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ABSTRACT 

 Atmospheric turbulence significantly degrades the performance of High Energy 

Laser (HEL) beams. The three key undesirable effects are: (1) degraded target images 

used for target tracking; (2) inaccurate HEL pointing; and (3) reduction in HEL power 

during propagation to the target. The current approach for compensating for these 

turbulence effects uses adaptive optics to measure atmospheric turbulence and 

compensate the aberration in the optical beam. However, an adaptive optics system has 

limited performance in strong turbulence and an optical system makes the HEL system 

more complex. With improvements in Deep Learning algorithms and further 

development in Artificial Intelligence, we used Deep Learning and Convolutional Neural 

Networks to predict the atmospheric turbulence and compensate for its negative effects 

on laser beams. The predicted turbulence can be used for image correction and HEL 

beam correction using a deformable mirror to reduce turbulence effects during 

propagation. 
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I. INTRODUCTION 

High Energy Laser (HEL) systems have immense potential in military applications 

due to its unlimited rounds, precision strike and speed of attack. HEL systems had been 

extensively evaluated and can potentially be effectively against traditional threats like 

missile strikes and adversarial ships (O’Rourke 2015). In addition, asymmetric threats like 

drone strikes, small boat swarm attacks and terrorist suicide bombing are also potential 

areas for meaningful use of HEL. The successful deployment of a HEL system is also 

imperative given that these asymmetric threats are rapidly evolving in the combat 

environment. While traditional weapons like precision missiles are effective against these 

threats, they are usually too costly per round. Other lower cost weapon types lack the 

accuracy, precision, and speed to effectively neutralize such threats. Thus, HEL systems 

present an opportunity for the use of high precision and low-cost per round offensive means 

against both traditional and evolving threats in the military environment (Ang 2012; 

Valiani 2016).  

However, HEL systems do not come without limitations and deployment on naval 

warships has continued to be challenging (Fussman 2014; Corley 2010). As an optical 

system, the HEL is affected greatly by transmission losses in the system and the 

environment the laser travels through. The laser beam can be rendered ineffective at the 

target. Up to 60% of the original emitted power could be lost at the target even before 

accounting for reflected power at the target (Bahman 2016, 49). To increase its 

effectiveness, atmospheric turbulence effects need to be compensated in the laser beam. 

Current technologies for beam correction are limited by the wavefront sensor’s resolution 

and the increasing capital cost to improve correction via the number of correction elements 

in the wavefront sensor. However, with the advent of Artificial Intelligence (AI) and Deep 

Learning (DL) for image correction (He et al. 2015), an opportunity to improve image 

quality and beam effectiveness is available.  

This thesis investigates the use of AI tools like Convolutional Neural Networks 

(CNN) and DL in predicting atmospheric turbulence for laser beam correction to increase 
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the effectiveness of a HEL system. First, a simplified optical model is conceived and used 

as a testbed to evaluate prediction performance of atmospheric turbulence. In particular, a 

point light source on a target and the corresponding Point Spread Function (PSF) image is 

generated for training the network. Zernike polynomials are used to represent the wavefront 

error of the light caused by the atmospheric turbulence. Second, the trained network is 

applied to simulated real-life Unmanned Aerial Vehicle (UAV) images dataset for 

Mongoose and Reaper UAVs. Third, a model is proposed for direct image correction of 

blur image caused by atmospheric turbulence to clear pristine image to improve target 

tracking in the HEL system.  

The computer simulations conducted in this thesis were based on MATLAB’s DL 

toolbox and architecture. For future research work, the model can be reproduced in a 

laboratory environment to evaluate the model’s effectiveness in predicting atmospheric 

turbulence before applying it in field tests and evaluations.  



3 

II. BACKGROUND 

A. HEL SYSTEMS OVERVIEW 

HEL systems are a very broad classification of laser systems deployable on navy 

ships and other military platforms. These systems can range from power ratings of about 

10kW to the MW range. 10kW laser systems are effective against “soft” UAVs without 

any hardened skin while MW lasers can be effective against anti-ship missiles and ballistic 

missiles up to 10 nautical miles (O’Rourke 2015). The below section summarizes the types 

of laser systems being considered by the Navy.  

1. Types of Laser Systems under Consideration by the Navy 

There are three different types of laser weapons being considered for deployment 

in the Navy (O’Rourke 2015; Valiani 2016). Table 1 shows a summary of the respective 

laser types and its key attributes for cost and deploy-ability on a navy ship. Essentially, 

Fiber Solid State Laser (SSL) is a common industrial laser which could be easily deployed 

in a ship but is limited in range and effectiveness against targets which require higher 

power. Slab SSL can be scaled up to 100kW in power and have ranges further than Fiber 

SSL. Free Electron Laser (FEL) is scalable to the MW range which makes it effective 

against anti-ship missiles and ballistic missiles. However, it is costly and difficult to retrofit 

on existing ship platforms and likely needs to be integrated into new ship classes in future 

builds. 
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Table 1. Types of Lasers. Source: O’Rourke (2015). 

Laser Type 
Current 

Typical Power / 
kW 

Cost Factor Deploy-ability Additional Remarks 

Fiber SSL Tens of kW Low  High 
Commonly used in 
industry for cutting and 
welding metals.  

Slab SSL 100kW Medium Medium Good Beam Quality, 
longer range,  

FEL  MW High Low Adjustable wavelength 
Too large to fit in ship  

 

As a proof of concept and for evaluation of a HEL system deployed in an 

operational environment, the USS Ponce (LPD 15), was installed with a Fiber SSL laser 

system in Aug 2014 and much success was reported. The system was reported to be highly 

reliable and maintainable. Also, the cost per shot was less than a dollar and the system was 

proven to be effective against swarm boats or UAVs (O’Rourke 2015). Figure 1 shows a 

photograph of the system deployed in the USS Ponce.  

 
Figure 1. Photograph of HEL Deployed in USS Ponce.  

Source: O’Rourke (2015). 
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2. Limitations of HEL Systems 

Although HEL systems have immense potential to be deployed in the maritime 

environment and in a naval warship, laser systems still have limited effectiveness in 

countering threats due to line-of-sight engagement requirements and beam weakening 

effects due to presence of air molecules in the atmosphere (Bahman 2016, 50; Fussman 

2014). Since laser light propagates through the atmosphere on a straight path, HEL systems 

cannot be used for over-the-horizon targeting or targets that are blocked by objects in the 

middle. Consequently, small boats that gets blocked by undulating waves or targets block 

by other ships in between cannot be engaged by the system. Additional own ship 

maneuvers will be required for target engagement. 

Atmospheric effects are another limitation of the HEL system. The presence of air 

molecules, water vapor and salt particles in the maritime environment significantly alters 

the beam focus and reduces the effective range of a laser. In addition, atmospheric 

turbulence can also be caused by variations in the index of refraction in the atmosphere, 

causing further degradation of the laser beam during its propagation through the 

atmosphere. While the FEL wavelength can be adjusted to reduce the atmospheric 

absorption by water vapor, it is not yet a practical solution for existing naval platforms. 

Fiber and Slab SSL lasers cannot adjust its wavelengths and could not be utilized to 

maximize the range of the laser. (Ang 2012).  

Adaptive Optics (AO) systems with wavefront sensors and Deformable Mirrors 

(DM) are required to correct the atmospheric turbulence before the beam propagates 

through the atmosphere to reduce the effects of turbulence. This correction makes the HEL 

system more complex and harder to deploy on warships, which has limited physical space 

for a complex system. See Section C for a review of AO systems used in laser beam 

correction.  

B. ATMOSPHERIC EFFECTS ON HEL 

Due to the presence of air molecules and the inhomogeneity in temperature, density 

and other properties, laser intensity at the target can be reduced significantly (Puent 2017; 

Fussman 2014). These effects are briefly explained below. See (Bahman 2016, 379–387) 
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for a comprehensive review. The scope of this research focuses on correcting the laser 

against atmospheric turbulence effects.  

1. Atmospheric Turbulence  

Atmospheric turbulence is primarily caused by fluctuations in the index of 

refraction of air in the atmosphere. Strong atmospheric turbulence is present in the 

maritime environment and can result in significant power loss. For the laser beam to 

propagate through the maritime environment and maintain its power, atmospheric 

turbulence effects need to be measured and the laser beam corrected for the laser to be an 

effective countermeasure (Liu, Lopez, and Spalding 2020; Xu et al. 2019). The means of 

modelling atmospheric turbulence is discussed in Chapter IV.  

2. Thermal Blooming  

Another prominent effect when laser propagate through the atmosphere is thermal 

blooming. It is a heat-induced change in the optical parameters of the medium that lead to 

changes in radiation propagation (Bahman 2016, 380). Thermal blooming effects are 

nonlinear and are generally harder to reproduce in a simulated computer environment. 

Hence, this study does not include the effects of thermal blooming. Further findings and 

discussions on the thermal blooming in aerosols are found in (Palmer 1980).  

C. ADAPTIVE OPTICS 

The concepts of optics and adaptive optics are required to better explain the study. 

Figure 2 shows a graphical representation of two cases with and without atmospheric 

turbulence in the atmosphere. The wavefront is represented as an imaginary surface 

representing points of a wave that vibrate in unison. When wavefronts of a point source 

pass through an ideal atmosphere with no turbulence, the resulting image observed at the 

telescope is a focused airy disk. However, with turbulence, the resulting telescope image 

is an aberrated image with distortion. The telescope images of these point sources are also 

referred to as PSF images.  
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(a) 

 
(b) 

Figure 2. Graphical Representation of Atmospheric Turbulence and Telescope Image:  
No Turbulence (a), and Presence of Turbulence (b) 

Figure 3 shows a conventional AO component in a laser system. To mitigate 

atmospheric turbulence effects, AO is used to correct laser beams before the beam 

propagates through the atmosphere. The conventional AO system uses a wavefront sensor 

to detect the atmospheric turbulence by measuring light captured at the system and 

formulating the wavefront that it received. For a Shack-Harmann wavefront sensor shown 

in Figure 3, an array of lens capture light from the target and interpolates the received 

wavefront. Coupled with a processing computer, the wavefront is re-constructed, the 

conjugate of the re-constructed wavefront is then fed to the DM to correct the laser beam 

before propagating it through the atmosphere to the target (Murray 2006).  
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Figure 3. A Conventional AO System. Source: Murray (2006).  

While somewhat effective in correcting the laser beam, the AO system is complex 

and requires additional hardware like the wavefront sensor for detection of wavefronts. The 

wavefront sensor is also limited by hardware in terms of resolution given the fixed amount 

of lens available in the sensor for detecting light beams. Given these limitations, the use of 

DL and state-of-the-art CNN could perform better in constructing the wavefront and 

correcting the laser beam. Wavefront sensing and correction is covered in greater detail in 

Chapter IV. 

D. ARTIFICIAL INTELLIGENCE AND DEEP LEARNING 

An alternative to direct wavefront sensing is the use of state-of-the-art correction 

algorithms to apply aberration adjustments directly to the target image. With the advent of 

CNN and DL (Nishizaki et al. 2019; He et al. 2015), it is possible to predict atmospheric 

aberrations using trained CNN on a large dataset of pre-defined images.  

CNN are a rapidly developing field of machine learning where deep neural 

networks are used to predict outcomes given a set of training data. Most CNN applications 

are in object classifications and output regression. CNN used for classification can be 

adapted to perform regressive tasks by fitting the input images to the correct sizes and 

changing the output layer to perform regression instead of classification. 
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Deep learning is the process of training the machine to identify key image features 

and using these features to make regressive output decision. In order to ensure good output 

results from deep learning, the training dataset must be sufficiently large and general so 

that the model is not overfitted on the training data.  

Chapter III will describe in greater detail the use of AI and DL in HEL systems 

applications.  

E. RESEARCH OBJECTIVES 

The two objectives of this research are to develop a computer integrated wavefront 

sensor that precisely predicts the wavefront aberrations due to atmospheric effects and 

introduce active correction to the laser before its propagation through the atmosphere to 

the target. This would greatly improve the laser intensity at the target and hence increase 

the lethality of the HEL system if deployed on a warship. In addition, with improved 

wavefront sensing, the HEL system can be simplified without the wavefront sensor but yet 

provide high resolution wavefront correction.  
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III. APPLICATIONS OF AI IN HEL SYSTEMS 

This chapter describes in greater detail how Artificial Intelligence (AI) can be 

applied in HEL systems to improve accuracy of the laser and help increase the effectiveness 

of the laser beam. The potential improvements using AI are twofold. First, atmospheric 

turbulence could be predicted using techniques available in image processing. Using 

blurred images that were “captured” from exposure to atmospheric turbulence, the DL 

model could back propagate these results and predict the atmospheric turbulence that the 

image was subjected to. Second, the target image blurred by atmospheric turbulence can 

be directly corrected using DL to improve the target’s image on the output of the tracking 

system and can help improve target tracking, which eventually leads to better effectiveness 

of the laser beam.  

A. DEEP LEARNING AND CNN 

AI generally refers to any form of technology that incorporates some form of 

intelligent learning process that allows machines and computers to mimic the construct and 

learning capabilities of the human mind (IBM Cloud Education 2021). AI is a very broad 

field of study and would include many evolving and state-of-the-art techniques newly 

developed. DL is an aspect of AI that uses deep neural networks to figure out a model 

based on data.  

For the human mind, it is reasonably easy to recognize images of handwritten 

numbers shown in Figure 4. However, this task would be extremely challenging for 

computers since these handwritten numbers vary subtly in terms of orientation, size, and 

style. Computers “view” images as a 2-dimensional (black and white images) or 3-

dimensional (colored images) array of numbers. The array size depends on the resolution 

of the image while the numbers in each pixel represents the color tone.  
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Figure 4. Some Handwritten Numbers. Source: MNIST Database 

(n.d.). 

Hence, for computers to recognize images, a different approach is required. The 

concept of neural networks is conceived and first proposed in 1944 (Brij Agrawal, personal 

communication, October 27, 2020). The neural network models the neurons in a biological 

brain and multiplies incoming data and sum it. A nonlinear activation function is applied 

to the output of the neuron, if the output is above a certain preset value, the information is 

passed to the next connection, otherwise, no information is passed. Figure 5 illustrates this 

single node in a neural network. This node is the main building block for neural networks. 

A number of different activation functions can be used but typically, the Rectified Linear 

Unit (ReLU) activation function, shown in the figure, is chosen as it does not saturate and 

converges much faster than other functions.  

 
Figure 5. Design of a Node in Neural Networks 
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The mathematical operation of a node can be represented as 

 
( )

v b
y v
= +
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where )vϕ( is the activation function and vectors w and x are defined as 
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The ReLU activation function is represented as follows. 
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Also, the bias, b, represents the bias of certain nodal inputs and can be used to place 

more weightage on some nodes that are known to contribute to be more important in 

determining relationships between layers. It also affords flexibility to the model to learn 

more complex input-output relations.  

A neural network is made up of thousands to millions of such nodes to analyze 

input images. Each node fires or shuts based on the input that it receives and mimics a 

human mind’s neurons working when trying to recognize images. All parallel nodes in the 

network are further referred to as a layer. DL neural networks are networks with at least 

two hidden layers. Often, a neural network consists of tens to hundreds of layers (Ren et 

al. 2016; He et al. 2015). Figure 6 shows a deep neural network with two hidden layers 

with all input layer nodes fully connected to the next layer.  
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Figure 6. A Convolutional Neural Network. Source: Stanford 

University Open courseware 

The training of CNNs is generally split into supervised and unsupervised training. 

Supervised training refers to training where the corresponding correct outputs are available 

for the network to compare and converge to a predictable output. Unsupervised training 

refers to the training process where the correct output is not available. In this study, all 

training done are supervised training to guarantee performance of the model.  

B. COMPUTER VISION TASKS 

The most common tasks related to computer vision is in classification of images to 

certain categories. For example, automatically classifying wild animals that roam a pre-

defined habitat area. CNN is one of the most common algorithms for DL tasks with image 

classification. It uses convolution filters to extract features from the image to learn and 

perform classification. Figure 7 shows a simplified view of the CNN’s architecture. The 

image is fed into the network which consists of many convolutional layers which extract 

different features like edges and colors, from the image to generate a feature map of the 

images. Using these feature maps and ReLU activation functions, the network is able to 

allocated certain probabilities of each feature map’s relation to the intended classification 

categories. Finally, depending on the number of classes the network is supposed to predict, 

the network maps probability scores for each class and the class with the highest score will 

be the image’s class.  
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Figure 7. Architecture of Convolutional Neural Network.  

Source: Kim (2017, 125).  

Other than classification, the CNN could also have continuous values as an output. 

In this aspect, the task fulfilled is a regression task as the input image eventually generates 

a value at the end of the training. Regression networks are useful when an estimated value 

is required instead of a class. For example, estimating the income levels of a certain 

population group by age is a regression task.  

On top of classification and regression that is the focus of this study, other examples 

of computer vision tasks are object detection and instance segmentation. These are 

frequently employed in self-driving cars and human-machine interactions where it is 

important to differentiate between a living object and other non-living object. In object 

detection, images with objects are detected with a certain confidence level of its class and 

a bounding box. See Figure 8 for an illustration of an objection detection task. It is 

important to note here that prediction is based on probabilistic estimation and not 

definitive. Hence, safety margins would be required for a safe implementation in real world 

scenarios to handle outlying cases.  
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Figure 8. Object Detection in Self-driving Cars.  

Source: Archie Shou (2020).  

C. WAVEFRONT PREDICTION AND CORRECTION  

With the computer’s ability to “see” images and derive relationships between the 

input images and expected output, the task of wavefront prediction and correction can be 

fulfilled using DL. First, the CNN can be fed images with known atmospheric turbulence 

induced aberrations (modelled with 33 term Zernike polynomials) and a prediction can be 

derived by the trained CNN. Second, the CNN can be used to deduced blurred images given 

correct clear pristine images as reference training material.  

There are broadly two different types of wavefront sensing approaches. The first is 

aperture plane (direct) sensing and second is image plane (indirect) sensing (Murray 2006). 

Direct wavefront sensing requires a device like the Shack-Harmann wavefront sensor 

previously mentioned to detect the wavefront error using the incoming image as a basis. 

On the other hand, indirect methods do not directly measure the wavefront. It deduces the 

wavefront by using relevant information and passes correction parameters to the DM 

directly. An example is by sharpening the image directly to produce a pristine image for 

use. Using DL to predict wavefronts is a type of indirect wavefront prediction method.  
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D. REVIEW OF RESNET 

The Residual Network (ResNet) was introduced by (He et al. 2015) for image 

classification using deeper neural networks. While the ResNet was substantially deeper 

than other neural networks proposed, it was easier to train and optimize because of its lower 

complexity. This network was used for image classification in ImageNet test set and won 

the 1st place on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2015 

classification task. Due to its success and accuracy in image classification, this network 

was chosen for our study and modified for regression tasks.  

The main feature of the ResNet is a residual learning block which bypasses certain 

number of layers such that the original data is still retained. These short-cut connections 

do not add additional learnable parameters or contribute to the complexity of the 

computation, which makes the network trainable with lesser time and resources. 

E. REVIEW OF U-NET 

The U-Net is a CNN used for biomedical image segmentation. It consists of an 

encoder and decoder subnetwork that are connected by a bridge section which enables 

strong data augmentation in training the network. This network could be used to train from 

start to end using very few images and yet still outperforms other networks in image 

segmentation of electron microscopic stacks (Ronneberger, Fischer, and Brox 2015). This 

network allows image to image regression tasks, which was used for image correction of a 

blurred image to a clear pristine image for improving target tracking. Furthermore, the 

input image layer of the U-Net is customizable, which affords flexibility in different input 

sizes and hence is more versatile to be deployed on different images sources.  

The main features of the U-Net are the ability to obtain good training results even 

with little image dataset. The simplicity of the network also means that the network is 

sufficiently fast for close to real time applications in the context of target tracking or HEL 

beam propagation.  
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IV. APPROACH OF STUDY

This chapter describes some of the mathematical methodologies and theories 

behind this study including some important performance measures for image correction 

applications in HEL systems. The chapter starts off with description on how atmospheric 

turbulence is modelled mathematically using 33 term Zernike polynomials by representing 

phase value using a linear combination of base functions. Thereafter, turbulence strength 

and performance measures like the Fried parameter, ro, and Strehl ratio, s, is explained. 

Finally, the chapter ends with an evaluation of the limitations of the approach of research 

and real-world application constraints which will require physical testing to validate the 

effectiveness of the model.  

A. MODELLING TURBULENCE USING ZERNIKE POLYNOMIALS

The most common method to represent atmospheric turbulence effects on a beam

is through the use of Zernike polynomials. Zernike polynomials are a sequence of 

polynomials that are orthogonal on the unit disk (Schwiegerling 2017). Expressed 

conveniently in polar coordinates r and θ, the polynomials are the product of an angular 

function and radial polynomials. The radial polynomials are derived from the Jacobi 

polynomials while the angular functions are basis functions for the two-dimensional 

rotation group. This research used Noll’s coefficients (Noll 1976) to represent varying 

atmospheric turbulence effects using Zernike polynomials. The Zernike polynomials are 

defined as 
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The values of m and n satisfy m n≤ , n m even− = . The index j is a mode ordering number 

and is a function of n and m.  

With the Zernike polynomial coefficients, the corresponding wavefront can be 

constructed. The wavefront is an “imaginary surface representing corresponding points of 

a wave that vibrate in unison” (Encyclopedia Britannica n.d.). Figure 9 shows the Zernike 

polynomials and the respective shape of wavefront.  

Figure 9. Zernike Polynomials. Source: Sirena (n.d. 
https://cleanpng.com). 

This study uses 33 term Zernike polynomials to model atmospheric turbulence. The 

first three terms - piston, vertical tilt, horizontal tilt - are eventually omitted in the results 

since these three terms are usually associated with target tracking and if the target is not 

tracked, the model should not generate any predictions.  
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B. DATA GENERATION  

Using randomized coefficients of Zernike polynomials over a normal distribution 

with mean and variance determined experimentally (Noll 1976), a 33 term Zernike 

polynomial representation of atmospheric turbulence is generated. With this Zernike 

polynomial representation of atmospheric turbulence, the corresponding wavefront is 

constructed, and the Point Spread Function (PSF), h, obtained. The wavefront, w, is 

represented with the 33 term Zernike polynomial, zi, with the normally distributed 

coefficients ai.  

 ( ) ( )
1

, ,i i
i

w r a z rθ θ
∞

=

=∑  (5) 

Here, r is the radial distance and θ is the azimuthal angle in polar coordinates. The PSF, h 

is transformed using the Fourier transform, F  

 [ ] 2
h F w=  (6) 

Finally, the target scene of interest, f, is convolved with the PSF, h, giving the blurred 

image g. 

 g h f= ⊗  (7) 

These generated data of Zernike polynomials, wavefronts and the corresponding 

PSF and are used in this research extensively. Hence it is necessary to first explain the 

process of data generation and its usage. First, the PSF is simulated using a distant point 

light source at diffraction limit. The PSF (input image) and the 30 term Zernike polynomial 

(output) are used to predict the correct Zernike polynomials coefficients using the modified 

ResNet-18 CNN architecture. Second, the PSF images from the first part is convolved with 

the UAV images dataset available at NPS to generate blurred extended point source images 

with known Zernike polynomials coefficients from the first part. This is important since 

the availability of known Zernike polynomials coefficients in real-world scenarios are rare 

which makes simulations like this resource efficient and effective. Thirdly, the blurred 

UAV images are used as inputs to the Unet CNN and the original clear UAV images as 
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outputs for direct image to image correction without using Zernike polynomials. Table 2 

shows the training parameters that were used to generate the images used for training.  

Table 2. Summary of Training Parameters Used 

Parameter Values Additional Information (If Any) 

Aperture Size / m 0.3 Size of Telescope 

Grid Size 224x224x3 

- Black and white images: Repeated 
in three channels 

- RGB images: Stacked images with 
different defocus levels 0,5 and 10  

Wavelength, λ / μm 1.0 Laser beam wavelength  

Target Distance, z / m 4,000 - 

ro / m 0.01 to 0.1 -  

Number of Images 20,000 - 

 
 

1. Point Source Images 

As an initial simulation baseline, 20,000 PSF images were created using 33-term 

Zernike polynomials for training as described above. The first three terms (piston, vertical 

tilt, and horizontal tilt) from the results were set to zero since the target would need to be 

within the optical device’s line of sight for initial application. A sample of the 30 term 

Zernike and the corresponding PSF image is shown in Figure 10.  
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Figure 10. Example of PSF Images Generated for Simulation: Zernike 
Polynomials (a), and Corresponding PSF image (b) 

2. UAV Images 

The second set of images generated were blurred UAV images. A dataset of 

200,000 clear pristine simulated Reaper and Mongoose UAV target images were available 

at NPS for use. These UAV images were convolved with the PSF images created in the 

first part to generate a corresponding blur UAV image with known Zernike polynomials. 

This dataset was then used for the second and third part of the study for UAV images 

Zernike prediction and direct image correction. The respective Zernike polynomials were 

also tagged to the blurred images for results comparison. Figure 11 shows a sample of the 

UAV images generated.  

  

a (b) 
(a) 
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(a) 

     

(b) 

     
Figure 11. Example of UAV Images Generated for Simulation: 

Original clear UAV Images (a), Blurred UAV Images with Zernike 
Polynomial Recorded (b) 

C. NUMERICAL MEASURES 

1. Fried Parameter, r0, and Strength of Turbulence, Cn2 

The Fried parameter, r0, is a measure of the quality of light transmission through 

the atmosphere due to turbulence effects. Typical Fried parameter that gives good image 

quality is about 20 to 40cm (Axtell 2014). The value of 10cm was selected for initial 

investigation and smaller value (more turbulence) ranges were used to test the effective 

limit of the DL model in predicting and correcting images with r0 up to 1cm. The 

corresponding refractive structure constant, Cn2, is related to the Fried parameter (Fussman 

2014) by the equation 

 

( )
6

5

0 3
3 525

0.33

n

r
d C

λ
≈ , (7) 

where λ is the wavelength of the laser, d is the target distance. Typical values for the 

strength of turbulence, Cn2, is 10–17m-2/3 and 10–13m-2/3 for weak and strong turbulence, 

respectively (Fussman 2014). In this work, varying r0 and Cn2 conditions are simulated 

with the Zernike polynomial coefficients representation of atmospheric turbulence.  
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2. Strehl Ratio 

The Strehl ratio is a “measure of the quality of optical image formation” originally 

proposed by Karl Strehl (Strehl 1902). It is used in imaging through atmospheric turbulence 

as a measure of the aberration and has a range between zero to one. With one representing 

a hypothetically perfect clear image. The ratio is used to compare against an ideal case 

where the laser beam is un-aberrated and estimate the effectiveness of the laser beam at the 

target. A simplified Strehl ratio can be calculated (Sacek 2006) as 

 
( )22

1S
e πω

≈ , (8) 

where e is the natural logarithm base and ω is the Root Mean Square wavefront error. The 

Strehl ratio is also used in the work to represent the wavefront estimation error from deep 

learning algorithms.  
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V. SIMULATION RESULTS AND POTENTIAL ERRORS 

In this chapter, the simulation results using different input images to obtain the 

wavefronts are presented. The first type of images used is PSF images generated using 

Zernike polynomials. The second type of images is UAV images that are convolved with 

the PSF images to generate a dataset with blur UAV images and their respective Zernike 

polynomials. Finally, the CNN is trained directly using image to image regression to obtain 

a clear image. All training used 20,000 images from the overall set of 200,000 images.  

A. POINT SOURCE IMAGES 

The PSF images generated were used to train the ResNet-18 CNN to output the 

expected 30 term Zernike polynomial. The prediction accuracy was found to be poor. Other 

than using a focused PSF image, defocus was also added to the PSF image to simulate 

phase diverse data for simulation. Figure 12 shows the PSF image from Figure 9 with an 

added defocus level of 5, 10 and 20 in the focus term of Zernike polynomials. Due to the 

nature of image recognition-related DL and the computer “seeing” these images, the 

prediction results obtained was best when defocus was added. This likely gave the network 

more information to predict and estimate the Zernike polynomials compared to the focused 

PSF image which has little information all concentrated in a few pixels in the middle of the 

image.  

   
 
 

Figure 12. PSF Image with Defocus Added of 5 (a), 10 (b), and 20 (c) 

(a) (b) (c) 



28 

Simulations for three defocus levels at 5, 10, 20 were run. Other than adding 

defocus to increase the amount of pixel information in the image, three layers of zero, five, 

and 10 defocus levels were stacked together to form the three channels of the RGB image 

for a final run to test the estimation accuracy for images containing different phases. Table 

3 summarizes the training results. Clearly the increase in the level of defocus added helped 

improve the training and validation errors. Nevertheless, the contribution to accuracy by 

adding of defocus reaches a diminishing value once the majority of the pixels in the image 

are filled up.  

Table 3. PSF Image Training Results for r0=10cm and Added Defocus 

Level of Defocus Training 
RMSE 

Validation 
RMSE 

RMS 
Wavefront 
Error / e-04 

Corresponding 
Strehl Ratio 

No Defocus 1.2576 1.2606 22 0.973 

+ 5 0.4262 0.4167 6.79 0.992 

+ 10  0.2732 0.2724 4.54 0.994 

+ 20 0.2276 0.2115 3.46 0.996 

Stacked image 
with three levels 
of defocus 0,5,10 

0.3176 0.3137 5.08 0.994 

 

A closer look at the training results indicates that without defocus added, the model 

is unable to predict well the Zernike polynomials and the results were unable to be used in 

HEL systems for wavefront correction. Figure 13 shows the overall scatter plot for the 

complete dataset of 20,000 training PSF images.  
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Figure 13. Scatter Plot of PSF Images Predicted versus Actual Zernike 
Polynomials—No Defocus Added 

From Figure 13, it is observed that the predictions for a focused PSF image causes 

false predictions along the entire spectrum of 30 Zernike Coefficients. Due to the likely 

lack of information in a focused PSF image, 8.6% of the predicted Zernike terms were near 

zero and failed in predicting a reasonable Zernike value. In contrast, the added defocus of 

20 helped improved the estimation results and gave a much better prediction of the Zernike 

Coefficients to generate the wavefronts. Figure 14 shows this improvement where the 

prediction error standard deviation was 0.0337 compared to 0.163 in the case where no 

defocus was added.  
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Figure 14. Scatter Plot of Predicted versus Actual Zernike Coefficients 
with +20 Defocus 

Using the best results for added defocus of 20, the CNN model was used to test 

against a new generated test set of up to 1,000 PSF images. A sample of the prediction 

results is shown in Figure 15. Prediction is highly accurate and predicting time was about 

54ms1 per image, slightly more than 33ms for real-time processing.  

 
1 Using a standard laptop computer with i3 CPU, 8GB of RAM and integrated graphics card.  
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Figure 15. Sample of Predicted Zernike Coefficients for PSF Images 
with Added Defocus +20 

Given the close approximation of the actual Zernike Coefficients in the predicted 

values, the predicted wavefront also closely resembles the actual wavefront as illustrated 

in Figure 16.  

   
 
 

Figure 16. Generated PSF Images of Actual Wavefront (a), Predicted 
Wavefront (b), and Wavefront Error (c)  

Building on the good results from r0=10cm, further simulation was run to test the 

limits of the model in strong turbulence by setting the r0 values from one to five, with one 

being the strongest turbulence. The results start to fail at r0 smaller than 2cm as the Strehl 

ratio drops significantly over the range of r0 values. Table 4 provides a summary of the 

results of varying r0 values. 

(a) (b) (c) 
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Table 4. PSF Image Training Results for r0=1 to 5cm Stacked Images 

r0 /cm Training 
RMSE 

Validation 
RMSE 

RMS 
Wavefront 
Error / e-3 

Corresponding 
Strehl Ratio 

1 28.564 48.551 82.7 0.354 

2 5.807 8.072 13.3 0.846 

3  2.603 3.024 4.6 0.944 

4 1.562 1.676 2.5 0.969 

5 1.090 1.032 1.6 0.980 

 

B. EXTENDED POINT SOURCE UAV IMAGES  

While PSF images are useful as a first approximation and proof-test of the 

simulation method, actual UAV images are more practical for use in HEL systems. Hence, 

the next dataset used is the simulated real-life UAV images from the Reaper and Mongoose 

UAV target images dataset. These images were convolved with the PSF images previously 

generated using randomized Zernike polynomials from the first part. A similar approach to 

the PSF images was adopted to train the ResNet-18 CNN to output the expected 30 term 

Zernike polynomial. The same parameters were also used as per listed in Table 2. 

The same levels of defocus were also added to the UAV images to test the response 

compared to PSF images. Figure 17 shows the original in-focus UAV images and the 

respective post-processed images that had defocus added. Images (c) through (f) has no 

visible differences since the only distinction between them is the level of defocus that was 

added to the image. 
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Figure 17. Types of UAV Images Used: Original Clear (a), 
Blurred No Defocus (b), Defocus +5 (c), Defocus +10 (d), 

Defocus +20 (e), and Stacked (f) 

Defocus was added to increase the amount of information fed into the CNN to 

improve the accuracy. A total of three other runs were conducted for defocus levels at 5, 

10, 20. Finally, three layers of 0, 5, and 10 defocus levels were stacked together to form 

the three channels of the RGB image for a final run to test the estimation accuracy for 

images containing different phases. Table 5 summarizes the training results. Clearly the 

increase in the level of defocus added helped improve the training and validation errors. 

Nevertheless, the level of defocus added reaches a diminishing value once the majority of 

the pixels in the image are filled up as in the case with PSF images.  

  

(a) (b) (c) 

(d) (e) (f) 
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Table 5. Summary of UAV Image Training Results for Added Defocus 

Level of Defocus Training 
RMSE 

Validation 
RMSE 

RMS 
Wavefront 
Error / e-3 

Corresponding 
Strehl Ratio 

No Defocus 1.5007 1.4807 2.5 0.969 

+ 5 1.1007 1.1113 2 0.975 

+ 10  1.074 1.0966 1.9 0.976 

+ 20 1.224 1.290 2.2 1.000 

Stacked image 
with 3 levels of 
defocus 0,5,10 

0.9774 0.991 1.8 1.000 

 

A closer look at the training results indicates that unlike the outcome for PSF 

images, the UAV images dataset did not result in better prediction with added defocus. 

This fits well with the explanation previously since the UAV images already had 

sufficiently large amount of pixel information in each image unlike the few concentrated 

pixels in the PSF images with no defocus added. Consequently, the results for using UAV 

images as inputs was best with stacked images with three different defocus levels compared 

to the highest defocus level for PSF images. Using UAV images as input likely need a 

different approach for pre-processing the image to obtain better results. This will be 

discussed at the end of this chapter on possible improvements.  

Similar to PSF images, the predictions for UAV images with no added defocus 

results in false predictions along the entire spectrum of 30 Zernike Coefficients. This is 

illustrated in Figure 18. The added defocus helped improved the estimation results and 

gave a much better prediction of the Zernike polynomials to generate the wavefronts. 

Figure 19 shows this improvement and all predicted Zernike terms were within standard 

deviation of 0.165 of the original Zernike coefficients. However, the standard deviation is 

large and needs to be further improved.  
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Figure 18. Scatter Plot of UAV Images Predicted Versus Actual 

Zernike Coefficients—No Defocus Added 

 
Figure 19. Scatter Plot of Predicted Versus Actual Zernike 

Coefficients with +20 Defocus 
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Using the best estimation results in Table 5, for stacked images, the model was used 

to test against a new generated test set of up to 1,000 PSF images. A sample of the 

prediction results is shown in Figure 20.  

 
 

Figure 20. Predicted Zernike Coefficients for Stacked UAV Images 

The corresponding predicted wavefronts are illustrated in Figure 21.  

   
 
 

Figure 21. Results from UAV Images: Actual Wavefront (a), 
Predicted Wavefront (b), and Wavefront Error (c) 

C. DIRECT IMAGE CORRECTION  

Other than using Zernike polynomials to model turbulence, the CNN also has the 

ability to be trained directly for image correction without using Zernike polynomials. This 

section makes use of the UAV image dataset that was created in the previous part to train 

(a) (b) (c) 
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the Unet CNN to take as inputs blurred UAV images and output clear pristine images. A 

set of 20,000 blurred and clear original images were used for training. Figure 22 shows a 

sample of these images with the de-blurred image. The Unet CNN was trained to output 

de-blurred images with clear outputs. The average processing time needed for one image 

is about 0.9s, which is still some way off the real-time requirements of operational 

requirements in a naval combat environment. While there is some promise in the CNN’s 

ability to correct blur images and output clear images, the model needs to be further 

improved to ensure operationality on a naval ship.  

   
 
 

Figure 22. Sample Training UAV Images: Original Clear, 
Blurred, r0=10cm (b), and De-Blurred (c) 

D. POSSIBLE IMPROVEMENTS  

One possible improvement to increase the accuracy of prediction is to include some 

form of pre-processing integral to the CNN architecture. This would help to filter out 

unwanted “noise” from the image. Real-world UAV images come with unwanted 

information like clouds and shadows which increase the complexity of the image and 

reduce the accuracy of prediction. Pre-processing the image would focus the information 

processing to the key features of the UAV and would likely result in better prediction 

accuracy.  

The study was confined to dataset of two UAVs—the Mongoose and Reaper UAVs. 

While the trained networks are still usable for other UAVs, it may not give good results. 

Training data needs to be general enough to prevent overfitting. Hence, more training data 

(a) (b) (c) 
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UAV types may be required to improve the overall applicability of this model for other 

UAV types.  

The used of direct image correction yields good results to give clearer UAV images 

and the spectrum of application is large. However, the applicability of this method is 

confined by the long processing time needed. Perhaps a customized CNN specific for this 

task would reduce the number of parameters in the CNN and reduce the processing time to 

a more palatable speed for deployment in naval ships.  
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VI. CONCLUSION AND RECOMMENDATIONS 

The results from this study indicate that AI could be utilized as a means to correct 

images for atmospheric turbulence so that the corrections can be applied to laser beams to 

improve the HEL system’s effectiveness against intended targets. First, PSF images were 

used for testing the feasibility of the CNN model and this was further applied to simulated 

real-life UAV images with limited success. Further improvements need to be integrated to 

enhance the effectiveness for UAV images. Finally, it was shown that CNNs could be used 

to directly correct a blurred image to give a clear image. However, real-time image 

correction is not completely achievable given the need to process large amounts of image 

information before correction can be done.  

A. PSF IMAGES 

The results from the first part of the study indicates that the CNN networks work 

best when more information is presented to the network. The initial poor results from the 

PSF images with no defocus added had very little information all concentrated in the 

middle of the image and the rest of the image has no useful information for the network. 

Thus, prediction results were inaccurate and could not be used to obtain a reasonable model 

for use. With the adding of defocus, the image size is “enlarged,” and additional aberration 

features added to the image. This helped improve the accuracy drastically and prediction 

was very accurate for moderate to strong levels of turbulence. This hypothesis was further 

enforced when the levels of defocus added helped further improve the prediction accuracy. 

The highest defocus level added gives best results.  

B. UAV IMAGES 

While the prediction results for PSF images improved with defocus levels, this 

outcome was not replicated in the UAV images training dataset. The likely cause of this is 

the complexity of an UAV image compared to a PSF image. Viewed in totality, the PSF 

image resembles closely a binary output of 1s and 0s depending on the shade of the pixel. 

However, the UAV image consists of higher order data types like clouds in the atmosphere, 

UAV silhouette, features of the UAV structure which was not easily distinguishable from 
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the target of interest. Thus, the prediction results for UAV images were poorer than PSF 

images. This is also largely in-line with intuition.  

C. DIRECT IMAGE TO IMAGE PREDICTION  

In image-to-image direct prediction of clear images, the results were accurate. 

Although at stronger turbulence of r0 < 4cm, the model does not work well as the UAV 

image is almost indistinguishable from the original image. Without traces of the original 

UAV image as a guide, the network is unable to miraculously predict the existence of a 

target.  

D. RECOMMENDATIONS AND FUTURE WORK 

Finally, the applicability of AI in HEL correction and target tracking had been 

proven in the simulation environment and some realistic UAV datasets. To further improve 

the accuracy of the model and real-world scenarios, laboratory tests using actual laser 

systems are useful for evaluating the effectiveness of the CNN model before full 

implementation in the field for real-world testing. Further work is also required to 

customize CNNs for use in real-world images before its implementation in actual HEL 

systems. Some possible improvements are to integrate some level of pre-processing such 

that the features of the UAV image are first enhanced through some masking function 

before feeding it into the CNN for prediction. This may potentially improve target tracking 

and prediction accuracy. This also makes the UAV image output closer to a PSF image’s 

binary information layer which makes prediction easier with lesser noise in the image.  
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