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ABSTRACT 

 This paper uses an experimental approach to evaluate two design characteristics 

for a liquid air energy storage (LAES) and generation system as part of the verification 

and validation of system component design for a microgrid power system. The LAES 

subsystem evaluated utilized a Stirling engine–based cryocooler that employs a cold 

finger placed into Dewar, which allows the pumping of heat out of a Dewar. As the heat 

is pumped out, the air temperature in the Dewar cools to below the condensation point 

and the air in the Dewar liquifies and is stored in the Dewar. Using a design of 

experiments, the cold finger surface area and Dewar volume were evaluated to determine 

the criticality and significance of changing their dimensions on the total liquid air 

production mass and average liquid air production rate during the experiments. This 

analysis found that changing the surface area of the cryocooler cold finger was a 

statistically significant design characteristic that affected total liquid air production and 

average production rate while changing the volume of the Dewar was not statistically 

significant. Additional responses relative to the time when the first gram of liquid air was 

produced and the minimum cold tip temperature that the cryocooler was able to achieve 

provided additional insight into design characteristics that can be used to inform the 

engineer when making design tradeoffs for specific microgrid operational environments. 
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EXECUTIVE SUMMARY 

As military equipment, planning, and operations have become more digitized and 

technology driven, the demand for a continuous electrical supply has grown. This demand 

has been traditionally answered with diesel generators, batteries, or a reliance on local 

electrical distribution systems. These traditional methods reduce the Department of 

Defense’s (DOD) energy resilience through the increased logistical burden for transporting 

fossil fuels to supply generators and through the reliance on local infrastructure that is often 

outside of military control (Narayanan et al. 2020). Additionally, the transportation of fuel 

in combat zones is a critical vulnerability to combat forces that has resulted in significant 

casualties in recent conflicts in Iraq and Afghanistan (Pollman 2013).  

Localized generation of energy by renewable resources through islanded 

microgrids directly addresses this problem by reducing the logistical burden on forces for 

a continual supply of petroleum and removing the reliance on local electrical infrastructure 

eliminating critical vulnerabilities to military operations. However, a significant 

consideration for mobile military applicable renewable energy generation resources such 

as wind and solar power is that these systems often suffer from intermittent generation 

based on when the sun is shining or when the wind is blowing. Intermittent generation 

requires a mechanism to store excess energy during times of high production for use when 

generation is not available or to move available power from periods of low demand to high 

demand times to support a continuous electrical supply (Hawxhurst et al. 2017). A potential 

energy storage solution for deployable military units using microgrids is the use of liquid 

air energy storage (LAES). 

LAES systems can work through several different processes; however, the general 

concept is to use electricity to operate machinery that cools ambient air below its 

condensation point which causes the air to liquefy. As the air liquefies, it is contained in a 

Dewar, which is a vacuum insulated container. This liquid air can then be stored and later 

used to generate electric power through different means such as heating and expanding the 

liquid air into a gas which is run through a turbine or by the use of a temperature differential 

utilizing a Stirling engine. LAES is an appealing solution over more common forms of 
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energy storage such as batteries, capacitors, compressed air, or pumped hydro due to 

several factors. Liquid air has high energy density, high round trip efficiency potential, lack 

of geographical limitations, and low technological and safety risks due to its use of standard 

industrial components from the power and gas industry (Morgan 2016).  

This thesis uses an experimental approach to evaluate two design characteristics for 

a LAES and generation system as part of the system engineering verification and validation 

of the system component design for a microgrid power system being studied at the Naval 

Postgraduate School. The LAES subsystem evaluated utilizes a Stirling engine–based 

cryocooler that employs a cold finger placed into a Dewar, which allows the pumping of 

heat out of a Dewar. As the heat is pumped out, the air temperature in the Dewar cools to 

below the condensation point, and the air in the Dewar liquifies and is stored in the Dewar. 

Using a design of experiments, the cold finger surface area and Dewar volume were 

evaluated to determine the criticality and significance of changing their dimensions on the 

total liquid air production mass and average liquid air production rate.  

Analysis of data obtained in a two-factor design of experiment found that changing 

the surface area of the cryocooler cold finger was a statistically significant design 

characteristic that affected the total liquid air production and the average production rate, 

while changing the volume of the Dewar was not statistically significant. Additional 

responses relative to the time when the first gram of liquid air was produced and the 

minimum cold tip temperature that the cryocooler was able to achieve provided additional 

insight into design characteristics that can be used to inform the engineer when making 

design tradeoffs for specific operational environments. Future work on the LAES systems 

should include replication to confirm statistical validity, incorporation of a control system 

to optimize the generation of liquid air production based on environmental conditions or 

forecasts, and continued improvements of the cold finger extension design and testing 

beyond the design analyzed in this work. 
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I. INTRODUCTION 

A. MOTIVATION 

Electrical production, distribution, and storage is a critical aspect of most modern 

military operations that has been mired in the traditional reliance on batteries and diesel 

generators. As military equipment, planning, and operations have become more digitized 

and technology driven, the demand for continuous electrical connections have grown. This 

has induced a significant logistical burden on the Department of Defense (DOD) for 

supplying the energy demands for operational bases that typically comes from fossil fuel 

generation such as diesel generators (Pollman 2013). Alternatively, military forces can 

utilize the local electrical grid for primary power, but this places a significant reliance on 

a resource that is typically outside of military control (Narayanan et al. 2020). This reliance 

on petroleum logistics or local electrical grids reduces the energy resilience of DOD forces 

especially when deployed around the world or in combat zones. Localized generation of 

energy by renewable resources as part of an islanded microgrid that can be disconnected 

from the larger electrical grid directly address this problem.  

Microgrids are energy generation and distribution systems of varying types that 

provide electricity at a small scale. These microgrids can operate independently or in 

unison with a larger electrical grid system. When set up as an islanded microgrid, which is 

completely separate from a local electrical grid, or as an integrated system with a local 

electrical grid, microgrids support DOD energy resilience by allowing either backup 

operation when the main power grid is down or standalone operations completely 

disconnected from the grid (Narayanan et al. 2020). Combining microgrids with renewable 

energy generation options further enhances the energy resilience by removing the 

dependence on petroleum products. This setup of a renewable energy microgrid, therefore, 

has the potential to provide continuous electrical supply to DOD forces through 

significantly less vulnerable means and provides the possibility to create a portable system 

that can be deployable with mobile forces.  
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A significant consideration for renewable energy generation resources that are 

mobile, such as wind and solar power, is that these systems often suffer from intermittent 

generation based on when the sun is shining or when the wind is blowing. This requires a 

mechanism to store excess energy during times of high production for use when generation 

is not available or to move available power from periods of low demand to high demand 

times to support a continuous electrical supply (Hawxhurst et al. 2017). Many methods 

exist to store excess electrical energy which include capacitors, batteries, hydro pumping, 

compressed air, and mechanical storage such as flywheels to name just a few of the 

possibilities (Ibrahim, Ilinca, and Perron 2008). Each of these technologies vary on the 

spectrum of power capacity relative to energy storage duration, as shown in Figure 1, which 

makes them viable options for energy storage application. 

 
Figure 1. Energy Storage Technologies. Adapted from Fu, Remo, and 

Margolis (2018). 

However, each of these methods have significant disadvantages when used in 

mobile military operations due to a variety of reasons ranging from weight to geographical 

requirements (Ibrahim, Ilinca, and Perron 2008). A potential energy storage solution for 

deployable military units using microgrids is the use of liquid air energy storage (LAES).  
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B. BENEFIT 

This research benefits the DOD strategically because the DOD is the largest federal 

governmental consumer of energy, spending approximately 2% of its annual budget on 

energy (Greenley 2019). This energy consumption is broken down into two divisions with 

the first being installation energy for fixed installations and non-tactical vehicles 

consuming 30% of the total DOD energy demands (Greenley 2019). The second division 

being operational energy for sustaining military forces, weapon platforms, and military 

operations in which 70% of DOD energy demands are consumed (Greenley 2019). 

Microgrids can address DOD’s installation energy needs by providing them primary or 

backup power; microgrids can also address operational energy needs by providing 

deployable power options. The use of microgrids, therefore, has the potential to 

strategically impact military operations, turning energy generation into a combat multiplier 

rather than a logistical burden to commanders (Pollman 2013).  

Additionally, the DOD’s energy investment priorities focus on energy resilience 

and conservation (Jung 2020). Incorporating renewable energy generation and storage into 

a microgrid addresses current DOD priorities by providing an alternate mean of generation 

that is not reliant on the logistical considerations of transporting fossil fuels nor vulnerable 

to uncontrolled local electrical grid vulnerabilities and intermittent operations. The use of 

renewable energy generation also provides operational and tactical benefits as there is a 

positive correlation to the fuel consumed by the U.S. military during combat operations 

and casualties incurred (Wald and Captain 2009). This vulnerability is highlighted by the 

success that U.S. adversaries in Iraq and Afghanistan have had in disrupting U.S. energy 

supply chains by targeting fuel convoys historically accounting for 10–12% of all 

casualties (Eady et al. 2009). Therefore, this research provides potential DOD casualties 

reductions and cost savings through reduced energy purchasing requirements, additional 

energy generation options for deployable forces, and increased energy resilience through 

reduced logistical needs and reduced reliance on local infrastructure.  



4 

C. BACKGROUND 

The Naval Postgraduate School (NPS) has been conducting ongoing research into 

islanded microgrids as a means to support the DOD’s initiatives for expeditionary energy 

solutions and for energy resilience. The Turbo-Propulsion Laboratory (TPL) at NPS is at 

the forefront of this effort and currently uses a combination of wind and solar power 

resources to generate electrical power (Gannon 2017). This experimental microgrid 

laboratory is designed to evaluate the possibilities of modular microgrid structures and 

technologically innovative solutions for microgrid power generation and storage (Pollman 

and Gannon 2015).  

Past systems for storing excess energy at the TPL have evaluated traditional 

batteries, capacitors, compressed air storage and thermal storage. As a mobile and 

deployable solution for the DOD, batteries are not ideal due to either their high weight with 

legacy battery technology or the use of limited and exotic materials when modern battery 

technology is employed. Capacitors alternatively suffer from the inability to slowly 

discharge and provide a source of power over an extended period (Gannon 2018). Thermal 

storage proves promising for heating and cooling systems but does not address electrical 

demand (Hawxhurst et al. 2017).  

An evaluation of alternative methods to store energy has indicated that the 

emerging technology of LAES could be a particularly promising application for storing 

and subsequently recovering excess electrical energy. Liquid air has high energy density, 

high round trip efficiency potential, lack of geographical limitations, and low technological 

and safety risks. In comparison to using compressed air as an energy storage mechanism, 

Wang et al. (2015) found that liquid air has an energy density of 296.6 kJ/Liter while 

compressed air at 200 bar only had an energy density of 70.07 kJ/Liter. Krawczyk et al. 

(2016), found that LAES systems are also capable of higher round trip efficiencies than a 

compressed air energy storage system. Furthermore, liquid air systems are not 

geographically limited like pumped hydro systems that require water access, large storage 

lakes, and a nearby elevation differential (Kim et al. 2012). Finally, LAES is an appealing 

solution due to its use of standard industrial components from the power and gas industry 

which reduces integration, production, and operational risk due to their technological 
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maturity along with the low working pressures of LAES that mitigate many safety 

considerations with high pressure energy storage systems (Morgan 2016).  

Previous work at NPS has focused on modeling LAES, thermodynamic analysis, 

functional analysis, and component selection. The work on liquid air generation and 

storage has been split into two efforts. The first utilized the Linde-Hampson cycle to 

produce liquid air, and the second used a Stirling engine cryocooler. Howe (2018) 

presented a method for calculating the work done by a compressor and the liquid air yield 

in a Linde-Hampson system at NPS. The author also presented an energy analysis of LAES 

with an examination of the ideal operating ranges and trade space in a Linde-Hampson 

LAES system design. Howe, Pollman, and Gannon (2018) identified the ideal energy and 

exergy efficiency for a Linde-Hampson cycle liquefaction system while evaluating system 

components that would have the greatest impact on energy and exergy. Willis (2019) used 

industrial process modeling and simulation software, Aspen HYSYS, to model a Linde-

Hampson cycle system for a building sized system to generate a parametric model for 

application into the NPS microgrid system. A model based system’s engineering approach 

was then applied by Amalla (2019) to recommend improvements to the Linde-Hampson 

system through changes in the heat exchanger design. Functional requirements were 

established by Bailey (2019) along with an examination of significant system factors. 

Modeling and simulation was also used by Girouard, Pollman, and Hernandez (2019) to 

determine commercial components that could be used to prototype a new Linde- Hampson 

system at the TPL. Girouard (2019) also evaluated a Stirling cryocooler system assessing 

LAES container design and establishing an empirical relationship for liquid air generation 

based on system input power and container volume. Finally, Bailey, Pollman, and Paulo 

(2020) examined the used of dual Stirling engines for generation and recovery of liquid air 

energy where experimentation allowed the comparison against an ideal Stirling cycle and 

the calculation of energy recovery. Building off these previous efforts, this thesis seeks to 

expand on these previous works and contribute to the ongoing microgrid and LAES work 

at NPS by examining system design impacts to the Stirling engine based cryocooler 

generation process.  
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D. PROBLEM EXAMINATION 

As a relatively new energy storage technology, significant challenges with LAES 

still need to be addressed to increase its efficiency and make it a viable option relative to 

other traditional energy storage mechanisms. Analysis of previous research results on the 

creation of liquified air for an islanded microgrid system at NPS has shown a consistent 

but low production of liquified air when using a Stirling cycle based cryocooler. Low 

production constrains the amount of energy that can be stored and later recovered as 

electrical energy. It is hypothesized that the limiting factor in the production of liquid air 

using the setup later discussed in this thesis was due to the limited cold surface area 

available to interact with gaseous air and convert into liquid air. Therefore, an evaluation 

of system elements relative to the size of the cryocooler’s cold finger and the size of the 

liquid air production Dewar, which is a vacuum insulated container, seeks to determine if 

these are critical factors and their relative impact on system performance. 

E. SYSTEMS ENGINEERING RELEVANCE 

The goal of this effort is to support the engineer’s understanding of the constraints 

or boundaries of the liquid air generation and storage components used for the proposed 

microgrid. This effort is conducted in alignment with the systems engineering V model as 

outlined by Forsberg and Mooz (1992) and shown in Figure 2. The V model is a system 

engineering process model that begins with a need in the top left which is decomposed and 

defined to develop hardware/software. The model then progresses through an integration 

and verification sequence to arrive at a fully operational system.  
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Figure 2. Systems Engineering V-Model. 

Adapted from Forsberg and Mooz (1992). 

This thesis works within the bottom of the V model, as outlined by the dashed line 

in Figure 2, with the goal to develop the design details of the liquid air production 

cryocooler and storage component and implement this design into a subsystem hardware 

development solution. This thesis effort tests this hardware to verify that components meet 

the design details before progressing higher in the V model. The proposed hardware 

solutions that are evaluated differ in two design aspects with the first being the cryocooler’s 

cold finger size and the second being the size of the liquid air production Dewar. A test 

plan for these designs is laid out using a design of experiments to evaluate how changes in 

these factors and/or two-way interactions between factors will affect important system 

output measures. The analysis of this data supports improved efficiency and integration 

into the completed microgrid system. 
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II. EXPERIMENTATION 

This thesis documents an experimental approach to gather evidence and answer the 

proposed research problem. This approach addresses if increasing the surface area of the 

Stirling cycle based cryocooler’s cold finger affects the average production rate and total 

volume of liquid air production measured as mass. Supporting this analysis was an 

evaluation of the minimum cold finger temperature that can be achieved by the cryocooler 

along with the elapsed time to when the system creates its first gram of liquid air. 

Experiments were conducted using a similar setup to the one used in previous work 

conducted at NPS and documented in the thesis “Model-Based and Experimental Analysis 

for Future Liquid Air Energy Storage Systems” to ensure consistency in analysis as this 

research builds on previous efforts and supports future development of microgrid structures 

at the NPS TPL (Girouard 2019).  

A. CONCEPT  

LAES systems work through several different processes; however, the general 

concept uses electricity to operate machinery that cools ambient air below its condensation 

point which causes the air to liquefy. As the air liquefies, it is contained in a vacuum 

insulated container. This liquid air can then later be used to generate electric power through 

different means such as heating and expanding the liquid air into a gas that is run through 

a turbine or by the use of a temperature differential using a Stirling engine. Functional 

modeling of a LAES system provides a structured depiction of the functions, activities, and 

processes as shown in Figure 3.  
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Figure 3. IDEF0 Functional Model for LAES System 

This figure shows that the three primary functions of LAES are the creation of 

liquid air, the storage of liquid air, and the recovery of energy from the liquid air. In this 

thesis, the mechanism for generating liquid air is a Stirling cryocooler. For the function of 

storing liquid air the mechanism is a Dewar, and the function of recovering electrical power 

from this system is not evaluated as this part of the system is outside the scope of the 

problem statement.  

The Stirling engine was conceived by Robert Stirling in 1816. This engine is 

typically an external combustion, closed-cycle, regenerative heat engine where the working 

gas is contained within the system and heat energy is converted to mechanical work. The 

process works through the Stirling cycle which consists of four phases. In the first stage, 

the gas is compressed in the cold section. It is then moved to the hot section where heat is 

applied to raise the temperature and expand the gas. The expanding gas works against a 

piston creating a driving force or work. Finally, the gas is returned to the cold end to start 

the cycle again. The thermodynamic principle for this operation is shown in the pressure 

volume (PV) diagram in Figure 4, which consists of isothermal compression (a to b), a 

isochoric process (b to c), isothermal expansion (c to d), and a isochoric process (d to a) 

(Shaw 2008). 
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Figure 4. Stirling Cycle PV Diagram. Source: Shaw (2008). 

Based off this cycle, the mechanical components vary based on the configuration 

of the engine but typically consist of a hot and cold end with one or more pistons that drive 

the fluid between the hot and cold sides and extract work from the system based on a 

mechanical connection as shown in Figure 5. This engine type is unique in that this system 

can be reversed to convert mechanical work into a thermal differential thereby creating a 

heat pump as demonstrated by Philips Research Laboratory in the Netherlands in 1938 

(Kohler 1965).  
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Figure 5. Two Stirling Engine Configurations. Source: Kohler (1965). 

By removing the external heat source from the original Stirling engine and driving 

the system with an external power source, this results in the Stirring cycle continuing to 

function but in reverse by absorbing heat in the expansion phase (Kohler 1965). This 

method results in a heat pump, as heat is transferred from the expansion side to the 

compression side of the engine. Therefore, as a cooling system, this allows for the ability 

to achieve very low temperatures while having relatively high efficiencies at the 

temperature necessary to liquify air as shown in Figure 6. This high efficiency results in, 

theoretically, less energy needed to produce the temperatures necessary to create liquid air, 

which is important for a microgrid system. This process is the basis for Stirling engine 

based cryocoolers that allows the expansion side to be placed into an insulated container 

resulting in the heat, within the container, being pumped out through the cryocooler and 

into the environment. Therefore, if this container is open for ambient air, then the air within 

the container will be cooled and condensed into liquid with new air flowing into the 

container to be cooler and condensed continually as long as work is applied to the system. 
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Figure 6. Cooling Efficiencies. Adapted from Kohler (1965). 

In order to begin to liquefy air at atmospheric pressure, the temperature must reach 

at least 81.6 K (Schroeder 2000). This temperature is because air is a mixture of two 

primary elements being 78% nitrogen and 21% oxygen; therefore, the boiling point will be 

a temperature between the boiling points of these two elements. Pure oxygen’s boiling 

point is 90.15 K while pure nitrogen has a boiling point of 77 K (Halliday, Resnick, and 

Walker 2014). Because of this, oxygen condenses sooner than nitrogen, which results in 

an initially oxygen rich solution as shown in Figure 7. 
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Figure 7. Phase Diagram for Atmospheric Air. Source: Schroeder (2000). 

Figure 7 illustrates that as the temperature of the air decreases to 81.6 K as shown 

by the top vertical line, liquid begins to condense and follows the dotted line to the right. 

The bottom curve shows that initially the liquid condensing is 48% oxygen as shown on 

the x axis (Schroeder 2000). As the temperature continues to decrease, “the gas becomes 

depleted of oxygen and its composition follows the upper curve, down and to the left while 

the composition of the liquid follows the lower curve” also down and to the left (Schroeder 

2000, 194). The continued drop in temperature results in the nitrogen/oxygen ratio 

increasing back to the original atmospheric ratio once 79.0 K is reached. Therefore, the 

goal in this experimentation and in a LAES system is to reach and maintain a temperature 

of 79.0 K to ensure an atmospheric mixture of liquid air.  

B. COMPONENTS 

The primary component for these experiments is a Stirling cryocooler used to cool 

the ambient air in a Dewar to the point that the air begins to liquefy. The cryocooler used 

is a Cryotel GT cryocooler, as shown in Figure 8, which is a commercially available free-

piston Stirling engine cryocooler previously purchased for work on liquid air energy 

generation and storage at NPS. This cryocooler takes electricity and converts it into linear 
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motion for a Stirling engine, which results a thermodynamic cycle that pumps heat from 

the cold finger at the bottom to the finned radiator at the top (Sunpower Inc. 2016). Heat is 

then rejected from the cryocooler by a separate fan positioned above the cryocooler to blow 

ambient air over the cryocooler’s radiator fins extending from the hot side of the 

cryocooler. Attached to the cold finger is a Lake Shore PT-111 Platinum Resistance 

Temperature Detector (RTD) that reads the resistance and converts this signal into a 

temperature to allow the monitoring of the cold tip temperature. 

 
Figure 8. CyoTel GT Cryocooler 

The cold finger on the cryocooler consists of an extension with a copper cold tip 

designed as a mounting flange that allows the cold tip to be secured onto different surfaces. 

This flange includes four tapped M4 threaded bolt holes that allow the attachment of 

cylinders of copper used to increase the cold finger’s surface area as shown in Figure 9.  
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Figure 9. Cold Finger Extension 

99.9% pure copper was chosen as the material to increase the surface area of the 

cold finger based on its high thermal conductivity of 401 W/m*K, which is significantly 

greater than other commonly available and affordable metals such as steel, brass, or 

aluminum that range from only 14 to 235 W/m*K (Halliday, Resnick, and Walker 2014). 

Additionally, because the cold tip is also copper, the incorporation of a copper surface area 

extension prevents any problems with dissimilar metal during heating/cooling expansions 

and contractions ensuring constant contact with the cold tip for maximum heat pumping. 

Consideration was also given to the RTD mounting interface on the cryocooler cold tip by 

milling minimal and matching reliefs into the copper cylinders so that there would not be 

any contact between the RTD and the copper cylinders. The relief cut ensures that the 

cryocooler’s feedback loop through the RTD would not be impacted by the addition of 

each extension and the cryocooler would function the same for all experiments as shown 

in Figure 10. 

 



17 

 
Figure 10. Cold Finger Extensions Mounted on Cryocooler 

The Dewars used in the experiments are commercially available vacuum insulated 

beverage containers that are repurposed for the generation and storage of liquid air by 

suspending the cryocooler’s cold finger within the container. The chosen Dewars are a 

HydroFlask 354 mL (12 oz) container and a HydroFlask 473 mL (16 oz) container shown 

in Figure 11. These two Dewars were selected based on several factors. First, previous 

research at NPS indicated that these Dewars were functional components for producing 

liquid air (Girouard 2019). Next, they were both made by the same manufacturer and 

materials, which minimizes variability between production process and designs to 

minimized uncontrolled experimental factors. Finally, the two sizes allow for the analysis 

of Dewar size independently while maintaining a constant air volume by proportionally 

changing the cold finger size.  



Figure 11. HydroFlask Dewars 

To account for the effect of changing the Dewar’s internal volume as the cold 

finger’s surface area is increased, the two copper cylinders were machined to have the same 

Dewar internal air volume when installed. To accomplish this, the two copper cylinders 

were machined from the same block of 99.9% pure copper to 5.08 cm in diameter. The 

small cylinder was machined to a length of 1.0 cm and the large cylinder to 6.875 cm as 

shown in Figure 9. These efforts resulted in the small cylinder having a volume 

measurement of 20.3 mL and, when installed into the 354 mL HydroFlask, reduced its 

internal air volume to 333.7 mL. The large cylinder resulted in a volume measurement of 

139.3 mL, which when placed into the 473 mL HydroFlask, reduced its internal air volume 

to a corresponding 333.7 mL. These cylinders were then drilled to allow three small M4 

hex head screws to be used to secure the cold finger extension onto the cryocoolers cold 

tip. The small cylinder increased the cold finger’s surface area by 56.5 cm2 and the large 

cylinder by 150.3 cm2.  

Power was supplied to the cryocooler with a TekPower TP6010E DC power supply, 

rated at 60 volts and 10 amps as shown in Figure 12, which is able to provide the maximum 
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power of 240 watts to the cryocooler. Power was delivered using a constant voltage setting 

of 48 volts with the amperage varying based on system demand. 

 
Figure 12. TekPower TP6010E DC Power Supply 

System power was monitored by placing a Rcharlance 150A power monitor shown 

in Figure 13 between the supply and the controller (Rcharlance 2020). 

 
Figure 13. Rcharlance 150A Inline Power Monitor 

Controlling the cryocooler was a SunPower Gen II controller shown in Figure 14 

that automatically adjusts the power applied to the cryocooler based on the temperature 

feedback loop from the RTD installed on the cold finger (Sunpower Inc. 2016). The 

controller was connected using a RS-232 serial communications cable to a desktop 

computer that allowed the execution of the controller’s software interface. The controller’s 

interface allows operating parameters such as power level or desired cold tip temperature 

to be specified and monitored.  
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Figure 14. Cryocooler Controller 

During these experiments, the desired maximum system power level of 240 watts 

was set using the user interface and the controller was allowed to adjust and monitor power 

delivery to the cryocooler to ensure normal safe operation of the equipment while 

maintaining the desired power output. A power level of 240 watts ensured the system was 

operating at its maximum design capabilities and the cryocooler was continually working 

to achieve its minimum temperature of 40 K, therefore, maximizing the heat pumping and 

possibility for liquid air generation (Sunpower Inc. 2016).  

C. SETUP  

The components for the experiments were assembled as shown in Figure 15 by first 

utilizing a large circular plexiglass base approximately 30 cm in diameter to act as the 

support surface for the cryocooler and wind guard for the Dewar where the liquid air would 

be produced.  
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Figure 15. Experimentation Setup 

The center of the plexiglass base was cut out just large enough (approximately 7.6 

cm) to allow just the cryocooler cold finger to pass through. The flange on the cryocooler 

then rested on plexiglass allowing the cold finger portion of the cryocooler to extend below 

the plexiglass base and the plexiglass to support the weight of the cryocooler while 

physically separating the hot top portion of the cryocooler from the cold bottom portion of 

the cryocooler as seen in Figure 8. The plexiglass base was then mounted to two laboratory 

stands with height-adjustable supports to hold the plexiglass base with suspended 

cryocooler. The RTD was then coated with Corsair TM30 Performance Thermal Paste and 

attached to one of the four cold tip mounting holes with a hex head bolt. A copper cold 

finger extension was then coated with the same thermal conductive paste and attached 

using three hex head screws to the underside of the cryocoolers cold finger’s mounting 

flange as shown in Figure 9. 
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Below the cryocooler, the Dewar was placed on top of a J Scales J-600 mass balance 

with a 0.1g precision and 600g capacity (J Scales, 2020). The assembly with the cryocooler 

was then lowered on the laboratory stands so that the cryocooler’s cold finger suspended 

inside the Dewar without touching the Dewar. An air gap of 0.5 cm was maintained on all 

experiments between the bottom of the plexiglass plate and the top of the Dewar to allow 

ambient air to enter the Dewar, be chilled by the cold finger, and condense into liquid air. 

The liquid air would then drip off the cold finger and be captured in the Dewar with the 

mass of the changing quantity of liquid air being evaluated using the mass balance on which 

the Dewar sat.  

Above the cryocooler a fan was mounted to the top of one of the laboratory stands. 

The fan was positioned so that it drove its air vertically downward over the top of the 

cryocooler. The flow ensured full 360-degree circulation of ambient air past the 

cryocooler’s radially extended and vertically oriented radiator fins. This positioning 

allowed for the continuous rejection of heat from the cryocooler with the plexiglass 

blocking this heat from being blown into the vicinity of the Dewar. 

The experiment’s electronics were setup as shown in Figure 16 by first soldering 

the RTD’s cabling to a 6-socket connector (P/N 277–1434-ND) based on the directions in 

the cryocoolers instruction manual and connected to the Gen II controller (Sunpower Inc. 

2016). The connection provided the cold tip temperature readout, through the system 

software, and power regulation by the controller through a temperature feedback loop. 

Next, the cryocooler’s two-wire power cable was soldered to the corresponding inline 

power monitor’s wires and then connected to the controller’s power output side power wire 

posts. The plug side of the power cable attached to the cryocooler and was secured with a 

M3 x 12 socket head cap screw. Finally, a RS-232 serial communications cable with the 

14-pin male input/output connector was plugged into the controller and the 9-pin-D 

connector plugged into a serial interface port on a Windows based desktop computer. 
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Figure 16. Electronics Setup 

The Window’s interface for controlling the cryocooler used a free terminal 

emulation software called PuTTY. After setting the configurations in PuTTY to recognize 

the controller, the controller was able to be operated with simple programed codes. These 

codes allow the startup/shutdown of the cryocooler, monitoring of the cold tip temperature, 

and the setting of desired cold tip temperature or desired power output, which were 

essential to operating the system and capturing experimental data. 

D. PROCEDURES 

Each experiment was conducted by starting with a room temperature system. Start 

conditions required that the cryocooler, cold finger extensions, and Dewar were all the 

same temperature as the ambient temperature. These temperatures were confirmed with a 

Sper Scientific 800103 laser thermometer and against the RTD as read through the 

controller’s interface software. Each system was also checked to ensure it was dry and free 

of any moisture, contaminates, or condensation. Next the selected cold finger extension 

was installed onto the cold tip with a thin film of thermal paste using hex head bolts. This 

system was then lowered down the laboratory stands over the selected Dewar resting on 
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the mass balance while ensuring the correct spacing between the plexiglass shield and the 

top of the Dewar with no contact between the Dewar and cryocooler components.  

The cryocooler was then started using the controller interface software. Once the 

cryocooler was operating, two timers were started. The first timer was used to keep track 

of the time to first gram of liquid air produced and the second used to keep 10-minute 

intervals to record the temperature of the cold finger and the mass of the liquid air 

produced. Each experiment was run for two hours providing 12 data points for the produced 

liquid air mass on each experiment.  

E. DESIGN OF EXPERIMENT 

A design of experiments (DOE) was used to produce data that would support the 

use of traditional statistical techniques. Data was analyzed to produce the quantitative 

responses of average production rate in grams per minute and the total production of liquid 

air as measured by mass in grams. A two-level DOE was utilized for this type of analysis 

that assumes an approximately linear or monotonic response because the intent was to 

simply determine if the change was significant or not (Law 2015).  

The two controllable factors analyzed were Dewar sizes and surface area creating 

a 22 factorial design that generates two levels for each of the two factors. This experimental 

design is useful for specifically screening out non-critical factors by examining the extreme 

values for the factor. For the factor of Dewar size, the two levels are the 354 mL and the 

473 mL volumes of the two HydroFlasks. The two levels for the cold finger surface area 

were the small copper cold finger extension with a height of 1 cm and the larger copper 

cold finger extension with a height of 6.875 cm. These configurations were chosen so that 

the designs were different enough to stimulate a response but yet not so different that the 

design parameters were not realistic (Law 2015).  

Using the statistical analysis software Minitab, a DOE was prepared using the two-

factor, two-level design. Three replications of each design parameter were chosen to 

increase the sample size available for analysis. Through this, a design matrix was created 

as shown in Table 1. 
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Table 1. DOE Design Matrix 

 
 

The run order output from Minitab was used to randomize the experimentation to 

minimize systematic bias due to effects such as changes in environmental conditions (Law 

2015). Using this design matrix, each experiment was conducted according to the order 

and configuration in Table 1 and the experiment setup in Figure 15, then was executed 

according to the procedures.  

  

StdOrder RunOrder CenterPt Blocks Finger Size Dewar Vol  
9 1 1 1 Small 354 mL
2 2 1 1 Large 354 mL

10 3 1 1 Large 354 mL
7 4 1 1 Small 473 mL

12 5 1 1 Large 473 mL
1 6 1 1 Small 354 mL
4 7 1 1 Large 473 mL
8 8 1 1 Large 473 mL
5 9 1 1 Small 354 mL
6 10 1 1 Large 354 mL
3 11 1 1 Small 473 mL

11 12 1 1 Small 473 mL
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III. RESULTS AND ANALYSIS 

The intent of this analysis was to evaluate if the factors of cold finger size and 

Dewar volume, as independent variables, have a significant effect on the dependent 

variables of average liquid air production and final mass produced. In addition, the analysis 

assessed the strength of the independent variables’ effect on the dependent variables. 

Finally, aiding this analysis was an evaluation of supporting factors such as the time to first 

gram of liquid air produced and the minimum cold tip temperature. This additional 

assessment helped determine if these factors are significant design considerations in a 

future LAES system. Therefore, the raw data from the 12 experiments were captured using 

a spreadsheet program and are listed in Appendix A. The computed data was then 

transferred over into the DOE design matrix in Minitab as seen in Table 2 for statistical 

analysis based on a confidence level of 0.95.  

Table 2. DOE Data 

 
 

The first factor analyzed was the average production rate. This rate was found by 

averaging the production rate of each experiment over a standardized period of time. 

Considering that each experiment started producing liquid air at different times due to the 

Finger 
Size

Dewar 
Vol

AVG Rate 
(g/min)

Final Mass 
(g)

Time to 1st 
Gram (sec)

Min Tip 
Temp (K)

Small 354 mL 0.9375 89.7 1487 80.46
Large 354 mL 1.1225 56.9 4225 81.14
Large 354 mL 1.0975 54.9 4231 81.13
Small 473 mL 1.0575 101.8 1340 80.36
Large 473 mL 1.065 53 4323 81.08
Small 354 mL 0.9275 88.2 1453 80.44
Large 473 mL 1.0825 55.2 4186 81.12
Large 473 mL 1.215 67.8 4064 81.04
Small 354 mL 1.0075 102.6 1148 80.40
Large 354 mL 1.08 58.9 3967 81.21
Small 473 mL 1.04 105.2 1187 80.39
Small 473 mL 1.02 102 1294 80.42
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different variables in the experiments, a period from 80 to 120 minutes was chosen because 

all experiments were fully operating during this period. Using this time period, an average 

production rate over 40 minutes could be equally evaluated across all experiments. From 

here, a Pareto chart for the average production volume response in grams per min (g/min) 

was generated to determine critical factors as shown in Figure 17.  

 
Figure 17. Average Production Pareto Chart 

Figure 17 illustrates that the cold finger size was a critical and statistically 

significant factor in the average production rate of liquid air as it crossed the reference line 

at 2.306. The other factor of the Dewar volume and the interaction of cold finger size and 

Dewar volume were not found to be critical factors. For all experiments, a two-way 

interaction between the factors prove to be insignificant. This evaluation was reinforced 

with the results of an ANOVA, two-factor with replication, statistical evaluation in 

Microsoft Excel as shown in Table 3.  
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Table 3. ANOVA Table for Average Production Rate 

ANOVA      
Source of 
Variation SS df MS F P-value 

Finger size 0.03769 1 0.03769 15.9773 0.00397 
Dewar Volume  0.00788 1 0.00788 3.34047 0.10501 
Interaction 0.00278 1 0.00278 1.17664 0.30965 
Within 0.01887 8 0.00236   
      
Total 0.06721 11       

 
The ANOVA was used as a simple statistical method for determining whether the 

main effects and two-way interaction of the two factors were significant to the resultant 

measures. The ANOVA isolates each factor in a hypothesis test that initially asserts that 

the mean output measure is the same regardless if the factor value is on one extreme or the 

other, i.e., the factor has no effect. The alternative is that there is some statistical difference 

between the measure means. The test statistic is the F-value that results based on the 

observed data from the experiments. A large F-value results in rejecting the null hypothesis 

in favor of the alternative hypothesis. For instance, cold finger size results in an F-value of 

15.9773. The probability that a value this extreme would be seen if the null hypothesis 

were true is 0.00397, which we call the p-value. Because this probability is very small, 

smaller than the significance level chosen, we state that the factor, cold finger size, is 

statistically significant and will influence the output measure. 

To examine the direction of each factor a main effects plot is generated in Minitab 

as shown in Figure 18. The plot indicates that as both the cold finger size and Dewar 

volume are increased, there is a positive effect on the average production volume. The cold 

finger size displays a greater magnitude of change as it is the significant factor. Therefore, 

if the maximum average production rate of this experimental setup would be desired, the 

larger cold finger and large Dewar would be selected but only the larger cold finger would 

have a statistically significant impact on the production rate.  
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Figure 18. Main Effects Plot for Average Production Rate 

Similar analysis was then conducted for the final liquid air production mass after 

120 minutes of run time with a Pareto chart created in Minitab. Figure 19 shows that just 

the cold finger size was a critical and significant factor to the final produced mass of liquid 

air by crossing the reference line at 2.31. Again, the Dewar volume and the interaction of 

the cold finger size and the Dewar volume was determined to not be a critical factor as 

these fell below the reference line.  
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Figure 19. Final Production Mass Pareto Chart 

An analysis of the ANOVA, two-factor with replication, Microsoft Excel table 

supported this finding as shown in Table 4. The hypothesis test asserts that the mean output 

measure is the same with the alternative being that there is some statistical difference 

between the measure means. In this instance, cold finger size results in an F-value of 

146.5552. The probability that a value this extreme would be seen if the null hypothesis 

were true is the p-value of 2E-6. Because this probability is very small, and smaller than the 

significance level chosen, we state that the cold finger size factor is statistically significant 

and will influence the output measure. 

 

 

 

 

 

Term

AB

B

A

121086420

A Finger Size
B Dewar Vol

Factor Name

Standardized Effect

2.31

Pareto Chart of the Standardized Effects
(response is Final Mass, α = 0.05)
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Table 4. ANOVA Table for Final Production Mass 

ANOVA      
Source of 
Variation SS df MS F P-value 

Finger size 4912.65 1 4912.653 146.5552 2E-06 
Dewar Volume 95.2033 1 95.20333 2.840124 0.130427 
Interaction 44.8533 1 44.85333 1.338073 0.280745 
Within 268.167 8 33.52083   
      
Total 5320.88 11       

 
Figure 20 shows a main effects plot generated in Minitab to examine the direction 

of each factor. The plot shows that as the cold finger size is increased, the final production 

mass of liquid air will be lower. Alternatively, as the Dewar volume is increased, there will 

be a slight increase in the final production volume of liquid air but not a statistically 

significant amount. Therefore, if the maximum final production volume of this 

experimental setup would be desired, the smaller cold finger would be selected.  

 
Figure 20. Main Effects Plot for Final Production Volume 
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Analyzing the time to when the system created its first gram of liquid air also 

provides insight into the system’s effectiveness. Using Minitab, the Pareto chart for this 

response was generated as shown in Figure 21. The chart shows that cold finger size was a 

very significant factor and the only critical factor relative to the time the first gram of liquid 

air was produced. 

 
Figure 21. Time to First Gram Pareto Chart 

The other factor of Dewar volume or the interaction between the two factors was 

not shown to be critical. Examining the direction of each factor with a main effects plot in 

Minitab as shown in Figure 22 support this analysis. The plot shows that as the cold finger 

size increases, then the time to produce the first gram of liquid air significantly increases 

as indicated by the steep slope of the cold finger size portion of the chart. The Dewar 

volume portion of Figure 22 also corresponds and supports the finding in Figure 21 as 

changes in the Dewar volume had no statistically significant impact on the time to first 

gram produced.  

 

Term

B

AB

A

35302520151050

A Finger Size
B Dewar Vol

Factor Name

Standardized Effect

2.31

Pareto Chart of the Standardized Effects
(response is Time 1st Gram, α = 0.05)
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Figure 22. Main Effects Plot for Time to First Gram 

The analysis of the time to first gram produced differs slightly from the findings for 

the other factors. The Pareto Chart shown in Figure 23 shows that the most statistically 

significant factor was the cold finger size with the Dewar volume also be statistically 

significant but to a lesser degree.  
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Figure 23. Minimum Tip Temperature Pareto Chart 

Evaluating the direction of each factor, the main effects plot for the minimum cold 

tip temperature is shown in Figure 24. The plot shows that as the cold finger size increases, 

then the minimum temperature the system is able to generate in the experiment’s two-hour 

time period is higher. The Dewar volume portion of Figure 24 also shows that the larger 

Dewar supports a lower temperature for the cryocooler’s cold finger but within a much 

reduced range when compared to the cold finger size. Considering the finding in the 

analysis of time to first gram produced, the higher temperatures found in the larger cold 

finger extension correspond with the significant size and mass of the larger cold finger. 

Compared to the smaller cold finger extension, a larger body such as the large cold finger 

extension will take longer to cool than a smaller body, all other factors being equal. 
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AB

B

A
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(response is Min Tip Temp, α = 0.05)
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Figure 24. Main Effects Plot for the Minimum Tip Temperature 

This analysis can then be condensed into a summary view shown in Table 5 to 

provide a clear picture of the results due to these factors. 

Table 5. Analysis Summary 
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Response
AVG Production 
Rate

Final Mass Time to 1st Gram 
Produced

Min Tip 
Temperature

Factor Finger Size Significant Significant Significant Significant

Impact Increasing size 
increases average 
production

Decreasing size 
increases final 
volume

Decreasing size 
decreases the 
time to first gram 
produced

Decreasing size 
lowers the 
minimum 
temperature the 
tip can reach

Dewar Vol Not Significant Not Significant Not Significant Less Significant
Impact N/A N/A N/A Increasing the size 

lowers the 
minimum 
temperature the 
tip can reach
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The table reveals the cryocooler’s cold finger size is a very significant factor in all 

responses measured. Increasing the size of the cold finger results in higher average 

production rates due to the larger surface area available to cool the air in the Dewar. The 

larger cold finger also results in increased time to the first gram of liquid air produced due 

to the larger cold finger’s increased mass taking longer to reach the temperature where 

liquid air is produced. Increasing the size of the cold finger also limits the minimum cold 

tip temperature when operated for only two hours as compared to the smaller cold finger 

due to the larger mass of the large cold finger still cooling down. This combination of 

factors results in a lower final volume of liquid air produced over a two-hour period 

compared to a smaller cold finger. The Dewar volume was found to be a significant factor 

in only the minimum temperature the cold tip can achieve. The analysis shows that 

increasing the Dewar volume would result in lower minimum cold tip temperatures over 

two hours of operation. However, the response to this factor was significantly less than the 

response to the changes in cold finger size. These findings support design criteria for future 

engineering efforts on the NPS LAES microgrid system.  
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IV. CONCLUSION, RECOMMENDATIONS, AND FUTURE 
WORK 

This thesis analyzed the significance of a cryocooler’s cold finger surface area and 

Dewar volume as part of a component design for a LAES system supporting ongoing 

analysis of microgrid technologies in the Turbo-Propulsion Laboratory at the Naval 

Postgraduate School. This effort applied the bottom of the system engineering V model to 

characterize and verify component design details before progressing along in the model to 

subsystem and system design for a microgrid system. A verification plan for these designs 

was laid out using a design of experiments to test and then evaluate the statistical 

significance to changes in these factors. 

Through this effort, the experiments found that changing the characteristics of a 

cryocooler’s cold finger has a statistically significant impact on liquid air production rates, 

total production volume, time to first gram produced, and minimum cold finger 

temperature. On the other hand, changing the container size had only a slight effect on the 

minimum cold finger temperature. The implications of this analysis for a system’s engineer 

considering a liquid air production system design would, therefore, mainly focus on the 

factor of cryocooler cold finger design based on the significant impact of this factor.  

Overall, LAES systems are a favorable energy storage technology for a mobile 

microgrid structure due to their high energy density, high round-trip efficiencies, use of 

common industrial materials, and no geographic limitations that are inherent to other 

storage technologies. The incorporation of LAES into renewable energy microgrid 

structures mitigates the characteristic problem of renewable energy’s intermittent 

generation and the need to move excess power from low demand times to high demand 

times to support a continuous electrical supply. In turn, this supports the DOD’s focus on 

energy resilience, conservation, and a reduced logistical burden from tradition fossil fuel 

derived energy generation methods.  
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A. RECOMMENDATION 

An evaluation of a LAES system requirements, operating environment, and 

stakeholder needs along with the analysis in this thesis would help guide a system engineer 

based on the following recommendations. If fast liquid air production startup was 

determined to be a desired system attribute because of short excess power availability or 

many intermittent power intervals, then a cryocooler design that takes advantage of a 

smaller cold finger extension would minimize the cool down time for the system. The DOE 

found that this would result in a lower average production volume rate but would start to 

produce liquid air much sooner by reaching the condensation point faster. Therefore, if the 

system would only operate for a limited time, then liquid air production would be 

maximized by starting production sooner rather than trying to maximize the average 

production rate.  

Alternatively, if an evaluation of a system’s operating environment indicated that 

longer excess power intervals were normal, then there could be a benefit to the greater 

surface area of a larger cryocooler cold finger as it increases average production rates. 

However, as indicated in the DOE, this increase in average production would come at the 

expense of a longer startup time. The DOE revealed that the larger cryocooler cold finger 

extension was not able to achieve the same minimum temperature as a smaller cold finger 

extension; however, that analysis was purely in the context of a fixed two hour time block 

of operation for the experimentation in this thesis. In evaluating the last 40 minutes of run 

time data for the cold finger temperature, all runs were continuing to decrease in 

temperature and had not stabilized at their steady-state temperature. Therefore, it is 

believed that a larger cryocooler cold finger extension would still permit reaching the 

desired temperature of 79 K to full liquefy all primary elements of atmospheric air. This 

theory supports the assertion that this type of subsystem design would be more beneficial 

in a system that would be expected to have longer run times to account for the slower cool 

down characteristics but take advantage of larger average production rates.  
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B. FUTURE WORK 

Future work on LAES systems could include control systems that optimize the 

generation of liquid air production based on environmental conditions or forecasts, an 

evaluation of the energy recovery side of a LAES using a Stirling engine, or continued 

improvements of the cold finger extension. Considering that this work only analyzed one 

aspect of cryocooler cold finger design, other variables could significantly impact liquid 

air production to include changing materials, improving contact between the cold finger 

and the extension, or different physical designs for the cold finger extension similar to 

common heat exchanger designs.  
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APPENDIX. DATA 

 
 

Experiment Small Dewar Hydro Flask
Run Number 1 Size (mL) 354

Ambient Temp (K) 299.75 Mass (g) 225.7
Power Setting (W) 240

Time to first gram (sec) 1487 24 min 47 sec

Time Tip Temp (K) Liquid Mass (g)
0 302.01 0
10 113.66 0
20 81.06 0
30 80.82 5.1
40 80.72 14.5
50 80.67 23.9
60 80.64 33.3
70 80.66 42.8
80 80.58 52.2
90 80.54 61.6

100 80.5 71
110 80.47 80.3
120 80.46 89.7
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Experiment Small Dewar Hydro Flask
Run Number 2 Size (mL) 354

Ambient Temp (K) 298.25 Mass (g) 225.7
Power Setting (W) 240

Time to first gram (sec) 1453 24 min 13 sec

Time Tip Temp (K) Liquid Mass (g)
0 300.18 0
10 112.13 0
20 81.06 0
30 80.89 6
40 80.87 15
50 80.77 23.6
60 80.7 32.6
70 80.63 41.8
80 80.55 51.1
90 80.52 60.8

100 80.48 69.8
110 80.45 78.9
120 80.44 88.2
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Experiment Small Dewar Hydro Flask
Run Number 3 Size (mL) 354

Ambient Temp (K) 299.25 Mass (g) 225.7
Power Setting (W) 240

Time to first gram (sec) 1148 19 min 08 sec

Time Tip Temp (K) Liquid Mass (g)
0 301.05 0
10 113.74 0
20 80.83 2.1
30 80.6 12.1
40 80.53 22.1
50 80.47 32
60 80.42 42.1
70 80.57 52.3
80 80.49 62.3
90 80.47 72.3

100 80.45 82.2
110 80.42 92.3
120 80.4 102.6
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Experiment Large Dewar Hydro Flask
Run Number 1 Size (mL) 354

Ambient Temp (K) 301.25 Mass (g) 225.7
Power Setting (W) 240

Time to first gram (sec) 4225 70 min 25 sec

Time Tip Temp (K) Liquid Mass (g)
0 304.58 0
10 253.98 0
20 208.94 0
30 167.17 0
40 134.7 0
50 108.63 0
60 90.2 0
70 81.31 0.9
80 81.21 12
90 81.18 23.2

100 81.16 34.4
110 81.15 45.7
120 81.14 56.9
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Experiment Large Dewar Hydro Flask
Run Number 2 Size (mL) 354

Ambient Temp (K) 299.15 Mass (g) 225.7
Power Setting (W) 240

Time to first gram (sec) 4231 70 min 31 sec

Time Tip Temp (K) Liquid Mass (g)
0 301.41 0
10 246.51 0
20 198.2 0
30 156.68 0
40 123.19 0
50 97.15 0
60 81.42 0
70 81.2 0
80 81.16 11
90 81.17 22

100 81.17 32.9
110 81.15 43.9
120 81.13 54.9
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Experiment Large Dewar Hydro Flask
Run Number 3 Size (mL) 354

Ambient Temp (K) 296.45 Mass (g) 225.7
Power Setting (W) 240

Time to first gram (sec) 3967 66 min 7 sec

Time Tip Temp (K) Liquid Mass (g)
0 298.78 0
10 242.82 0
20 195.17 0
30 154.5 0
40 122.23 0
50 97.45 0
60 81.7 0
70 81.25 4.9
80 81.23 15.7
90 81.22 26.6

100 81.22 37.4
110 81.23 48.1
120 81.21 58.9
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Experiment Small Dewar Hydro Flask
Run Number 1 Size (mL) 473

Ambient Temp (K) 299.45 Mass (g) 230.1
Power Setting (W) 240

Time to first gram (sec) 1340 22 mins 20 sec

Time Tip Temp (K) Liquid Mass (g)
0 301.55 0
10 115.02 0
20 81.05 0
30 80.75 7
40 80.67 18
50 80.6 28.2
60 80.5 38.6
70 80.51 49
80 80.48 59.5
90 80.43 70

100 80.42 80.5
110 80.38 91.1
120 80.36 101.8
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Experiment Small Dewar Hydro Flask
Run Number 2 Size (mL) 473

Ambient Temp (K) 297.65 Mass (g) 230.1
Power Setting (W) 240

Time to first gram (sec) 1187 19 min 47 sec

Time Tip Temp (K) Liquid Mass (g)
0 299.89 0
10 112.5 0
20 80.9 1.2
30 80.71 11.7
40 80.6 22.1
50 80.53 32.5
60 80.52 42.8
70 80.52 53.2
80 80.49 63.6
90 80.45 74.1

100 80.42 84.5
110 80.41 94.9
120 80.39 105.2
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Experiment Small Dewar Hydro Flask
Run Number 3 Size (mL) 473

Ambient Temp (K) 296.65 Mass (g) 230.1
Power Setting (W) 240

Time to first gram (sec) 1294 21 min 34 sec

Time Tip Temp (K) Liquid Mass (g)
0 298.89 0
10 109.97 0
20 80.84 0
30 80.69 10.1
40 80.6 20.3
50 80.57 30.5
60 80.59 40.8
70 80.57 51
80 80.54 61.2
90 80.5 71.4

100 80.46 81.6
110 80.45 91.8
120 80.42 102
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Experiment Large Dewar Hydro Flask
Run Number 1 Size (mL) 473

Ambient Temp (K) 297.65 Mass (g) 230.1
Power Setting (W) 240

Time to first gram (sec) 4323 72 min 3 sec

Time Tip Temp (K) Liquid Mass (g)
0 299.51 0
10 244.31 0
20 197.05 0
30 156.76 0
40 124.16 0
50 98.96 0
60 82.05 0
70 81.17 0
80 81.13 10.4
90 81.11 20.9

100 81.1 31.6
110 81.1 42.5
120 81.08 53
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Experiment Large Dewar Hydro Flask
Run Number 2 Size (mL) 473

Ambient Temp (K) 297.95 Mass (g) 230.1
Power Setting (W) 240

Time to first gram (sec) 4186 69 mins 46 sec

Time Tip Temp (K) Liquid Mass (g)
0 299.82 0
10 245.3 0
20 198.76 0
30 157.84 0
40 125.49 0
50 100.12 0
60 82.7 0
70 81.19 1.2
80 81.17 11.9
90 81.16 22.7

100 81.15 33.6
110 81.13 44.4
120 81.12 55.2
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Experiment Large Dewar Hydro Flask
Run Number 3 Size (mL) 473

Ambient Temp (K) 296.55 Mass (g) 230.1
Power Setting (W) 240

Time to first gram (sec) 4064 67 min 44 sec

Time Tip Temp (K) Liquid Mass (g)
0 299.04 0
10 245.13 0
20 196.89 0
30 155.28 0
40 122.09 0
50 96.68 0
60 81.35 0
70 81.15 7.2
80 81.11 19.2
90 81.08 31.3

100 81.05 43.4
110 81.06 55.6
120 81.04 67.8
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