25% and

75% of the maximum intensity for the leading edge of the plume. This measured thickness

is influenced by instrumental limitations including pixel size and plume curvature along

the line of sight, the collisional mechanism for producing atomic and molecular emission,

and physical considerations such as the mean free path and viscosity, as discussed further

below.
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Figure 4: Graphite ablation plume ICCD image with 369 ns gate delay in air at 10 Torr with no
spectral filter.

Figure 5: Centerline intensity profile with a 5-pixel (0.5 mm) row average corresponding to the
image in Fig. 4 with peak intensity (◇) and defined shock front position at 50% peak intensity (×)
at t = 369 ns with no spectral filter in air at 10 Torr.
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Figure 6: Plume shock trajectory for graphite in an air background gas at 10 Torr. The gray vertical
error bars represent the z distance error resulting from the ICCD gate width size which increased
from 2.2 ns at the earliest shock location to 3.1 ns for the latest shock location. An ICCD pixel size
marker denoted with the arrow is included for reference to the distance axis, z.

Plume trajectories were characterized by locating the shock front for each camera gate

delay as shown in Fig. 6. Instrumental limitations on identifying the shock location are

minimal, with a pixel size marker and error bars corresponding to the gate width transit

distance typically less than curvature in the trajectory. In Fig. 6, the variable gate widths

were narrow starting at 2.2 ns at early times and expanding to 3.2 ns for the final shock

image. Positional errors introduced by plume motion during the gate width integration

time are ∼ 1 pixel for the earliest times and shrink to 0.5 pixels at the later times, due to

the slowing of the plume. The dynamics of the ablation plume shock front propagation

were characterized into three distinct regions including the early free expansion region, the

mid-field blast wave region characterized by the Sedov-Taylor equation, and the full scale

drag region characterized by the empirical drag model [5, 52, 61, 72, 101]. Figure 7 shows
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an example of the fitting of data to these models.

At very early times, ablated material has not yet interacted with the background gas, and

a free expansion model can be used to characterize the trajectory [52]. The free expansion

exhibits a linear trajectory corresponding to a constant velocity and is given by:

z(t) = vot + zo, (7)

where z(t) is the distance of the shock front to the target at time t, the slope vo is the initial

plume velocity, and zo is the initial plume position. Data sectioning for the free expansion

fits was limited to the first 4 to 10 data points corresponding to the first 100–200 ns of shock

propagation where there was still little to no curvature from collisions with the background

gas. The small intercept, zo = 0.026 ± 0.011 cm corresponds to a time interval of 17.8 ns,

less than the laser pulse duration, and represents the uncertainty in defining t = 0 relative to

the peak of the laser pulse. The initial velocity for the plume propagating in air at 10 Torr is

vo = 1.44 ± 0.19 cm/µs, corresponding to a kinetic energy of 12.9 ± 3 eV per carbon atom.

The highest free expansion velocity kinetic energy was 24.4 ± 5 eV in 1 Torr nitrogen,

while the lowest kinetic energy was 11.7 ± 4 eV in 10 Torr argon as reported in Table 2.

The kinetic energy with the smallest uncertainty was the 10 Torr unfiltered argon case at

12.0 ± 2.2 eV. The plume kinetic energy was 2–5 times larger than the 5 eV photon energy,

suggesting moderate plume interaction with the laser pulse.

One might expect that the free expansion would not be influenced by the background

gas. However, higher initial speed is observed in the lighter helium, and the highest speed

for the lower pressure, 1 Torr case. A similar trend has been observed for PLA of graphite

in 300 Torr rare gas backgrounds at higher fluence, 20 J/cm2, with the free expansion speed

ranging from a somewhat lower value for helium of 1.45 cm/µs to 0.89 cm/µs for xenon

[61]. The higher pressure and somewhat longer camera integration time in the prior work

probably introduces some curvature in the trajectory and may have biased the speeds to
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Figure 7: Location of graphite shock front position in air at 10 Torr with least-square fits to the free
expansion ( ), Sedov-Taylor ( ), and drag ( ) models.

the low side. The laser pulse duration is sufficiently long that the dynamics of the plasma

bubble formation influence the final overpressure and possibly the degree of plasma shield-

ing. The increase in the kinetic energy of carbon atoms through the inverse-Bremsstrahlung

process and a higher plume density might result in increased plume shielding and energy

transfer. Other possible mechanisms for increased plume shielding may include atomic

and molecular absorption of the laser energy. Regardless of the mechanism, it is clear that

overall plume dynamics are driven by the extra energy deposited within the plume through

interaction with the ablation laser.

The free expansion velocities are typically predicted as ∼1 cm/µs for ns ablation of most

materials including graphite [102]. The expansion speed is a multiple of the initial speed

of sound, depending primarily on the ratio of specific heats [103]. The weak dependence

of expansion speed on target mass, leads to a significant reduction in the kinetic energy for

lighter mass targets. For example, the kinetic energy under similar ultraviolet ns pulsed
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Table 2: Free expansion and drag model fit results for plume propagation.

Gas Free Drag
(Torr) Exp. Z(t) = Zs (1 − e−β t)

v0 K.E. ZStop β v0
(cm/µs) (eV) (cm) (µs−1) (cm/µs)

Air 1.44 12.9 0.50 2.69 1.35
(10) ± 0.19 ± 3.4 ± 0.01 ± 0.19 ± 0.12

Ar 1.39 12.0 0.51 2.37 1.21
(10) ± 0.13 ± 2.2 ± 0.01 ± 0.15 ± 0.11

Ar 520 nm 1.37 11.7 0.49 2.95 1.45
(10) ± 0.23 ± 3.9 ± 0.02 ± 0.19 ± 0.11

He 1.87 21.8 1.10 1.67 1.84
(10) ± 0.10 ± 2.3 ± 0.03 ± 0.11 ± 0.13

N2 1.42 12.6 0.52 2.73 1.42
(10) ± 0.18 ± 3.2 ± 0.01 ± 0.17 ± 0.09

N2 1.98 24.4 1.56 1.11 1.73
(1) ± 0.22 ± 5.4 ± 0.04 ± 0.07 ± 0.12

laser conditions with fluences several times ablation threshold for aluminum (45.8 eV),

[72] titanium (61.1 eV), [72] and barium (284 eV) [52] increase significantly with mass. It

is also worth noting that ionization potential for carbon (11.26 eV) is significantly higher,

than for the metals Al (5.98 eV) and Ti (6.82 eV), likely resulting in fewer free electrons

available to couple with the laser through the inverse-Bremsstrahlung process.

Ablation plume trajectories are commonly characterized using the Sedov-Taylor (ST)

scaling first developed for bomb detonations [4, 5, 74, 104]. A more generalized form of

the Sedov-Taylor equation than is typically employed for laser ablation is used that allows

for variation in plume dimensionality and finite laser pulse duration:

z (t) = atb, (8)
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where

b = (s + 2)/(n + 2), (9)

a = ξn (
EST/(τ sol

3−n
o )

ρ )
1/(n+2)

, (10)

and ξn ≈ 1 depending on the ratio of specific heats of the background gas and the dimen-

sionality factor n [74]. The assumption of instantaneous energy deposition, s = 0, has

always been assumed for laser ablation and is appropriate when the plume evolution time

is long relative to the laser pulse duration. The value s =1 represents a constant energy

release with rate EST/τo where the time scale τo is defined by the laser pulse duration [74].

The plume dimensionality is often constrained to n =3 (spherical shock front, point source

over-pressure) in laser ablation studies [75, 85, 105]. For this n = 3 case, the length scale,

lo, is not relevant. However, at early times the plume may appear nearly one dimensional,

n ≈1, with a planar shock front, as is evident in Fig. 4. Recent studies indicate a di-

mensionality that decreases with increasing background density, ρ, and a typical value of

n =2.3 for Al and n = 1.9 for Ti targets. [72] To allow for the evolving plume curvature,

Eq. 8 is employed with the average dimensionality as a fit parameter, n, but constrained to

instantaneous energy release, s = 0.

The ST theory requires sufficient background gas to have been displaced that a well-

established emissive shock front is observed but before separation of the shock from the

emissive plumes. The ST model is applicable in the range:

zlow = (3ma

2πρ
)

1
3

≪ z≪ (2Ea
Pb

)
1
3

= zhigh, (11)

where ma is the mass ablated from the target, ρ is the background gas density, Ea is the

ablation energy from the laser, and Pb is the background gas pressure [104]. The ST model

is valid when the mass displaced by the shock front is larger than the mass inside the plume
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and when the pressure behind the shock front is still very large compared to the background

gas pressure. The ST low limit for the 10 Torr air case was zlow = 0.31 cm (∼ 30 pixels)

and the high limit is larger than camera field of view and beyond the emissive plume’s

stopping distance, zhigh = 6.37 cm. It is worth noting that the plume arrives at the low

limit at about 0.3 µs, or about 10 laser pulse durations, supporting the s = 0 instantaneous

release approximation. When fitting the observed trajectories to Eq. 8, the data is sectioned

to z > zlow. The fit results are provided in Table 3. Figure 8 provides a typical fit to Eq.

9 with n = 2.65 ± 0.12 and a = 0.544 ± 0.003 cm/µs2/(2+n). The poor prediction at early

times is a result of the preceding the low limit, represented by the dotted line.

The ST model was used to estimate the energy that goes into the shock wave in the

initial ablation event, and are the energies are summarized in Table 3. For cases with n ≠ 3,

an estimate of the length scale, lo, is required. For bomb detonations in air, the length scale

is best described by the ST low limit, lo = zlow = (3ma/2πρ)
1
3 [74]. Using this length

scale for the ablation in the air yields EST = 65 ± 2 mJ or 38% of the laser pulse energy

of 170 mJ. Alternatively, a fixed length scale independent of pressure or ablated mass,

possibly associated with the laser spot size, might be employed. If the length scale is fixed

to lo = 4.5 mm (half of the long spot dimension), then the fraction of the laser energy used

to drive the shock is less dependent on background gas with an average for all the data of 37

± 5 %. Prior studies of this partitioning of laser energy to the shock disagree dramatically.

For a 532 nm, 30 J/cm2 ablation of graphite in argon at 1.5–15 Torr, the ST energy was

70% of the laser energy, whereas at 193 nm and 25 J/cm2 in atmospheric air only 5–7%

of the laser energy drove the shock [85, 105]. In both cases, the ST fits were constrained

to n = 3. The current result differs significantly from the prior UV study, suggesting

that increase inverse-Bremsstrahlung at shorter wavelengths is not the explanation for the

observed differences. It seems more likely that the high atmospheric pressure used in the

prior ArF study reduces the coupling. These trends are discussed in context of other target
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Table 3: Sedov-Taylor fit results.

ST R(t) = at
2

n+2 ST for n = 3

R(t) = at0.4

Gas n a EST EST a EST
(Torr) (cm/ lo = zlow lo = 0.45 cm

µs2/(n+2)) (mJ) (mJ) (cm/µs0.4) (mJ)

Air 2.66 0.544 65 69 0.535 68
(10) ± 0.12 ± 0.004 ± 2 ± 2 ± 0.003 ± 2

Ar 2.82 0.473 48 50 0.468 49
(10) ± 0.14 ± 0.003 ± 2 ± 2 ± 0.002 ± 1

Ar 520 nm 2.29 0.515 58 70 0.495 63
(10) ± 0.19 ± 0.007 ± 4 ± 4 ± 0.005 ± 3

He 1.81 0.902 79 55 0.877 111
(10) ± 0.1 ± 0.005 ± 2 ± 1 ± 0.016 ± 10

N2 2.54 0.544 61 65 0.531 63
(10) ± 0.19 ± 0.006 ± 3 ± 3 ± 0.004 ± 2

N2 1.83 1.04 106 68 1.06 199
(1) ± 0.14 ± 0.008 ± 3 ± 2 ± 0.001 ± 1
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Figure 8: Sedov-Taylor fit for graphite in air at 10 Torr. The fit coefficients are a = 0.544 ± 0.003
cm/µs2/(n+2), and dimensionality n = 2.65 ± 0.12. The dotted line is the low limit, 0.316 ± 0.03
cm. The high limit is 6.37 cm.

materials in the discussion below.

The final region of the emissive plume expansion is dominated by drag as the expand-

ing plume encounters the background gas, slows and the collision excitation of emitting

states declines. Late in the plume trajectory, the emissive plume separates from the shock

front and comes to a maximum displacement. The empirical drag model exponentially

approaches the stopping distance:

z(t) = zs (1 − e−β t) + zo, (12)

where zs is the plume stopping distance and β is the drag coefficient [106, 107]. The

stopping distance for graphite ablation in air at 10 Torr was zs= 0.50 ± 0.01 cm and the

initial velocity is vo= 1.35 ± 0.12 cm/µs. As with the free expansion fit, an intercept term

zo= 0.041 ± 0.008 cm was added to the drag fit to account for experimental timing uncer-
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tainty. Both the free expansion and drag initial velocities agreed to within 0.1 cm/µs. The

trajectories for the various gases and pressures are provided in Fig. 9, and fit results are

summarized in Table 2.

Figure 9: Graphite plume trajectories in air (×), argon (△), argon using the C2 filter (○), helium
(◇), and nitrogen at 10 Torr (□) and nitrogen at 1 Torr (⭑). Drag fits are represented by dashed
lines ( ).

Plume stopping distances, zs, increase at lower pressure and for the lighter He collision

partner. A similar trend is observed for the drag initial velocities and Sedov-Taylor di-

mensionality, n, which trends towards spherical for heavier collision partners and towards

planar for lighter gases. The previous study of graphite plume stopping distance with a

higher fluence, F = 20 J/cm2 excimer laser source examined He, Ne, Ar, and Xe back-

ground gases at 300 Torr [61]. Their results are about 40% of the stopping distances for

He and Ar in this study, and decrease from zs = 0.41 cm to 0.15 cm as the mass of the

background gas increases from He to Xe. Clearly, the stopping distance decreases less than

linearly with pressure and more than a factor of two between He and Ar. These trends

may be interpreted from a translational-to-electronic (T-E) energy transfer event that oc-
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curs within the contact front to produce the electronic excitation. Momentum conservation

considerations suggest the helium is rapidly pushed forward in such an interaction and the

carbon atoms suffer less reduction in speed, whereas heavier collision partners are more

difficult for the ablated mass to plow through. Indeed, the T-E rates are expected to be

higher in background gases with a mass more similar to the carbon atoms or molecules.

The higher T-E rates also imply a larger change in the time of flight velocity distributions

of the dark plume.

Table 2 and Table 3 also provide results when using a band pass filter to emphasize C2

emission in the argon background. The error estimates are almost double for most parame-

ters, due to the lower total signal. The free expansion speeds are similar, but the drag initial

speeds were 19% higher than (but almost within the error bounds of) the broadband results.

The Sedov-Taylor dimensionality of the broadband argon case was nearly spherical, while

the C2 dimensionality was closer to cylindrical, possibly reflecting a different production

mechanism. The Sedov-Taylor energy for the C2 filtered case was 17% higher than the

broadband case and significantly greater than the error bounds.

3.3.2 Diffuse Emission at Early Times

An area of diffuse emission was evident in the ICCD imagery at early times (< 150 ns)

for the 10 Torr C2-filtered argon, 10 Torr helium and 1 Torr nitrogen cases. Early diffuse

emission was not evident in the 10 Torr air, 10 Torr nitrogen, and 10 Torr unfiltered argon

cases. The phenomenon was the most pronounced in the 1 Torr nitrogen case, which can

be seen in Fig. 10 as an ICCD imagery sequence consisting of the first 8 frames from

2.2–150 ns after the termination of the laser pulse.
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Figure 10: (a–h) Unfiltered ICCD images demonstrating diffuse emission at early times for graphite
in nitrogen at 1 Torr. Images show gate delays from 2.2 ns to 150 ns with emission from the shock
front appearing at 84.7 ns (e). The diffuse emission peak intensity occurs at 106.2 ns (f), and has
faded by 150.3 ns (h).

The diffuse emission appears at 2.2 ns and then grows in intensity and size, peaking in

intensity at 106.2 ns. The emissive shock front is first discernible at 84.7 ns and continues

to grow in intensity while propagating away from the target surface. The area of diffuse

emission begins to fade away at 128 ns, becoming much less intense than the propagating

emissive shock front by 150 ns. The speed of propagation of the early diffuse emission

region is relatively slow. A similar feature was seen by Yadav et. al. at 10−5 Torr, who

found that the faster component in their work was primarily composed of C2 molecules

[108]. They postulated that the early emission was possibly due to collisions between the

plume and background gas in the free expansion region near the Knudsen layer [108].

However, the emission in the present work is only visible in several gas/pressure cases

and collisions near the Knudsen layer should be present in all the cases if that was the

primary cause. A possible alternative explanation for the diffuse emission is that some
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carbon atoms are produced with significant excitation before the laser pulse has terminated.

These atoms ablate off the surface at relatively slow speeds and continue to emit brightly for

approximately one radiative lifetime. These atoms did not stay within the confined volume

of the plume where significant laser-plume absorption occurs, and their kinetic energy was

not strongly boosted by inverse-Bremsstrahlung processes.

The diffuse emission also appears to obscure the emissive shock front from view due to

its higher intensity and initial overlap until 84.7 ns has passed. It is possible that for times

earlier than 84.6 ns, the kinetic energy of the plume might be high enough that the energy-

dependent cross section for translational to electronic energy transfer is small, resulting in

no emission visible from the shock front for those times. As the shock front experiences

increasing collisions with the background gas and loses energy, the cross section grows

resulting in the start of the shock front emission near 84.65 ns. A more likely explanation

for the apparently missing shock front emission before 84.65 ns is that there have not been

enough collisions with the background gas to form the shock front at those early times and

the emissive shock front only forms at 84 ns.

3.4 Discussion

3.4.1 Sedov-Taylor Blast Energy

In Fig. 11, the blast energies from the Sedov-Taylor fits relative to the laser pulse energy

are presented as a function of stopping distance normalized to the mean free path, λ, using

both the present results and prior literature for targets composed of titanium [72], aluminum

[72], barium [52], and graphite [17, 21, 24, 85, 105]. A broad range of pressures from 0.025

to 760 Torr and various background gases including oxygen, argon, nitrogen, helium, and

air are included for the diverse set of target materials. For higher pressures and lower mean

free paths, zs/λ > 400, the ST energy approaches the pulse energy. Below this transition

value for zs/λ, the ST energy generally increases with the exception of Ti in Ar. The prior
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titanium results exhibit energy ratios significantly above unity, attributed by the authors as

an overestimation by the ST method [72]. The results for graphite and aluminum are less

sensitive to stopping distance than the Ba targets, where the energy coupling is quite low

at small stopping distances. There are clearly distinctive groupings of the target materials

with energy ratios for graphite tending to be larger for lighter background gases such as

helium. The graphite cases also exhibited stopping distances 2 to 8 times smaller than the

aluminum, titanium, and barium results in the literature. The graphite in the 1 Torr nitrogen

case ablated with a KrF laser in this work exhibited a significantly higher energy ratio near

100% compared to the graphite in 0.9 Torr nitrogen case in the literature with a ratio of

10% using an Nd:YAG laser. This is mostly likely due to increased coupling of the KrF

laser energy into the plume as compared to the Nd:YAG laser case.

Figure 11: Sedov-Taylor/laser pulse energy ratio versus stopping distance normalized with mean
free path for graphite results in this work (■) compared to barium [52] (△), graphite [17, 21, 24]
(●), graphite from Márton et. al. [85] (⭑), graphite from Mahmood et. al. [105] (◆), and titanium
(+) and aluminum from Bauer [72] (×).
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Indeed, the proposed scaling for ST energies in Fig. 11 appears to be rather robust

for a wide range of materials and conditions and explains the significant differences pre-

viously reported [85, 105]. For a doubled Nd:YAG laser ablation of graphite in argon at

1.5–15 Torr, the ST energy was 70% of the laser energy, [105] whereas for a UV excimer

laser in atmospheric air only 5-7% of the laser energy drove the shock [85]. The pressure

scaling suggested by the normalization to mean free paths seems to correlate the results

despite the differences in wavelength, pulse duration and fluence.

3.4.2 High Limit Ablated Mass and Hole Depth Estimates

Weighing targets to determine ablated mass can be problematic in graphite and other

materials for several reasons including redeposition, target fragility, and oxidation. Rede-

position of a portion of the ablated plume material back onto the surface of the target can

result in an underestimation of ablated mass [41]. The fragility of the target material can

result in mass loss during the process of handling a sample during mounting, unmount-

ing, and any steps where the sample is physically touched or moved in order to weigh it

before or after ablation. In addition, many target materials, including metals and graphite

in certain conditions, can oxidize in the environment potentially influencing ablated mass

measurements [56].

The graphite targets in this study were not weighed. However, an upper bound for

the graphite ablated mass could be estimated using the measured free expansion initial

velocity, the ablation threshold energy, the laser pulse energy, laser parameters including

spot size area and pulse duration, and the physical target material parameters such as heat

of vaporization and reflectivity. By removing the energy sinks from the total laser pulse

energy and assuming that the remaining energy goes into the kinetic energy the assumption

that all the laser pulse energy goes into kinetic energy in the plume. The equation for the
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high estimate of ablated mass is:

ma =

Ep(1 −R) − ρhs
√

κ

Cpρ
τpAL

1

2
v2o

, (13)

where ma is the mass ablated, Ep is the laser pulse energy, R is the reflectivity, ρ is the

density, hs is the heat of sublimation, κ is the diffusivity, Cp is the specific heat, τp is the

laser pulse duration, AL is the laser spot area, and vo is the initial velocity. For example,

an upper limit of 0.69 µg can be removed per pulse for graphite in air at 10 Torr using the

parameters in Table 1, and a reflectivity of 0.094 [109].

The ablated mass estimates can be compared with theoretical predictions using the laser

pulse duration, target material thermal properties, and target density, assuming no explosive

boiling or spallation occurs. If the volume of the hole is defined by laser footprint and the

thermal diffusion length:

lD =

√
4
K

Cpρ
τp, (14)

where K

Cpρ
is the thermal diffusivity given by the thermal conductivity K, specific heat at

constant pressure Cp, and graphite density ρ, and τp is the duration of the laser pulse, then

the mass is defined by this volume and the graphite density [2]. The key assumption is

that the laser ablates the material to a depth equal to the thermal diffusion length across

the entire laser footprint, which is most appropriate for longer pulses [11]. The material

properties of the graphite samples include a thermal conductivity of 3.5 W/m⋅K and a

density of 2.19 g/cm3 [98]. Assuming a specific heat of 2,135 J/kgK at 3,500 K and 25

ns pulse duration, Eq. 14 yields a thermal diffusion length of lD = 273.6 nm [99]. A 4.5

mm2 laser spot size yields an ablated volume of 0.001231 mm3 corresponding to a mass of

2.67 µg. Using a similar process, an estimated hole depth can be calculated with:

Estimated Hole Depth =
ma

ALρ
, (15)
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which yields an estimated hole depth of 70 nm for the 10 Torr air. It is clear from comparing

the 0.69 µg ablated mass estimate for the 10 Torr air case to the theoretical ablated mass

of 2.67 µg that the hole depth estimated from the free expansion velocity is 26% of the

diffusion length. The current estimates agree favorably with the 300 nm depths observed

in earlier KrF laser ablation of graphite at somewhat higher fluence (10 J/cm2) [87]. In

contrast, the depths in graphite with an ArF laser increase linearly with fluence to about

150 nm at 10 J/cm2 [85]. The trends are similar for much shorter 120 fs pulses where the

depth grows to 180 nm at 5 J/cm2. This simple model for a high limit ablated mass could

be improved by adding the effects of other processes into the calculation. In addition, mass

estimates could include factors including the Sedov-Taylor energy, which is not available

to ablate material from the surface since the energy is absorbed by the plume. However,

a contribution of the Sedov-Taylor energy is inherent in the model since the high initial

velocity of the plume material is primarily a result of the laser-plume energy transfer. The

overall degree of plume shielding including plume absorption and scatter of the incident

laser radiation could also be included to better bound a mass ablation estimate. However,

the intent here is to provide a simple, rough order of magnitude high estimate of mass

ablated to allow for rapid analysis of ablation plumes.

3.4.3 Non-dimensional Factors for Hole Depth, Fluence, and Pulse Duration

Van Woerkom et al. recently introduced non-dimensional scaling factors for compar-

ing materials with different pulse durations (100 ps to 100 ms) and fluences (0.004–25

kJ/cm2) by defining a non-dimensional hole depth, a non-dimensional fluence, and a non-

dimensional pulse duration [11]. They defined the non-dimensional hole depth, h∗, as

h
∗
=
h

lD
(16)
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where h is the measured hole depth, and lD is the thermal diffusion length defined in Eq.

14 [11]. They defined the non-dimensional fluence,f∗, given as

f
∗
=

F

Fth
(17)

where F is the delivered fluence on the target and Fth is the material ablation threshold

fluence given by:

Fth = ρ hs

√
κ

Cpρ
τp, (18)

and hs is the latent heat of vaporization or sublimation for the material [11]. They also

defined the non-dimensional pulse duration, t∗, given by:

t
∗
=

tp
tω

=
4κ tp

ω2
0

, (19)

where tp is the laser pulse duration and tω is the time for heat to diffuse over a length equal

to the laser spot radius, ω0 [11]. Using the material properties in Table 1, Eq. 18 predicts

Fth = 1.84 J/cm2 which agrees rather well with the experimental determination of 1.45

J/cm2 [85]. Thus the fluence is just slightly above twice the ablation threshold, f∗ = 2.06.

Since the fluence is not significantly higher than the graphite ablation threshold, additional

ablation from explosive boiling is most likely not present. Using the estimated hole depths

from the free expansion velocities of Sec. 3.1, the current results are slightly less than the

thermal diffusion length, and h∗ ranges from 0.14 for 1 Torr nitrogen to 0.28 for 10 Torr

argon.

Van Woerkom et al. examined the laser ablation of aluminum, titanium, germanium,

silicon, and indium antimonide for a range of fluences and pulse durations but only for

ablation in ambient air [11]. The current results at low pressure and carbon offer a further

test of their scaling, as illustrated in Fig. 12. The pulse duration is short relative to the

thermal diffusion time for this work, resulting in t∗ = 1.67x10−8, and so the present data
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should be compared with the results for t∗ < 1. The new results lie on the low h
∗, f∗ limit

of the t∗ < 1 scaling and are consistent with an extrapolation from the bulk of the prior

data.

Figure 12: Non-dimensional hole depth, h∗, as a function of non-dimensional fluence, f∗, for
graphite in this study (◇), and for various materials t∗ < 1 (□), t∗ > 1 (○) from Van Woerkom et.
al. [11]

3.4.4 Shock Thickness and Strength in Graphite and Barium

Pulsed laser ablation offers an opportunity to explore shock thickness at very high Mach

numbers. The older shock tube studies of shock thickness are generally limited to 1-D

flow into high pressure backgrounds at M < 9 [65–70, 110]. The prediction of increasing

shock thickness at higher speeds due to the temperature dependent viscosity appears to

be inconsistent with the two prior pulsed ablation studies [52, 71]. However, imagery of

the emissive plumes from laser ablation are difficult to interpret for shock strength due
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to several complications: (1) a dynamic, 3D expansion with shock curvature along the

imaging axis, (2) a possibly complex relationship between emission and pressure profiles

due to the kinetic excitation mechanism.

Thickness of the emissive plume contact front is defined here as δ, the distance between

25% and 75% of the maximum intensity for the leading edge of the plume as illustrated in

Fig. 5 and as previously recommended [52, 71]:

δ =
Im − Ib

Im/ (z75 − z25)
, (20)

where Im is the peak intensity, Ib is the pre-shock intensity, and z25,75 is the distance from

the target where the leading edge intensity is 25% or 75% of the peak [52]. The use of

Eq. 20 depends on the assumption that emission at the plume contact front resulting from

collisions with the background gas adequately represents shock front structure, and that

the thickness of the contact front intensity profile is analogous to shock thickness. Several

definitions of shock strength are used in the study of shock waves. However, this work

adopts the definition of shock strength as the reciprocal of shock thickness, S = 1/δ,

typically used in hydrodynamic modeling with Navier-Stokes equations [68, 110–112].

Shock thickness is usually based on the pre-shock flow velocity or density:

δυ =
υ1 − υ2

(dυ
dz
)
max

, (21)

where υ1 is the post-shock velocity and υ2 is the pre-shock velocity [70, 92]. The pre-shock

velocity is near zero and the pre-shock intensity is near zero, so if the intensity gradient is

proportional to the velocity gradient, then Eq. 20 and Eq. 21 yield similar results. The

shock speed and thickness vary with plume propagation time as illustrated in Fig. 13.
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Figure 13: Evolving shock speed (×) and thickness (○) for nitrogen at 1 Torr.

The spatial resolution is at best limited by the imaged pixel size of 102 µm/pixel and

a shock strength of greater than S = 1/δ > 100 cm−1 clearly cannot be discerned. Prior

studies employed a slightly poorer spatial resolution with strengths limited to 30–40 cm−1

[52, 71]. The mean free path, as evaluated below, in the background helium at 1 Torr is

only slightly smaller than a pixel, λ = 63 µm, and shock thickness is usually a few mean

free paths. The situation is further complicated by curvature in the emissive contact front

along the imaging line of sight. Near the target the contact front is rather planar (n ≈ 1) and

the Mach number is high (M ∼ 48). Under these conditions at 1 Torr, the shock thickness is

able to be discerned. To compare shock strengths in different background gas and pressure

conditions, the shock strength was normalized by multiplying it by the mean free path for
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the specific conditions. The mean free path is defined as:

λ =
1√

1 + m1

m2

P

kbT
π (ra + rb)2

, (22)

wherem1,2 are the masses of the graphite and gas molecules respectively, P is the gas pres-

sure, kb is Boltzmann’s constant, T is the temperature of the gas, and π (ra + rb)2 is the

collision cross section using ra,b, the radii of the graphite and gas molecules [113]. Molecu-

lar radii for the background gases were calculated from viscosity values from Jordan, while

the Van der Waals radius was used for graphite [113, 114]. The resulting collision cross

sections are 0.32 nm2 for air, 0.33 nm2 for N2, 0.24 nm2 for He, 0.39 nm2 for Ar, 0.38 nm2

for O2, and 0.60 nm2 for graphite. Using the collision cross section for N2 with Eq. 22, the

resulting mean free path for 1 Torr N2 is λ = 78 µm, while the mean free path for 10 Torr

N2 is λ = 7.8 µm.

Figure 14 shows normalized shock strengths versus Mach number from a variety of

sources. Three older shock tube studies reported shock thickness up to M = 9 [69, 110,

115]. The normalized shock strength rises quickly to ∼0.35 near M ∼4, and then decreases

to lower strength as the Mach number increases. The analytic theory developed by Kremer

and Müller agrees favorably with the previous observations, particularly for a temperature

dependent viscosity µ ∼ T s when s = 0.64 [68]. The two prior results from pulsed laser

ablation and the present results extend the observations to M = 33–50. The shock thick-

ness remains about 3 mean free paths. The analytic theory for s = 0.82 and s = 0.64 is

extrapolated to M = 60 in Fig. 14. Both theory predictions show a decreasing mean free

path to shock thickness ratio while the pulsed laser ablation observations reveal an increas-

ing trend to a ratio of ∼ 0.3 to 0.35. The extrapolated model does not hold for M > 33,

with significant deviation for higher Mach numbers. The effects of viscosity and thermal

conduction are usually ignored for weak shocks but become important in the strong shock

regime [70]. A common model that incorporates temperature dependent viscosity does not
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extrapolate well for M > 2.5 [70]. Further ablation experiments allowing for the differences

in gas viscosities and thermal properties to include Reynolds numbers may be needed to

further collapse dimensionality of the shock strength magnitude versus Mach relationship

and allow for a clearer comparison between different target materials and conditions.

Figure 14: Normalized shock strength from shock tube experiments: in N2 (▶) [69], in Ar (◆)
[115] and (●) [110], and pulsed laser ablation: Ba in O2 at 0.05–0.4 Torr (▲) [52], C in Ar at 0.3
Torr (⭑) [71], and the present results in N2 at 1 Torr (■). Predictions from the analytic theory [68]
for s = 0.82 ( ) and s = 0.64 ( ).

3.5 Conclusions

Plume propagation dynamics resulting from 25 ns UV ablation of graphite at 4 J/cm2,

slightly above twice the ablation threshold, have been studied using fast gated imaging.

Initial plume expansion speeds are vo = 1.37–1.98 cm/µs with Mach numbers as high

as M = 48. The corresponding kinetic energies are 12–25 eV/atom corresponding to 2–

5 laser photons. The plumes start with a nearly planar shock front, evolving to higher
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dimensionality as the plume evolves. An improved Sedov-Taylor blast wave analysis allows

for an estimate of the average plume dimensionality which ranges from n = 1.8 at 1 Torr of

nitrogen to nearly hemispherical at n = 2.8 for 10 Torr of argon. The initial energy released

is typically ∼ 33% of the initial laser pulse energy, depending on the choice of length scale.

The shock wave energies ranged from a high of 0.106 J for 1 Torr nitrogen to a low of 0.048

J for 10 Torr argon. At longer propagation times, the emissive plume separates from the

shock front and reaches a stopping distance of zs = 0.5 cm for heavier background gases to

zs = 1.1 cm for helium at 10 Torr and further yet, zs = 1.6 cm, for nitrogen at 1 Torr. For

the drag model, predicted initial velocities were consistent within ± 6% of free expansion

initial velocities.

The fraction of laser pulse energy released in the blast wave scales with plume stopping

distance relative to the mean free path. The energy fraction approaches unity for stopping

distances of ∼ 600 mean free paths. This proposed scaling is validated from a broad range

of studies despite differences in wavelength, pulse duration, fluence and target material.

A recent scaling of hole depths relative to the thermal diffusion length (normalized h∗)

as a function of fluence relative to threshold conditions (normalized f∗) has been tested

with the graphite results in this work and validated. The current results lie on the low h
∗,

f
∗ limit for t∗ < 1 and are consistent with an extrapolation from the majority of the prior

data, despite the larger laser footprint in this work.

Pulsed laser ablation offers an opportunity to study shock propagation for high Mach

number flows. Shock thickness remains near several mean free paths at the very high Mach

numbers encountered near the target, M = 48. The shock thickness at these high speeds due

to the temperature dependent viscosity appears to be underpredicted by analytic theory.

Further exploration of shock thickness in pulsed ablation plumes under 1-D expansion

conditions is suggested to validate theoretical expectations.
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IV. Shock front detachment during pulsed laser ablation of graphite

Pulsed laser ablation of pyrolytic graphite with a 5.7 J/cm2 frequency-doubled Nd:YAG

laser in backgrounds of argon, nitrogen, and mixed gas at pressures from 3 to 180 Torr was

performed to study the dynamics of the ablation shock wave and plume emissive con-

tact front. White light schlieren shock wave imaging and optical emission imaging with

a 2.88–40 ns gated ICCD camera was used to determine shock wave and emissive plume

trajectories to find the location of shock detachment from the plume and for blast energy

characterization by Sedov-Taylor theory. The shock detachment points are used to limit

emissive contact front Sedov-Taylor fits to the portion of the plume which exhibits a shock-

like trajectory, resulting in improved laser-plume coupling energy estimates compared to

standard fits. The emissive plume expands with initial Mach numbers up to M ∼ 54 at

t = 62 ns, decreasing to M ∼ 7 as the emission becomes too weak to detect after several mi-

croseconds. The shock wave expands with initial Mach numbers up to M ∼ 55 at t = 62 ns,

decreasing to M ∼ 1 at t = 20 µs. The shock waves exhibit spherical shock fronts, but the

dimensionality, n, decreases as pressure and mass of the background gas increase, while

the plumes exhibit an opposite trend. The Sedov-Taylor energy released in the sudden ab-

lation is typically 55–75% of the laser pulse energy. The detachment-limited blast energy

calculations for the emissive plume agree to within 3–5% of the shock wave energy values.

Shock detachment points are nearer the target at higher pressure and scale with the mean

free path.

4.1 Introduction

Pulsed laser ablation (PLA) of graphite materials has a wide variety of applications in-

cluding thin film and nano-material production including silver and fullerene nanoparticles

[43, 116, 117] and superconducting films [19, 118], characterization of hypersonic thermal
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protection materials [8, 119], and characterization of laser weapon effects [9, 10]. Opti-

cal characterization of emissive plume dynamics includes trajectories, kinetic energies of

atomic and molecular species, and laser-plume coupling and are essential to most material

processing quality control strategies [1, 2] as they reflect the conditions of ablation and

inform the state of the final product [2, 3, 43].

Prior laser ablation studies of graphite have primarily focused on the formation and dy-

namics of neutral and ionized atomic and molecular constituents in the emissive plume [12,

17, 21, 24–27, 29, 59]. Although a couple of studies have included some exploration of the

actual shock wave [64, 75], most focus on the emissive plume contact front, and no studies

have focused on the effects of shock wave propagation in conjunction with the emissive

plume. In 1999, Kokai et. al. explored graphite ablation in ambient argon with shad-

owgraphy, fast imaging, and emission spectroscopy [75]. Their shadowgraphy identified

a darkened region in the slower, interior of the plume attributed to ablated carbon species.

Neither of these studies characterized detachment of the shock from the emissive plume.

In 2013, Singh, Gupta, and Thareja investigated plume and some shock wave dynamics

for graphite ablation in ambient nitrogen using fast imaging, emission spectroscopy, and

a Nomarski interferometer to characterize the location of C2 and CN species within the

plume [64]. They observed a bifurcation in the emissive plume associated with different

dynamics for carbon clusters and molecular species.

Pulsed laser ablation offers an opportunity to explore shock wave propagation under

extreme conditions. Shock wave propagation is often indirectly studied by characteriz-

ing the emissive plume contact front propagation trajectories with blast wave expansion

(Sedov-Taylor) modeling using the assumption that the emissive contact front is approxi-

mately located with the shock wave, resulting in the enhanced emission of the plume [17,

24, 61, 64]. In emissive plume contact front characterization, the Sedov-Taylor low limit is

often used to partition fitting at early times, but the Sedov-Taylor high limit is often many

52



lengths further than the plume propagation stopping distance since the emissive contact

front experiences drag in the background gas and slows to a stop [4, 5, 72]. The point

where the emissive plume begins to slow in comparison to the shock wave is the shock

detachment point [73, 74]. After the shock detachment occurs, the emissive contact front

trajectory no longer follows a blast-like trajectory, and the Sedov-Taylor model is no longer

sufficient to describe the propagation after this point. As a result, Sedov-Taylor fits to the

emissive contact front beyond the shock detachment point will result in poorer estimates

of the Sedov-Taylor blast energy and resulting laser-plume coupling efficiency. Very few

studies have been conducted that compare the actual shock wave dynamics to the emissive

plume contact front dynamics for PLA of graphite. No prior graphite studies were found

that examine the dynamics of both the emissive plume contact front and the shock front in

detail. In addition, no studies were found that examine shock detachment and its effects on

the Sedov-Taylor modeling of emissive plumes.

This work focuses on the PLA of graphite, examining the location where the shock

detaches from the plume emissive contact front by using emissive fast-gated imagery and

schlieren shock wave imagery, and exploring the subsequent effects of limiting the upper

portion of the Sedov-Taylor fit by the shock detachment point to improve the blast energy

estimation. Free expansion, drag, and Sedov-Taylor models are used to quantify the propa-

gation dynamics for the emissive plume contact front, and the Sedov-Taylor model is used

to quantify the shock wave for comparison.

This research is part of a larger study focusing on the characterization of spatial and

temporal dynamics of continuous wave and pulsed laser effects on graphite and carbon

fiber targets [41, 84, 97].
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4.2 Apparatus and Methodology

A Quantel EverGreen2 EVG00145 frequency-doubled Nd: YAG laser (λ = 532 nm)

used in single pulse mode with a 1 Hz repetition rate was used to deliver an average energy

of 90 mJ per pulse onto a graphite target in a vacuum chamber backfilled with various gases

and pressures as shown in Fig. 15. The laser energy was measured using an Ophir Nova

II PE50BF-C detector positioned inside the target chamber. The spot size of the laser on

the target was approximately circular with an area of 1.578 mm2. The laser pulse has a full

width half max of 12.5 ns and a rise time of 6.6 ns, yielding an intensity of 0.456 GW/cm2

and fluence of 5.70 J/cm2. The ablation plume propagates normal to the target in the z-

direction with a Princeton Instruments PIMAX 4 gated intensified charged-coupled device

(ICCD) camera recording the shock wave and emissive plume in the xz-plane as shown in

Fig. 16.

Figure 15: Schematic of the experimental apparatus which includes a vacuum chamber containing
a sample target, PIMAX 4 ICCD camera, schlieren light source, and schlieren optics. The target is
ablated using a Nd:YAG pulsed laser source (λ = 532 nm, 12.5 ns pulse width, average energy 90
mJ per pulse at target).
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Figure 16: ICCD camera field of view. The ICCD camera views the xz-plane and images the shock
wave and emissive plume propagation from the target out to a distance 2.81 cm from the target along
the z-axis. The camera field of view is denoted by the dashed lines while the schlieren test region is
denoted by the circular shaded area.

The laser was focused onto the target inside a 15.24 cm (6”) modular vacuum cube

through a vertical 3.8 cm diameter viewport. A 25.4 mm f = 150 mm AR-coated plano-

convex fused silica lens was used to focus the beam onto the target at an angle of incidence

normal to the target. The targets were 25.4 mm diameter by 6.3 mm thickness thickness

pyrolytic graphite sputtering target discs (99.999% C) sourced from the Graphite Store

with several thermodynamic properties previously determined by others as shown in Table

4. The chamber was evacuated to a pressure of 10−3 Torr with a turbomolecular pump and

then backfilled to 3–180 Torr of 99.999% nitrogen, argon, or a mixed gas of 70% CO2 and

30% N2, at T = 298 K. An MKS model 626 capacitance manometer with a 1000 Torr range

was used to monitor pressure.

A white light fast-response LED from the University of Tennessee Space Institute was

used as the schlieren light source. The LED was pulsed on for 30 µs per laser shot to enable

high intensity illumination and it was synchronized to overlap the full camera gate delay

55



Table 4: Properties of pyrolytic graphite samples.

Property Value Ref.

Density, ρ (g/cm3) 2.2 [98]
Conductivity, K (W/m⋅K) (across layers) 3.5 [98]
Conductivity, K (W/m⋅K) (within layers) 400 [98]
Specific Heat, Cp (J/kg⋅K) (T = 3500 K) 2135 [99]
Sublimation Temperature, T (K) 3923 [100]
Heat of Sublimation, hs (kJ/g) 61.3 [100]
Diffusivity, κ (cm2/s) 0.0075 calculated
Diffusion length, lD (nm) 194 calculated
Ablation Threshold Fluence, Fth (J/cm2) 1.29 calculated

period from 0 to 20 µs. The LED exhibited several microseconds of rise before stabilizing

to a steady intensity and the LED timing delay was set so that the steady intensity region

overlapped the camera gate delay region. Since the LED light source was polychromatic,

50.8 mm spherical cemented achromatic doublet lenses were used for all schlieren optics.

The LED light was collected and focused with an f = 75 mm condenser lens onto an iris

pinhole to create a pseudo-point source. The light was then collimated using an f = 300 mm

lens and the collimated light was passed horizontally along the y-axis through the vacuum

chamber and target region through large 12.7 cm flat windows. The collimated light and

plume emission was then focused with an f = 300 mm lens onto a horizontally mounted

razor blade as the schlieren knife-edge. A 50.8 mm 532 nm notch filter was used at the

camera lens to protect the camera from oversaturation from pulse laser radiation.

A Princeton Instruments PI-MAX4 1024i with a 1024 x 1024 Gen III fast gate ICCD

camera with a Nikon AF Nikkor 85 mm f/1.8 lens was used to capture schlieren shock wave

imagery and emissive imagery of the ablation event. The quantum efficiency of the 16-bit

camera is higher than 15% from 430 to 880 nm, with a peak efficiency of approximately

31% near 650 nm. Saturation occurs at 65,536 counts with a dark signal of 600 counts. The

field of view (FOV) of the lens was 4.55 by 4.55 cm with a circular schlieren-illuminated

FOV of 3.17 cm by 2.85 cm and a resolution of 0.044 mm, or 44 µm, per pixel.
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Each schlieren test series consisted of two sets of 50 laser shots with corresponding

images, one image per laser shot, and imagery were taken with fixed gate widths of 40 ns

to improve signal and linearly varying time delays from 800 ns to 20 µs. One image set was

taken with the schlieren LED and pulsed laser on to capture the ablation shock wave, while

the other set used only the schlieren LED to provide baseline or tare imagery. Each series

was then repeated up to 10 times and the resulting schlieren images were averaged together

by timestep to build a final time series of shock wave images. Tare imagery was averaged

in a similar manner. The tare imagery was then subtracted from the schlieren shock wave

imagery. For early plume times, t = 30–800 ns, when the plume emission overwhelmed the

white light schlieren signal, a Newport Velocity TLB-6712 tunable diode laser at 766 nm

was used along with a 766 nm 10 nm FWHM bandpass filter to image the shock wave.

Emissive plume imagery was collected with linearly varied gate widths and delays with

3 ns gate widths at the start of the collection and 10 ns widths at the end of the collection

to improve signal to noise when the plume emission significantly dimmed as it propagated

away from the target surface. Emissive plume images began at the onset of the laser pulse

(defined as t = 0) and out to a delay of 1200 ns after the pulse. Each emissive plume

series was repeated up to 4 times and the images at each time step were averaged together

to account for shot-to-shot variations. Timing imagery was collected to verify laser pulse

timing incidence on the target. All imagery was corrected for dark current background and

flat fielded to correct for varying pixel intensity response. For initial velocities of 4 cm/µs,

a 3 ns integration time yields a maximum of 116 µm motion during image integration

corresponding to 2.6 pixels. At late plume propagation times where the plume speed is

reduced, a 10 ns gate width corresponds with a maximum motion of ∼ 1 pixel. Images

exhibited < 1% pulse-to-pulse laser flicker and < 2 ns laser timing jitter. Shot-to-shot

variation in laser pulse energy was < 1%, and the laser energy on target was corrected as

necessary using a polarizer and polarizing beam splitter to maintain the baseline.
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The ICCD camera, schlieren light source, and pulsed laser were triggered using a

Berkeley Nucleonics Corporation Model 577 pulse generator. A LeCroy WavePro 7300

3-GHz fast oscilloscope was used to monitor the gate signal from the PI-MAX 4 camera

and signals from two ThorLabs DET10A silicon photodiodes observing the laser pulse and

the white light LED pulse to verify experiment timing. Laser pulse rise time, pulse width,

and intensity were also monitored with the oscilloscope using the photodiode.

4.3 Results

4.3.1 Shock wave Propagation Imagery

A typical schlieren shock wave image at a delay of 7.9 µs for a nitrogen background

pressure of 10 Torr is shown in Fig. 17a. The image was taken with a gate width of 40

ns and has been processed with background and flat corrections in Fig. 17b to enhance

the visibility of the shock wave. The shock front location is identified in Fig. 17c where a

5-pixel row average of the intensity is plotted along the center line of the plume and shock.

The shock wave position is defined as the lowest point of the intensity profile, which occurs

at z = 1.47 cm in Fig. 17c and corresponds to a speed of 0.079 cm/µs. The shock exhibits

a speed of 1.96 cm/µs in earlier frames. The speed of sound in the background nitrogen is

0.0353 cm/µs, yielding an initial Mach number of M ∼ 55 at t = 60 ns, slowing to M ∼ 1 in

later frames. A typical progression of processed schlieren shock front images for graphite

ablation in 10 Torr nitrogen is shown in Fig. 18. The images span gate delays from 1.6 µs

to 17.3 µs with the dark shock front nearly obscured by the emissive plume in the earliest

image and then propagating outwards from the target in later images. Nitrogen, argon, and

a mixture of 70% CO2 and 30% N2 (CO2/N2) were chosen as the background gases due

to similarity in mass. This choice allows for the exploration of the effects of pressure and

mean free path as opposed to variations in momentum transfer.
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Figure 17: a) Unprocessed graphite ablation schlieren shock wave image for 7.9 µs gate delay in
nitrogen at 10 Torr with shock wave and plume visible in the LED illuminated region, b) Image
processed with background and flat corrections, c) Centerline intensity profile with a 5-pixel (0.22
mm) row average with shock wave position approximately 1.5 cm from the target surface at t = 7.9
µs.

Figure 18: Schlieren shock wave image series for graphite in 10 Torr nitrogen from 1.6 µs to 17.3
µs after the laser pulse. Both the emissive plume and the shock wave (dark band) are visible in the
early images with the emissive plume fading at later times.

Shock front trajectories and Mach numbers were characterized by plotting the shock
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wave location for each camera gate delay as shown in Fig. 19. Instrumental limitations on

identifying the shock front location are minimal. Experimentation with gate widths from

2.88 ns to 100 ns showed no discernible change in position or apparent thickness of the

dark shock front shadow, and a 20 ns gate width was chosen to provide sufficient white

light LED signal to noise to clearly define the shock front in the accumulated ICCD image.

Positional uncertainty introduced by shock front motion during the gate width integration

ranges from ∼ 8.7 pixels for the earliest times and shrink to less than 1 pixel at later times.

Figure 19: Shock wave trajectory and corresponding Mach numbers for graphite in a nitrogen
background gas at 10 Torr. Gray vertical error bars for each series represent the z distance error and
Mach error resulting from the ICCD 20 ns gate width.

Figure 20a shows shock trajectories for graphite in nitrogen gas at four pressures from

3 Torr to 180 Torr. As expected, the higher pressures exhibited shorter shock wave dis-

tances and lower shock speeds while lower pressures allowed for increased shock speed
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and propagation distance away from the target surface. The long-time speeds of the shock

trajectories for 10, 30, and 180 Torr were similar while the 3 Torr case exhibited a slightly

greater speed. At the earliest times, the 3 Torr shock wave was still hidden by the emissive

plume due to the plume extending a further distance into the lower density background

gas. Shock trajectories for all the gas and pressure cases in this study can be seen in

Fig. 20b. Argon and nitrogen showed similar shock trajectories at 10 and 30 Torr, while

nitrogen and the CO2/N2 mix exhibited similar trajectories at 180 Torr. The mixed gas

consistently exhibited the lowest shock speeds for all pressures, with increasing separation

of the trajectories from the nitrogen and argon cases as pressure was decreased. This is

likely due to the CO2/N2 gas mixture having the shortest mean free path among all the

gases tested. Similarly, the trajectories for argon, which had the longest mean free path,

consistently demonstrated faster speeds and distance traveled at all pressures. There was

also significant separation of shock speeds between all three gases at 3 Torr with nitrogen

and CO2/N2 exhibiting similar speeds while argon propagated through the background gas

more quickly.

Figure 20: a) Shock wave trajectories for graphite in nitrogen gas at 3–180 Torr, b) Shock wave
trajectories for graphite in nitrogen, argon, and CO2/N2 for background pressures of 3–180 Torr.

61



4.3.2 Emissive Contact Front Imagery and Propagation

A typical emissive plume image at a delay of 175.2 ns for a nitrogen background pres-

sure of 10 Torr is shown as an intensity contour plot in Fig. 21a. The leading edge of the

plume is located at 0.312 cm, corresponding to an average speed of 0.71 cm/µs. Most of

the emission occurs near the shock front, with minimal emission from the plume interior.

Figure 21: a) Graphite ablation plume ICCD image with 175.2 ns gate delay in nitrogen at 10 Torr,
b) Centerline intensity profile with a 5-pixel (0.22 mm) row average corresponding to the image in
Fig. 21a with peak intensity and defined contact front position at 50% peak intensity for t = 175.2
ns in nitrogen at 10 Torr.

The plume emissive contact front location is identified in Fig. 21b where a 5-pixel row

average of the emission intensity is plotted along the center line of the plume. The leading

edge of emission is identified where the intensity rises to 50% of the peak at z = 0.312 cm.

Plume emissive contact front trajectories for 3–180 Torr were characterized by locating the

contact front location for each camera gate delay as shown in Fig. 22a. The plume data

was taken with 50 datapoints for the first 150 ns of propagation to capture early plume

dynamics with higher resolution, and then additional datapoints were taken for later plume

expansion times to capture overall plume propagation. The gate width was fixed at 2.88 ns.
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Instrumental limitations on identifying the shock location are minimal, with positional er-

ror corresponding to the gate width transit distance typically less than curvature in the

trajectory. Positional errors introduced by plume motion during the gate width integration

time amounts to ∼ 1.98 pixels for the earliest times and 0.3 pixels at later times, due to the

slowing of the plume in the background gas.

Figure 22: a) Emissive plume contact front trajectory for graphite in a nitrogen background gas at
3–180 Torr. Drag model fits are represented by dashed lines, b) Emissive plume contact front Mach
numbers for graphite in a nitrogen background gas at 3–180 Torr.

Mach numbers for the emissive plume contact front in 3–180 Torr nitrogen are dis-

played in Fig. 22b. The plume in 10 Torr nitrogen has an initial speed of 3.06 cm/µs. Using

a speed of sound of 0.0353 cm/µs in nitrogen yields an initial Mach number of M ∼ 87

slowing to M ∼ 6.8 for 10 Torr. At t = 60 ns, the plume is traveling at M ∼ 54. As expected,

the lowest pressure case of 3 Torr exhibited the highest starting Mach number, M ∼ 97,

falling to M ∼ 16 at later times. The 30 Torr case exhibited a starting Mach number of

M ∼ 76, falling to M ∼ 5 at later times. The 180 Torr case showed the smallest starting

Mach number, M ∼ 58, falling to M ∼ 3 at later times. The velocities and Mach numbers

seen in this study were significantly higher than previous studies in other materials and in
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the study presented in Chapter 3. In Chapter 3, Mach numbers up to M ∼ 55 were observed

for graphite plumes in nitrogen at 1 Torr using a 248 nm excimer laser, and Bauer et. al.

[72] observed M ∼ 34 for titanium plumes in argon at 500 mTorr using a 248 nm excimer

laser. However, velocities and Mach numbers for several other graphite studies were con-

sistent with the current results: Roberts et. al. [91] observed graphite plumes with M ∼ 70

in argon at 1 Torr using a 248 nm excimer laser at 17 J/cm2, and Singh et. al. [64] observed

M ∼ 40 for graphite plumes in nitrogen at 760 Torr using a 1064 nm doubled Nd: YAG

laser at 160 J/cm2. Increased inverse-Bremsstrahlung coupling between the graphite plume

and the ablation laser could explain the higher Mach numbers observed in this work, which

is supported by the findings of Hussein et. al. [50] who found that inverse-Bremsstrahlung

coupling efficiency increased with increasing wavelength.

At very early times, the ablated plume material has not yet interacted with the back-

ground gas, and a free expansion model was used to characterize the initial velocity of the

plume trajectory [52]. The free expansion was characterized by Eq. 7 in Sec. 3.2. Data

sectioning for the free expansion fits was limited to the first ∼ 20 data points correspond-

ing to the first 60 ns of plume propagation where there was no trajectory curvature from

collisions with the gas background. The very small intercept, zo = 0.0024 ± 0.0019 cm

corresponds to a time interval ∼ 1 ns. The initial velocity for the plume propagating in

nitrogen at 10 Torr is vo = 3.06 ± 0.1 cm/µs, corresponding to a kinetic energy of 58.3 ±

4 eV per carbon atom. The greatest free expansion kinetic energy was 73.9 ± 3.8 eV in 3

Torr nitrogen, while the lowest kinetic energy was 22.5 ± 3.1 eV in 180 Torr CO2/N2. Ki-

netic energies for all test cases are reported in Table 5. The kinetic energy with the smallest

uncertainty was 50.6 ± 2.1 eV, found in the 10 Torr CO2/N2 case. Plume kinetic energies

were 10–30 times larger than the 2.34 eV laser photon energy, suggesting significant plume

interaction with the 532 nm laser pulse.

Contrary to the assumption that the free expansion would not be influenced by the
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Table 5: Free expansion velocity and kinetic energy for the emissive plume.

Gas Pressure v0 Kinetic
(Torr) (cm/µs) Energy

(eV)

N2 180 2.08 ± 0.20 26.9 ± 5.2
N2 30 2.80 ± 0.15 48.8 ± 5.2
N2 10 3.06 ± 0.10 58.3 ± 3.8
N2 3 3.45 ± 0.10 74.1 ± 4.3
Ar 180 1.90 ± 0.14 22.5 ± 3.3
Ar 30 2.56 ± 0.12 40.8 ± 3.8
Ar 10 2.85 ± 0.06 50.6 ± 2.1
Ar 3 3.41 ± 0.08 72.4 ± 3.4
CO2/N2 180 2.04 ± 0.20 25.9 ± 5.1
CO2/N2 30 2.62 ± 0.16 42.7 ± 5.2
CO2/N2 10 2.90 ± 0.09 52.3 ± 3.2
CO2/N2 3 3.36 ± 0.12 70.3 ± 5.1

background gas, a higher initial speed is observed in the lighter nitrogen gas. The highest

speed was observed for the lower pressure 3 Torr case. This is consistent with the study in

Chapter 3 with helium at 10 Torr at a lower fluence of 4 J/cm2 with a KrF laser at 248 nm,

and with another study of PLA of graphite in 300 Torr xenon and helium gas backgrounds at

a higher fluence of 20 J/cm2 [61]. These results are interesting in that one would expect that

the increased plume confinement at higher pressures would lead to an increase in the carbon

kinetic energy through the inverse-Bremsstrahlung process as more of the plume is able to

interact with the laser. However, increased plume shielding and laser-plume coupling will

also lead to a decrease in mass ablated as fewer laser photons are able to reach the target

surface. A previous study found that laser coupling to the plume and the target decreased

at higher pressures [54]. This would lead to lower kinetic energies and less ablated mass,

and is likely due to the plume becoming opaque to the laser as the plasma scatters the laser

energy away from the plume surface and the target. As a result, free expansion velocity

fitting and subsequent kinetic energy calculation are somewhat oversimplified as plume

diagnostics. Another issue is that the free expansion fitting is conducted at very early times
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in the propagation, and the trajectories are typically tracked using the forward emissive

contact front only. There is evidence that plume splitting can occur with both faster and

slower plume components propagating away from the target after the ablation [120]. This

could bias standard free expansion measurements depending on which plume component

is being used to create the trajectory for analysis. Plume splitting was not evident in the

imagery for this study.

The 3 Torr cases also exhibit similar free expansion velocities for all three gases, and

this could reflect similar laser-plume coupling at that pressure due to the similarity in mass

of the background gases. Hussein et. al. found that inverse-Bremsstrahlung coupling

increased with longer wavelengths [50]. With increased inverse-Bremsstrahlung coupling

at 532 nm compared to 248 nm ablation in Chapter 3, a greater fraction of the laser pulse

energy is being used to accelerate each carbon atom, resulting in higher plume velocities.

In addition, the fluence in this work is 4.5 times the ablation threshold, while the fluence

in Chapter 3 was ∼ 2 times ablation threshold, and as a result there is more energy per unit

area of the laser available for coupling with the plume, resulting in an increase in plume

velocity.

The shock front and emissive plume were characterized using the Sedov-Taylor (ST)

scaling first developed for bomb detonations [4, 5, 61, 104]. As in Chapter 3, a more

generalized form [121] of the shock trajectory is utilized than is typically employed for

laser ablation. The general form allows for variation in shock/plume dimensionality and a

finite laser pulse duration, as follows:

z (t) = atb, (23)

where

a = ξn (
EST/(τ sol

3−n
o )

ρ )
1/(n+2)

, (24)
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b = (s + 2)/(n + 2). (25)

In Eq. 24 and Eq. 25, EST is the ST energy, τ0 is the laser pulse duration, lo is the length

scale, n is the dimensionality factor, s is the energy release (s = 0 for instantaneous release,

s = 1 for a constant release with rate EST/τ0), ρ is the background gas density, and ξn ≈ 1

depending on the ratio of specific heats of the background gas and the dimensionality factor

n [4, 5, 121]. Energy deposition is assumed to be instantaneous for laser ablation, which is

appropriate when the plume evolution time is long relative to the laser pulse duration. The

dimensionality factor is often constrained to n = 3 in laser ablation studies, corresponding

to a spherical shock front [75, 85, 105]. The length scale, lo, is not relevant for the spheri-

cal case of dimensionality, but becomes important for dimensionality less than n = 3. It is

important to note that plume dimensionality is a function of time and can vary depending

on how much of the plume trajectory is used for the fit: the plume trajectory fit yields an

average dimensionality value over the included data. Plume dimensionality can depend on

the laser spot: with a rectangular laser spot, the plume may appear nearly one dimensional,

n ≈ 1, with a planar shock front at early times, and later evolve to more spherical dimen-

sionality at later times [56]. Recent studies indicate a dimensionality that decreases with

increasing background density, ρ, and this was supported by the study in Chapter 3 as well

[72]. Equation 23 is employed with the average dimensionality n and the a-coefficient as

fit parameters, constrained to instantaneous energy release, s = 0, and ST low limit given

in Eq. 26 is used as the length scale for determining ST energies from the plume and shock

wave trajectory data.

The ST model is applicable in the range:

zlow = (3ma

2πρ
)

1
3

≪ z≪ (2Ea
Pb

)
1
3

= zhigh, (26)

where ma is the mass ablated from the target, ρ is the background gas density, Ea is the
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ablation energy from the laser, and Pb is the background gas pressure [104]. The ST model

is valid when the mass displaced by the shock front is larger than the mass inside the plume

and when pressure behind the shock front is still very large compared to background gas

pressure. The ST low limit for the 10 Torr nitrogen case was zlow = 0.176 ± 0.003 cm

(∼ 40 pixels) and the high limit is beyond the ICCD camera field of view. When fitting

the observed shock and emissive plume contact front trajectories to Eq. 23, the data is

sectioned to z > zlow. The ST model was used to estimate the energy, EST , that goes into

the shock wave in the initial ablation event, and the results are summarized for the shock

wave and the emissive contact front in Table 7 and discussed in Section 4.4.2.

The emissive plume was also characterized by the drag model. The emissive plume

expansion is dominated by drag at later times as the expanding plume collides with the

background gas and slows, resulting in the decrease in collisional excitation of emitting

states. The slowing of the emissive plume results in the detachment of the shock wave from

the emissive plume contact front. The empirical drag model exponentially approaches the

stopping distance and is given as:

z (t) = zs (1 − e−β t) + zo (27)

where zs is the plume stopping distance and β is the drag coefficient [106, 107]. As with

the free expansion fit, an intercept term, zo= 0.0021 ± 0.003 cm, was found for the drag fit

to account for experimental timing uncertainty. The drag fits to the plume trajectories for

the various pressures in nitrogen are provided in Fig. 22a above. The emissive plume drag

fits are utilized in the shock detachment analysis in Section 4.4.1.
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4.4 Discussion

4.4.1 Shock Detachment from Emissive Plume

Shock detachment is the point where the emissive contact front and shock wave trajec-

tories begin to diverge. The emissive plume slows while encountering drag from the back-

ground gas and eventually reaches a stopping distance, whereas the shock wave continues

its overall trajectory approaching M = 1 at long distances. Up until the shock detachment

point, the emissive contact front and plume trajectories are expected to be similar and can

be modeled using the Sedov-Taylor blast model. After shock detachment from the emissive

plume, the emissive plume becomes more drag-like while the shock wave continues along

a Sedov-Taylor trajectory. As a result, the Sedov-Taylor model is no longer valid for the

emissive contact front after the shock detachment, and including post-detachment plume

data in ST fits will bias the plume ST fit results and laser-plume energy calculations.

Determining the appropriate high cutoff point for emissive plume modeling is important

to ensure accurate fit results when shock wave data is unavailable. In order to determine

the shock detachment point, the schlieren shock wave trajectory Sedov-Taylor model fits

are utilized in conjunction with the emissive plume contact front drag model fits. The point

of shock detachment is defined here as the intercept point, zD, between the two expansion

model fits for the shock wave and plume trajectories. In several cases there was a small

difference between the model crossing point and the point where the plume data diverged

from the shock wave data, however, the difference was within the error bounds for shock

detachment distance. Figure 23a shows the Sedov-Taylor fit to a graphite shock wave in

nitrogen at 10 Torr with data sectioned to beyond the low limit at zlow = 0.176 ± 0.003 cm.

Unlike an emissive plume ST fit that typically overestimates the trajectory at early time and

underestimates at late time with significant residuals, the ST fit to the schlieren shock wave

trajectory is extremely good out to very long times on the order of 20 µs. The shock wave
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ST trajectory is compared to the emissive plume drag trajectory in Fig. 23b. The resulting

shock detachment point occurs at zD = 0.39 ± 0.05 cm. The shock detachment points for

all test cases are given in Table 6.

Figure 23: a) Sedov-Taylor fit to shock wave trajectory of graphite in a nitrogen background gas at
10 Torr with the fit extending to the Sedov-Taylor low limit zlow = 0.176 ± 0.003 cm, b) Expanded
view of shock detachment between emissive contact front and shock wave for graphite in a nitrogen
background gas at 10 Torr along with a zoomed inset of the detachment point. The shock detachment
point, zD = 0.39 ± 0.05 cm, occurs near the crossing point of the shock wave ST fit and emissive
contact front drag fit. 95% confidence intervals for the ST and drag fits are provided.

As expected, shock detachment occurs closer to the target surface as pressure is in-

creased. The ablation plume in CO2/N2 exhibited the smallest shock detachment distance

of 0.12 ± 0.03 cm from the target surface, while a plume in 3 Torr argon had the largest

shock detachment of 0.65 ± 0.03 cm.
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Table 6: Shock Detachment locations for graphite ablation in N2, Ar, and 70% CO2 30% N2 gases
from 3–180 Torr.

Gas Pressure Shock Detachment
(Torr) Location, zD (cm)

N2 180 0.13 ± 0.03
N2 30 0.27 ± 0.05
N2 10 0.39 ± 0.05
N2 3 0.52 ± 0.06
Ar 180 0.14 ± 0.02
Ar 30 0.31 ± 0.05
Ar 10 0.41 ± 0.06
Ar 3 0.65 ± 0.10
CO2/N2 180 0.12 ± 0.03
CO2/N2 30 0.22 ± 0.05
CO2/N2 10 0.36 ± 0.05
CO2/N2 3 0.42 ± 0.13

Figure 24: Shock detachment compared to mean free path in nitrogen, argon, and CO2/N2 for
background pressures of 3–180 Torr along with power law fit curves. Fit exponents are 0.357 for
Ar, 0.308 for N2, and 0.283 for 70% CO2 30% N2.

Figure 24 displays the shock detachment distance as compared to mean free path (MFP),
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λ, for nitrogen, argon, and CO2/N2 at pressures ranging from 3–180 Torr. MFP collision

cross sections used in calculations for graphite in the background gases are 0.327 nm2 in

N2, 0.317 nm2 in Ar, and 0.397 nm2 for CO2. The variation of MFP between the three

background gases is clear in Fig. 24, with longer MFP typically resulting in an increase in

shock detachment position. Argon exhibits the furthest shock detachment position corre-

sponding to the longest MFP. These longer shock detachment points correspond with the

lowest pressure 3 Torr cases. In Fig. 24, the longest MFP cases exhibit a wider shock

detachment spread than the shortest MFP cases at 180 Torr. The shock detachment point

versus MFP for a given gas appears to follow a fractional power law in all cases, with

exponent fit coefficients as follows: 0.357 for Ar, 0.308 for N2, and 0.283 for CO2/N2.

4.4.2 Sedov-Taylor Blast Energy Comparison: Shock wave and Emissive Contact

Front

Shock detachment is critical in the estimation Sedov-Taylor blast energy, which gives an

estimate of laser-shock efficiency, or the energy coupled from the laser into the plume. An

improved understanding of where shock detachment occurs between the emissive contact

front and the shock wave can allow for better partitioning of emissive plume trajectories

for Sedov-Taylor model fitting and subsequent plume energy estimations. In this section,

the shock wave and emissive contact front trajectories are analyzed with Sedov-Taylor

modeling and then the shock detachment point data is used to inform improved plume

contact front data sectioning to exclude the portion of the plume trajectory after the shock

has detached.

Table 7 (upper) gives the Sedov-Taylor fit results and blast wave energies for the graphite

ablation schlieren-imaged shock waves in the various gas and pressure test cases. Values

for shock wave dimensionality and a-coefficient as fit parameters to Eq. 23 are provided,

and Sedov-Taylor blast energy values for both varying and constrained dimensionality n
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are provided. For cases with n ≠ 3, an estimate of the length scale, l0 is required. As in

Chapter 3, a length scale is chosen as lo = zlow = (3ma/2πρ)
1
3 , which has been found pre-

viously to be suitable [121]. Using this length scale for the ablation in the nitrogen yields a

blast energy EST = 72 ± 2 mJ or 80% of the laser pulse energy of 90 mJ coupled into the

shock wave.

Shock wave dimensionality in the present data generally trends towards n = 3 at the

lower pressure cases and becomes less spherical as pressure increases. The circular laser

spot is expected to result in an initially spherical shock wave that becomes somewhat less

spherical as it expands into the surrounding background gas, especially at higher pressures.

The 180 Torr cases exhibited dimensionality values between 2.35 ± 0.06 for argon, and

2.44 ± 0.08 for nitrogen. At 3 Torr, the Sedov-Taylor model fitting overestimates dimen-

sionality for CO2/N2, giving n = 3.24 ± 0.05. Across the gases and pressures tested in

this study, the blast energy and the laser-shock wave coupling efficiency drop as pressure

increases. At 180 Torr, CO2/N2 and nitrogen exhibit nearly the same blast energy at EST ∼

18 mJ, while the 10 Torr cases in all three gases yield EST ∼ 72–83 mJ. When the dimen-

sionality constant is constrained to n = 3, the Sedov-Taylor model appears to significantly

overestimate blast energy, especially at higher pressures. For all 3 Torr cases with both

fixed and dynamic dimensionality n, blast energy was significantly overestimated by the

Sedov-Taylor model with calculated energies ranging from 2–5 times the total energy of

the laser pulse. This is most likely due to increased positional error of the identified shock

wave locations at 3 Torr, which tended to be extremely faint in the schlieren imagery and

more difficult for the shock tracking algorithm to track due to the low signal to noise ratio

of the schlieren at those pressures.

Table 7 (lower) gives the Sedov-Taylor fit results and blast energies for the plume emis-

sive contact front, also using the low limit to partition the fits. Graphite ablation in 10 Torr

nitrogen yields a blast energy EST = 54 ± 6 mJ or 60% of the laser pulse energy coupled
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Table 7: Sedov-Taylor fit results for schlieren shock wave and emissive plume in N2, Ar, and 70%
CO2 30% N2 gases.

Case Gas P Sedov-Taylor Sedov-Taylor n = 3

(Torr) z(t) = at
2

n+2 z(t) = at0.4

n a ST Energy, a ST Energy,
(cm/µs2/(n+2)) EST (cm/µs0.4) EST

(mJ) (mJ)

Shock N2 180 2.44 ± 0.08 0.304 ± 0.006 18 ± 1 0.336 ± 0.004 58 ± 4
N2 30 2.92 ± 0.05 0.518 ± 0.005 75 ± 3 0.525 ± 0.002 90 ± 2
N2 10 2.91 ± 0.03 0.641 ± 0.004 72 ± 2 0.651 ± 0.002 88 ± 1
N2 3 3.02 ± 0.09 0.957 ± 0.014 184 ± 14 0.954 ± 0.004 178 ± 4
Ar 180 2.35 ± 0.06 0.330 ± 0.005 31 ± 2 0.374 ± 0.005 141 ± 9
Ar 30 2.64 ± 0.04 0.495 ± 0.004 59 ± 2 0.532 ± 0.003 136 ± 4
Ar 10 2.86 ± 0.03 0.630 ± 0.004 88 ± 3 0.659 ± 0.002 132 ± 2
Ar 3 2.83 ± 0.10 1.114 ± 0.015 419 ± 28 1.137 ± 0.006 609 ± 16
CO2/N2 180 2.35 ± 0.06 0.290 ± 0.004 17 ± 1 0.329 ± 0.004 73 ± 5
CO2/N2 30 2.87 ± 0.06 0.457 ± 0.005 53 ± 3 0.468 ± 0.002 71 ± 2
CO2/N2 10 2.98 ± 0.03 0.586 ± 0.003 71 ± 2 0.588 ± 0.001 74 ± 1
CO2/N2 3 3.24 ± 0.05 0.844 ± 0.006 183 ± 7 0.813 ± 0.003 112 ± 2

Plume N2 180 3.46 ± 0.08 0.219 ± 0.003 7 ± 0.1 0.220 ± 0.001 7 ± 0.1
N2 30 3.12 ± 0.21 0.528 ± 0.022 109 ± 23 0.525 ± 0.002 90 ± 2
N2 10 2.92 ± 0.16 0.602 ± 0.013 54 ± 6 0.597 ± 0.006 57 ± 3
N2 3 2.37 ± 0.10 0.967 ± 0.018 81 ± 7 0.835 ± 0.012 91 ± 6
Ar 180 3.07 ± 0.04 0.297 ± 0.002 48 ± 2 0.300 ± 0.003 47 ± 0.3
Ar 30 2.82 ± 0.12 0.463 ± 0.008 54 ± 4 0.453 ± 0.004 61 ± 2
Ar 10 2.59 ± 0.09 0.633 ± 0.010 63 ± 4 0.598 ± 0.006 73 ± 4
Ar 3 2.10 ± 0.08 1.076 ± 0.016 114 ± 7 0.955 ± 0.023 254 ± 31
CO2/N2 180 3.06 ± 0.09 0.266 ± 0.008 27 ± 4 0.293 ± 0.006 41 ± 4
CO2/N2 30 3.03 ± 0.16 0.457 ± 0.014 65 ± 10 0.459 ± 0.002 64 ± 1
CO2/N2 10 2.98 ± 0.21 0.578 ± 0.022 66 ± 12 0.576 ± 0.005 60 ± 2
CO2/N2 3 1.99 ± 0.12 0.939 ± 0.029 55 ± 7 0.763 ± 0.013 81 ± 7
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into the plume, about 20% less coupling efficiency than the schlieren shock wave at the

same conditions. Unlike the shock wave, plume contact front dimensionality in the data

generally trends towards n = 3 for the higher pressure cases and becomes less spherical

as pressure decreases. The 180 Torr cases exhibit dimensionality that approaches spher-

ical with n = 3.07 ± 0.04 for argon, and n = 3.06 ± 0.09 for CO2/N2. At 3 Torr, the

Sedov-Taylor model fitting yields n = 1.99 ± 0.12 for CO2/N2 and n = 2.37 ± 0.10 for

nitrogen. Similar to the shock wave data, the blast energy and laser-shock wave coupling

efficiency drop for the emissive plume as pressure increases. The 10 Torr cases in all three

gases yield EST ∼ 54–66 mJ. The blast energies given by the emissive contact front fits are

consistently lower than those of the shock wave fits.

With the dimensionality constant constrained to n = 3, the Sedov-Taylor model also

appears to significantly overestimate blast energy, especially at higher pressures. The only

case where blast energy was significantly overestimated by the Sedov-Taylor model was 3

Torr argon as the 30 Torr nitrogen energy error bound falls within the laser pulse energy.

For the fixed n cases, the Sedov-Taylor model still results in increased energy estimations

compared to the dynamic dimensionality cases, however, the magnitudes of the energy

differences are less than those encountered in the shock wave analysis. From the dimen-

sionality of the emissive contact fronts, it appears that the plumes exhibit more cylindrical

dimensionality at lower pressures and increase to more spherical dimensionality at greater

pressures. Similarly, the dimensionality in heavier gases tends to be more spherical com-

pared to the lighter gases, which is a trend seen in Chapter 3 as well.

Unlike the previous analyses where the emissive contact front data was only partitioned

using the Sedov-Taylor low limit, the shock detachment points found in Section 4.4.1 are

used to provide an upper bound to fit the Sedov-Taylor model and estimate laser-plume

coupling energies. The results of the detachment point-limited fits are compared in Fig.

25, which includes Sedov-Taylor energy in Fig. 25a and dimensionality in Fig. 25b for the
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emissive plumes and the shock waves. The Sedov-Taylor energies are compared in Table

8 as well. Apart from the 3 Torr cases, the emissive contact front energies fall within 3–20

mJ of the shock wave energy estimates. Several cases including 180 and 30 Tor nitrogen

exhibit only 3 mJ difference between the shock detachment-limited emissive plume results

and the shock wave results. Clearly, fit partitioning of the emissive contact front plumes

using the shock detachment points improves the Sedov-Taylor fits and subsequent blast

energy calculations, resulting in a more accurate estimation of the energy deposited in the

ablation plume by the ablation laser which directly impacts the dynamics of the emissive

plume.

Figure 25: a) Sedov-Taylor energy, EST , and b) dimensionality, n, for shock detachment-limited
emissive plume (black markers) and schlieren-imaged shock wave (blue markers) for 3–180 Torr in
N2, Ar, and CO2/N2.

Although the Sedov-Taylor analysis of laser ablation plumes and shock waves is useful

for characterizing plume dynamics and laser-plume energy transfer, ST is not a full replace-

ment for detailed computational fluid dynamics calculations. The outcome of a ST energy

analysis is significantly influenced by the dimensionality factor and the chosen length scale.

The dimensionality factor used in ST energy calculations is an average for a time-dependent

dimensionality that evolves as the plume and shock trajectories evolve in time. Choosing
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Table 8: Sedov-Taylor energy for shock detachment-limited emissive plume and schlieren shock
wave in N2, Ar, and 70% CO2 30% N2 gases.

Gas Pressure Emissive Plume Shock wave
(Torr) ST Energy, EST ST Energy, EST

(mJ) (mJ)

N2 180 15 ± 1 18 ± 1
N2 30 77 ± 6 75 ± 3
N2 10 47 ± 7 72 ± 2
N2 3 73 ± 11 184 ± 14
Ar 180 34 ± 1 31 ± 2
Ar 30 50 ± 6 59 ± 2
Ar 10 79 ± 5 88 ± 3
Ar 3 112 ± 11 419 ± 28
CO2/N2 180 20 ± 2 17 ± 1
CO2/N2 30 62 ± 10 53 ± 3
CO2/N2 10 66 ± 12 71 ± 2
CO2/N2 3 50 ± 6 183 ± 7

to fit all the points in a plume trajectory will result in a different average dimensionality

value than limiting the data fit to near the shock detachment point. In addition, an analysis

where n ≠ 3 is dependent upon the choice of an appropriate length scale in order to obtain

a more accurate blast energy from the plume data and infer the energy deposited into the

plume by the ablation laser.

4.5 Conclusions

Emissive plume and shock wave propagation dynamics resulting from 12.5 ns, 532 nm

ablation of graphite at 5.7 J/cm2 in nitrogen, argon and CO2/N2 background gases at various

pressures have been compared. Initial plume expansion speeds are v0 = 1.90–3.45 cm/µs

with Mach numbers as high as M = 97. The corresponding kinetic energies are 26–74

eV/atom corresponding to 11–31 laser photons.

It has been shown that sectioning emissive plume data using shock detachment im-

proves the interpretation of Sedov-Taylor blast analysis technique. Limiting sectioning
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between the Sedov-Taylor low limit and the shock detachment point provides a more accu-

rate constraint than has been previously used for these calculations. The procedure enables

improved estimates of the laser-plume energy coupling. In this work, plume blast ener-

gies ranged from 55–75% of the laser pulse energy, and matched shock wave blast ener-

gies within 3–5% when sectioned using shock detachment. Average plume dimensionality

ranges from n = 1.99 at 3 Torr of CO2/N2 to hemispherical at n = 3 for 180 Torr in argon,

nitrogen, and CO2/N2. The shock waves exhibit spherical shock fronts, but evolve to lower

dimensionality as pressure and mass of the background gas increase, while plumes exhibit

an opposite trend, increasing towards n = 3 as pressure rises.

Further experimental studies need to be performed to better characterize the processes

involved in laser-plume coupling and shock detachment from the emissive plume for graphite

and other materials. An examination of plume and shock morphology for differing laser

footprints and plume viewing angles would improve understanding of shock wave dimen-

sionality and its effects on plume propagation and laser coupling energy via Sedov-Taylor

analysis. In addition, further exploration of the effects of varying laser wavelength and

temporal plume-laser coincidence on graphite plume propagation would better establish

the conditions leading to laser-plume energy coupling and its effects on overall plume

dynamics. An improved understanding of underlying mechanisms driving shock detach-

ment could result in a more nuanced understanding of where the detachment occurs un-

der any conditions, allowing for shock detachment point predictions to further improve

plume Sedov-Taylor laser-shock coupling estimates when shock visualization techniques

are unavailable or undesirable. The present survey of plume and shock wave dynamics

is necessary for a detailed study of shock detachment, emissive contact front propagation

dynamics, and improving understanding of laser-plume energy coupling.
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V. Plume and shock morphology of pulsed laser ablation of graphite

Pulsed laser ablation of pyrolytic graphite with a 5.7 J/cm2 frequency-doubled Nd:YAG

laser was performed to explore the morphology of the emissive plume and ablation shock

wave in backgrounds of argon, nitrogen, and mixed gas at pressures from 3–180 Torr. An

analysis comparing laser rectangular and circular spot geometries was explored using white

light schlieren shock wave imaging and optical emission imaging with a 2.88–40 ns gated

ICCD camera. The fast-gated imagery is used to determine the emissive plume structure

and the shock wave curvature for each case. In addition, the plumes and shock waves from

the rectangular spot are imaged along both the short and long axes of the laser footprint and

compared to the shock and plume from the circular spot geometry cases. Radii of curvature

ratios are developed using the shock wave imagery for each geometry and compared to the

Sedov-Taylor model dimensionality fit parameter, n. The emissive plume from the rect-

angular spot shows evidence of uneven ablation when viewed along the long axis, while

the circular spot plume shows evidence of a reflected shock propagating back towards the

target surface at later times. The 10 Torr shock waves for both geometries exhibit mostly

spherical shock fronts, but the Sedov-Taylor dimensionality decreases to planar-cylindrical

for the rectangle geometry and cylindrical-spherical for the circular geometry as pressure

and mass of the background gas increase. The radii of curvature ratios for both spot ge-

ometries exhibit the opposite trend where the shock wave appears to be closer to spherical

as pressure increases to 180 Torr.

5.1 Introduction

Pulsed laser ablation (PLA) of materials has a wide variety of applications including

representative analysis of hypersonic thermal protection materials [122], synthesis of nano-

scale composites such as gold-graphene nano-colloidal solutions [123], and simulating
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micrometeorite bombardment craters [124]. Optical characterization of emissive plume

dynamics and relevant laser-target interactions are essential to most material processing

quality control strategies [1, 2] as they can directly reflect ablation conditions, allowing for

the state of the final product to be characterized in near real-time and adjustments made to

the process as required [125].

Prior laser ablation studies of graphite have focused on the characterizing formation and

dynamics of neutral and ionized constituents in the emissive plume as opposed to plume

and shock morphology [21, 24, 29, 126]. Although a several studies have included some

exploration of the laser ablation shock wave for graphite [64, 75, 76], most focus on the

emissive plume structure. Ursu, Nica, and Focsa explored graphite ablation in vacuum

and argon with fast imaging and emission spectroscopy [27]. They identified a v-shaped

structure in the emissive plume for pressures below 0.0075 Torr, that propagated outwards

along the target normal. Ursu et. al. further explored the v-shaped plume structure with

fast imaging and fractal modeling [25, 26]. They concluded that the v-shaped structure was

related to increased carbon dimer formation and cooling at the edges of the plume. More

recently, Eliceiri and Grigoropoulos used shadowgraphy, laser probing, and spectroscopy

combined with normal and side imaging, to explore graphite plume plasma shielding and

density distribution [76]. Some plume morphology studies have been performed for other

target materials including metals such as copper [77] and aluminum [78], or investigate

varying parameters such as spot size [79] or background gas [80]. However most studies

rely only on fast imaging and optical emission spectroscopy to explore the dynamics of the

emissive plume.

Schlieren fast imaging of pulsed laser ablation offers an opportunity to explore shock

wave morphology as it relates to the emissive plume. Shock wave propagation is often in-

directly studied by characterizing the emissive plume contact front propagation trajectories

along with an assumption that the emissive contact front is co-located with the shock wave.
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With schlieren shock wave imaging and fast-gated emission imaging, both the shock wave

and the emission plume structures can be studied in the same experimental setup. By using

different focusing lenses, laser spot footprint geometries can be changed and the effect of

footprint shape on ablation shock and plume propagation can be explored. Shock wave

and emissive plume shape or dimensionality is often approximated using the Sedov-Taylor

blast model to fit the trajectory, yielding the Sedov-Taylor dimensionality factor, n [4, 5].

In addition, shock wave imagery can be examined to infer shock morphology and curvature

by leveraging the shape of the shadow in the image caused by the change in the refractive

index due to a pressure or density gradient from a passing shock wave [58]. By adding

imagery of the rectangular geometry laser spot plume dynamics along both the short and

long axes, plume and shock morphology in two dimensions can be obtained.

Very few studies have been conducted that directly compare shock wave to emissive

plume morphology for PLA of graphite using multiple laser footprint geometries. There

are no prior graphite studies available that examine the morphology of both the emissive

plume and the shock wave in detail.

This work focuses on the PLA of graphite, examining emissive plume and shock wave

morphology resulting from different laser spot geometries including a rectangular spot

along both long and short axes, and a circular spot. This research is part of a larger study

focusing on the characterization of spatial and temporal dynamics of continuous wave and

pulsed laser effects on graphite and carbon fiber targets [41, 84, 97].

5.2 Apparatus and Methodology

A schematic of the experimental apparatus is shown in Fig. 26. This study is part of a

larger program and further details of experimental setup have been provided previously [1].

Briefly, pyrolytic graphite samples purchased from the Graphite Store [98] were irradiated

with a Quantel EverGreen2 EVG00145 Nd:YAG laser at 532 nm used in single pulse mode
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to deliver an average energy of 90 mJ per pulse onto a graphite target in a vacuum chamber

backfilled with various gases and pressures. The laser pulse exhibited a full width half max

of 12.5 ns and a rise time of 6.6 ns. The ablation plume propagates normal to the target in

the z-direction.

Figure 26: Experimental apparatus includes a vacuum chamber containing a sample target, PIMAX
4 ICCD camera, white light LED, and schlieren optics. The target is ablated using a Nd:YAG pulsed
laser source (λ= 532 nm, 12.5 ns pulse width, average energy 90 mJ per pulse at target.

Two different focusing lenses were used to compare the effects of laser spot. The

laser was focused onto the target at normal incidence using a 1” f = 150 mm AR-coated

plano-convex fused silica lens yielding an intensity of 0.456 GW/cm2 and fluence of 5.7

J/cm2 onto an approximately circular 1.578 mm2 area spot. The focusing lens was then

replaced with a 1” f = 150 mm AR-coated cylindrical fused silica lens to shape the pulse

laser beam into a roughly rectangular spot on the target, approximately 4.2 x 0.4 mm with

a measured area of 1.6 mm2, yielding an intensity of 0.450 GW/cm2 and a fluence of

5.62 J/cm2. The cylindrical lens was rotated into two different orthogonal orientations,

allowing the ICCD camera to view the long axis of the spot in one orientation and the short

axis of the spot in the other orientation. The targets were 1” diameter by 0.25” thickness

pyrolytic graphite sputtering target discs (99.999% C) sourced from the Graphite Store

with properties provided in Table 9. The chamber was evacuated to a pressure of 10-3 Torr
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with a turbomolecular pump and then backfilled to 3 Torr to 180 Torr of 99.999% nitrogen,

argon, air, or a mixed gas of 70% CO2 and 30% N2 (CO2/N2), at T = 298 K.

Table 9: Properties of pyrolytic graphite samples.

Property Value Ref.

Density, ρ (g/cm3) 2.2 [98]
Conductivity, K (W/m⋅K) (across layers) 3.5 [98]
Conductivity, K (W/m⋅K) (within layers) 400 [98]
Specific Heat, Cp (J/kg⋅K) (T = 3500 K) 2135 [99]
Sublimation Temperature, T (K) 3923 [100]
Heat of Sublimation, hs (kJ/g) 61.3 [100]

A Princeton Instruments PI-MAX4 1024i with a 1024 x 1024 Gen III fast gate inten-

sified charged-coupled device (ICCD) camera with a Nikon AF Nikkor 85 mm f/1.8 lens

was used to capture schlieren shock wave imagery and emissive imagery of the ablation

event. The field of view (FOV) of the lens was 4.55 by 4.55 cm with a circular schlieren-

illuminated FOV of 3.17 cm by 2.85 cm and a resolution of 0.044 mm, or 44 µm, per pixel.

The camera was gated with delays of up to 20 µs after the laser shot and gate widths (inte-

gration time) from 2.88 ns to 50 ns. Emissive plume imagery was collected with linearly

varying gate widths and delays with 2 ns gate widths at the start of the collection and 10

ns widths at the end of the collection. Emissive plume images began at the onset of the

laser pulse (defined as t = 0) and out to a delay of 1200 ns after the pulse. Images exhibited

< 1% pulse-to-pulse laser flicker and < 2 ns pulse-to-pulse laser timing jitter. Shot-to-shot

variation in laser pulse energy was < 1%, and the laser energy on target was corrected day

to day by using a polarizer and polarizing beam splitter to maintain the baseline.

A white light fast-response LED was used as the schlieren light source. The LED

was pulsed on for 30 µs per laser shot to enable high intensity illumination and was syn-

chronized to overlap the full camera gate delay period. 2” spherical cemented achromatic

doublet lenses were used for all schlieren optics. The LED light was collected and focused

with an f = 75 mm condenser lens onto an iris pinhole. The light was then collimated using
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an f = 300 mm lens and passed horizontally along the y-axis through the vacuum chamber

and target region through large 5” flat windows. The collimated light and plume emission

was then focused with an f = 300 mm lens onto a horizontally mounted razor blade as the

schlieren knife-edge. A 2” 532 nm notch filter was used at the camera lens to protect the

camera from oversaturation due to the laser radiation. Each schlieren test series consisted

of two sets of 50 laser shots with corresponding images, one image per laser shot, and

imagery were taken with fixed gate widths of 40 ns to improve signal and linearly varying

time delays from 800 ns to 20 µs.

5.3 Results and Discussion

5.3.1 Rectangular Spot Plume Morphology

The temporal evolution of the ablation plume morphology was imaged with the short

side of the rectangular spot (x-axis) parallel to the FOV as seen in Fig. 27a–f, and then the

long side of the rectangular spot (y-axis) parallel to the FOV as seen in Fig. 27h–l. The

plumes evolve in 10 Torr nitrogen background gas with gate delays from 107–822 ns, and

linearly increasing gate widths from 2.88–10 ns. At early times, the short axis view of the

emissive plume approximately matches the 0.4 mm laser spot dimension.
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Figure 27: Emissive ICCD image series demonstrating plume morphology for ablation of graphite
in nitrogen at 10 Torr for the rectangular laser footprint viewed along the short x-axis (a–f), and
long y-axis (g–l), with gate delays from 100 ns to 820 ns.
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In Fig. 27a–f The ablation plume contact front appears between 100 and 200 ns and

is slightly larger than the small spot size dimension of 0.4 mm. Before the contact front

develops, a faint area of emission is present within the first 0.05 cm from the target surface,

fading away before ∼ 300 ns. The diffuse emission was also present in the Chapter 3 study

and is most likely due to the plume material not having experienced enough collisions with

the background gas to form a significant contact front during very early propagation times.

The emissive contact front propagates away from the target surface leaving a crescent-like

trail of emission in its wake.

In Fig. 27g–l, the emission at early times approximately matches the long spot dimen-

sion of 5.5 mm. The emissive contact front along this view shows fairly linear propagation

along the leading edge of the plume, with little curvature evident as time progresses. The

emissive contact front exhibits gradual broadening along the direction of propagation as

times increase, most likely due to plume materials with different velocities experiencing

drag in the background gas and slowing. The plume also exhibits areas of varying emission

intensity along the contact front, giving it a mottled appearance. As the regions of brighter

emission can be identified in each successive image, each of which represents a single and

completely separate laser ablation event, the structure must be due to an ablation process

and not due to random variation within a single plume event. The mechanism for the mot-

tled appearance of the plume is likely not due to a hydrodynamic instability or turbulence

since the structures in the images persist between separate ablation events. The mottled ap-

pearance could be driven by uneven ablation of the target surface along the y-axis resulting

in locally denser regions within the plume which lead to increased local emission from the

excited plume material in those regions.

The images in Fig. 28 show the short x-axis views of the plume at a gate delay of 618 ns

in nitrogen, argon, and CO2/N2 with pressures ranging from 3–180 Torr. The center of the

emissive contact front region is triangular at lower pressures, while exhibiting an arc-like
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shape at higher pressures. The arc-shaped tails of the plume are wider at the lowest pres-

sures, becoming more confined by the background gas at higher pressures. Other than the

shape of the plume core and the fainter wings, no other significant morphological structures

are evident from the x-axis orientation.

Figure 28: Emissive ICCD image series at t = 618 ns demonstrating plume morphology for ablation
of graphite in nitrogen (a–d), argon (e–h), and 70% CO2/30% N2 (i–l), for a rectangular laser
footprint viewed along the short x-axis, in pressures ranging from 3 to 180 Torr.
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Figure 29: Emissive ICCD image series at t = 618 ns demonstrating plume morphology for ablation
of graphite in nitrogen (a–d), argon (e–h), and 70% CO2/30% N2 (i–l), for a rectangular laser
footprint viewed along the long y-axis, in pressures ranging from 3 to 180 Torr.

The images in Fig. 29 show the long y-axis views of the plume at a gate delay of

618 ns in nitrogen, argon, and CO2/N2 with pressures ranging from 3–180 Torr. As with

Fig. 28, the plumes show a similar morphology with the wings of the plumes extending

further along the y-axis as pressure is decreased. The emission for the 180 Torr cases is

significantly increased and less mottled in appearance. The more uniform appearance of

the plumes for these cases supports the possibility that plume density is higher and more
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evenly spread out within the plume. Unlike the plume trajectories from the circular laser

spot, the plume propagated with a slightly higher velocity in argon than in the nitrogen

case at low pressures, with the CO2/N2 plume propagating more slowly. At 180 Torr, the

nitrogen exhibited a slightly further progression at 618 ns. The long axis view of the plume

revealed a distinctly planar shape as compared to the short axis view, especially in the

higher pressures cases. For the low pressure cases in Fig. 29, plume curvature starts to

become evident at the sides of the plume near y = ± 0.2–0.3 cm.

The view of the long y-axis plume is the same viewing geometry used by Ursu et. al.

when they explored a v-shaped structure in the emissive plume for a particular focusing of

their laser spot [26, 27]. The v-shape was not evident in the emissive plume imagery for the

current study. However, the Ursu et. al. experimental apparatus utilized a pulsed KrF laser

at 248 nm with nearly twice the pulse width as the laser in the current study, and the pres-

sures were much lower, ranging from 10−7 Torr to 0.0675 Torr. Further exploration with

more matching experimental parameters needs to be completed in order to properly vali-

date and explore the morphology seen by Ursu et. al. No other unexpected morphological

features were present in the current y-axis imagery.

5.3.2 Circular Spot Plume Morphology

The evolution of the ablation plume from a circular laser spot footprint is demonstrated

in Fig. 30, for 10 Torr nitrogen and gate delays from 120 ns to 830 ns. The camera gate

width was increased linearly from 2.88 ns to 30 ns for this set of images. At early times,

the emissive plume approximately matches the 1.4 mm diameter of the laser spot.

The ablation plume contact front is well established by 120 ns. Visually, the circular

plume is most similar to the short x-axis rectangular plume in Fig. 27. The emissive contact

front in the circular spot size plume leaves a crescent-like trail of faint emission in its

wake, similar to the rectangle x-axis imagery. However, the circle emissive plume is much
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rounder in appearance than the rectangular crescent. The emissive contact front exhibits

minor gradual broadening both along and perpendicular to the direction of propagation as

times increase.

Figure 30: Emissive ICCD image series demonstrating plume morphology for ablation of graphite
in nitrogen at 10 Torr for a circular laser footprint with gate delays from 120 ns to 830 ns.

The velocity of the circle plume is much greater than the rectangular plume in Fig. 27,

with the circular plume traveling approximately 15 mm further than the rectangular plume

for the same time delay of t ∼ 318 ns. Although a portion of the increased velocity could

be due to the slightly larger fluence (∼ 0.08 J/cm2 higher) for the circular spot, the bulk of

the increased velocity is likely due to an increase in the laser-plume energy coupling due

to the tighter spot profile. The lower aspect ratio of the circular plume likely enables the
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plume to obtain a more hydrodynamic, bullet-like shape, allowing it to punch through the

background gas with less drag than the stretched out plume in the rectangular spot case.

The circular plume exhibits a prominent emission feature that propagates backwards

towards the target surface at later times as seen in the last three images in Fig. 30.The

feature was not evident in the rectangular plume imagery. The emission feature appears to

be a reflected shock, and is possibly due to plume splitting with a late fast plume compo-

nent colliding with and then rebounding off an earlier slow component. The rebounding

component experiences collisions with the interior of the plume, resulting in the region

of increased emission propagating backwards towards the target surface. At even later

times, the rebounded shock appears to impact the target, resulting in further emission at

the surface of the target. A similar rebounded emissive plume feature was recently seen

by Pierce who explored pulsed ablation of graphite with a 248 nm KrF laser [127]. The

corresponding circular spot shock wave imagery was examined, but no rebounded shock

wave was visible in the imagery in the vicinity of the reflected emissive plume. However,

the emissive plume in this region showed significantly brightness in the schlieren shock

wave imagery, potentially obscuring the motion of the shock wave near the target. It is also

possible that the rebounded shock was too weak to be detected by the schlieren apparatus.

The feature cannot be from a shock wave that has rebounded off the vacuum chamber walls

as the main shock wave from the laser ablation is visible in the camera field of view out to

20 µs.

Figure 31 shows the circular spot plume at gate delay of ∼ 330 ns in nitrogen, argon,

and CO2/N2 with pressures ranging from 3–180 Torr. The plumes show a similar morphol-

ogy with the plumes exhibiting increased velocity as the pressure is decreased, while the

plumes are more spatially confined by the background gases as pressure is increased. The

propagation distances for different gases at similar pressures are similar with the exception

of the CO2/N2 cases at all pressures which are visibly slowed with less distance traveled for
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the same time periods. The CO2/N2 cases also showed significantly more overall spatial

plume confinement at all tested pressures, most likely due to the heavier background gas.

Figure 31: Emissive ICCD image series at t ∼ 330 ns demonstrating plume morphology for ablation
of graphite in nitrogen (a–d), argon (e–h), and 70% CO2/30% N2 (i–l), for a circular laser footprint
in pressures ranging from 3 to 180 Torr. The slightly different delays are due to minor gate width
differences between each series.

5.3.3 Rectangular Spot Shock Morphology

Schlieren imaging was used to produce the images in Fig. 32 and Fig. 33, which show

the shock wave morphology for ablation of graphite in nitrogen at 10 Torr for a rectangular
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laser footprint viewing the short x-axis and the longer y-axis respectively, for gate delays

from 6.3 µs to 20 µs. The shock wave is evidenced by the dark shadow in the images as

the passing shock wave caused a localized gradient in the index of refraction. The bright

emissive plume is visible in the images as a white central region above the target surface.

Note that the times for the schlieren imagery figures are significantly later than the plume

imagery in the plume morphology section. The time differences are especially notable

between the y-axis plume and shock imagery, where the schlieren imagery show significant

curvature in the shock waves, while the y-axis plume imagery is still planar in appearance.

The difference in curvature is expected as initially planar plumes are expected to experience

increasing curvature towards cylindrical or spherical as time progresses, which has been

noted in previous studies [50, 101]. Essentially, at later times and propagation distances the

initial ablation event appears to be more point-source like, resulting in increasing curvature

of the shock and plume as time progresses. No shock wave was visible in the 3 Torr

rectangular schlieren imagery for any of the background gases, most likely due to the higher

aspect ratio of the rectangular spot size spreading out the shock energy over a larger area

thus reducing the strength of the index gradient below the detection limits of the schlieren

system. A brighter schlieren light source would improve the schlieren sensitivity to weaker

shocks.

In order to better visualize and analyse the curvature of the shock wave, hemispheres

were superimposed on the images centered at the target, corresponding to the shock dis-

tance normal to the target surface at the respective time delay. A completely spherical

shock wave would closely match the hemisphere with more or less constant radii of curva-

ture from all points extending outwards from the origin. Two 45 degree guide lines and a

90 degree (normal) guide line were overlaid in order to to estimate radii of curvature ratios

for the shock waves. The radii of curvature ratio was calculated by dividing the distance

from the target to the shock wave along 45 degrees by the distance of the target to the shock
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wave along the normal 90 degree guide line. A ratio of 1 results from equal radii of curva-

ture to the shock wave and suggests a spherical dimensionality. A ratio less than 1 implies

a shock wave less than spherical in dimensionality. A purely planar shock would result in a

ratio greater than 1. The shock curvature at 45 degrees in Fig. 32 and Fig. 33 are similar at

each gate delay, with minimal change to the curvature for the shock wave propagation out

to 20 µs.

Figure 32: Schlieren ICCD image series demonstrating shock wave morphology for ablation of
graphite in nitrogen at 10 Torr for a rectangular laser footprint viewing the short x-axis with gate
delays from 6.3 µs to 20 µs. Hemispheres are superimposed on the images, corresponding to the
shock location normal to the target surface, along with two 45 degree guidelines and a 90 degree
(normal) guideline used to estimate radii of curvature ratios.
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Figure 33: Schlieren ICCD image series demonstrating shock wave morphology for ablation of
graphite in nitrogen at 10 Torr for a rectangular laser footprint viewing the long y-axis with gate
delays from 6.3 µs to 20 µs.

Figure 34 and Fig. 35 show the rectangular spot schlieren imagery for the short and

long axes, respectively, at gate delay of t = 14.6 µs in nitrogen, argon, and CO2/N2 with

pressures ranging from 3–180 Torr. The shock wave is visibly darker in the 180 Torr gas

cases, with the refractive index gradient fading in magnitude as pressure is decreased. This

is likely due to a sharper pressure change between the background gas and the shock wave,

leading to an increased index of refraction gradient at higher pressures. Similar to the plume

imagery, the shock imagery shows a slower shock wave propagation for the higher pressure

gas cases with the least progression evident in the CO2/N2 gas, especially at 180 Torr. The
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propagation in nitrogen and argon background gases is similar at like pressures, as is the

curvature of the plume at the 45 degree angle points. At angles less than 45 degrees, the

shock waves continue to deviate from a spherical, with the deviation increasing closer to

the surface. The trend is visible in both the long axis shock wave imagery and the short

axis shock wave imagery. The appearance of the shock wave structures could be a result of

increased forward motion or expansion of the shock wave compared to expansion outwards

away from the target normal.
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Figure 34: Schlieren image series at t = 14.6 µs demonstrating plume morphology for ablation of
graphite in nitrogen (a–c), argon (d–f), and 70% CO2/30% N2 (g–i), for a rectangular laser footprint
viewing the short x-axis in pressures ranging from 10 to 180 Torr.
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Figure 35: Schlieren image series at t = 14.6 µs demonstrating plume morphology for ablation of
graphite in nitrogen (a–c), argon (d–f), and 70% CO2/30% N2 (g–i), for a rectangular laser footprint
viewing the long y-axis in pressures ranging from 10 to 180 Torr.
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Table 10 gives the curvature ratio from the rectangular spot shock wave imagery and

compares it to the Sedov-Taylor dimensionality parameter, n, which was found by fitting

the shock wave trajectories to a generalized Sedov-Taylor blast equation [4, 5, 74]. The

error values given in the table are 95% confidence intervals for both the dimensionality and

the curvature ratio. The details of the Sedov-Taylor fit process are provided in detail in

Chapter 4. Since the Sedov-Taylor dimensionality factor is actually an average over time,

the curvature ratios in Table 9 were calculated by finding the ratio for each time delay and

then averaging the resulting curvature ratios for the entire propagation of the shock wave.

Table 10: Rectangular laser spot Sedov-Taylor dimensionalities and radius of curvature ratios for
ablation shock waves.

Gas Pressure Sedov-Taylor Curvature
(Torr) Dimensionality, n Ratio

N2 180 1.62 ± 0.01 0.95 ± 0.01
N2 30 2.47 ± 0.05 0.87 ± 0.03
N2 10 2.81 ± 0.04 0.83 ± 0.04
Ar 180 1.70 ± 0.06 0.96 ± 0.01
Ar 30 2.42 ± 0.04 0.92 ± 0.02
Ar 10 2.77 ± 0.03 0.85 ± 0.03
CO2/N2 180 1.60 ± 0.04 0.93 ± 0.01
CO2/N2 30 2.49 ± 0.05 0.89 ± 0.02
CO2/N2 10 2.87 ± 0.04 0.83 ± 0.03

The Sedov-Taylor dimensionality factors for the rectangular laser spot geometry show

a trend where dimensionality decreases as pressure increases. This trend has been seen in a

study of ablation of aluminum and titanium in argon which used rectangular laser ablation

spot geometry [101]. The highest pressure cases show a dimensionality between planar

(n = 1) and cylindrical (n = 2) geometry, tending towards a cylindrical shock wave. The

lower pressures progress towards a mix of spherical (n =3) dimensionality and cylindrical

dimensionality with the 10 Torr cases trending closer to spherical. A planar dimensionality

component is expected since the elongated rectangular plume in the emissive imagery is

planar in appearance in the long axis imagery.
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Interestingly, the curvature ratio appears to show the opposite trend to the Sedov-Taylor

dimensionality as the shock is appears to become less spherical as pressure decreases.

There are several possible explanations for the inconsistency in the shock wave morphol-

ogy between the Sedov-Taylor model dimensionality factor and the curvature ratio. Two

previous studies have indicated that Sedov-Taylor modeling of side transmission imaging

for ablation plumes, such as schlieren imaging in this study, does not perform as well due

to the ideal density distribution assumptions used in the original Sedov-Taylor model [76,

128]. The issue could be related to the cosine-power angular distribution (cos P θ of the

ablation plume material which has been experimentally found to govern the plume angle

and spread [2, 129]. It is also possible that the Sedov-Taylor fit model is affected by the

weighting of the data in the model fit, since the dimensionality factor is know to be a func-

tion of time and is variable over the overall fit. Since the Sedov-Taylor model only takes

into account the forward motion of the shock wave in that the shock points that form the

fitted trajectory are only described by the points normal to the target surface, it is possible

that using the Sedov-Taylor model to approximate shock wave dimensionality in the case

of a non-spherical (n ≠ 3) shock wave is too rough an approximation to characterize the

actual dimensionality of the shock structure in the experimental cases.

5.3.4 Circular Spot Shock Morphology

Schlieren imaging was used to produce the images in Fig. 36, which reveals the shock

wave morphology for ablation of graphite in nitrogen at 10 Torr for a circular laser footprint,

for gate delays from 6.3 µs to 20 µs. Like the previous images, the shock wave is evidenced

by the dark shadow caused a localized gradient in the index of refraction. The bright

emissive plume is visible in the earlier images as a white central region above the target

surface. The apparent size differences of the emissive plume in the images is partly due

to the image contrast adjustments required to enhance the visibility of the shock wave in
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the image. As before, hemispheres centered at the target are superimposed on the images.

Unlike in the emissive plume imagery comparison, the shock waves for the circular laser

spot show similar propagation distances to the rectangular shock waves especially at later

times ∼ 20 µs. The shock waves have slowed down to similar velocities for both cases

at these later times. The shock curvature at 45 degrees is similar at each gate delay, with

minimal change to the distance of the shock wave across the the temporal propagation of

the shock wave.

Figure 36: Schlieren ICCD image series demonstrating shock wave morphology for ablation of
graphite in nitrogen at 10 Torr for a circular laser footprint with gate delays from 6.3 µs to 20 µs.

Figure 37 show the circular spot schlieren imagery at gate delay of t = 14.5 µs in ni-

trogen, argon, and CO2/N2 with pressures ranging from 3–180 Torr. Like the rectangular
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imagery, the shock wave is visibly darker and more prominent in the 180 Torr gas cases,

with the index gradient fading in magnitude as pressure is decreased. The shock imagery

shows a slower shock wave propagation for the higher pressure gas cases with the least

progression evident in the CO2/N2 gas. The propagation in nitrogen and argon background

gases is similar at similar pressures, as is the curvature of the plume at the 45 degree angle

points. At angles less than 45 degrees, the shock waves continue to deviate from a spher-

ical, however the deviation is less pronounced than in the rectangular schlieren imagery.

The emissive plumes in the circular schlieren imagery extend a shorter distance outwards

from the target surface than the plumes in the the rectangle imagery,
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Figure 37: Schlieren image series at t = 14.5 µs demonstrating shock wave morphology for ablation
of graphite in nitrogen (a–c), argon (d–f), and 70% CO2/30% N2 (g–i), for a circular laser footprint
in pressures ranging from 10 to 180 Torr.
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As before, the radius of curvature ratio was calculated by finding the distance from

the target to the shock wave along the 45 degree line, and dividing by the distance of the

target to the shock wave along the normal 90 degree line. Table 11 gives the curvature

ratio from the circular spot shock wave imagery and compares it to the Sedov-Taylor di-

mensionality parameter. The dimensionality values for the circular spot were calculated

in Chapter 4. Like the rectangular comparison, the circular Sedov-Taylor dimensionality

reveal shock waves approaching spherical dimensionality as the pressure is decreased. The

highest pressure cases show a dimensionality between cylindrical (n = 2) and spherical

(n = 3) geometry, tending towards a more cylindrical shock wave especially in the CO2N2

and argon gases. The lower pressures progress towards a mix of spherical dimensional-

ity and cylindrical dimensionality with the 10 Torr cases trending closer to spherical. At

n = 2.98 ± 0.03, the 10 Torr CO2/N2 case exhibited a nearly spherical Sedov-Taylor di-

mensionality factor. The circular spot radius of curvature ratios show the same reverse

trend as the rectangular ratios, where the highest pressure cases exhibit the more spherical

radius of curvature ratios.
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Table 11: Circular laser spot Sedov-Taylor dimensionality and radius of curvature ratio for ablation
shock wave.

Gas Pressure Sedov-Taylor Curvature
(Torr) Dimensionality, n Ratio

N2 180 2.44 ± 0.08 0.95 ± 0.01
N2 30 2.92 ± 0.05 0.95 ± 0.01
N2 10 2.91 ± 0.03 0.89 ± 0.02
Ar 180 2.35 ± 0.06 0.97 ± 0.01
Ar 30 2.64 ± 0.04 0.95 ± 0.01
Ar 10 2.86 ± 0.03 0.94 ± 0.01
CO2/N2 180 2.35 ± 0.06 0.97 ± 0.01
CO2/N2 30 2.87 ± 0.06 0.95 ± 0.01
CO2/N2 10 2.98 ± 0.03 0.93 ± 0.01

5.4 Conclusions

Pulsed laser ablation of pyrolytic graphite with a 5.7 J/cm2 frequency-doubled Nd:YAG

laser in backgrounds of argon, nitrogen, and mixed gas at pressures from 3–180 Torr was

performed to explore morphology of the plume emissive contact front and ablation shock

wave. Fast gated and schlieren shock wave imagery was used to explore emissive plume

morphology and shock wave propagation for a rectangular laser spot and a circular laser

spot. The view of the short x-axis of the rectangular laser spot revealed significant plume

confinement by the background gas at higher pressures, while exhibiting larger tails and

plume spreading as pressures are decreased. The horizontal distribution of plume material

is evident in the view of the long y-axis, with locally denser regions of plume emission visi-

ble, possibly due to uneven ablation within the laser spot footprint, as the plume propagates

away from the target and interacts with the background gas. Significant differences were

found between the appearances of the emissive plume for circular and rectangular laser

spots. The viewing angle of a non-circular plume revealed significantly different plume

shapes and temporal progressions between the long and short axes of the rectangular spots

viewed by the camera. The short axis rectangle spot plume was similar in appearance to
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the circular spot plume, however, the circular plume propagated through the background

gas at a significantly higher velocity.

The morphology of the rectangular and circular spot plumes and shock waves are com-

pared using the emissive imagery, and the shock waves were characterized using the Sedov-

Taylor blast model to examine dimensionality. In addition, the radii of curvature ratios for

the shock wave were calculated. The shock imagery for both the rectangular and circular

spots were found to trend more towards spherical dimensionality as pressure was decreased,

while the curvature ratios exhibited the opposite trend.

Further experimental studies should be performed to better characterize the relation-

ships between the emissive plumes and the shock waves generated by pulsed ablation of

graphite and other target materials. In addition, further exploration of the effects of laser

wavelength and temporal laser-plume coincidence on graphite plume propagation would

better establish the conditions that dominate plume dynamics. The present survey of plume

and shock wave morphology is necessary for improving understanding of emissive con-

tact front and shock wave propagation dynamics, which would lead to improved predictive

capabilities for characterizing laser-target interactions.
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VI. Conclusions

6.1 Conclusions

Pulsed laser ablation has been studied with the aim of improving the interpretation of

common diagnostic techniques used to characterize pulsed laser ablation, to find simple

but universal scaling relationships for comparing ablation dynamics across different target

materials and ablation conditions, and to provide a comprehensive and systematic analysis

of emissive plume and shock wave dynamics for graphite. A mid-level goal of this work

was to establish a comprehensive and high-fidelity data set of graphite plumes and shock

waves that will be of use in validating laser ablation models since graphite has been studied

less than other target materials, thus filling a niche in the literature. To accomplish that end,

three graphite ablation experiments were performed using fast gated emission imaging and

schlieren imaging to capture plume and shock propagation dynamics in helium, nitrogen,

argon, and 70% CO2 30%N2 mixed gas in a range of pressures from the low-pressure

regime at 1 Torr up to the high-pressure regime at 180 Torr. Multiple laser parameters were

utilized including 248 nm and 532 nm ablation laser sources, rectangular and circular laser

spot geometries, and fluences from 4–5.7 J/cm2.

In Chapter 3, pulsed laser ablation of graphite was performed to find and validate new

scaling relationships for common ablation diagnostic parameters. Initial plume expan-

sion velocities of 1.37–1.98 cm/µs corresponded to plume kinetic energies between 12–

25 eV/atom. The Sedov-Taylor energy released in the sudden ablation was typically 33%

of the laser pulse energy. An examination of the normalized shock thickness and shock

strength (M ∼ 48) for the graphite emissive plume was compared to prior ablation studies

and to 1-D shock tube studies (M ≤ 10) using a commonly used analytical model. The

analytical theory was found to under predict normalized shock thickness for the high Mach

numbers seen in pulsed laser ablation with significant deviation for M > 35. In addition,
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the graphite data was used to validate a recently proposed method using non-dimensional

factors for hole depth, fluence, and pulse duration, and the present results were found to be

consistent with the prior data which included target materials such metals and semiconduc-

tors, but did not include graphite. The graphite non-dimensional results filled in the low

non-dimensional fluence region where the previous data was sparse, increasing the size of

validated materials and conditions for the non-dimensional comparison. Most importantly,

a new scaling method for the Sedov-Taylor blast energy to laser energy ratio was developed

and validated, enabling comparisons of laser-plume energy coupling between different tar-

get materials ablated under varying environmental and system conditions. Blast energy

and plume dimensionality were found to be correlated with stopping distances, which are

typically greater than 103 mean free paths. The energy ratio scaling was validated over a

broad range of studies despite differences in wavelength, pulse duration, fluence and target

material. As a result, the scaling of Sedov-Taylor energy can be used by future researchers

for comparing emissive plume parameters across many materials and conditions.

In Chapter 4, pulsed laser ablation of graphite was performed to develop and validate

an improvement to Sedov-Taylor laser-plume energy analysis, a common laser ablation di-

agnostic technique. Graphite was ablated with a pulsed frequency-doubled Nd:YAG laser

with a 5.70 J/cm2 in argon, nitrogen, and mixed gas backgrounds from 3–180 Torr. Ini-

tial plume expansion velocities of 1.9–3.45 cm/µs corresponding to kinetic energies be-

tween 26–74 eV/atom. White light schlieren imaging and optical emission imaging with

a fast-gated ICCD camera were used to determine the conditions and location for shock

detachment. Sedov-Taylor analyses of emissive plumes depend on the sectioning of the

plume trajectory data since the model was created to predict the blast energy in a shock

wave. If the model is fit to a portion of the plume trajectory that is not shock-like, it can

over or under predict shock energies depending on where the fit is terminated. In addition,

the Sedov-Taylor dimensionality factor is an average of a time dependent variable and can
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dramatically change if some or all of the emissive plume drag region is included in the

fit, which negatively affects the accuracy of energy estimates. As a result, Sedov-Taylor

analysis has not reliably given energy estimates that scale with pressure or other factors in

a coherent way across pulsed laser ablation literature. To resolve these difficulties, shock

detachment positions were characterized and used to define a new high limit for section-

ing emissive plume data during Sedov-Taylor analysis. A robust Sedov-Taylor analysis

study was performed for both the emissive plumes and the shock waves, and the results for

the Sedov-Taylor dimensionality parameters, energies, and a-coefficients were compared

for the full trajectories and the detachment-limited trajectories. Shock detachment typi-

cally occurs at 80–85% of the plume stopping distance. This limit is significantly closer

than the Sedov-Taylor high limit. Limiting the Sedov-Taylor fit with shock detachment

enables more reliable laser-plume coupling energy estimates, providing a more meaning-

ful interpretation of the laser energy deposited into the plume. Shock detachment can be

used to enhance plume diagnostics of other laser ablation target materials as well. The

shock detachment technique was validated over a range of experimental conditions, with

detachment-limited Sedov-Taylor energy calculations for the emissive plume in agreement

with the shock wave energy values to within 3–5%. The improved emissive plume blast

energy estimates ranged from 55–75% of the laser pulse energy. Shock detachment was

found to scale with mean free path, which supports the potential for prediction of shock

detachment in other pressures and gases. Shock detachment points can be used to improve

laser-plume energy estimates for any target material where a Sedov-Taylor analysis is per-

formed.

In Chapter 5, pulsed laser ablation of graphite was performed to examine the morphol-

ogy of emissive plumes and corresponding ablation shock waves. Graphite was ablated

with a pulsed 5.70 J/cm2 frequency-doubled Nd:YAG laser in argon, nitrogen, and mixed

gas backgrounds from 3–180 Torr. An analysis comparing laser rectangular and circular
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spot geometries was explored using white light schlieren shock wave imaging and fast-

gated optical emission imaging. The imagery was used to determine how plume and shock

wave expansion depends on laser footprint geometry and aspect ratio. The aspect ratio

of the rectangular spot was approximately 1:11, and the viewing angle of the rectangular

spot plume greatly affected the apparent plume shape as viewed by the ICCD camera. The

view of the long y-axis yielded an elongated emissive plume with initial dimensions ap-

proximately matching the 4.2 mm spot width. Localized knots of increased emission were

evident in the y-axis view of the plume, possibly from uneven ablation resulting in vary-

ing plume densities. Since the long y-axis emissive plume is stretched out considerably

compared to the short x-axis plume, plume diagnostics and model fitting using imagery

from that field of view will be much more sensitive to the initial ablation conditions. The

short axis plume was considerably closer in shape to the circular spot plume, and provides

a much better target for consistent plume trajectory analysis and subsequent expansion fit-

ting. The emissive plume from the circular spot propagated through the background gases

with significantly greater velocities than the rectangular spot plumes, most likely due to a

more hydrodynamic shape as it propagated through the background gas as compared to the

blunt rectangular plumes. In addition, the circular spot plume showed evidence of plume

splitting with an apparent rebounded emission feature occurring at later times, possibly

due to a late faster plume component colliding with and then rebounding off an earlier slow

component. Finally, radii of curvature ratios were developed using shock wave imagery for

each geometry and compared to the Sedov-Taylor model dimensionality fit parameter, n.

Combined with the findings from Chapter 3 and Chapter 4, the plume morphology study

completes a comprehensive and systematic analysis of emissive plume and shock wave

dynamics for graphite over a large range of environmental and laser source conditions.

There is still much work to be done in order to fully characterize plume and shock

wave dynamics during pulsed laser ablation of graphite and other target materials. How-
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ever, during this effort, we developed and validated a significant diagnostic improvement to

Sedov-Taylor analysis energy estimates that can be useful for all target materials, we dis-

covered and verified a new plume-laser energy scaling that allows for the direct comparison

of different target materials under different ablation conditions, and we provided a compre-

hensive and systematic analysis of emissive plume and shock wave dynamics for graphite

over a large range of conditions. Furthermore, the graphite plume and shock dynamics and

parameters captured in this work are useful as high-fidelity benchmarks for validating cur-

rent and future laser effects models used for industrial process control monitoring, battle

damage assessment, and graphite material characterization.

The next section includes recommendations for additional experimental studies that

would further the state of the art in understanding and predicting the effects of pulsed laser

ablation on graphite and other materials.

6.2 Recommendations for Future Work

An examination of shock front detachment for a wider array of target materials, laser

parameters, pressures, and background gases would dramatically increase the understand-

ing of the variables that affect shock detachment, and lead to the development of an an-

alytical model for predicting shock detachment under all conditions. This would enable

an increase in the accuracy of laser-plume energy coupling estimates via Sedov-Taylor

analysis and improve understanding of the effects of laser-plume coupling on plume prop-

agation. Next, the first-order ablated mass and hole depth estimation using initial velocities

could be validated with crater volume measurements using confocal microscopy and preci-

sion weighing of samples. Ablation experiments focusing on differences in gas viscosities

and thermal properties to include Reynolds numbers could help to further collapse dimen-

sionality of the shock strength versus Mach number relationship and allow for a clearer

comparison between different target materials and conditions. Experimental studies should
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be performed to better characterize the relationships between the emissive plumes and the

shock waves generated by pulsed ablation of graphite and other target materials. Finally,

the numerous results from this dissertation could be used to validate existing and future

ablation models such as the Directed Energy Illumination Visualization (DEIVI) physics-

based laser ablation model [130].

In addition to improvements to the research presented in this dissertation, many other

avenues of research are possible, three of which are presented in brief here. First, an ex-

ploration of the effects of Nd:YAG versus KrF laser ablation on shock propagation could

be conducted to examine the effects of the two very different laser sources on shock prop-

agation. It would also be interesting to compare the effects of Nd:YAG graphite emissive

and non-emissive plume dynamics using laser induced fluorescence or absorption imaging

spectroscopy. Next, the graphite ablation target could be doped with potassium or other

elements with different emission wavelengths to facilitate improved species isolation for

the analysis of plume dynamics and allow for enhanced detection and characterization of

non-emissive plume species.

Finally, tens of thousands of graphite pulsed laser ablation emissive plume and schlieren

shock wave images (over 500 GB of data) were captured for a range of environmental and

laser parameters including ablation at 248 nm, 532 nm, and 1064 nm laser wavelengths and

both single and temporally-spaced double pulses. This vast trove of data could be mined

for a wealth of insights into pulsed laser ablation of graphite and laser ablation process

in general, the analyses of which could lead to greater understanding and characterization

of overall ablation plume and shock wave dynamics. It is clear that a significant amount

of work remains to be accomplished towards reaching the goal of a full and complete

understanding of pulsed laser ablation dynamics.
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