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ABSTRACT 

Currently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

transmission is increasing amongst the world’s population at an alarming rate. Reducing 

the spread of SARS-CoV-2 is paramount for public health officials as they seek to 

effectively manage resources and potential population control measures such as social 

distancing and quarantine. By analyzing the United States’ county network structure, one 

can model and interdict potential higher infection areas. County officials can provide 

targeted information, preparedness training, and increased testing in these areas. While 

these approaches may provide adequate countermeasures for localized areas, they are 

inadequate for the holistic United States. We solve this problem by collecting 

data on coronavirus-19 (COVID-19) infections and deaths from the Center for Disease 

Control and Prevention and a network adjacency structure from the United States Census 

Bureau. Generalized network autoregressive (GNAR) time series models have been 

proposed as an efficient learning algorithm for networked datasets. This thesis fuses 

network science and operations research techniques to univariately model COVID-19 

cases, deaths, and current survivors across the United States’ county network structure. 
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Executive Summary

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has shaken
the very fabric of modern society. Coronavirus disease 2019 (COVID-19) has claimed
the lives of millions of individuals as families struggle to provide basic necessities as
economies are decimated. While scientists, researchers, and epidemiologists struggle to
develop adaptive models to understand and forecast SARS-CoV-2, public health officials
have grappled with uncertainty as the virus spreads amongst the population.

Due to the ubiquitous use of machine learning and openly available information, re-
searchers are able to collaborate and develop effective models to disrupt and combat the
spread of SARS-CoV-2. By collecting and analyzing COVID-19 statistics within a given
area, one is able to develop a deeper, holistic understanding of the civil domain. Com-
partment models such as the susceptible-infected-recovered (SIR), susceptible-infected-
infected-recovered (SIIR), and susceptible-exposed-infected-recovered (SEIR) provide an
epistemological method while techniques such as agent-based simulations are able to model
individual movements.

This thesis utilizes information from the Center for Disease Control and Prevention (CDC),
United States Census Bureau (USCB), National Bureau of Economic Research, and United
States of America Facts (USAFacts) to develop and model a network containing univariate
data being either COVID-19 infections, deaths, or survivors. Due to the time-dependent
nature of the data, this thesis utilizes two primary measures of performance: mean absolute
scaled error (mean absolute scaled error (MASE)) andmean absolute percentage error (mean
absolute percentage error (MAPE)). This thesis demonstrates that the data permutations and
generalized network autoregression (GNAR) parameters are able to effectively model the
spread of SARS-CoV-2.

Despite these promising results, data analysts must work closely with public health officials
to ensure a model remains useful and relevant. Data analysts should defend the usefulness
and application of theirmodels but insist on integrationwith a human acumen. Cumulatively,
this model provides local, state, and federal public health officials situational awareness
within the United States.
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CHAPTER 1:
Introduction

1.1 Background
The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic
and its subsequent coronavirus disease 2019 (COVID-19) infection is spreading across the
planet at a frightening rate causing debilitating damage to the fabric of our very existence.
Economies have been crippled. Health care systems and resources have been strained. Food
security has been tested. Families have been torn apart as loved ones are lost (World Health
Organization 2020).

However, epidemics such as as SARS-CoV-2 are not a recent phenomenon for humanity.
Throughout history, diseases, viruses, and pathogens have resulted in countless deaths
and instilled fear in untold others. Shamans, healers, doctors, scientists, public health
officials, and researchers alike have sought to understand an outbreak to disrupt, bring
under control, and ultimately eradicate the deadly plague of their time. Through their
research and discipline, the modern practice of epidemiology was born.

Epidemiology is defined as “the study of the occurrence and distribution of health-related
events, states, and processes in specified populations, including the study of the determinants
influencing such processes, and the application of this knowledge to control relevant health
problems” (Porta 2014). Epidemiology serves as a critical component for doctors and health
officials to shape public health policy decisions by designing, collecting, and analyzing
historical, contemporary, and emerging threats. Epidemiologists utilize a variety of tools
and techniques to aid in their analytical techniques.

In this thesis, we utilize the United States county network to forecast COVID-19 infections,
deaths, and survivors within each county.

1



1.2 COVID-19 Modeling Approaches
Due to the exponential growth of big data acquisition and the advancement of machine
learning techniques in recent years, epidemiologists and data scientists are able to syn-
chronise their efforts to create a predictive forecasting model with relative ease. Network
science has certainly benefited in recent years from advancements in computational capacity
and capability as researchers continue to expand the scientific study of networks and their
applications. In particular, social and telecommunications networks provide researchers an
opportunity to analyze an individual’s connections and key influencers, respectively.

As epidemics naturally contain data that is directly related to a specified time period, time
series models such as Holt-Winters or seasonal decomposition provide an additional model
opportunity. The susceptible-infected-recovered (SIR) compartmentalmodel and its variants
provide researchers with an opportunity to efficiently classify individuals into categories as
they receive and recover from a given pathogen. Agent-based simulations provide another
alternative by modeling individual movements and a pathogen’s transmission within a
community.

1.3 United States County Network
As of the 2020 census, the United States is divided into 3,143 county and county equivalents
each with their own adjacency structure (United States Census Bureau 2020a). As such,
this thesis applies network science techniques to determine underlying characteristics and
properties, which can be used to develop a holistic understanding of the country. For
example, a network’s centrality measures and clustering coefficient enable the network to
be disintegrated and analyzed further. To better represent the United States’ county network
structure, adjacencies can be represented as either binary or the great circle distance between
county centroids.

1.4 Data Availability and Model Adaptation
All data in this thesis are openly available from organizations such as United States of
America Facts (USAFacts), theUnited States CensusBureau (USCB), theCenter forDisease
Control and Prevention (CDC), and the National Bureau of Economic Research. Figures
1.1 and 1.2 depict the total number of COVID-19 cases and survivors as well as deaths,

2



respectively. Although individuals have certainly contracted COVID-19 but haven’t taken
a diagnostic test and since recovered, this thesis defines the term “survivor” as those
individuals who have tested positive for COVID-19 and recovered. The vertical axis in
Figures 1.1 and 1.2 represents the total cumulative count. The horizontal axis in Figures
1.1 and 1.2 is the given time series for which data was collected. By inspection, the number
of survivors nearly mirrors the number of cases in Figure 1.1. Since both data sets are
cumulative counts, they continue to increase.

Figure 1.1. United States COVID-19 Cases and Survivors. The vertical axis
represents the cumulative total survivors and the horizontal axis represents
time. As we can see from the figure, COVID-19 cases and survivors climb
at an exponential rate. Adapted from USAFacts (2021a) and USAFacts
(2021b).

3



Figure 1.2. United States COVID-19 Deaths. The vertical axis represents the
cumulative total deaths and the horizontal axis represents time. As we can
see from the figure, COVID-19 deaths climb at an exponential rate. Adapted
from USAFacts (2021b).

To model these data, this thesis employs the generalized network autoregression (GNAR)
package in R (Leeming et al. 2020). Researchers created the GNAR package to accept
univariate time series data across a given network structure to analyze, model, and develop
a daily, weekly, monthly, quarterly, or yearly prediction (Leeming et al. 2020). In this thesis,
we utilizeCOVID-19 cases, survivors, and deaths for each county as the univariate datawhile
the network structure is theUnited States county adjacency network.Weuse daily andweekly
time intervals, binary and great circle distance network adjacency structures, and COVID-19
cases, deaths, and survivor univariate data sets, resulting in 12 total combinations. Within
each combination, we specify three individual GNAR models, which adjust the influence a
given county experiences by its neighbors.

1.5 Results and Future Research
Since daily COVID-19 infections are inherently time-based data, we utilize mean absolute
percentage error (MAPE) and mean absolute scaled error (MASE) as our primary perfor-
mance measures to demonstrate that GNAR is able to effectively predict cases, survivors,

4



and deaths. We can employ a Naïve model by setting the forecast for any time period
equal to the previous period’s actual value to establish a baseline performance measure.
Forecasting models that beat the Naïve model are said to have predictive power (Erdem
2021). Each weekly model outperforms the Naïve model and by extension, demonstrates
their employment capability. Additionally, the results in Chapter 4 demonstrate two recur-
rent trends: the MASE and MAPE performance for the case and survivor combinations are
nearly identical and the great circle distance often hinders accuracy. Despite these findings,
the results illustrate that the GNAR package is able to accurately forecast COVID-19 cases,
deaths, and survivors. However, adapting the GNAR package and collecting additional data
could further increase each combination’s accuracy.

Finally, this thesis discusses potential avenues for additional research topics. For example,
we could disintegrate COVID-19 infections to individual zone improvement plan (ZIP)
codes to build a network adjacency structure at a smaller level. Each compartment within
the SIR model could be used as a univariate data sequence. Despite GNAR’s success, this
thesis proposes expanding the current univariate data limitation by modifying or creating an
entirely new package that enables multivariate time series modeling. Multivariate predictors
such as a county’s population, demographics, and economic conditions could be used to
develop a deeper understanding, create a more effective model, and ultimately develop a
more accurate epidemic model to aid public policy officials.

5
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CHAPTER 2:
Literature Review

SARS-CoV-2 is a positive-sense single-stranded ribonucleic acid virus that is contagious
in humans (Machhi et al. 2020). The virus primarily spreads through respiratory droplets
from speaking, coughing, or sneezing (Sanche et al. 2020). While the transmission rate is
not fully known, it is estimated that each infection results in an additional 5.7 cases (Sanche
et al. 2020). The first known cases of COVID-19 were reported in early December 2019 in
Wuhan, China. Since then, the virus has spread and crossed international boundaries with
relative ease and indiscriminately infects and kills individuals, decimates communities, and
disrupts economic activity. As such, new cases can expand at an exponential rate within a
community that has no prior exposure or limited medical capacity and capability. Moreover,
virus mutations are very common and as such, it becomes increasingly difficult to combat
with anti-viral treatments and increased public health measures (Sanju’a et al. 2010). While
not an exhaustive or definitive list, the CDC identified multiple SARS-CoV-2 variants with
several notable variants (Center for Disease Control and Prevention 2020).

Infectious viruses such as Variola, Influenza, SARS-CoV, and human immunodeficiency
virus have often had a crippling effect throughout the history of civilization. Economic,
social, and physical mobility enable individuals to seek and form larger communities, which
creates the conditions for viruses to propagate and spread with consequential and often
devastating results. Throughout history, these dense communities and a lack of education,
awareness, and understanding enabled these viruses to form outbreaks and, as a result,
proliferate unabated. The modern study of epidemiology traces its roots thousands of years
as experts attempt to preserve life. While uneducated, untrained, and often unprepared in
retrospect, physicians, scientists, and biologists studied and applied multiple techniques in
an attempt to slow and ultimately halt a virus’s or disease’s progression.

A network forms as individuals, or nodes, create bonds with one another, or edges, within
and external to their respective communities. In particular, “networks have attracted con-
siderable recent attention in physics and other fields as a foundation for the mathematical
representation of a variety of complex systems, including but not limited to biological and
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social systems, the Internet, telecommunications, and many others” (Newman 2006). As a
result, analysts and epidemiologists can apply graph theory and network science to poten-
tially determine vital information such as a virus’s transmission rate and incubation period.
Network science may also be applied through a diligent and coordinated effort to disrupt a
virus’s diffusion by calculating a node’s centrality measures and notifying adjacent individ-
uals of possible exposure and that they should self-isolate and minimize their exposure to
others. Additionally, a network’s shortest path can also be used to find a path of minimum
cost (or length) between two nodes (Ahuja et al. 1993). Analysts can apply the concept of a
shortest path between two nodes to determine how quickly a virus may spread within a given
network. Public health officials can then interdict and potentially disrupt higher infection
areas by providing targeted information, preparedness training, isolation measures such as
quarantining, and increase testing.

By their vary nature, epidemics contain time series data. Time series data consists of a
series observations for which measurements are obtained at discrete points in time and, as
a result, these data will contain correlated observations in most cases (James et al. 2013).
Consequently, time series data are no longer independent and identically distributed (IID).
Therefore, applying traditional, supervised learning models such as simple linear regression
or regression trees often under perform. However, time series forecasts such as the Holt-
Winters or seasonal decomposition provide researchers alternative models. Epidemiologists
can apply time series analysis to extract essential statistics and then apply time series
forecasts to predict and further develop meaningful insights about a virus or pathogen.

The modern practice of epidemiology fuses studies such as mathematics, statistics, and
sociology to identify, analyze, and dissect risk factors and conditions of diseases and viruses.
Epidemiologists utilize models such as the compartmental Susceptible-Infected-Recovered
(SIR) model to analyze an infectious disease’s progression through a population to predict
future growth patterns, duration, casualties, and the subsequent impact within a community.
In recent years, the ubiquitous use of computing and machine learning (ML) enables
researches to quickly scale and process previously inconceivable amounts of data to improve
the understanding of a populace’s health and to provide time-sensitive recommendations to
public health officials for intervention (Wiemken and Kelley 2020).

Although the methodologies and models previously discussed provide adequate solutions
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in an ever-changing environment, they are often deterministic and inflexible. Viruses are
inherently stochastic in their nature as they evolve and adapt to their surroundings. As a
result, models that incorporate randomness may provide a more accurate representation of
a virus or disease during an epidemic.

While computational prowess has increased exponentially over recent years due to the
number of transistors in a densely integrated circuit doubling approximately every two
years, the utility and notoriety of ML models over simulations have equally benefited
(Moore et al. 1965). Machine learning technology powers many aspects of modern day
life and its ubiquitous nature will continue to prevail (LeCun et al. 2015). As analysts
collect, collate, and analyze data, simulations afford a computationally efficient technique
to implement andmodel a stochastic component.Moreover, embedding randomnesswithin a
simulation creates useful and simplemodels (Sanchez and SanchezTOAPPEAR).Although
certainly beneficial, researchers do not necessarily need to know the exact parameters and
characteristics of the data nor do they need to precisely know the mechanics and interactions
between them. Determining these exact specifications, especially at the beginning of an
epidemic, can be costly or simply infeasible. Instead, researchers and analysts can run a
simulation hundreds of thousands of times with various model parameters and aggregate
observations to determine the data’s underlying structure.

Since the first confirmed diagnosis of COVID-19 in December 2019, the virus has infiltrated
all corners of the globe with nearly every country reporting cases and deaths (World
Health Organization 2021). Consequently, multiple concurrent research efforts to analyze,
model, and predict SARS-CoV-2 and COVID-19 are occurring at unprecedented rates. The
following models provide an overview of various adaptations.

2.1 Network Models
Although established relatively recently, network science has expanded significantly as the
field draws interest from physicists, social scientists, statisticians, mathematicians, biolo-
gists, and computer scientists. Networks such as telecommunications can be depicted using
nodes or vertices and the connections between them as edges. As a result, networks develop
mathematical properties that can, in turn, be analyzed. These characteristics can have a
significant impact on the system’s underlying behavior and can be used to understand how,
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for example, internet traffic may flow or how a disease spreads throughout a community
(Newman 2010).

Social networks are created as individuals form relationships and consequently communi-
ties, which can be analyzed through the use of network science and graph theory. Individu-
als may create edges or connections through familial affiliation, professional relationships,
friendship, dating, or others (Newman 2010). Metrics such as closeness centrality, eigen-
vector centrality, and betweenness centrality offer insight into a node’s significance within
the network. Closeness centrality of a given vertex,�8, is defined by the following equation:

�8 =
1∑#

9=1 3 (8, 9)
, (2.1)

where 3 (8, 9) is the distance between vertices 8 and 9 (Newman 2010). Betweenness cen-
trality of a given vertex, G8, is defined by the following equation:

-8 =
∑ =8BC

�BC
. (2.2)

where =8BC is the number of B − C shortest paths that 8 belongs to and �BC is the number of
shortest paths (Newman 2010). Eigenvector centrality can be used to rank vertices and their
importance relative to other vertices. To compute the eigenvector centrality, let � = (08, 9 )
represent a graph’s adjacency matrix. Then the eigenvector centrality for a given vertex G8
of node 8 is defined as:

G8 =
1
_

∑
:

0:,8 G: (2.3)

where the eigenvalue _ ≠ 0 is a constant (Newman 2010). These centrality measures also
enable researchers to determine the relative importance of vertices.

Clustering and metrics such as :-core, :-clique, and :-plexes also provide other opportu-
nities to understand a network’s structure as they enable researchers to understand various
cliques and communities that form within the network. The :-core is “a maximal connected
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subgraph, where the elements of the subgraph are connected to at least : other elements of
the same subgraph” (Csermely et al. 2013). A “:-clique is a maximal connected subgraph
having a diameter ≤ : , where the diameter is the maximal number of links amongst the
shortest path, which connect any two elements of the subgraph” (Csermely et al. 2013). A
:-plex is “a maximal connected subgraph, where each of the = elements of the subgraoh
is linked to at least = − : other elements in the same subgraph” (Csermely et al. 2013).
By analyzing a network’s clustering metrics, researchers can identify and analyze tightly
connected communities.

Networks, by design, provide an opportunity to analyze the most efficient, or optimal,
method to facilitate the transportation of goods. For example, network flow provides an
opportunity to determine the maximum amount of goods that can traverse a network (Ahuja
et al. 1993). Researchers may also determine the shortest path within a given network,
which can be used to determine network efficiency across a given network when delivering
content such as news or a deadly pathogen.

Information, and by extension, viruses can be spread through a network through conserved
spread and non-conserved spread (Newman et al. 2006). In conserved spread, the amount
of content that enters the network is constant and unchanging (Newman et al. 2006).
Conversely, content changes as it flows through a network in a non-conserved spread
(Newman et al. 2006). Epidemiologists and researchers often apply a non-conserved spread
to model a virus’s propagation throughout a network since individuals become infected
and spread the disease to susceptible persons. For example, the SIR model utilizes a non-
conserved approach as a virus is propagated by individuals throughout a given network.

Generalized Network Autoregression
The Generalized Network Autoregression (GNAR) model and subsequent package devel-
oped as a univariate time series model that relies upon a network’s neighbors to forecast
future observations (Knight et al. 2020). The authors used and modeled gross domestic
product data for 35 countries over a one year period. The authors employed not only a
network model, they also utilized an autoregressive and vector autoregressive models. Au-
toregressive models specify the output variable should linearly depend on previous values
while vector autoregressive models account for lagged feedback effects between variables
(Knight et al. 2020). The GNAR model performed better than the autoregressive and vector
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autoregressive models by 29 and 78 percent, respectively. As a result, the GNAR package
in R demonstrated its capability to model a network’s time series autoregressive structure
(Leeming et al. 2020).

Network Connectedness
A given network is connected if there exists a path between node D and { (Chartrand and
Zhang 2012). It follows then that if a path does not exist from D to {, then the two are
disconnected. Although these definitions are generally accepted within the network science
community, researchers utilized a network’s degree to represent its connectedness when
analyzing COVID-19 cases and the associated correlation between countries (So et al.
2020).

The authors constructed separate network graphs of both China and the rest of the world
and if the correlation in the change of confirmed cases between geographical areas is
greater than 0.5, an edge is present. If an edge is present between countries, the countries
are then considered connected. A country’s connectedness is represented by the number
of connections a country has (its degree). Their results demonstrated that by analyzing a
country’s connectedness (degree), a more timely and accurate prediction of pandemic risk
can be generated than relying upon the data itself.

Social Network Analysis
As social networks involve the carriers of SARS-CoV-2, namely persons, social network
analysis (SNA) may be applied to understand and model the virus’s dissemination within a
given community. Researchers applied SNA and conducted contact tracing on a real social
network to minimize exposure (Firth et al. 2020). As their analysis showed, the researchers
were able to minimize the spread of COVID-19. However, as exposures progressed and
individuals increasingly went into quarantine, nearly half of the network was in isolation at
a single point in time. Once individuals were released from quarantine, outbreaks increased
in magnitude. Consequently, the authors argue that contact tracing and self-isolation upon
notification of potential exposure may be the most effective strategy to mitigate further
exposure and disrupt virus dissemination.
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Telecommunications Network
Network science can be applied to key public figures and their ability to exert significant
influence over their social media platform. In-degree centrality is the number of vertices
of a node from which it is adjacent to (Chartrand and Zhang 2012). Researchers analyzed
the in-degree centrality of social media accounts for former Presidents Obama and Trump
as well as news agencies and health organizations around the world (Yum 2020). The
authors identified that these key political figures and news agencies have the ability to exert
significant influence within telecommunications networks (Yum 2020). As a result, it is
imperative that health organizations, news agencies, and political figures convey a similar
message to ensure maximum information saturation amongst a populace.

2.2 Time Series Forecasting
COVID-19 infections are reported daily and are serially correlated to the previous day’s
infection rates, which creates a sequence of discrete-time data. Therefore, time series data are
no longer independent and identically distributed, a key component in statistical modeling.
Moreover, this temporal component is distinct from cross-sectional studies where there is
no natural ordering of the data, which makes generating an accurate predictive model more
difficult (Cryer 2008). By understanding and analyzing time series data, an analyst’s purpose
is generally two-fold: to extract meaningful statistics and other characteristics of the data,
and to subsequently develop an accurate predictive forecast (Cryer 2008). The following
definitions are used to describe the characteristics within time series data and defined by
(Yoshida 2020) and (Hyndman and Athanasopoulos 2018).

• Trend: “Long-term (not necessarily linear) increases or decreases in the data; the
long-term component of change” (Yoshida 2020).

• Seasonal (Periodic) Patterns: “Increases and decreases in data with a fixed/known
period” (Yoshida 2020).

• Cycle: “Data exhibits rises and falls that are not of fixed period” (Yoshida 2020).
• Noise: “Remaining variance in the data after we’ve accounted for the components
above (Yoshida 2020).

• Seasonal decomposition: Enables isolation of the trend-cycle (Hyndman and Athana-
sopoulos 2018).

• Homoscedastic: “Observed variance remains the same over time” (Yoshida 2020).
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• Heteroscedastic: “Observed variance changes over time” (Yoshida 2020).
• Stationarity: “A stationary time series is one whose properties do not depend on the
time when the series is observed. A stationary time series can exhibit cyclic behavior,
but any serieswith trend, seasonality, or heteroscedasticity is non-stationary” (Yoshida
2020).

Analyzing characteristics such as trend, seasonality, and cycle can describe the data’s
underlying disposition. Time series analysis can be done primarily through two methods:
time domain and frequency domain (Cryer 2008). Time domain analysis is focused on the
correlation properties while frequency domain, or spectral analysis, is used to analyze the
frequency properties of a given time series.

Time series analysis can be conducted using traditional parametric techniques as well as
non-parametric techniques. Parametric techniques assume an underlying stochastic nature,
which can be described by using a small number of parameters. Conversely, non-parametric
techniques assume no underlying structure and attempt to estimate the data’s covariance or
spectrum (Cryer 2008).

Predictive forecasts enable researchers and analysts to determine future values based on
previous observations, which can be used to shape public policy decisions or business
initiatives. As with nearly any model’s creation, a model should require the minimal number
of parameters that will competently embody the time series data (Cryer 2008).

2.2.1 Time Series Models
Time series models continue to be introduced and represent various stochastic processes.
Models such as time series decomposition, Holt-Winters, and autoregressive integrated
moving average (ARIMA) can be used to describe a time series. Rolling horizons, or rolling
window, mimic splitting a data set into training and testing splits by repeatedly fitting
the forecasting models to a designated “rolling period” and then measuring performance
in forecasting over the horizon that will be used in practice. Rolling horizons can be
used to evaluate a time series model’s performance against the known values. Forecasting
performance declines rapidly over a forecast horizon and as a result, short forecasts are
much more accurate than long forecasts.
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Naïve Model
At its most basic level, Naïve Models offer a baseline standard. A simple Naïve Model
sets the forecast value to the value of the last observation. Trend Naïve Models modify the
simple Naïve Model’s value by incorporating the positive or negative trend to the predicted
value. Seasonal NaïveModels use the forecast from the previously observed seasonal period.
Models that are able to outperform Naïve Models are said to have predictive power (Erdem
2021).

Time Series Decomposition
Time series decomposition is a very useful method, which attempts to remove and un-
derstand the seasonal, cyclical, and trend components separately. For example, classical
decomposition assumes a constant seasonal component at the weekly, monthly, or quarterly
pattern while X11 decomposes time series data into monthly or quarterly data (Hyndman
and Athanasopoulos 2018). Conversely, seasonal and trend decomposition using Loess
seasonal and trend decomposition using Loess (STL) is more robust as it is able to manage
any type of seasonality and is able to change over time (Hyndman and Athanasopoulos
2018).

Autoregressive Integrated Moving Average
Since time series data is often correlated with previously lagged observations, ARIMA
models can be applied to understand the data’s characteristics and to forecast future obser-
vations. ARIMAmodels are designed to describe the autocorrelations within the time series
data (Hyndman and Athanasopoulos 2018). As a result, the ARIMA model uses the data’s
previous observations and regresses the variable against itself. Non-seasonal ARIMAmod-
els are commonly designated ARIMA(p,d,q) as defined by Hyndman and Athanasopoulos
(2018):

• ?: Order of the autoregressive part.
• 3: Degree of first differencing involved.
• @: Order of the moving average part.
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Holt-Winters
The Holt-Winters model applies an exponential smoothing technique to the trend, sea-
sonality, and cycle components of a time series (Hyndman and Athanasopoulos 2018).
Exponential smoothing is a variation on moving average smoothing that weights the effect
of previous observations/forecasts decay exponentially as you go back in time. Holt-Winters
models can also be incorporated into a rolling horizon design with no predictable upward
or downward trend.

Ensembles
As with cross-sectional data, ensemble models combine multiple, diverse models and
aggregate each basemodel’s prediction into one final prediction for the observed value (Kotu
and Deshpande 2014). As a result, an ensemble model often outperforms individual models.
However, ensemble models are often “black box” models that are difficult to understand
and interpret. Creating and adapting an ensemble model using the aforementioned models
may be desirable given the underlying nature of a time series.

2.2.2 Time Series Performance
While traditional statistical performance measures such as root mean squared error (RMSE)
and adjusted '2 can still be calculated, they are often not scale-free and are generally in-
ferior (Guo et al. 2012). However, time series data can be measured using Mean Absolute
Percentage Error (MAPE) and Mean Absolute Scaled Error (MASE). MAPE is the predic-
tion accuracy for a forecasting method and MASE is a measure of the absolute error the
forecast values, divided by the mean absolute error of the in-sample one-step naïve forecast
(Hyndman et al. 2006). MAPE commonly varies between the values of 0 and 1 whileMASE
can extend beyond 1 and both provide a good sense of predictive power. MAPE and MASE
are defined by the following equations:

MAPE =

∑#
C=1

.C−�C
.C

#
, (2.4)

and

MASE =

∑#
C=1

.C−�C
.C−.C−1

#
. (2.5)
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where .C is the actual value, �C is the forecast value, and .C −.C−1 is the actual value at time
C − 1 (Hyndman et al. 2006).

For a model to have a strong predictive capability, a model must surpass two standards. First,
a model’s MASE needs to exceed the accuracy of its comparative Naïve model. Second, a
model’s MAPE needs to be at a minimum of below 50% as depicted in Table 2.1 (Lewis
1982):

Table 2.1. MAPE Interpretation. The following table provides guidance and
recommendations for interpreting a given time series’ MAPE. As we can see,
the closer MAPE is to 0, the higher forecasting power it has. Source: Lewis
(1982).

MAPE Interpretation

< 10 Highly accurate forecasting
10 - 20 Good forecasting
20 - 50 Reasonable forecasting
>50 Inaccurate forecasting

2.2.3 Time Series Research Efforts
Although the first known case of COVID-19 was only reported in December 2019, ample
observations are needed to effectively develop and train time series models. However,
researchers have been able to have promising success using ARIMA and Holt-Winters
models.

Researchers employed an ARIMA(2,1,1) model to analyze COVID-19 infections in India,
which depicted an exponential increase in the number of confirmed cases over the specified
time period (Tandon et al. 2020). Although the MAPE is above the accepted threshold
of 1, the ARIMA model outperformed its moving average and exponential smoothing
counterparts.

Additionally, data scientists also analyzed trends in India by using both Holt-Winters and an
ARIMA (4,1,1) model (Panda 2020). Utilizing Akaike’s Information Criteria and RMSE
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as the model’s primary measure of performance, the authors achieved a maximum of 99.8
percent accuracy for the given time period (Panda 2020).

Although utilizing a small data set, researchers in Italy applied an ARIMA model to
forecast COVID-19 cases (Benvenuto et al. 2020). The Italian model successfully predicted
a decrease in COVID-19 incidences despite an increase in cases.

Researchers applied several time series techniques, Holt-Winters performed the worst when
comparing RMSE while the Naïve Model performed the best (Chaurasia and Pal 2020).
The authors collected approximately six months of data, which was mostly sparse in the
beginning. As a result, the data set is unstable and the given model may perform better with
additional observations. Researchers in Jakarta applied both ARIMA and Holt-Winters
forecasts to model COVID-19 outbreaks (Sulasikin et al. 2020). The ARIMA model pro-
duced the highest '2 and RMSE, which indicated that COVID-19 infections will continue
to increase. As a result, public health officials can create and implement health measures
to potentially disrupt its spread. Researchers in Nigeria created an ensemble model using
ARIMA, Holt-Winters, and an additive regression model developed by Facebook known
as Prophet, which is able to process missing values, strong seasonal effects, and outliers
relatively well (Abdulmajeed et al. 2020). The results can guide policy makers to develop
and implement population control and containment measures.

2.3 Epidemiological Models
Following the Spanish flu outbreak in 1918, W. O. Kermack and A. G. McKendrick theo-
rized, developed, and published a series of papers describing mathematical models between
1927 and 1933 to predict the number of infections or cases throughout a population as a
function of time (Kermack and McKendrick 1991). The authors theorized that when cre-
ating a mathematical model, epidemiologists can divide a population into a small number
of compartments, which represent an individual’s condition in relation to the virus as it
is transmitted through a population over time (Kermack and McKendrick 1991). Since
their work in the early 20th century, Kermack and McKendrick’s theories for modern epi-
demiological modelling serve as a foundation and ensuing theoretical progress has been
steady (Rodrigues 2016). These compartmental models enable a relatively simple method
to mathematical model infectious diseases.
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2.3.1 SIR
The Susceptible-Infected-Recovered (SIR) model and its variants are often used due to their
simplicity and intuitiveness. The SIR model is linear in that individuals move from one
compartment to the next without the ability to regress. For a SIR model to be effective, a
government must maintain meticulous infection and recovery rates as they are an essential
component for an accurate SIR model.

Definitions
Prior to understanding the model itself, we must first establish a common framework of
definitions by (Rodrigues 2016), (Ridenhour et al. 2014), and Collins and Abdelal (2018).

• Susceptible, (: “Class of individuals who are susceptible to infection; this can include
the passively immune once they lose their immunity or, more commonly, any newborn
infant whose mother has never been infected and therefore has not passed on any
immunity” (Rodrigues 2016).

• Infected, �: “In this class, the level of parasite is sufficiently large within the host
and there is potential in transmitting the infection to other susceptible individuals”
(Rodrigues 2016).

• Recovered, ': “Includes all individuals who have been infected and have recovered”
(Rodrigues 2016).

• Infection rate, V: “The average number of people each infectious person spreads the
disease to each day” (Collins and Abdelal 2018).

• Recovery rate, W: “Inverse of the infectious period” (Ridenhour et al. 2014).
• Reproduction Rate, '0: “The average number of secondary infections that occurs
when one infective is introduced into a completely susceptible population” (Rodrigues
2016).

Often times unknown, '0 is critical to determining the severity and duration of a virus. If
'0 < 1, then the virus is said to be self-extinguishing (Rodrigues 2016). If '0 = 1, the virus
is endemic but if '0 > 1, the virus is said to be an epidemic (Rodrigues 2016). Despite
its simplicity, a severe limitation of the traditional SIR model is its inability to modify the
time-varying property of V and W to effectively and precisely predict the virus’s trend (Chen
et al. 2020c).
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Assumptions
The SIR model relies upon significant assumptions to ensure an accurate representation of
a given data set.

• The first major assumption is that the population is constant and no new individuals
enter the Susceptible compartment (Cooper et al. 2020). Moreover, the population
remains constant despite actual births or immigration (Capitanelli 2020). Since the
dynamics of an epidemic are dynamic and are often much faster than the dynamics of
birth and death, they are often omitted in simple compartmental models (Capitanelli
2020). As a result, the only way an individual leaves the Susceptible group is by
infection (Capitanelli 2020). By extension, the only way an individual leaves the
Infected group is through recovery (Capitanelli 2020).

• The next major assumption is that all individuals have the same probability to contract
the virus (Capitanelli 2020). Additionally, each person is exposed to a fixed number of
contacts per day, which is sufficient to spread the virus (Capitanelli 2020). However,
not all of these individuals are strictly susceptible as some are undoubtedly infected
themselves (Capitanelli 2020).

• The final major assumption is a fully connected population network and a homo-
geneous mixing of the compartments (Capitanelli 2020). Consequently, individuals
from the susceptible compartment are exposed to those from the infected and recov-
ered compartments (Capitanelli 2020). As a result, the virus propagates and continues
to spread (Capitanelli 2020).

Equations
The SIR model consists of a system of three nonlinear ordinary differential equations to
determine the number of individuals within each of the three compartments (Rodrigues
2016):

3(

3C
= −V(�, (2.6)

3�

3C
= V(� − W�, (2.7)
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3C
= W�. (2.8)

Research Efforts
Researchers in Cameroon adapted the SIR model to analyze and calculate the effects of
public health measures to slow the spread of SARS-CoV-2 (Nguemdjo et al. 2020). The
authors determined that had thesemeasures not been implemented, additional infections and
deaths would have occurred. As a result of the SIRmodel’s projections, Cameroonian public
health officials were able to slow the spread of the virus. Moreover, the model demonstrated
that it is particularly suitable for studying a large number of subjects at the national level.

While insightful, SIR’s modeling assumptions are self-limiting. However, epidemiologists
created a SIR model where the susceptible population is not decreasing monotonically
(Cooper et al. 2020). Rather, the susceptible population can surge over time as new virus
epicenters arise in communities of varying sizes. As a result, the susceptible population
can be adjusted to account for individuals within the infected compartment spreading
throughout a community. Themodel and formulation presented by the authors demonstrated
reasonably well fit model predictions for several distinct countries and geographic regions,
which introduced and exhibited the effects of incorporating a surging susceptible population
(Cooper et al. 2020).

The SIR model utilized by researchers in the Kingdom of Saudi Arabia adapted a similar
approach to determine the total number of cases and fatalities within Saudi Arabia under no
preventative measures, lockdown enforcement, and new medicine implementation (Singh
et al. 2020). The authors modified the original SIR model to incorporate a “fatal with
confirmation” component to ensure that recovered individuals are not susceptible to the
virus (Singh et al. 2020). Additionally, this model incorporated a stochastic component to
analyze and predict SARS-CoV-2 transmission within its population. The presented model
accurately predicted COVID-19 peaks and sizes of the outbreaks. However, initial research
has since shown that previously infected and recovered COVID-19 individuals can become
infected again (Gallagher 2021). As such, this model may need to be continuously modified
and adapted to provide an accurate forecast.
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A limitation of the traditional SIR model is the inflexibility and constant nature of the
recovery rate, W, and transmission rate, V, parameters. However, a researcher proposed a
model where both the recovery and transmission rates are time-dependent (Chen et al.
2020c). By incorporating ML techniques, the model is able to monitor and dynamically
adjust the aforementioned parameters as a function of time. As a result, V(C) and W(C) are
used to predict the number of infected rate and recovery rate during the epidemic. The
model observed that a city-wide population control measures can lower the transmission
rate substantially.

Despite its simplicity, the SIR model provides relatively accurate representations of a
country’s populace as these models have shown. The SIR model presents analysts and
researchers an opportunity to develop an understanding of the population at the national
level or even a local community. However, there are several SIR model variants that create
additional compartments for a population.

2.3.2 Susceptible-Exposed-Infected-Recovered
As epidemiologists develop a better understanding of a given virus, the SIR model may
no longer be relevant or applicable. Assumptions such as a constant population are not
necessarily realistic. Recovery and subsequent immunity may not necessarily be guaran-
teed. Infected individuals may exhibit asymptomatic symptoms. Immunity in recovered
individuals may be temporary. Transmission rates may vary as mutations occur. Vaccine
discovery and deployment can drastically alter a virus’s transmission rates. While previous
coronavirus diseases such as severe acute respiratory syndrome (SARS) and Middle East
respiratory syndrome (MERS) experienced no exposed or latency stages, the incubation
period for individuals with COVID-19 is extremely dangerous to close contacts (Chen et al.
2020b). As such, a divergent epidemiological approach must be adapted.

Susceptible-Exposed-Infected-Recovered Definition
The susceptible-exposed-infected-recovered (SEIR) model employs an additional exposed
compartment, � , where individuals have been infected but are not yet infectious themselves.
During this incubation period, secondary spread from an individual who is infected will
occur later. Despite the addition of this latency period, the number of total cases does not
change. An additional incubation parameter, f, is defined as the rate of latent individuals
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becoming infectious. Comparable to the SIR model, the SEIR model in a closed population
is represented by four ordinary differential equations:

3(
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= − V(�

#
, (2.9)
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− f�, (2.10)

3�
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= f� − W�, (2.11)
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where V, (, �, ', W are discussed in Section 2.3.1 and # = (+� + �+' is the total population
(Institute for Disease Modeling 2021).

SEIR Research Efforts
Researchers identified that once an individual contracts COVID-19, there is a subsequent
incubation period in which individuals are asymptomatic (Hoehl et al. 2020). These indi-
viduals can still carry and subsequently spread SARS-CoV-2 to others and in turn, continue
the virus’s propagation (Patil and Kotwal 2020). As a result, the SEIR model has been
adapted to replicate and analyze SARS-CoV-2’s diffusion.

Researchers applied a SEIR model to Wuhan, China, to study the transmission dynamics
in the aftermath of the local authorities instituting strict population control measures such
as lock downs, movement restrictions, community containment, and quarantine initiatives
(Hou et al. 2020). Researches employed V1 and V2 infectious rates, where V1 “represented the
probability of infection per exposure when a susceptible individual has contacted an infected
patient and becomes a latent exposed individual.” “While V2 represents the potential rate per
exposure when a susceptible individual has mutual contact with an exposed individual and
transmits it to another exposed individual.” By incorporating these parameters, researchers
demonstrated the SEIR model’s effectiveness to predict SARS-CoV-2 diffusion (Hou et al.
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2020). By reducing a latent individual’s contact rates through quarantine and isolation, one
can reduce the number of individuals they subsequently infect with COVID-19. Moreover,
as a result of these public policies, the number of SARS-CoV-2 carriers decreases, which
delays the peak infection time and reduces the strain on the local, region, and national health
care system.

Epidemiologists created a SEIR model to analyze SARS-CoV-2 transmission in Portugal
during the pandemic’s early stages by dynamically adjusting the exposure rate, V, to simu-
late an exposed yet asymptomatic person’s ability to spread COVID-19 (Teles 2020). The
parameter V changes following notification of exposure as movement restriction and iso-
lation imposed by the government and self-protection measures reduced transmission and
subsequent COVID-19 cases. As a result, researchers modeled SARS-CoV-2 infections and
forecasted the epidemic curve within a limited time period (Teles 2020).

2.3.3 Other SIR Variants
While research efforts have mostly been concentrated on adapting and optimizing SIR and
SEIR models, researchers also adapted susceptible-infected-infected-recovered (SIIR) and
metapopulation susceptible-exposed-infected-recovered (MSEIR) models. The SIIR model
is similar to the SEIR model, except presymptomatic and asymptomatic individuals do not
experience movement restriction (Tomochi and Kono 2021). The MSEIR model proposed
an epidemiological spread across a species linked by a conglomerating network (Chen et al.
2020a).

Network SIR
While the SIR model assumes uniformmixing amongst a population, a network-centric SIR
model provides an alternative as most individuals mix within a much narrower group (Craig
et al. 2020). A network SIR model can integrate and customize dissimilarities between
population groups as their interactions may differ. Populations in more rural communities
may experience less contacts than individuals who live in more urban areas. As a result,
those individuals who live in cities experience a higher variability in the number of daily
contacts, which increases their risk exposure. As such, these individuals and communities
affect “the speed of the disease spread, long-run health outcomes, and the effects of the
disease on economic activity” (Craig et al. 2020).
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Susceptible-Infected-Infected-Recovered
Researchers utilized a Susceptible-Infected-Infected-Recovered (SIIR) model to analyze
the potential for herd immunity by modifying basic SIR and SEIR assumptions (Tomochi
and Kono 2021). First, a portion of the population is presymptomatic who can infect others
during the incubation.Asymptomatic individuals are able tomove and contact otherswithout
restriction and consequently play a vital role in the proliferation of SARS-CoV-2. Lastly,
immunity duration may be finite. By incorporating presymptomatic and asymptomatic into
the base SIR model, the authors demonstrated that these persons significantly impact herd
immunity (Tomochi and Kono 2021).

Metapopulation Susceptible-Exposed-Infected-Recovered
Epidemiologists provide a framework to model SARS-CoV-2 propagation across a popula-
tion that is large-scale spacial regions (Chen et al. 2020a). The metapopulation concept and
its subsequent Metapopulation Susceptible-Exposed-Infected-Recovered (MSEIR) refers to
a group of species connected but separated by an interacting network. Researchers argue
that the SIR assumption for homogeneous population mixing is no longer valid due to the
complex social structure within a given location. Scientists utilized artificial intelligence
and ML techniques that incorporated a sliding window approach, or rolling horizon, to
describe the epidemic spread. The authors successfully predicted COVID-19 cases for a
small time period but the model became increasingly unstable as time window grew (Chen
et al. 2020a).

2.4 Simulations
A simulation is an algorithm implemented on a computer that represents a stochastic model
and can be used to make inferences about certain measures of performance. Frequently,
physical systems can not be easily replicated or experimented with an analytical model.
Often, collecting data can be fiscally or computationally expensive. However, design of
experiments (DOE) and subsequently simulation provides an alternative where model pa-
rameters can estimate values and experiments may be run hundreds of thousands or even
millions of times at relatively low cost. Simulations also enjoy good convergence properties
relative to other numerical approaches and can be used to study sources of uncertainty. Ad-
ditionally, randomness can be used to create simple and useful models by identifying and
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eliminating extraneous predictors and components (Sanchez and Sanchez TO APPEAR).
In general, performance measures fall into two categories:

• Transient (or terminating) measures: Evaluate the system over a finite period of time.
• Steady-state measures: Evaluate the system over an infinite time horizon.

.Since COVID-19 infections increase and evolve at marked points over time, discrete event
simulation (DES) can be applied. DES is a tool that can be “used tomodel real world systems
that can be decomposed into a set of logically separate processes that autonomously progress
through time” (Barrett et al. 2008). As such, DES can be applied tomodel a hospital’s patient
care system that can assist a hospital administrator’s ability to manage patient care.

Additional simulation techniques such as agent-based model agent-based model (ABM)
afford researchers an opportunity to explore and experiment with various SARS-CoV-2 and
COVID-19 characteristics (Kerr et al. 2020). ABM attempts to simulate human behavior by
modeling actions and interactions of autonomous agents, to assess their individual effects
on the entire system. ABM combines elements of decision theory, sociology, networks and
complex systems while Monte Carlo methods can be used to introduce randomness within
the system.

Simulation Research Efforts
As global COVID-19 cases continue to increase, medical capacity and capabilities decrease
as hospitals are designed for average patient loads and not epidemics (Cavallo et al. 2020).
Therefore, effective modeling of the patient care system is needed to determine the optimal
allocation of resources in best and worst case scenarios. As a result, hospital administrators
can effectively manage resources such as beds, ventilators, and personnel. Additionally,
epidemiologists are able to develop an understanding of the epidemic the local, regional,
state and federal levels.

Prior to the discovery of SARS-CoV-2, researchers created an ABM to study the effects of
epidemic spread in an urban area using transportation models (Hackl and Dubernet 2019).
Researchers argue that accurately modeling human movement, behavior, and interactions is
critical to understanding an epidemic’s spread throughout a population. The authors utilized
a SIR compartment model to simulate the epidemic’s progression and demonstrated the
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viability of constructing ABMs in urban settings (Hackl and Dubernet 2019).

Due to the small sample size, Cameroonian officials applied non-parametric techniques
to create additional data points through bootstrapping in the early stages of the pandemic
(Nguemdjo et al. 2020). Researchers first estimated virus parameters such as V to best
describe the virus’s evolution. As previously discussed, they then used additional simulation
efforts to construct a compartment SIR model to understand the virus’s propagation within
theCameroonian population. Using these results, they then constructed simulations tomodel
public health initiatives such as increasing public hygiene awareness, physical distancing,
and public health initiatives. These descriptive statistics demonstrated that Cameroonian
officials should expect to see an exponential rise in SARS-CoV-2 transmission.

Researchers constructed an ABM simulation and analyzed SARS-CoV-2 and COVID-19’s
impact on local economic conditions (Kano et al. 2021). Although an atypical use of
ABM, their results “show that voluntary restraint measures can help mitigate an outbreak,
although it generates an economic gap between job types” (Kano et al. 2021). Their model
also show that it is difficult for individuals with lower economic power to maintain isolation
or limited movement. As a result, virus outbreaks may occur within these lower economic
power communities as they are forced to return to their occupation, which continues virus
propagation. To combat these results, early and effective population control measures can
help limit the spread of the virus and thus minimize the economic impact to communities
with low economic power.

Researchers also employed an ABM to study the effects of individual interventions to
determine the virus’s economic impact (Silva et al. 2020). Researchers modeled seven
different social distancing measures no preventative measures, vertical isolation, partial
isolation, mask wearing, social distancing while wearing masks, conditional lockdown, and
lockdown. Results indicate that a conditional lockdown predicated upon current infection
levels and a traditional lockdown proved to be the most effective in controlling the virus
and minimizing deaths. However, government sponsored economic subsidies are required
to lessen the economic impact caused by unemployment and subsequent recession.
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2.5 Summary
Despite the various modeling approaches discussed, there are inherent difficulties in mod-
eling epidemics such as SARS-CoV-2 transmission due to a variety of reasons. Human
nature is often unpredictable. Testing supplies may be limited. Medical capacities become
increasingly strained as the epidemic grows. Individuals may not comply with quarantine,
isolation, or curfew orders. The very stochastic nature of epidemics imply a randomly
determined outcome. The systematic approach to time series analysis to understand time
series data enables researchers and analysts answer statistical, mathematical, and ultimately
policy related questions as to the foreseeable future. However, the aforementioned models
demonstrated that statistical and analytical methods can be applied to understand the virus’s
underlying structure and forecast future observations to aid public health policies.

Network models such as social and transportation networks provide a framework for ana-
lyzing SARS-CoV-2 transmission since individuals can represent nodes and communities
form around these nodes. Researchers can understand the intricacies of a given network
to determine metrics such as the shortest path, centrality measures, :-core, and clustering
coefficients. Understanding mathematical properties enable epidemiologists and analysts
to comprehend how a virus may propagate through a network and what policy decisions
should be recommended to public health officials.

Time series models such as Holt-Winters, ARIMA, and even Naïve Models also provide
researchers an opportunity to understand and forecast SARS-CoV-2 diffusion amongst a
population.While the initial results of thesemodels are promising, the COVID-19 pandemic
is barely in its second year and as such provides minimal data to developmeaningful insights
for researchers and analysts. As a result, these models are often accurate for short-term
forecasts but perform poorly in long-term forecasting.

Traditional and classically used compartmentalmodels such as the SIR, SEIR, SIIR,MSEIR,
and others provide epidemiologists a framework to evaluate epidemiological parameters
such as dispersion, total number of cases, pathogen properties, or its duration. Although
often simple in their nature, compartmental models provide researchers an opportunity to
model a virus’s behavior by approximating a small number of parameters and analyzing the
potentially millions of data points (Tolles and Luong 2020).
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In the early stages of the pandemic, information and data regarding SARS-CoV-2 and
COVID-19 were very minimal. As a result, researchers often simulated various character-
istics to develop a better understanding of the virus’s characteristics. As more data became
available, simulations then shifted away from initial approximations to developing forecasts
and predictions, which subsequently increased their accuracy. Advances in hardware, soft-
ware, and methods will continue to make simulation an increasingly valuable tool in solving
real world problems.

Despite progress made by the previous studies, there currently does not exist a SARS-CoV-2
forecasting model utilizing a country’s local governance adjacency network. This thesis will
employ a network structure that incorporates a time series component via theGNARpackage
to understand the relationship between COVID-19 cases amongst the counties (Knight et al.
2020). This model can be used as another tool for local, state, and federal health officials to
evaluate risk and implement public health policies to disrupt an epidemic’s transmission.
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CHAPTER 3:
Methodology

For this research, all data are openly available and can be consumed from the following
sources: United States Census Bureau (USCB), National Bureau of Economic Research,
and United States of America Facts (USAFacts). As each county can be identified with
its own unique federal information processing standard (FIPS) code, the USCB maintains
administrative accountability of each county and its associated adjacencies. The National
Bureau of Economic Research calculated the great circle distance between each county
using the Haversine formula (National Bureau of Economic Research 2010a). USAFacts
provides daily COVID-19 cases and deaths for each county directly from the Center for
Disease Control and Prevention (CDC).

3.1 Data
Since COVID-19 cases and deaths as well as the great circle distance are integers and
decimals, respectively, all data in this thesis are entirely numerical with no categorical
predictors or response variables. Additionally, the original number of COVID-19 cases and
deaths were used and traditional data transformations such as logarithmic, square, or cube
root were not applied.

3.1.1 Data Assumptions
The model’s first assumption is that COVID-19 cases are stationary and as a result, do not
depend on the time at which the series is observed (Hyndman and Athanasopoulos 2018).
By extension, the data set does not contain any seasonal or trend components as they affect
the series at different time periods. However, a time series with only cyclic behavior can be
considered stationary (Hyndman and Athanasopoulos 2018). As such, the data set should
not contain any predictable patterns in its long-term trend.

The next assumption is that there is no uncorrelated error as it is randomly distributed but its
variance and mean are constant. If random error is present, they are assumed to be randomly
distributed with a constant variance and mean zero (Statistics Solutions 2021).
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The data provided by local and state officials to the CDC are accurate and complete. While
COVID-19 cases and deaths may change slightly from day-to-day as human error and
reporting standards may change, this thesis assumes the number of cases and deaths on
any given day are accurate (Centers for Disease Control and Prevention 2020). Moreover,
this thesis assumes that the data set follows an autoregressive behavior as each observation
is directly linked to previous observations, which forms a regression equation to predict
the next value (Brownlee 2017). Additionally, this thesis assumes that there are no outliers
present in the data as they may affect model creation, analysis, conclusions, discussions,
and recommendations as they can be misleading (Frost 2020).

3.1.2 Data Limitations
Data limitations may alter the results of a model. Since Hawaii is an island chain, geograph-
ically isolated from any continent and three of its five counties are not considered adjacent
by the United States Census Bureau (United States Census Bureau 2010), the state and,
subsequently its counties’, total COVID-19 cases and deaths should remain constant at zero.
Although Alaska is also geographically isolated from the continental United States, it is ad-
jacent to Canada. However, both states are popular tourist destinations that contain airports
and seaports where infections may enter and spread within their respective populations.

Local, state, and federal health officials would need to expend considerable resources to
maintain an accurate count of active COVID-19 infections inside a given county. Alter-
natively, officials maintain a daily total count of infections and deaths. As a result, this
thesis models total COVID-19 cases and deaths and is unable to accurately model active
infections.

3.1.3 COVID-19 Cases and Deaths
To understand SARS-CoV-2 transmission and subsequent COVID-19 infections within the
United States, one must first develop an understanding of what a positive COVID-19 case
is and how the number of cases and deaths are maintained. By CDC definition, a positive
COVID-19 case is a confirmed or probable case or death (Centers for Disease Control
and Prevention 2020). While COVID-19 symptoms are similar to influenza, a laboratory
must conduct a specialized diagnostic test and look for the specific viral proteins or virus’s
genetic material to confirm an active coronavirus infection (Harvard University 2020). As
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additional data became available, scientists discovered that an infected person does not begin
producing antibodies immediately (Harvard University 2020). Moreover, a blood antibody
test may take up to three weeks to become positive and as a result, testing a recently exposed
individual may not yield positive results.

Once a laboratory or hospital confirms that an individual is diagnosed as a positive
COVID-19 case, state disease reporting authorities, local hospitals, healthcare providers,
and laboratories must report confirmed or probable cases to local or state health departments
(Centers for Disease Control and Prevention 2020). Public health officials then monitor lo-
cal infection rates to identify and control potential outbreaks. While case reporting to local
and state health officials is mandatory under disease laws, case notification to the CDC is
voluntary (Centers for Disease Control and Prevention 2020). Once local and state officials
send their data to the CDC, a separate CDC data team ensures data integrity and examines
it for any irregularities. The CDC then sends its parsed data back to state and local officials
to correct any inconsistencies, if necessary, and ultimately for final confirmation. Once
complete, the CDC publishes the final data on its website and send it to the World Health
Organization (WHO) under international health regulations (Centers for Disease Control
and Prevention 2020). The CDC also provides its data openly, with additional privacy
protections, to the public and is available for consumption.

USAFacts is a non-profit, nonpartisan organization that openly provides data such as gov-
ernment finances and the American population (USAFacts 2020). For COVID-19 data,
USAFacts collects and collates information from the CDC and provides two separate data
sets: a county-by-county daily tally for the total number of confirmed or probable cases and
a county-by-county daily tally of deaths. The CDC first began reporting cases on January
22, 2020, and continues to update cases and deaths daily. While information continues to
be compiled and reported, this thesis utilized CDC data collected from January 22, 2020,
to February 2, 2021, which provided 378 days of data.

3.1.4 County Information
As of 2020, theUnited States ofAmerica is divided into 3,143 county and county equivalents
(United States CensusBureau 2020a). The term “county” is used in 48 stateswhile Louisiana
represents its functionally equivalent administrative districts as parishes while Alaska is
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comprised of boroughs and census areas. The 48 contiguous states and Washington D.C.
form a network of 3,109 counties that are separate from Alaska and Hawaii. Although not
connected to the continental United States’ graph, Alaska’s 30 counties and Hawaii’s 5
counties form their own distinct networks.

Each county is assigned its own unique, five digit FIPS code where the first two numbers
correspond to the state and the last three are unique to the county within the state’s posses-
sion. County administrative roles vary widely between states as some counties such as those
in Rhode Island are maintained merely for administrative purposes while some counties
in Maryland, Missouri, Nevada, and Virginia are independent cities not belonging to one
specific county yet they may function as combined city-counties.

The number of counties per state is not predetermined based upon its geographic size,
population, or prominent terrain features. The state with the smallest square area, Rhode
Island, has 5 counties while the state with the largest square area, Alaska, has 30. Delaware
and Texas contain the fewest and most counties per state, respectively. According to the
USCB, more than half of the United States’ population resided in just 143 of the 3,143
counties in 2020 (United States Census Bureau 2020b). Table 3.1 arranges the total number
of counties per state with the inclusion of Washington D.C. As we can see from Table 3.1,
counties vary broadly by state.
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Table 3.1. United States Counties. The numbers shown in this table are the
number of counties in each state. Source: TheFactFile (2021).

State Counties State Counties

Alabama 67 Montana 56
Alaska 30 Nebraska 93
Arizona 15 Nevada 17
Arkansas 75 New Hampshire 10
California 58 New Jersey 21
Colorado 64 New Mexico 33

Connecticut 8 New York 62
Delaware 3 North Carolina 100

District of Columbia 1 North Dakota 53
Florida 67 Ohio 88
Georgia 159 Oklahoma 77
Hawaii 5 Oregon 36
Idaho 44 Pennsylvania 67
Illinois 102 Rhode Island 5
Indiana 92 South Carolina 46
Iowa 99 South Dakota 66
Kansas 105 Tennessee 95
Kentucky 120 Texas 254
Louisiana 64 Utah 29
Maine 16 Vermont 14

Maryland 24 Virginia 133
Massachusetts 14 Washington 39
Michigan 83 West Virginia 55
Minnesota 87 Wisconsin 72
Mississippi 82 Wyoming 23
Missouri 115
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Due to their geographical arrangement, counties form a uniplex network as they become
adjacent to one another (Bergs 2011). As such, one can apply aforementioned network
sciencemethods to calculate and analyze various underlying network properties. Due to their
adjacent structure, one can also model the free flow of goods or SARS-CoV-2 transmission
between counties.

County Adjacencies
We represent county adjacencies, or edges, through either a binary structure or the great
circle distance between two county centroids. A network with a binary adjacency structure
contains only 1s to represent if an edge is present or 0 if there is no edge.

In addition to a relatively simple binary adjacency matrix, one can determine the shortest
path between counties using the great circle distance. The great circle distance is determined
by the shortest measured distance along the surface of the sphere between two points. The
National Bureau of Economic Research calculated the great circle distance from one county
to every other county. Therefore, we can create a matrix that contains these values. We
can then apply matrix multiplication using the binary adjacency matrix and the great circle
distance matrix to produce a great circle distance adjacency matrix where zero represents
no edge present and a nonzero value represents the distance between the centroid of one
county to its neighbor.

County Network Structure
A graph, �, is a finite nonempty set + of objects called vertices or nodes and a set � of
2-element subsets of + called edges (Chartrand and Zhang 2012). Due to their geographic
composition, the United States’ counties form a simple graph with no loops or multiple
edges. However, the entirety of the United States is not connected as Alaska and Hawaii are
geographically separate. Despite its disconnected nature, an adjacency matrix can still be
used to depict this finite graph where an edge is either present or absent between adjacent
pairs of nodes, which indicates connection or disconnection respectively. In all, there are
9,294 edges in � and 3,143 nodes in + that comprise the United States’ county adjacency
network. “The degree of a vertex { in a graph � is the number of edges incident with a
given vertex {” (Chartrand and Zhang 2012). Figure 3.1 displays a histogram of the varying
county degrees within the United States. As we can see from Figure 3.1, the county degrees
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are approximately normally distributed where the horizontal axis is the county degree, and
the vertical axis is their frequency.

Figure 3.1. United States County Degree Histogram. The Y axis represents
the degree frequency and the X axis depicts the county degree distribution. As
we can see from the figure, the degree distribution is approximately normal.
Adapted from United States Census Bureau (2010).

Synthetic Networks
Synthetic network models are often used as a reference model to compare a given network
against and to analyze and build new, complex networks. Traditional synthetic networks
such as random graphs (Erdős and Rényi 1960), small-world graphs (Watts and Strogatz
1998), scale free graphs (Barabási and Albert 1999), Configuration model (Molloy and
Reed 1995), and the random geometric model (Gilbert 1961) do not provide an accurate
representation of adjacent United States counties. Connectivity between random graphs is
independent while the edges between United States counties are dependent. Small-world
graphs have a small shortest path distance, 3, that is modeled after log(=) while the United
States counties do not. Scale free graphs are those whose network degree distribution is of a
power law. The United States’ county degree distribution is approximately normal. Similar
to random graphs, adjacency and connections between configuration models and random
geometric models are independent.

Conversely, triangular lattice networks are formed in Euclidean space and create a tiling
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similar to the geographic layout of the United States As a result, our real network and
the triangular lattice network model share similar statistics and underlying characteristics
as evidenced in Table 3.2. However, the triangular lattice network’s diameter and average
shortest path are higher than the original network. As a result, we can see that the network
statistics provided in Table 3.2 lend credence to a large network that has few hubs, high
clustering, built-in redundancy, and a sparse structure. Therefore, a triangular lattice network
provides an accurate topological representation of the original network.

Table 3.2. Network Comparison. This table shows graph statistics in terms
of counties and in terms of a triangular lattice. Source Adapted from United
States Census Bureau (2010).

Network Metrics United States Counties Triangular Lattice

Nodes 3,109 3,120
Edges 9,242 9,125

Degree (Avg) 5.945 5.849
Closeness Coefficient 0.0396 0.0327

Betweenness Coefficient 0.008 0.010
Clustering Coefficient 0.435 0.410

Density 0.002 0.002
Diameter 68 78

Shortest Path (Avg) 28.823 31.429

Community Detection
Communities often appear in real networks as a group of nodes that share interests or
characteristics and can be grouped into densely connected arrangements (Newman 2006).
Communities can be characterized through a myriad of properties to include small-world,
clustering, or the underlying structural properties of the network. As a result, these char-
acteristics can be identified through various algorithms such as Louvain and Leiden. For
social networks, a community may be a group of friends while trusted users may form a
community within a cryptocurrency network.

Additionally, Newman suggests “that networks can have properties at the community level
that are quite different from their properties at the level of the entire network” (Newman
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2006). As a result, “analyses that focus on whole networks and ignore community structure
may miss many interesting features” (Newman 2006). Moreover, researchers are able to
separate the original, larger network into smaller and more easily managed communities,
which act like meta-nodes (Newman 2006). As a result, these individual meta-nodes can
make the original network easier to study (Newman 2006). These smaller meta nodes, or
communities, often enable a deeper understanding of the larger network’s functions as the
smaller meta nodes often correlate to various functions contained within the larger network
(Newman 2006).

Community detection is the process to identify what nodes belong to which communities
(Fortunato 2010). However, a network’s community structure is often unknown beforehand
and often of unequal density and/or size. Moreover, identifying and categorizing communi-
ties within a given network can be a computationally arduous undertaking as the number of
nodes, # , gets large (Hoffmann et al. 2020). Additionally, “methods for understanding what
the communities mean after you find them are, by contrast, still quite primitive, and much
needs to be done if we are to gain real knowledge from the output of our computer pro-
gram“ (Newman 2008a). As a result, efficiently calculating and subsequently understanding
a network’s community structure can be a complicated endeavour.

However, the computational processing capability continues to increase as discussed in
Chapter 2 provides refuge for scientists as networks become increasingly more complex.
Furthermore, as researchers and mathematicians fuse more efficient algorithms with more
capable computer processors, an algorithm’s processing time decreases. However, these
computationally faster methods are not usually deterministic and can change the communi-
ties when the algorithm is repeated, especially when there is no clear defined community
structure. While there are several algorithms for community detection, they can be catego-
rized into overlapping and non-overlapping techniques (Yang and Leskovec 2012).

Overlapping communities are those that allow nodes to belong to one or more communi-
ties, while non-overlapping communities are those that partition the network into groups
with sparser connections externally and denser connections internally (Yang and Leskovec
2012). One of the most ubiquitous methods to detect communities is through modularity
(Newman and Girvan 2004). Modularity is the difference between the actual number of
edges in a community and the expected number of such edges in a random graph of similar
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size networks(Traag et al. 2019) As a result, modularity can range from [−1, 1] where
larger values indicate a stronger community structure and dense communities, which sparse
connections between them.

Overlapping algorithms such as Louvain and Leiden seek to optimize modularity within a
network (Traag et al. 2019). When applied to the United States county network of 3,143
nodes, the Louvain method produces 22 communities with a modularity of 0.864, while the
Leiden method produces 10 communities with a modularity of 0.938. Therefore, both the
Louvain and Leiden methods produce a strong community structure with few connections
between communities. As evidenced in Figures 3.2 and 3.3, the Louvain method consoli-
dated similar states while Leiden’s method combined geographic regions to represent the
country. Unsurprisingly, Alaska and Hawaii form their own communities due to their geo-
graphic isolation from the other 48 states. As a result, the United States county network is
a strong community structure that is internally dense with sparse connections externally.

Figure 3.2. Louvain Community Detection in the United States. Adapted
from United States Census Bureau (2010).
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Figure 3.3. Leiden Community Detection in the United States. Adapted from
United States Census Bureau (2010).

Small-World Graphs
In 1990, American author John Guare composed Six Degrees of Separation (Guare 1990).
In his book, Guare writes that there exists a shortest path between a given individual to
nearly anyone else. This small-world phenomenon, coined six degrees of separation, serves
as the underlying principle behind small-world networks (Easley 2010).

In 1967, Stanley Milgram and other researchers created a social experiment to determine
a shortest path between individuals in one city to another (Milgram 1967). Through their
research, Milgram and his colleagues estimated that the average path length between indi-
viduals is between 5.5 and 6 (Milgram 1967). With the advent of social networking, reliable
international travel, and globalization, people around the world are becoming more inter-
connected. Therefore, small-world theory can be examined further. Researchers at Facebook
determined that of the approximate 1.9 billion active users on Facebook in 2006, users are
connected to every other person by an average path length of 3.59 (Edunov et al. 2016).

A network may be considered small-world if the average distance, !, between two randomly
chosen nodes, grows proportionally to the logarithm of the number of vertices, # (Watts
and Strogatz 1998). Namely, ! ∝ ;>�(#). The Python package networkx computes the
small-world coefficient, l, using the following equation:
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l =
!A

!
− �
�;
, (3.1)

where � and ! are the average clustering coefficient average shortest path length of a
network � (Hagberg et al. 2008). The parameters �A and !A are the average clustering
coefficient and average shortest path length of a random graph, respectively. The parameter
�; is the average clustering coefficient of an equivalent lattice graph (Hagberg et al. 2008).
While networkx implemented the code to generate the l coefficient, it originated from
(Humphries et al. 2006) and (Humphries and Gurney 2008).

Although detecting and creating a social network for the world’s population is certainly
feasible given substantial time and resources, small-world detection for the United States is
a more attainable enterprise.While the given network need not be connected, the continental
United States county network provides an opportunity to analyze characteristics within a
network that contains ample connected nodes to determine relationships with one another.
Through arduous computation, Networkx computed approximate value -2.9531 for l.
Values that are close to -1 imply a lattice structure and are not indicative of small-world
graphs (Hagberg et al. 2008). Since networkx computed a value that is significantly lower
than -1 and a triangular lattice network closely best approximated the county network, the
United States’ county network does not contain small-world properties.

Core-Periphery
As discussed in Section 2.1, the core of a network can be considered the densely connected
and central nodes while the periphery are the nodes non-centrally and sparsely connected to
the core (Csermely et al. 2013). The “core-periphery structure is a pervasive and a crucial
characteristic of large networks” (Gera 2021b). Although :-core is calculated below for the
United States’ county network, :-cliques and :-plexes can also be used to represent the
community structure. Hawaii and Alaska must be removed from the network to determine
the core as they are not adjacent to the continental United States. As one can see from Table
3.3, the United States county network is a highly interconnected network with outlying
peripheral nodes that are loosely connected to the core.
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Table 3.3. Network :-cores. Numbers in this table are the number of counties
in the United States with the respective :-cores. Adapted from United States
Census Bureau (2010).

:-cores United States Counties

: = 1 14
: = 2 28
: = 3 235
: = 4 2,832

Centralities
Network centralitymeasures are used as an estimate to determine a node’s importancewithin
a given network (Golbeck 2013). There are a number of methods to determine a node’s
centrality to include but not limited to: degree, closeness, betweenness, Katz, PageRank,
and eigenvector. These measures provide an overview of a network’s essential nodes.

Degree centrality is simply the number of edges a given vertex has (Chartrand and Zhang
2012). It follows that the higher the degree of a given node, the higher its degree centrality.
However, degree centrality is not necessarily a good indicator of a node’s importance
globally, as it does not provide insight into its subsequent connections (Golbeck 2013).
Closeness centrality quantifies how close a node { is to other nodes by calculating the
shortest path length from one node to every other node (Veremyev et al. 2019). Since
closeness centrality calculates the shortest path between nodes, a smaller value indicates a
higher centrality for a given node.

Betweenness centrality measures how important a node is to the network’s shortest path.
Betweenness centrality for a vertex { is calculated by (1) selecting a pair of nodes and
calculate the shortest path between them, and then (2) divide the shortest paths that contain {
by the total number of shortest paths (Newman et al. 2006). Eigenvector centrality represents
a node’s importance to its neighbors (Newman et al. 2006). As a result, “eigenvector
centrality acknowledges that not all connections are equal. In general, connections to people
who are themselves influential will lend a person more influence than connections to less
influential people” (Newman 2008b).
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The United States’ county network can be filtered to only the contiguous 48 states to
ensure a connected, well-defined graph with metrics previously displayed in Table 3.2.
Leading degree centrality measures represent counties that have the highest degree such as
San Juan County in Utah. The leading closeness counties represent geographic centrality
with Missouri, Illinois, and Arkansas representing 16, 3, and 1 of the top 20 counties,
respectively. The counties with the highest betweenness centralities create approximate
shortest paths in the north and south that connect the east and west coasts. The counties
with the highest eigenvector centralities are the counties that exert relatively high significant
influence on neighboring states with Iowan counties representing 36 of the top 40 and
Minnesota consuming the remaining 4.

Figure 3.4 below depicts a box-and-whisker diagram with the closeness, betweenness,
and eigenvector centralities. While there is not a clear visual distinction for closeness and
betweenness centralities in Figure 3.4, a callout marker has been placed on the eigenvector
data to delineate and exhibit the approximate top 40 counties. As we can see from Figure
3.4, the vertical axis depicts a given county’s centrality score for closeness centrality,
betweenness centrality, and eigenvector centrality measures on the horizontal axis.
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Figure 3.4. United States County Centralities. The Y axis represents the
centrality score for a given centrality measure and the X axis depicts the
various centrality measures. The red line is delineates the 40 counties with the
highest eigenvector centrality scores. As we can see from the figure, closeness
centrality has relatively low variability. Betweenness and eigenvector also have
low variability but have counties that contain relatively high centralities.
Adapted from United States Census Bureau (2010).

Eccentricity
The eccentricity 4({) of a connected graph � is defined as the maximum distance between
a vertex {8 and every other vertex { 9 in � where 8 ≠ 9 (Chartrand and Zhang 2012). The
maximumeccentricity among the vertices in� is the network’s diameter while theminimum
eccentricity is the network’s radius (Chartrand and Zhang 2012). Since the network needs to
be connected to compute its eccentricity, we remove Alaska and Hawaii from our analysis.
With these states removed, the continental United States graph remains and we can then
compute the eccentricity of each node and develop a histogram as depicted in Figure 3.5. As
we can see from Figure 3.5, the county eccentricities are approximately normally distributed
where the vertical axis is the frequency and the horizontal axis is the county eccentricities.
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Figure 3.5. County Eccentricities. The Y axis represents the degree frequency
and the X axis depicts the county eccentricities. As we can see from the
figure, the eccentricity ranges from 38 to 68, which indicates a sparsely
connected network. Adapted from United States Census Bureau (2010).

The minimum, mean, median, and maximum eccentricities of the continental United States
graph � are 38, 53, 54, and 68, respectively. Counties that have a smaller eccentricity are
states located in the center of the network such as Illinois and Iowa. Conversely, counties
in Maine, California, Oregon, and Washington contain the highest eccentricity values.
Counties that have eccentricities near the median and mean are located in geographically
centered states such as Oklahoma and Texas. We can see that the counties form a sparsely
connected network that require tens of connections to traverse.

Scale Free
Ascale free network is onewhose degree distribution follows a power law, thatmay grow due
to preferential attachment (Newman et al. 2006). A power law “states that a relative change
in one quantity results in a proportional relative change in another” (Glen 2016). Preferential
attachment is the process where new nodes prefer linking to nodes that have a higher fitness,
usually measured by high degree. However, a network that is scale free does not necessarily
imply preferential attachment (Newman et al. 2006). As evidenced by Figure 3.6, the United
States county network approximately follows a lognormal distribution, which implies the
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network is not scale free (Newman et al. 2006). Moreover, this lognormal distribution is
insufficient to imply preferential attachment. As the degree distribution increases on the
horizontal axis, the %A (- ≥ G) for a given function decreases on the vertical axis according
to a given power law function.

Figure 3.6. Power Law Distribution. The Y axis represents the %A (- ≥ G)
for a given power law function and the X axis depicts the degree distribution.
As we can see from the figure, the United States county adjacency network
follows a lognormal distribution. However, the lognormal distribution is insuf-
ficient to imply preferential attachment. Adapted from United States Census
Bureau (2010).

Clustering Coefficient
A network’s clustering coefficient “measures the average probability that two neighbors
of a vertex are themselves neighbors (a measure of the density of triangles in a network)”
(Gera 2021a). There are two benchmarks to calculate clustering coefficients: local clustering
coefficient and global clustering coefficient (Kemper 2010). To determine a given node 8’s
local clustering coefficient, one needs to calculate the density at node 8, which is formally
defined by the following equation (Kemper 2010):

�;8 =
Total number of linked triangles to a given node 8

Total number of triples centered on node8
, (3.2)
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where 8 is a given node and ; is the clustering coefficient. To determine a network’s global
clustering coefficient, one can take the average of all clustering coefficients (Kemper 2010).

��8 =
1
=

∑
8=1

�8, (3.3)

where 8 is a given vertex and � is the global clustering coefficient.

The United States’ county network’s global clustering coefficient and local clustering co-
efficient are 0.435 and 6.094 respectively. As evidenced in Figure 3.7, although counties
depicted on the horizontal axis with smaller degrees have higher clustering coefficients on
the vertical axis, they also have higher variability. Vertices tend to group in communities,
sharing mostly neighbors within the same community and as a result, some vertices have
small/large degree based on the size of the community (Newman et al. 2006).

Figure 3.7. Clustering Coefficients. The Y axis represents the clustering co-
efficients and the X axis depicts the degree distribution. As we can see from
the figure, the clustering coefficient is highly variable amongst counties that
have degree three to six while the others contain less variability. Adapted
from United States Census Bureau (2010).
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Assortativity
Homophily, or assortative mixing, is the tendency of nodes to choose nodes with similar
characteristics (Newman 2003). Conversely, disassortative mixing occurs as nodes are
adjacent to those that are dissimilar. Mixing can occur due to enumerative characteristics
such as gender or education. Mixing can also occur due to scalar characteristics such as age
or vertex degree. Since degree is a topological property of the network, it reduces down
to the Pearson correlation coefficient (Newman et al. 2006). An assortativity network by
degree has a core of high degrees and a periphery of low degree while a dissasortative graph
contains low degree nodes connected to nodes with high degree. Therefore, a network is
assortative if there is a significant fraction of edges between same-type vertices (Zhang et al.
2012).

As illustrated previously by Table 3.2, the average degree of the United States county
network is 5.945, which is further confirmed by the average neighbors calculation of 6.24.
As a result, the network often creates a triangular lattice in certain geographic locations.
Mild dissasortative behavior occurs primarily between nodes with degree six and those
nodes (in increasing order of magnitude) with degree seven, five, and eight as illustrated by
Figure 3.8. The horizontal axis is the degree distribution and the vertical axis depicts the
edge frequency of a given node. Since nodes with degree seven, five, and eight are relatively
close to nodes with degree six, the Pearson correlation calculation produces a coefficient just
below neutral levels. Therefore, the Pearson correlation coefficient and average neighbors
indicates a dissasortative mixing behavior.
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Figure 3.8. Edge Mixing. The Y axis represents the edge frequency of a given
node and the X axis depicts the degree distribution. As we can see from
the figure, the degree distribution represents dissasortative mixing behavior.
Adapted from United States Census Bureau (2010).

3.1.5 Network Limitations
Despite the network structure discussed, the United States’ county network is not without its
limitations. While the entirety of the network is comprised of 3,143 nodes and 9,242 edges,
the network is not only disconnected as Alaska and Hawaii are geographically isolated,
but three counties in Hawaii are considered not adjacent to Hawaii’s other two counties.
These three counties do not share any bordering terrain and subsequently any road, path,
or trail infrastructure despite being accessible by air and water and are certainly governed
by the state. While scale free networks do not necessarily require preferential attachment,
the degrees of the U.S. county network follows an approximate lognormal distribution.
The counties often self-impose system-level administrative and infrastructure constraints
combined with geographic, economic, historical, and population component constraints that
increase the underlying complexity of the network.

It is not uncommon for counties to merge, divide, and rename themselves. In Colorado,
Broomfield County wasmost recently established in 2001 bymerging parts of other counties
(Broomfield County 2021). In 2015, Shannon County in South Dakota renamed itself to
Oglala County to respect its Native American heritage (Ban 2014). When new counties are
formed or renamed, they are assigned their own FIPS codes, which can initially complicate
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reporting and administrative management. However, county, state, and federal governance
specifies various protocols to mitigate these constraints and ensure a consistent system
behavior.

3.2 Model Implementation
With data regarding COVID-19 cases and deaths collected and network adjacencies identi-
fied, we can now fit a time series network model using the GNAR package in R (Leeming
et al. 2020). A node in GNAR represents one county and its associated time series data set.
As a result, COVID-19 cases or deaths dating from January 22, 2020, to February 2, 2021,
for each county are depicted in all 3,143 nodes as a time series of 378 observations.

3.2.1 GNAR Assumptions
The most basic assumption to successfully implement the GNAR package is that the time
series data set has an underlying network structure. Since the COVID-19 data set contains
time series data for each county and the counties organize into a network, this assumption
is satisfied. Although GNAR is able to fit a model with missing data relatively well (Knight
et al. 2020), this concern is not applicable as the data set is complete for each county. Since
each county contains its own unique time series data, the data structure at node {8 is the
same at any other { 9 throughout the network where 8 ≠ 9 (Knight et al. 2020). Since node
data is homogeneous throughout the network, this assumption is also satisfied.

The GNAR package assumes that the multivariate time series follows an autoregressive
model at each node and is influenced by its neighboring nodes (Knight et al. 2020). This the-
sis previously assumed autoregressive behavior as discussed in Section 3.1.1. SARS-CoV-2
infections spread across artificial boundaries with relative ease and as a result, COVID-19
cases are likely influenced by a county’s adjacent neighbors. Therefore, this modelling
assumption is relevant and applicable.

3.2.2 GNAR Adaptation
The GNAR package accepts univariate time series data with an underlying network struc-
ture to create an overarching multivariate time series (Knight et al. 2020). However, each
individual node {8 can be re-formulated into a simple linear model.

51



In its simplest form, COVID-19 cases and deaths within a given county are univariate time
series data. Univariate data are often used to merely describe and identify fundamental
patterns and avoid any cause and effect analysis that may occur in either bivariate or
multivariate analysis. The time series data at a given vertex { are represented by total
COVID-19 cases or COVID-19 deaths. A third data set can be created by subtracting the
total number of COVD-19 deaths from the total number of a county’s cases to potentially
provide a more accurate representation of current COVID-19 survivors.

While the nodes accept univariate data, the GNAR function accepts binary or weighted
edge lengths. This thesis applied two different edge weights for the county network: binary
for the presence of a relationship, and great circle distance.

3.2.3 GNAR Limitations
Due to its univariate design, GNAR nodes are unable to retain individual predictors. Uni-
variate design and model fit is the simplest analytical approach as it only contains one
variable while a multivariate design could enable a more accurate model with a relevant
set of predictors. County data such as population density, census statistics, unemployment,
poverty, housing units, and power production could be implemented to enhance the response
variable, COVID-19 cases or deaths.

Since the GNAR package assumes stationarity within the data, a user who attempts to model
a time series networkwith a seasonal or cyclical componentmay achieve substandard results.
Models such as Holt-Winters, ARIMA, and seasonal decomposition that are able to model
seasonal data are unavailable in the GNAR package (Leeming et al. 2020). Although the
data set is relatively small, COVID-19 infections could inherit seasonal, trend, and cyclical
properties that cannot be modeled by GNAR in its current form.

3.2.4 Rolling Horizon
Due to the time series nature of COVID-19 infections, we can incorporate a modeling
technique that updates its forecast successively using previous and current observations
known as rolling horizon or rolling origin as discussed in Section 2.2.1. One can specify
the start of the training period and predict a testing period ? steps ahead. Additionally, we
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can continue to increase the sample size as the data progresses as depicted in Figure 3.9
(Svetunkov 2021).

Figure 3.9. As we can see from the figure, the training origin consists of
time periods 1, 2, and 3. The testing interval, ?, is one period ahead. As the
rolling origin progresses after each evaluation, period C − 1 is incorporated
into the initial sample where C is the evaluated time period.

Although not employed in this thesis, one can determine a constant sample size, 2, which
truncates the first observation as the origin continues through the data as depicted in Figure
3.10.

Figure 3.10. As we can see from the figure, the training period consists of
time periods 1, 2, and 3. The testing interval, ?, is one period ahead. As the
rolling origin progresses after each evaluation, the training period is fixed at
2 = 3. As a result, the time period(s) at C − 2 − ? is truncated where C is the
testing period.

For a Rolling Horizon model to be accurate, one must establish an initial latency or warm-
up period, which can vary from three to five years. Due to its novel nature, COVID-19
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infections within the United States have only been reported since early 2020. Moreover, the
data are overwhelmingly sparse within the first 70 days of reporting, which can also impact
the model’s ability to understand the data and develop an accurate prediction.

To generate a capable initial starting point, we supplemented the initial 70 days of reporting
with an additional training period of 120 days. As a result, we started the rolling horizon at
day 190 or July 29, 2020. Since we collected data from January 22, 2020, to February 2,
2021 and we have 378 total days of data, we can now generate a model for the remaining
188 days. By extension, we can convert the daily time series data into weekly data and start
the rolling horizon at week 27 and end at week 54.

Choosing the rolling horizon’s testing period or, ?, can significantly impact a model’s
performance. A relatively small ? can increase a model’s accuracy but it is of limited use.
Conversely, a relatively large ?, can be useful but often lacks predictive performance. To
maintain a balanced approach, we selected time intervals ? = 30 and ? = 4 for the daily
and weekly models, respectively. Public health officials could utilize a month’s forecast to
allocate resources, increase protective health measures, or increase public communication
during the pandemic’s height. Conversely, a month’s forecast could be used to repeal
restrictive population control measures if cases are on a downward trend.

As discussed in Section 1.5, a Naïve model can be used to measure baseline performance
by setting the forecast for any time period equal to the previous period’s actual value.
Additionally, Naïve models can be incorporated into a rolling horizon by merely lagging
the prospective test period by one. Forecasting models that beat the Naïve model are said to
have predictive power (Erdem 2021).

3.2.5 Model Parameters
Time series data can be aggregated into weekly or evenmonthly count to potentially increase
the model’s accuracy. As previously discussed, the network adjacency can be depicted using
a binary or great circle distance structure. Additionally, GNAR can model the number of
total cases, total deaths, or the difference to calculate the number of survivors who are alive
and COVID-19 positive. Table 3.4 provides a summary of various model parameters, which
can be formed into various combinations.
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Table 3.4. Model Parameter Summary. There are two Rolling Horizon Fore-
cast model options (daily and weekly) , two Network Adjacency Structure
model options (binary and great circle distance), and three Response model
options (total infections, deaths, and survivors). In total, we create 12 dif-
ferent combinations (i.e. Daily Rolling Horizon Forecast - Binary Network
Adjacency Structure - Total Infections).

Rolling Horizon Forecast Network Adjacency Structure Response

Daily (30 days) Binary Total Infections
Weekly (4 weeks) Great Circle Distance Total Deaths

Survivors

As per Table 3.4, there are 12 total model combinations to choose for our modeling.
Within each choice combination, we can adjust individual GNAR parameters to create three
different model fits. The first model fit applies a non-negative integer, alphaOrder = 1, that
specifies a maximum time-lag of 1 to model along with a vector of length betaOrder = 0,
which specifies themaximum neighbour set tomodel at each of the time-lags (Leeming et al.
2020). The second model fit utilizes the same alphaOrder but applies a betaOrder = 1.
The third model fit is the default model with no parameter modifications.

3.3 Summary
Network science is an evolving field growing at an exceptional pace (Newman et al. 2006).
Network science enables researchers to gain a deeper understanding of a given network.
Network characteristics such as community detection, small world properties, eccentricities,
and centrality measures provide insights into a network’s structure.

The United States county network centrality measures enabled insight and a keen under-
standing of critical nodes. Closeness centrality represented geographically central counties,
betweenness centrality represented the counties who had shortest paths between coasts, and
eigenvector centrality represented key states that exerted influence of the network. Addi-
tionally, the Pearson correlation coefficient and average neighbors indicates dissasortative
mixing.
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The GNAR package enables univariate data modeling over a given network.We can forecast
daily or weekly COVID-19 cases, survivors, or deaths for the United States using a binary
adjacency structure or a great circle distance adjacency structure. We can use the afore-
mentioned 12 combinations each with 3 GNAR models to create 36 individual models and
evaluate their prediction accuracy. One individual model with high accuracy and prediction
capability could be adapted and used by public health officials to disrupt an epidemic’s
spread.
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CHAPTER 4:
Model Results

4.1 Introduction
As Sections 4.2 and 4.3 will show, there are two reoccurring patterns. Since a county’s sur-
vivor count ismerely the difference between its case and death counts combinedCOVID-19’s
lowmortality rate, the county’s survivor count is approximately equal to its case count. Con-
sequently, the MASE time series plots for cases and survivors across both daily and weekly
time interval model combinations mirror one another.

Additionally, Sections 4.2 and 4.3 will show that MASE’s accuracy increases and trends
towards zero for most GNAR combinations as the model learns and subsequently forecasts.
As discussed in subsection 2.2.2, MASE and MAPE values that are closer to 0 represent
more accurate models (Hyndman et al. 2006). However, at approximately the 350th day, or
47th week, the MASE within some GNAR combinations decreases as it trends upwards.

As we will see in subsections 4.3.1, 4.3.2, 4.3.5 , and 4.3.6, the MASE for GNAR model 3
in both cases and survivors over a weekly time interval maintain and improve their accuracy
and forecasting capability thus rebuking the aforementioned trend behavior. The MASE for
GNAR models 1 and 3 decrease and trend upward. Despite these trending behaviors, each
model combination and their subsequent GNAR models still outperform the Naïve model.
Therefore, the model combinations and GNAR models that will be depicted in Sections 4.2
and 4.3 should be considered and adapted for future use by researchers and epidemiologists.

4.2 Daily Results
Since the rate of change between a daily time interval is much smaller than compared to
the weekly time interval, we experienced higher variability amongst the case, death, and
survivor model combinations as evidenced in subsections 4.2.1, 4.2.2, 4.2.3, 4.2.4, 4.2.5,
and 4.2.6. Despite this variability, the model combinations in subsection 4.2.3 and 4.2.4
performed exceptionally well and achieved aminimumMAPE values of approximately 10%
shown in Figures 4.12 and 4.16.
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As Figures 4.2, 4.6, 4.18, and 4.22 will show, cases and survivors mirror one another
and MASE decreases at approximately the 350th day and trends upwards as discussed in
Section 4.1. However, case and survivor model combinations experience minimum MAPE
values of approximately 7% as we will see in Figures 4.4, 4.8, 4.20, and 4.24. These results
demonstrated that researchers and public health officials can employ the GNAR package to
model COVID-19 cases, deaths, and survivors for the United States.

4.2.1 Daily Time Interval - Binary Network - Cases
As we can see from Table 4.1, the MASE and MAPE for GNAR model 1 provide higher
accuracy and forecasting capability than GNAR models 2 and 3 as it has the lowest mean
and median. This is further evidenced in Figures 4.1 and 4.3. As a result, GNARModel 1 is
the most consistently accurate model for this parameter combination. Table 4.1 also depicts
low variability for both MASE and MAPE within each GNAR model.

Table 4.1 also displays theMASEmean andmedian of eachGNARmodel outperforming the
Naïve model. Moreover, Figure 4.2 portrays theMASE for all GNARmodels outperforming
the Naïve model but experiencing a significant increase towards the end of the data set as
discussed in Section 4.1. This increase could be each GNAR model’s failure to adapt as
cases began to trend downward. However, Figure 4.4 demonstrates MAPE consistency of
each GNAR model to perform at or below a 20% threshold. Additionally, MAPE continues
to trend downwards for nearly the entire data set. As a result, all three GNAR models
surpassed the performance standards established in subsection 2.2.2 and could effectively
be applied to forecast COVID-19 cases.
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Table 4.1. Model Combination Summary. We can calculate MASE and
MAPE for each GNAR model with respect to each test period within the 188-
day forecast. We can then calculate the mean, median, and variance of these
values. As discussed in subsection 2.2.2, MASE is the average ratio between
the Naïve model and each model. By definition, MASE of the Naïve model is
always 1 (Hyndman et al. 2006). If MASE is less than 1, then the model which
we compare against the Naïve model performs better than the Naïve model.
If MASE is more than 1, then the Naïve model performs better. Intuitively,
MAPE is the average of the error rate relative to the actual observed number
as discussed in subsection 2.2.2. Table 2.1 provides guidance for interpreting
MAPE performance. Adapted from USAFacts (2021a); United States Census
Bureau (2010).

GNARModel Mean Median Variance
MASE

Model 1 0.4375 0.4322 0.0084
Model 2 0.5161 0.5281 0.0089
Model 3 0.5024 0.4585 0.0135
Naïve 1 1 0

MAPE
Model 1 0.1145 0.1134 0.0007
Model 2 0.1372 0.1308 0.0010
Model 3 0.1478 0.1366 0.0022
Naïve 0.6658 0.6723 0.0019
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Figure 4.1. Daily Time Interval - Binary Network - Cases (MASE)
The vertical axis represents MASE percentage and the horizontal axis depicts
each GNAR model. As we can see from the figure above, there is relatively
high variability amongst each GNAR model, which decreases their predictive
capability. Adapted from USAFacts (2021a); United States Census Bureau
(2010).
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Figure 4.2. Daily Time Interval - Binary Network - Cases (MASE)
The vertical axis represents MASE percentage and the horizontal axis de-
picts the number of days since data collection began on 22JAN21. While
each GNAR model outperforms the Naïve model, MASE decreases at ap-
proximately the 350th day and trends upwards for all three models. Adapted
from USAFacts (2021a); United States Census Bureau (2010).
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Figure 4.3. Daily Time Interval - Binary Network - Cases (MAPE)
The vertical axis represents MAPE percentage and the horizontal axis depicts
each GNAR model. As we can see from the figure above, there is relatively
low variability amongst each GNAR model, which results in more accurate
forecasts. Adapted from USAFacts (2021a); United States Census Bureau
(2010).
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Figure 4.4. Daily Time Interval - Binary Network - Cases (MAPE)
The vertical axis represents MAPE percentage and the horizontal axis depicts
the number of days since data collection began on 22JAN21. As we can see
from the figure above, MAPE continues to decrease for each GNAR model as
it trends downward. Adapted from USAFacts (2021a); United States Census
Bureau (2010).

4.2.2 Daily Time Interval - Great Circle Network - Cases
Aswe can see fromTable 4.2 and Figures 4.5, 4.6, 4.7, and 4.8, eachGNARmodel performed
similar to its binary network counterpart in Section 4.2.1. Moreover, the MASE of each
model outperformed the Naïve model and could be used to accurately forecast COVID-19
cases. GNAR model 1 had the highest accuracy as it had the lowest mean, median, and
variance for both MASE and MAPE. As a result, model 1 is the most consistently accurate
model for this parameter combination. The MASEmean and median for each GNARmodel
outperform the Naïve model

As Figure 4.5 portrays, MASE variability amongst the GNAR models varies, which de-
creases their forecasting capabilities. Moreover, Figure 4.6 portrays, the MASE for all
GNAR models, which outperform the Naïve model. However, each GNAR model in Figure
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4.6 experiences a significant increase towards the end of the data set as discussed in Section
4.1. Figure 4.7 displays MAPE characteristics, which contain relatively small variability
thus demonstrating their forecasting capabilities. Moreover, Figure 4.8 illustrates MAPE for
each GNARmodel continuing to trend downwards for nearly the entire data set. As a result,
all three GNAR models surpass the performance standards outlined in subsection 2.2.2 and
could effectively be applied to forecast COVID-19 cases.

Table 4.2. Model Combination Summary. We can calculate MASE and
MAPE for each GNAR model with respect to each test period within the 188-
day forecast. We can then calculate the mean, median, and variance of these
values. As discussed in subsection 2.2.2, MASE is the average ratio between
the Naïve model and each model. By definition, MASE of the Naïve model is
always 1 (Hyndman et al. 2006). If MASE is less than 1, then the model which
we compare against the Naïve model performs better than the Naïve model.
If MASE is more than 1, then the Naïve model performs better. Intuitively,
MAPE is the average of the error rate relative to the actual observed number
as discussed in subsection 2.2.2. Table 2.1 provides guidance for interpreting
MAPE performance. Adapted from USAFacts (2021a); United States Census
Bureau (2010); National Bureau of Economic Research (2010b).

GNARModel Mean Median Variance
MASE

Model 1 0.4375 0.4322 0.0084
Model 2 0.5176 0.5200 0.0106
Model 3 0.5169 0.4641 0.0178
Naïve 1 1 0

MAPE
Model 1 0.1145 0.1134 0.0007
Model 2 0.1428 0.1313 0.0019
Model 3 0.1543 0.1391 0.0031
Naïve 0.6658 0.6723 0.0019
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Figure 4.5. Daily Time Interval - Great Circle Network - Cases (MASE).
The vertical axis represents MASE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is relatively high variability amongst
each GNAR model, which decreases their predictive capability. Adapted from
USAFacts (2021a); United States Census Bureau (2010); National Bureau
of Economic Research (2010b).
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Figure 4.6. Daily Time Interval - Great Circle Network - Cases (MASE).
The vertical axis represents MASE percentage and the horizontal axis de-
picts the number of days since data collection began on 22JAN21. While
each GNAR model outperforms the Naïve model, MASE decreases at ap-
proximately the 350th day and trends upwards for all three models. Adapted
from USAFacts (2021a); United States Census Bureau (2010); National Bu-
reau of Economic Research (2010b).
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Figure 4.7. Daily Time Interval - Great Circle Network - Cases (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is relatively low variability amongst
each GNAR model, which results in more accurate forecasts. Adapted from
USAFacts (2021a); United States Census Bureau (2010); National Bureau
of Economic Research (2010b).
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Figure 4.8. Daily Time Interval - Great Circle Network - Cases (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis de-
picts the number of days since data collection began on 22JAN21. As we
can see, MAPE continues to decrease for each GNAR model as it trends
downward. Adapted from USAFacts (2021a); United States Census Bureau
(2010); National Bureau of Economic Research (2010b).

4.2.3 Daily Time Interval - Binary Network - Deaths
As we can see from Table 4.3 and Figures 4.9, 4.10, 4.11, and 4.12, the MASE of each
GNAR model outperformed the Naïve model and could be used to accurately forecast
COVID-19 deaths. GNAR model 3 had the highest accuracy as it had the lowest mean,
median, and variance for both MASE and MAPE. As a result, GNAR model 3 is the most
consistently accurate model for this parameter combination.

As Figure 4.9 portrays, MASE variability amongst the GNAR models varies significantly,
which decreases their forecasting capabilities. The high MASE variability is a direct result
of the model learning. As the model continues to improve and increase its accuracy, MASE
continues to produce lower and lower values, which are further away from the initial starting
point. Moreover, Figure 4.10 portrays, the MASE for all GNAR models, which outperform
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the Naïve model. However, each GNARmodel in Figure 4.10 continues to trend downwards.
Figure 4.11 displays MAPE characteristics, which contain relatively small variability thus
demonstrating their forecasting capabilities. Moreover, Figure 4.12 illustrates MAPE for
each GNAR model mirroring one another and continuing to trend downwards for nearly
the entire data set. As a result, all three GNAR models surpass the performance standards
outlined in subsection 2.2.2 and could effectively be applied to forecast COVID-19 cases.

Table 4.3. Model Combination Summary. We can calculate MASE and
MAPE for each GNAR model with respect to each test period within the 188-
day forecast. We can then calculate the mean, median, and variance of these
values. As discussed in subsection 2.2.2, MASE is the average ratio between
the Naïve model and each model. By definition, MASE of the Naïve model is
always 1 (Hyndman et al. 2006). If MASE is less than 1, then the model which
we compare against the Naïve model performs better than the Naïve model.
If MASE is more than 1, then the Naïve model performs better. Intuitively,
MAPE is the average of the error rate relative to the actual observed number
as discussed in subsection 2.2.2. Table 2.1 provides guidance for interpreting
MAPE performance. Adapted from USAFacts (2021b); United States Census
Bureau (2010).

GNARModel Mean Median Variance
MASE

Model 1 0.6173 0.5956 0.0303
Model 2 0.6157 0.5953 0.0310
Model 3 0.5932 0.5894 0.0248
Naïve 1 1 0

MAPE
Model 1 0.1551 0.1542 0.0006
Model 2 0.1558 0.1542 0.0006
Model 3 0.1560 0.1543 0.0006
Naïve 0.7010 0.7048 0.0012
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Figure 4.9. Daily Time Interval - Binary Network - Deaths (MASE).
The vertical axis represents MASE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is relatively high variability amongst
each GNAR model, which decreases their predictive capability. Adapted from
USAFacts (2021b); United States Census Bureau (2010).

70



Figure 4.10. Daily Time Interval - Binary Network - Deaths (MASE).
The vertical axis represents MASE percentage and the horizontal axis de-
picts the number of days since data collection began on 22JAN21. As we
can see, each GNAR model continues to trend downwards. Given additional
data, each GNAR model may continue to fall thus strengthening its predic-
tive performance. Adapted from USAFacts (2021b); United States Census
Bureau (2010).
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Figure 4.11. Daily Time Interval - Binary Network - Deaths (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is relatively low variability amongst
each GNAR model, which increases their predictive capability. Adapted from
USAFacts (2021b); United States Census Bureau (2010).
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Figure 4.12. Daily Time Interval - Binary Network - Deaths (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis depicts
the number of days since data collection began on 22JAN21. As we can see,
MAPE continues to decrease for each GNAR model as it trends downward.
Adapted from USAFacts (2021b); United States Census Bureau (2010).

4.2.4 Daily Time Interval - Great Circle Network - Deaths
As we can see from Table 4.4 and Figures 4.13, 4.14, 4.15, and 4.16, each GNAR model
performed similar to its binary network counterpart in Section 4.2.3. Moreover, the MASE
of each model outperformed the Naïve model and could be used to accurately forecast
COVID-19 deaths. GNAR model 3 had the highest accuracy as it had the lowest mean,
median, and variance for both MASE and MAPE. As a result, model 3 is the most con-
sistently accurate model for this parameter combination. The MASE mean and median for
each GNAR model outperform the Naïve model

As Figure 4.13 portrays, MASE variability amongst the GNAR models varies significantly,
which decreases their forecasting capabilities. The high MASE variability is a direct result
of the model learning. As the model continues to improve and increase its accuracy, MASE
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continues to produce lower and lower values, which are further away from the initial starting
point. Moreover, Figure 4.14 portrays, the MASE for all GNAR models, which outperform
the Naïve model. However, each GNARmodel in Figure 4.14 continues to trend downwards.
Figure 4.15 displays MAPE characteristics, which contain relatively small variability thus
demonstrating their forecasting capabilities. Moreover, Figure 4.16 illustrates MAPE for
each GNAR model mirroring one another and continuing to trend downwards for nearly
the entire data set. As a result, all three GNAR models surpass the performance standards
outlined in subsection 2.2.2 and could effectively be applied to forecast COVID-19 cases.

Table 4.4. Model Combination Summary. We can calculate MASE and
MAPE for each GNAR model with respect to each test period within the 188-
day forecast. We can then calculate the mean, median, and variance of these
values. As discussed in subsection 2.2.2, MASE is the average ratio between
the Naïve model and each model. By definition, MASE of the Naïve model is
always 1 (Hyndman et al. 2006). If MASE is less than 1, then the model which
we compare against the Naïve model performs better than the Naïve model.
If MASE is more than 1, then the Naïve model performs better. Intuitively,
MAPE is the average of the error rate relative to the actual observed number
as discussed in subsection 2.2.2. Table 2.1 provides guidance for interpreting
MAPE performance. Adapted from USAFacts (2021b); United States Census
Bureau (2010); National Bureau of Economic Research (2010b).

GNARModel Mean Median Variance
MASE

Model 1 0.6173 0.5956 0.0303
Model 2 0.6158 0.5955 0.0308
Model 3 0.5932 0.5899 0.0246
Naïve 1 1 0

MAPE
Model 1 0.1551 0.1542 0.0006
Model 2 0.1553 0.1542 0.0005
Model 3 0.1557 0.1544 0.0005
Naïve 0.7010 0.7048 0.0012
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Figure 4.13. Daily Time Interval - Great Circle Network - Deaths (MASE).
The vertical axis represents MASE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is relatively high variability amongst
each GNAR model, which decreases their predictive capability. Adapted from
USAFacts (2021b); United States Census Bureau (2010); National Bureau
of Economic Research (2010b).

75



Figure 4.14. Daily Time Interval - Great Circle Network - Deaths (MASE).
The vertical axis represents MASE percentage and the horizontal axis de-
picts the number of days since data collection began on 22JAN21. As we
can see, each GNAR model continues to trend downwards. Given additional
data, each GNAR model may continue to fall thus strengthening its predic-
tive performance. Adapted from USAFacts (2021b); United States Census
Bureau (2010); National Bureau of Economic Research (2010b).
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Figure 4.15. Daily Time Interval - Great Circle Network - Deaths (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is relatively low variability amongst
each GNAR model, which increases their predictive capability. Adapted from
USAFacts (2021b); United States Census Bureau (2010); National Bureau
of Economic Research (2010b).
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Figure 4.16. Daily Time Interval - Great Circle Network - Deaths (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis de-
picts the number of days since data collection began on 22JAN21. As we
can see, MAPE continues to decrease for each GNAR model as it trends
downward. Adapted from USAFacts (2021b); United States Census Bureau
(2010); National Bureau of Economic Research (2010b).

4.2.5 Daily Time Interval - Binary Network - Survivors
As we can see from Table 4.5, the MASE and MAPE for GNAR model 1 provide higher
accuracy and forecasting capability than GNAR models 2 and 3 as it has the lowest mean
and median. This is further evidenced in Figures 4.17 and 4.19. As a result, GNAR Model
1 is the most consistently accurate model for this parameter combination. Table 4.5 also
depicts low variability for both MASE and MAPE within each GNAR model.

Table 4.5 also displays the MASE mean and median of each GNAR model outperforming
the Naïve model. Moreover, Figure 4.18 portrays the MASE for all GNAR models outper-
forming the Naïve model but experiencing a significant increase towards the end of the data
set as discussed in Section 4.1. This increase could be each GNAR model’s failure to adapt
as cases began to trend downward. However, Figure 4.20 demonstrates MAPE consistency
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of each GNAR model to perform at or below a 20% threshold. Additionally, MAPE con-
tinues to trend downwards for nearly the entire data set. Also discussed in Section 4.1 and
evidenced throughout Table 4.5 as well as Figures 4.17, 4.18, 4.19, and 4.20, MASE and
MAPE for this survivor model mirrors its counterpart in subsection 4.2.1. As a result, all
three GNAR models surpassed the performance standards established in subsection 2.2.2
and could effectively be applied to forecast COVID-19 cases.

Table 4.5. Model Combination Summary. We can calculate MASE and
MAPE for each GNAR model with respect to each test period within the 188-
day forecast. We can then calculate the mean, median, and variance of these
values. As discussed in subsection 2.2.2, MASE is the average ratio between
the Naïve model and each model. By definition, MASE of the Naïve model is
always 1 (Hyndman et al. 2006). If MASE is less than 1, then the model which
we compare against the Naïve model performs better than the Naïve model.
If MASE is more than 1, then the Naïve model performs better. Intuitively,
MAPE is the average of the error rate relative to the actual observed number
as discussed in subsection 2.2.2. Table 2.1 provides guidance for interpreting
MAPE performance. Adapted from USAFacts (2021b); USAFacts (2021a);
United States Census Bureau (2010).

GNARModel Mean Median Variance
MASE

Model 1 0.4595 0.4609 0.0099
Model 2 0.5478 0.5663 0.0121
Model 3 0.5195 0.4889 0.0141
Naïve 1 1 0

MAPE
Model 1 0.1154 0.1139 0.0007
Model 2 0.1386 0.1360 0.0008
Model 3 0.1453 0.1323 0.0020
Naïve 0.6653 0.6724 0.0019
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Figure 4.17. Daily Time Interval - Binary Network - Survivors (MASE).
The vertical axis represents MASE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is relatively high variability amongst
each GNAR model, which decreases their predictive capability. Adapted from
USAFacts (2021b); USAFacts (2021a); United States Census Bureau (2010).
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Figure 4.18. Daily Time Interval - Binary Network - Survivors (MASE).
The vertical axis represents MASE percentage and the horizontal axis de-
picts the number of days since data collection began on 22JAN21. While
each GNAR model outperforms the Naïve model, MASE decreases at ap-
proximately the 350th day and trends upwards for all three models. Adapted
from USAFacts (2021b); USAFacts (2021a); United States Census Bureau
(2010).
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Figure 4.19. Daily Time Interval - Binary Network - Survivors (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is relatively low variability amongst
each GNAR model, which increases their predictive capability. Adapted from
USAFacts (2021b); USAFacts (2021a); United States Census Bureau (2010).
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Figure 4.20. Daily Time Interval - Binary Network - Survivors (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis depicts
the number of days since data collection began on 22JAN21. As we can see,
MAPE continues to decrease for each GNAR model as it trends downward.
Adapted from USAFacts (2021b); USAFacts (2021a); United States Census
Bureau (2010).

4.2.6 Daily Time Interval - Great Circle Network - Survivors
As we can see from Table 4.6 and Figures 4.21, 4.22, 4.23, and 4.24, each GNAR model
performed similar to its binary network counterpart in Section 4.2.5. The MASE of each
model outperformed the Naïve model as depicted in Figure 4.22 and could be used to
accurately forecast COVID-19 survivors. GNAR model 1 had the highest accuracy as it had
the lowest mean, median, and variance for both MASE and MAPE. As a result, model 1 is
the most consistently accurate model for this parameter combination.

As Figure 4.21 portrays, MASE variability amongst the GNAR models varies, which
decreases their forecasting capabilities. However, each GNAR model in Figure 4.22 expe-
riences a significant increase towards the end of the data set as discussed in Section 4.1.
Figure 4.23 displays MAPE characteristics, which contain relatively small variability thus
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demonstrating their forecasting capabilities. Moreover, Figure 4.24 illustrates MAPE for
each GNAR model continuing to trend downwards for nearly the entire data set. Also dis-
cussed in Section 4.1 and evidenced throughout Table 4.6 as well as Figures 4.21, 4.22, 4.23,
and 4.24, MASE and MAPE for this survivor model mirrors its counterpart in subsection
4.2.1. As a result, all three GNAR models surpass the performance standards outlined in
subsection 2.2.2 and could effectively be applied to forecast COVID-19 survivors.

Table 4.6. Model Combination Summary. We can calculate MASE and
MAPE for each GNAR model with respect to each test period within the 188-
day forecast. We can then calculate the mean, median, and variance of these
values. As discussed in subsection 2.2.2, MASE is the average ratio between
the Naïve model and each model. By definition, MASE of the Naïve model is
always 1 (Hyndman et al. 2006). If MASE is less than 1, then the model which
we compare against the Naïve model performs better than the Naïve model.
If MASE is more than 1, then the Naïve model performs better. Intuitively,
MAPE is the average of the error rate relative to the actual observed number
as discussed in subsection 2.2.2. Table 2.1 provides guidance for interpreting
MAPE performance. Adapted from USAFacts (2021b); USAFacts (2021a);
United States Census Bureau (2010); National Bureau of Economic Research
(2010b).

GNARModel Mean Median Variance
MASE

Model 1 0.4595 0.4609 0.0099
Model 2 0.5512 0.5677 0.0133
Model 3 0.5346 0.5001 0.0186
Naïve 1 1 0

MAPE
Model 1 0.1154 0.1139 0.0007
Model 2 0.1437 0.1371 0.0016
Model 3 0.1513 0.1357 0.0028
Naïve 0.6653 0.6724 0.0019
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Figure 4.21. Daily Time Interval - Great Circle Network - Survivors (MASE).
The vertical axis represents MASE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is relatively high variability amongst
each GNAR model, which decreases their predictive capability. Adapted from
USAFacts (2021b); USAFacts (2021a); United States Census Bureau (2010);
National Bureau of Economic Research (2010b).
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Figure 4.22. Daily Time Interval - Great Circle Network - Survivors (MASE).
The vertical axis represents MASE percentage and the horizontal axis de-
picts the number of days since data collection began on 22JAN21. While
each GNAR model outperforms the Naïve model, MASE decreases at ap-
proximately the 350th day and trends upwards for all three models. Adapted
from USAFacts (2021b); USAFacts (2021a); United States Census Bureau
(2010); National Bureau of Economic Research (2010b).
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Figure 4.23. Daily Time Interval - Great Circle Network - Survivors (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is relatively low variability amongst
each GNAR model, which increases their predictive capability. Adapted from
USAFacts (2021b); USAFacts (2021a); United States Census Bureau (2010);
National Bureau of Economic Research (2010b).
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Figure 4.24. Daily Time Interval - Great Circle Network - Survivors (MAPE)
The vertical axis represents MAPE percentage and the horizontal axis depicts
the number of days since data collection began on 22JAN21. As we can see,
MAPE continues to decrease for each GNAR model as it trends downward.
Adapted from USAFacts (2021b); USAFacts (2021a); United States Census
Bureau (2010); National Bureau of Economic Research (2010b).

4.2.7 Daily Results Summary
As the results in Section 4.2 demonstrate, MASE experiences variability throughout the
data set. The data points within cases and survivors are approximately equal, which results
in similar MASE and MAPE characteristics. The MASE and MAPE within Sections 4.2.3
and 4.2.4 continued to trend downwards thus demonstrating their forecasting capability.
While each model combination outperforms its respective Naïve model, MASE begins to
trend upwards at approximately the 350th day. Ultimately, all model combinations analyzed
in Section 4.2 surpass the performance standards outlined in subsection 2.2.2 and could
effectively be applied to forecast COVID-19 cases, deaths, and survivors.

4.3 Weekly Results
As discussed in Section 3.2.4, daily time series data can be converted to weekly, which
can potentially increase a model’s performance as the data values may increase in greater
intervals. As evidenced by the following subsections, the weekly adaption proved to be
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equally accurate as its daily counterpart. As a result, public health officials can effectively
forecast county COVID-19 cases, infections, and survivors for each county on a weekly
basis.

As Figures 4.26, 4.30, 4.42, and 4.46 will show, GNAR models 1 and 2 for both case and
survivor model combinations mirror one another. Additionally, MASE for GNAR models
1 and 2 decreases at approximately the 48th week and trends upwards as discussed in
Section 4.1. However, case and survivor model combinations experience minimum MAPE
values of approximately 5% as we will see in Figures 4.4, 4.8, 4.20, and 4.24. These results
demonstrated that researchers and public health officials can also employ theGNARpackage
to model COVID-19 cases, deaths, and survivors for the United States.

4.3.1 Weekly Time Interval - Binary Network - Cases
As we can see from Table 4.7, the MASE and MAPE for GNAR model 3 provide higher
accuracy and forecasting capability than GNAR models 1 and 2 as it has the lowest mean
and median. This is further evidenced in Figures 4.25 and 4.27. As a result, GNAR Model
3 is the most consistently accurate model for this parameter combination. Table 4.7 also
depicts low variability for both MASE and MAPE within each GNAR model.

Table 4.7 also displays the MASE mean and median of each GNAR model outperforming
the Naïve model. Moreover, Figure 4.26 portrays the MASE for all GNAR models outper-
forming the Naïve model. GNAR models 1 and 2 experience a significant increase towards
the end of the data set as discussed in Section 4.1 but GNAR model 3 continues to increase
its accuracy as it trends downwards. The increase for GNAR models 1 and 2 could be
each GNAR model’s failure to adapt as cases began to trend downward. However, Figure
4.28 demonstrates MAPE consistency of each GNAR model to perform at or below a 20%
threshold. Additionally, MAPE continues to trend downwards for nearly the entire data set.
As a result, all three GNAR models surpassed the performance standards established in
subsection 2.2.2 and could effectively be applied to forecast COVID-19 cases.
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Table 4.7. Model Combination Summary. We can calculate MASE and
MAPE for each GNAR model with respect to each test period within the 27-
week forecast. We can then calculate the mean, median, and variance of these
values. As discussed in subsection 2.2.2, MASE is the average ratio between
the Naïve model and each model. By definition, MASE of the Naïve model is
always 1 (Hyndman et al. 2006). If MASE is less than 1, then the model which
we compare against the Naïve model performs better than the Naïve model.
If MASE is more than 1, then the Naïve model performs better. Intuitively,
MAPE is the average of the error rate relative to the actual observed number
as discussed in subsection 2.2.2. Table 2.1 provides guidance for interpreting
MAPE performance. Adapted from USAFacts (2021a); United States Census
Bureau (2010).

GNARModel Mean Median Variance
MASE

Model 1 0.5380 0.5392 0.0127
Model 2 0.6505 0.6592 0.0144
Model 3 0.3933 0.3910 0.0045
Naïve 1 1 0

MAPE
Model 1 0.1315 0.1264 0.0012
Model 2 0.1642 0.1478 0.0036
Model 3 0.1170 0.1145 0.0007
Naïve 0.6751 0.6868 0.0033
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Figure 4.25. Weekly Time Interval - Binary Network - Cases (MASE).
The vertical axis represents MASE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is moderate variability amongst
GNAR models 1 and 2 and low variability within GNAR model 3. Adapted
from USAFacts (2021a); United States Census Bureau (2010).
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Figure 4.26. Weekly Time Interval - Binary Network - Cases (MASE).
The vertical axis represents MASE percentage and the horizontal axis depicts
the number of weeks since data collection began on 22JAN21. While each
GNAR model outperforms the Naïve model, MASE decreases until approxi-
mately the 48th week and then trends upwards for GNAR models 1 and 2.
GNAR model 3 continues to increase its performance as it trends downward.
Adapted from USAFacts (2021a); United States Census Bureau (2010).
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Figure 4.27. Weekly Time Interval - Binary Network - Cases (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is relatively low variability amongst
each GNAR model, which increases their predictive capability. Adapted from
USAFacts (2021a); United States Census Bureau (2010).
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Figure 4.28. Weekly Time Interval - Binary Network - Cases (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis depicts
the number of weeks since data collection began on 22JAN21. As we can see,
MAPE continues to decrease for each GNAR model as it trends downward.
Adapted from USAFacts (2021a); United States Census Bureau (2010).

4.3.2 Weekly Time Interval - Great Circle Distance Network - Cases
As we can see from Table 4.8 and Figures 4.29, 4.30, 4.31, and 4.32, each GNAR model
performed similar to its binary network counterpart in Section 4.3.1. Moreover, the MASE
of each model outperformed the Naïve model as illustrated in Figure 4.30 and could be used
to accurately forecast COVID-19 cases. GNAR model 3 had the highest accuracy as it had
the lowest mean, median, and variance for both MASE and MAPE. As a result, model 3 is
the most consistently accurate model for this parameter combination.

As Figure 4.29 portrays, MASE variability amongst the GNAR models varies, which
decreases their forecasting capabilities. GNAR models 1 and 2 experience a significant
increase towards the end of the data set as discussed in Section 4.1 but GNAR model 3
continues to increase its accuracy as it trends downwards. Figure 4.31 displays MAPE char-
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acteristics, which contain relatively small variability thus demonstrating their forecasting
capabilities. Moreover, Figure 4.32 illustrates MAPE for each GNAR model continuing to
trend downwards for nearly the entire data set. As a result, all three GNAR models surpass
the performance standards outlined in subsection 2.2.2 and could effectively be applied to
forecast COVID-19 cases.

Table 4.8. Model Combination Summary. We can calculate MASE and
MAPE for each GNAR model with respect to each test period within the 27-
week forecast. We can then calculate the mean, median, and variance of these
values. As discussed in subsection 2.2.2, MASE is the average ratio between
the Naïve model and each model. By definition, MASE of the Naïve model is
always 1 (Hyndman et al. 2006). If MASE is less than 1, then the model which
we compare against the Naïve model performs better than the Naïve model.
If MASE is more than 1, then the Naïve model performs better. Intuitively,
MAPE is the average of the error rate relative to the actual observed number
as discussed in subsection 2.2.2. Table 2.1 provides guidance for interpreting
MAPE performance. Adapted from USAFacts (2021a); United States Census
Bureau (2010); National Bureau of Economic Research (2010b).

GNARModel Mean Median Variance
MASE

Model 1 0.5380 0.5392 0.0127
Model 2 0.6473 0.6077 0.0210
Model 3 0.3983 0.3928 0.0055
Naïve 1 1 0

MAPE
Model 1 0.1315 0.1264 0.0012
Model 2 0.1705 0.1278 0.0065
Model 3 0.1189 0.1150 0.0008
Naïve 0.6751 0.6868 0.0033
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Figure 4.29. Weekly Time Interval - Great Circle Network - Cases (MASE).
The vertical axis represents MASE percentage and the horizontal axis de-
picts each GNAR model. As we can see, there is moderate variability amongst
GNAR models 1 and 2 and low variability within GNAR model 3. Adapted
from USAFacts (2021a); United States Census Bureau (2010); National Bu-
reau of Economic Research (2010b).
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Figure 4.30. Weekly Time Interval - Great Circle Network - Cases (MASE).
The vertical axis represents MASE percentage and the horizontal axis de-
picts the number of weeks since data collection began on 22JAN21. While
each GNAR model outperforms the Naïve model, MASE decreases until ap-
proximately the 48th week and then trends upwards for GNAR models 1
and 2. GNAR model 3 continues to increase its performance as it trends
downward. Adapted from USAFacts (2021a); United States Census Bureau
(2010); National Bureau of Economic Research (2010b).
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Figure 4.31. Weekly Time Interval - Great Circle Network - Cases (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is relatively low variability amongst
each GNAR model. Adapted from USAFacts (2021a); United States Census
Bureau (2010); National Bureau of Economic Research (2010b).
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Figure 4.32. Weekly Time Interval - Great Circle Network - Cases (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis de-
picts the number of weeks since data collection began on 22JAN21. As we
can see, MAPE continues to decrease for each GNAR model as it trends
downward. Adapted from USAFacts (2021a); United States Census Bureau
(2010); National Bureau of Economic Research (2010b).

4.3.3 Weekly Time Interval - Binary Network - Deaths
As we can see from Table 4.9, the MASE and MAPE for GNAR model 3 provide higher
accuracy and forecasting capability than GNAR models 1 and 2 as it has the lowest mean
and median. This is further evidenced in Figures 4.33 and 4.35. As a result, GNAR Model
3 is the most consistently accurate model for this parameter combination. Table 4.9 also
depicts low variability for both MASE and MAPE within each GNAR model.

Table 4.9 also displays the MASE mean and median of each GNAR model outperforming
the Naïve model. The high MASE variability displayed in Figure 4.33 is a direct result of
the model learning. As the model continues to improve and increase its accuracy, MASE
continues to produce lower and lower values, which are further away from the initial starting
point. Moreover, Figure 4.34 portrays the MASE for all GNAR models outperforming the
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Naïve model and continuing to decrease as they trend downward. Additionally, Figure 4.36
demonstrates MAPE consistency of each GNAR model to perform at or below a 20%
threshold and it continues to trend downwards for nearly the entire data set. As a result, all
three GNAR models surpassed the performance standards established in subsection 2.2.2
and could effectively be applied to forecast COVID-19 cases.

Table 4.9. Model Combination Summary. We can calculate MASE and
MAPE for each GNAR model with respect to each test period within the 27-
week forecast. We can then calculate the mean, median, and variance of these
values. As discussed in subsection 2.2.2, MASE is the average ratio between
the Naïve model and each model. By definition, MASE of the Naïve model is
always 1 (Hyndman et al. 2006). If MASE is less than 1, then the model which
we compare against the Naïve model performs better than the Naïve model.
If MASE is more than 1, then the Naïve model performs better. Intuitively,
MAPE is the average of the error rate relative to the actual observed number
as discussed in subsection 2.2.2. Table 2.1 provides guidance for interpreting
MAPE performance. Adapted from USAFacts (2021b); United States Census
Bureau (2010).

GNARModel Mean Median Variance
MASE

Model 1 0.8014 0.7471 0.0705
Model 2 0.8033 0.7467 0.0715
Model 3 0.6728 0.6661 0.0129
Naïve 1 1 0

MAPE
Model 1 0.1798 0.1741 0.0014
Model 2 0.1803 0.1741 0.0015
Model 3 0.1766 0.1675 0.0015
Naïve 0.7080 0.7178 0.0015
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Figure 4.33. Weekly Time Interval - Binary Network - Deaths (MASE)
The vertical axis represents MASE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is relatively high variability amongst
each GNAR model, which decreases their predictive capability. Adapted from
USAFacts (2021b); United States Census Bureau (2010).

101



Figure 4.34. Weekly Time Interval - Binary Network - Deaths (MASE).
The vertical axis represents MASE percentage and the horizontal axis depicts
the number of weeks since data collection began on 22JAN21. As we can see,
each GNAR model continues to increase its accuracy as it trends downward.
Adapted from USAFacts (2021b); United States Census Bureau (2010).
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Figure 4.35. Weekly Time Interval - Binary Network - Deaths (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is relatively low variability amongst
each GNAR model, which increases their predictive capability. Adapted from
USAFacts (2021b); United States Census Bureau (2010).
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Figure 4.36. Weekly Time Interval - Binary Network - Deaths (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis depicts
the number of weeks since data collection began on 22JAN21. As we can see,
MAPE continues to decrease for each GNAR model as it trends downward.
Adapted from USAFacts (2021b); United States Census Bureau (2010).

4.3.4 Weekly Time Interval - Great Circle Distance Network - Deaths
As we can see from Table 4.10 and Figures 4.37, 4.38, 4.39, and 4.40, each GNAR model
performed similar to its binary network counterpart in Section 4.3.3. Moreover, the MASE
of each model outperformed the Naïve model as illustrated in Figure 4.38 and could be used
to accurately forecast COVID-19 cases. GNAR model 3 had the highest accuracy as it had
the lowest mean, median, and variance for both MASE and MAPE. As a result, model 3 is
the most consistently accurate model for this parameter combination.

As Figure 4.37 portrays, MASE variability amongst the GNAR models varies significantly,
which decreases their forecasting capabilities. The high MASE variability displayed in
Figure 4.37 is a direct result of the model learning. As the model continues to improve
and increase its accuracy, MASE continues to produce lower and lower values, which are
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further away from the initial starting point.Figure 4.34 portrays the MASE for all GNAR
models outperforming the Naïve model and continuing to decrease as they trend downward.
Additionally, Figure 4.36 demonstratesMAPE consistency of eachGNARmodel to perform
at or below a 20% threshold and it continues to trend downwards for nearly the entire data
set. As a result, all three GNAR models surpassed the performance standards established in
subsection 2.2.2 and could effectively be applied to forecast COVID-19 cases.

Table 4.10. Model Combination Summary. We can calculate MASE and
MAPE for each GNAR model with respect to each test period within the 27-
week forecast. We can then calculate the mean, median, and variance of these
values. As discussed in subsection 2.2.2, MASE is the average ratio between
the Naïve model and each model. By definition, MASE of the Naïve model is
always 1 (Hyndman et al. 2006). If MASE is less than 1, then the model which
we compare against the Naïve model performs better than the Naïve model.
If MASE is more than 1, then the Naïve model performs better. Intuitively,
MAPE is the average of the error rate relative to the actual observed number
as discussed in subsection 2.2.2. Table 2.1 provides guidance for interpreting
MAPE performance. Adapted from USAFacts (2021b); United States Census
Bureau (2010); National Bureau of Economic Research (2010b).

GNARModel Mean Median Variance
MASE

Model 1 0.8014 0.7471 0.0705
Model 2 0.8013 0.7470 0.0700
Model 3 0.6735 0.6679 0.0132
Naïve 1 1 0

MAPE
Model 1 0.1798 0.1741 0.0014
Model 2 0.1798 0.1741 0.0014
Model 3 0.1770 0.1679 0.0016
Naïve 0.7080 0.7178 0.0015
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Figure 4.37. Weekly Time Interval - Great Circle Network - Deaths (MASE).
The vertical axis represents MASE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is moderate variability amongst
each GNAR model, which decreases their predictive capability. Adapted from
USAFacts (2021b); United States Census Bureau (2010); National Bureau
of Economic Research (2010b).
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Figure 4.38. Weekly Time Interval - Great Circle Network - Deaths (MASE).
The vertical axis represents MASE percentage and the horizontal axis de-
picts the number of weeks since data collection began on 22JAN21. As we
can see, each GNAR model continues to increase its accuracy as it trends
downward. Adapted from USAFacts (2021b); United States Census Bureau
(2010); National Bureau of Economic Research (2010b).
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Figure 4.39. Weekly Time Interval - Great Circle Network - Deaths (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is relatively low variability amongst
each GNAR model, which increases their predictive capability. Adapted from
USAFacts (2021b); United States Census Bureau (2010); National Bureau
of Economic Research (2010b).

108



Figure 4.40. Weekly Time Interval - Great Circle Network - Deaths (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis de-
picts the number of weeks since data collection began on 22JAN21. As we
can see, MAPE continues to decrease for each GNAR model as it trends
downward. Adapted from USAFacts (2021b); United States Census Bureau
(2010); National Bureau of Economic Research (2010b).

4.3.5 Weekly Time Interval - Binary Network - Survivors
As we can see from Table 4.11, the MASE and MAPE for GNAR model 3 provide higher
accuracy and forecasting capability than GNAR models 1 and 2 as it has the lowest mean
and median. This is further evidenced in Figures 4.41 and 4.43. As a result, GNAR Model
3 is the most consistently accurate model for this parameter combination. Table 4.11 also
depicts low variability for both MASE and MAPE within each GNAR model.

Table 4.11 also displays the MASE mean and median of each GNAR model outperforming
the Naïve model. Moreover, Figure 4.42 portrays the MASE for GNAR models 1 and 3
outperforming the Naïve model. GNAR models 1 and 2 experience a significant increase
towards the end of the data set as discussed in Section 4.1 and GNAR model 2 exceeds
the Naïve model’s performance threshold. However, GNAR model 3 continues to increase
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its accuracy as it trends downwards. The increase for GNAR models 1 and 2 could be
their failure to adapt as cases began to trend downward. However, Figure 4.44 demonstrates
MAPE consistency of each GNAR model to perform at or below a 20% threshold. Ad-
ditionally, MAPE continues to trend downward for nearly the entire data set. As a result,
GNAR models 1 and 3 surpassed the performance standards established in subsection 2.2.2
and could effectively be applied to forecast COVID-19 cases.

Table 4.11. Model Combination Summary. We can calculate MASE and
MAPE for each GNAR model with respect to each test period within the 27-
week forecast. We can then calculate the mean, median, and variance of these
values. As discussed in subsection 2.2.2, MASE is the average ratio between
the Naïve model and each model. By definition, MASE of the Naïve model is
always 1 (Hyndman et al. 2006). If MASE is less than 1, then the model which
we compare against the Naïve model performs better than the Naïve model.
If MASE is more than 1, then the Naïve model performs better. Intuitively,
MAPE is the average of the error rate relative to the actual observed number
as discussed in subsection 2.2.2. Table 2.1 provides guidance for interpreting
MAPE performance. Adapted from USAFacts (2021b); USAFacts (2021a)
United States Census Bureau (2010).

GNARModel Mean Median Variance
MASE

Model 1 0.5796 0.6021 0.0212
Model 2 0.7099 0.7333 0.0304
Model 3 0.4113 0.4028 0.0066
Naïve 1 1 0

MAPE
Model 1 0.1321 0.1280 0.0012
Model 2 0.1646 0.1524 0.0033
Model 3 0.1188 0.1156 0.0000
Naïve 0.6746 0.6858 0.0033
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Figure 4.41. Weekly Time Interval - Binary Network - Survivors Boxplot
(MASE). The vertical axis represents MASE percentage and the horizontal
axis depicts each GNAR model. As we can see, there is moderate variability
amongst GNAR models 1 and 2 and low variability within GNAR model 3.
Adapted from USAFacts (2021b); USAFacts (2021a) United States Census
Bureau (2010).
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Figure 4.42. Weekly Time Interval - Binary Network - Survivors (MASE).
The vertical axis represents MASE percentage and the horizontal axis depicts
the number of weeks since data collection began on 22JAN21. While GNAR
models 1 and 3 outperform the Naïve model, GNAR model 2 exceeds the
Naïve model’s performance threshold and is no longer acceptable for model-
ing. GNAR model 3 continues to increase its performance as it trends down-
ward. Adapted from USAFacts (2021b); USAFacts (2021a) United States
Census Bureau (2010).
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Figure 4.43. Weekly Time Interval - Binary Network - Survivors (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis depicts
each GNAR model. As we can see, there is relatively low variability amongst
each GNAR model, which increases their predictive capability. Adapted from
USAFacts (2021b); USAFacts (2021a) United States Census Bureau (2010).
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Figure 4.44. Weekly Time Interval - Binary Network - Survivors (MAPE).
The vertical axis represents MAPE percentage and the horizontal axis depicts
the number of weeks since data collection began on 22JAN21. As we can see,
MAPE continues to decrease for each GNAR model as it trends downward.
Adapted from USAFacts (2021b); USAFacts (2021a) United States Census
Bureau (2010).

4.3.6 Weekly Time Interval - Great Circle Distance Network - Sur-
vivors

As we can see from Table 4.12 and Figures 4.45, 4.46, 4.47, and 4.48, each GNAR model
performed similar to its binary network counterpart in Section 4.3.5. Moreover, the MASE
of each model outperformed the Naïve model as illustrated in Figure 4.46 and could be used
to accurately forecast COVID-19 cases. GNAR model 3 had the highest accuracy as it had
the lowest mean, median, and variance for both MASE and MAPE. As a result, model 3 is
the most consistently accurate model for this parameter combination.

As Figure 4.45 portrays, MASE variability amongst the GNAR models varies, which
decreases their forecasting capabilities. GNAR models 1 and 2 experience a significant
increase towards the end of the data set as discussed in Section 4.1 but GNAR model 3
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continues to increase its accuracy as it trends downwards. Figure 4.47 displays MAPE char-
acteristics, which contain relatively small variability thus demonstrating their forecasting
capabilities. Moreover, Figure 4.48 illustrates MAPE for each GNAR model continuing to
trend downwards for nearly the entire data set. As a result, all three GNAR models surpass
the performance standards outlined in subsection 2.2.2 and could effectively be applied to
forecast COVID-19 cases.

Table 4.12. Model Combination Summary. We can calculate MASE and
MAPE for each GNAR model with respect to each test period within the 27-
week forecast. We can then calculate the mean, median, and variance of these
values. As discussed in subsection 2.2.2, MASE is the average ratio between
the Naïve model and each model. By definition, MASE of the Naïve model is
always 1 (Hyndman et al. 2006). If MASE is less than 1, then the model which
we compare against the Naïve model performs better than the Naïve model.
If MASE is more than 1, then the Naïve model performs better. Intuitively,
MAPE is the average of the error rate relative to the actual observed number
as discussed in subsection 2.2.2. Table 2.1 provides guidance for interpreting
MAPE performance. Adapted from USAFacts (2021b); USAFacts (2021a)
United States Census Bureau (2010); National Bureau of Economic Research
(2010b).

GNARModel Mean Median Variance
MASE

Model 1 0.5796 0.6021 0.0212
Model 2 0.7171 0.7335 0.0332
Model 3 0.4205 0.4028 0.0100
Naïve 1 1 0

MAPE
Model 1 0.1321 0.1280 0.0012
Model 2 0.1746 0.1493 0.0059
Model 3 0.1208 0.1162 0.0000
Naïve 0.6746 0.6858 0.0033
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Figure 4.45. Weekly Time Interval - Great Circle Network - Survivors
(MASE). The vertical axis represents MASE percentage and the horizontal
axis depicts each GNAR model. As we can see, there is moderate variability
amongst GNAR models 1 and 2 and low variability within GNAR model 3.
Adapted from USAFacts (2021b); USAFacts (2021a) United States Census
Bureau (2010); National Bureau of Economic Research (2010b).
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Figure 4.46. Weekly Time Interval - Great Circle Network - Survivors
(MASE). The vertical axis represents MASE percentage and the horizontal
axis depicts the number of weeks since data collection began on 22JAN21.
While GNAR models 1 and 3 outperform the Naïve model, GNAR model
2 exceeds the Naïve model’s performance threshold and is no longer ac-
ceptable for modeling. GNAR model 3 continues to increase its performance
as it trends downward. Adapted from USAFacts (2021b); USAFacts (2021a)
United States Census Bureau (2010); National Bureau of Economic Research
(2010b).
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Figure 4.47. Weekly Time Interval - Great Circle Network - Survivors
(MAPE). The vertical axis represents MAPE percentage and the horizon-
tal axis depicts each GNAR model. As we can see, there is relatively low
variability amongst each GNAR model, which increases their predictive ca-
pability. Adapted from USAFacts (2021b); USAFacts (2021a) United States
Census Bureau (2010); National Bureau of Economic Research (2010b).
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Figure 4.48. Weekly Time Interval - Great Circle Network - Survivors
(MAPE). The vertical axis represents MAPE percentage and the horizontal
axis depicts the number of weeks since data collection began on 22JAN21.
As we can see, MAPE continues to decrease for each GNAR model as
it trends downward. Adapted from USAFacts (2021b); USAFacts (2021a)
United States Census Bureau (2010); National Bureau of Economic Research
(2010b).

4.3.7 Weekly Results Summary
As the results in Section 4.3 demonstrated, MASE experiences high variability throughout 
the data set. The data points within cases and survivors are approximately equal, which 
results in similar MASE and MAPE characteristics. The MASE and MAPE within Sections 
4.3.3 and 4.3.4 continued to trend downwards thus demonstrating their forecasting capability. 
MASE exceeded the Naïve model performance threshold for GNAR model 2 within both 
case and survivors. Additionally, MASE for both GNAR models 1 and 2 continue to decrease 
until approximately the 48th day and begin to trend upwards. Ultimately, nearly every 
model combination analyzed in Section 4.3 surpass the performance standards outlined in 
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subsection 2.2.2 and could effectively be applied to forecast COVID-19 cases, deaths, and 
survivors.

4.4 Summary
As we have demonstrated, a GNAR model can be used to successfully model COVID-19 
infections, deaths, and survivors for daily and weekly time intervals. MASE and MAPE vary 
within both model combinations and their respective GNAR models. Despite this variability, 
all models demonstrated their capability to successfully model COVID-19 cases, deaths, 
and survivors.

4.4.1 Great Circle Distance Performance
Although the binary network and great circle distance network represent their edges differ-
ently, the accuracy percent difference is negligible amongst the various model 
combinations. Figure 4.49 displays the results by computing the percent difference 
between similar com-binations’ (e.g. daily-binary-cases and daily-great circle- cases) mean 
MASE statistics. The percent difference was also calculated between similar combinations’ 
mean MAPE values. The same process was applied for similar combinations’ median 
values. Finally, these per-cent difference results were aggregated and categorized into "no 
difference," "worse," or "better" based upon their associated value.
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Figure 4.49. Great Circle Performance Bar Plot. The vertical axis represents
the frequency while the horizontal axis displays whether or not the accu-
racy remained the same, performed better, or performed worse. As we can
see, incorporating the great circle distance increased the accuracy of MASE
or MAPE only eight times. Adapted from USAFacts (2021b); USAFacts
(2021a) United States Census Bureau (2010); National Bureau of Economic
Research (2010b).

As we can see from Figure 4.49, the model’s performance remained constant or in fact
decreased 64 out of 72 times, or 89%. The model’s best performance increased occurred
between the weekly case combinations in Sections 4.3.1 and 4.3.2 with accuracy increasing
by nearly 14%. However, most of the remaining seven positive instances experiencedmodest
gains of approximately 2%. Of the 35 decreased performance occurrences, most were
negligible ranging from approximately 0.5% to 6%. As a result, the network structure could
be adjusted to a binary framework to simplify calculations.

4.4.2 Case and Survivor Similarities
As we have seen, the MASE and MAPE performance for cases and survivors is comparable
for both daily and weekly combinations. These values are unsurprising given COVID-19’s
relatively low fatality rate (JohnsHopkinsUniversity 2021).Moreover, public health officials
could use this data to forecast the survivors within their given county.
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4.4.3 Daily and Weekly Performance
The daily models demonstrated consistent behavior for the case and survivor combinations.
After approximately 48 weeks of data reporting, MASE for the cases and survivors began
to increase. Since COVID-19 survivors is dependent on the number of cases, its MASE
increased as well. MASE for every daily case and survivor GNAR model decreased until
approximately 350th day then increased. MASE for GNAR models 1 and 2 for weekly case
and survivor model combinations decreased until approximately 350th day then increased.
However, GNAR model 3 continues to increase its MASE accuracy as it continued to trend
downward. The mean and median of the four weekly case and survivor combinations were
lower than their daily counter part.

Conversely, the various death model combinations performed well as both MASE and
MAPE continued to decrease as they trended downward. The mean and median of the two
daily combinations were lower than their weekly counterpart. As a result, deaths should be
modeled on a daily time interval while cases and survivors should be modeled weekly.

122



CHAPTER 5:
Conclusions and Summary

5.1 Conclusions
The GNAR package demonstrated its ability to model COVID-19 infections within the
United States’ counties. Open and accurate CDC data reporting enabled various combina-
tions to effectively model cases, deaths, and survivors. However, future research through
additional data collection, multivariate network modeling, foreign adaptation could be used
to improve and increase model accuracy to ultimately reduce a pathogen’s impact on a given
community.

5.1.1 Data Analysis
AsCOVID-19 continues to spread and proliferate amongst the world’s population, cases and
deaths will continue to increase. Developing an accurate model predicated upon transparent
data is paramount to ensuring a timely and accurate method to disrupt its spread.

The United States county network provides an opportunity to model SARS-CoV-2 as
adjacencies are formed either through a binary relationship, great circle distance between
county centroids, or the shortest path. As such, counties exert influence on one another as
individuals personally or professionally commute between counties and in turn carry the
virus.

5.1.2 GNAR Model
Although the daily case and survivor combinations diverged, the GNAR package demon-
strated its capability to effectively model COVID-19 cases within the United States. By
enabling a weekly count, we were able to mitigate this daily divergent behavior as GNAR
Model 3 continued its precision and maintained its accuracy. Additionally, the accuracy
of MASE and MAPE continued to increase for the models in subsections 4.2.3 and 4.2.4.
To provide maximum accuracy, case and survivors should be modeled weekly and deaths
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should be modeled daily. This combination would enable public health officials to make
public policy recommendations to disrupt and ultimately halt SARS-CoV-2’s progression.

5.2 Department of Defense Impact
Service members and their families are not insulated from infectious diseases and viral
pandemics. They live amongst and interact with the various communities surrounding the
installations and are, consequently, susceptible to infection. Once an individual is infected,
a unit’s medical readiness may decrease as the number of deployable personnel shrinks.
As the number of deployable personnel declines, a Commander’s ability to achieve and
promote the tactical, operational, and strategic interests of the United States and its allies
across the competition continuum and achieve unified action may be limited.

InMarch 2020, SARS-CoV-2 disseminated amongst the United States Ship (USS) Theodore
Roosevelt crew at an exponential rate forcing their evacuation (LaGrone 2020a). As a result,
the entire ship sat idle and unable to project air power, provide crisis response, and deter
aggression (Thompson 2019). As great power competition returns, adversaries can threaten
the international order, exploit these vulnerabilities, and achieve their objectives unopposed.
Therefore, it is critical that officials from the Defense Health Agency, CDC, local public
health administrations, and Commanders be agile, adaptable, and understand the operational
and personnel risk in a given area and which public health prevention measures to enact.

5.3 Future Work
While the model’s accuracy demonstrated GNAR’s capability, additional work could be
done to potentially increase its performance and ultimately its utility as an epidemiological
model.

5.3.1 Supplementary Data Collection
While the GNAR model is univariate, additional data can be collected to potentially pro-
vide additional information. The network’s adjacency structure can be modified with edge
weights represented by the shortest path distance between two counties. While the great
circle distance can be used as an acceptable, albeit temporary, data surrogate for the short-
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est driving distance between counties, it often resulted in inaccurate models. Additionally,
county information such as unemployment can be collected and collated.

Open Street Map Networkx
Open Street Map (OSM) provides a free and editable map of the world upon which the
Python package Open StreetMapNetworkx (OSMnx) is built (Boeing 2017b). TheOSMnx
package enables users to download geospatial data from Open Street Map to model and
analyze real-world street networks (Boeing 2017a).

Users may create a graph from a specified latitude-longitude coordinate pair, address,
bounding box, polygon, extensible markup language (XML), or place. The function
graph_from_place accepts a query string or a list of strings and creates a graph from
OSM within the specified boundaries of some geocodable place (Boeing 2021). Users are
also able to specify an additional buffer distance around the polygon. We can then locate the
intersection nearest a county’s centroid as the starting point using the get_nearest_node
function and providing a latitude-longitude coordinate pair. We can then use the same func-
tion and provide a second pair of latitude-longitude coordinates for the ending node in the
adjacent county. Knowing the maximum distance between adjacent counties using the great
circle distance values, we can apply a multiplicative buffer to ensure the adjacent county’s
centroid is captured and finally create a new graph. With this new graph, we can finally
determine the shortest path in meters using shortest_path function.

Despite OSMnx’s capabilities, it certainly has limitations. Since Open StreetMap is an open
and collaborative data set, there may be unintended errors or unverified information that
can cause irregularities when attempting to exercise various functions within the OSMnx
package (Boeing 2017b). Erroneous data such as a nonexistent road or intersection can
result in an imprecise shortest path calculation, which may lead to incorrect analysis and
conclusions.

An additional limitation is OSMnx’s inability to find a unique nearest node given a pair
of latitude and longitude coordinates. To calculate the shortest path between two counties,
the user must input a graph containing the desired starting and ending nodes, defined as
street intersections, into the shortest_path function. OSMnx provides a helper func-
tion, get_nearest_node, which accepts a pair of latitude and longitude coordinates. The
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get_nearest_node function then seeks out the nearest intersection within the specified
graph. However, if the graph does not contain ample unique nodes within the vicinity of
a starting pair of latitude and longitude coordinates or an ending pairs of latitude and lon-
gitude coordinates, the function will return the identical node. As a result, the calculated
shortest path will be zero.

County Data
In addition to county adjacencies, the United States Census Bureau provides population
information for each county to include, but not limited to the following: population de-
mographics, population density, and total size when it conducts its census every ten years
(United States Census Bureau 2020b). The Census Bureau also provides population esti-
mates every year, which may provide a more accurate representation of the population in
a given county. Unemployment and poverty data could be used to determine counties with
vulnerable populations as those individuals may be unable to seek medical care and lack
the financial resources to isolate. Despite additional data, a predictive model will never be
100% since the human component is never fully predictable. As such, lurking variables will
always exist and may falsely identify a strong relationship or may obscure the true relation-
ship. As a result, they may continue working, which could increase their transmission rate
amongst Susceptible individuals.

Through additional data collection and computation, we can determine the total number of
intensive care beds per county as per the Department of Homeland Security (DHS) (Depart-
ment of Homeland Security 2021). Since medical facilities provide varying capabilities, the
hospital types and capacities provided by local and regional health officials to the DHS can
be used to represent medical capacity within a given county (Department of Homeland Se-
curity 2021). While former President Trump and state governors ordered medical capacity
be increased through methods such as the deployment of United States Naval Ship (USNS)
Comfort or building field expedient hospitals to provide additional medical services and
support to local hospitals, determining the exact capacity, duration, and county location of
those hospitals may be infeasible (LaGrone 2020b).
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Modeling ZIP Codes
Although the CDC monitors COVID-19 infections and deaths at the county level, the CDC
could further segregate cases and deaths into individual respective ZIP codes. According
to the United States Postal Service, there are nearly 42,000 ZIP codes in the United States
(USPS 2021). Since ZIP codes comprise the entirety of homes within the United States,
they also form a network with edges being modeled as binary, great circle distance, or
shortest path distance. Although individuals are able to move freely amongst the counties,
movement between ZIP codes may provide a more realistic representation of daily life and
community interactions due to the relatively smaller distance between nodes.

Foreign Modeling
Althoughweutilized theUnited States’ county adjacency structure as the underlying network
for the GNAR model, any governance network can be applied. A network can be formed by
using a nation’s townships, counties, municipalities, regional municipalities, and districts
as nodes. Edges can be similarly modeled as either binary, great circle distance, or shortest
path distance. The data and subsequent network could be used as discussed in Chapter 3 to
create a GNAR model for a given country, province, or region.

Countries within the European Union and the United Kingdom could provide a sufficient
opportunity for modeling. Most countries within the European Union employ a similar
governance hierarchy with provinces and municipalities representing states and counties
within the United States. European nations also enforced strict lockdown measures to
curb the spread of SARS-CoV-2 (Di Donato et al. 2020). Europe’s climate, terrain, and
population disposition are similar to the United States. The two continents share a similar
weather cycle, ecosystems, and dense population centers surrounded by rural minorities.
However, nations within the African Union may not be ideal as the aforementioned criteria
are not comparable. As such, one can apply the GNAR package to compare and contrast
public policy decisions and their impact on COVID-19 infections and deaths within the
African Union and European Union.

5.3.2 Principal Component Analysis
Principal component analysis (PCA) is an unsupervised machine learning approach where a
subset of features -1, -2, . . . , -= is used in lieu of a traditional response variable, . (James
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et al. 2013). Principal component analysis can be utilized to generate “a lower dimensional
representation of a data set that contains as much as possible of the variation” (James
et al. 2013). Since GNAR only accepts univariate data, PCA can be used to create a new,
univariate response variable . that contains information from county features.

Since COVID-19 infections are reported at the county level, we can generate a data object
that contains a set of county features such as population demographics and density along
with a response variable, or infections, for each county. We can then apply PCA to reduce
the dimensionality in an attempt to incorporate these features.

We can apply PCA to generate the first principal component, which is a normalized lin-
ear combination of selected features -1, -2, . . . , -= that contains the largest sample vari-
ance (James et al. 2013). The second principal component is the linear combination of
-1, -2, . . . , -= features that have maximal variance out of all linear combinations that are
uncorrelated with the first principal component (James et al. 2013). As a result, the first and
second principal components are orthogonal. Consequently, we can generate a new variable
using a linear combination of these two principal components to elucidate the maximum
amount of variance in two dimensions.

5.3.3 Model Parameters
While we utilized the model parameters as depicted in Table 3.4, a SIR compartment model
may be adapted. Additionally, modeling the total infections and deaths may be modeled for
daily and weekly time intervals.

SIR Implementation
As discussed in Section 2.3.2, COVID-19 infections are theorized to follow a SEIR com-
partment model (Hoehl et al. 2020) and (Patil and Kotwal 2020). However, public health
officials, epidemiologists, and researchers can integrate the simpler SIR model into the
GNAR model. Currently, the CDC provides daily information for the total number of
COVID-19 cases and deaths. However, a more accurate representation of infections can be
maintained with minimal resources.

Section 5.3.1 stated that the United States Census Bureau maintains an approximation
of each county’s population. This approximation serves as the initial starting point for the
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Susceptible compartment. Public health officials can then subtract the total number of active
Infected and Recovered to approximate the remaining number of Susceptible individuals
within their given counties.

While every person is certainly unique and cannot be universally modeled, public health
officials could divide COVID-19 infections into mild or severe symptoms. For those with
mild symptoms, health officials could approximate the duration an individual is actively
infected by applying the recovery rate, W. If symptomsworsen, individualswould presumably
seek local medical care where hospitals would transition an individual’s accountability from
mild to severe. If an individual with mild symptoms does not seek medical care and the
expected duration is complete, they could be considered Recovered and can be aggregated
with death counts from local and state officials as discussed in Section 3.1.3.

Certainly, this adaptation requires multiple assumptions and is not without its limitations.
Medical testing and screening would need to identify every infection. Individuals with mild
symptoms recover at the recovery rate, W. Individuals are able to seek medical assistance as
symptoms worsen from mild to severe. County populations are isolated and do not interact
with one another.

However, local health officials can maintain a more accurate count of active COVID-19
infection in their respective counties. Therefore, officials can then compartmentalize a
given county’s population into either Susceptible, Infected, or Recovered, which can create
additional univariate data for GNAR to model.

Rates of Change
Since the data set provides a time series with cumulative infections and deaths, one can also
model the change in deaths and cases at either daily or weekly time intervals. This rate of
change can be used to describe the percentage change in a given response variable over a
period of time. Consequently, public health officials can use this rate of change to determine
trends and identify momentum within the data set. As a result, local and state officials can
propose increased or decreased public health measures.
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GNAR Parameters
As discussed in Section 3.2.5 and available in the documentation, GNAR parameters such
as latency and neighbor weight can be modified (Leeming et al. 2020). For example, we
applied a one-day latency period in alphaOrder but a longer duration such as five or tenmay
increase model accuracy. Additional emphasis could be applied to the county adjacencies
by modifying betaOrder.

Monthly Time Intervval
The SARS-CoV-2 vaccine was the fastest vaccine ever produced (Cohen 2020). However,
had the vaccine not been implemented at an exceptional rate and the pandemic continued
indefinitely, a monthly time interval could be applied, which could potentially increase the
model’s accuracy. As demonstrated in Chapter 2, pandemics are not novel and will continue
to emerge and disappear for the foreseeable future (Naguib et al. 2020). Therefore, a monthly
time interval may apply to the next pandemic.

5.4 Summary
The very nature of the global landscape in the 21st century can be characterized as one
of uncertainty and unpredictability. Through the rise of globalization, a process compelled
by investments and international trade facilitated through the increase use of information
technology, societies are becoming better integrated, more interconnected, and expanding
and subsequently condensing natural environments. As a result, the natural barrier between
animals and humans will continue to erode placing humans at higher risk for zoonotic
disease transmission and the next pandemic (Senthilingam 2017).

History has shown that epidemics are undoubtedly unpredictable. At present, no public
health expert is able to exactly predict the duration, severity, and scope despite their best
effort to disrupt or even prevent pandemics. Data analysts, developers, and practitioners of
predictive modeling tools must remain cognizant of the capabilities and deficiencies and
not over promise. Since the first known virus infected and spread amongst humans, shaman,
healers, scientists, researchers, physicians, and epidemiologists alike have sought to explain
and ultimately contain the deadly pathogen of their time. By employing science, mathe-
matics, and now modeling techniques aided by computers, epidemiologists and scientists
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are able to better understand and potentially forecast a pandemic’s impact on society and
provide public health recommendations to policy officials. As we have shown, the GNAR
model can be incorporated as one of these varying methodologies and modeling techniques
to prevent future human suffering and loss of life.
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https://covid19.who.int/?gclidĒAIaIQobChMI7M_PqZjo7gIV0ACtBh35Fw
36EAAYASAAEgLGePD_BwE.

Yang J, Leskovec J (2012) Community-affiliation graph model for overlapping network
community detection. Association for Computing Machinery. Accessed February 6,
2021, https://dl.acm.org/doi/10.1109/ICDM.2012.139.

142



Yoshida R (2020) Time series analysis. Lecture, Advanced Data Analysis, July 21, De-
partment of Operations Research, Naval Postgraduate School, Monterey, CA.

Yum S (2020) Social network analysis for coronavirus (COVID-19) in the United States.
Social Science Quarterly 101(4):1642–1647.

Zhang GQ, Cheng SQ, Zhang GQ (2012) A universal assortativity mea-
sure for network analysis. Cornell University. Accessed February 15, 2021,
https://arxiv.org/abs/1212.6456.

143



THIS PAGE INTENTIONALLY LEFT BLANK

144



Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

145


	21Jun_Wren_David_First8
	21Jun_Wren_David
	Introduction
	Background
	COVID-19 Modeling Approaches
	United States County Network
	Data Availability and Model Adaptation
	Results and Future Research

	Literature Review
	Network Models
	Time Series Forecasting
	Epidemiological Models
	Simulations
	Summary

	Methodology
	Data
	Model Implementation
	Summary

	Model Results
	Introduction
	Daily Results
	Weekly Results
	Summary

	Conclusions and Summary
	Conclusions
	Department of Defense Impact
	Future Work
	Summary

	List of References
	Initial Distribution List




