

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

INTEGRATION OF INTEROPERABLE
ANDROID-BASED COMMAND AND CONTROL

SYSTEMS TO CREATE MORE REALISTIC TACTICAL
TRAINING

by

Bernd Weissenberger

June 2021

Thesis Advisor: Imre L. Balogh
Co-Advisors: Kirk A. Stork
 Christian R. Fitzpatrick

Research for this thesis was performed at the MOVES Institute.
Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 June 2021 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
INTEGRATION OF INTEROPERABLE ANDROID-BASED COMMAND
AND CONTROL SYSTEMS TO CREATE MORE REALISTIC TACTICAL
TRAINING

 5. FUNDING NUMBERS

 6. AUTHOR(S) Bernd Weissenberger

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 This thesis focuses on the interoperability of Android mobile devices during live military training to model
the dynamic nature of adversarial forces and enhance realism. The research explores the efficient and effective
application of existing interoperability protocols and architectures to transfer and display tactical data to assist
ground forces in achieving their training objectives.
 Specifically, to address some of the limitations of current training systems that do not support customization,
a prototype of an application for Android devices is developed and tested. Consisting of a Mobile Entity Simulator
and a Mobile Hit Actor (MHA), the developed prototype proved capable of allowing the devices to connect to a
military communication system via Wi-Fi. Once connected, they could send packets to a command and control
(C2) system using the distributed interactive simulation (DIS) protocol. Thus, the mobile device could mimic the
presence of an arbitrary military unit at the device’s coordinates. Moreover, the MHA not only proved successful
in registering detonation data but also played a corresponding sound to enhance realism.
 To prove the concrete benefits of the application will require further work. For this purpose, experiments
should compare the results of live training with and without the use of the developed tools. In addition, the DIS
protocol was used in this work; hence, future work should use the High Level Architecture for comparison.

 14. SUBJECT TERMS
distributed interactive simulation, high level architecture, modeling and simulation, Kotlin,
Android, wireless communication systems, app

 15. NUMBER OF
PAGES
 125
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

INTEGRATION OF INTEROPERABLE ANDROID-BASED COMMAND AND
CONTROL SYSTEMS TO CREATE MORE REALISTIC TACTICAL

TRAINING

Bernd Weissenberger
Lieutenant Colonel, German Army

Dipl. Inf. (FH), Hannover University of Applied Science and Arts, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING, VIRTUAL ENVIRONMENTS, AND
SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
June 2021

Approved by: Imre L. Balogh
 Advisor

 Kirk A. Stork
 Co-Advisor

 Christian R. Fitzpatrick
 Co-Advisor

 Gurminder Singh
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 This thesis focuses on the interoperability of Android mobile devices during live

military training to model the dynamic nature of adversarial forces and enhance realism.

The research explores the efficient and effective application of existing interoperability

protocols and architectures to transfer and display tactical data to assist ground forces in

achieving their training objectives.

 Specifically, to address some of the limitations of current training systems that do

not support customization, a prototype of an application for Android devices is developed

and tested. Consisting of a Mobile Entity Simulator and a Mobile Hit Actor (MHA), the

developed prototype proved capable of allowing the devices to connect to a military

communication system via Wi-Fi. Once connected, they could send packets to a

command and control (C2) system using the distributed interactive simulation (DIS)

protocol. Thus, the mobile device could mimic the presence of an arbitrary military unit

at the device’s coordinates. Moreover, the MHA not only proved successful in registering

detonation data but also played a corresponding sound to enhance realism.

 To prove the concrete benefits of the application will require further work. For

this purpose, experiments should compare the results of live training with and without the

use of the developed tools. In addition, the DIS protocol was used in this work; hence,

future work should use the High Level Architecture for comparison.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OVERVIEW ...1
B. CURRENT CAPABILITIES AND LIMITATIONS2
C. PROBLEM STATEMENT ...3
D. MOTIVATING CONSTRAINTS...4
E. ASSUMPTIONS ...5

1. Hardware ..5
2. Software ..6

II. RELATED WORK AND EXISTING TECHNOLOGIES7
A. AVAILABLE SOFTWARE SOLUTIONS..7

1. Android Team Awareness Kit ..7
2. Kinetic Integrated Low-Cost Software Integrated

Tactical Combat Handheld ...9
B. COMPARISON OF AVAILABLE COMMUNICATION

SYSTEMS ...10
1. Near Field Communication ...10
2. Bluetooth Technology ..12
3. Wi-Fi Technology ...15
4. USB Technology ...19
5. Mobile Standard Fifth Generation (5G)22

C. AVAILABLE PROTOCOLS AND ARCHITECTURES24
1. High Level Architecture ..24
2. Distributed Interactive Simulation ...26

D. ASSESSMENT AND IMPLICATIONS FOR THE
DEVELOPMENT OF THE PROTOTYPE ..30
1. Existing Software Products ...30
2. Network Communication Structure ...31
3. Protocol ...33
4. Summary ...33

III. AVAILABLE PROGRAMMING LANGUAGES ..35
A. JAVA ...35
B. KOTLIN..36
C. COMPARISON, EVALUATION, AND RATING37

IV. IMPLEMENTATION AND DEMONSTRATION ..39
A. MOBILE ENTITY SIMULATOR ...39

1. Equipment Used and Setup ...39

viii

2. Prototype Development ...39
3. Summary of the Development Process54
4. Testing and Demonstration ...55

B. MOBILE HIT ACTOR ...61
1. Setup ..62
2. Prototype Development ...65
3. Testing and Demonstration ...71

V. CONCLUSIONS AND RECOMMENDATIONS ...75
A. CONCLUSIONS ..75
B. RECOMMENDATIONS FOR FUTURE WORK77

APPENDIX A. DEVELOPMENT SETUP ..79
A. SETUP ...79

1. Development Computer...79
2. Mobile Device ...80
3. C2 System Simulator (VR Forces) ..81
4. Network Setup ..83

B. ANDROID STUDIO ..84
1. The “manifest” Folder ...84
2. The “java” and “java (generated)” Folders85
3. The “res” Folder ..85
4. The “gradle scripts” Folder ..85

APPENDIX B. SOURCE CODE ..87
A. ENTITY STATE SIMULATOR—

FRAGMENT_SEND_POSITIO.XML ..87
B. ENTITY STATE SIMULATOR—MAINACTIVITY.KT90
C. ENTITY STATE SIMULATOR—

SENDPOSITIONFRAGMENT.KT ...91
D. ENTITY STATE SIMULATOR—BUILD.GRADL98
E. MOBILE HIT ACTOR—RASPIRECEIVER.JAVA...........................99
F. MOBILE HIT ACTOR TESTER—

SENDDETONATIONFRAGMENT.KT ...101
G. MOBILE HIT ACTOR TESTER—

FRAGMENT_SEND_DETONATION.XML102

LIST OF REFERENCES ..105

INITIAL DISTRIBUTION LIST ...109

ix

LIST OF FIGURES

Figure 1. Live Training Actual Situation ..3

Figure 2. Example of a ComSys. ...6

Figure 3. Bluetooth: Piconet Configuration Source: Ferro and Potorti (2005)14

Figure 4. Bluetooth: Scatternet Configuration Source: Ferro and Potorti (2005)14

Figure 5. Wi-Fi Ad-Hoc Mode ..17

Figure 6. Wi-Fi Infrastructure Mode ...18

Figure 7. Wi-Fi Extended Service Set ...19

Figure 8. G Beam Forming with Antenna Arrays. Source: Nordrum et al.
(2017). ..23

Figure 9. HLA API Structure. Source: McGregor (2011b).25

Figure 10. PDU Hierarchy. Source: McGregor (2011a). ..27

Figure 11. Network Schema for Actual Use ...32

Figure 12. Network Schema for Test Configuration ...33

Figure 13. Java Compiling and Running Process..36

Figure 14. Kotlin Compiling and Running Process ..37

Figure 15. Design of Human Interface for Mobile Entity Simulator40

Figure 16. Flow Chart of Mobile Entity Simulator ...41

Figure 17. Mobile Entity Simulator Use Case—Select Military Symbol42

Figure 18. Layout of Military Symbols ...43

Figure 19. Mobile Entity Simulator Use Case—Enter IP and Port Number44

Figure 20. Layout IP Address and Port Number ...45

Figure 21. Mobile Entity Simulator Use Case—Start Sending PDUs46

Figure 22. Mobile Entity Simulator Use Case—Establish Socket47

x

Figure 23. Mobile Entity Simulator Use Case—Determine Position48

Figure 24. Mobile Entity Simulator Use Case—Create ESPDU50

Figure 25. Mobile Entity Simulator Use Case—Transmit ESPDU52

Figure 26. Mobile Entity Simulator Use Case—Stop Sending PDUs53

Figure 27. Screenshot of Entity State Simulator ...55

Figure 28. Connection Test—Ping ..56

Figure 29. Connection Test—Tracert ..56

Figure 30. Wireshark—Captured DIS Packages ...57

Figure 31. Wireshark—Inside an ESPDU ...58

Figure 32. VR Forces Simulation Configuration ..59

Figure 33. Test Application—VR Forces Friendly Tank ..60

Figure 34. Test Application—VR Forces Enemy Tank ..61

Figure 35. Mobile Hit Actor Hardware Setup ...63

Figure 36. Mobile Hit Actor Development Setup ...65

Figure 37. Flow Chart of Mobile Hit Actor ..66

Figure 38. Design of Human Interface for Mobile Hit Actor Test Application68

Figure 39. Flow Chart of Mobile Hit Actor Test Application.....................................69

Figure 40. Screenshot of Mobile Hit Actor Test Application70

Figure 41. MHA Connection Test ...71

Figure 42. MHA Wireshark—Captured DIS Packages ...72

Figure 43. MHA Wireshark—Inside Detonation PDU ...73

Figure 44. Development Network Setup ...83

Figure 45. Typical Project Structure in Android Studio ...84

xi

LIST OF TABLES

Table 1. Bluetooth Versions...13

Table 2. Wi-Fi Generations and Parameters ..16

Table 3. USB Standards ...21

Table 4. PDU Header. Source: McGregor (2011a) ..29

Table 5. Comparison of Different Communication Technics31

Table 6. Hardware Specifications for the Raspberry Pi ...62

Table 7. Software Specifications for the Raspberry Pi ..64

Table 8. Hardware Specifications of Development Computer79

Table 9. Software Specifications of Development Computer80

Table 10. Hardware Specifications for Mobile Device ..80

Table 11. Hardware Specifications for C2 Simulator ..82

Table 12. Software Specifications of C2 Simulator ...82

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

5G
AFRL
AGDUS
ATAK
AVM
C2
CIV
DHCP
DIS
ESPDU
FISH
FRG
GOV
GPS
HDMI
HLA
IEEE
IP
ISO
JAR
JDK
JRE
JS
JVM
KILSWITCH

LVC
MES
MIL
MIMO

fifth generation (mobile standard)
Air Force Research Laboratory
Ausbildungsgeraet Duellsimulator (training device dual simulator)
Android team awareness kit
Audio Visuelles Marketing (German company name)
command and control
civilian
dynamic host configuration protocol
distributed interactive simulation
entity state protocol data unit
Fuehrungsinformationssystem Heer (C2 System Army)
Federal Republic of Germany
government
global positioning system
high-definition multimedia interface
high level architecture
Institute of Electrical and Electronics Engineers
internet protocol
International Standardization Organization
Java Archive
Java development kit
Java runtime environment
Java script
Java virtual machine
kinetic integrated low-cost software integrated tactical combat
handheld
live virtual constructive
mobile entity simulator
military
multiple-in multiple-out

xiv

MHA mobile hit actor
NATO North Atlantic Treaty Organization
NFC near field communication
NGA National Geospatial Intelligence Agency
OS operating system
P2P peer-to-peer
PDU protocol data unit
SSH secured shell
USA United States of America
USB universal serial bus
VM virtual machine
VPN virtual private network
VR virtual reality

1

I. INTRODUCTION

Computer-aided training has become an integral part of everyday military life. It

saves time, money, and can improve training by making it more dynamic and realistic. This

is especially true for live military training events at the battalion level and higher as

computers are integrated across the units within the North Atlantic Treaty Organization

(NATO) armed forces. In particular, the Command and Control (C2) systems integrated in

tactical vehicles (trucks, tanks, troop transporters, and all others) are indispensable in

ensuring blue force tracking and keeping a tactical situation map at the same time—during

training as well as in the real world. As this master’s thesis is being written, the combat units

of the German Armed Forces are using the C2 system “FISH (Fuehrungsinformationssystem

Heer—Command and Control System Army),” which is described in the following section.

Undoubtedly, efficient training using integrated systems is essential for the successful

deployment of a nation’s army. Furthermore, such a practice reinforces the Latin proverb

“exerce te talem, qualem pugnas” (train as you fight), which has not lost any of its validity

even today.

A. OVERVIEW

In the German Armed Forces, we have training centers called

“Gefechtsuebungszentren” (Combat Training Centers). In these centers, our military

trains in a combination of “Live,” “Virtual,” and “Constructive” environments. This

allows a battalion to train in this facility with just three real companies at the training

ground. The other three companies are virtual only.

The vehicles within these scenarios are equipped with (at least) two different

systems: AGDUS and FueInfoSys.

(1) AGDUS “Ausbildungsgeraet Duellsimulator” (Training Device Duel
Simulator)

AGDUS, which is a transmitter adapted for the weapon of a particular vehicle,

emits a coded laser beam when a shot is fired. Various data such as the shooter’s identity

number (vehicle), type of weapon and ammunition are transmitted to enable the

2

identification of who has hit whom with which weapon. If the receiver is hit optically, an

acoustic signal is emitted by the control unit. Depending on the hit zone, a built-in display

shows the damage, from light to medium to severe damage and the associated downtime,

as well as a complete failure. The decision about the severity of the damage depends on

the results of engagement.

(2) FueInfoSys “Fuehrungs Informations System” (Command and Control
System, C2 System)

The FueInfoSys displays the current position of a vehicle, a (sub) unit, or an entire

battle group in near real time on a digital map. This situation report is available to the

commander as well as on any other vehicle, broken out to the appropriate unit level.

B. CURRENT CAPABILITIES AND LIMITATIONS

The main problem with the current system configuration just described is that both

the units and vehicles of the unit being trained, and the vehicles of the opposing force are

displayed with their actual vehicle signature (tactical symbol) in the C2 system. Since the

Bundeswehr cannot always provide sufficient combat vehicles and for every exercise,

trucks are sometimes used to play the role of target systems. For this purpose, they are

equipped with the appropriate AGDUS sensors and can thus react to simulated fire. For

example, a battle between two tank battalions is practiced “blue against red.” The blue

training force is equipped with actual the Leopard 2A6 main battle tank. The opposing side

is said to be an enemy tank battalion equipped with T80s, which are simulated by trucks

from a blue unit. In the C2 system of the exercise, however, the enemy “tanks” are

represented as blue trucks and not as red battle tanks. This not only leads to confusion with

the tank crews but also with the trained battalion staff in the command post, who is shown

the same operational picture. Since the transmission units for vehicle recognition cannot

easily be changed or adjusted, this deficiency is often accepted, and training is conducted

with this artificiality.

Another limitation is the lack of a virtual hit display in the real world. While a hit

with the AGDUS laser is indicated in the C2 system, the gunner and the driver of the

vehicle do not see whether the enemy has been successfully engaged, and consequently,

3

they react differently in this case than they would otherwise. If a hit were also recognizable

in reality, the entire tank crew could turn its focus on a new target to interdict.

C. PROBLEM STATEMENT

As previously described, the representation of a combat vehicle in a C2 system

during live training cannot be changed (Figure 1). German C2 systems such as the Army

Command and Control System or the Command and Control System for Army (FISH) do

not allow this customization for good reason, as this data needs to be accurately displayed

to avoid friendly fire (blue force tracking). What is vital in combat and real operational

conditions, however, achieves exactly the opposite with live training; namely when, as

described earlier, our own trucks are used as target representations for troops. The currently

used systems do not allow the vehicle signatures to be changed. The work in this thesis

investigates the feasibility of developing a software solution to address this deficiency and

whether a similar approach could also be used to create a virtual hit display device.

Figure 1. Live Training Actual Situation

4

My proposed solution is to create a system to augment the current C2 environment

to address the problem just described. This research involves building an application for

commercial Android devices on which an operator can select the platform being proxied

and then use the mobile device to classify the platform as required to augment the tactical

scenario. As this solution does not exist today, there are a few research questions to address

as the proposed solution is built.

1. What wireless communications systems are available to network Android

devices, and what are the advantages and disadvantages of each for the

proposed application?

2. What simulation interoperability protocol or architecture should be used to

pass this tactical information and why i.e., what potential architectures

need to be researched)?

3. Are there significant differences in operating the Distributed Interactive

Simulation (DIS) protocol versus the High Level Architecture (HLA)

when a number of devices are all streaming to an existing simulation

system for visualization?

4. Once this data is broadcast as desired, how will it be received and bridged

into the tactical system used to integrate into the training environment?

5. Is it possible to develop a prototype on a mobile (Android) device that

considers and confirms the previous results? What programming language

should be used and why?

D. MOTIVATING CONSTRAINTS

The motivation for this work is to address a deficiency in how information is

displayed during training exercises in Germany. Ideally, the development of a solution

should be done with the actual systems used; however, for various logistic and other

reasons access to these systems was not available for this work. Therefore, this work

focuses on developing a system to investigate the feasibility of the proposed approach. To

ensure that the results obtained in the thesis apply to the actual systems being used for

5

training, the goal is to use a development/test system configuration that is a close match to

the actual fielded systems.

The feasibility of improving the live training conditions using additional systems is

examined. The goal is to determine whether the signature of a vehicle can be changed by

adding a self-developed system and whether it can be configured to behave as any possible

target system. This is demonstrated by having a mobile device send a certain signature

(military symbol) in a protocol understood by the C2 system and having the same symbol

displayed in the situation report. The reception of the data and the display of the symbol

should take place immediately without a noticeable delay (< 1s).

In a second step, the feasibility of showing the effects of virtual events using

effectors is demonstrated. This is demonstrated by having a mobile device send a signal to

a specific vehicle also. The reception of the data and the resulting reaction should take

place immediately without a noticeable delay (<1 s).

E. ASSUMPTIONS

The goal of this work is to develop a model system that can potentially transfer to

the real system used for training. For this reason, the assumption is that the system used to

develop this model is similar enough to the systems used in Germany to facilitate such a

migration of the software. The components used in this research project are described in

detail in the following sections.

1. Hardware

Modern combat vehicles and military trucks normally contain modern

communication systems (ComSys) that enable IP-based, encrypted data transmission via

various channels such as HF radio or satellite communication (Figure 2). In addition, these

ComSys offer a range of connection options for external devices. These connections can

be wired (Ethernet, USB) or wireless (Bluetooth, Wi-Fi).

6

Source: www.thalesgroup.com

Figure 2. Example of a ComSys.

In the present work, a freely configurable router from the German company AVM

is used to replicate the ComSys for development purposes. The encrypted data transmission

is displayed and simulated using a virtual private network (VPN).

2. Software

The transmission of location data on the real-world vehicles and other information

is based on the distributed interactive simulation (DIS) protocol. Both the transfer from the

vehicle to the main computer and vice versa take place using this protocol. The

transmission of one’s own military symbol with the respective location at a certain time

cannot be changed, but it can be suppressed or deactivated.

Instead of a real C2 system, the VR-Forces software from MAK Technologies is

be used. This can take on the role of both the required protocol (DIS) processing and the

representation of a situation map-like scenario.

7

II. RELATED WORK AND EXISTING TECHNOLOGIES

In this chapter, existing technologies and the feasibility of their use in addressing

the stated problem are investigated. Specifically, the chapter presents a comparison of two

major software solutions, the most common communication technologies as well as

different protocols working on C2 systems.

A. AVAILABLE SOFTWARE SOLUTIONS

As a first attempt to solve the described problem of incorrectly displaying enemy

vehicles for target display, this research compares and evaluates existing software products

that could represent a solution.

1. Android Team Awareness Kit

Android Team Awareness Kit (ATAK) is an application developed for Android

mobile devices. Its purpose is to offer map data and military situation awareness.

Furthermore, it allows navigation, targeting, and data sharing. The Global Positioning

System (GPS) provides the application with the needed geospatial data. It uses the military

symbol standard MIL-STD-2525B to display units and objects, but the application is also

able to use customized icons from Google Maps or Google Earth. Developed in 2010 by

the Air Force Research Laboratory (AFRL), this application had minimal acceptance at

first. Since 2016, however, an increasing number of users adopted this tool, and in 2020,

about 250,000 civilian and military users were working with it (Android Team Awareness

Kit, 2021).

The first version, developed for Android 2.1, had problems with Java Archive

(JAR) files in runtime. Therefore, the developers looked for a solution that makes it

unnecessary to compile the entire codebase when adding additional functions. They came

up with the idea of using a plug-in framework based on Java Script (JS). Normally, JS is

not able to access the network or file resources. AFRL solved this by allowing only JS files

in a specific folder on the mobile device these rights (Carpenter & Carpenter, 2013).

Today, there are five versions of ATAK available:

8

• ATAK—Public Release (ATAK-PR): as the name says, it is for public

individuals and public use.

• ATAK—Civilian (ATAK-CIV): this version is mainly used by first

responders.

• ATAK—Government (ATAK-GOV): this is a restricted version for U.S.

Government use only.

• ATAK—Military (ATAK-MIL): as the name implies, this version is used

only by the U.S. Military and foreign military (when provided by the

United States). It is not available for private use.

• ATAK—Five Eyes (ATAK-FVEY): this version is used by intelligence

agencies of Australia, Canada, New Zealand, the UK and the United

States.

In a recent white paper, Jeff Henderson, a strategic account manager for Army and

special services at Panasonic, identifies five essential advantages of ATAK:

1. ATAK is an effective and simple situational awareness (SA) application.
[Capabilities like blue-force and red-force tracking are intuitive and easy to
use. Also, the communication module is very easy to use.]
Henderson: “It’s literally like texting. You pull up the little message app
and send a message directly to another teammate or to the whole team”.

2. ATAK is a user friendly and easy to stand up app.
[It is easy to use. Setting up a simple environment will take no longer than
30 minutes.]
Henderson: “I think that’s why it’s become so popular. It’s a very effective,
simple, straightforward tool”.

3. ATAK is a flexible, lightweight, and free solution for warfighters.
[A huge advantage is that because of its design it is flexible enough to run
on a mobile device, and integration of new features is very easy.]
Henderson: “ATAK is so lightweight that you can really put it on any
Android device. It definitely gives you a lot more flexibility than most
tools”.

4. ATAK is evolving to meet growing challenges.
The development of warfighting never stops. Because of its design, ATAK
can deal with all the new challenges. [For example, jamming of

9

communication systems is growing nowadays. With a third-party tool,
ATAK can warn users about this threat.]
Henderson: “You can still do all the simple SA activities, but you can also
do all of these other things. The capabilities are really growing”.

5. ATAK is moving beyond the battlefield.
[The fields of use are expanding. Not only military personnel can take
advantage of it, but also groups like firefighters, first responders, and
homeland security can use it effectively for their purposes.]
Henderson: “If you picture responding to a wildfire or flood, or any fairly
chaotic situation where you have to make decisions quickly, that’s a perfect
environment to leverage the features of an ATAK application” (Panasonic,
2020).

2. Kinetic Integrated Low-Cost Software Integrated Tactical Combat
Handheld

Kinetic Integrated Low-Cost Software Integrated Tactical Combat Handheld

(KILSWITCH) is application running on an Android device. It is used by the U.S. Marines

to provide them air and ground, real time situational awareness (SA). This software uses a

map as a background and does not need a connection to a server (Sadler & Metu, 2017).

KILSWITCH was developed by Naval Air Warfare Center Weapons Division,

China Lake to support the U.S. Marines coordinating precision air power in 2012.

According to an article published in the MCA Marines Gazette, the application has three

main features (Barksdale, 2014):

1. Rapid display of National Geospatial-Intelligence Agency (NGA) map and
imagery data (in organic Department of Defense formats) within a GPS-
enabled moving map display. This capability facilitates the exploitation and
operational use of NGA geospatial intelligence at the lowest tactical level.

2. Easy generation of precise location and elevation data for any imagery
significant feature, to include targets.

3. Ability to seamlessly search and scroll Marine Corps Intelligence Activity–
developed compound maps or gridded reference graphics (GRGs) by sheet,
sector, and compound. (Barksdale, 2014)

In 2018 several websites (e.g., cyware.com, marines.mil) reported that according

to an unnamed whistleblower, the KILSWITCH software contains several vulnerabilities

in live combat scenarios.

Further, in December 2018. a report of the March 2017 investigation released by

the Office of the Naval Inspector General (OSC DI-17-3391 NAVINSGEN 201702142)

10

was made public. Although the report does not state the nature of such vulnerabilities, it

talks about failures in communication. It is important to note that KILSWITCH was never

planned for use in live combat scenarios. It was always expected to be used in military

exercises only. Therefore, cybersecurity was not a concern for the developers. The main

issue was that using the application can enable the enemy to get access to sensitive

battlefield information or location data. Notably, for a couple of months the U.S. Marines

were able to download the KILSWITCH application to their private devices, which may

not provide good security protections.

The report of the Office of Naval Inspector General gives some recommendations

and advice on how to deal with this problem. The KILSWITCH software should no longer

be used in real battle scenarios and all versions of this application on private devices should

be deleted immediately. Instead of using KILSWITCH, the report recommends the using

ATAK instead. Following the doctrine “train as you fight,” KILSWITCH should also be

banned from exercises as well.

Each developer of software should be aware of cyber vulnerabilities. Even though

KILSWITCH was designed for use in exercises only, its developers should have taken

security into consideration. Furthermore, distribution of military software must be

controlled by special military personal. Making software available to all soldiers and

installable on their private devices will always generate cyber security issues and is a

welcome possibility for foreign intelligence services.

B. COMPARISON OF AVAILABLE COMMUNICATION SYSTEMS

This section investigates the different ways in which mobile devices could be

connected to an existing C2 system. The aim is to get an overview of the state of the art at

the time of writing this thesis. My investigation focuses on which connection types exist in

common mobile devices and which parameters these connection types have.

1. Near Field Communication

In 2002 Near Field Communication (NFC) technology was initiated by Sony and

NXP Semiconductors (formerly Philips). They defined a technology specification and

11

created a technical outline. Then in 2003 NFC was approved as an International

Organization for Standardization (ISO) standard and a European Computer Manufacturers

Association (ECMA) standard.

a. Specifications

This technology is used to transfer data between two devices closer than 10 cm with

a data rate of 424 kbps (Hossein Motlagh, 2012). It was initially used for contactless

tracking of Radio Frequency Identification (RFID) tags. Today, it is also used for data

transfer and contactless payment systems (Ylinen et al., 2009). The frequency used is 13.56

MHz. This frequency is globally available and license free.

b. Basic Operation Modes

This technology is used by two different types of devices: active and passive. The

passive devices are RFID tags, which contain a simple type of unique identification (ID).

This ID can be read by active devices like smart phones, which can operate in three

different modes.

(1) NFC Card Emulation Mode

In this mode the mobile device is used like a smart card or RFID tag (passive mode).

The data is stored in a virtual chip and can be read by an active device. Main use cases for

this mode are payment systems or access authorization systems like Tesla’s keyless system

or authentication technique at charging stations for electric vehicles. The user must hold

the mobile device close to a special reader device. The reader device sends a trigger signal

and the smart phone responds with the requested data (credit card data, access code, etc.).

(2) NFC Reader/Writer Mode

In this mode the mobile device can be used as a reader or as a writer (active and

passive). A special reader device can be used like in card emulation mode—just to read

data from a smart phone or the smart phone can be used to read data from an NFC sender

device. This mode is often used in museums where visitors can use their smart phones

12

(equipped with a specific app) to get more information about an exhibit by holding the

phone close to a tag belonging to the object on display.

(3) NFC Peer-to-Peer (P2P) Mode

This is the most powerful mode. Like in a Wi-Fi network, both devices are

connected in an ad-hoc fashion. This mode is used to exchange or transfer data from one

device to another. The devices could be of the same type (smart phone to smart phone), or

they could be very different devices (car to smart phone, smart phone to car).

c. Summary

The advantages of NFC are its low power consumption and high availability in all

common mobile devices. Its disadvantages are low bandwidth and the very limited working

range.

2. Bluetooth Technology

In 1998, five companies from Europe, as well as from South Korea, and the United

States (Nokia, Erikson, Toshiba, IBM, and Intel) established the Special Interest Group

(SIG) to develop a new universal wireless connectivity standard to connect mobile devices.

The goal was to generate a license-free technology that could be used by all companies in

the world (Bhagwat, 2001). This technology aimed to replace cables wherever possible, be

driven by low power, and prevent mutual disturbances.

The result was “Bluetooth,” named after a Danish King Harald Bluetooth, who

united the two warring states Denmark and Norway (as an analogy to the connection

between two devices produced by different companies).

The first version, version number 1.0, was released in 1999 by SIG, and it had a

maximum bandwidth of 732.2 kBits/s. Because of a security problem a new release was

necessary in 2001 (version 1.1). Further versions followed at intervals of two to three years,

which in addition to increasing the resistance to interference sources also increased the

bandwidth. Finally, in 2009 the “Seattle Release” (version 3.0) with a maximum of 480

MBits/s was published. This was the last version with normal power consumption. The

13

range of this version was between 1 mW (class 3) and 100 mW (class 1) (Ferro & Potorti,

2005).

Late in 2009 the first “Low Energy” standard (version 4.0) came out. It was

followed by version 4.1 in 2013, 4.2 in 2014, and 5.0 in 2016. The Samsung Galaxy S8

(offered since 2018) was the first smartphone with integrated Bluetooth version 5.0. Today,

about 80 percent of all devices in use are equipped with this standard.

The newest specification standard is version 5.1, released on January 28, 2019

(Woolley, 2019). Using that standard makes it possible to determine the direction of a

Bluetooth signal transmission. This is achieved by using an array of antennas.

a. Specifications of Different Bluetooth Versions

Table 1 gives a brief overview of the differences between the various versions of

Bluetooth.

Table 1. Bluetooth Versions

 Bluetooth version
 1.x 2.x 3.x 4.x 5.x

Speed (Mbit/s) ~1 ~2 ~24-480 ~24-480 ~24-480
Range (m) 100 100 100 10-100 10-100

Low Energy Mode no no no yes yes
Dual-Profile1 no no no yes yes

IPv6 no no no no yes
Pairing with NFC no yes yes yes yes

AES 128Bit encryption no no no yes yes
Adapted from https://de.wikipedia.org/wiki/Bluetooth

b. Basic Operation Modes

If a Bluetooth device is turned on, it will usually operate as a slave device. It waits

for a signal from a master that wants to connect to it (inquiry phase). When the connection

1 A Bluetooth device could be master and slave at the same time. This is possible since version 4.0.

14

is established, the devices can exchange data. A master device in this case could have more

than one active or parked slave device, which is called a piconet configuration (Figure 3).

Figure 3. Bluetooth: Piconet Configuration

Source: Ferro and Potorti (2005)

Since version 4.0 a Bluetooth device can operate as master and slave at the same

time. This allows for the connection of two or more piconets to a scatternet (Figure 4).

Now, a device can communicate with other devices in other piconets (multihopping).

Figure 4. Bluetooth: Scatternet Configuration

Source: Ferro and Potorti (2005)

15

c. Summary

The advantages of Bluetooth technology are its relatively low power consumption

and its widespread availability on most available mobile devices. The disadvantages of this

technology are its limited range and lower bandwidth compared with other technologies.

3. Wi-Fi Technology

In 1990, the Institute of Electrical and Electronic Engineers (IEEE) started a project

with the objective to develop a standard for wireless communication between computers.

The basic goal was to define a Medium Access Control (MAC) system and the physical

layer (PHY) attributes. The name of that project was IEEE 802.11.

The project work was based on prior proprietary developments by various vendors.

In these early efforts two different frequencies were used to transmit data between

computers. The first one was 900 MHz, which allowed a data transfer rate of ~1 Mbps.

This was ten times slower than the speed provided by wired Local Area Networks (LAN)

at the time. The second frequency used was 2.4GHz, which enabled data transfer at the

same speed as that offered by wired LANs. The problems with these early wireless network

implementations were that they were each proprietary and so were not interoperable; were

susceptible to interference, which impacted their reliability, and they were relatively

expensive (Bhoyar et al., 2013). The goal of creating the IEEE standard was to address

these problems.

In Europe and the United States the spectrum used ranges between 2.4 and 2.4835

GHz while Japan it ranges between 2.471 and 2.497 GHz (Ferro & Potorti, 2005). This

band is called the industrial, scientific, and medical (ISM) band. To reduce interference in

this band, the total range was divided into 14 channels. In the United States only channels

1–11 are permitted for use. Channels 12 and 13 are for low-power usage only and channel

14 is banned. In Europe channels 1–13 are permitted for use, and in Japan channel 14 is

permitted for use. The range at 1000 mW sending power is between 35 m and 300 m.

Today, the most commonly used standards are IEEE 802.11n and IEEE 802.11ac.

In addition to 2.4G Hz, these newer standards allow the use of channels in the 5GHz range.

This allows for possible link rates up to 1.35 Gbit (Watson, 2012).

16

a. Specifications and Basic Characteristics

Table 2 gives a brief overview of the differences between various versions of Wi-

Fi technology.

Table 2. Wi-Fi Generations and Parameters

Standard Adopted Frequency Speed Range
(outdoor)

IEEE 802.11 1997 2.4GHz 1-2Mbits ~120m
IEEE 802.11a 1999 5GHz ~54Mbits ~120m
IEEE 802.11b 1999 2.4GHz ~11Mbits ~140m
IEEE 802.11g 2003 2.4GHz ~54Mbits ~140m
IEEE 802.11n 2008 2.4/5GHz ~248Mbits ~250m
IEEE 802.11ac 2014 5GHz ~6.77Gbits ~250m
IEEE 802.11ax 2019 2.4/5GHz ~9.6Gbits ~250m

Adapted from https://de.wikipedia.org/wiki/Wireless_Local_Area_Network

b. Basic Operation Modes

There are basically three different operating modes employed with Wi-Fi systems.

First, there is ad-hoc or Wi-Fi direct mode, second, infrastructure mode, and third, the

multiple access point or extended service set mode.

(1) Ad-Hoc Mode

In Ad-Hoc mode each computer is connected directly with each other (Figure 5).

No device is between them to manage the traffic. Ad-Hoc mode has been available since

version IEEE 802.11a and is most often used by multiplayer handheld game consoles, such

as Nintendo DS and PlayStation Portable.

Advantages: - no additional hardware is needed
 - no central station
Disadvantages: - maximum range is limited to the maximum range of one of

the devices
 - interference (many channels need to be used)

17

Figure 5. Wi-Fi Ad-Hoc Mode

(2) Infrastructure Mode

Infrastructure mode is the most common mode used. In this mode each computer

is connected to an access point (AP) (Figure 6), where the access point manages the

connection. Using this mode can extend the range since every computer (or client) that can

reach the AP can communicate. In this case, the range is limited by the range of the AP

rather than the range of the most limited computer.

Advantages: - easy to manage
 - extended range
Disadvantages: - one central point (the AP is a single point of failure)

18

Figure 6. Wi-Fi Infrastructure Mode

(3) Multiple Access Point Mode

Multiple Access Point Mode or Extended Service Set (ESS) is basically a union of

several infrastructure mode driven networks. Two or more wireless local area networks

(WLAN) are connected by a switch. In this configuration, the networks’ ranges must

overlap and the service set identifier (SSID) must be the same. As shown in Figure 7,

computer 5 is connected with the left WLAN. When computer 5 moves out of the range of

the left AP and into the range of the right WLAN, as long as this WLAN has the same

SSID, computer 5 connects automatically to the new network and is reachable without

interruption.

Advantages: - extended range
Disadvantages: - complex configuration

19

Figure 7. Wi-Fi Extended Service Set

4. USB Technology

In 1996 Universal Serial Bus (USB) technology was introduced by the USB

Implementers Forum (USB-IF), which was a non-profit organization created to support

and promote the USB standard. Founding members were seven companies: Compaq, DEC,

IBM, Intel, Microsoft, NEC, and Nortel (Tailor, 2015). In 1998 the Apple iMac was the

first mainstream personal computer equipped with a USB port.

The goal of the USB-IF was to develop and standardize a common interface for

connecting personal computers to peripheral devices such as keyboards, mice, cameras,

disk drives, and printers. Almost all existing interfaces from the time have been replaced

by USB connection today. In addition to being a data transfer protocol, the USB standard

also included a power supply component to allow power to be provided to the connected

devices through a single connection. The USB Power Delivery standard allows for up to

100 W of power to be supplied to devices.

20

a. Specifications and Basic Characteristics of Different Versions

Since 1996 seven versions of the USB standard have been developed and released.

The most recent one was USB 4 in 2019. Each version has its own parameters and

capabilities. This section compares these versions along with their parameters and

capabilities (for an overview see Table 3).

(1) USB 1.0

Defined in 1996, USB 1.0 has a data transfer rate of 1.5 Mbit/s at low speed and 12

Mbit/s on full speed. The lower speed was used for less expensive peripheral devices like

the mouse, keyboards, and so on. Since a high transfer rate was not needed, an unshielded

cable could be used for such devices. The full speed mode was used for devices like

external floppy disks and printers and required shielded cable connectors (USB, 2021).

(2) USB 1.1

In 1998 USB 1.1 was released to solve some minor problems of USB 1.0, such as

not supporting an Interrupt Out Transfer (IOT). Neither USB 1.0 nor USB 1.1 provided a

standard for the connector to be used to connect to the peripherals. All connections were

treated as using fixed attached cables (USB, 2021).

(3) USB 2.0

In 2000 USB 2.0 was released. It specified a data transfer rate of 480 Mbit/s. Most

importantly, it included the definition of small physical connectors (type A and type B),

which allowed for the connection of external hard disks and video devices using standard

pluggable connections (USB, 2021).

(4) USB 3.0

In 2008 USB 3.0 Super Speed (SS) was released. This allowed for possible data

transfer rates up to 4 Gbit/s. To achieve this, new connectors and cables were used, but

they were only partially compatible with previous versions (USB, 2021).

21

(5) USB 3.1

In 2013 USB 3.0 was replaced by USB 3.1 (also called USB 3.1 Gen 1 or Super

Speed+). The data transfer rate was increased to 10 Gbit/s (USB, 2021) in this release.

(6) USB 3.2

In 2017 USB 3.2 enabled a double transfer rate of 20 Gbit/s. Moreover, there was

no difference in the protocol compared with USB 3.1. The additional speed was achieved

by allowing a second pair of cables to be used in parallel (USB, 2021).

(7) USB 4

This latest standard was introduced in 2019. It is the common successor to USB 3.2

and the Thunderbolt 3 standard, which was used by Intel and Apple for high-speed data

transfer. Data transfer speeds up to 40 Gbit/s can be attained. This enabled the transmission

of 4 k video data with 10 bits per color channel and 60 Hz refresh rate (USB, 2021).

Table 3. USB Standards

 Standard Since Data Transfer Rate Max Power

USB 1.0 1996 12 Mbit/s 0.5 W
USB 1.1 1998 12 Mbit/s 0.5 W
USB 2.0 2000 480 Mbit/s 2.5 W
USB 3.0 2008 4 Gbit/s 4.5 W
USB 3.1 2013 10 Gbit/s 4.5 W
USB 3.2 2017 20 Gbit/s 7.5 W
USB 4 2019 40 Gbit/s 7.5 W

Adapted from https://en.wikipedia.org/wiki/USB

Today, the USB standard is widely used. The high data transfer rate supports data-

intensive use cases like video streaming and real-time solutions. In addition, the ability to

use the data cable for power supply reduces cable clutter.

22

5. Mobile Standard Fifth Generation (5G)

5G is the newest telecommunication standard expected to extend or replace the 4G

LTE (Long Term Evolution) network. Among the major innovations introduced by 5G

technology are the significantly higher data transfer rate, very low latency, better network

coverage through more radio cells, and a significantly improved Quality of Service (QoS)

(Noohani & Magsi, 2020).

In December 2018, the 3rd Generation Partnership Project (3GPP), which oversees

the 5G standard, launched release 15, the first document that standardizes the capabilities

of 5G. The actual release (release 16) was published July 2020.

Today, 5G is still primarily in the planning stage. Relatively few experimental cells

exist and client devices that support 5G are not widely in use. 5G will be the base for future

data transfer requirements. The Internet of Things (IoT), autonomous cars, and the network

connectivity in areas with no (wired) internet connection are important goals that will not

be attainable without a powerful digital infrastructure. In addition, existing networks are

faced with an increasing number of users of mobile devices with increasing data transfer

rates (Nordrum et al., 2017), which is further pushing for the expanded bandwidth that 5G

promises.

a. Specifications and Basic Characteristics

Currently, because of the limited availability of fully functioning 5G infrastructure,

most performance data are based on the theoretical values of the parameters of 5G

specification. The German “Informationszentrum Mobilfunk” (Mobile Ration Information

Center) published a 2020 paper “Daten und Fakten zur fuenften Mobilfunkgeneration”

(Data and Facts about 5G) reporting the first results from a field study done in Hamburg.

They found the actual measured range for 5G was about 150 meters and a realistic data

transfer rate was 10 Gbit/s, which is 40 times higher compared with 4G LTE (max 225

Mbit/s). Transmission power of base stations in the field study was 10 Watts as compared

to 40 Watts for 4G. The transmission power of the mobile devices was equal to that in

4G—depending on distance (Informationszentrum Mobilfunk, 2020).

23

b. Basic Operation Mode

Since the effective transmission range for 5G is quite short due to the shorter

wavelength used, this is compensated for by using more cells with smaller ranges. By doing

this, areas that would otherwise be in the radio shadow can also be reached and covered.

To achieve adequate coverage in an urban environment, for instance, one base station is

needed every 250 meters (Nordrum et al., 2017). While this increases the number of cells,

because of the short wavelength being used, the antennas can be very small and also the

transmitting power of the base stations can be lower (about 10 W) compared with 4G base

stations. Further, each base station needs to be connected to at least one other base station.

Because of this need for a higher density of towers to provide good coverage, however, it

will be difficult to supply rural areas with 5G-connectivity.

Using massive multiple-in, multiple-out (MIMO) radio communication enables 5G

to handle significantly more client devices per base station when compared to 4G base

stations. This, and because 5G will have more base stations, increases the rate of supplied

devices by up to a factor of 22. The huge number of very small antennas on each base

station connected in an array enables beam forming (see Figure 8), and consequently

achieves new records for spectrum efficiency (Nordrum et al., 2017).

Figure 8. G Beam Forming with Antenna Arrays.

Source: Nordrum et al. (2017).

24

Today’s base stations and cellphones rely on transceivers that must take turns if

transmitting and receiving information over the same frequency, or operate on different

frequencies if a user wishes to transmit and receive information at the same time (Nordrum

et al., 2017).

C. AVAILABLE PROTOCOLS AND ARCHITECTURES

In this section we look at the data transfer protocols and architectures that are

currently in use to manage this interchange of information between military simulations.

1. High Level Architecture

Steffen Straßburger, a professor at Technical University Ilmenau/Germany,

describes High Level Architecture (HLA) as an IEEE standard for distributed simulation.

The focus of this architecture is the interoperability, reusability, and standardization of

components (Straßburger, 2006).

The HLA specification was initially developed in 1995 by the U.S. Department of

Defense Modeling and Simulation Coordination Office (DMSCO) together with

Massachusetts Institute of Technology (MIT). The goal was to provide a standard for DOD

simulation interoperability that would supplant the DIS protocol (McGregor, 2011).

The architecture, as it was planned, was for general purposes with no limitation in

terms of specific simulation paradigms. The standard was based other general standards

such as Common Object Request Broker Architecture (CORBA) and the Distributed

Component Object Model (DCOM). With this approach DMSCO ensured broad

community support for their developed standard. Today, HLA is used not only in the U.S.

military domain as a mandatory standard but also by most NATO members and other

international DOD partners (Straßburger, 2006).

a. Characteristics

HLA standardizes the Application Programming Interface (API) rather than the

communication protocol. The advantage of this approach is that the developers of

25

simulation software can simply change HLA implementations as needed, as long as the

changes remain consistent with the API specification (Figure 9).

Figure 9. HLA API Structure.
Source: McGregor (2011b).

If, for example, a vendor comes up with a new scheme or a new way to reduce the

usage of bandwidth, the vendor can implement that change easily. It does not influence the

other parts of the software (McGregor, 2011b).

Another advantage of using HLA over DIS is that HLA provides a time

synchronization mechanism to allow simulation with different time management schemes

to support interoperability. In DIS every simulation is expected to run in real time. For

example, simulating a tank moving from point A to point B will take the same amount of

time as it would in the real world. This is good for special types of simulations, such as

simulation of direct fire engagements. Nevertheless, if one needs to simulate a task like

maintenance of a tank or an airplane, which can take weeks, a DIS-based simulation might

be not the best option. HLA provides a time management functionality that allows it to

coordinate time advancement in different simulations, which ensures that the flow of time

remains consistent between the simulations that are working together. This allows for more

complex scenarios to be simulated in a reasonable amount of time (McGregor, 2011b).

b. Object Model Template

HLA uses Object Model Templates (OMT) to describe and define software objects.

These objects contain the information for all the different participants in the simulation

environment. An OMT is independent from any vendor and any specific programming

language. It has two types of structure tables (ST): the interaction-class ST and the object-

26

class ST. Finally, an attribute table and a parameter table are part of an OMT. HLA OMTs

are written and defined with Extensible Markup Language (XML). This ensures platform

independence (You et al., 2016).

c. The Run Time Infrastructure

HLA interactions are mediated through a software component called the Run Time

Infrastructure (RTI). All interactions with the simulation are controlled through the RTI.

This architecture allows for more complex types of interaction and allows for more

heterogeneous simulations to be connected because the RTI can translate the standards to

be understood by different simulations. While the RTI provides an important capability, it

comes with the cost that a complex software component needs to be included in all HLA

simulation events.

2. Distributed Interactive Simulation

The Distributed Interactive Simulation (DIS) is a data protocol developed by a

government and industry initiative in 1995 to describe how to connect various types of

simulation systems at different locations all over the world. The main goal was to achieve

complex and realistic virtual worlds for military simulation purposes in real time. The DIS

protocol, which is designed to support a broad range of simulations and systems, allows it

to be used in exercises that can include a combination of live, virtual, and constructive

simulations.

“DIS draws heavily on experience derived from the simulation networking

(SIMNET) program developed by the Advanced Research Projects Agency (ARPA),

adopting many of SIMNET’s basic concepts and heeding lessons learned” (IEEE, 2015, p.

8).

The advantage of DIS is that it is available without any licensing costs and

restrictions. It is widely accepted, and everyone has permission to use and implement it.

Consequently, each piece of simulation software that adheres to the IEEE standard can

exchange data with other implementations. This is mainly achieved by DIS defining

different packet types — so called “Protocol Data Units” or “PDUs.” Each of those PDUs

27

contains different data depending on its purpose: Entity State PDU, Collision PDU, Fire

PDU Detonation PDU, and many more (McGregor, 2011a). A structural overview of the

different PDU types is shown in Figure 10.

Figure 10. PDU Hierarchy. Source: McGregor (2011a).

a. Different Types of PDUs

In this section the types of commonly used PDUs and their respective purposes are

described. Details about all of the theoretically different types of PDUs can be found in the

IEEE Standard for Distributed Interactive Simulation—Application Protocols (IEEE,

2012, p. 51ff).

(1) Entity State PDU

An Entity State PDU (ESPDU) is the most common PDU. It is used whenever the

other hosts must be informed about the actual state of a single entity at a specific time.

Sending a ESPDU could be triggered by the change of the position, orientation, status of

the entity, speed, or something similar.

(2) Fire PDU

A Fire PDU (FPDU) is used to inform the other simulations that an entity has fired

on a target. Therefore, the entity ID of the shooter and the entity ID of the target are part

28

of the content. Also, the launch location, fire rate, type of ammunition used, velocity, range,

and a few more data points are included in this type of PDU.

(3) Detonation PDU

A Detonation PDU (DPDU) is used to inform that the detonation of a munition

occurred. This can happen if an entity was hit by a direct fire munition or if some other

ordnance explodes, such as an artillery round hitting the ground. Usually, this is the result

of a Fire PDU. This type of PDU contains information such as the ammunition used,

shooter ID, location, and detonation result.

(4) Collision PDU

A Collision PDU (CPDU) is issued by an entity when a collision occurs between

the entity itself and another object, which is part of the simulation. Usually, both entities

involved should launch a CPDU for the same event. This packet contains information about

the IDs of the involved entities, the weight and velocity vector of the issuing entity, and—

of course—the location of the event.

b. Basic Structure

Each DIS-based PDU starts with a 96-bit-long header. Table 4 displays the different

content contained within a PDU.

29

Table 4. PDU Header. Source: McGregor (2011a)

Field size (bits) Field name Data type

8 Protocol Version 8-bit enumeration

8 Exercise Identifier 8-bit unsigned integer

8 PDU Type 8-bit enumeration

8 Protocol Family 8-bit enumeration

32 Timestamp 32-bit unsigned integer

16 Length 16-bit unsigned integer

8 PDU Status 8-bit record of enumerations

8 Padding 8-bit unused

The field “Protocol Version” describes the release of DIS used. “Exercise

Identifier” is a unique ID for each running simulation. This enables running multiple

simulations at the same time and on the same network without interference. “PDU Type”

explains the specific type of PDU content following the header (Figure 10). Some examples

include: PDU type 1 stands for an EntityPDU, 2 for a FirePDU, 3 for a DetonationPDU, 4

for a CollisionPDU, and so on. A complete list of different PDU types can be found in the

IEEE Std 1278.1-2012 paper, section 5.2.4. Theoretically, there are 192 different types of

PDU possible (0–191); however, only 72 of them are used. The numbers from 192 up to

255 are reserved for testing purposes. “Protocol Family” indicates the kind of group to

which this PDU belongs (Figure 10, second row). The field “Time Stamp” is the time the

PDU was sent expressed in milliseconds. It could be used for duplicate packets and out-of-

order packet as well. “Length” simply describes the length of the PDU in bytes. The status

of a PDU is identified in the field “PDU Status,” and if padding was used, this will be

described in the last field, “Padding” (IEEE, 2012).

30

c. Network Architecture

A typical DIS infrastructure is a peer-to-peer (P2P) network with no central server

unit(s). Every participant has equal rights and sends and receives PDUs. According to the

entity ID, the client decides if this packet is important for its simulation or not. If there is

more than one simulation running on a specific network, subnetworks are usually used.

However, it is also possible to run different simulations within the same address space. The

exercise identifiers help to decide which simulation a PDU belongs to. A heartbeat of 5–

10 seconds is used for mobile entities to send their status updates. Static entities, such as

minefields, may require a longer time period (~60 seconds).

The use of a P2P structure instead of a client-server-based architecture makes it

necessary for participants to trust each other. DIS is cooperative in that it assumes no one

is trying to spoof the system, issue fraudulent PDUs, ignore damage results, and so on

(McGregor, 2011a, p. 51).

D. ASSESSMENT AND IMPLICATIONS FOR THE DEVELOPMENT OF
THE PROTOTYPE

Based on the investigation results presented so far in this chapter and the given

assumptions of this research project, we can assess the results in the following paragraphs

and devise a solution for the development of the prototypes. This includes the assessment

of existing software products as well as the type of network communication structure and

the protocol to use.

1. Existing Software Products

Two major software products were investigated in Chapter II.A. ATAK is a very

popular and powerful application. Because some of the versions are not available for the

German military and the whole package is too big for the needed use cases, however, the

decision was made to create our own lightweight and tailored-to-the-problem software.

Also, the second use case of showing real effects of virtual events is not doable with ATAK.

Similarly, KILSWITCH has potentially the same possibilities as ATAK—and

therefore the same disadvantages. In addition, another serious disadvantage has arisen that

31

almost certainly excludes the use of KILSWITCH. The security gaps discovered in the

software, especially in live training, are unacceptable when used in sensitive military areas

and lead to an enormous loss of confidence in the product.

Taking all these facts into account, it is clear there is currently no way around

developing our own lightweight and secure software product. Such a solution is developed

during the thesis and the general feasibility of the required functions is proven.

2. Network Communication Structure

The question of the correct connection to the existing system is not easy to answer. In

Chapter II.B, the specifications of NFC, Bluetooth, Wi-Fi, USB, and 5G were examined and

the advantages and disadvantages of each were identified. They are summarized in Table 5.

Each of the examined technologies offers good reasons to use this method.

Ultimately, the choice fell on a connection via Wi-Fi. The range and bandwidth speak

for Wi-Fi, which requires relatively low power consumption. Furthermore, Wi-Fi is well

established, and it is easily handled in all modern programming languages and is widely used.

Libraries are available and a lot of examples for this choice of technology can be found.

In the future, a connection via 5G must also be considered if the infrastructure has

been expanded (especially on training facilities) and enough client devices are equipped with

this technology.

Table 5. Comparison of Different Communication Technics

 NFC Bluetooth Wi-Fi USB 5G
Frequency 13.56 MHz 2.4 GHz 2.4 / 5 GHz 28 GHz
Bandwidth 424 kbps 480 Mbps 9.6 Gbps 40 Gbps 10 Gbps
Range 10 cm 100 m 250 m 10 m 250 m
Power 10 mW 100 mW 1000 mW 7.5 W 1000 mW

Pro power bandwidth bandwidth bandwidth
 frequency range stable range
Con range range range frequency
 bandwidth wired infrastructure

32

Since no real operational systems are available, a test setup comparable to the real

system must be created. The communication system setup is represented by a configurable

router of the Fritz! Box 7390 type from the German company AVM. The end devices can

be connected via Wi-Fi. VPN connections can also be configured that may be needed in

the further course of the process. Figure 11 shows the desired schematic structure as it

would be used in live operation.

Figure 11. Network Schema for Actual Use

Figure 12 shows the structure of the test configuration. The C2 system is replaced

by VR Forces version 4.8, the satellite connection by a simple Ethernet cable. The location

of the German Battlefield Vehicle Electronic Link Communication System is mapped by

the aforementioned router from AVM.

33

Figure 12. Network Schema for Test Configuration

The latency of a satellite connection, which can be more than one second, is

neglected in the experimental setup. The aim is to transfer data from the mobile device via

the network to the VR-Forces software in a time span of less than 0.1 seconds.

3. Protocol

The question of whether HLA or DIS should be used can be answered very easily.

The respective advantages and disadvantages were presented in detail in Chapter IIC.

Further, the assumption made in section E.2 of Chapter I that the German C2 system uses

the DIS protocol defines which architecture the application must use.

4. Summary

In summary, in order to achieve the desired goal of improving live training, a

separate software solution for mobile devices must be developed. The devices should be

connected with wireless technology using Wi-Fi. The developed software must be able to

send all simulation-relevant data to a C2 system using the DIS protocol. This C2 system is

simulated in the test setup by the VR-Forces software version 4.8.

34

THIS PAGE INTENTIONALLY LEFT BLANK

35

III. AVAILABLE PROGRAMMING LANGUAGES

The Android system is an operating system (OS) as well as a software platform

based on a Linux kernel. Several programming languages are available for this platform,

and they can be used to develop applications to run on mobile devices that use an Android

OS. Based on the recommendation of Google, the Android Studio Software Development

Kit is used for the work in this thesis. This SDK primarily supports two different

programming languages—JAVA and KOTLIN. In this section we analyze the pros and

cons of both. Based on this analysis, a decision is made about which programming

language should be used to create the application.

A. JAVA

Java is an object-oriented programming language. The first version was developed

by James Gosling at Sun Microsystems in 1995. Oracle acquired Sun, and with it Java, in

2010. Since its original development there have been several development strands.

Currently the version from Oracle is seen as the “official” version, but there are several

other open-source versions. The best known of these is probably OpenJDK (Java

Development Kit). There are also Java versions that have been optimized for specific

hardware. One example is the LiberiaJDK, which has been specially optimized for

operation on the ARMv7 architecture of a Raspberry Pi.

The original purpose of this new programming language was to implement the so-

called WORA (write once, run anywhere) principle. For this purpose, the source code

written in Java is not translated directly into machine-readable machine language by a

compiler such as C or C ++, but an intermediate step is taken. The Java Compiler translates

the source code into Java bytecode. This is then interpreted and executed at runtime by a

Java Runtime Environment (JRE) with a Java Virtual Machine (JVM) on the target system

(Figure 13). Although this has a small runtime performance cost compared to other

compiler languages, it has the great advantage that this Java bytecode can be executed on

almost any hardware with a running JVM—regardless of which operating system or

processor architecture is located there (Arnold et al., 2005).

36

Figure 13. Java Compiling and Running Process

Today, Java is one of the most popular programming languages in the world. The

TIOBE index lists Java as one of the two most frequently used programming languages

worldwide since 2001 (TIOBE, n.d.).

B. KOTLIN

KOTLIN is a platform-independent programming language. It was introduced in

2011 as a new language for the JVM. It was developed primarily by the company JetBrains,

which has its headquarters in Saint Petersburg, Russia. The name “Kotlin” comes from an

island that lies offshore in the Baltic Sea. The first stable release (1.0) was published in

2016 and has grown rapidly since then.

Kotlin offers the possibility to integrate both Java and JavaScript source code and

to use existing software libraries of these two languages. The Kotlin compiler translates

Kotlin source code is translated into bytecode, which can then be executed by a JVM on

various operating systems (Figure 14).

37

Figure 14. Kotlin Compiling and Running Process

The advantages of Kotlin over Java are that Kotlin is faster and less error-prone

programming. In Kotlin variables do not have to be encapsulated by the programmer as

they do in Java (private attributes, public getter and setter). This encapsulation is done in

the background by the development environment and the programmer does not have to

worry about it. When software is prone to errors at runtime, Kotlin has the particular

advantage that, for example, no null pointer exceptions can occur. Such errors often lead

to unpredictable crashes in Java code (Bose, 2018).

Google has supported Kotlin in version 3.0 since 2017. At the I / O 2019 developer

conference, Google declared Kotlin the preferred programming language for developing

applications after a copyright litigation with Oracle.

C. COMPARISON, EVALUATION, AND RATING

Both the Java and Kotlin programming languages are suitable for developing

applications for mobile devices based on Android OS. Yet, Kotlin offers the possibility of

using all the advantages of Java while avoiding some of the disadvantages (extensive

source code, susceptibility to errors due to null-pointer exception at runtime).

38

It is also possible that in the future Google will completely prohibit the use of Java

for developing applications for Android devices. Looking ahead and considering the

advantages of Kotlin just mentioned, it appears that the best option is to use Kotlin to

develop new apps. Therefore, it is used in this thesis as the primary programming language

for code, provided that it is to be executed on Android-based devices.

39

IV. IMPLEMENTATION AND DEMONSTRATION

A. MOBILE ENTITY SIMULATOR

As was concluded in the previous chapter, new software must be developed to

fulfill the need for a more realistic and secure simulation solution for training in the German

military. The proposed software should run on an Android-based mobile device equipped

with a GPS antenna and a Wi-Fi interface. The programming language for this solution is

Kotlin.

The software should be able to send ESPDUs with their own position data and

selected signature (military symbol) over an IP-based network to a running VR-Forces

machine, which simulates the German C2 system. For the basic setup three devices are

used: a notebook for development, a smartphone as the mobile device on which the

software is running, and a powerful computer on which VR Forces is running. In the first

step, these three devices are connected via Wi-Fi, and they also have a connection to

internet (Figure 44).

1. Equipment Used and Setup

A standard development environment was used in the development of the prototype

system. This setup included a Lenovo notebook computer as the development environment,

a Samsung Galaxy J7 for the mobile device, and a Ryzen 7 to run VR Forces. The

development was done using Android Studio as the IDE. The details of the configuration

used can be found in Appendix A.

2. Prototype Development

To make an application usable, a well-designed human interface is important. For

a prototype, a simple layout is sufficient, but it still should be easy and intuitive to use. The

screen before this prototype is divided into three main parts (Figure 15). Part one at the

top-center displays different military symbols from which to choose. For a demonstration,

four to six different symbols (at least for friendly and enemy units) are enough. In the

production version all possible military vehicle symbols must be available. Part two is for

40

input and output of IP addresses and debug information. This part will not be important in

the production version since it is not expected that the end user will need to use this

functionality. Part three contains controls to start and stop the transmission of data from

the device.

Figure 15. Design of Human Interface for Mobile Entity Simulator

There are several problems to be addressed in order to develop a prototype that

meets the requirements. The division of the development process into subcomponents will

not only facilitate that process but also further testing. The following components and their

41

implementation are described in this chapter. Figure 16 shows in a flow chart how the

application will be used. After starting the app, the user selects a military symbol which

he/she would like the system to display in the C2 systems. Then an IP address and port

number can be inserted. If the process of sending one’s position needs to be started, a co-

routine starts working. First, a socket connection is established. Second, the location of the

mobile device is determined. Third, an entity state PDU is created, and fourth, the PDU is

repeatedly sent at a given time interval. After the user decides to stop sending PDUs, the

application goes back to the start screen and the user can change the selected military

symbol and/or the IP and port number, and/or simply restart sending packages.

Figure 16. Flow Chart of Mobile Entity Simulator

42

a. Select a Military Symbol

After starting the application, the user has the option of choosing from a range of

different military symbols. The selection is made by clicking the appropriate button (Figure

17). As feedback, the button changes color to a darker shade. The implementation

technique is explained in the next paragraph.

Figure 17. Mobile Entity Simulator Use Case—Select Military

Symbol

First, images for those buttons must be produced. Military symbols are available

from several sources. For this work the original U.S. Department of Defense (DOD)

document was used (Department of Defense, 2008). To create the icon for the “button

pressed” status the original symbol was processed by a graphic program (Gimp). Both

images are inserted into the project in the “res/drawable” folder.

To display a symbol on the application surface it needs to be inserted in a layout

XML file (“res/layout” folder). The following snippet of code shows the layout descriptive

for a blue force tank:
<ToggleButton
 android:id=“@+id/button_NotPressed_SPz_blue”
 android:layout_width=“wrap_content”
 android:layout_height=“wrap_content”
 android:layout_row=“1”
 android:layout_column=“0”
 android:background=“@drawable/spzblue_button”
 android:textOff=““
 android:textOn=““ />

A ToggleButton was chosen because it allows for different status types (pressed,

not pressed). The first line says what name the image icon has. The next two lines describe

43

the size of the image within the whole layout, and the following lines specify at which

position the image will be placed. The following attribute tells the system where to find the

source image, and in the last two lines, alternative texts can be inserted.

This element can then easily be referenced in the associated Kotlin class.
val button_spzblue =
view.findViewById<ToggleButton>(R.id.button_NotPressed_SPz_blue)

This is done for five more symbols in this prototype demonstrator and the outcome

is shown in Figure 18.

Figure 18. Layout of Military Symbols

Each of these buttons is observed by an action listener. In this specific case an

OnSetCheckedChange listener was chosen (see code below). When an action event is

recognized by the listener, it checks to see whether the button was selected. If so, all the

other buttons are unchecked. This ensures that only one button per time can be selected

(alternatively, a button group or spinner could be used here).
button_spzblue.setOnCheckedChangeListener { _, _ ->
 if(button_spzblue.isChecked) {
 button_pzmediumred.isChecked = false
 button_sanblue.isChecked = false
 button_sanred.isChecked = false
 button_pzmediumblue.isChecked = false
 button_spzred.isChecked = false
 }
}

44

At this point the actor (user) can choose from six different types of military

symbols—three blue forces and the corresponding three red forces.

b. Enter IP Address and Port Number

After choosing the military symbol by which the application should be recognized

in the C2 system, it is necessary to specify an internet protocol (IP) address and a port

number (Figure 19). Depending on the structure of the training and simulation

environment, a single IP could be chosen as well as a multicast address. The port number

is the port on which the C2 system expects the packages and on which to listen.

Figure 19. Mobile Entity Simulator Use Case—Enter IP and Port

Number

For optimal input and human interface design, simple text boxes that the user can

easily edit were chosen. The text fields in this example are preconditioned for the testing

setup. The broadcast address used is 192.168.188.255 and the port number is 3000. This

code is located at the same spot as in the previous use case.

<EditText
 android:id=“@+id/ipTextField”
 android:layout_width=“wrap_content”
 android:layout_height=“wrap_content”
 android:layout_row=“9”
 android:layout_column=“0”
 android:ems=“8”
 android:inputType=“textPersonName”
 android:text=“192.168.188.255” />

<EditText
 android:id=“@+id/portTextField”
 android:layout_width=“wrap_content”

45

 android:layout_height=“wrap_content”
 android:layout_row=“10”
 android:layout_column=“0”
 android:ems=“8”
 android:inputType=“number”
 android:text=“3000” />

To get access in the Kotlin code, the two text fields must be referenced first. This

handled in the same manner as the military symbol buttons just described (see the following

snippet of code).

val ipAddress = view.findViewById<EditText>(R.id.ipTextField)
val port = view.findViewById<EditText>(R.id.portTextField)

The resulting layout is shown in Figure 20. At this point, the software can access

the information about where to send the PDUs. This becomes important in the use case

“Establish a Socket Connection” (d).

Figure 20. Layout IP Address and Port Number

c. Start Sending Packages

After a military symbol is selected and the IP address and port number are inserted,

the next step according to the flow chart (Figure 16) is to start the sending process. For

now, this is also the last use case in which the user is an actor (Figure 21). The next user-

driven use case will be “Stop Sending Packages,” which is described later.

46

Figure 21. Mobile Entity Simulator Use Case—Start Sending PDUs

For this use case, a simple button was chosen to enable the user to give the

application the signal to start sending PDUs. For the layout, the following code was

inserted in the known XML file.

<Button
 android:id=“@+id/startButton”
 android:layout_width=“fill_parent”
 android:layout_height=“wrap_content”
 android:layout_row=“3”
 android:layout_column=“1”
 android:text=“Start” />

This code creates a simple gray colored button with the text “Start” on it. By default,

the button changes color when the user clicks on it. In the Kotlin code, it needs to be

referenced similar to the previous examples.

 val startButton = view.findViewById<Button>(R.id.startButton)

Like the buttons for choosing a military symbol, this start button needs an observer

which reacts to user inputs.

startButton.setOnClickListener {
 if(stopButton.isActivated)
 stopButton.isActivated = false
 start()
}

When a click on the button is recognized, it simply deactivates the stop button and

calls a function (here: start()). This establishes the execution of the following four use cases

and ends when the user clicks the button “Stop” (as described in the use case “Stop Sending

Packages”).

47

d. Establish a Socket Connection

This is the first use case involving a co-routine. It is also the first use case in which

the actor is the application itself. The main task in this use case is to build an entity state

PDU and send it to the given IP address and port (Figure 22). This action must be done

repeatedly until the user presses “Stop” and ends the co-routine. This co-routine must run

parallel to the main program; otherwise, the graphical user interface (GUI) will be blocked

and the user will be unable to press the button. To force the software to run in parallel, we

use the thread technique for the Java util library. Threads allow a program to run multiple

parts at the same time. The “start()” call seen in the part before must be a runnable thread

for this purpose.

Figure 22. Mobile Entity Simulator Use Case—Establish Socket

The first use case in this co-routine is to establish a connection to the C2 system by

opening a socket. A “DatagramSocket” was used and set into “broadcast” mode. Then the

IP address and port number taken from the text fields become parameters for the

constructor call to create a “DatagramPacket” object (see the following code).

val datagramSocket = DatagramSocket()
datagramSocket.broadcast = true

// get IP and Port from text field

var ina = InetAddress.getByName(ipAddress.text.toString())

var port = Integer.parseInt(port.text.toString())

// create DatagramPacket

48

var dp2 = DatagramPacket(…., …., ina,
Integer.parseInt(port.text.toString()))

An established socket connection is necessary to continue with the next steps. Since

this part is very error-prone, any problems that occur must be intercepted and, if necessary,

processed. For this purpose, the entire code block is surrounded by try-catch brackets.

Errors that occur in the try block can be handled in the catch block. In this prototype

version, the error treatment is just to send the message to a debugger and the command

output line.

e. Determine Own Position

Once the socket is established, we need the actual position of the mobile device.

For that purpose, it is necessary to provide access to the hardware (Figure 23).

Figure 23. Mobile Entity Simulator Use Case—Determine Position

This use case must be done in different steps. First, the project must be enabled to

use the hardware (in our case the GPS antenna of the mobile device). Therefore, a new

dependency implementation must be inserted in the “build.gradle” file, which is located in

the “Gradle Scripts” folder. The following line is used for this purpose:

dependencies {
 …
 implementation ‘com.google.android.gms:play-services-location:17.1.0’
 …
}

49

Now the main program can read the actual GPS position, registering itself as a

listener to the antenna. Whenever the location changes, the program receives a call-back

and the variables are set with the actual coordinates in 3D (latitude, longitude, and altitude).

// to get access to the GPS data of the mobile device
private var fusedLocationProviderClient: FusedLocationProviderClient? =
null
override fun onStart() {
 registerForLocationUpdates()
}
override fun onStop() {
 unregisterForLocationUpdates()

}
fun updatePosition(location: Location) {
 latitude = location.latitude
 longitude = location.longitude
 altitude = location.altitude
}
@SuppressLint(“MissingPermission”)
fun registerForLocationUpdates() {
 val locationRequest = LocationRequest.create()
 val looper = Looper.myLooper()
 locationProviderClient.requestLocationUpdates(locationRequest,
locationCallback, looper)
}
private fun getFusedLocationProviderClient():
FusedLocationProviderClient {
 if (fusedLocationProviderClient == null) {
 fusedLocationProviderClient =
 LocationServices.getFusedLocationProviderClient(activity!!)
 }
 return fusedLocationProviderClient!!
}
private val locationCallback: LocationCallback = object :
LocationCallback() {
 override fun onLocationResult(locationResult: LocationResult) {
 super.onLocationResult(locationResult)
 val lastLocation: Location = locationResult.lastLocation
 updatePosition(lastLocation)
 }
}

Now the GPS coordinates data are available in the program, Unfortunately, GPS

uses another reference system than DIS does. GPS uses the so-called “World Geodetic

System 1984 (WGS84)” while DIS uses the “Earth-Centered Cartesian Coordinate System

(ECCCS).” Therefore, the received values must be converted. Thankfully, the openDIS

50

library used for this project offers a class called “CoordinateConversions” that translates

WGS84 into ECCCS coordinates (see the following code).

var disCoordinates = CoordinateConversions.getXYZfromLatLonDegrees(
 latitude,
 longitude,
 2.0
)

The method getXYZfromLatLonDegrees() returns a 3DVector object containing the

coordinate in ECCCS, which is used by all DIS-based simulation and C2 systems. Since

we only deal with land-based vehicles in this program, a centered height of 2.0 m was

assumed.

f. Create the Entity State PDU

DIS requires and enables the transmission of a lot of information about an entity

within one package (Figure 24). Position is only one piece of that information. Depending

on the specific scenario, additional data are required. For this thesis some more are needed.

Figure 24. Mobile Entity Simulator Use Case—Create ESPDU

DIS can work in peer-to-peer as well as in client-server configurations.

Consequently, different simulation systems can be connected and share information.

Therefore, three basic attributes must be included in the packets: a side ID (for multiple-

location simulations), an application ID (which specifies the application used), and an

entity ID (which is the unique identifier within an application). For the purpose of the

prototype developed in this thesis, these attributes are simply set to “1” (see the following

code).

51

entityID.siteID = 1.toShort()
entityID.applicationID = 1.toShort()
entityID.entityID = 1.toShort()

Depending on which military symbol was chosen in use case “Select a Military

Symbol,” the specific type of entity must be defined. The information about the nation to

which this vehicle belongs; what type (platform) it is, whether it is land, sea or aircraft; to

which category the entity can be assigned; and other sub-categories is specified. In

addition, the entity can also be assigned a readable name, which can be displayed in some

simulation systems (such as VR Forces) and C2 systems. In the following section of code

section, the setting of the data for a medic vehicle for a U.S. platform and a Russian

platform, respectively. is shown as an example.

} else if (button_sanblue.isChecked) {
 forceID = ForceID.FRIENDLY
 entityType.country = Country.UNITED_STATES_OF_AMERICA_USA
 entityType.entityKind = EntityKind.PLATFORM
 entityType.domain = Domain.inst(PlatformDomain.LAND)
 entityType.category = 2.toByte()
 entityType.subCategory = 38.toByte()
 entityType.specific = 1.toByte()
 marking.characters = “SanBoxer”.toByteArray()
} else if (button_sanred.isChecked) {
 forceID = ForceID.OPPOSING
 entityType.country = Country.RUSSIA_RUS
 entityType.entityKind = EntityKind.PLATFORM
 entityType.domain = Domain.inst(PlatformDomain.LAND)
 entityType.category = 2.toByte()
 entityType.subCategory = 7.toByte()
 entityType.specific = 21.toByte()
 marking.characters = “MT-LB ambulance”.toByteArray()

In the previous use case, the entity’s position was determined and converted to DIS

understandable format. This data can be easily added to an entity state PDU as shown in

the following snippet of code.

espduLocation.x = disCoordinates [0]
espduLocation.y = disCoordinates [1]
espduLocation.z = disCoordinates [2]
espdu.entityLocation = espduLocation

The last step is to add a time stamp to the package. This is important because the

network structure setup used and the disparately located simulation or C2 systems cannot

52

guarantee that DIS packages will be received in the correct order. However, since every

PDU has a time stamp, packets arriving later or subsequently can be treated accordingly.

For example, in live training, the vehicle’s position at time t-1 is no longer relevant if the

position is already displayed at time t. The class “DisTime” from openDIS library makes

it easy to get the right format.

var timeStamp = DisTime().disAbsoluteTimestamp
espdu.timestamp = timeStamp

At this point the PDU is packed and ready to send.

g. Transmit Entity State PDU

The last use case in the co-routine is sending the build PDU package to the given

IP address and port number (Figure 25).

Figure 25. Mobile Entity Simulator Use Case—Transmit ESPDU

The produced entity state object is marshaled to a byte array and sent through the

opened socket to its receiver(s).

val datagramSocket = DatagramSocket()
datagramSocket.broadcast = true

val baos = ByteArrayOutputStream()
val dos = DataOutputStream(baos)

espdu.marshal(dos)
val data = baos.toByteArray()
var dp2 = DatagramPacket(data, data.size, ina, port)
datagramSocket.send(dp2)

53

At this point one entity state PDU has been produced and sent via a socket

connection. The whole code for this co-routine is summarized in the function

“sendOnePacket(…).” Because we need to update the status of a vehicle in a regular

manner, this function is called in a loop repeatedly with a pause of one second.

while (!done) {
 sendOnePacket(view)
 Thread.sleep(1000)
}

This architecture, which employs thread technology, enables the user to interact

with the application while the loop is running. The user can change the type of vehicle

simply by selecting another military symbol. This new information is built in the next

package. Therefore, the simulation system can change the attribute of the shown entity

within one second if there is no delay in the network.

h. Stop Sending Packages

The described co-routine use cases in the preceding sections will run unlimited

times if there is no action taken by the user.

Figure 26. Mobile Entity Simulator Use Case—Stop Sending PDUs

Of course, this has to be enabled, and for this purpose a new button—similar to the

start button—is inserted.

<Button
 android:id=“@+id/stopButton”
 android:layout_width=“fill_parent”
 android:layout_height=“wrap_content”
 android:layout_row=“4”

54

 android:layout_column=“1”
 android:text=“Stop” />

This code creates a simple gray colored button with the text “Stop” on it. By default

the button changes the color when the user clicks on it. In the Kotlin code, this button needs

to be referenced as in the previous examples.

 val stopButton = view.findViewById<Button>(R.id.stopButton)

This button is also observed by a listener. If a user presses “Stop,” a function called

“shutdown()” within the running thread is called. The function itself simply sets a boolean

variable called “done” to false. Doing this, the condition for the while-loop in use case

“Transmit Entity State PDU” is not given anymore and the thread stops running.

According to the flow chart shown in Figure 16, the user has three options: change

the military symbol used, change the IP address and/or port number, or simply restart

sending PDUs with the same settings.

3. Summary of the Development Process

Using a new programming language to develop a new application from scratch is

challenging. The setup of both the hardware and the software has to be perfect for the task.

Different demands from different libraries on the Java version to be used, for example, can

lead to lengthy configuration processes. The connection of a mobile device to the

development machine also initially led to difficulties (as described in section A.2 of

Chapter V) but was necessary because testing Android applications only with the built-in

emulator might not reveal all errors.

The resulting product is now able to send DIS-compliant data packets via a network

to an adjustable address (IP and port number). The type of vehicle can be selected by simply

clicking on the corresponding military symbol, and the current position of the mobile

device is automatically inserted into the data package. The transfer of this information to

the C2 or the simulation system takes place continuously every second.

Figure 27 shows the resulting user interface. On the left, the start screen is shown,

and on the right, the main fragment of the software. Because this is a prototype version,

55

debugging information is available (according to the design shown in Figure 15). The

important source code files are included in Appendix B of this work.

Figure 27. Screenshot of Entity State Simulator

4. Testing and Demonstration

Of course, micro and mini tests were constantly carried out during the development

process to ensure that every section of code and every use case worked as intended. This

section describes the tests of the software as well as the integration into a test scenario. The

first step is to check whether each device in the setup has an IP connection to every other

device involved. This is done by sending “ping” commands between the devices. If there

is a connection, the target device answers with a “response.” In Figure 28, the “ping” from

the VR Forces computer to the mobile device is shown as an example.

56

Figure 28. Connection Test—Ping

This response shows that there is a stable connection. This can be recognized on

the one hand by the fact that none of the four packets has been lost because four packets

are received again. What becomes clear also is that the runtime within the network is

acceptable (between 6 ms and 87 ms). After the connection is confirmed, the route of the

packets is checked. If the setup works correctly, each packet should run via the AVM

router, since the network is in infrastructure mode (as described at II.B.3.b(2)).

This status can be checked by using a command called “tracert.” It does something

similar to the “ping” command. It sends packages to a destination and receives a response.

Additionally, tracert tracks the path of packages. In Figure 29 the execution of the

command on the VR Forces computer is shown trying to reach the mobile device (IP:

192.168.188.47). In step 1 the response of the AVM router is shown (IP: 192.168.188.1),

and in step 2 the target was reached.

Figure 29. Connection Test—Tracert

57

As mentioned before, these two basic connection tests must be done from each

device to all the other devices to ensure the network setup works correctly. This is an

essential basis for the next steps.

Now that we are sure that all connections are available as required, the next step is

to test whether DIS packets can be sent over the network and arrive at the target computer

(VR Forces). The Wireshark software is used for this. Wireshark can capture IP packets at

various interfaces and make them legible for the human eye. The first step is to start the

application on the mobile device. The symbol for an enemy tank was selected and the

broadcast IP address 192.168.188.255 with port number 3000 was inserted. After the user

presses the start button, the mobile device immediately starts sending ESPDUs into the

network every second. Wireshark runs with a filter for DIS packages and captures them at

the Wi-Fi interface (Figure 30).

Figure 30. Wireshark—Captured DIS Packages

The test proves that DIS packages were received at the destination. In the column

“Time” we also can check whether the packages arrive every second. The next step is to

check whether the DIS packages contain the expected data. This can be accomplished with

Wireshark also simply by double-clicking on one of the listed packages (Figure 31).

58

Figure 31. Wireshark—Inside an ESPDU

As shown in Figure 31, the content could be confirmed easily. Information about

the prototype version used (IEEE 1278.1-2012), entity ID, entity type (Russian land

platform tank), and the location (X, Y, and Z) are transmitted. In the last step, it must be

confirmed that the transferred data can be used by a C2 system (in this case, VR Forces).

59

To do this, the VR Forces software and a scenario are started. So that the scenario resembles

as close as possible the real German C2 system, the settings are made as shown in Figure

32.

Figure 32. VR Forces Simulation Configuration

A DIS-based simulation is chosen and the port number is set to 3000. After the

scenario is started, a rudimentary map is shown. Scrolling to the area of the Monterey

Peninsula, we can identify the coastline. Unfortunately, the resolution of the map material

is very low, and no details can be displayed, but for this kind of prototype testing that is

not relevant. The next step is to start the application and select the military symbol of a

friendly tank. After checking the destination IP address as well as the port number, we

press the “start” button. In less than one second, the symbol appears on the map of VR

60

Forces at the expected location. We can check this with the shown coordinate system. The

symbol is also displayed with the label “Leopard 2A6” tank, which is exactly the selected

type (Figure 33).

Figure 33. Test Application—VR Forces Friendly Tank

If the mobile device is moved, the location of the symbol changes also. Because of

the resolution of the map used, this could not be shown in this first prototype test, but it

could be seen in Wireshark.

The next step is to change the selected military symbol from friendly tank to an

enemy tank. The displayed symbol at VR Forces changes immediately (max. one second

after activating). Also, the label for that symbol changes to “T-80” (Figure 34). This test

was performed for all six different military symbols and at different places within the range

of the Wi-Fi network used.

61

Figure 34. Test Application—VR Forces Enemy Tank

B. MOBILE HIT ACTOR

While the previous section dealt with the development of an entity simulation that

enables the display of any unit or any vehicle in a training environment, this section deals

with the development of a mobile actuator that can react to virtual events in real life.

Specifically, it is examined whether a mobile and flexible platform developed by simple

means can react to virtual fire (AGDUS) events with sound and/or other effects.

The requirements for this device are having a small size, autonomous operating

time of at least six hours, and the potential to be connected to the communication device in

the vehicle. To achieve this, a compact computer platform with low energy consumption

and maximum connectivity was selected. The minicomputer “Raspberry Pi” was chosen.

This is a single-board computer about the size of a credit card and is competitive with a

62

small PC in terms of performance. Its diverse interfaces (Ethernet, Wi-Fi, Bluetooth) and

special input and output ports as well as its low price make it perfect for this project. An

average power consumption of approximately 2 watts also allows it to temporarily operate

independently, e.g., with the help of a power bank.

1. Setup

The setup for the “mobile hit actor (MHA)” remains the same as described in the

project “mobile entity simulator” and is not repeated here. The Raspberry Pi and its

accessories are now also required for this setup.

a. Raspberry Pi

The following paragraphs describe the hardware and software components of the

Raspberry Pi used in this setup.

(1) Hardware

The minicomputer Raspberry Pi has been produced and sold in different versions

since 2006. At the time of this work, version “4 Model B” is current. Nonetheless, a “3

Model B+,” which has been available since 2018, is used for this setup due to its

availability. The parameters of this version are listed in Table 6.

Table 6. Hardware Specifications for the Raspberry Pi

 Value
CPU Arm Cortex-A53 CPU @ 1.2 GHz
GPU Broadcom Dual Core Video Core IV 400 MHz
RAM 1 GB

System Type 64-bit OS, x64-based processor
Ethernet Gigabit Ethernet

Wi-Fi 2.4 + 5 GHz
Bluetooth 4.1

Audio 3.5 mm
GPIO 48 pins
USB 2.0

63

To make this device fully capable for the purpose of this research, additional parts

were needed. Because there is no audio output device within the minicomputer, an external

speaker was added and connected via a 3.5 mm sound cable. Also, a power bank with

50,000 mAh was used to make the whole setup independent and mobile. It ensures a

runtime of approximately ten hours. Figure 35 shows this setup.

Figure 35. Mobile Hit Actor Hardware Setup

(2) Software

Various OS are available for the Raspberry Pi. We could choose from Linux

versions, a Microsoft Windows version, and an available Android version. Unfortunately,

not all OS supports all interfaces and capabilities of the hardware. Therefore, a Linux OS

that supports all the needed capabilities was chosen. For the programming language, the

Java is used on this platform. The complete software setup is shown in Table 7.

64

Table 7. Software Specifications for the Raspberry Pi

 Value

OS Raspberry Pi OS “desktop” Kernel 5.4

Java OpenJDK version 11

DIS openDIS 7 library

The installation of an OS on a Raspberry Pi is not comparable to the installation on

an ordinary computer. Since this minicomputer has no hard drive or the like, the entire

software—including the operating system—must be installed on a memory card. This is

usually done with the following steps:

1. Download the OS ISO image (*.iso format).

2. Write the ISO image onto the memory card:

• Windows: Tools like Win32 Disk Imager can be used.

• Linux: Use command “dd bs=__ if=/__ of=__,” where bs is the

block size of the image, if is the path to the input file, and of is the

path to the memory card.

3. Insert the memory card into the Raspberry Pi.

4. Boot up the Raspberry Pi from the memory card.

5. Install all additional software with the chosen OS tools.

b. Network Setup

For developing and testing, the described device must work together in a network

such as the one shown in Figure 44. In addition to those development steps, the Raspberry

Pi must be inserted (Figure 36). The software is developed at the notebook and deployed

via a secured shell (ssh) connection to the Raspberry. The MHA can receive DIS packages

over the network either from the C2 system or from the application running on the mobile

device in this setup.

65

Figure 36. Mobile Hit Actor Development Setup

2. Prototype Development

The development process for the MHA is divided into two parts. First is the

development of the hit actor itself. This software part will run on the Raspberry Pi. It must

be programmed in Java, as the system architecture does not allow Kotlin code. The main

task of this program is to track DIS traffic in the network and to respond appropriately to

specific packets. In particular, about the program must detect detonation PDUs that are

directed to the entity ID of the vehicle to whose ComSys the MHA is connected. When the

software receives a corresponding PDU, a short explosion sound should be played over the

loudspeaker for demonstration purposes.

Second, a test program must be developed that can send targeted detonation PDUs

to test the function of the MHA. For the sake of simplicity, this test program is programmed

in Kotlin and becomes part of the “Mobile Entity Simulator (MES)” application that has

already been produced. This enables mobile use and tests can be carried out in flexible

locations.

66

a. MHA Development Process

This application does not need a graphical user interface in the prototype version.

No display is connected, and no inputs must be done. The application should start

automatically after power up of the hardware and should play the detonation sound once

to alert the user that the system is ready. Figure 37 shows the program flow in detail.

Figure 37. Flow Chart of Mobile Hit Actor

After the MHA has started up, a detonation sound should be played (as just

described). A multicast socket connection is then created and the software listens to the

selected port for DIS packets. If a DIS packet is recognized, it is checked to determine

whether it is a detonation PDU. If it is not, the listening continues. But if it is a detonation

PDU, it is checked to determine whether the entity ID of the target in the packet matches

the entity ID of the vehicle on which the MHA is located. If this is the case, the detonation

67

sound is played again; otherwise, further DIS packets are listened for. The program runs

for as long as the Raspberry Pi is supplied with power. The development of the source code

is straightforward, and a detailed description of each individual step can be dispensed with

at this point. The entire source code can be found in Appendix B.

The produced source code must be packed together with the libraries used and the

sound file and transferred from the development PC to the Raspberry Pi. NetBeans supports

this process. Eight steps are needed to accomplish this and are described here:

1. Right-click on the Project name.

2. Select “Properties.”

3. Click “Packaging.”

4. Check “Build JAR after Compiling” and “Copy Dependent Libraries.”

5. Check “Compress JAR File.”

6. Click OK to accept changes.

7. Right-click on a Project name.

8. Select “Build” or “Clean and Build.”

NetBeans generates a *.jar file in a generated sub-folder “dist.” This *.jar file must

be placed in the file system of the Raspberry Pi. This could be done by using an SSH

connection or simply with a USB memory stick. After the bytecode has been ported to the

Raspberry, it should start automatically when the system starts up. A script is created for

this purpose, which is executed when the system is started. The content of the script is

given here:

#!/bin/bash

cd /…/ //path to folder where the script is

java -jar Raspi.jar

The script must be executable. To ensure that it is, the script file parameters must

be changed. This is done by the following command:

68

chmod u+x /path/to/script/scriptname.sh

The “chmod” command is a Linux command that allows for changing the permissions of

a file, while “u+x” means that every user can execute this script. In order to run the script

automatically when the system is started, it must be moved to a special folder within the

Linux operating system. This order in which this is done can be different for different

derivatives. In the Raspberry Pi OS used here, it is the folder:

/etc/init.d

b. MHA Test Application

As described before, a test program is needed to check the functionality of the

developed MHA. To keep the test program simple, it is inserted into the existing MES

application. A rudimentary graphical user interface is needed as shown in Figure 38. The

input fields for the IP address and port number are located in section 1. Section 2 displays

a simple button that should send one detonation PDU to the stated address each time it is

pressed.

Figure 38. Design of Human Interface for Mobile Hit Actor Test

Application

69

The flow chart for this testing application is straightforward and described in Figure

39. Five sequential use cases operate in the order shown. After the IP address and port

number are inserted, the user can initiate the process of sending a detonation PDU by

pressing a button. This action starts the routine with three steps: establish a socket

connection, build detonation PDU, and send the created package. These steps could be

repeated with or without changing the IP address and/or port number.

Figure 39. Flow Chart of Mobile Hit Actor Test Application

All needed use cases are described in detail in section A where the development of

the MES is discussed. The only slight difference here is the “create detonation PDU.” After

a new DetonationPDU object is initiated, a time stamp is created and added to this object.

For the given purpose, no location data or other specific information is needed except the

entity ID, because the MHA will check whether this ID is responsible for the detonation.

70

The following short code sequence shows this part. The whole Kotlin code is provided in

section F of Appendix B. To generate the layout for this little test application,

fragment_send_detonation.xml was created in the layout folder of the Android Studio

project. Again, this was straightforward, and the code is also provided in section G of

Appendix B for the sake of completeness. The resulting output is shown in Figure 40.

 // creating the detonation PDU

var detPDU = DetonationPdu()
var timeStamp = DisTime().disAbsoluteTimestamp
detPDU.timestamp = timeStamp
// setting the target EntityID
detPDU.setTargetEntityID(EntityID().setEntityID(321.toShort()))

Figure 40. Screenshot of Mobile Hit Actor Test Application

71

3. Testing and Demonstration

Testing the mobile hit actor is similar to testing the MES. Again, the first step is to

make sure the network connection is working. This test was particularly important in this

case, as it showed that the IP address of the MHA changed from 192.168.188.23 to

192.168.188.124 compared to the initial structure (Figure 36). This can be explained by

the fact that IP addresses are assigned to end devices in the test setup using the Dynamic

Host Configuration Protocol (DHCP) by the AVR router. Several weeks passed between

the initial setup of the construction and the testing. This result shows how important these

supposedly simple tests are. After evaluation in the setup of the router, the new IP was

determined and the connection between the devices was confirmed by means of a “ping”

test (Figure 41).

Figure 41. MHA Connection Test

After a stable connection is confirmed, the next test examines whether DIS packets

that are sent by the MHA test application also arrive at the MHA. To check this, some

additional measures are necessary. As described before, the MHA has a small design and

can be operated independently (but within a network). The fact that the hardware does not

have any input or output devices means that additional equipment must be connected for

the period in which the tests are to be carried out. Specifically, a monitor is connected via

the HDMI connection on the Raspberry Pi board and a keyboard and mouse are connected

via the USB connections.

72

As with the MES, the Wireshark software can now be used to record data traffic

via special interfaces. In the specific test scenario, the traffic is captured via the internal

Wi-Fi chip of the Raspberry Pi. For reasons of clarity, the filter was set to “DIS.” Now the

MHA test application is started and the IP address 192.168.188.124 is entered. Each time

the detonation button is clicked, a packet is sent to the MHA and registered and recorded

by Wireshark. Figure 42 shows the result of this output.

Figure 42. MHA Wireshark—Captured DIS Packages

The next step is to check whether the packages are being delivered and received in

the correct format. In the test output beforehand, it can be verified that the DIS packs are

packets of the “detonation” type (PDUType 3). A double-click on one of the received

packets opens the detailed view and confirms the first impression (Figure 43). The packets

sent in UDP are detonation PDUs. A closer look makes it clear that under the header

“Target Entity ID” the value of the attribute “Entity ID Entity” is 321—precisely the value

that was stored in the MHA test application in the code (see the snippet of code shown

previously in Figure 40).

73

Figure 43. MHA Wireshark—Inside Detonation PDU

The last and most important step is to test whether the sound can also be played

after the detonation PDU package has been received. To do this, the connected loudspeaker

is activated and connected to the Raspberry Pi using a cable jack. Every click on the

detonation button is immediately acknowledged by playing the detonation sound.

Obviously, this cannot be documented with a screenshot—but it works great.

74

THIS PAGE INTENTIONALLY LEFT BLANK

75

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The work in this thesis has shown that small mobile devices can be a useful addition

to live training sessions to significantly improve the simulation of reality. More realistic

training then can lead to a better training result.

As this thesis has shown, the development of custom software systems for existing

hardware is feasible with relatively little effort. Vehicles participating in an exercise can

be represented with any military symbols in the C2 system and virtual hits can also

effectively simulate a realistic impact.

During the thesis, the following research questions set out in the introduction were

processed and answered.

• Question 1: “What wireless communications systems are available to

network Android devices, and what are the advantages and disadvantages

of each for the proposed application?”

• Answer: Since a mobile, reliable connection to an existing

communication system within a vehicle is required, only the connection

options of this ComSys came into question. Based on the analysis of this

selection, the use of the Wi-Fi interface was recommended. In addition, a

connection via 5G was also considered. Although this is not an option

today due to the lack of appropriate technical equipment technical

equipment, it will certainly be a possible improvement in the future.

• Question 2: “What simulation interoperability protocol or architecture

should be used to pass this tactical information and why (i.e., what

potential architectures have to be researched)?”

• Answer: This question was relatively easy to answer. Typically, HLA is

preferred as the architecture because of the flexibility it provides and

especially since all the important states in the Western world have agreed

76

on it as the standard. However, DIS was preferable in this specific case

since the German C2 system this research intends to address only “speaks”

DIS. So, this protocol was used for the software development.

• Question 3: “Are there significant differences in operating the DIS

protocol versus the HLA when a number of devices are all streaming to an

existing simulation system for visualization?”

• Answer: This could not be answered satisfactorily in the course of this

work. Since the definition of DIS in the German C2 system left only one

development path, the result did not go beyond the theoretical differences

between HLA and DIS. A more detailed answer to this question can be

part of a future work.

• Question 4: “Once this data is broadcast as desired, how will it be

received and bridged into the tactical system used to integrate into the

training environment?”

• Answer: Here, too, there were few possibilities due to the test

construction. If the C2 system and the mobile device with the application

are in the same network, the data can be transmitted via multicast without

any problems. This was particularly evident in the MES prototype. If one

of the two devices is on a different network, the router hardware used

determines whether multicast via VPN is supported. While the AVR

router can support this function, the hardware used at the Naval

Postgraduate School does not at the time of this work.

• Question 5: “Is it possible to develop a prototype on a mobile (Android)

device that considers and confirms the previous results? What

programming language should be used (Kotlin or Java) and why?”

• Answer: “It depends.” If an application is developed for an Android

device, Kotlin seems to be the better programming language to use. In

77

other cases, as shown in the example of the MHA, however, Java can be

used.

B. RECOMMENDATIONS FOR FUTURE WORK

Above all, the MHA can be significantly further developed. The 48 GPIO pins

make it possible to deliver different reactions to different hits. As shown with just the one

port used in the thesis, the developed system can play a sound when hit. Consequently, if

the additional input / output ports are used, functions such as triggering smoke, blocking

individual hardware functions of the combat vehicle, or other functions can be carried out.

The systems developed, which included the MES and the MHA, still must undergo

further experimentation to show that they can actually improve the effectiveness of live

training significantly. This is to be carried out as part of a study in 2022 on a German

training site.

Furthermore, the answer to the third research question was not satisfactory. The

developing systems must “understand and speak” both DIS and HLA. Once this has been

achieved, comparative tests should be carried out to determine which protocol or which

architecture has what advantages and disadvantages in a simulation environment.

78

THIS PAGE INTENTIONALLY LEFT BLANK

79

APPENDIX A. DEVELOPMENT SETUP

A. SETUP

To make my work repeatable I describe the setup of the developing and testing

environment in this section.

1. Development Computer

Description of the used hard- and software of my laptop for the developing process.

a. Hardware

A Lenovo ideapad 330S notebook is used for the development process. The

specifications for this computer can be found in Table 8. A large amount of RAM and a

powerful GPU are needed to run the software development kit and the mobile device

simulators. Also, USB connectors (versions 2.0 and 3.0) are needed.

Table 8. Hardware Specifications of Development Computer

 Value
CPU Intel Core i7-8550U CPU @ 2.0 GHz
GPU Nvidia GeForce GTX 1050 with 14GB RAM
RAM 20.0 GB

System Type 64-bit OS, x64-based processor

b. Software

In this work, a Windows OS is used with Android Studio as the software

development kit (SDK). Detailed software specifications can be found in Table 9.

80

Table 9. Software Specifications of Development Computer

 Value

OS Windows 10 Home version 1909 build
18363.1279

SDK
Android

Android Studio version 4.0.1 build
193.6911.18; Runtime version: 1.8.0_242
amd64; VM: OpenJDK 64-Bit Server VM

by JetBrains

SDK Java Apache NetBeans IDE 12.0
Java OpenJDK version 14.0.1

Kotlin 1.4.21-release-Studio 4.0-1
DIS openDIS 7 library

2. Mobile Device

Description of the used hard- and software of the mobile device used for tests.

a. Hardware

To test the new application a mobile device is needed. In a first step a common

smart phone with an Android OS is used. Important for the development process is the

possibility to connect the device with the development computer. Android Studio can use

a cable connection (USB) to deploy code to the mobile device directly and execute the

code. Detailed specifications for the mobile device hardware can be found in Table 10.

Table 10. Hardware Specifications for Mobile Device

 Value
Device Samsung Galaxy J7
Model SM-J737U
Display 5,5 inches; 720 x 1280 Pixel

CPU Qualcomm Snapdragon 615
Memory 16 GB

Connectivity NFC, Bluetooth, Wi-Fi, USB, LTE

81

b. Software

No special software is needed. The Samsung Galaxy J7 runs with Android 9 “Pie”

and the patch level from December 1, 2020. The implemented kernel version is 3.1891-

16371010 and Knox 3.3.

One important step ensures this device can be used for development and testing.

The phone must be switched into the development mode. This status enables Android

Studio on the development computer to deploy a new application version over the USB to

the mobile device and run it there. To switch the Samsung J7 into development mode a few

steps that must be performed are described here:

1. Go to “Settings” (by clicking on the gearwheel icon).

2. Scroll down to the tab “About phone” and select it.

3. Select “Software information.”

4. Tap “Build number” seven times.

5. Go back to “Settings.”

6. A new tab “Developer options” appears.

7. Tap “Developer options.”

8. Enable developer mode (by switching “On”).

9. Enable USB debugging.

10. Disable verify apps over USB.

11. Leave everything else on default.

3. C2 System Simulator (VR Forces)

Description of the used hard- and software for simulation a German C2 System.

82

a. Hardware

As described before, VR Forces is used to simulate a part (force tracking) of a real

C2 system. A powerful machine with a specific graphics card is needed to support the C2

system simulator. The specifications of the machine used can be found in Table 11.

Table 11. Hardware Specifications for C2 Simulator

 Value

CPU AMD Ryzen 7 2700X Eight Core Processor @ 3.7
GHz

GPU Nvidia GeForce GTX 1070 with 16GB RAM
RAM 16.0 GB

System Type 64-bit OS, x64-based processor

b. Software

To run VR Forces for this purpose, a Windows OS is needed. The detailed software

specifications for this machine can be found in Table 12.

Table 12. Software Specifications of C2 Simulator

 Value
OS Windows 10 Pro version 2004 build 19041.804

VR Forces Version 4.8, 64-Bit
Wireshark Version 3.4.3 64-Bit

Wireshark is an open-source tool used to capture and analyze data traffic. It can

dump data packages on every interface of the computer (Ethernet, Wi-Fi, Bluetooth, USB).

Various filters and settings allow developers to evaluate and troubleshoot incidents in a

network.

83

4. Network Setup

For development and testing of the three devices described previously, they must

work together in a network. Figure 44 shows the setup used during the development

process. A typical development and testing process in an early phase can be described in

these four steps:

1. Source code is developed on the development computer (Android Studio).

2. Compiled and packed code is deployed to the mobile device (Samsung

Galaxy J7) via USB cable.

3. The Running application sends data using Wi-Fi.

4. The C2 system simulator receives data.

Figure 44. Development Network Setup

The internal Wi-Fi network is a Class C with the network address 192.168.188.0

and the subnet mask 255.255.255.0. IP addresses are deployed by an AVM FritzBox router

(Model: FRITZ!Box Fon WLAN 7390, FRITZ!OS: 06.86) using DHCP.

84

B. ANDROID STUDIO

Developing an application in Java or Kotlin for mobile Android-driven devices

differs in some points from other systems. This section briefly describes how Android

Studio manages the files in an internal structure and what purpose it serves. Figure 45 gives

an overview of how this is done. Detailed information can be found in the book Head First

Kotlin—A Brain-Friendly Guide (Griffiths & Griffiths, 2019). It provides a very good

overview for people who have never coded with Android Studio for mobile devices.

Figure 45. Typical Project Structure in Android Studio

As shown in Figure 45, a simple and basic project exists out of four main folders

plus one other: “manifest,” “java,” “java(generated),” “res,” and “Gradle Scripts.”

1. The “manifest” Folder

This folder contains the AndroidManifest.xml file. This file is a kind of

intermediator between the application and the Android OS on the device. It contains

metadata about the Android version for which this application is suitable, information

about the status package for Kotlin files, and the application’s access rights to hardware

components of the device (GPS, Wi-Fi, etc.). In addition, basic information such as the

icon used for the application and the style theme used are defined here.

85

2. The “java” and “java (generated)” Folders

All Java and/or Kotlin source code produced during the programming work is in

this folder. If a new project is created, a MainActivity file is also automatically generated.

Depending on whether Kotlin or Java was selected as the programming language, this file

ends with .java or .kt. This file is located at the top level of the folder structure and is a

prerequisite for every project. The rest of the source code can be arranged in a tree structure

(edu.nps.moves.bernd. ...). As with most other programming languages, this method is

always advisable when creating a complex project.

Compared to “java,” the “java (generated)” folder contains only the files which, as

the name suggests, are generated by the SDK. Normally, a developer does not have to deal

with this part of the project.

3. The “res” Folder

The resource folder contains all the non-code sources needed and used within the

project. Different types of resources are structured in different folders. The “drawable”

folder includes all images and icons. The “layout” folder contains the *.xml files that

describe the layout of the application. Within the “midmap” folder all the needed images

and icons are defined and stored in different resolutions (hdpi, mdpi, xhdpi). Finally,

“values” includes different *.xml files that define the look and feel of the application.

Dimensions, styles, and colors of the application can be changed here. An important file is

strings.xml. All strings used in the application can be defined here. This could be very

helpful for a developer who must provide the program for different countries with different

languages.

4. The “gradle scripts” Folder

In this context, gradle means “automated build system.” Mainly all the files stored

here contain the information required by Android Studio to build the project. The additional

modules and plugins that are part of the project are also defined here.

86

THIS PAGE INTENTIONALLY LEFT BLANK

87

APPENDIX B. SOURCE CODE

A. ENTITY STATE SIMULATOR—FRAGMENT_SEND_POSITIO.XML

<?xml version=“1.0” encoding=“utf-8”?>
<FrameLayout xmlns:android=“http://schemas.android.com/apk/res/android”
 xmlns:tools=“http://schemas.android.com/tools”
 xmlns:app=“http://schemas.android.com/apk/res-auto”
 android:layout_width=“match_parent”
 android:layout_height=“match_parent”
 tools:context=“.fragments.SendPositionFragment”>

 <GridLayout xmlns:android=“http://schemas.android.com/apk/res/android”
 android:layout_width=“wrap_content”
 android:layout_height=“wrap_content”
 android:layout_gravity=“center”
 android:orientation=“horizontal”>

 <ToggleButton
 android:id=“@+id/button_NotPressed_KPz_blue”
 android:layout_width=“wrap_content”
 android:layout_height=“wrap_content”
 android:background=“@drawable/pzmedblue_button”
 android:textOff=““
 android:textOn=““ />

 <ToggleButton
 android:id=“@+id/button_NotPressed_SPz_blue”
 android:layout_width=“wrap_content”
 android:layout_height=“wrap_content”
 android:layout_row=“1”
 android:layout_column=“0”
 android:background=“@drawable/spzblue_button”
 android:textOff=““
 android:textOn=““ />

 <ToggleButton
 android:id=“@+id/button_NotPressed_San_blue”
 android:layout_width=“wrap_content”
 android:layout_height=“wrap_content”
 android:layout_row=“2”
 android:layout_column=“0”
 android:background=“@drawable/sanblue_button”
 android:textOff=““
 android:textOn=““ />

 <ToggleButton
 android:id=“@+id/button_NotPressed_KPz_red”
 android:layout_width=“wrap_content”
 android:layout_height=“wrap_content”
 android:layout_row=“0”

88

 android:layout_column=“1”
 android:background=“@drawable/pzmedred_button”
 android:textOff=““
 android:textOn=““ />

 <ToggleButton
 android:id=“@+id/button_NotPressed_SPz_red”
 android:layout_width=“wrap_content”
 android:layout_height=“wrap_content”
 android:layout_row=“1”
 android:layout_column=“1”
 android:background=“@drawable/spzred_button”
 android:textOff=““
 android:textOn=““ />

 <ToggleButton
 android:id=“@+id/button_NotPressed_San_red”
 android:layout_width=“wrap_content”
 android:layout_height=“wrap_content”
 android:layout_row=“2”
 android:layout_column=“1”
 android:background=“@drawable/sanred_button”
 android:textOff=““
 android:textOn=““ />

 <Button
 android:id=“@+id/startButton”
 android:layout_width=“fill_parent”
 android:layout_height=“wrap_content”
 android:layout_row=“3”
 android:layout_column=“1”
 android:text=“Start” />

 <Button
 android:id=“@+id/stopButton”
 android:layout_width=“fill_parent”
 android:layout_height=“wrap_content”
 android:layout_row=“4”
 android:layout_column=“1”
 android:text=“Stop” />

 <EditText
 android:id=“@+id/ipTextField”
 android:layout_width=“wrap_content”
 android:layout_height=“wrap_content”
 android:layout_row=“9”
 android:layout_column=“0”
 android:ems=“8”
 android:inputType=“textPersonName”
 android:text=“192.168.188.255” />

 <EditText
 android:id=“@+id/portTextField”
 android:layout_width=“wrap_content”

89

 android:layout_height=“wrap_content”
 android:layout_row=“10”
 android:layout_column=“0”
 android:ems=“8”
 android:inputType=“number”
 android:text=“3000” />

 <EditText
 android:id=“@+id/latitude_value”
 android:layout_width=“wrap_content”
 android:layout_height=“wrap_content”
 android:layout_row=“4”
 android:layout_column=“0”
 android:ems=“6”
 android:inputType=“textPersonName”
 android:text=“latitude” />

 <EditText
 android:id=“@+id/longitude_value”
 android:layout_width=“wrap_content”
 android:layout_height=“wrap_content”
 android:layout_row=“6”
 android:layout_column=“0”
 android:ems=“6”
 android:inputType=“textPersonName”
 android:text=“longitude” />

 <EditText
 android:id=“@+id/altitude_value”
 android:layout_width=“match_parent”
 android:layout_height=“wrap_content”
 android:layout_row=“7”
 android:layout_column=“0”
 android:ems=“6”
 android:inputType=“textPersonName”
 android:text=“altitude” />

 <EditText
 android:id=“@+id/output”
 android:layout_width=“match_parent”
 android:layout_height=“wrap_content”
 android:layout_row=“7”
 android:layout_column=“1”
 android:ems=“6”
 android:inputType=“textPersonName”
 android:text=“Debug” />

 </GridLayout>
</FrameLayout>

90

B. ENTITY STATE SIMULATOR—MAINACTIVITY.KT

package edu.nps.moves.bernd.thesis

import android.os.Bundle
import androidx.appcompat.app.AppCompatActivity
import edu.nps.moves.bernd.thesis.fragments.HomeFragment
import edu.nps.moves.bernd.thesis.fragments.SendDetonationFragment
import edu.nps.moves.bernd.thesis.fragments.SendPositionFragment
//import edu.nps.moves.bernd.thesis.fragments.SettingsFragment
import edu.nps.moves.bernd.thesis.fragments.adapters.ViewPagerAdapter
import kotlinx.android.synthetic.main.activity_main.*

/**
 * MainActivity
 * Title: Thesis Prototype
 * Author: LTC Bernd Weissenberger
 * Date: 02/19/2021
 *
 * Defines the basic layout of the app.
 */

class MainActivity : AppCompatActivity() {

 /**
 * Called once after open the app
 */
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 setUpTabs()
 }

 /**
 * Generates the fragments.
 * Actual version: 3 fragments (Fragment “settings” is deactivated)
 */
 private fun setUpTabs(){
 val adapter = ViewPagerAdapter(supportFragmentManager)
 adapter.addFragment(HomeFragment(), ““)
// adapter.addFragment(SettingsFragment(), ““)
 adapter.addFragment(SendPositionFragment(), ““)
 adapter.addFragment(SendDetonationFragment(), ““)
 viewPager.adapter = adapter;
 tabs.setupWithViewPager(viewPager)

 tabs.getTabAt(0)!!.setIcon(R.drawable.ic_baseline_home_24)
// tabs.getTabAt(1)!!.setIcon(R.drawable.ic_baseline_settings_24)
 tabs.getTabAt(1)!!.setIcon(R.drawable.ic_baseline_add_location_24)
 tabs.getTabAt(2)!!.setIcon(R.drawable.ic_baseline_adjust_24)
 }
}

91

C. ENTITY STATE SIMULATOR—SENDPOSITIONFRAGMENT.KT

package edu.nps.moves.bernd.thesis.fragments

import android.annotation.SuppressLint
import android.location.Location
import android.os.Bundle
import android.os.Looper
import android.os.StrictMode
import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import android.widget.Button
import android.widget.EditText
import android.widget.TextView
import android.widget.ToggleButton
import androidx.fragment.app.Fragment
import com.google.android.gms.location.*
import edu.nps.moves.bernd.thesis.R
import edu.nps.moves.dis7.*
import edu.nps.moves.dis7.enumerations.Country
import edu.nps.moves.dis7.enumerations.EntityKind
import edu.nps.moves.dis7.enumerations.ForceID
import edu.nps.moves.dis7.enumerations.PlatformDomain
import edu.nps.moves.dis7.utilities.CoordinateConversions
import java.io.ByteArrayOutputStream
import java.io.DataOutputStream
import java.net.DatagramPacket
import java.net.DatagramSocket
import java.net.InetAddress
import java.net.MulticastSocket
import java.util.*

/**
 * SendPositionFragment
 * Title: Thesis Prototype
 * Author: LTC Bernd Weissenberger
 * Date: 03/02/2021
 *
 * Creates the SendPositionFragment of the app.
 */
class SendPositionFragment : Fragment(R.layout.fragment_send_position) {

 private val FRACTIONAL_FORMAT = “%.4f”

 // Variables for the position af mobile device
 private var latitude = 0.0
 private var longitude = 0.0
 private var altitude = 0.0

 // Text variables for output of coordinates on display
 private var latitudeValue: TextView? = null
 private var longitudeValue: TextView? = null

92

 private var altitudeValue: TextView? = null

 // primarily used for debug outputs on display
 private var outputValue: TextView? = null

 // to get access to the GPS data of the mobile device
 private var fusedLocationProviderClient: FusedLocationProviderClient? =
null

 override fun onStart() {
 super.onStart()
 registerForLocationUpdates()
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?,
): View? {
 val view: View = inflater.inflate(R.layout.fragment_send_position,
container, false)
 latitudeValue = view.findViewById(R.id.latitude_value)
 longitudeValue = view.findViewById(R.id.longitude_value)
 altitudeValue = view.findViewById(R.id.altitude_value)
 outputValue = view.findViewById(R.id.output)
 return view
 }

 override fun onStop() {
 unregisterForLocationUpdates()
 super.onStop()
 }

 fun updatePosition(location: Location) {
 latitude = location.latitude
 longitude = location.longitude
 altitude = location.altitude

 val latitudeString = createFractionString(latitude)
 val longitudeString = createFractionString(longitude)
 val altitudeString = createFractionString(altitude)
 latitudeValue!!.text = latitudeString
 longitudeValue!!.text = longitudeString
 altitudeValue!!.text = altitudeString
 }

 // build a proper string for output
 private fun createFractionString(fraction: Double): String {
 return java.lang.String.format(Locale.getDefault(), FRACTIONAL_FORMAT,
fraction)
 }

 @SuppressLint(“MissingPermission”)
 fun registerForLocationUpdates() {

93

 val locationProviderClient = getFusedLocationProviderClient()
 val locationRequest = LocationRequest.create()
 val looper = Looper.myLooper()
 locationProviderClient.requestLocationUpdates(locationRequest,
locationCallback, looper)
 }

 private fun getFusedLocationProviderClient(): FusedLocationProviderClient
{
 if (fusedLocationProviderClient == null) {
 fusedLocationProviderClient =
 LocationServices.getFusedLocationProviderClient(activity!!)
 }
 return fusedLocationProviderClient!!
 }

 fun unregisterForLocationUpdates() {
 if (fusedLocationProviderClient != null) {

fusedLocationProviderClient!!.removeLocationUpdates(locationCallback)
 }
 }

 private val locationCallback: LocationCallback = object :
LocationCallback() {
 override fun onLocationResult(locationResult: LocationResult) {
 super.onLocationResult(locationResult)
 val lastLocation: Location = locationResult.lastLocation
 updatePosition(lastLocation)
 }
 }

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)
 super.onCreate(savedInstanceState)

 val button_pzmediumblue =
view.findViewById<ToggleButton>(R.id.button_NotPressed_KPz_blue)
 val button_pzmediumred =
view.findViewById<ToggleButton>(R.id.button_NotPressed_KPz_red)
 val button_sanblue =
view.findViewById<ToggleButton>(R.id.button_NotPressed_San_blue)
 val button_sanred =
view.findViewById<ToggleButton>(R.id.button_NotPressed_San_red)
 val button_spzblue =
view.findViewById<ToggleButton>(R.id.button_NotPressed_SPz_blue)
 val button_spzred =
view.findViewById<ToggleButton>(R.id.button_NotPressed_SPz_red)

 val startButton = view.findViewById<Button>(R.id.startButton)
 val stopButton = view.findViewById<Button>(R.id.stopButton)

 button_pzmediumblue.setOnCheckedChangeListener { _, _ ->
 if(button_pzmediumblue.isChecked){

94

 button_pzmediumred.isChecked = false
 button_sanblue.isChecked = false
 button_sanred.isChecked = false
 button_spzblue.isChecked = false
 button_spzred.isChecked = false
 }
 }
 button_pzmediumred.setOnCheckedChangeListener { _, _ ->
 if(button_pzmediumred.isChecked) {
 button_pzmediumblue.isChecked = false
 button_sanblue.isChecked = false
 button_sanred.isChecked = false
 button_spzblue.isChecked = false
 button_spzred.isChecked = false
 }
 }
 button_sanblue.setOnCheckedChangeListener { _, _ ->
 if(button_sanblue.isChecked) {
 button_pzmediumred.isChecked = false
 button_pzmediumblue.isChecked = false
 button_sanred.isChecked = false
 button_spzblue.isChecked = false
 button_spzred.isChecked = false
 }
 }
 button_sanred.setOnCheckedChangeListener { _, _ ->
 if(button_sanred.isChecked) {
 button_pzmediumred.isChecked = false
 button_sanblue.isChecked = false
 button_pzmediumblue.isChecked = false
 button_spzblue.isChecked = false
 button_spzred.isChecked = false
 }
 }
 button_spzblue.setOnCheckedChangeListener { _, _ ->
 if(button_spzblue.isChecked) {
 button_pzmediumred.isChecked = false
 button_sanblue.isChecked = false
 button_sanred.isChecked = false
 button_pzmediumblue.isChecked = false
 button_spzred.isChecked = false
 }
 }
 button_spzred.setOnCheckedChangeListener { _, _ ->
 if(button_spzred.isChecked) {
 button_pzmediumred.isChecked = false
 button_sanblue.isChecked = false
 button_sanred.isChecked = false
 button_spzblue.isChecked = false
 button_pzmediumblue.isChecked = false
 }
 }

 // to allow sockets in main :)

95

 val policy = StrictMode.ThreadPolicy.Builder().permitAll().build()
 StrictMode.setThreadPolicy(policy)

 // Thread for sending PDUs in background. GUI is still working
 class BackGround : Thread(){
 var done: Boolean = false

 override fun run(){
 while (!done) {
 sendOnePacket(view)
 Thread.sleep(1000)
 }
 }
 fun shutdown(){
 done = true
 }
 }

 var t = BackGround()

 startButton.setOnClickListener {
 if(stopButton.isActivated)
 stopButton.isActivated = false
 t = BackGround()
 t.start()
 }

 stopButton.setOnClickListener {
 t.shutdown()
 }
 }

 private fun sendOnePacket(view: View) {
 val ipAddress = view.findViewById<EditText>(R.id.ipTextField)
 val port = view.findViewById<EditText>(R.id.portTextField)

 try {
 val socket = MulticastSocket()
 val datagramSocket = DatagramSocket()
 datagramSocket.broadcast = true
 // creating the pdu
 var espdu = EntityStatePdu()
 var espduLocation = Vector3Double()
 espdu.exerciseID = 1.toByte()
 var entityID = espdu.entityID
 entityID.siteID = 1.toShort()
 entityID.applicationID = 1.toShort()
 entityID.entityID = 1.toShort()

 // get and set location
 var entityLocation = espdu.setEntityLocation(espduLocation)

96

 var disCoordinates =
CoordinateConversions.getXYZfromLatLonDegrees(
 latitude,
 longitude,
 2.0
)
 espduLocation.x = disCoordinates [0]
 espduLocation.y = disCoordinates [1]
 espduLocation.z = disCoordinates [2]
 espdu.entityLocation = espduLocation

 val button_pzmediumblue =
view.findViewById<ToggleButton>(R.id.button_NotPressed_KPz_blue)
 val button_pzmediumred =
view.findViewById<ToggleButton>(R.id.button_NotPressed_KPz_red)
 val button_sanblue =
view.findViewById<ToggleButton>(R.id.button_NotPressed_San_blue)
 val button_sanred =
view.findViewById<ToggleButton>(R.id.button_NotPressed_San_red)
 val button_spzblue =
view.findViewById<ToggleButton>(R.id.button_NotPressed_SPz_blue)
 val button_spzred =
view.findViewById<ToggleButton>(R.id.button_NotPressed_SPz_red)

 var forceID = ForceID.OPPOSING
 var entityType = EntityType()
 var marking = EntityMarking()
 if (button_pzmediumblue.isChecked) {
 forceID = ForceID.FRIENDLY
 entityType.country = Country.GERMANY_DEU
 entityType.entityKind = EntityKind.PLATFORM
 entityType.domain = Domain.inst(PlatformDomain.LAND)
 entityType.category = 1.toByte()
 entityType.subCategory = 1.toByte()
 entityType.specific = 1.toByte()
 marking.characters = “Leopard 2A6”.toByteArray()
 } else if (button_pzmediumred.isChecked) {
 forceID = ForceID.OPPOSING
 entityType.country = Country.RUSSIA_RUS
 entityType.entityKind = EntityKind.PLATFORM
 entityType.domain = Domain.inst(PlatformDomain.LAND)
 entityType.category = 1.toByte()
 entityType.subCategory = 1.toByte()
 entityType.specific = 1.toByte()
 marking.characters = “T-80”.toByteArray()
 } else if (button_sanblue.isChecked) {
 forceID = ForceID.FRIENDLY
 entityType.country = Country.UNITED_STATES_OF_AMERICA_USA
 entityType.entityKind = EntityKind.PLATFORM
 entityType.domain = Domain.inst(PlatformDomain.LAND)
 entityType.category = 2.toByte()
 entityType.subCategory = 38.toByte()
 entityType.specific = 1.toByte()
 marking.characters = “SanBoxer”.toByteArray()

97

 } else if (button_sanred.isChecked) {
 forceID = ForceID.OPPOSING
 entityType.country = Country.RUSSIA_RUS
 entityType.entityKind = EntityKind.PLATFORM
 entityType.domain = Domain.inst(PlatformDomain.LAND)
 entityType.category = 2.toByte()
 entityType.subCategory = 7.toByte()
 entityType.specific = 21.toByte()
 marking.characters = “MT-LB ambulance”.toByteArray()
 } else if (button_spzblue.isChecked) {
 forceID = ForceID.FRIENDLY
 entityType.country = Country.GERMANY_DEU
 entityType.entityKind = EntityKind.PLATFORM
 entityType.domain = Domain.inst(PlatformDomain.LAND)
 entityType.category = 3.toByte()
 entityType.subCategory = 10.toByte()
 entityType.specific = 1.toByte()
 marking.characters = “GTK Boxer APC”.toByteArray()
 } else if (button_spzred.isChecked) {
 forceID = ForceID.OPPOSING
 entityType.country = Country.RUSSIA_RUS
 entityType.entityKind = EntityKind.PLATFORM
 entityType.domain = Domain.inst(PlatformDomain.LAND)
 entityType.category = 2.toByte()
 entityType.subCategory = 1.toByte()
 entityType.specific = 1.toByte()
 marking.characters = “BMP-1”.toByteArray()
 } else {
 forceID = ForceID.OPPOSING
 }

 espdu.forceId = forceID
 espdu.entityType = entityType
 espdu.marking = marking

 var timeStamp = DisTime().disAbsoluteTimestamp
 espdu.timestamp = timeStamp
 espdu.length = 144

 val baos = ByteArrayOutputStream()
 val dos = DataOutputStream(baos)

 espdu.marshal(dos)
 val data = baos.toByteArray()
 // get IP and Port from text fields
 var ina = InetAddress.getByName(ipAddress.text.toString())
 var port = Integer.parseInt(port.text.toString())

 outputValue!!.text = (espdu.length).toString()
 // create DatagramPacket
 var dp2 = DatagramPacket(data, data.size, ina, port)
 datagramSocket.send(dp2)

 } catch (e: Exception) {

98

 e.printStackTrace()
 }
 }
}

D. ENTITY STATE SIMULATOR—BUILD.GRADL

apply plugin: ‘com.android.application’
apply plugin: ‘kotlin-android’
apply plugin: ‘kotlin-android-extensions’

android {
 compileSdkVersion 30
 buildToolsVersion “30.0.2”

 defaultConfig {
 applicationId “edu.nps.moves.bernd.thesis”
 minSdkVersion 16
 targetSdkVersion 30
 versionCode 1
 versionName “1.0”

 testInstrumentationRunner “androidx.test.runner.AndroidJUnitRunner”
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile(‘proguard-android-
optimize.txt’), ‘proguard-rules.pro’
 }
 }
 compileOptions {
 sourceCompatibility kotlin_version
 targetCompatibility kotlin_version
 }
}
android {
 compileOptions {
 sourceCompatibility 1.8
 targetCompatibility 1.8
 }
}

dependencies {
 implementation fileTree(dir: “libs,” include: [“*.jar”])
 implementation “org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version”
 implementation ‘androidx.core:core-ktx:1.3.2’
 implementation ‘androidx.appcompat:appcompat:1.2.0’
 implementation ‘androidx.constraintlayout:constraintlayout:2.0.4’
 implementation ‘com.google.android.gms:play-services-location:17.1.0’

99

 implementation ‘com.google.android.gms:play-services-maps:17.0.0’
 implementation ‘androidx.legacy:legacy-support-v4:1.0.0’

// implementation ‘edu.nps.moves:open-dis7-enumerations:1.0’

 testImplementation ‘junit:junit:4.13’

 androidTestImplementation ‘androidx.test.ext:junit:1.1.2’
 androidTestImplementation ‘androidx.test.espresso:espresso-core:3.3.0’

 implementation ‘com.google.android.material:material:1.2.1’
}

E. MOBILE HIT ACTOR—RASPIRECEIVER.JAVA

package raspi;

import edu.nps.moves.dis7.pdus.DetonationPdu;
import edu.nps.moves.dis7.pdus.EntityID;
import edu.nps.moves.dis7.pdus.Pdu;
import edu.nps.moves.dis7.utilities.PduFactory;
import java.io.File;
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.MalformedURLException;
import java.net.MulticastSocket;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.sound.sampled.AudioInputStream;
import javax.sound.sampled.AudioSystem;
import javax.sound.sampled.Clip;
import javax.sound.sampled.LineUnavailableException;
import javax.sound.sampled.UnsupportedAudioFileException;

/**
* Receiver for detonation PDUs
* @date 03/16/2021
* @author Bernd Weissenberger
*/
public class RaspiReceiver {

 /**
 * Main method. Will be called by the OS after
 * @param args: as usual
 */
 public static void main(String [] args) {
 // set entity ID to fix value of 321 for testing purpose.
 // in real live should be set by tip switches or changable by software.
 EntityID id = new EntityID();
 id.setEntityID(321);

100

 // play the detonation sound once after booting
 try {
 playSound();
 } catch (LineUnavailableException | UnsupportedAudioFileException |
IOException | InterruptedException ex) {
 Logger.getLogger(RaspiReceiver.class.getName()).log(Level.SEVERE,
null, ex);
 }

 MulticastSocket socket;
 DatagramPacket packet;
 PduFactory pduFactory = new PduFactory();
 int pduCount = 0;
 try {
 // Specify the socket to receive data
 socket = new MulticastSocket(3000);
 while (true) // Loop infinitely, receiving datagrams
 {
 byte buffer [] = new byte [8192];
 packet = new DatagramPacket(buffer, buffer.length);
 socket.receive(packet);
 List<Pdu> pduBundle =
pduFactory.getPdusFromBundle(packet.getData(), packet.getLength());
 if (pduBundle.size() > 1) {
 System.out.println(“Bundle size is “ + pduBundle.size());
 }
 // end iterator loop through PDU bundle
 for (Pdu aPdu : pduBundle) {
 pduCount++;
 // only handle DetonationPDU at this point
 if (aPdu instanceof DetonationPdu) {
 // it is a detonation PDU....
 DetonationPdu tPDU = (DetonationPdu) aPdu;
 if(tPDU.getTargetEntityID().getEntityID()

== id.getEntityID())
 //... and it was for me, so: play detonation sound
 playSound();
 } else {
 // not a detonation PDU
 System.out.println(“wrong PDU type received”);
 }
 } // end of bundle loop } // end of while loop
 } // end try block
 catch (IOException ioe) {
 System.out.println(ioe);
 } catch (LineUnavailableException | UnsupportedAudioFileException |
InterruptedException ex) {
 Logger.getLogger(RaspiReceiver.class.getName()).log(Level.SEVERE,
null, ex);
 }
 }

 /**
 * Method is called, if a detonation PDU for this device was received.

101

 */
 public static void playSound() throws MalformedURLException,
LineUnavailableException, UnsupportedAudioFileException, IOException,
InterruptedException {
 File url = new File(“sounds/explosion.wav”);
 Clip clip = AudioSystem.getClip();

 AudioInputStream ais = AudioSystem.getAudioInputStream(url);
 clip.open(ais);
 clip.start();
 while (!clip.isRunning()) {
 Thread.sleep(3);
 }
 while (clip.isRunning()) {
 Thread.sleep(3);
 }
 clip.close();
 System.out.println(“Sound played...”);
 }
}

F. MOBILE HIT ACTOR TESTER—SENDDETONATIONFRAGMENT.KT

package edu.nps.moves.bernd.thesis.fragments

import android.os.Bundle
import android.os.StrictMode
import android.view.View
import android.widget.EditText
import android.widget.ImageButton
import androidx.fragment.app.Fragment
import edu.nps.moves.bernd.thesis.R
import edu.nps.moves.dis7.DetonationPdu
import edu.nps.moves.dis7.DisTime
import edu.nps.moves.dis7.EntityID
import java.io.ByteArrayOutputStream
import java.io.DataOutputStream
import java.net.DatagramPacket
import java.net.InetAddress
import java.net.MulticastSocket

class SendDetonationFragment : Fragment(R.layout.fragment_send_detonation) {

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)
 super.onCreate(savedInstanceState)

 val detButton = view.findViewById<ImageButton>(R.id.detButton)

 // to allow sockets in main :)
 val policy =
 StrictMode.ThreadPolicy.Builder().permitAll().build()

102

 StrictMode.setThreadPolicy(policy)

 //detonation
 detButton.setOnClickListener {
 val ipAddress = view.findViewById<EditText>(R.id.ipTextField)
 val port = view.findViewById<EditText>(R.id.portTextField)
 try {
 val socket = MulticastSocket()
 // creating the pdu
 var detPDU = DetonationPdu()
 var timeStamp = DisTime().disAbsoluteTimestamp
 detPDU.timestamp = timeStamp
 // setting the target EntityID

detPDU.setTargetEntityID(EntityID().setEntityID(321.toShort()))

 val baos = ByteArrayOutputStream()
 val dos = DataOutputStream(baos)

 detPDU.marshal(dos)
 val data = baos.toByteArray()
 //ipAddress.toString()
 var ina = InetAddress.getByName(ipAddress.text.toString())

 var dp = DatagramPacket(data, data.size)
 dp.setAddress(ina)
 dp.setPort(Integer.parseInt(port.text.toString()))

 socket.send(dp)
 //client.close()
 socket.close()

 } catch (e: Exception) {
 e.printStackTrace()
 }
 }//end Detonation
 }

}

G. MOBILE HIT ACTOR TESTER—
FRAGMENT_SEND_DETONATION.XML

<?xml version=“1.0” encoding=“utf-8”?>
<FrameLayout xmlns:android=“http://schemas.android.com/apk/res/android”
 xmlns:tools=“http://schemas.android.com/tools”
 xmlns:app=“http://schemas.android.com/apk/res-auto”
 android:layout_width=“match_parent”
 android:layout_height=“match_parent”
 tools:context=“.fragments.SendDetonationFragment”>

 <GridLayout

103

 android:layout_width=“wrap_content”
 android:layout_height=“wrap_content”
 android:layout_gravity=“center”
 android:orientation=“horizontal”>
 <EditText
 android:id=“@+id/ipTextField”
 android:layout_width=“wrap_content”
 android:layout_height=“wrap_content”
 android:layout_row=“0”
 android:layout_column=“2”
 android:ems=“10”
 android:inputType=“textPersonName”
 android:text=“192.168.188.103” />

 <EditText
 android:id=“@+id/portTextField”
 android:layout_width=“wrap_content”
 android:layout_height=“wrap_content”
 android:layout_row=“1”
 android:layout_column=“2”
 android:ems=“10”
 android:inputType=“number”
 android:text=“3000” />

 <ImageButton
 android:id=“@+id/detButton”
 android:layout_width=“160dp”
 android:layout_height=“159dp”
 android:layout_row=“2”
 android:layout_column=“2”

 android:layout_gravity=“center”
 app:srcCompat=“@drawable/fire_smexplosion” />

 </GridLayout>
</FrameLayout>

104

THIS PAGE INTENTIONALLY LEFT BLANK

105

LIST OF REFERENCES

Android Team Awareness Kit. (2021). Wikipedia. https://en.wikipedia.org/wiki/
Android_Team_Awareness_Kit

Arnold, K., Gosling, J., & Holmes, D. (2005). THE JavaTM Programming Language (4th
ed.). Addison Wesley Professional.

Barksdale, T. (2014). CAS-KILSWITCH and the way ahead. Marine Corps Gazette, 34–
37.

Bhagwat, P. (2001). Bluetooth: Technology for short-range wireless apps. IEEE Internet
Computing, 5(3), 96–103. https://doi.org/10.1109/4236.935183

Bhoyar, R. P., Ghonge, M. M., & Gupta, S. G. (2013). Comparative Study on IEEE
Standard of Wireless LAN/ Wi-Fi 802.11 a/b/g/n. International Journal of
Advanced Research in Electronics and Communication Engineering, 2(7), 5.

Bose, S. (2018). A comparative study: Java vs Kotlin programming in Android
application development. International Journal of Advanced Research in
Computer Science, 9(3), 41–45. https://doi.org/10.26483/ijarcs.v9i3.5978

Carpenter, D., & Carpenter, A. D. (2013). An Approach to Command and Control Using
Emerging Technologies. Air Force Research Laboratory. https://apps.dtic.mil/dtic/
tr/fulltext/u2/a587481.pdf

Department of Defense. (2008). Department of Defense Interface Standard—MIL-STD-
2525C. https://www.jcs.mil/Portals/36/Documents/Doctrine/Other_Pubs/
ms_2525d.pdf

Ferro, E., & Potorti, F. (2005). Bluetooth and wi-fi wireless protocols: A survey and a
comparison. IEEE Wireless Communications, 12(1), 12–26. https://doi.org/
10.1109/MWC.2005.1404569

Griffiths, D., & Griffiths, D. (2019). Head first Kotlin: A brain-friendly guide. O’Reilly
Media, Inc.

Hossein Motlagh, N. (2012). Near Field Communication (NFC)—A technical Overview
[Master’s thesis, University of Vaasa]. https://doi.org/10.13140/
RG.2.1.1232.0720

IEEE. (2012). 1278.1-2012—IEEE standard for Distributed Interactive Simulation—
Application protocols. IEEE. https://standards.ieee.org/standard/1278_1-
2012.html

106

IEEE. (2015). 1278.2-2015—IEEE standard for Distributed Interactive Simulation
(DIS)—Communication services and profiles. IEEE. https://standards.ieee.org/
standard/1278_2-2015.html

Informationszentrum Mobilfunk. (2020). Daten und Fakten zu 5G.
https://www.informationszentrum-mobilfunk.de/mediathek/broschueren/daten-
und-fakten-zu-5g

McGregor, D. (2011a). Distributed Interactive Simulation (DIS) [Presentation].

McGregor, D. (2011b). High Level Architecture (HLA) [Presentation].

Noohani, M. Z., & Magsi, K. U. (2020). A review of 5G technology: Architecture,
security and wide applications. 07(05), 34.

Nordrum, A., Clark, K., & IEEE. (2017, January 27). Everything You Need to Know
About 5G - IEEE Spectrum. IEEE Spectrum: Technology, Engineering, and
Science News. https://spectrum.ieee.org/video/telecom/wireless/everything-you-
need-to-know-about-5g

Panasonic. (2020). 5 Things Military Leaders Need to Know About ATAK.
https://federalnewsnetwork.com/wp-content/uploads/2020/06/Panasonic-ATAK-
Top5-WhitePaper-Final-040620-1.pdf

Sadler, L. C., & Metu, S. (2017). Intelligent Command and Control Demonstration Setup
and Presentation Instructions. US Army Research Laboratory.
https://apps.dtic.mil/sti/pdfs/AD1043277.pdf

Straßburger, S. (2006). Overview about the High Level Architecture for modelling and
simulation and recent developments. Simulation News Europe, 16, 5–14.

Tailor, N. (2015). Brief about USB 3.0 and Comparison with USB 2.0. https://doi.org/
10.13140/RG.2.1.4095.8885

TIOBE. (n.d.). Retrieved February 14, 2021, from https://www.tiobe.com/tiobe-index//

USB. (n.d.). Retrieved May 5, 2021, from https://en.wikipedia.org/wiki/USB

Watson, R. (2012). Understanding the IEEE 802.11ac Wi-Fi Standard. MERU Networks.
https://eddywireless.com/yahoo_site_admin/assets/docs/2012-wp-ieee-802-11ac-
understanding-enterprise-wlan-challenges.9141800.pdf

Woolley, M. (2019). Bluetooth Core Specification v5.1. Bluetooth.
https://www.bluetooth.com/wp-content/uploads/2019/03/
1901_Feature_Overview_Brief_FINAL.pdf

107

Ylinen, J., Koskela, M., Iso-Anttila, L., & Loula, P. (2009). Near Field Communication
Network Services. 2009 Third International Conference on Digital Society, 89–
93. https://doi.org/10.1109/ICDS.2009.43

You, Y., Lee, T., Kim, W., & Yoon, S. (2016). Development of an OMT Table Viewer/
Editor Using the Matlab/Simulink for HLA-Based Distributed Simulation.
International Journal of Information and Electronics Engineering, 6(2), 89–92.
https://doi.org/10.18178/IJIEE.2016.6.2.601

108

THIS PAGE INTENTIONALLY LEFT BLANK

109

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	21Jun_Weissenberger_Bernd_First8
	21Jun_Weissenberger_Bernd
	I. Introduction
	A. Overview
	(1) AGDUS “Ausbildungsgeraet Duellsimulator” (Training Device Duel Simulator)
	(2) FueInfoSys “Fuehrungs Informations System” (Command and Control System, C2 System)

	B. Current Capabilities and Limitations
	C. Problem Statement
	D. Motivating Constraints
	E. Assumptions
	1. Hardware
	2. Software

	II. Related Work and EXISTING Technologies
	A. Available software solutions
	1. Android Team Awareness Kit
	2. Kinetic Integrated Low-Cost Software Integrated Tactical Combat Handheld

	B. comparison of Available Communication Systems
	1. Near Field Communication
	a. Specifications
	b. Basic Operation Modes
	(1) NFC Card Emulation Mode
	(2) NFC Reader/​Writer Mode
	(3) NFC Peer-to-Peer (P2P) Mode

	c. Summary

	2. Bluetooth Technology
	a. Specifications of Different Bluetooth Versions
	b. Basic Operation Modes
	c. Summary

	3. Wi-Fi Technology
	a. Specifications and Basic Characteristics
	b. Basic Operation Modes
	(1) Ad-Hoc Mode
	(2) Infrastructure Mode
	(3) Multiple Access Point Mode

	4. USB Technology
	a. Specifications and Basic Characteristics of Different Versions
	(1) USB 1.0
	(2) USB 1.1
	(3) USB 2.0
	(4) USB 3.0
	(5) USB 3.1
	(6) USB 3.2
	(7) USB 4

	5. Mobile Standard Fifth Generation (5G)
	a. Specifications and Basic Characteristics
	b. Basic Operation Mode

	C. Available Protocols and Architectures
	1. High Level Architecture
	a. Characteristics
	b. Object Model Template
	c. The Run Time Infrastructure

	2. Distributed Interactive Simulation
	a. Different Types of PDUs
	(1) Entity State PDU
	(2) Fire PDU
	(3) Detonation PDU
	(4) Collision PDU

	b. Basic Structure
	c. Network Architecture

	D. Assessment and IMPLICATIONS for the development of the prototype
	1. Existing Software Products
	2. Network Communication Structure
	3. Protocol
	4. Summary

	III. Available Programming Languages
	A. JAVA
	B. KOTLIN
	C. Comparison, Evaluation, and Rating

	IV. Implementation and Demonstration
	A. MOBILE ENTITY SIMULATOR
	1. Equipment Used and Setup
	2. Prototype Development
	a. Select a Military Symbol
	b. Enter IP Address and Port Number
	c. Start Sending Packages
	d. Establish a Socket Connection
	e. Determine Own Position
	f. Create the Entity State PDU
	g. Transmit Entity State PDU
	h. Stop Sending Packages

	3. Summary of the Development Process
	4. Testing and Demonstration

	B. MOBILE Hit Actor
	1. Setup
	a. Raspberry Pi
	(1) Hardware
	(2) Software

	b. Network Setup

	2. Prototype Development
	a. MHA Development Process
	b. MHA Test Application

	3. Testing and Demonstration

	V. Conclusions and Recommendations
	A. Conclusions
	B. Recommendations for future work

	APPENDIX A. Development Setup
	A. Setup
	1. Development Computer
	a. Hardware
	b. Software

	2. Mobile Device
	a. Hardware
	b. Software

	3. C2 System Simulator (VR Forces)
	a. Hardware
	b. Software

	4. Network Setup

	B. Android Studio
	1. The “manifest” Folder
	2. The “java” and “java (generated)” Folders
	3. The “res” Folder
	4. The “gradle scripts” Folder

	APPENDIX B. Source CODE
	A. Entity State Simulator—Fragment_send_Positio.XML
	B. Entity State Simulator—MAINactivity.kt
	C. Entity State Simulator—SendPositionFragment.kt
	D. Entity State Simulator—build.gradl
	E. Mobile hit actor—raspiReceiver.java
	F. Mobile Hit actor tester—Senddetonationfragment.kt
	G. Mobile Hit Actor Tester—fragment_send_detonation.xml

	List of References
	initial distribution list

