AWARD NUMBER:

TITLE:

PRINCIPAL INVESTIGATOR:

CONTRACTING ORGANIZATION:

REPORT DATE:

TYPE OF REPORT:

PREPARED FOR: U.S. Army Medical Research and Development Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

REPORT DOCUMENTATION PAGE					Form Approved
Public reporting burden for this collection of information is estimated to average 1 hour per response. including the time for reviewing instruction					arching existing data sources, gathering and maintaining the
data needed, and completing a this burden to Department of D	and reviewing this collection of in refense. Washington Headquart	formation. Send comments regarders Services. Directorate for Info	arding this burden estimate or an rmation Operations and Reports	y other aspect of this (0704-0188), 1215 Je	collection of information, including suggestions for reducing fferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be valid OMB control number PI	aware that notwithstanding any	other provision of law, no perso	n shall be subject to any penalty	for failing to comply w	ith a collection of information if it does not display a currently
1. REPORT DATE		2. REPORT TYPE		3.	DATES COVERED
4. TITLE AND SUBTIT	LE			58	. CONTRACT NUMBER
				51	D. GRANT NUMBER
				50	. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)				50	I. PROJECT NUMBER
				56	. TASK NUMBER
E-Mail:				5f	WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)				8.	PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)					. SPONSOR/MONITOR'S ACRONYM(S)
U.S. Army Medical Research and Development Command Fort Detrick, Maryland 21702-5012					. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION / A		ENT			
Approved for Publi	c Release; Distribu	tion Unlimited			
13. SUPPLEMENTAR	YNOTES				
14. ABSTRACT					
IJ. GODJECI IERMO					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON
			UF ADOIKAUI	UF PAGES	
Unclassified	Unclassified	Unclassified	Unclassified		area code)

TABLE OF CONTENTS

Page No.

1.	Introduction	4
2.	Keywords	4
3.	Accomplishments	4
4.	Impact	11
5.	Changes/Problems	11
6.	Products	11
7.	Participants & Other Collaborating Organizations	11
8.	Special Reporting Requirements	12
9.	Appendices	N/A
10.	References	N/A

1. INTRODUCTION: Human Genome Wide Association Studies found a significant risk of Type 2 Diabetes Mellitus (T2DM) in single nucleotide polymorphisms in the *cdkal1* gene. The *cdkal1* gene is remote from the insulin gene and with the surprising function of a specific tRNA modification. Population studies and case control studies acquired evidence of the connection between Cdkal1 protein and insulin production over the years (Figure 1). To obtain biochemical proofs directly linking potential SNPs to their roles in insulin production and availability is challenging, but the development of Cdkal1 knock out mice and knock out cell lines made it possible to extend our knowledge towards therapeutic field of diabetic research. We produced and characterized a knock down of the *cdkal1* gene using small interfering and short hairpin RNA in the NIT-1 cell line, a β -cell line inducible for insulin (**Major Task 1**). The knock down resulted in reduced levels of *cdkal1* and mature insulin mRNAs, increased the level of precursor insulin mRNA, decreased Cdkal1 and insulin proteins, and diminished modification of tRNA^{Lys3} from t⁶A₃₇ to ms²t⁶A₃₇ (**Major Task 2**), the specified function of Cdkal1 (**Major Task 3**, manuscript publication). We further determined that tRNA^{Lys3} lacking ms²- is incapable of establishing hydrophobic stabilization to decode the wobble codon AAG.

Figure 1. A. Human Insulin Processing. Insulin mRNA is translated into one peptide that will undergo cleavage and linkages via disulfide bridges. One of two important cleavage sites is K88-R89. A preproinsulin mRNA necessitates tRNA^{Lys3} (B.) with its fully modified anticodon loop nucleosides to accurately read the Lys AAG codon. The resulting peptide is composed of a signal sequence, A-chain, B-chain and C-peptide, the A- and B-chain associate into mature insulin. **B. Human tRNA^{Lys3}.** tRNA^{Lys3} decodes AAA and AAG in mRNA on the ribosome. The **ms²-** modification of t⁶A₃₇ results in ms²t⁶A₃₇ and is the product of Cdkal1 enzymatic activity. The modification ms²t⁶A₃₇ facilitates accurate and efficient decoding of the lysine codons. Domains are labeled. Anticodon loop modified nucleosides positions and structures are circled. The **ms²-** modification made by Cdkal1 is found with ms²t⁶A₃₇. The anticodon 5'-adjacent invariant U and 3'-modified adenosine are noted.

2. KEYWORDS: Type 2 Diabetes; Cdkal1; tRNA modification; Decoding on the ribosome; Cdkal1 protein; insulin

3. ACCOMPLISHMENTS:

What were the major goals of the project?

Aim 1: Conclude experiments for revision of manuscript

Major Task 1: Characterize new murine knockout of *cdkal1* in a murine β -cell line.

Major Task 2: Isolate and characterize modifications of tRNA^{Lys3}

Major Task 3: Submit manuscript revision

Aim 2: Edit galley Proofs and resubmit

What was accomplished under these goals?

1) Major activities:

a. We characterized NIT-1 *cdkal1* knock down β -cells in culture as to their production of Cdkal and insulin. Characterization of a new murine knock**out** of *cdkal1* in a murine β -cell line was begun.

- b. tRNA was isolated and characterized for modifications of tRNA^{Lys3} particularly t⁶A and ms²t⁶A.
- c. A manuscript was revised re-submitted, accepted, galley proofs corrected and published.

2) Specific objectives:

Cdkal1 knockout cell line validation with assessing *cdkal1* mRNA and Cdkal1 protein production. Assessment of insulin mRNA and protein populations Rescue *cdkal1*-deficient cells with transfection of human cDNA *cdkal1*. MS analysis of insulin from Cdkal1 deficient and rescued cells Design and purchase oligo probes to isolate tRNA^{Lys3} Isolate tRNA^{Lys3} from *cdkal1*-deficient and *cdkal1* rescued cells and have modified nucleosides identified with HPLC/MS

Revise manuscript as suggested by reviewers Submit revised manuscript Have all 11 authors contribute editing Compile edits and apply Submit edited galleys

3) Significant results or key outcomes, including major findings, developments, or conclusions (both positive and negative): The NIT-1 cell line (ATCC[®] CRL-2055[™]) is inducible for insulin production with high glucose concentrations, theophylline and KCl (Figure 2A). The cells were stimulated to produce insulin with Theophylline (10 mM with 5.5 mM glucose) or KCl (40 mM) in SF media (Figure 2A). In order to determine the effect of a reduced Cdkal1 protein production, we knocked down *cdkal1* gene expression with two distinct methods. The *cdkal1* gene was knocked down by transfection of an esiRNA (endonuclease-prepared siRNA, 30, 50 or 70 nM using Lipofectamine, LF; Sigma) and by a Lentiviral shRNA (Sigma). Cells were also transfected with a control GFP esiRNA in antibiotic-free medium (6 h). Cells were glucose starved overnight in SF-DMEM, and induced for insulin (90 min) or left unstimulated (SF-DMEM with 600 KIU/mL aprotinin). Cells transfected with a control GFP esiRNA or Lipofectamine (LF RNAiMax reagent) alone responded to stimulation similar to

cells that had not been transfected. Supernatants of cdkall esiRNA (50 nM) knockdown cells assayed for insulin by ELISA had as low as 20% of the mature insulin production compared to a control esiRNA and LFtransfected cultures (Figure 2B). The cells were lysed in RIPA buffer with protease inhibitors and the lysates were processed for Western blots that showed decreased Cdkal1 protein as well as decreased insulin production (Supplemental Figure 1).

Cells were also infected with four different Lentiviral shRNA constructs against the *cdkal1* gene in antibiotic-free medium and selected with puromycin $(3.5 \ \mu g)$. Clones, LC4, LC5, and LC7 that survived puromycin selection were

Figure 3. Insulin B protein and Cdkal1 protein in NIT-1 knockdown cell lysates. Western blots were employed to identify levels of insulin, Cdkal1 and control GAPDH proteins in Control esiRNA (70 nM) and cdkal1 esiRNA knockdown cells unstimulated (Serum Free, SF) and stimulated (KCl) to produce insulin. A. Cdkal1 levels in control LF and GFP esiRNA cells stimulated and not stimulated to produce insulin and in cdkall esiRNA (70 nM) knockdown cells. B. Insulin B protein levels in control LF and GFP esiRNA-treated cells stimulated and not stimulated to produce insulin and in cdkall esiRNA (70 nM) knockdown cells. C. Mouse antibodies were used in Western blots against Insulin B and Cdkal1 or GAPDH. Insulin production was induced by low and high glucose, Tolbutamide, Theophyllin and KCl. Protein levels in cell lysates in Western blots were quantitated with Image J software and normalized to GAPDH levels and expressed as fold-change from control unstimulated (SF) cell lysates. LF - Lipofectamine (1ul); Control GFP-esiRNA 70 nM; cdkal1-esiRNA 70 nM. Protein (250 µg) was loaded on SDS-PAGE gels and immune blotted using mouse antibodies against Insulin B (Clone C-12, Santa Cruz), Cdkal1 (clone E9, Santa Cruz), or GAPDH (Clone MA5-GA1R. Thermo Fisher). GAPDH was used as a loading control.

expanded and DNA isolated and sequenced. Insulin induced cells were analyzed with the GSIR assay, ELISA and Western blot. Compared to normal NIT-1 cells, the secreted insulin levels were 50% or lower with stimulation by Theophylline and KCl (Figure 2C). When cell lysates were assayed for insulin, LC4 stimulated by KCl showed that the knockdown of *cdkal1* by the shRNA construct inhibited insulin production by >60% (Figure 2D). Analysis of stimulated NIT-1 cell lysates by Western blotting showed no significant changes in the levels of Cdkal1 protein in normal NIT-1 cells although knockdown cells had lower Cdkal1 protein levels (Figure 3). The amount of GAPDH control protein was not affected in the Cdkal1 deficient cells.

The function of Cdkall protein's modification of tRNA is accurate and efficient translation of AAG/AAA codons. Insulin mRNA requires the Cdkal1 modification of tRNA^{Lys3} from t⁶A₃₇ to ms²t⁶A₃₇ for insertion of lysine at position 88. A significant decrease was observed in ms²t⁶A relative to t⁶A in RNA (<200 nts) isolated from cells that had been knocked down (Figure 4). We isolated RNA from esiRNA knockdown cells, stimulated and unstimulated for insulin production and control Lipofectamine only (LF) cells. The RNA was fractionated so that we could analyze small RNAs less than 200 nucleotides such as tRNAs without rRNA present (Ambion mirVana miRNA Isolation Kit). The RNA was hydrolyzed to nucleosides and the modified nucleoside analysis conducted by UHPLC-MS/MS (triple quadrupole MS (Waters MS).¹⁶ The ms²t⁶A modification decreased in tRNAs from esiRNA30 and esiRNA50 knockdown cells. As expected, the decrease was most dramatic in tRNA from esiRNA50 cells grown in SF medium, and less so when the cells were stimulated by KCl. The decrease of ms²t⁶A in tRNA is consistent with and probably the cause of a decrease in secreted insulin and increase in precursor insulin mRNA.

Large sequence RNA was isolated from normal and transfected knockdown NIT-1 cells (Qiagen RNEasy Plus kit) and rRNA was removed (Qiagen RNEasy MinElute Kit). Quantitative real-time PCR was conducted to determine the presence of *cdkal1*, precursor insulin, and mature insulin mRNAs.¹⁷ Threshold Cq values were normalized to actin levels. Relative expression was calculated using the $2^{\Delta\Delta Cq}$ method.¹⁸ The expression of *cdkal1* mRNA levels

increased by ~60% in normal NIT-1 cells following stimulation with KCl (Figure 5A). However, in stimulated *cdkal1*-esiRNA treated knockdown cells, the mRNA levels were decreased by $\sim 30\%$ (Figure 5B). To determine the regulation of insulin transcription, we applied a unique strategy using two sets of primers that amplified total mouse insulin I and II mRNA (fully processed mature insulin mRNA) and a precursor mRNA species containing intron 2 (Figure 5C).¹⁷ The levels of mature mRNA and precursor mRNA insulin levels were quantitated and expressed as the real time threshold cycle (C_T) values, in untreated (SF) and KCl stimulated NIT-1 normal or knockdown cells. Although no differences were seen in mature insulin mRNA levels, significant changes in precursor insulin mRNA levels were detected with stimulation to produce insulin (Figure 5D). When the abundance of precursor insulin mRNA relative to mature insulin mRNA in control cells is normalized to 1.00, in stimulated *cdkal1* knockdown cells the ratio is 1.95 relative to mature insulin mRNA. In β-cells when the *cdkal1* gene is non-functional or missing and the tRNA^{Lys3} modification ms²t⁶A has decreased, *cdkal1* mRNA has decreased 30% also. However, the insulin precursor mRNA is significantly increased. Thus, cdkal1 knockdown cells stimulated to produce insulin are yet secreting less mature insulin. Lysates from these cells exhibited significantly decreased insulin and proinsulin.

We asked why should the modification ms^2 - play such an important role in tRNA^{Lys3} in translating the lysine wobble codon AAG in insulin mRNA? When the anticodon U₃₄U₃₅U₃₆ with the adjacent $ms^2t^6A_{37}$ binds the wobble codon G3A2A1, the $ms^2t^6A_{37}$ is three nucleosides distant from the U₃₄:G3 pair. There are three posttranscriptional modifications in the anticodon stem and loop (ASL) of tRNA^{Lys3}, 5-methoxycarbonylmethyl-2-thiouridine at wobble position 34 (mcm⁵s²U₃₄), 2-methylthio-N⁶-

in cdkall esiRNA knockdown cells. A. Insulin mRNA is increased with stimulation in normal NIT-1 cells. B. Mature insulin mRNA is significantly reduced in KCl stimulated knockdown cells. mRNA levels were normalized to actin mRNA and expressed as fold-change to Control normal NIT-1 cells. LF cells - transfected with Lipofectamine only, esiRNA30 transfected with esiRNA 30 nM. In cdkal1-esiRNA treated knockdown cells, the mRNA levels were reduced by ~30%. Threshold Cq values were normalized to actin levels. Relative expression was calculated using the $2^{\Delta\Delta Cq}$ method. C. The insulin mature (blue) and precursor (orange) mRNA levels were assessed with RT-qPCR. RNA isolated from normal or knockdown NIT-1 cells following stimulation for insulin production. The 2-step RT-qPCR method was used to determine the expression levels of insulin mRNA. Threshold Cq values were normalized to actin levels. Expression relative to SF mRNA levels was calculated using the $2^{\Delta \Delta Cq}$ method.

threonylcarbamoyladenosine at position 37 (ms²t⁶A₃₇) adjacent to the anticodon and pseudouridine (Ψ_{39}) at position 39 in the stem. The fully modified ms²t⁶A₃₇ and mcm⁵s²U₃₄ are required to achieve wild-type binding activity of human tRNA^{Lys3} to AAA and the wobble codon AAG. NMR structure determination and molecular dynamics simulations (MDS) of the ASL demonstrated that the ms²t⁶- modification of A₃₇ supports the anticodon nucleoside stack 5' to 3' and reduces solvent accessibility of U₃₆.

To explore the role of the tRNA^{Lys3} modifications at A₃₇ for recognition and decoding, we performed molecular simulations of the anticodon stem-loop of the tRNA (ASL) bound to the mRNA AAG at the A site of the eukaryotic ribosome. We compared three simulations with the ASL-mcm⁵s²U₃₄ with A₃₇, t⁶A₃₇, and ms²t⁶A₃₇ each bound to the wobble codon AAG on the ribosome. First, we considered the effect of the modifications on the codon-anticodon interaction. We compared the hydrogen bonding between the codon and anticodon nucleosides (A1:U₃₆, A2:U₃₅ and G3:mcm⁵s²U₃₄), in the three systems (Figure 6). Interestingly, we observe that the hydrogen bonding is stronger for all three positions of the codon-anticodon base pairs by the addition of the t⁶-modification to A₃₇ and is further enhanced by the addition of the ms²- to t⁶A₃₇. Remarkably, we find that this enhancement is most pronounced when the mcm⁵s²U₃₄:G₃ base-pair is considered, which is the farthest from the A₃₇.

Next, we asked how does the modification at A₃₇ lead to significant strengthening of codon anticodon base-pairing? The dominant locations of the threonylcarbamol-group in both t⁶A₃₇ & ms²t⁶A₃₇ systems has the hydrophilic moieties of the modification (carboxyl and hydroxyl groups) either pointing away from the ASL cavity and remaining well hydrated or are involved in a crossloop interaction with the backbone (2' hydroxyl group) of C_{32} (Figure 7A). The rest of the modification fits inside the ASL cavity through hydrophobic and hydrogen bonding interactions, thereby offering stability to the neighboring codon-anticodon base-

pairs. Furthermore, we observed transient interaction between the terminal methyl groups of ms²t⁶A₃₇ and mcm⁵s²U₃₄ (Figure 7B), suggesting that the enhancement in stability due to the modification at A₃₇ extends to the codonanticodon base pair farthest from A₃₇. Most interestingly, we also found that the t⁶- group interaction with the ASL cavity is more stable with the addition of the ms²- group. The ms²-group boosts the stacking interaction between A₃₇ and the A1 codon of which the threonylcarbamoyl-group is held steady in the ASL cavity. Overall, our molecular simulations reveal a cascading mechanism for $ms^2t^6A_{37}$, in which hydrogen bonding energy and the

Figure 5. The hydrogen bond occupancy for the tRNA^{Lys3} anticodon-codon base pairs. The hydrogen bond (H-bond) occupancy for the tRNA^{Lys3} anticodon-codon base pairs for the mcm⁵U₃₄U₃₅U₃₆ anticodon interacting with the A₁A₂G₃ wobble codon for the three cases of tRNA^{Lys3}-A₃₇, tRNA^{Lys3}-t⁶A₃₇ and tRNA^{Lys3}-ms²t⁶A₃₇. The chart presents the H-bond occupancy for the percentage of the simulation time the base-pairs, A1:U₃₆, A2:U₃₅, G3:mcm⁵s²U₃₄ interact and establish 0, 1, or 2 H-bonds.

Figure 7. The dominant orientation of the hypermoloned his t A3/ shown in space filling model interacting with the anticodon stem loop cavity. A. The terminal carboxyl group of the threonylcarbamoyl-group faces away from the ASL cavity, while the aliphatic carbons and the terminal methyl group fill up the cavity. Stacking between A1, A₃₇ and A₃₈ is enhanced by the addition of the thiomethyl-group to t⁶A₃₇, ms²t⁶A₃₇. **B.** The interaction between hypermodified ms²t⁶A₃₇ and mcm⁵s²U₃₄ shown in space filling model. Hydrophobic contacts between the two modified nucleotides assists mcm⁵s²U₃₄ in maintaining the anticodon:codon interaction at the wobble position.

hydrophobic interactions of base-stacking by the methylthio-group stabilizes the threonylcarbamoyl-group in the ASL cavity. This in turn facilitates the hydrophobic interaction of the threonyl-carbamoyl-group with the methyl-carboxymethyl- (mcm⁵-) group on U_{34} three nucleosides away, stabilizing the codon-anticodon base-pairing at the wobble position for wobble codon AAG recognition.

Other achievements: Why does tRNA^{Lys3} with the fully modified ms²t⁶A₃₇ decode the lysine wobble codon AAG-88 in β -cells, whereas tRNA^{Lys3} lacking the fully modified ms²t⁶A₃₇ in cells deficient of Cdkal1 protein does not decode AAG? In humans, there are three lysine isoaccepting tRNAs that decode the lysine codons AAG and AAA. However, only tRNA^{Lys3} with the anticodon composed of an extensively modified 5-methoxycarbonyl-2thio-U₃₄-UU₃₆ is able to decode AAA and also decode its wobble codon AAG. The other two lysine isoaccepting tRNAs have anticodons that are unmodified, C₃₄-UU. The relative amounts of the three tRNA species in β -cells are unknown. Codon binding analyses have shown that the 5-methoxycarbonyl-2-thiouridine-34 (mcm⁵s²U₃₄) and the ms²t⁶A₃₇ are important for decoding AAG. The ms²t⁶A₃₇ maintains in the NMR-restrained molecular dynamics derived solution structure, the anticodon in an open loop conformation required for ribosomal binding. With each of the two lysine codons bound into the A site in the 30S ribosomal subunit crystal structures, we observed that the tRNA^{Lys3} modified nucleosides mcm⁵s²U₃₄ and ms²t⁶A₃₇ participate in the stability of the anticodon/codon

interaction. Without a doubt, the modifications pre-structure the anticodon for effective and accurate recognition of cognate and wobble codons. The ms²t⁶modification of A₃₇ is a prerequisite for maintaining this structure and reduces solvent accessibility of U₃₆. Modifications provide functional versatility to the tRNA through changes in chemical and structural environments. However, the way in which the ms²-modification participates in the AAA and AAG codon recognition is not known, nor is the degree to which the modifications enhance the wobble versus cognate codon binding. We have used molecular dynamic simulations (MDS) to answer these questions, and we have recently found that the binding to the wobble codon AAG is most significantly enhanced by the ms²t⁶A₃₇ by hydrophobic interactions and the removal of water molecules between codon and anticodon.

Stated goals were not fully met: We did not fully characterize the new murine knockout of *cdkal1* in a murine β -cell line. We wanted to rescue the line with transfection of the **human**

Figure 8. MSD determination of H-bond occupancy for tRNA^{Lys3} with A₃₇, t⁶A₃₇ or ms²t⁶A₃₇ when tRNA^{Lys3} is bound to AAG and AAA. MSD determination of H-bond occupancy was determined for tRNA^{Lys3} bound to AAG or AAA on the eucaryotic ribosome. Left: Percent occupancy (gray is A₃₇ with AAG; yellow, AAG with t⁶A₃₇; pink, AAG with ms²t⁶A₃₇, black, A₃₇ with AAA; yellow, AAA with t⁶A₃₇; pink, AAA with ms²t⁶A₃₇.) Right: Average H-bonding (color code the same.)

Figure 9. Hydration of tRNA^{Lys3} anticodon bound to codon with t^6A_{37} vs. $ms^2t^6A_{37}$. The anticodon bound to the codon creates a cavity which has a degree of hydration depending on the hydrophobicity of the interaction. MDS show that the $ms^2t^6A_{37}$ is more hydrophobic and repulses water thereby enhancing the modification's ability to cross duplex stack.

cdkal1. Description of other pertinent data and graphs: Upon full examination of H-bonds between the codon and anticodon, we found that the average H-bond occupancy was no different for $t^{6}A_{37}$ and $ms^{2}t^{6}A_{37}$ (Figure 8). The modifications $t^{6}A_{37}$ and $ms^{2}t^{6}A_{37}$ provide added H-bond strength but there is no difference between the two. However, the ms^{2} - group affects the hydration of the ASL:codon helical cavity (Figure 9). Wobble decoding of G₃-U₃₄ in the AAG codon by tRNA^{Lys3}, benefits from the modifications at both the 34th and the 37th position. The threonyl group of $t^{6}A_{37}$ stabilizes the conformation of the anticodon stem loop via cross loop interactions with mcm⁵s²U₃₄ The methyl-thio group adds additional stability by holding the threonyl group in place, and further dehydrating the ASL.

4) A succinct description of the methodology used: NIT-1 is a β -cell line established from a transgenic mouse with the SV40 large T-antigen. It is grown in Hams F12K medium (F12K with L-Glutamine 90%; heat-inactivated, dialyzed fetal bovine serum 10%, FBS, Sigma; and 1 X penicillin-streptomycin, Invitrogen). Theophylline (10 mM with 5.5 mM glucose), glucose or KCl were used to stimulate insulin production. To knockdown the gene, we transfected an experimental esiRNA (endonuclease-prepared siRNA, Sigma) and a control GFP esiRNA with Lipofectamine 2000 and a Lentiviral shRNA (Sigma).

Stimulation of insulin production. NIT-1 has a glucose stimulated insulin response (GSIR) generated with a high glucose concentration (25 mM) when preceded by overnight incubation in low glucose, serum-free medium (SF-DMEM). Insulin production was assayed by ELISA (mouse proinsulin and insulin antibody, ABClonal)

Transfections. Plated cells were transfected with a control GFP esiRNA or cdkal1 esiRNA (30, 50 or 70 nM using Lipofectamine, LF, RNAiMax reagent, 0.5 or 1 μ l, Invitrogen) in antibiotic-free medium (6 h). Cells were then incubated in fresh medium (48 h), serum and glucose starved overnight in SF-DMEM, and induced for insulin (90 min) or left unstimulated (SF-DMEM with 600 KIU/mL aprotinin).

Modified Nucleoside Analysis. Small RNAs (<200 nucleotides) were isolated (Ambion *mir*Vana miRNA Isolation Kit) and the RNA was dialyzed extensively against phosphate buffer (10 mM NaH₂PO₄, pH 6.8) and then against water (18 m Ω). The RNA was hydrolyzed to nucleosides enzymatically rather than chemical digestion. The 2-step process cleaves first the phosphodiester bond with nuclease P1 resulting in nucleoside-5'-monophosphates followed by bacterial alkaline phosphatase (BAP) to cleave the 5'-phosphate from the nucleosides resulting in individual nucleosides and phosphoric acid. The modified nucleoside analysis was conducted by UHPLC-MS/MS (triple quadrupole MS (Waters MS).

RT-qPCR of insulin and *cdkal1* mRNA. We used RT-qPCR to assess the level of expression of mature insulin (mouse insulin I and II) or a pre-insulin or precursor containing intron 2 in normal and in esiRNA transfected NIT-1 cells, induced and not induced for insulin production. Large sequence RNA was isolated from normal and transfected knockdown NIT-1 cells (Qiagen RNEasy Plus kit) and rRNA was removed (Qiagen RNEasy MinElute Kit). A 2-step RT-PCR was conducted to determine the presence of *cdkal1*, precursor insulin, and mature insulin mRNAs (BioRad 2step c-DNA Synthesis kit). The expression and amount of *cdkal1* mRNA was determined by quantitative real-time PCR (RT-qPCR) analysis. Threshold Cq values were normalized to actin levels. Relative expression was calculated using the $2^{\Delta\Delta Cq}$ method.

Molecular Dynamics Simulations. The crystal structure of the mammalian ribosome was obtained from the Protein Data Bank (PDB ID: 5LZS). An intact stable fragment of structure was used for simulations, which included the mRNA, the anticodon stem loop (ASL) of the A-site tRNA, ribosomal RNA and ribosomal proteins within 25 Å of the codon and anticodon minihelix at the A-site. The ASL and the mRNA codon were modified to match the human tRNA^{Lys3} ASL sequence and the lysine codon respectively using MOE. Six different constructs of the ASL:codon pair were modeled with codons AAA and AAG, each paired with the ASL containing the unmodified nucleoside A_{37} , threonylcarbonyladenosine (t⁶ A_{37}) and hypermodified 2-methylthio N⁶-threonylcarbonyl adenosine (ms²t⁶A₃₇). In order to simulate the modified tRNA, AMBER type force-field parameters were developed for the atoms of the modified nucleosides – pseudouridine Ψ , mcm⁵s²U, t⁶A and ms²t⁶A. The geometry of the modified nucleosides was optimized using Hatree-Fock level theory and 6-31G* basis-sets in Webmo. For obtaining the partial charges on the atoms, the online RESP charge-fitting server REDS was used. AMBER-99 force field parameters and AMBER-99 parameters with the Chen-Garcia correction were used for bonded and Lennard-Jones (LJ) interactions, respectively. Molecular dynamics (MD) simulations were performed using Gromacs-2016.4 and Gromacs-2019.6 packages. The MD simulations incorporated a leap-frog algorithm with a 2-fs timestep to integrate the equations of motion. The system was maintained at 300K, using the velocity rescaling thermostat. The pressure was maintained at 1 atm using the Berendsen barostat for equilibration. Longrange electrostatic interactions were calculated using particle mesh Ewald (PME) algorithm with a real space cutoff of 1.0 nm. LJ interactions were truncated at 1.0 nm. The TIP3P model was used to represent the water molecules, and the LINCS algorithm was used to constrain the motion of hydrogen atoms bonded to heavy atoms. The system was subjected to energy minimization to prevent any overlap of atoms, followed by 0.5 ns of equilibration and a 25-ns production run. During simulations, the ribosomal RNA, proteins and the mRNA (except the codon) were held in place using position restraints on the heavy atoms of the RNA and protein backbone with a force constant of 1000 Newton/nm in each spatial dimension for the simulation. Coordinates of the ribosomal fragment (rRNA, tRNA, and mRNA) were stored every 1 ps for further analysis. The simulations were visualized using Visual Molecular Dynamics software and analyzed using tools from Gromacs.

What opportunities for training and professional development has the project provided?

• Training activities. The project provided training for postdocs and undergraduate students. They were able to work with Dr. Agris one-on-one to advance skills and experience and assist others in learning. Postdocs were able to increase knowledge and skill sets, attend conferences, and seminars, and present seminars.

• How were the results disseminated to communities of interest?

Results and conclusions were disseminated through the publication and through seminars and poster presentations • What do you plan to do during the next reporting period to accomplish the goals? Nothing to Report.

IMPACT: Describe distinctive contributions, major accomplishments, innovations, successes, or any change in practice or behavior that has come about as a result of the project relative to:

• What was the impact on the development of the principal discipline(s) of the project?

Nothing to Report; too early.

 ${\scriptstyle \circ}$ What was the impact on other disciplines?

Nothing to Report; too early.

• What was the impact on technology transfer?

Nothing to Report; too early.

• What was the impact on society beyond science and technology?

Nothing to Report; too early.

CHANGES/PROBLEMS: Changes in approach and reasons for change

Nothing to Report.

Actual or anticipated problems or delays and actions or plans to resolve them

We anticipated that the knockdown would be more effective. We had to move on to a knockout of the endogenous *cdkal1*. The knockouts apparently are almost 100% effective.

Changes that had a significant impact on expenditures

Nothing to Report

Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select agents Nothing to Report

Significant changes in use or care of human subjects. Not applicable

• Significant changes in use or care of vertebrate animals. Not applicable

• Significant changes in use of biohazards and/or select agents. Not applicable

PRODUCTS: *Cdkal1* knockout cell line.

Publications, conference papers, and presentations

Journal publications.

Narendran Amithi, Vangaveti Sweta, Ranganathan Srivathsan V., Eruysal Emily, Craft Miranda, Alrifai Omar, Chua Fu Yee, Sarachan Kathryn, Litwa Breann, Ramachandran Sheetal, Agris Paul F. Silencing of the tRNA Modification Enzyme Cdkal1 Effects Functional Insulin Synthesis in NIT-1 Cells: tRNALys3 Lacking ms2-(ms2t6A37) is Unable to Establish Sufficient Anticodon:Codon Interactions to Decode the Wobble Codon AAG Frontiers in Molecular Biosciences, 7: 584228. Published online 2021 Feb 9. Federal support (yes).

Books or other non-periodical, one-time publications. Nothing to Report

Other publications, conference papers, and presentations. Nothing to Report

Website(s) or other Internet site(s) Nothing to Report

Technologies or techniques Nothing to Report

Inventions, patent applications, and/or licenses Nothing to Report

Other Products Nothing to Report**PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS** • What individuals have worked on the project?

Name:	Amithi Narendran
Project Role:	Lab manager
Researcher Identifier (e.g. ORCID ID):	

Nearest person month worked:	12
Contribution to Project:	Ms. Narendran has performed work in the area of cell culture, knock downs, Wester blots.
Funding Support:	
Name:	Sweta Vangaveti
Project Role:	Senior postdoc
Researcher Identifier (e.g. ORCID ID):	
Nearest person month worked:	9
Contribution to Project:	Dr. Vangaveti conducted MDS and interpretation
Funding Support:	
Name:	Srivathsan V. Ranganathan
Project Role:	Senior postdoc
Researcher Identifier (e.g. ORCID ID):	
Nearest person month worked:	9
Contribution to Project:	Dr. Ranganathan conducted MDS and interpretation
Funding Support:	
Name:	Emily Eruysal, Miranda Craft, Omar Alrifai, Fu Yee Chua, Emily Eruysal, Miranda Craft, Omar Alrifai, Fu Yee Chua,
Project Role:	Undergraduate researchers
Researcher Identifier (e.g. ORCID ID):	
Nearest person month worked:	6
Contribution to Project:	Assay development and application
Funding Support:	

Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since the last reporting period? No

What other organizations were involved as partners?

Nothing to Report.

SPECIAL REPORTING REQUIREMENTS COLLABORATIVE AWARDS: None.