

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

RED CELL ANALYSIS FOR MOBILE NETWORKED
CONTROL SYSTEMS

by

Larry W. Wigington

June 2021

Thesis Advisor: Ruriko Yoshida
Co-Advisor: Douglas P. Horner
Second Reader: Samuel E. Buttrey

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 June 2021 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
RED CELL ANALYSIS FOR MOBILE NETWORKED CONTROL SYSTEMS 5. FUNDING NUMBERS

 6. AUTHOR(S) Larry W. Wigington

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 In the near future, networked unmanned autonomous systems will increasingly be employed to support
ground force operations. Approaches to collaborative control can find near-optimal position
recommendations that optimize over system parameters such as sensing and communication to increase
mission effectiveness. However, over time these recommendations can create predictable paths that may
provide leading indications of the force’s operational intent. Using time series forecasting methods and deep
neural networks, this thesis conducts an adversarial assessment of unmanned mobile networked control
systems. In the first scenario, the path of the team’s ground motion predicted by the model follows the
initially planned but not executed path. In a second scenario, the model achieves a maximum path error rate
of only 75 meters. In both cases, this methodology correctly identifies the direction and distance the team
would travel and even identified points where the team changed direction, allowing the autonomous red cell
analysis to discern the ground force’s intent. These results indicate that automated red cell analysis is a
potentially valuable component in planning and executing unmanned mobile networked control systems
supporting expeditionary ground teams. It provides near real-time feedback on the unmanned agents’ paths
to determine if course adjustments can reduce operational intent predictability.

 14. SUBJECT TERMS
UAV, machine learning, adversarial machine learning, AI vs. AI, NCS, control systems,
counter-reconnaissance, expeditionary advanced base operations, multi-domain operations

 15. NUMBER OF
PAGES
 97
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

RED CELL ANALYSIS FOR MOBILE NETWORKED CONTROL SYSTEMS

Larry W. Wigington
Major, United States Marine Corps

BS, Troy University, 2009
M, Systems Analysis, Naval Postgraduate School, 2017

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
June 2021

Approved by: Ruriko Yoshida
 Advisor

 Douglas P. Horner
 Co-Advisor

 Samuel E. Buttrey
 Second Reader

 W. Matthew Carlyle
 Chair, Department of Operations Research

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 In the near future, networked unmanned autonomous systems will increasingly be

employed to support ground force operations. Approaches to collaborative control can

find near-optimal position recommendations that optimize over system parameters such

as sensing and communication to increase mission effectiveness. However, over time

these recommendations can create predictable paths that may provide leading indications

of the force’s operational intent. Using time series forecasting methods and deep neural

networks, this thesis conducts an adversarial assessment of unmanned mobile networked

control systems. In the first scenario, the path of the team’s ground motion predicted by

the model follows the initially planned but not executed path. In a second scenario, the

model achieves a maximum path error rate of only 75 meters. In both cases, this

methodology correctly identifies the direction and distance the team would travel and

even identified points where the team changed direction, allowing the autonomous red

cell analysis to discern the ground force’s intent. These results indicate that automated

red cell analysis is a potentially valuable component in planning and executing unmanned

mobile networked control systems supporting expeditionary ground teams. It provides

near real-time feedback on the unmanned agents’ paths to determine if course

adjustments can reduce operational intent predictability.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Problem Statement. 1
1.2 Case Scenario . 2
1.3 Proposed Analytical Framework 2

2 Background 5
2.1 Networked Control Systems . 5
2.2 Neural Networks . 10
2.3 Red Cell/Red Team . 14

3 Methodology 17
3.1 The MTX Infiltration Data Set 17
3.2 A Data Science Approach . 18
3.3 Neural Networks . 32
3.4 Time Series Regression Models 35
3.5 Summary . 42

4 Application, Results and Analysis 43
4.1 The Unseen Data Set . 43
4.2 Time Series Regression Models Applied 44
4.3 Methods of Evaluation . 47
4.4 Analysis of Time Series Regression Models 48

5 Implementation Analysis 55
5.1 Microcomputer/Edge Computing 56
5.2 Mobile Computing Platform . 58

6 Conclusion 61

vii

6.1 Discussion . 61
6.2 Future Work . 62

Appendix A Time Series Regression Model Development 65
A.1 Assumptions and Correlations 65
A.2 Time Series Linear Regression Model 66
A.3 Time Series Neural Network Model 67

Appendix B Time Series Regression Model Application Results 69

List of References 71

Initial Distribution List 75

viii

List of Figures

Figure 2.1 Overview of Machine Learning Applications. Source: Yoshida
(2020). 11

Figure 3.1 Hierarchical Cluster Dendrogram on Infiltration Data Set 21

Figure 3.2 General Overview of DBSCAN Method: Buttrey (2021). 22

Figure 3.3 DBSCAN Cluster Analysis on Infiltration Data Set 22

Figure 3.4 K-Means Cluster Analysis on Infiltration Data Set 23

Figure 3.5 Cluster Results for all Methods used on Infiltration Data Set . . . 24

Figure 3.6 Univariate Time Series Analysis of UAV Coordinates 27

Figure 3.7 UAV1.X and UAV1.Y Predicted Values Compared to Actual Values 29

Figure 3.8 Linear Model Diagnostic Plots—NSW.X 31

Figure 3.9 Performance of MLR on Predicting NSW Coordinates 31

Figure 3.10 DNN Training Performance—Loss Function MAPE 35

Figure 3.11 Overview of Time Series Regression Model 36

Figure 3.12 Time Series Linear Regression Model Results 39

Figure 3.13 Time Series Neural Network Regression Model Results 41

Figure 4.1 Comparison of NSW Paths—IDS vs. UDS 44

Figure 4.2 Time Series Regression Model—Applied 46

Figure 4.3 Example of Path Deviation Metric 49

Figure 4.4 Time Series Linear Regression Model Results—Unseen Data Set 51

Figure 4.5 Time Series Neural Network Regression Model Results — Unseen
Data Set . 53

ix

Figure 5.1 Raspberry Pi 4 (Edge Computing Device). Source: RaspberryPi.org
(2021). 56

Figure 6.1 Automated Red Cell Analysis Feedback Loop 63

Figure A.1 IDS Correlation Plot . 65

x

List of Tables

Table 2.1 Comparison of Localization Error (cm). Adapted from Shareef et al.
(2007). 13

Table 3.1 MTX Infiltration Data Set . 18

Table 3.2 Overview of Applied Machine Learning Algorithms 19

Table 3.3 A Summary of the Hierarchical Clustering Linkages Method. Source:
James et al. (2013). 20

Table 3.4 Time Series Components. Source: Yoshida (2020). 26

Table 3.5 UxV Time Series Model Performance 29

Table 3.6 Ground Force Triangulation (Numeric Regression) Performance Ma-
trix . 32

Table 3.7 Ground Force Triangulation Deep Neural Network 34

Table 3.8 Ground Force Triangulation, w/ Neural Network, PerformanceMatrix 35

Table 3.9 Time Series Neural Network Regression Model: UAV 1 and UAV 3
Results . 40

Table 4.1 Overview of Simulated Unseen Data Set 45

Table 4.2 Time Series Linear Regression Model: UxV Forecast Performance—
Applied . 50

Table 4.3 Time Series Neural Network Regression Model Time-Series
Performance—Applied . 51

Table 5.1 Mobile Computing—Model Processing Times (seconds) 58

Table B.1 Ensemble Model 1 Performance Matrix: Path Deviation (meters) . 69

Table B.2 Ensemble Model 2 Performance Matrix: Path Deviation (meters) . 70

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

Adam Adaptive Movement Estimation

AR Auto-Regressive

ARIMA Auto-Regressive Integrated Moving Average

CAVR Center for Autonomous Vehicle Research

CENETIX Center for Network Innovation and Experimentation

CRUSER Consortium for Robotics and Unmanned Systems Education and
Research

COMTHIRDFLT Commander, US Third Fleet

DBSCAN Density-Based Spatial Clustering of Applications with Noise

D1 Dissimilarity Matrix 1

D2 Dissimilarity Matrix 2

D3 Dissimilarity Matrix 3

DDG Guided Missile Destroyer

DNN Deep Neural Network

DOD Department of Defense

DS Distributed Submodularity

DTN Delay-Disruption Tolerant Network

GFT Ground Force Triangulation

HPC High Performance Computers

IDS Multi-Thread Experiment (MTX) Infiltration Data Set

xiii

IPB Intelligence Preparation of the Battlefield

ISR Intelligence, Surveillance, and Reconnaissance

JIFX Joint Interagency Field Experimentation Program

LSTM Long Short-Term Memory

LTI Linear Time-Invariant

MA Moving Average

MAPE Mean Absolute Percentage Error

MASE Mean Absolute Scaled Error

MIT Massachusetts Institute of Technology

MLR Multiple Linear Regression

MTX Multi-Thread Experiment

NED Northing Easting Down

NIWC Naval Information Warfare Systems Command

NNETAR Neural Network Auto-Regressive Time Series Model

NPS Naval Postgraduate School

NSW Naval Special Warfare

NCS Networked Control System

RLM Robust Linear Models

ROS Robot Operating Systems

RNN Recurrent Neural Network

SCI San Clemente Island

SELU Scaled Exponential Linear Units

xiv

SNN Shallow Neural Network

UxV Unmanned Vehicle

UAV Unmanned Aerial Vehicle

UDS Unseen Data Set

USV Unmanned Surface Vehicle

UUV Unmanned Underwater Vehicle

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

Executive Summary

This thesis uses priorNaval Postgraduate School (NPS)workwithUnmannedVehicle (UxV)
Networked Control System (NCS) and develops a novel framework to determine if multiple,
distributed heterogeneous unmanned systems that support an expeditionary ground force
behave in a manner that can provide operational intent of the ground force it supports.
A NCS consists of heterogeneous agents, which include unmanned and manned assets,
where each node has communications, sensing, and mobility capabilities and constraints.
Recent research in this area of collaborative control has produced in methodologies that can
find near-optimal position recommendations that optimize over system parameters, such as
sensing and communication, to increase mission effectiveness, ensuring a ground force has
sufficient communications capabilities or Intelligence, Surveillance, and Reconnaissance
(ISR) of its target. However, over time these recommendations can create predictable paths
that may provide leading indications of the force’s operational intent. If an opposing force
can track the unmanned systems in theUxVNCSwould they be able to ascertain information
such as where the ground force is or where the ground force is going?

Determining if these unmanned systems’ behavior telegraphs operational intent requires
several assumptions; paramount is the ability for the adversary to observe and collect position
data about the UxV NCS. Therefore, this thesis begins by examining a worst-case. In this
scenario, the adversary has perfect information about previous force disposition, system
configurations, and access to detailed training data containing time-stamped geolocation
information linking the ground force to the UxV NCS.

The next assumption required in this research is that opposing forces will use Artificial
Intelligence and Machine Learning Techniques to discover operational patterns. This thesis
analyzes the “worst-case scenario” data set from a data science approach; first, by applying
unsupervised learning methods to learn interesting relationships or identify clusters present
within the data set. Using the insights from the unsupervised learning methods, the next set
of analyses focuses on supervised learning methods to determine if the grid coordinates or
position data of the ground force can be inferred from the positions of the UxV network.
And although these methods are developed from the “worst-case scenario” this research
does not assume an adversary will know if there is a ground force present in the vicinity of

xvii

the autonomous agents. Rather, the communications constraints and methods learned from
this analysis will provide the ability to focus an adversarial search and detect approach and
potentially provide advanced warning of a target.

A more likely scenario is that an adversary will have access to similar training data that
contains ground force and UxV positions and will have already inferred the relationships
between a UxV NCS and a ground force. Therefore, the adversary is likely able to observe
the UxV NCS but not the ground force, as in the “worst-case scenario.” Taking the hidden
ground force location into account, a novel approach is presented. The automated red cell
analysis methodology generally follows a Bayesian Hierarchical Model, using a series of
time series regression models to forecast UxV positions into the future and then, using those
forecasted locations, triangulate the ground forces future path. These models are developed
using the “worst-case scenario” data and then applied to the “more likely scenario” data.

The time series neural network regression model correctly identified the ground force’s
operational intent in both scenarios. The ground force’s predicted path deviated from the
actual path by an average of only 39meters. TheAutomated Red Cell methodology is a novel
framework that quantifies how autonomous agents may telegraph or predict a ground force’s
operational intent. The implications of this methodology and analysis are far-reaching as
the Department of Defense (DOD) begins to focus on competing with near-peer adversaries
in the Pacific, and the Marine Corps identifies the need for reconnaissance and counter-
reconnaissance capabilities when conducting operations within the “weapons engagement
zone.”

xviii

Acknowledgments

I would like to thank my advisor, Dr. Ruriko Yoshida, for her guidance and expert advice
throughout this research. Dr. Yoshida allowed me to take this research everywhere I could
and explore any aspect that seemed promising, all while keeping me on track. The time we
spent talking through hard problems proved to be invaluable.

Iwould also like to thankmy co-advisor, Dr.DouglasHorner, for his expertise in autonomous
systems and practical approach problems. Dr. Horner’s mentorship and guidance not only
focused this research but invigorated my interest in robotics and autonomous systems and
helped me get to creating an operational model of my framework.

Finally, I would like to thank my wife, Tiffinni, and our girls for their unwavering support
and encouragement during my time at Naval Postgraduate School. Tiffinni has heard more
about machine learning and drones than she would care to admit, but she has been my
constant sounding board for ideas and is not afraid to tell me when they are good or bad.
She keeps me grounded and focused; without her, none of my successes would be possible.

xix

THIS PAGE INTENTIONALLY LEFT BLANK

xx

CHAPTER 1:
Introduction

Future Department of Defense (DOD) missions will leverage multiple, distributed, hetero-
geneous, unmanned systems to support a human component (Defense Science Board 2012).
These unmanned systems will increasingly be employed in cooperation with one another
through communication networks to increase mission effectiveness, in part, through their
collective ability to efficiently identify objectives based on selective criteria and dissemi-
nate information across a network of systems. Research conducted at Naval Postgraduate
School (NPS) byWachlin (2018) and Lowry (2020) focused on a centralized and distributed
adaptive submodular optimization approach to find near-optimal, near-real-time, position
solutions for agents in the Networked Control System (NCS). Exploratory analysis of the
data generated from this system, detailed in Chapter 3, reveals that the path of the ground
team and the autonomous unmanned agents that make up the NCS are predictable. An
adversary can detect clear patterns of motion, especially once it can be determined that
multiple autonomous agents are part of the same network and working in concert.

1.1 Problem Statement
An exploratory analysis of the data generated from an NCS reveals that the behavior of
autonomous unmanned agents may provide leading indications of a ground force’s path and
intent. This thesis investigates an adversary’s ability to predict the paths of an observable
autonomousmulti-vehicle network and its associated ground force. Existing control systems
for collaborating unmanned systems seek to calculate positions or trajectories that maximize
the utility of the system, and recent work by Wachlin (2018) and Lowry (2020) can find
near-optimal network configurations by optimizing the network’s sensing potential and
communication robustness. The optimized network allows the network control system to
make decisions and share information to ensure that the failure of one or more nodes will
not significantly impact the network (Lowry 2020). However, the resulting network creates
predictable paths between configuration points. The paths and network configurations can
determine the path and target of the ground forces supported by the autonomous vehicle
network. This thesis does not predict autonomous agent behavior from a control systems

1

approach; rather, it predicts autonomous agent behavior using a more generalized approach
through data science and statistical machine learning tools.

1.2 Case Scenario
To test this framework, this thesis analyzes data from a real-world experiment where a
network of autonomous vehicles supported a ground force. In November of 2017, NPS
designed and conducted a Multi-Thread Experiment (MTX) series on San Clemente Is-
land (SCI), which brought together faculty and students from across NPS including, Center
for Autonomous Vehicle Research (CAVR), Center for Network Innovation and Experi-
mentation (CENETIX), Consortium for Robotics and Unmanned Systems Education and
Research (CRUSER), and Joint Interagency Field Experimentation Program (JIFX), as
well as fleet sponsors such as Naval Special Warfare (NSW), Commander, US Third
Fleet (COMTHIRDFLT) and Naval Information Warfare Systems Command (NIWC). The
experiment provided a platform to test the collaboration of an autonomous network of
Unmanned Vehicle (UxV) with manned assets. The scenario was built around a NSW team
tasked with landing on SCI and traversing the island to conduct a direct action mission on
a known target. The NSW team was supported by “manned and unmanned assets operating
together to provide Intelligence, Surveillance, and Reconnaissance (ISR) support, trans-
portation, and battle-space awareness” (Lowry 2020, p. 2). The MTX generated a good data
set to test the hypothesis that NCS generates predictable paths that can provide an adversary
indications of a ground force’s operational intent. Additionally, the MTX scenario provides
the opportunity to conduct a more robust analysis since the NCS dynamically positions
itself to support the ground force, whereas providing a different ground force path to the
NCS generates new autonomous agent configurations and behavior. However, the data from
the MTX does present some limitations; specifically, that the exercise is being conducted
on an island, which channelizes the possible paths a ground force may take.

1.3 Proposed Analytical Framework
This research proposes a framework to conduct an adversarial, or red cell, analysis of
the detectable network using machine learning techniques to predict each autonomous
vehicle’s path and the ground force’s path and target. Additionally, this thesis establishes
the foundation to automate this capability, which could be later incorporated into the NCS

2

methodology to disguise the ground force’s intent. This thesis begins by analyzing the
NCS-generated data from all aspects of data science, including supervised learning and
unsupervised learning. The automated analytical framework detailed in this thesis consists
of two independent models and a hierarchical model. There are two data sets used to support
this analysis, where each data set consists of five UxV, a Guided Missile Destroyer (DDG),
and an NSWTeam’s coordinate pairs with associated time stamp values for several thousand
observations. The goal of this analysis is inferring relationships between the UxVs and
NSW team and predicting future NSW team behaviors. The UxV Forecast Model conducts
univariate time series analysis of the x- and y- coordinates, where the x and y values
are generated for a localized grid coordinate system in a Northing Easting Down (NED)
configuration and the point (0, 0) is based at lat 33.03191N, lon -118.60428W. This model
builds twelve independent models and then forecasts each model a certain number of steps
into the future. The output of the UxV Forecast Model creates the predicted locations of
all components of the NCS. The Ground Force Triangulation (GFT) model uses numeric
regression techniques to calculate the ground force’s location as a function of UxV positions.
The trained GFT model is then used in the time series regression model; the outputs of
the GFT model are compared to the validation data to determine if the model is sufficient.
The time series regression model combines the predictions from the UxV forecast model
with the optimized model from the GFT model to generate the ground force’s predicted
locations, which can then be compared against their actual positions. A detailed overview of
the methodology and models are contained in Chapter 3 and Figure 3.11 provides a general
overview of the data and how it is analyzed in this thesis.

In order to investigate how this approach could be used as part of an integrated approachwith
the UxV NCS, this thesis explores three different implementations of this analytical frame-
work; the micro-computer, portable/laptop computers, and high-performance computer.
The resulting analytical framework should be implementable in an autonomous system that
can make decisions near real-time, on micro-computers, or edge-computing devices, such
as the Raspberry Pi or other micro-computing platforms capable of controlling a single
autonomous vehicle. Automated Red Cell Methodology on micro-computers relies on al-
gorithms that are not computationally complex and that can be accomplished with very
little computing power, such as multiple linear regression techniques combined with simple
time series analysis methods. In addition to being implemented on micro-computers, this

3

analytical framework was primarily researched using a portable laptop computer.

In an NCS, the automated red cell will not need to be conducted on the edge devices.
Instead, it can be conducted by a centralized control station, which will likely have at least
the processing power of a portable laptop computer. This portable laptop implementation
provided the most insight into the NCSs and provided the best all-around performance
concerning run-time and accuracy of predictions.

This analytical framework can also integrate recurrent neural networks, long-short term
memory, and deep neural networks into the time series analysis model. However, these
models exceed the computational capabilities of portable laptop computers and require the
processing power of dedicated workstations or high-performance computers.

This chapter states that future DOD missions will require a combination of manned and
unmanned systems to support a ground force and that these systems are controlled via an
NCS. These control systems create clear patterns of motion that, if observed, can create
leading indications of the ground force’s operational intent. Data from NPS’ 2017 MTX
series is analyzed from an adversary’s perspective to determine if the autonomous agent
behavior generated by these systems provide leading indications of the ground force’s intent
and then proposes the framework to conduct this adversarial, or red cell, analysis.

In Chapter 2, the concepts related to the NCS, submodularity, neural networks, and Red
Teaming are reviewed. Chapter 3 will provide an overview of the methodologies used
throughout this analysis and introduce the various time series regression models developed
by this analysis. This research will explore several analytical methods to determine if
machine learning algorithms can predict the target of an NSW team, their path, and the
paths of the UxV swarms. Chapter 4 details the resulting models generated as part of this
framework as well as the numerical results from applying the analytical framework to the
new, unseen data set. Because an automated red cell analysis may be applied to various
computing platforms, Chapter 5 will also address the frameworks and initial implications
of applying this analytical framework to microcomputers, mobile computing platforms, and
high-performance computers. Finally, Chapter 6 will discuss the implications and future
work that should arise from this analysis. This chapter will also discuss how the analytical
framework is generalizable and applies to fields other than communications networks.

4

CHAPTER 2:
Background

Sections 2.1 and 2.1.1 introduce and detail the topics of NCS and submodularity as they are
directly related to the control of UxVs. Section 2.2 introduces the applications of statistical
machine learning and neural networks in the areas of trajectory prediction and position
triangulation. Finally, Section 2.3 will review the red cell and red team concept and their
application within an automated framework.

2.1 Networked Control Systems
Consistent with DOD planning documents—such as the Defense Science Board’s report on
Autonomy (2012), theMarine Corps’ Force Design 2030 (2021) and the Navy’s NAVPLAN
2021 (2021)—it is assumed that a UxV NCS will be used for future expeditionary warfare
missions. Furthermore, it is assumed that there will be centralized or distributed software
used to control the system. This thesis uses simulation results from a distributed system
control implementation. This section reviews important aspects of NCS that were researched
and implemented byWachlin (2018) and Lowry (2020) since this research is an investigation
of the data generated from their work.

An NCS can be “described as a system composed of multiple discrete entities with control
loops that share feedback and control signals over a shared communications network”
(Zhang et al. 2016, p. 1740). These systems are either static or dynamic, where a static
NCS’s agents do not change state; they are either a sensor or a part of the communications
network. The work conducted by Wachlin (2018) and Lowry (2020) focus primarily on a
dynamic NCS implementation, which contains one or more agents whose state varies. The
NCS described and researched in this thesis are “characterized by independent decision-
making agents, locally sensed information, and limited communication abilities working
towards cooperative control” (Lowry 2020, p. 5).

The NCS investigated in this thesis are modeled as a Linear-Time Invariant system where
the system model, measurement model, and overall controllability, observability, and com-
munications are determined through a system graph representation. Research conducted

5

on formation control focuses on centralized and distributed approaches. Centralized ap-
proaches can reach a global consensus easier, while distributed approaches are more robust
in their approaches to control, in that if the centralized system’s main node fails, the entire
system becomes uncontrolled (Wachlin 2018).

2.1.1 Centralized Networked Control Systems
In a centralized approach, the autonomous agents “actively control their position as pre-
scribed by a centralized control algorithm that provides a specific location (and velocity)
to actuate toward” (Wachlin 2018, p. 37). Often, these systems do not require interaction
between the agents in the system since a centralized unit controls them. Wachlin (2018)
takes advantage of this and develops a methodology to control an NCS composed of hetero-
geneous agents which ensures “adequate controllability, observability, and robustness of a
Linear Time-Invariant (LTI) system.” Critical aspects of this method are the use of a graph-
based framework and submodular utility function. This methodology creates a graph-based
network of vehicles where each of the UxVs is a node, and their communications connec-
tions are the arcs. The graph framework developed by Wachlin is used better to quantify the
resiliency and robustness of the network. Submodularity is the concept that allows the NCS
to generate its near-optimal position recommendations. (Wachlin 2018, p. 41) cites Krause
and Golovin (2014) in describing submodularity as “a property of set functions commonly
referred to as as the property of diminishing returns; that is adding a node to a subset of B,
will produce a larger utility gain than adding the node to B.”

Graph-Based Framework
Using a graph representation provides several advantages. First, through the use of the
Laplacian matrix, it permits determining controllability and observability of the system
(Mesbahi and Egerstedt 2010). Second, it permits analysis related to resiliency, robustness
and connectivity of communications. Wachlin investigated several options to determine a
single metric for assessing all aspects of the network and recommended effective graph
resistance (R) as the desired metric (Kooĳ 2013).

6

Submodular Utility Function
Submodularity is a very particular property of set functions that, in certain models, certain
optimization algorithms can take advantage of, providing optimal solutions within proven
bounds. A thorough discussion of submodular set functions and their applications in op-
timization and function maximization can be found in Krause and Golovin (2014). A set
function 5 : 2+ ⇒ R, where 2+ is the power set of a set + , is a function that assigns a real
value 5 (() to every subset (⊆ + . The key property of certain set functions leveraged in
Lowry (2020) is called submodularity and it is defined as,

(D1<>3D;0A8C~: A set function 5 : 2+ ⇒ R is submodular for any � and �, with � ⊆ � ⊆
+ , and any B ∉ �,

5 (� ∪ B) − 5 (�) > 5 (� ∪ B) − 5 (�).

The submodular set functions allow the algorithms used in the NCS to find near-optimal
position recommendations. The centralized control approach to NCS is interested in finding
a set of node positions that will maximize the utility function 5 (B). Wachlin (2018, p. 44)
presents the methodology and analysis used to select the submodular utility function used
to evaluate the NCS model. The resulting utility function � is a convex combination of two
functions that quantify sensing ability (5B) and communications robustness (5A), where the
associated U values are non-negative coefficients that weigh their respective functions as

� (() = UB 5B (() + UA 5A (()
s.t. UB + UA = 1

UA , UB > 0.

(2.1)

Sensing Subfunction
The sensing subfunction calculates the network’s ability to sense its environment and
provide coverage of an area of interest, 5B ((), from Equation 2.1. The sensing subfunction
allows a user to identify a sensing benefit for a given target. Wachlin (2018, p. 45) provides

7

the following example for a sensing subfunction:

If we place node 8 at location 9 , we say that it provides a sensing benefit of
Θ8, 9 , where Θ ∈ R#G?. If each node is assigned to the location with the largest
benefit, the total value is the set function

5B (() =
#∑
8=1

max
9∈(

Θ8, 9 .

This sensing subfunction allows the network to either be explicitly biased towards certain
points of interest or self-identify points of interest by using feature recognition software
and also allows the network to identify locations where certain nodes cannot physically go
(Wachlin 2018).

Robustness Subfunction
The robustness subfunction uses effective graph resistance—discussed in Section 2.1.1—to
quantify the robustness of the network. Wachlin (2018, pp. 47–48) further expands on the
robustness subfunction, stating

Since the graph becomes more robust as the effective resistance decreases,
we manipulate the resistance to form a new metric Ω that conforms to the
maximization problem

5A (() =
#∑
8=1

max
9∈(

Ω8, 9

where Ω8, 9 = 1 − norm('8, 9). Here, '8, 9 is the effective resistance if a node 8 is
added to the network at location 9 .

Calculating the robustness metric in this way allows for maximization of the network’s
robustness by optimizing the placement of nodes and using communications strength to
calculate the communications-based edge weights.

8

2.1.2 Distributed Networked Control Systems
The preceding versions of submodular optimization rely on a centralized controller to
compute and plan the positions of all nodes within the NCS. Within the DOD there are
several issues with centralized control that make the entire network vulnerable to enemy
actions. In addition to the susceptibility of equipment failures, in an adversarial environment,
should the location (or nature) of the centralized controller be discovered by an adversary,
it could target the central control to disrupt or disable the NCS. Lowry (2020) presents
a framework that uses distributed submodular optimization to control the NCS. In this
framework, each node shares the computing burden while removing the vulnerability of
only having a centralized planner. Lowry (2020) goes on to present the applicability and
limitations of the approaches that most closely address the decentralized NCS control
problem and develops an algorithm for distributed submodularity.

According to Lowry (2020), the goal of distributed submodularity method is to find a
near-optimal position set (from + possible discrete locations that maximizes the function
5 ((). The Distributed Submodularity (DS) method relies on a connected network with no
disconnected nodes, where each node must possess knowledge of the operating area. Lowry
(2020) presents a simple, novel algorithm for the DS method that optimizes node placement
on a deterministic map of which all agents have complete knowledge. The DS algorithm
proceeds with each node repeating a three-step process which re-positions the NCS using
the following phases:

1. Local Search: Each node concurrently and greedily evaluates a local area for its
optimal position. It assumes all other nodes in the NCS remain in place. The node
then finds the location corresponding to the maximum increase in total utility that it
can effect. This phase accounts for both the dynamic constraints on the vehicles and
any overlapping sensor coverage that would result from a potential move.

2. Information Sharing: All nodes then broadcast two pieces of information: the max-
imum contribution to total NCS utility, and the location it will re-position to if its
contribution is greater than all other nodes.

3. Evaluation and Update: The node which can effect the greatest change in total utility
is designated and re-positions itself, while all others update the position vector X.
Each node then calculates the new value for �, the utility function found in equation
2.1, and Δ�, the change in the utility function. This phase repeats until Δ� ≤ 0,

9

indicating the near-optimal topology has been reached.

2.2 Neural Networks
This section presents some of the background and fundamental information behind the
machine learning and neural networks used in this thesis. Machine Learning is a sub-field
of computer science that describes solving problems by gathering a relevant dataset and an
algorithm using the dataset to build a statistical model (Burkov 2019). James et al. (2013)
state that statistical and machine learning problems generally fall into three categories:
supervised learning, unsupervised learning, and reinforcement learning. Supervised learn-
ing methods are statistical tools that start with = observations of a given set of ? features
-1, -2, . . . , -?, where each set of features has a response . . Supervised learning aims to
predict . using the values of -1, -2, . . . , -?. In contrast unsupervised learning only has =
observations of a set of features -1, -2, . . . , -? and no associated response . . The goal of
unsupervised learning is not prediction but rather the discovery of interesting observations
or relationships present among -1, -2, . . . , -?. Although reinforcement learning may have
eventual applications to this type of research, these methods are not applied in this thesis.

“Artificial neural networks are popular machine learning techniques that simulate the mech-
anism of learning in a biological organism,” by mimicking the neurons in a brain (Aggarwal
2018, p. 1). Aggarwal (2018) states that “an artificial neural network computes a function of
the inputs by propagating the computed values from the input neuron to the output neuron(s)
and using the weights as intermediate parameters” and that learning occurs by changing
the weights connecting the neurons (p. 2). Aggarwal (2018) provides in-depth discussion,
definition, and overviews of the many aspects of neural networks, but states very simply
that “neural networks are built as higher-level abstractions of the classical models that are
commonly used in machine learning” (p. 2). Neural networks also have the added property
of often being more accurate than classical models when sufficient data and computational
power are available.

Time Series analysis does not use many of the traditional models and analysis methods
since the traditional methods require data to be independent observations. “Neural architec-
tures are inherently designed for multidimensional data in which the attributes are largely
independent of one another; however, certain data types, such as time series data, contain

10

sequential dependencies among the attributes” (Aggarwal 2018, p. 271). In a Recurrent
Neural Network (RNN), there is a “one-to-one correspondence between the layers in the
network and the specific positions in the sequence,” that allow for the processing of data
where the order of the data in the sequence is relevant and important to the model, such
as time series data. (Aggarwal 2018, p. 273). There are two requirements for processing
sequences or time series data, including the “ability to receive and process inputs in the same
order as they are present in the sequence and that the treatment of inputs at each time-stamp
in a similar manner in relation to the previous history of inputs” (Aggarwal 2018, p. 273).
Aggarwal (2018) further claims that RNN are Turing complete algorithms, which indicates
the algorithm is capable of simulating any other algorithm if it has enough training data and
computational resources. Figure 2.1 provides a general overview of the different Machine
Learning paradigms, their model outputs, and common each uses.

Figure 2.1. Overview of Machine Learning Applications. Source: Yoshida
(2020).

11

2.2.1 Trajectory Prediction
Recent innovations in the automobile industry have given rise to self-driving car technology.
These emerging technologies have identified a new problem; how these cars predict and
react to pedestrian actions. It naturally follows that “predicting the movement of dynamic
objects is a central problem for autonomous agents, and anticipation by prediction is required
for smooth and safe path planning in a changing environment” (Mangalam et al. 2020, p.
1). There has been increased research into forecasting pedestrians’ trajectories and their
behaviors, including observed motion trajectories for future trajectory prediction and the
use of scene and social information (Mangalam et al. 2020). The method of forecasting
pedestrian trajectories is not used in this research; however, many of the aspects of predicting
the behaviors and trajectories of the components of a NCS are similar. First, the components
of a NCS, like pedestrians, have some understanding of their long-term desired destination,
and second, the UxV plans a trajectory to reach its next desired position or sub-goal.
Mangalam et al. (2020) propose that the trajectory of a pedestrian can be predicted given
the past C? steps, as a sequence of coordinates, and by assuming that all humans in the scene
act in a cooperative manner and also respect social norms. Their methodology considers a
pedestrian’s possible sub-goal for the current sequence, and then, jointly considering the past
locations of all pedestrians present, they estimate their new endpoints. Their implementation
uses multi-layer perceptrons with ReLU non-linearity, trained end-to-end with a predefined
loss function using an ADAM optimizer with a batch size of 512 and a learning rate of
3 × 10−4 for all experiments. Mangalam et al. (2020) note their methodology identifies that
“pedestrians, having a predilection towards their destination, exert their will towards it;
hence predicting the last observed way-point allows for a lower prediction error than way-
points in the middle” (Mangalam et al. 2020, p. 13) claim that their methodology produces
a diverse prediction set, which is conditioned on each pedestrian’s inferred endpoints.

Although this thesis follows a similar methodology, the specific formulas to achieve NSW
path predictions are different.

2.2.2 Position Triangulation
Position triangulation is not a new concept; it is often shown in movies and television shows
when someone is missing. Police contact the missing person’s cell phone provider and
request that the missing person’s cell phone be pinged. The provider uses the last known

12

signal location and distances tomultiple known cell phone towers, and the police have a good
idea where to search for the missing person. Research conducted by Shareef et al. (2007)
explores the use of neural networks to solve localization problems and state that “localization
is used in location-aware applications such as navigation and autonomous robotic movement
to position a moving object on a coordinate system” (Shareef et al. 2007, p. 1). Triangulation
is an analytical localizationmethodwhere three ormore distancemeasurements from known
points are used to identify an unknown position. However, the accuracy and calibration of
sensors can cause the measurements to become noisy or fluctuate, making localization more
difficult. Shareef et al. (2007) propose that deep learning, or as they call them multi-layer
perceptrons, and RNN are capable of conducting localization even with noise and are used
to investigate various neural networks implementations to gauge their ability to triangulate
a sensor using Massachusetts Institute of Technology (MIT) Cricket sensors, which are
“rarely constant and fluctuate often” (p. 3). Cricket is a location architecture developed by
MIT that allows sensors, laptops, handheld computers, and other devices to know about their
current location. The experiment takes the distances from each of the MITCricket sensors
to the mobile node as an input to the neural network. The output of the neural network is
the estimated location of the mobile node. Shareef et al. (2007) developed Shallow Neural
Network (SNN) and RNN models and compared their accuracy against other localization
methods. The SNN consisted of two layers with nine nodes in the first layer and two nodes
in the output layer, and the RNN followed a structure nearly identical to that of the SNN,
“except that the outputs of the first layer were fed back to each of the nodes in the first layer
as inputs” (Shareef et al. 2007, p.4). The results of this experiment show that both networks
have a high percentage of error; however, the error was less than 10 cm. Additionally, the
performance of the SNN and RNN are nearly identical, as detailed in Table 2.1.

Table 2.1. Comparison of Localization Error (cm). Adapted from Shareef
et al. (2007).

Method Dist Error RMSE Net RMSE
SNN 5.726 (5.905, 4.693) 7.543
RNN 5.738 (5.936, 4.710) 7.576

This use of neural networks for localization is further explored in Chapter 3 and will be a
central theme in this thesis.

13

2.3 Red Cell/Red Team
Red cells and red teams provide an objective, or pragmatic, opinion to a commander about
the commander’s plans and how an adversary may respond to them. More specifically,
“Red teams are established by an enterprise to challenge aspects to that very enterprise’s
plans, programs, or assumptions and provide a wider and deeper understanding of potential
adversary options and behavior that can expose potential vulnerabilities in our strategies,
postures, plans, programs, and concepts” (Defense Science Board Task Force 2003, p. 2).
The Defense Science Board Task Force (2003) contends that in some cases, the red cell will
emulate an adversary and offer critiques and “alternatives to the enterprise’s assumptions,
strategies, plans, concepts, programs, projects, and processes” (p. 2). Red teaming is an
important part of military planning and an approach that has been integrated into the
various military planning processes. However, the concept of red teaming does not appear
to have been incorporated into previous work conducted on distributed network control
systems.

The lack of incorporated red cell analysis in a distributed network control system is not
surprising; autonomous networked systems do not operate randomly, systems of control and
levels of predictability are required to guarantee stability, performance, and fulfillment of all
constraints (Farina andMisiano 2018). In addition to controlling the individual components
of an NCS, the control system must be able to make predictions state of the system to meet
constraints of more than one subsystem at the same time, including “collision avoidance
between pairs of vehicles orminimal/maximal total energy production requirements” (Farina
and Misiano 2018, p. 1413).

While red teaming has not been introduced to network control science, it has been studied,
applied, and even automated in other aspects of the DOD and industry, for example, cyber-
security. Numerous “academic researchers have spent time and resources developing tools
and techniques to identify vulnerabilities found in software applications and cyber-physical
systems,” because “it is reasonable to conduct a thorough vulnerability assessment of a
small network manually but that it becomes prohibitively cumbersome to assess a large and
complex network due to time, effort, and skill requirements” (Plot 2019, p. 10). Because
of this need throughout industry and the DOD, many automated tools have been created to
conduct red team analysis on computer networks. These frameworks and tools are integrated
into the computer networks and devices not connected directly to the internet to reduce

14

vulnerabilities within their respective frameworks.

The next chapter provides a brief overview of the data science methods used in this analysis
and how each of the specific areas was applied to develop this overall methodology.

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

CHAPTER 3:
Methodology

The ultimate goal of automating red cell analysis is to reduce the enemy’s ability to determine
the operational intent of a ground force, given the ground force is employing an NCS of
autonomous vehicles. This methodology can be thought of as an internal process conducted
by an NCS that looks at the paths of the entire network, naively attempts to predict the paths
of the autonomous agents based solely on past locations, and uses the naive predictions
as the inputs to a neural network triangulation model to predict the ground force’s path.
To accomplish this analysis, this chapter will analyze the MTX Infiltration Data Set (IDS),
which comes from the Infiltration Phase of the 2017 MTX and is used in the development
of the Automated Red Cell Methodology.

Section 3.1 introduces the data set used in the methodology development, including how the
data was generated, its format, and a description of each variable. Section 3.2 provides an
overview of the data science tools in the exploration of the IDS and will also provide insights
gained from each method. Section 3.3 introduces the different types of neural networks that
can be applied to this data set and provides the specific implementation of the Deep Neural
Network (DNN) developed as a result of the analysis from Section 3.2. Section 3.4 develops
the Hierarchical Model and provides the analytical results from its implementation.

3.1 The MTX Infiltration Data Set
The MTX data set is analyzed from the perspective of an adversary who has maliciously
obtained the MTX data sets with the intent of learning the capabilities of an NCS and
the DOD’s tactics, techniques, and procedures. The IDS was obtained from the research
conducted by Lowry (2020) concerning distributed submodularity. Lowry (2020) took real-
world data from MTX scenario and introduced a distributed submodular framework to the
NCS. His research generated three separate data sets that correspond to the three phases
of the MTX: Intelligence Preparation of the Battlefield (IPB), insert, and infiltration. This
chapter uses Lowry (2020)’s infiltration data set, consisting of 7,005 discrete observations
in time, where each observation represents a single second. Each observation in the data

17

set contains the two-dimensional (X/Y) position coordinates for a NSW team, one DDG,
three Unmanned Aerial Vehicle (UAV), two Unmanned Surface Vehicle (USV), and two
Unmanned Underwater Vehicle (UUV). Table 3.1 shows the data used in this analysis, and
although two UUVs were present in the exercise and data, these vehicles will likely not be
observable in application and are therefore excluded from this analysis.

Table 3.1. MTX Infiltration Data Set

Data Name Num Obs Description
UAV1.X 7,005 x-coordinate of UAV 1
UAV1.Y 7,005 y-coordinate of UAV 1
UAV2.X 7,005 x-coordinate of UAV 2
UAV2.Y 7,005 y-coordinate of UAV 2
UAV3.X 7,005 x-coordinate of UAV 3
UAV3.Y 7,005 y-coordinate of UAV 3
USV1.X 7,005 x-coordinate of USV 1
USV1.Y 7,005 y-coordinate of USV 1
USV2.X 7,005 x-coordinate of USV 2
USV2.Y 7,005 y-coordinate of USV 2
DDG.X 7,005 x-coordinate of DDG
DDG.Y 7,005 y-coordinate of DDG
NSW.X 7,005 x-coordinate of NSW Team
NSW.Y 7,005 y-coordinate of NSW Team

3.2 A Data Science Approach
The Infiltration Data Set provided by Lowry (2020) was examined from a potential adver-
sary’s perspective. The analysis sought to discover any relationships that existed among the
individual UxVs, the UxVs and the ground force, or the entire network of UxVs, ground
force, andDDG.Any relationships discovered could then be developed into a comprehensive
model that would allow the adversary to predict the UxV path, ground force’s path, or other
points of interest. This initial analysis uses unsupervised learning, supervised learning, and
machine learning methods to infer information about how the NCS, UxVs, and the ground
force interact. This section will analyze the data using unsupervised learning methods and
use their insights to help develop the models used in the supervised learning methods. Table

18

3.2 provides a quick summary of the machine learning methods used in this thesis, their
general applications, and the algorithms they use.

Table 3.2. Overview of Applied Machine Learning Algorithms

Paradigm Model Output Algorithms
Unsupervised Learning Clustering K-Means

Hierarchical
DBSCAN

Supervised Learning Regression ARIMA
NNETAR
Linear Regression
Neural Networks

3.2.1 Unsupervised Learning
Because no relationships or meaningful insights were known about the data before analyzing
the IDS, the analysis of the IDS begins by using unsupervised learning methods, including
hierarchical clustering, :-means clustering, and Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN), on all fourteen elements of the data set. James et al. (2013, p.
373) describe unsupervised learning as tools used when there are only observable features,
-1, -2, ..., -?, and no response variable. They further state that unsupervised learning tries
to discover interesting things about the measurement of the features, including identifying
groups or subgroups of variables or relationships between observations.

Although other approaches are certainly possible, as a proof of concept this analysis elected
to conduct cluster analysis with a randomized 80/20 split, treating the 7,005 observations
from the IDS as independent observations. The insights from the unsupervised learning
methods were used to help target the supervised learning tools used in later analysis. Addi-
tionally, beginning with this type of exploratory analysis allows for a better understanding
of the relationships a machine learning algorithm may identify or use.

Hierarchical Clustering
Hierarchical Clustering methods were applied to the IDS to determine how dissimilar
each variable was from the others. A hierarchical clustering dendrogram is a tree-based

19

representation of the observations’ clustering. It is obtained through a simple algorithm that
measures the dissimilarity between a pair of observations or groups of observations (James
et al. 2013).

Table 3.3. A Summary of the Hierarchical Clustering Linkages Method.
Source: James et al. (2013).

Linkage Description

Complete

Maximal intercluster dissimilarity. Compute all
pairwise dissimilarities between the observations
in cluster A and the observations in cluster B, and
record the largest of these dissimilarities.

Single

Minimal intercluster dissimilarity. Compute all
pairwise dissimilarities between the observations
in cluster A and the observations in cluster B, and
record the smallest of these dissimilarities. Single
linkage can result in extended, trailing clusters in
which single observations are added one-at-a-time.

Average

Mean intercluster dissimilarity. Compute all pair-
wise dissimilarities between the observations in
cluster A and the observations in cluster B, and
record the average of these dissimilarities.

The dissimilarity function from the TSClust package in R (R Core Team 2021) was used to
calculate the pairwise dissimilarity between the UxVs and NSW paths (Montero and Vilar
2014). Three separate dissimilarity matrices were produced to reflect the observations of
the network and applicability of various manned and unmanned assets for future predictive
analysis. DissimilarityMatrix 1 (D1) consisted of the dissimilarity matrix with nearly all the
time series data. Dissimilarity Matrix 2 (D2) consists of the dissimilarity matrix excluding
the DDG time series and helps visualize the hierarchical cluster dendrograms since the
DDG data created a large vertical separation between the DDG and all other components of
the NCS. Dissimilarity Matrix 3 (D3) consists of the dissimilarity matrix, which excludes
the NSW data, allowing for the illustration of apparent clusters when the NSW paths are
unknown.

Hierarchical clustering dendrograms are based on different linkage methods. The different
linkage methods define how dissimilarity between clusters is calculated. Table 3.3 provides

20

a summary of the linkages used in this analysis.

The different methods produced some variation in the dendrogram; however, using the
Complete Method provides the most insight into the data. Figure 3.1 is a Hierarchical
Cluster Dendrogram of the IDS which shows that the variable UAV3.Y has the closest
relationship to NSW.Y and that variables UAV1.X has the closest relationship to NSW.X.
Additionally, Figure 3.1 highlights one of the first non-intuitive insights into the IDS, that
the DDG’s position does not appear to cluster with any of the other attributes of the IDS. The
NCS methodology used by Wachlin (2018) and Lowry (2020) require the communications
network to be fully connected at all times, indicating that at least one of the components
from the NCS should cluster with the DDG positions.

Figure 3.1. Hierarchical Cluster Dendrogram on Infiltration Data Set

Density-Based Spatial Clustering of Applications with Noise
The DBSCAN algorithm is used initially to determine if there are any clusters or noise in
the IDS (Ester et al. 1996). Given a set of points in some space, DBSCAN groups together
a point with many nearby neighbors and marks any points that lie alone in low-density
regions as outliers.

DBSCAN accomplishes this with two simple input parameters; the Epsilon-
Neighborhood,#�?B, of a point, which is simply the radius of a local neighborhood around
a point, and the Min Points, : , which is the minimum number of points that must be in
the neighborhood for the point to be considered a “core point.” Points which are within the

21

#�?B of a core point, but who themselves do not have the required number of Min Points,
: , are designated as border points. Figure 3.2 provides a simple depiction of the DBSCAN
method.

Figure 3.2. General Overview of DBSCAN Method (Buttrey 2021).

Using the DBSCAN package in R (Hahsler et al. 2019), the #�?B was calculated with : = 2,
which resulted in the best epsilon, �?B, value of 0.3. Figure 3.3 highlights the results from
using the DBSCAN algorithm on the principal components of the data. This implementation
of DBSCAN with : = 2 and 4?B = 0.3 created 4 distinct clusters:

1. NSW.X with UAV1.X
2. NSW.Y with USV1.X, USV1.Y, UAV1.Y, UAV3.X, and UAV3.Y
3. USV2.X with USV2.Y
4. DDG.X with DDG.Y and UAV1.Y

Figure 3.3. DBSCAN Cluster Analysis on Infiltration Data Set

22

K-Means Clustering
The IDS was also evaluated using :-means clustering to determine if there were useful
or meaningful clusters in the data. The goal of :-means clustering is “to partition the
observations into distinct clusters, such that the total within-cluster variation, summed
over all clusters, is as small as possible” (James et al. 2013, p. 387).

For :-means clustering, the optimal :-value from both within-clusters sum of squares and
the silhouette method was considered. Although both methods indicated :=2 was the best
option, the clusters were not insightful; however, adjusting the :-value to 4 allowed for
further definition of clusters. With :=4, the resulting cluster for both NSW.X and NSW.Y
with USV2.X and USV2.Y. By performing cluster analysis across all predictors, the paths
of UAV 1, UAV1.X and UAV1.Y, and UAV 3, UAV3.X and UAV3.Y, were determined to
be most relevant in predicting the NSW team’s location.

Figure 3.4. K-Means Cluster Analysis on Infiltration Data Set

Figure 3.5 contains two charts, one for the NSW.X variable and the other for NSW.Y, that
provide an overview of the results of the cluster analysis. Each of the charts in Figure
3.5 is read in the same manner. Columns represent a variable from the IDS and their
relationships to the variable NSW.X or NSW.Y. Chart rows indicate the cluster method
used to analyze the relationship. A cell highlighted in green indicates the predictor variable
having a relationship with the NSW.X or NSW.Y variable, according to the specific cluster
algorithm. Grey cells indicate that the cluster algorithm does not indicate a clustering
relationship with the response variable. For example, in the first row of the NSW.X chart

23

in Figure 3.5, using the Ward (hierarchical) cluster method UAV1.X clusters with NSW.X.
Additionally, no other predictor variables cluster with NSW.X using theWard (hierarchical)
cluster method. This single snapshot of the cluster analysis highlights that most of the
methods have similar results, NSW.X is most related to UAV1.X, and NSW.Y is most
related to UAV3.X, UAV3.Y, USV1.X, and USV1.Y.

Figure 3.5. Cluster Results for all Methods used on Infiltration Data Set

3.2.2 Supervised Learning
Using the insights from the unsupervised learning methods, the next set of analyses con-
ducted in this thesis focus on supervised learning methods to determine if the values of
NSW.X and NSW.Y can be inferred from the other twelve features of the IDS. In supervised
learning, a set of observations,-1, -2, ..., -?, has an associated response parameter(s), .8.
The goal of supervised learning is to “fit a model that relates the response to the predictors,
to accurately predict the response of future observations, prediction, or better understanding
the relationship between the response and the predictors, inference” (James et al. 2013).

There are many approaches to supervised learning, but this thesis investigates the applica-
bility of various time series methodologies which analyze UxV paths and various regression

24

techniques to infer the relationship between all of the predictor variables and the position
of the NSW team, NSW.X and NSW.Y.

Time Series Analysis
The IDS is simply the coordinate-pairs for five UxVs, one DDG, and the NSW team over
7,005 equally-spaced, time-dependent observations. Because these observations are time-
dependent, the order of the data matters, limiting the types of analysis that can be conducted
on the data set. Time series data requires special analytical techniques since sequential
observations are often correlated and “previous observations of the response variable are
often the most important predictive feature for the forecast” (Huddleston and Brown 2018,
ch. 7). Time series analysis methods “account for the fact that data points taken over time
may have an internal structure such as auto-correlation, trend, or seasonal variation that
should be accounted for” (NIST and SEMATECH 2013, ch 6.4).

This thesis investigates the UxV data as univariate time series data, looking at UAV1.X,
UAV1.Y, UAV2.X, UAV2.Y, UAV3.X, UAV3.Y, USV1.X, USV1.Y, USV2.X, USV2.Y,
DDG.X, and DDG.Y individually, without respect to any possible correlation between
predictors. Figure A.1, contained in Appendix A, provides a correlation plot for the data
contained in the IDS. This analysis shows that nearly every predictor is positively correlated
with each other and further confirms the cluster analysis from Section 3.2.1.

This approach ignores the possibility that a single UxV’s coordinates, such as UAV1.X
and UAV1.Y, are interdependent. Furthermore, this approach also ignores the fact that
the nature of the NCS guarantees that the entire UxV network is interdependent. This
approach does provide a better understanding of how each component of a UxV behaved
and if that behavior was similar across the NCS. Various time series analysis methods were
investigated; however, only two methods were relevant to the IDS. Table 3.4 provides a list
of the components normally present in a time series; the IDS only exhibits trend on some of
the individual predictors and does not exhibit seasonality or cycle, which caused significant
computational errors for the other methods.

Auto-Regressive Integrated Moving Average (ARIMA) is a method of fitting time series
data where Auto-Regressive (AR) indicates the response variable is regressed on its own
lagged values, Moving Average (MA) is the mean of a given number of recent observations,

25

Table 3.4. Time Series Components. Source: Yoshida (2020).

Component Definition

Trend
Long-term (not necessarily linear) increases or
decreases in the data; the long-term component
of change

Seasonality
Increase and decreases in data with a
fixed/knownperiod; often related toweather pat-
terns

Cycle Data exhibits rises and falls that are not of fixed
periods

Noise The remaining variance in the data after ac-
counting for other components

and Integrated (I) values have been replaced with the differences between their values and
the previous values.

Neural Network Auto-Regressive Time Series Model (NNETAR) are feed-forward neural
networks fitted with a lagged response variable and a single hidden layer. NNETAR and
ARIMA have some similarities; however, NNETAR models have non-linear functions
(Hyndman and Khandakar 2008).

Figure 3.6 provides an initial overview of the behavior for six of the predictors across the
5,604 observations from training set of IDS. For all images in 3.6 the G-axis represents time
in one-second intervals and the ~-axis represents the coordinate value in meters from the
origin of the local grid coordinate system developed by Lowry (2020). Over time, UAV1.X,
UAV1.Y, UAV3.X, and UAV3.Y possess a decreasing trend, and UAV2.X and UAV2.Y
appear constant, but have minor deviations that are not perceptible when maintaining a
constant scale across all six variables. Additionally, none of the plots in Figure 3.6 show
seasonality or cycles.

Because of the lack of seasonality and cycles, each coordinate of the UxV’s data was fitted
with a non-seasonal ARIMAmodel. The auto.arima() and nnetar() functions, found in
the forecast package from R, were applied to calculate the best fitting parameters (Hyndman
and Khandakar 2008). Once both models were complete, they were used to forecast each of

26

Figure 3.6. Univariate Time Series Analysis of UAV Coordinates

the UxVs coordinates 1,401-time steps, approximately 24 minutes, into the future and then
compared to their test set values. Algorithm 1 provides a simple overview of the steps taken
to evaluate each model.

Algorithm 1: Time Series Modeling and Forecast Overview
Result: Forecast of time series x-steps into the future
Step 1: Split data into appropriate training/test split;
Step 2: Decompose data to look for time series components;
Step 3: Build model with appropriate time series method/function;
Step 4: Use time series forecast model to forecast x-steps into the future;
Step 5: Compare forecast values to test data set;
Step 6: Calculate performance metrics.

A naive model sets the forecast value to the last observation, whereas a seasonal naive model
uses the forecast from the previously observed seasonal period. This data science approach
seeks a model that has better predictive power than the naive model (Yoshida 2020). The
use of a naive model was investigated initially; however, no intuitive or reasonable model

27

could be assumed for the IDS.

If a naive model for predicting UxV paths existed, the primary method for evaluating
this forecast model’s performance would be comparing the Mean Absolute Percentage
Error (MAPE) and Mean Absolute Scaled Error (MASE) values of the naive model against
the MAPE and MASE values of the forecast model. Therefore, the primary statistic used
to evaluate the time series forecast model’s performance is the MAPE. While this initial
analysis focuses onmore traditional performance metrics, Section 3.4 offers a more intuitive
performance metric, path deviation, measured with Euclidean Distance in meters. MAPE is
a measure of prediction accuracy used in forecast models, where accuracy is measured by
the ratio of forecast error divided by the observation. AMAPE closer to zero is good, where
a MAPE greater than or equal to 1 indicates 100% or greater forecast error. The MAPE
has many desirable qualities, however most important to this analysis is that it is scale-free.
Equation 3.1 gives the formula for calculating the MAPE, with # is the sample size, .C
representing the observed value of . at time C and �C representing the predicted value of .
at time C as

"�%� =

∑#
C=1(

|.C−�C |
.C
)

#
. (3.1)

Figure 3.7 shows the forecasts generated by the ARIMA model for UAV 1; the forecasts for
UAV 2 and UAV 3 are not included here because they match the actual values precisely.
In both UAV 2 and UAV 3’s case, this perfect prediction was the result of the UAVs being
stationary for the last hundred observations the model was trained on as well as the entirety
of test data set.

Table 3.5 shows the performance metrics for UAV 1 and UAV 3 across both the ARIMA and
NNETAR models. An initial review of Table 3.5 shows the MAPE values for the ARIMA
model is lower across all components of the IDS, except UAV3.X. However, because the
NNETAR model is designed to work with non-linear functions its results are likely to be
more robust. Additionally, the NNETARmodel does not require parameters to be stationary.

Although this initial analysis of the time series aspect of the UxV data appears to favor the
ARIMA models, Section 3.3 investigates more complex models such as RNN and Long

28

Figure 3.7. UAV1.X and UAV1.Y Predicted Values Compared to Actual Val-
ues

Short-Term Memory (LSTM) networks, as well as re-assessing the performance of the
ARIMA and NNETAR models when they are used in the time series regression model.

Table 3.5. UxV Time Series Model Performance

Model UAV1.X UAV1.Y UAV2.X UAV2.Y UAV3.X UAV3.Y
ARIMA MAPE 0.285 0.084 0.000 0.004 2.081 0.008
NNETAR MAPE 2.490 0.098 0.000 0.016 0.215 0.332

Prediction Methods
Analyzing and predicting the path of the NSW team, at first glance, is a time series problem.
The NSW team’s location changes over time and, similar to the UxV positions, if the NSW
team’s position is observable it can likely be predicted using time series forecastingmethods.
However, in a real operation, the location of the NSW team is likely not as observable as
the UxVs supporting their operation. In addition to the UxV data, the IDS contains the
coordinate pairs, NSW.X and NSW.Y, for the NSW team throughout the infiltration phase
of the MTX. In an attempt to learn any relationships that may be present between the NSW
team and the UxVs, a different approach was taken to analyzing and predicting the path of
the ground force.

Cluster analysis from Section 3.2.1 reveals a relationship between UAV1.X and NSW.X as

29

well as a relationship among UAV3.X, UAV3.Y, and NSW.Y values. This research explores
various regression methods to predict the values of NSW.X based on the values of UAV1.X,
UAV3.X, USV1.X and NSW.Y based on UAV1.Y, UAV3.Y, and USV1.Y. The combination
of NSW.X and NSW.Y makes the coordinate pair for the NSW team’s location.

The regression methods used in this section include Multiple Linear Regression (MLR)
and Robust Linear Models (RLM). MLR relies on the assumption that the data comes from
independent observations, with Normally-distributed errors having equal variance across
all observations, to estimate the V coefficients by finding the values of V which minimize the
residual sumof square errors. RLMare not affectedwhen the data violates these assumptions
and instead fit the models using “iterated re-weighted least squares” functions (Venables
and Ripley 2002). Both models followed the simple formula contained in equations 3.2 and
3.3. These regression models follow an approach similar to that of the time series forecast
modeling conducted in Section 3.2.2: each of these models only tries to predict a single
UxV coordinate instead of trying to model both the G- and ~-coordinates simultaneously.
The linear regression equations used in this thesis are

#(,.- = V11 ·*�+1.- + V12 ·*�+3.- + V13 ·*(+1.-, (3.2)

and
#(,.. = V21 ·*�+1.. + V22 ·*�+3.. + V23 ·*(+1.. , (3.3)

where V8 9 ∈ R, for 8 = 1, 2 and for 8 = 1, 2, 3, are parameters for each model, namely,
coefficients of predictors.

Ignoring the correlation between observations and predictors allows for a simple analysis
of the relationships between the individual coordinate components. More complex models,
discussed in Section 3.3, investigate the interdependence of all predictors. Figure 3.8 shows
the diagnostic plots for the linear regression model for NSW.X. The first image in Figure
3.8 is the Residual vs. Fitted plot which shows that the values of NSW.X are not linear.
The Normal Q-Q plot indicates that most of the errors appear to be normally distributed;
however, there is significant deviation to this in the extreme tails. The final plot in Figure
3.8 is the Scale-Location plot which shows that the square root of the standardized residuals
are not evenly distributed This initial analysis of the linear models reveals that the normality

30

assumptions do not hold, but is used to establish a baseline prediction for later, more
complex, models to be compared against. In this initial case, the MLR model performed the
best for predictive accuracy of the methods investigated.

Figure 3.8. Linear Model Diagnostic Plots—NSW.X

Figure 3.9 compares the values of NSW.X and NSW.Y, using the MLR model, to the
actual values of NSW.X and NSW.Y. In both predictions, the initial values have an error
of approximately 400m; however, the general trend of the data appears to be correctly
identified, with the error in the later values of the prediction space decreasing.

Figure 3.9. Performance of MLR on Predicting NSW Coordinates

A more statistical approach to evaluating the performance of these models is to compare
their MAPE. Table 3.6 compares the statistical results from the models used to predict
NSW.X and NSW.Y against their actual coordinates. The values in the table are the MAPE

31

values measured as percentage error, where a MAPE of 0 is a perfect prediction and a
MAPE of 1 indicates the predicted value has an error of 100-percent. For example, if the
actual value is 100 and the predicted value is 100, the percentage error is 0, whereas if the
predicted value is 0 or 200, the percentage error is 1.

Table 3.6. Ground Force Triangulation (Numeric Regression) Performance
Matrix

Model NSW.X NSW.Y
MLR MAPE 0.0966 0.0704
RLM MAPE 0.0959 0.0696

Table 3.6 shows that the MLR and RLM models perform similarly.

3.3 Neural Networks
The simple time series analysis methods and linear regression models investigated in Sec-
tion 3.2 provide some of the background and justification for more in-depth analysis and
modeling of the UxV time series data and the NSW triangulation problem. This section
investigates various neural networks in the aforementioned time series forecast models and
linear regression models.

RNN do not immediately appear to be viable options for modeling time series data in
automated red cell analysis. The automated red cell requires near-real-time model training
and forecasting for the UxV time series data. RNN models are capable of deeper insight
into the data as well as multi-variate time series analysis, including addressing correlation
and variable inter-dependence. However, the amount of time required to train these models
makes their use in an NCS infeasible. DNN have not traditionally been used to solve
localization problems; however, this analysis finds that DNN can provide insights into the
relationship between the NCS and the supported ground force.

Recurrent Neural Network
RNNand LSTMmodels provide frameworks to deal with sequential data, such as time series
data andwere briefly investigated by this research.While thesemethods are likely to produce

32

more accurate models with better forecasts, their computational complexity extends beyond
what is capable by edge-computing devices or portable computers, including personal
laptops, desktops, or portable military servers.

“Recurrent neural networks are designed for sequential data like text sentences, time series,
and other discrete sequences, where the input is of the form Ḡ1, ...Ḡ=, where ḠC is a d-
dimensional point received at the time-stamp C” and “allows for the input ḠC to interact
directly with the hidden state created from the inputs at previous time stamps” (Aggarwal
2018, pp. 38-39). Although neural networks are more computationally intensive and not as
well understood as the methods discussed in Section 3.2.2, RNN have the added benefit
of being able to “learn far more complex models than those obtained with traditional
time-series modeling” (Aggarwal 2018, p. 273). RNN models can better model the entire
dataset from a multi-variate time series analysis perspective and address the correlation and
interdependence present among predictors.

Deep Neural Network
Deep Neural Networks are extremely powerful algorithms, capable of identifying hidden—
at least to a human—relationships in data. The use of DNN has increased over the years,
with the increase in the availability of large data sets and computational resources. However,
Shareef et al. (2007) state that localization problems, such as tracking autonomous robotic
movements, have not traditionally been solved with neural networks. This section expands
the investigation of the linear regression models used for localization of a ground force,
discussed in Section 3.2.2, to neural networks. Neural network models can identify any
correlation or interdependence between theG- and ~-components of a single UxV and any
correlation or interdependence among multiple UxVs and the NSW team.

DNNmodels simplify the modeling of individual UxV interactions and how they can relate
to the NSW team’s location. The DNN discussed in this section follows a similar scheme
to that of the MLR model, except that this model takes all twelve predictors, theG- and
~-coordinates of all UxVs and the coordinates of the DDG, as the input parameters and
uses NSW.X and NSW.Y as the response variables. This approach takes into account any
correlation or interdependence that may be present between the individual UxV coordinates
or across all UxVs.

33

Developing the DNN for this research was an iterative process; however, the general frame-
work began with having a single layer for each UxV and starting with the number of nodes
equal to the total number of interactions between all twelve components of the time series
data. This framework became extremely large, with more than 4,000 nodes in the first layer,
and so it was scaled back. The final DNNmodel sought to balance computational efficiency
with performance, containing only five dense layers and starting with 128 nodes. Various
activation functions were investigated; however, Table 3.7 describes the final model, which
exclusively uses the Scaled Exponential Linear Units (SELU) activation function (Allaire
and Chollet 2020). The SELU activation function was chosen since there is no problem
with vanishing gradients and it learned faster and had better accuracy than other activation
functions investigated. Additionally, the model was compiled with the MAPE loss function.

Table 3.7. Ground Force Triangulation Deep Neural Network

Layer Output Shape Activation Function Num Param
Dense 1 (None, 1, 128) SELU 1664
Dense 2 (None, 1, 64) SELU 8256
Dense 3 (None, 1, 32) SELU 2080
Dense 4 (None, 1, 16) SELU 528
Dense 5 (None, 1, 2) SELU 34

Total Params: 12,562

Once a DNN model was built, it was trained on the first 90% of the original training data
set; with the remaining 10% from the training data set was used as the validation set. The
model was trained with 10 epochs. Although more epochs were investigated, 10 epochs
achieved a nice balance between computation efficiency and accuracy without over-fitting.
Figure 3.10 provides a simple illustration of how the training of the DNN performed.

With the training of the DNN complete, the original UxV test data was applied to the
DNN, and the resulting predicted coordinate pairs were compared to the NSW team’s actual
coordinates. The model’s performance was calculated using the MAPE. The results of this
analysis are combined with the results from the previous section and are contained in Table
3.8. Upon initial comparison of the models, the DNN appears to be the worst performer;
however, it is the only model which takes into account correlation and interaction across
all predictors. Section 3.4 combines these models and presents a time series regression

34

framework for predicting ground force paths.

Figure 3.10. DNN Training Performance—Loss Function MAPE

Table 3.8. Ground Force Triangulation, w/ Neural Network, Performance
Matrix

Model NSW.X NSW.Y
MLR MAPE 0.0966 0.0704
RLM MAPE 0.0959 0.0696
DNN MAPE 3.064 0.2303

3.4 Time Series Regression Models
This section presents a novel framework and model for predicting the location of a ground
force supported by anNCS. This framework generally follows aBayesian hierarchical frame-
work and uses time series regression models to combine the forecast G- and ~-coordinates
from the UxV forecast models and uses them as the input parameters to a regression model,
in this case, the GFT model.

The time series regression model combines the UxV time series forecast model and the
GFT model into a singular framework that predicts the future path of a ground force. Figure
3.11 provides a general overview of the data and how it is analyzed. The yellow bar contains
the observations of the twelve UxVs over a known time period, which are assumed to be
observable by sensors or systems. As time is increased the positions of the UxVs changes;
this change is highlighted by the solid horizontal arrows. The red cell model will use time
series models to analyze these changes in an attempt to forecast the UxVs future locations,

35

Figure 3.11. Overview of Time Series Regression Model

indicated by the dashed horizontal line. The green bar contains the values of the ground
force’s positions and while these values are known in the initial analysis, this information is
not likely to be known in application. Since the twelve predictors and response variables are
known, the red cell model builds a regression model that relates the twelve UxV coordinates
to the twoNSWcoordinates, represented by the solid vertical line. Finally, the red cell model
uses the forecasted values of the UxVs as the input to the regression model to predict the
future locations of the NSW team, as indicated by the dashed vertical lines.

This approach is not specific to a single implementation of the model and different machine
learning algorithms may be applied. In addition to being more robust than the simpler
models from previous sections, the time series regression model considers the fact that an
adversary is not likely to observe a ground force with the same frequency or certainty as
sensors that can detect UxVs. Additionally, an adversary will not have a priori knowledge of
which UxV most closely relates to the ground force’s coordinates, making simpler forms of
regression nearly impossible. The time series regression model sets out to solve the problem
of uncertainty in past and current ground force positions.

The time series linear regression model discussed in Section 3.4.1 takes observable data,
builds a time series forecast model and simultaneously builds a regression model, trains
both models on past data observations, and uses the predicted values from the time series
forecast model as input parameters for the trained regression model to provide a predicted
path for a ground force. Section 3.4.2 uses univariate autoregressive neural networks to

36

produce the time series forecast model and a deep neural network for the regression model.
This type of framework allows for multiple implementations of an Automated Red Cell
Analysis; two of these implementations are detailed below.

3.4.1 Time Series Linear Regression Model
The time series linear regression Model formulation follows a simple approach that takes
advantage of the more basic models’ speed and computational efficiency. This model begins
by conducting a univariate time series analysis of the training data set.

UxV Forecast Model: ARIMA
Continuing from the time series forecast modeling conducted in Section 3.2.2, the time
series regression model builds twelve ARIMA models. However, instead of using the 5,604
observations of each predictor from the training set, the time series regression models uses
fewer observations from the data. Since each observation in the IDS is equal to a single
second, the methodology works best when data is sampled at regular intervals. In building
this model, sample rates between 1 second and 180 secondswere investigated to simulate not
having continuous data from sensors.When the sample rates were low, the predicted location
of UAV 2 and UAV3 were nearly perfect; however, this perfect prediction is an artifact of the
two UAVs becoming stationary in the last 100 observations of the training set. Additionally,
the predicted path of UAV 1 becomesmore accurate as sampling is increased. This increased
performance is likely because the model The model achieves optimal performance when the
data is sampled at 120-second intervals; previous time series forecast models also sampled
the data at these rates but found that as sample rates increased, there appeared to be a
negative impact on the model’s performance. However, in the development of the Time
Series Regression models, this increased variability provided more accurate predictions for
the ground force’s predicted path.

The training data set was then reduced, taking observations every 120 seconds. This reduced
training set used 37 observations to build 12 univariate ARIMA models and predict 12
observations, or 24 minutes, into the future. The left panel of Figure 3.12 shows that the
predicted path of UAV 1 appears to be very close to the actual path, and UAV 3 does not
appear to be accurate in its prediction. In the case of UAV 2, the pink/yellow dot indicates
a near-perfect prediction.

37

Ground Force Triangulation: Linear Regression
Building theGFT linear regressionmodel does not have to occur after the time series forecast
model as neither model requires input or outputs from the other. This implementation of
the GFT uses the multiple linear regression method explored earlier in this Section 3.2.2.
This GFT starts by taking the training data set and using the first 80% of the observations
as the training set and the last 20% of the observations as the validation set and then applies
the MLR model found in equations 3.2 and 3.3. The overall performance of the GFT model
seems to perform well and achieves MAPE values of 0.1368 for NSW.X and 0.09017 for
NSW.Y. However, these results are the overall performance metrics on missing data and not
the performance of predicted locations.

Time Series Linear Regression Model Realized
The third step in building a time series linear regression model is taking the predicted
values of the UxVs from the UxV/ARIMA Forecast Model and applying them as the input
parameters for the GFT Linear Regression model. The output of the time series linear
regression Model are the predicted values of NSW.X and NSW.Y, or the NSW team’s
predicted path, 12 observations into the future. This visual comparison of the model output
against the actual values helps to better frame which performance metrics can help convey
the accuracy and performance of the model. The right panel of Figure 3.12 shows the overall
performance of the time series linear regression model as well as the performance statistics,
achieving a MAPE of 0.8044 for NSW.X and a 0.2023 for NSW.Y, but reviewing these
figures presents a more interesting performance metric, path deviation.

While the traditional metrics discussed provide statistical relevance to the model, path
deviation provides a more intuitive metric. Because the model is trying to predict the path
of autonomous vehicles and a ground force, understanding the prediction’s deviation from
the actual path may be of more use to a commander than traditional statistics.

In the case of the time series linear regression model, the predicted NSW team’s path has
a mean path deviation of 696 meters and a final position prediction deviation of only 326
meters, both measured using Euclidean distance.

Algorithm 2, contained in Appendix A, details the steps taken to implement the initial
design of this model. Chapter 4 applies a slightly adjusted version of the algorithm when it

38

Figure 3.12. Time Series Linear Regression Model Results

is applied to a new data set.

3.4.2 Time Series Neural Network Regression Model
Time series neural network regression model follows the same framework as time series
linear regression model; however, this implementation is more complex and takes into
account the various correlations and inter-dependencies that may be present in the NCS.

UxV Forecast Model: Neural Net Auto-Regressive
The time series forecast model used in time series neural network regression model follows
the NNETAR framework found in the forecast package within R (Hyndman and Khandakar
2008). NNETAR is a feed-forward neural network with a single layer which is fitted with
lagged values of the response and is fitted across 20 epochs (Hyndman and Khandakar
2008).

Similar to time series linear regression model, time series neural network regression model
benefits from sampling the data at 120 second intervals and also conducts its time series
forecast modeling in a univariate fashion. The reduced training set uses 37 observations
to build 12 univariate NNETAR models and predict their values 12 observations, or 24
minutes, into the future. Figure 3.13 highlights the predicted paths of UAV 1 and UAV 3,
although this model calculates the paths of all UxV in the NCS.

39

Table 3.9. Time Series Neural Network Regression Model: UAV 1 and UAV
3 Results

Metric UAV1.X UAV1.Y UAV3.X UAV3.Y
MAPE 0.2852 0.0839 2.0812 0.0082

Path Deviation 1,420m 332m

Appendix A contains a detailed list of this model’s performance metrics.

Ground Force Triangulation: Neural Networks
Time series neural network regression model uses the GFT Neural Network model from
Section 3.3. This GFT Neural Network contains five dense layers, each using the SELU
activation function, compiledwith aMAPE loss function, and using theAdaptiveMovement
Estimation (Adam) optimizer. However, the time series neural network regression model
differs from the other models in that the GFT Neural Network is not trained on a sample of
the training data but is instead trained on the first 90% of the training set and the remaining
10 % is used for the validation set, using all 5,604 observations.

Time Series Neural Network Regression Model Realized
The final step in this time series regression is to combine the UxV Forecast NNETARmodel
and the GFT Neural Network models into a cohesive model. The time series neural network
regressionmodel achieves this by taking the 12 univariate NNETAR predictions and feeding
them into the GFTmodel. The outputs from time series neural network regression model are
the predictedG- and ~-coordinates for the NSW team 12 time-steps, or 24 minutes, into the
future. Figure 3.13 provides a simple graphic of the predictive accuracy of the time series
regression model. The left-side picture of Figure 3.13 helps to visualize the performance
of the UxV NNETAR model, and the right-side picture provides the detail of the NSW
team’s actual location compared to the predicted location from time series neural network
regression model. However, a closer look at this figure shows the performance of the time
series neural network regression model appears to be quite poor; in fact, the performance
is much poorer than the time series linear regression model. The performance statistics for
theG- and ~-coordinates also support the poor performance of the time series neural network
regression model, with a MAPE of 1.5792 for predicting theG-coordinate of the NSW team

40

Figure 3.13. Time Series Neural Network Regression Model Results

and aMAPE of 0.453 for predicting the ~-coordinate of the NSW team. However, the metric
that best describes the accuracy of the prediction is mean path deviation. time series neural
network regression model has a mean NSW path deviation of 2,940 meters, nearly five
times worse than the mean path deviation from the time series linear regression model.

3.4.3 Analysis of Time Series Regression Models
This chapter explored the many aspects of the IDS in an attempt to learn about any relation-
ships across the NCS that the enemy may exploit. Additionally, this chapter has established
the foundation and rationale for applying a time series regression model. In comparing the
two resulting time series regression models, the time series linear regression model is the
better model for simplicity, accuracy, computational efficiency, and overall run time. These
performance characteristics do not address which method best reveals the operational intent
of the UxVs and the NSW team. Determining operational intent is more complex than
simply making an accurate prediction; it requires qualitative analysis and an understanding
of the NSW team’s objective to identify which method works better. It is through this qual-
itative analysis that this research determines that the time series neural network regression
model is more accurate in describing the expected behaviors of the entire UxV network and
NSW team behavior.

Time series linear regression model provides good statistical predictions for individual UxV
coordinates but does not appear to be a good estimator of the general intent of a up on the

41

intent of the systems. In the case of the time series linear regression model, the predicted
paths of UAV 1, UAV 3, and the NSW team are simply straight lines, and this prediction does
not necessarily agree with how each UAV behaved before. The time series neural network
regression model, however, does a better job of describing the expected behaviors of the
entire NCS and NSW team. For UAV 1, the time series neural network regression model
predicts the UAV will make a sharp turn north around the seventh prediction, or 14 minutes
into the future, and UAV 1 does make a sharp turn north at the eigth time-step, or 16 minutes
into the test data set. For UAV 3, the time series neural network regression model predicts
that the UAV remains mostly still, which is the exact actions taken by UAV 3. Moreover, for
the NSW team, the time series neural network regression model predicts the team is likely
to move north-west, and while the NSW team’s path was not north-west, its objective was.
Another detail discovered through the qualitative analysis is that if the predicted NSW path
is adjusted to the correct starting position, the last observation from the training set, the
resulting path matches the NSW team’s originally planned route towards the objective and
ends on the team’s objective. The NSW team was diverted around the runway for safety
reasons.

3.5 Summary
This chapter uses data science methods to analyze the 2017 MTX data from an adversary’s
perspective to develop a ground force prediction model based solely on observable data. The
time series linear regression Model and time series neural network regression model have
qualities that make them desirable, the linear regression model achieves very good statistical
metrics and the neural network model appears to predict general system intent. However,
for automated red cell analysis to be feasible, the models described in this chapter need to
generalize and perform well on different data sets. So, while time series linear regression
Model has the better performance statistics on the IDS, time series neural network regression
model appears to be better at predicting general behaviors. Therefore, Chapter 4 applies
both models to a new unseen data set to evaluate the models’ ability to generalize.

42

CHAPTER 4:
Application, Results and Analysis

This chapter takes the two time series regression models developed in Chapter 3 and applies
it to the new, unseen data set. The purpose of applying the two models to a new data set is
to determine if the analytical framework and models can generalize to other situations and
data sets or if the results from Chapter 3 are unique to that analysis and data set.

To achieve this end, Section 4.1 introduces a new data set to be analyzed. With the data
introduced, Section 4.2 explains the implementations of the time series regression models.
Section 4.3 defines two measures of effectiveness relevant to the time series regression
models and Section 4.4 provides detailed analysis of each model’s performance.

4.1 The Unseen Data Set
The Unseen Data Set (UDS) is analyzed from the perspective of an adversary who observes
autonomous vehicles and a US Navy ship off its coast. The adversary previously obtained
the MTX data sets and has two models which may be able to predict a ground force’s path,
if one is present.

TheUDSwas obtained from the research conducted by Lowry (2020) concerning distributed
submodularity. Lowry (2020) modified the data set from Chapter 3 to create a new ground
force path and objective and simulated UxV positions. Figure 4.1 provides a comparison of
the NSW paths from the two data sets. In Figure 4.1, the blue lines represent the path of the
NSW team during the training phase of the model, and while there are some similarities
between the two data sets, the predicted portions of the NSW path are very different in
direction, distance, and general behavior. Table 4.1 describes the data found in the UDS,
which consists of 5,175 discrete observations in time, where each observation represents
a single second and contains the two-dimensional (-/.) positions coordinates for a NSW
team, one DDG, three UAVs, USVs, and two UUVs. Although UUVs are included in the
data set, they are not a part of this analysis as they would not be observable to sensors. This
new, UDS has a different ground force objective and path, and therefore, the distributed
submodular framework creates a different network configuration for the NCS.

43

Figure 4.1. Comparison of NSW Paths—IDS vs. UDS

The main benefit of evaluating the Time Series Regression models on the UDS is that the
data is generated using the same NCS framework, which results in the data format matching
the data format used in the IDS. The UDS following the same format as the IDS allows
for easier analysis of the models since the only parameter that had to be changed was the
name of the data file to read in. Moreover, the model’s results have identical naming of
the variables, charts, statistics. Variable names throughout this Chapter will match those
used in Chapter 3; however, these variables will only reference the output from the model’s
application to the UDS.

4.2 Time Series Regression Models Applied
This section details how the two time series regression models are applied to the UDS.
Because this chapter assumes the adversary will not be capable of observing the ground
force at regular time intervals, the application of both models requires the reuse of each
model’s respectiveGFTmodel.Although themodels discussed here assume the ground force
is hidden to an adversary’s sensors, this does not preclude the adversary from occasionally
receiving reports of the ground force’s location and updating their prior probabilities, which
could greatly increase the accuracy of the models. Figure 4.2 provides a general overview
of how the model is applied when the ground force’s location is unknown.

Since the UDS follows the same data structure as the IDS, there were no data manipulation

44

Table 4.1. Overview of Simulated Unseen Data Set

Data Name Num Obs Description
UAV1.X 5,175 x-coordinate of UAV 1
UAV1.Y 5,175 y-coordinate of UAV 1
UAV2.X 5,175 x-coordinate of UAV 2
UAV2.Y 5,175 y-coordinate of UAV 2
UAV3.X 5,175 x-coordinate of UAV 3
UAV3.Y 5,175 y-coordinate of UAV 3
USV1.X 5,175 x-coordinate of UAV 1
USV1.Y 5,175 y-coordinate of USV 1
USV2.X 5,175 x-coordinate of USV 2
USV2.Y 5,175 y-coordinate of USV 2
DDG.X 5,175 x-coordinate of DDG
DDG.Y 5,175 y-coordinate of DDG
NSW.X 5,175 x-coordinate of NSW Team
NSW.Y 5,175 y-coordinate of NSW Team

or formatting changes required to conduct the analysis in this chapter. The UDS is divided
into a training set and a testing set, with 4,140 observations in the training set and 1,035
observations in the testing set.

Figure 4.2 provides an updated overview of the data and how it is analyzed in this chapter.
The yellow bar contains the observations of the twelve UxVs over a known time period,
which are assumed to be observable by sensors or systems. As time is increased the positions
of the UxVs changes; this change is highlighted by the solid horizontal arrows. The red cell
model will use time series models to analyze these changes in an attempt to forecast the
UxVs future locations, indicated by the dashed horizontal line. The orange bar contains the
future—unknown—values of the UxVs. The green bar contains the future—unknown—
values of the ground force’s positions. Finally, this application of red cell analysis uses the
forecasted values of the UxVs as the input to the regression model, via transfer learning, to
predict the future locations of the NSW team, as indicated by the dashed vertical lines.

45

Figure 4.2. Time Series Regression Model—Applied

4.2.1 Time Series Linear Regression Model
The Time Series Linear Regression Model builds twelve univariate ARIMA models. Fol-
lowing the same methodology established in Chapter 3, the time series regression models
sample the data every 120 seconds. The outputs from the twelve univariate ARIMAmodels
are combined and used as the input values to the linear regression model contained in
Equations 3.2 and 3.3,

#(,.- = V11 ·*�+1.- + V12 ·*�+3.- + V13 ·*(+1.-,

and
#(,.. = V21 ·*�+1.. + V22 ·*�+3.. + V23 ·*(+1.. .

Section 4.3 and Section 4.4 provide detailed results and analysis of the applied Time Series
Linear Regression Model.

4.2.2 Time Series Neural Network Model
The Time Series Neural Network Model builds twelve univariate NNETAR models, and
follows theNNETAR framework discussed in Section 3.4.2 and found in the forecast package
within R (Hyndman and Khandakar 2008). Following the same methodology established in
Chapter 3 and in Section 4.2.1, the Time Series Neural Network Regression Model samples
the data every 120 seconds. The output from the twelve univariate NNETAR models are

46

combined and used as the input values to trained GFT Neural Network Model, described in
Section 3.3. Table 3.7 provides the detailed description of the GFT Neural Network. Section
4.3 and Section 4.4 provide detailed results and analysis of the applied Time Series Neural
Network Regression Model.

4.3 Methods of Evaluation
The overall performance of the ensemble models will use the metrics discussed in Chapter
3, MAPE and Path Deviation. These metrics allow for different aspects of analysis. The
first of these is statistical accuracy, which uses statistical tools to measure how well a given
model predicts the individual values of the predictors, UAV1.X,UAV1.Y,UAV2.X,UAV2.Y,
UAV3.X, UAV3.Y, USV1.X, USV1.Y, USV2.X, USV2.Y, DDG.X, and DDG.Y, and the
response variables, NSW.X and NSW.Y. The second looks at the data as coordinate pairs
and compares the predicted coordinate pairs to the actual coordinate pairs, using Euclidean
distance measured in meters.

4.3.1 Statistical Accuracy
Statistical accuracy was instrumental in developing the ensemble methodology, and these
metrics is to be applied here. The purpose of these statistically-based metrics will provide
insight into themodel’s accuracy and should continue to be used to compare other forecasted
results. Because this thesis is the first step in Automating Red Cell Analysis for Mobile
Networked Control Systems, follow-on work, discussed in Chapter 6, should focus on using
statistical metrics, along with classification algorithms, to create a feedback loop that can
tell a ground force commander how much operational intent is being telegraphed by the
NCS.

Chapter 3, and this Chapter, rely on the MAPE as its primary statistical tool. MAPE is a
measure of prediction accuracy used in forecast models, where accuracy is measured by
the ratio of forecast error to observation. However, this thesis establishes the framework for
using multiple univariate ARIMAmodels as the naive model for predicting individual UxV
coordinates, which can then be compared against other model’s predictions. The MASE
is complementary to the MAPE, in that it is scale-free, but also provides a metric for
comparing two different models to the actual value simultaneously and is a good sense of

47

predictive power. Equation 4.1 provides the formula for calculating the MASE, where .C
represents the actual value of the CCℎ observation, �C is the value predicted by model �, � C

is the prediction from the naive model, and # is the number of observations:

"�(� =

∑#
C=1(|

.C−�C

.C−�C
|)

#
. (4.1)

AMASE with a value of less than one indicates that the new model—in the equation above,
this is model �—has better predictive power than the naive model. In contrast, a MASE
equal to 1 indicates the naive model and new model have the same predictive power. A
MASE greater than one indicates the naive model has more predictive power than the new
forecast model.

4.3.2 Accuracy of Path Prediction
While the statistical metrics provide insight into how well each model can predict a single
value of a component of the data, path deviation is a much more intuitive metric when
talking about predicting the path of one or more UxVs or the NSW team. Path deviation
provides a measure of how accurate a predicted coordinate pair is compared to the actual
coordinate pair. For example, if an object is at position (1,1), but the model predicts the
coordinate pair value is (4,5), the associated MAPE values for the x- and y-coordinates is 3
and 4, respectively. A more intuitive measure of accuracy is the Euclidean distance between
the actual point and the predicted point. In this case, the path deviation for our example
problem is five distance units. Figure 4.3 provides a simple example of path deviation.

4.4 Analysis of Time Series Regression Models
Because the UDS is designed to test if the ensemble method is generalizable, the data was
not evaluated in the same manner as the IDS. The analysis does not look at the data using
unsupervised learning methods or other statistical tools. Instead, it blindly applies the two
models to the UDS and evaluates performance based on the metrics discussed in Section
4.3.

48

Figure 4.3. Example of Path Deviation Metric

4.4.1 Time Series Linear Regression Model
In Chapter 3, time was taken to evaluate the various parameters for correlation, clustering,
and trend to craft the specific formulas for the ground force triangulation model. This
section simply applies the Time Series Linear Regression Model to the UDS and provides
the analysis of its outputs.

From the statistical perspective, the application of the Time Series Linear RegressionModel
is not impressive. Table 4.2 provides Time Series Linear Regression Model’s performance
matrix, and while some of the models have good statistical prediction metrics, such as
UAV2.X, UAV2.Y, and UAV3.X, the forecasted values for the other predictors have very
high MAPE scores.

The graphical outputs for the Time Series Linear Regression Model are contained in Figure
4.4 and help highlight the second metric, path deviation. Figure 4.4 provides a stark contrast
to the performance Time Series Linear Regression Model had on the IDS.

49

Table 4.2. Time Series Linear Regression Model: UxV Forecast
Performance—Applied

Metric UAV1.X UAV1.Y UAV2.X UAV2.Y UAV3.X UAV3.Y
MAPE 0.1428 0.2931 0 0 0.0516 0.2642

UxV Forecast Model Analysis
The left-hand image of Figure 4.4 compares the predicted path of UAV1, the actual path
of UAV1, the predicted path of UAV3, and the actual path of UAV3. The predicted path of
UAV1 is a straight line, and while this prediction is in the same general direction that UAV1
takes, it fails to predict any changes in direction that UAV1 may take and overshoots the
target. The initial path deviation for the first four minutes’ worth of predictions is less than
150 meters; however, because the prediction fails to identify any changes in direction or to
reach the objective, it achieves an average path deviation of 684 meters. The predicted path
of UAV3 does appear to pick up on some of the planned movements of UAV3; however,
in terms of path prediction, it has a similar performance of UAV1, having the initial 6-
minutes’ worth of predictions within 161 meters, but as the prediction space increased, the
path deviation increases to an average path deviation of 631 meters.

Ground Force Triangulation Analysis
The right-hand image of Figure 4.4 compares the predicted path of the NSW team to the
actual path of the NSW team. This graph clearly shows that the predicted path of the
NSW is in the ocean. The prediction begins being more than 500 meters off and only
worsens, achieving an average path deviation of more than 1000 meters. In addition to
having inaccurate predictions for UxV behavior, the associated MAPE for the NSW.X is
0.4796, and NSW.Y is 0.2207.

Time Series Linear Regression Model Analysis
We see that the Time Series Linear Regression Model is not able to determine the NSW’s
operational intent. While there are many possibilities as to why this could occur, it is
important to recall that Time Series Linear Regression Model was developed deliberately
based on cluster analysis from the IDS. The multiple linear regression model applied to this

50

Figure 4.4. Time Series Linear Regression Model Results—Unseen Data Set

Table 4.3. Time Series Neural Network Regression Model Time-Series
Performance—Applied

Metric UAV1.X UAV1.Y UAV2.X UAV2.Y UAV3.X UAV3.Y
MAPE 0.1302 0.2677 0 0 0.0935 0.0331

data set was trained on the data from the IDS and the V coefficients that best fit the IDS clearly
do not fit the UDS. Since the NCS is capable of dynamically selecting and repositioning
UxVs based on which is most related to another, in terms of sensing and communication, it
is likely that the combination of predictors developed in Chapter 3 changed importance and
behavior, and that a different combination of predictors would produce better results.

4.4.2 Time Series Neural Network Regression Model
The Time Series Neural Network Regression Model is expected to more robust in its
performance since the ground force triangulation model is a DNN. This section will follow
a structure similar to that of Section 4.4.1 in that it will simply apply the Time Series Neural
Network Regression Model to the UDS and provide an analysis of its outputs.

The statistical analysis of Time Series Neural Network Regression Model’s performance
appears to be much better than Time Series Linear Regression Model.

51

UxV Forecast Model Analysis
The left-hand image of Figure 4.5 compares the predicted paths of UAV1, UAV2, and UAV3
against their actual paths. An initial visual comparison of the predictions against their actual
paths seems to be less than impressive. However, the model does appear to determine that
UAV1 will move in a more westerly direction and that UAV3 will continue north with a
slight adjustment to the west. In terms of the statistical measures of accuracy, the model
achieves low MAPE values for UAV2.X, UAV2.Y, and UAV3.X, and UAV3.Y However,
the model does not appear to accurately predict the values of UAV1.X and UAV1.Y, since
both have MAPE values of greater than 0.1. UAV1 and UAV3 begin with very accurate
predictions, with the mean path deviation for the first 6 minutes being 55 meters and 26
meters, respectively. However, this level of performance quickly disappears in both cases as
the prediction horizon increases, with UAV1 having a mean path deviation of 611 meters
over a 24-minute prediction horizon and UAV3 having a mean path deviation of 346 meters
over the same prediction horizon.

Ground Force Triangulation Analysis
The right-hand image of Figure 4.5 compares the NSW team’s predicted and actual paths.
What is most evident in this image is that the predicted path and the actual path are
nearly identical. Over the 24-minute prediction horizon, the mean path deviation is only 39
meters; what is more impressive is that the largest path deviation occurs in the middle of
the prediction space and is only 75 meters. The predicted NSW locations that occur after
this mid-point converge back towards the NSW team’s actual path. In addition to having
very accurate path predictions for NSW behavior, the associated MAPE for the NSW.X is
0.0117 and NSW.Y is 0.0112.

Time Series Neural Network Regression Model Analysis
In Chapter 3, the time series neural network regression model had poor statistical results
but did provide insight into what the NSW team planned on doing or operational intent.
As shown in this section, the time series neural network regression model continues to
highlight the NSW’s operational intent and even achieves good performance metrics. In
addition to NSW.X and NSW.Y having very low MAPE and path deviation values, the time
series neural network regression model even identifies when the NSW team will change

52

Figure 4.5. Time Series Neural Network Regression Model Results — Unseen
Data Set

direction and gets the path adjustment nearly exactly right.

53

THIS PAGE INTENTIONALLY LEFT BLANK

54

CHAPTER 5:
Implementation Analysis

Automated Red Cell analysis is designed to determine if unmanned systems’ behavior
telegraphs the operational intent of the ground force it supports. There are various im-
plementations of NCS, as well as new forms of control being developed. Lowry (2020)
recommends the use of a Delay-Disruption Tolerant Network (DTN) to loosen the commu-
nications constraint requirements of an NCS. DTN is a computer networking model that
allows nodes from a system to be disconnected for a specified period of time (Tzinis 2020).
Research into DTN originally focused on planetary communications systems that allowed
NASA to communicate and control satellites over extreme distances. More recent research
from Rohrer and Xie (2013)—conducted at NPS—has extended DTN uses to vehicular
networking.

Therefore, to properly incorporate Automated Red Cell analysis into an NCS, the method-
ology needs to scale and be implementable on a variety of computing platforms. The NCS
examined in this thesis uses Distributed Submodularity to identify the best positions for
each UxV; however, this approach still maintains the requirement that the NCS be fully
connected. This requirement allows Automated Red Cell analysis to take advantage of this
connectedness and implement its models on more powerful computing devices. Future im-
plementations of NCS that employ DTN relax the requirement to have a fully connected
network, allowing autonomous agents to be disconnected from the system for a specified
period of time. The disconnected autonomous agents will not be able to leverage the con-
nected network to implement Automated Red Cell analysis on a dedicated machine and will
instead rely on the on-board computing power of the UxV.

In addition to the computational requirement of Automated Red Cell Analysis, as NCS
methodologies transition from unmanned-centralized control to autonomous or semi-
autonomous control, additional computational power will be required on-board individual
UxVs to handle the computationally complex algorithms required for autonomous con-
trol. The specific UxVs used in the MTX were the ScanEagle UAV, SeaFox USV, and
REMUS 100 UUV. The amount of space, power, and weight that can be added to each

55

of these UxVs varies, and therefore, the methods for implementing Automated Red Cell
analysis must vary. This chapter provides possible implementations across three comput-
ing devices; microcomputers or edge computing devices, mobile computing platforms, and
high-performance computers.

This thesis does not investigate the use of High-Performance Computing since High Per-
formance Computers (HPC) are not currently components of the NCS. However, if future
implementations of NCS do contain HPC capabilities, additional complexity can be added
to the methodology.

5.1 Microcomputer/Edge Computing
There is not a single agreed-on definition for “edge computing”; however, edge computing
can be thought of as conducting computation or analysis on an individual node of a connected
network. There are many examples of edge computing devices, but the most common is the
smartphone. An iPhone or Android phone can conduct complex tasks across its connected
network and conducts some tasks and analysis on the device itself. Some of the benefits of
conducting computation and analysis at an edge device include privacy and security as well
as reliability (Merenda et al. 2020).

An example of a micro-computer is a Raspberry Pi 4, pictured in Figure 5.1. A Raspberry
Pi is a low-cost, credit card-sized computer that was designed for teaching computer science
and robotics, but because of its low cost, versatility, and modular design is popular among
electronic hobbyists (Pi 2021). Current versions of the Raspberry Pi 4 Model B contain
a quad-core ARM processor and can be purchased with 2, 4, or 8 gigabytes of RAM and
contain various USB and GPIO interfaces (Pi 2021).

Figure 5.1. Raspberry Pi 4 (Edge Computing Device). Source: Raspber-
ryPi.org (2021).

The Raspberry Pi 4, and many of the other micro-computing platforms on the market today,

56

possesses the required hardware and computational capacity to control a single UxV and
conduct Automated Red Cell Analysis. However, a single board may not be capable of
conducting both actions simultaneously.

Of the three UxVs contained as part of the NCS, the component with the most constraints is
likely to be UAV. The ScanEagle UAV does not have a native, on-board computer capable
of autonomous control or Autonomous Red Cell analysis; however, ScanEagle does have
a payload capacity of approximately 11 pounds, which includes any sensors, batteries, or
additional cargo, which can support a micro-computing device (Insitu 2021). The NPS
CAVR lab has already addressed this shortcoming and integrated two micro-computers
into its ScanEagle platforms. These micro-computers provide the ScanEagle the additional
computational resources needed to conduct autonomous control of the UAV and may also
support native automated red cell analysis. Therefore, the framework and models developed
in this Thesis must be capable of operating on computers with fewever computational
resources.

A version of Automated Red Cell analysis was implemented on-board a Raspberry Pi 4
Model B to see how well the methodology, in its current state, functions when given a
live feed of data. This section documents some of the issues with this implementation and
process for developing this test environment; however, it does not cover details or provides
quantitative analysis of this output. A current limitation to deploying Automated Red Cell
Analysis to micro-computers is processor architecture; many machine learning packages
will not function on the ARM-based processors, limiting the choices of algorithms that
can be implemented. While a micro-computer can run the ROS and python programming
languages, many machine learning applications are not compatible with ARM-based pro-
cessors.

Time Series
Some of the models built and discussed in this thesis take advantage of specific packages
or functions resident within R. While micro-computers are capable of operating statistical
software such as R, if these systems are employed in coordination with UxVs, they may
be limited to a single-versatile programming language, such as Python. Robot Operating
Systems (ROS) is an open-source robotics middleware suite written in C++ and Python,
which allows for easier integration between the UxV software, NCS, and Automated Red

57

Cell. Limiting the time series models to python-based algorithms precludes the use of
the auto.arima or nnetar functions discussed previously; however, the pmdarima offers a
comparable implementation. (Smith et al. 2017).

Ground Force Triangulation
The multiple linear regression models, discussed as part of the Time Series Linear Regres-
sion Model, can run on a micro-computer since they can be solved using simple matrix
algebra. However, the more complex implementations of the DNN require more work to be
implemented on-board a micro-computer.

TensorFlow and Keras can run, based on processor speed and RAM, limited machine
learning algorithms on an ARM-based micro-computer. While the DNN built in this thesis
is likely beyond the scope of what can be trained on a micro-computer, an already trained
DNN can be used to make predictions on-board a UxV through transfer learning.

5.2 Mobile Computing Platform
The models and methodology presented by this thesis were built on a personal laptop,
with a 2.6 GHz 6-Core Intel Core i7 processor, 16 GB 2667 MHz DDR4 RAM, and an
Intel UHD Graphics 630 1536 MB graphics processor. Moreover, the approach to model
and methodology development was intentional; since current constructs of NCS require a
fully connected network to operate, a control station would likely have similar processing
power. Table 5.1 details the processing times for each stage of the models. The Deep Neural
Network used in this thesis was thoroughly discussed in Section 3.3 and is not discussed in
this section.

Table 5.1. Mobile Computing—Model Processing Times (seconds)

1 Second Interval 120 Second Intervals
Model Training Time Prediction Time Training Time Prediction Time

auto.arima 1.787 0.049 1.013 0.041
nnetar 33.845 15.079 0.378 0.345
mlr 0.007 0.004 0.010 0.003
dnn 230.841 0.369 N/A 0.100

58

A key component to building the Automated Red Cell methodology was finding a time
series forecast model capable of taking in several minutes’ worth of raw observations and
providing a near-real-time forecast for --number of observations into the future. Because
the time-series model must take in dynamic data and predict future locations without prior
knowledge of the future, it can be considered an online optimization problem. The desired
methodology must be able to take in the dynamic data, build an appropriate time-series
model, train the model using the collected data, and forecast future values, all in near-real-
time. This thesis focused on using R’s auto.arima and nnetar functions from the forecast
package Hyndman and Khandakar (2008) since these functions could train the model and
make forecasts in less than 2 seconds. The auto.arima and nnetar functions could train
the model in very similar times when the training data set was sampled at rates greater
than every 60 seconds. However, when the training data were sampled at rates less than
60 seconds between observations, there was a substantial difference in the time required to
train the nnetar model.

Later iterations of Automated Red Cell Analysis may see more accurate time-series model
predictions if multivariate LSTM neural networks are incorporated into the methodology.
The use of RNN and LSTM were initially explored; however, because of the amount of
time required to train the LSTM model, these methods were not feasible solutions for
implementing Automated Red Cell analysis into an NCS.

59

THIS PAGE INTENTIONALLY LEFT BLANK

60

CHAPTER 6:
Conclusion

This chapter discusses the findings of this thesis, Section 6.1, and identifies areas where
this research can be implemented and further work conducted, Section 6.2.

6.1 Discussion
This thesis continues work from Wachlin (2018) and Lowry (2020) regarding a graph-
theoretic framework for real-time control of a network of UxVs and Distributed Submodu-
larity for finding near-optimal position recommendations for an NCS agents in real-time.

Automated Red Cell analysis provides a framework and methodology to determine if an
NCS supporting a human component or ground force is telegraphing or predicting the
ground force’s operational intent. Automated Red Cell analysis is not held to a single model
but is flexible and can be applied to nearly any autonomous system. In the case of the NCS
implementation researched in this thesis, the Automated Red Cell model needs to predict
the future locations of the ground force but is limited in its ability to sense or see the
ground force at any given time. Therefore the model must use data that is correlated to the
ground force, and using data acquired from past exercises, builds a model which relates the
position of the ground force to the UxVs supporting them. The overall model consists of a
Time Series Forecast Model to forecast the future UxV positions, a trained Ground-Force
Triangulation Model, and a time series regression model which combines the forecasted
values from the Time-Series Forecast Model as the inputs to the GFT model to predict the
path of the ground force - number of steps in the future.

TheAutomated RedCell methodology is a novel framework that quantifies how autonomous
agents may telegraph or predict a ground force’s operational intent. The implications of this
methodology and analysis are far-reaching as the DOD begins to focus on competing
with near-peer adversaries in the Pacific, and the Marine Corps identifies the need for
reconnaissance and counter-reconnaissance capabilities when conducting operations within
the “Weapons’ Engagement Zone.”

61

While this thesis presents a novel application of time series regression models, there are
limitations to this research. These limitations do not impact the results of this analysis;
however, it is prudent they are acknowledged and discussed. The DNN developed and
trained in Chapter 3 and then applied in Chapter 4 is only trained on 5,604 observations.
While the number of observations is small—when compared to the training required for
accurate convolutional neural networks—there were no other data sets available to continue
training the model. Additionally, the NSW paths from both the IDS and UDS are similar,
which is briefly discussed in Chapter 4. Figure 4.1 highlights the NSW path from both data
sets and highlights the training set observations in blue and the testing set observations in
red. In both cases the NSW team maneuvers along the east coast of SCI, in nearly identical
positions. Following insertion, the team’s path follows several roadways, moving north
towards Naval Auxiliary Landing Field. And while the NSW team’s path during training
set the IDS is significantly different than its path in the UDS, there are enough similarities
in the general ground force behavior that could be mitigated with more data sets.

6.2 Future Work
A natural extension to this research is to apply the methodology in a real-world test oppor-
tunity. Implementing the Automated Red Cell methodology into a live NCS and operating it
at the Joint Interagency Field Experimentation Program will provide a stable environment
to test the robustness of the ground force triangulation model as well as the generalizability
of the Automated Red Cell methodology.

The frameworks andmodels discussed in this thesis provide the foundation for incorporating
a feedback loop, and potentially deception, into an NCS. Figure 6.1 proposes what a possible
feedback loop may look like. The NCS generates path recommendations and feeds the
recommended paths to the automated red cell module. The NCS system operator or ground
force commander provides a time horizon and level of certainty, and possibly path deviation,
to the red cell module. The red cell analysis module analyzes the path recommendations
and if, over the given time horizon, the predicted ground force path is within the predefined
level of certainty, the automated red cell analysis module notifies the human in the loop or
the NCS generates a new configuration and paths. When the automated red cell analysis
indicates that the UxV NCS has high predictability or clearly identifies a ground force’s
operational intent, the NCS can notify a ground force commander who can then incorporate

62

deception and show that the deception plan is difficult to track.

Figure 6.1. Automated Red Cell Analysis Feedback Loop

This thesis takes a data science approach to conducting red cell analysis of a mobile NCS;
however, this type of analysis is not, and should not, be limited to use in just NSW UxV
tactical operations. The red cell analysis methodology investigated in this thesis has the
potential to change many aspects of military operational planning, including operational
and strategic level planning and wargaming. The United States Marine Corps is in the
process of drastic force design changes in order to focus on “fulfilling the role as the
nation’s naval expeditionary force-in-readiness” (United States Marine Corps 2021, p. 2).
USMC Force Design 2030 highlights the Marine Corps’s need for forward deployed naval
expeditionary forces, sensory networks to detect adversary targets and command and control
systems that remain functional as forces move, communicate and act, as well as the need
to conduct reconnaissance and counter-reconnaissance (United States Marine Corps 2021).
Automating red cell analysis and further developing it to work in and with other systems
will be instrumental in accelerating reconnaissance constructs Marines will need as the
“Stand-in force.”

63

THIS PAGE INTENTIONALLY LEFT BLANK

64

APPENDIX A:
Time Series Regression Model Development

A.1 Assumptions and Correlations
This appendix provides a more detailed information on some of the underlying assumptions
from the data and explanation of the models used and includes the step-by-step directions
for implementing each. This thesis assumes the UxV position data can be analyzed and
modeled using univariate time series forecasting methods; however, it also acknowledges
the because the data comes from a network of systems designed to operate in a connected
way that this data is correlated. Figure A.1 provides the correlation plot of each variable
from the IDS and highlights two important facts:

1. UxV coordinates are correlated with other UxVs, and
2. The x- and y-coordinates of each UxV are highly correlated with each other.

Figure A.1. IDS Correlation Plot

65

A.2 Time Series Linear Regression Model
The algorithms to develop the models used in this thesis are contained in Algorithms 2 and
3.

Algorithm 2: Time Series Linear Regression Model Formulation
Result: Predicted Ground Force Path using Linear Regression
Data Preprocessing;

Instruction 1: Conduct 80/20 training-test split of the entire data set—note, this
split is NOT random and creates the subset of the data both models will be trained
on as well as a subset of the data which this model will predict.

Time Series Forecast Model;
Instruction 1: Build univariate ARIMA model for the x- and y-component of
each UxV;
Instruction 2: Forecast x- and y-coordinate predictions desired number of steps
into the future;

Ground Force Triangulation Model;
Instruction 1: Using insights from unsupervised learning, create two linear
regression models, one for each of the ground force’s coordinates;
Instruction 2: Conduct a randomized 80/20 training/validation split on the
’training’ data subset;
Instruction 3: Train the linear regression models using the training subset;
Instruction 4: Use the validation subset to test the accuracy of the linear
regression model;
Instruction 5: Save the optimized linear regression model weights.;

Combined Time Series Linear Regression Model;
Instruction 1: Recall forecasted values from Time Series Forecast Model;
Instruction 2: Use forecasted values as input parameters to the optimized linear
regression models;
Instruction 3: Compare predicted values of x- and y-coordinates of ground force
to values from the “test” set;

66

A.3 Time Series Neural Network Model
Algorithm 3: Time Series Neural Network Regression Model Formulation
Result: Predicted Ground Force Path using Neural Network
Data Preprocessing;

Instruction 1: Conduct 80/20 training-test split of the entire data set—note, this
split is NOT random and creates the subset of the data both models will be trained
on as well as a subset of the data which this model will predict;

Time Series Forecast Model;
Instruction 1: Build univariate ARIMA model for the x- and y-component of
each UxV;
Instruction 2: Forecast x- and y-coordinate predictions desired number of steps
into the future;

Ground Force Triangulation Model;
Instruction 1: Build neural network, with all observable predictors as the inputs
and the x- and y-coordinates of the ground force as the response variables;
Instruction 2: Conduct a randomized 80/20 training/validation split on the
’training’ data subset;
Instruction 3: Train the deep neural network using the training subset;
Instruction 4: Use the validation subset to test the accuracy of the linear
regression model;
Instruction 5: Save the trained neural network weights;

Combined Time Series Linear Regression Model;
Instruction 1: Recall forecasted values from Time Series Forecast Model;
Instruction 2: Using transfer learning, apply forecasted UxV values as the input
parameters to the trained neural network;
Instruction 3: Compare predicted values of x- and y-coordinates of ground force
to values from the “test” set;

67

THIS PAGE INTENTIONALLY LEFT BLANK

68

APPENDIX B:
Time Series Regression Model Application Results

This appendix provides a detailed report of the path deviation results when applying the
Time Series Linear Regression and Time Series Neural Network models to the UDS.

Table B.1. Ensemble Model 1 Performance Matrix: Path Deviation (meters)

Time Step UAV1 UAV2 UAV3 NSW
1 0.00001 8.526513e-14 37.39296 523.1826
2 156.4547 1.421085e-13 143.77240 637.6912
3 367.0061 1.989520e-13 302.02125 786.7997
4 577.5716 2.557954e-13 488.30615 963.3151
5 788.1411 3.126388e-13 695.30847 1160.1788
6 584.7435 3.694822e-13 816.13527 1252.1253
7 747.2414 4.263256e-13 934.12732 1364.4299
8 1201.4729 4.831691e-13 1062.16692 149.2.3049
9 1731.3081 5.400125e-13 1196.77864 1631.2357

mean 683.7711 3.126388e-13 630.6677 1090.140e+02

69

Table B.2. Ensemble Model 2 Performance Matrix: Path Deviation (meters)

Time Step UAV1 UAV2 UAV3 NSW
1 8.6975 5.74E-11 4.1021 66.298
2 20.7765 1.15E-10 11.6985 42.2972
3 137.9459 1.72E-10 62.3256 24.3954
4 288.8922 2.30E-10 124.468 8.904
5 440.1368 2.87E-10 189.4864 6.4612
6 591.4511 3.44E-10 256.0677 21.7607
7 742.7933 4.02E-10 325.6235 33.2111
8 597.7482 4.59E-10 407.2015 39.2831
9 628.9607 5.17E-10 512.4748 47.1182
10 908.4265 5.74E-10 629.2061 53.38
11 1283.0601 6.32E-10 752.3557 60.0634
12 1690.7414 6.89E-10 879.4062 75.9563

mean 611.64 3.73177e-10 346.25 39.9

70

List of References

Aggarwal C (2018) Neural Networks and Deep Learning (Springer International Publish-
ing).

Allaire J, Chollet F (2020) keras: R Interface to ’Keras’. URL https://CRAN.R-project.
org/package=keras, r package version 2.3.0.0.

Burkov A (2019) The hundred-page machine learning book, vol. 1 (Andriy Burkov).

Buttrey S (2021) Clustering. Lecture Slides, Statistical Machine Learning, Naval Post-
graduate School,February, 2021, Monterey, CA.

Defense Science Board (2012) The role of autonomy in dod sys-
tems. Technical report, Defense Science Board, Washington, DC,
https://fas.org/irp/agency/dod/dsb/autonomy.pdf.

Defense Science Board Task Force (2003) The role and status of DOD red team-
ing activities. Technical report, Defense Science Board, Washington, DC,
https://fas.org/irp/agency/dod/dsb/redteam.pdf.

Department of Navy (2021) Cno navplan 2021. Technical Re-
port NAVPLAN-2021, United States Navy, Washington,
DC, https://media.defense.gov/2021/Jan/11/2002562551/-1/-
1/1/CNO%20NAVPLAN%202021%20-%20FINAL.PDF.

Ester M, Kriegel HP, Sander J, Xiaowei X (1996) A density-based algorithm for dis-
covering clusters in large spatial databases with noise. Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, URL https:
//www.aaai.org/Papers/KDD/1996/KDD96-037.pdf.

Farina M, Misiano S (2018) Stochastic distributed predictive tracking control for networks
of autonomous systems with coupling constraints. IEEE transactions on control of net-
work systems 5(3):1412–1423, ISSN 2325-5870.

Hahsler M, Piekenbrock M, Doran D (2019) dbscan: Fast Density-Based clustering with
R. J. Stat. Softw. 91(1), ISSN 1548-7660, URL http://dx.doi.org/10.18637/jss.v091.i01.

Huddleston SH, Brown GG (2018) Chapter 7: Machine Learning (INFORMS Analytics
Body of Knowledge) (Wiley).

Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: the forecast pack-
age for R. Journal of Statistical Software 26(3):1–22, URL https://www.jstatsoft.org/
article/view/v027i03.

71

https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
http://dx.doi.org/10.18637/jss.v091.i01
https://www.jstatsoft.org/article/view/v027i03
https://www.jstatsoft.org/article/view/v027i03

Insitu ABC (2021) Scan eagle. Https://www.insitu.com/products/scaneagle.

James G, Witten D, Hastie T, Tibshirani R (2013) An Introduction to Statistical Learning
(Springer Science+Business Media, New York).

Kooĳ WER (2013) Graph measures and network robustness. arXiv.org .

Krause A, Golovin D (2014) Submodular Function Maximization, 71–104 (Cambridge
University Press), URL http://dx.doi.org/10.1017/CBO9781139177801.004.

Lowry B (2020) Distributed Submodular Optimization for a UXV Networked Control Sys-
tem. Master’s thesis, Department of Mechanical and Aerospace Engineering, Naval
Postgraduate School, Monterey, CA.

Mangalam K, Girase H, Agarwal S, Lee KH, Adeli E, Malik J, Gaidon A (2020) It is not
the journey but the destination: Endpoint conditioned trajectory prediction. Proceed-
ings of the European Conference on Computer Vision (ECCV).

Merenda M, Porcaro C, Iero D (2020) Edge machine learning for ai-enabled iot devices:
A review. Sensors 20(9), ISSN 1424-8220, URL http://dx.doi.org/10.3390/s20092533.

Mesbahi M, Egerstedt M (2010) Graph Theoretic Methods in Multiagent Networks
(Princeton University Press), stu - student edition edition.

Montero P, Vilar JA (2014) TSclust: An R package for time series clustering. Journal of
Statistical Software 62(1):1–43, URL http://www.jstatsoft.org/v62/i01/.

NIST, SEMATECH (2013) e-Handbook of Statistical Methods (NIST),
https://doi.org/10.18434/M32189.

Pi R (2021) Raspberry pi 4 model b specifications. URL https://www.raspberrypi.org/
products/raspberry-pi-4-model-b/specifications/.

Plot JA (2019) Red Team in a Box (RTIB): Developing Automated Tools to Identify, As-
sess, and Expose Cybersecurity Vulnerabilities in Department of the Navy Systems.
Master’s thesis, Department of Computer Science; Naval Postgraduate School, Mon-
terey, CA.

R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, URL https://www.R-project.org/.

Rohrer JP, Xie GG (2013) Dtn hybrid networks for vehicular communications. IEEE 2nd
International Conference on Connected Vehicles .

72

http://dx.doi.org/10.1017/CBO9781139177801.004
http://dx.doi.org/10.3390/s20092533
http://www.jstatsoft.org/v62/i01/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.R-project.org/

Shareef A, Zhu Y, Musavi M (2007) Localization using neural networks in wireless sen-
sor networks. MOBILWARE’08: Proceedings of the 1st international conference on
MOBILe Wireless MiddleWARE, Operating Systems, and Applications, 1–7 (ICST,
Brussels, Belgium, Belgium: ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering)), ISBN 978-1-59593-984-5.

Smith TG, et al. (2017) pmdarima: Arima estimators for Python. URL http://www.
alkaline-ml.com/pmdarima, [Online; accessed 5 May 2021].

Tzinis I (2020) Delay/disruption tolerant networking.
Https://www.nasa.gov/directorates/heo/scan/engineering/technology/disruption_tolerant_networking.

United States Marine Corps (2021) Force design 2030 - april 2021 update. Technical Re-
port Force Design 2030-updated 2021, United States Marine Corps, Washington, DC,
https://www.marines.mil/Portals/1/Docs/2021%20Force%20Design%20Annual%20Update.pdf.

Venables WN, Ripley BD (2002) Modern Applied Statistics with S (Springer, New York),
fourth edition, URL https://www.stats.ox.ac.uk/pub/MASS4/, iSBN 0-387-95457-0.

Wachlin N (2018) Robust Time-Varying Formation Control with Adaptive Submodulairty.
Master’s thesis, Department of Mechanical and Aerospace Engineering, Naval Post-
graduate School, Monterey, CA.

Yoshida R (2020) Data science modeling overview. Lecture Slides, Advanced Data Ana-
lytics, Naval Postgraduate School, September, 2020, Monterey, CA.

Zhang X, Han Q, Yu X (2016) Survey on recent advances in networked control systems.
IEEE Transactions on Industrial Informatics 12(5):1740–1752, URL http://dx.doi.org/
10.1109/TII.2015.2506545.

73

http://www.alkaline-ml.com/pmdarima
http://www.alkaline-ml.com/pmdarima
https://www.stats.ox.ac.uk/pub/MASS4/
http://dx.doi.org/10.1109/TII.2015.2506545
http://dx.doi.org/10.1109/TII.2015.2506545

THIS PAGE INTENTIONALLY LEFT BLANK

74

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

75

	Introduction
	Problem Statement
	Case Scenario
	Proposed Analytical Framework

	Background
	Networked Control Systems
	Neural Networks
	Red Cell/Red Team

	Methodology
	The MTX Infiltration Data Set
	A Data Science Approach
	Neural Networks
	Time Series Regression Models
	Summary

	Application, Results and Analysis
	The Unseen Data Set
	Time Series Regression Models Applied
	Methods of Evaluation
	Analysis of Time Series Regression Models

	Implementation Analysis
	Microcomputer/Edge Computing
	Mobile Computing Platform

	Conclusion
	Discussion
	Future Work

	Time Series Regression Model Development
	Assumptions and Correlations
	Time Series Linear Regression Model
	Time Series Neural Network Model

	Time Series Regression Model Application Results
	List of References
	Initial Distribution List

