

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

ADVERSARIAL MACHINE LEARNING FOR
PHYSICAL-LAYER AUTHENTICATION

by

Kenneth W. St. Germain

June 2021

Dissertation Supervisor: Frank E. Kragh

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 June 2021 3. REPORT TYPE AND DATES COVERED
 Dissertation

 4. TITLE AND SUBTITLE
ADVERSARIAL MACHINE LEARNING FOR PHYSICAL-LAYER
AUTHENTICATION

 5. FUNDING NUMBERS

 6. AUTHOR(S) Kenneth W. St. Germain

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 In this dissertation, we propose the use of adversarial machine learning to characterize wireless radio
transmitters for the purpose of physical-layer authentication. Wireless communication systems are quickly
evolving to take advantage of autonomous networking for applications such as 5th generation mobile
networks, Internet of Things, and vehicular-to-everything technologies. Robust and efficient network
security mechanisms are necessary to protect the authenticity of the data and safeguard the integrity of the
greater interconnected network. To this end, we leverage unique channel-dependent differences in received
transmissions, known as channel state information (CSI), to make authentication decisions with machine
learning algorithms. Many physical-layer authentication techniques are not effective when used in the
presence of nefarious users who are able to spoof the underlying physical-layer authentication traits. Our
approach uses adversarial learning to counter malicious actions such as spoofing against legitimate
transmitter CSI, an already difficult characteristic to emulate. We simulated various radio frequency channel
environments and our results indicate that the use of machine learning techniques can produce high
authentication accuracy.

 14. SUBJECT TERMS
physical-layer authentication, PHY authentication, neural network, generative adversarial
network, GAN, cyber, 5G, multiple input multiple output, MIMO, multipath, deep learning

 15. NUMBER OF
PAGES
 177
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

ADVERSARIAL MACHINE LEARNING FOR PHYSICAL-LAYER
AUTHENTICATION

Kenneth W. St. Germain
Commander, United States Navy

BSEE, University of Nebraska at Lincoln, 2000
MS, Electrical Engineering, Naval Postgraduate School, 2005

MS, Space Systems Operations, Naval Postgraduate School, 2013

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2021

Approved by: Frank E. Kragh Chad A. Bollmann
 Department of Department of
 Electrical and Computer Engineering Electrical and Computer
 Dissertation Supervisor and Chair Engineering

 James B. Michael Ric Romero
 Department of Department of
 Computer Science Electrical and Computer
 Engineering

 Preetha Thulasiraman
 Department of
 Electrical and Computer Engineering

Approved by: Douglas J. Fouts
 Chair, Department of Electrical and Computer Engineering

 Orrin D. Moses
 Vice Provost of Academic Affairs

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 In this dissertation, we propose the use of adversarial machine learning to

characterize wireless radio transmitters for the purpose of physical-layer authentication.

Wireless communication systems are quickly evolving to take advantage of autonomous

networking for applications such as 5th generation mobile networks, Internet of Things,

and vehicular-to-everything technologies. Robust and efficient network security

mechanisms are necessary to protect the authenticity of the data and safeguard the

integrity of the greater interconnected network. To this end, we leverage unique

channel-dependent differences in received transmissions, known as channel state

information (CSI), to make authentication decisions with machine learning algorithms.

Many physical-layer authentication techniques are not effective when used in the

presence of nefarious users who are able to spoof the underlying physical-layer

authentication traits. Our approach uses adversarial learning to counter malicious actions

such as spoofing against legitimate transmitter CSI, an already difficult characteristic to

emulate. We simulated various radio frequency channel environments and our results

indicate that the use of machine learning techniques can produce high authentication

accuracy.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Objective . 2
1.2 Authentication . 2
1.3 Physical-Layer Characteristics 4
1.4 Machine Learning in the RF Domain 11
1.5 Machine Learning Algorithms 12
1.6 Generative Adversarial Networks 20
1.7 Contributions of This Dissertation 24
1.8 Organization . 25

2 Literature Review 27
2.1 Physical-Layer Authentication 27
2.2 Machine Learning in Communication Systems. 28
2.3 Authentication Through Machine Learning and CSI 29
2.4 General Adversarial Networks 31
2.5 Summary . 33

3 Adversarial Learning and Authentication 35
3.1 Model for Authentication with CSI 35
3.2 Authentication Hypothesis Test Based on a Threshold 36
3.3 Adversarial System Model. 42
3.4 Simulation . 43
3.5 Accidental Authentication Dataset Results 46
3.6 Nefarious User Dataset Results 51
3.7 Accuracy Comparison of Physical-Layer Authentication Techniques 56
3.8 Summary . 57

4 Multitransmitter Classification 59
4.1 System Model . 59

vii

4.2 SGAN Architecture . 60
4.3 Simulation . 60
4.4 Results . 64
4.5 Summary . 82

5 Multisubcarrier Authentication and Classification 85
5.1 Channel Model . 85
5.2 Authentication with Measured CSI 86
5.3 Semi-Supervised GAN . 86
5.4 The DeepMIMO Dataset . 87
5.5 System Model . 90
5.6 Simulation . 92
5.7 Summary . 99

6 Mobile Channel Prediction and Transmitter Authentication 101
6.1 Channel Model . 102
6.2 Simulation . 106
6.3 Results . 109
6.4 Summary . 114

7 Conclusion 115
7.1 Summary . 115
7.2 Future Work . 118

Appendix: Neural Network Essentials 121
A.1 Linear Regression . 121
A.2 Linear Classification . 124
A.3 Activation Functions . 125
A.4 Neural Networks . 129
A.5 Summary . 135

List of References 137

viii

Initial Distribution List 153

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Figures

Figure 1.1 Alice and Bob mutually authenticating in the presence of Eve. . . 3

Figure 1.2 Amplitude and IQ imbalance for 64-quadrature amplitude modula-
tion (QAM) (a) before and (b) after 3 dB amplitude and 15 degree
phase imbalance. 5

Figure 1.3 MIMO narrowband channel model and CSI matrix. Adapted
from [38]. 7

Figure 1.4 One-class machine learning algorithm examples. Source: [62]. . . 14

Figure 1.5 Recurrent neural network. Source: [71]. 17

Figure 1.6 LSTM and GRU cell. Source: [71]. 18

Figure 1.7 Generative adversarial network. Source: [87]. 21

Figure 1.8 Training a semi-supervised generative adversarial network with N
classes. Adapted from [38]. 22

Figure 1.9 CGAN training architecture. Adapted from [71]. 23

Figure 2.1 Training and testing locations in two different rooms. Adapted
from [112]. 29

Figure 3.1 Measured 2x2MIMOCSI elementswith receiver noise. Source: [87]. 37

Figure 3.2 Joint density function and threshold for authentication. 40

Figure 3.3 Probability of authentication for various MIMO configurations and
thresholds. Source: [87]. 41

Figure 3.4 Samples from the (a) accidental authentication and (b) nefarious
users test datasets at 20 dB SNR. 46

Figure 3.5 GAN discriminator performance against accidental authentication
test dataset with SNR levels at (a) 0 dB, (b) 4 dB, (c) 8 dB, (d) 10 dB. 47

xi

Figure 3.6 Hypothesis performance against accidental authentication test dataset
with I = 5_ 1

2 and SNR levels at (a) 0 dB, (b) 4 dB, (c) 8 dB, (d) 10 dB.
. 48

Figure 3.7 Hypothesis performance against accidental authentication test dataset
with I = 4_ 1

2 and SNR levels at (a) 0 dB, (b) 4 dB, (c) 6 dB, (d) 8 dB.
. 48

Figure 3.8 Hypothesis performance against accidental authentication test dataset
with I = 3_ 1

2 and SNR levels at (a) 0 dB, (b) 2 dB, (c) 4 dB, (d) 6 dB.
. 49

Figure 3.9 LOF confusionmatrices against accidental authentication test dataset
with SNR levels at (a) 0 dB, (b) 2 dB, (c) 4 dB, (d) 30 dB. 50

Figure 3.10 iForest confusion matrices against accidental authentication test
dataset with SNR levels at (a) 0 dB, (b) 2 dB, (c) 4 dB, (d) 30 dB. 50

Figure 3.11 OC-SVM confusion matrices against accidental authentication test
dataset with SNR levels at (a) 0 dB, (b) 2 dB, (c) 4 dB, (d) 30 dB. 50

Figure 3.12 GAN discriminator performance against nefarious users test dataset
with SNR levels at (a) 0 dB, (b) 4 dB, (c) 8 dB, (d) 10 dB, (e) 14 dB,
(f) 16 dB, (g) 18 dB, (h) 20 dB. 52

Figure 3.13 Hypothesis test performance against nefarious users test dataset with
I = 5_ 1

2 and SNR levels at (a) 0 dB, (b) 10 dB, (c) 20 dB, (d) 26 dB. 53

Figure 3.14 Hypothesis test performance against nefarious users test dataset with
I = 4_ 1

2 and SNR levels at (a) 0 dB, (b) 8 dB, (c) 20 dB, (d) 24 dB. 53

Figure 3.15 Hypothesis test performance against nefarious users test dataset with
I = 3_ 1

2 and SNR levels at (a) 0 dB, (b) 4 dB, (c) 8 dB, (d) 20 dB. 53

Figure 3.16 LOF confusion matrices against nefarious users test dataset with
SNR levels at (a) 0 dB, (b) 12 dB, (c) 14 dB, (d) 16 dB. 54

Figure 3.17 iForest confusion matrices against nefarious users test dataset with
SNR levels at (a) 0 dB, (b) 14 dB, (c) 16 dB, (d) 30 dB. 54

Figure 3.18 OC-SVMconfusionmatrices against nefarious users test dataset with
SNR levels at (a) 0 dB, (b) 14 dB, (c) 16 dB, (d) 30 dB. 55

Figure 3.19 Accuracy vs SNR for accidental authentication dataset. 56

xii

Figure 3.20 Accuracy performance vs SNR for nefarious users dataset. 57

Figure 4.1 Discriminator accuracy performance vs SNR for 50 labeled samples. 65

Figure 4.2 Densely-connected discriminator test predictions for SNR levels at
(a) 0 dB, (b) 14 dB, (c) 24 dB, and (d) 26 dB after training with the
50 labeled samples dataset. 66

Figure 4.3 CNN discriminator test predictions for SNR levels at (a) 0 dB,
(b) 14 dB, (c) 24 dB, and (d) 30 dB after training with the 50 labeled
samples dataset. 66

Figure 4.4 Classifier accuracy performance vs SNR after training on dataset
with 50 labeled samples. 67

Figure 4.5 Classification predictions from densely-connected SGAN classifier
trained on 50 labeled sampleswith SNR levels at (a) -10 dB, (b) -4 dB,
(c) 0 dB, and (d) 4 dB. 69

Figure 4.6 Classification predictions from CNN SGAN classifier trained on 50
labeled samples with SNR levels at (a) -10 dB, (b) -4 dB, (c) 0 dB,
and (d) 4 dB. 70

Figure 4.7 Classification predictions from densely-connected standalone clas-
sifier trained on 50 labeled samples with SNR levels at (a) -10 dB,
(b) -4 dB, (c) 0 dB, and (d) 4 dB. 71

Figure 4.8 Classification predictions from CNN standalone classifier trained on
50 labeled samples with SNR levels at (a) -10 dB, (b) -4 dB, (c) 0 dB,
and (d) 4 dB. 72

Figure 4.9 Densely-connected discriminator test predictions for SNR levels at
(a) 0 dB, (b) 14 dB, (c) 26 dB, and (d) 30 dB after training with
50,000 labeled samples dataset. 73

Figure 4.10 CNN discriminator test predictions for SNR levels at (a) 0 dB,
(b) 14 dB, (c) 26 dB, and (d) 30 dB after training with 50,000
labeled samples dataset. 74

Figure 4.11 Discriminator accuracy performance vs SNR for 50,000 labeled sam-
ples. 75

Figure 4.12 Classifier accuracy vs SNR for 50,000 labeled samples. 76

xiii

Figure 4.13 Densely-connected SGAN classifier performance against 50,000 la-
beled samples test dataset with SNR levels at (a) -10 dB, (b) -4 dB,
(c) 0 dB, and (d) 4 dB. 77

Figure 4.14 CNN SGAN classifier performance against 50,000 labeled samples
test dataset with SNR levels at (a) -10 dB, (b) -4 dB, (c) 0 dB, and
(d) 4 dB. 78

Figure 4.15 Densely-connected standalone classifier performance against 50,000
labeled samples test dataset with SNR levels at (a) -10 dB, (b) -4 dB,
(c) 0 dB, and (d) 4 dB. 79

Figure 4.16 CNN standalone classifier performance against 50,000 labeled sam-
ples test dataset with SNR levels at (a) -10 dB, (b) -4 dB, (c) 0 dB,
and (d) 4 dB. 80

Figure 5.1 DeepMIMO scenario “O1.” Source: [38]. 89

Figure 5.2 SGAN dense discriminator performance with SNR at (a) -10 dB,
(b) -4 dB, (c) 2 dB, and (d) 4 dB. Source: [38]. 94

Figure 5.3 SGAN dense discriminator accuracy vs SNR. Source: [38]. . . . 95

Figure 5.4 SGAN dense classifier performance with SNR at (a) -10 dB, (b) -
4 dB. Source: [38]. 96

Figure 5.5 SGAN CNN discriminator performance for (a) -10 dB, (b) 20 dB,
(c) -10 dB to 20 dB. Source: [38]. 97

Figure 5.6 Classifier accuracy vs SNR. Source: [38]. 98

Figure 5.7 LOF confusion matrix with SNR = 20 dB. 99

Figure 6.1 Impulse response predictions for (a) (= 6, % = 1 and (b) (= 6, % = 5.
Source: [99]. 103

Figure 6.2 CGAN training architecture. Source: [99]. 105

Figure 6.3 CSI element magnitude in channel model. Source: [71]. 107

xiv

Figure 6.4 Mean square error performance with (=5, % from 1 to 10 for (a) BCE
loss, (b) MSE loss, and (c) hybrid loss for CGAN networks and MSE
loss used for the standalone networks, where (is the number of
previous channel responses, and % is the number of future channel
predictions. Source: [99]. 110

Figure 6.5 Authentication performance using mean squared error threshold
method for (= 5, % = 1 for CGAN networks using (a) BCE
loss, (b) MSE loss, and (c) hybrid loss and MSE loss used for
the standalone networks, where (is the number of previous chan-
nel responses, and % is the number of future channel predictions.
Source: [99]. 111

Figure 6.6 Confusion matrices showing authentication performance using mean
square error threshold at −30 dB for (a) CGAN-LSTM trained with
BCE loss, (b) CGAN-GRU trained with BCE loss, (c) LSTM, and
(d) GRU networks. Source: [99]. 112

Figure 6.7 Confusion matrices for discriminators performing authentication
trained through (a) CGAN-LSTM with BCE loss, (b) CGAN-GRU
with BCE loss, (c) CGAN-LSTM with MSE loss, (d) CGAN-GRU
with MSE loss, (e) CGAN-LSTM with hybrid loss, and (f) CGAN-
GRU with hybrid loss. Source: [99]. 113

Figure A.1 Sigmoid activation function. 125

Figure A.2 Hyperbolic tangent activation function. 127

Figure A.3 Rectified linear unit activation function. 128

Figure A.4 Leaky rectified linear unit activation function (alpha = 0.2). . . . 128

Figure A.5 Densely-connected neural network with one hidden layer. 130

Figure A.6 Backpropagation to update weight parameters. 133

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

List of Tables

Table 3.1 GAN architecture. Source: [87]. 44

Table 4.1 SGAN dense architecture. 61

Table 4.2 SGAN CNN architecture. 64

Table 4.3 Training epochs required to produce best result. 81

Table 5.1 DeepMIMO dataset parameters. Source: [38]. 90

Table 5.2 SGAN architecture. 93

Table 6.1 Channel model power delay profile. Source: [161]. 106

Table 6.2 Neural networks architecture. Source: [71]. 108

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

List of Acronyms and Abbreviations

3GPP 3rd Generation Partnership Project

5G 5th generation

Adam adaptive moment estimation

ANN artificial neural network

AWGN additive white Gaussian noise

BCE binary cross-entropy

C4 command, control, communications, and computer

CFR channel frequency response

CGAN conditional generative adversarial network

CNN convolutional neural network

CSI channel state information

DNN deep neural network

DoD Department of Defense

EVA extended vehicular A

GAN generative adversarial network

GRU gated recurrent unit

I in-phase

IEEE Institute of Electrical and Electronic Engineers

iForest Isolation forest

xix

IoT Internet of Things

kNN k-nearest neighbor

LeakyReLU leaky rectified linear unit

LOF Local outlier factor

LOS line of sight

LSGAN least-squares generative adversarial network

LSTM long short-term memory

LTE Long-Term Evolution

MAC media access control

MIMO multiple-input multiple-output

MLP multiple-layer perceptron

MNIST Modified National Institute of Standards and Technology

MSE mean-squared error

NIST National Institute of Standards and Technology

NLOS non line-of-sight

NPS Naval Postgraduate School

OC-SVM one-class support vector machine

OFDM orthogonal frequency division multiplexing

OSI Open Systems Interconnection

Q quadrature

QAM quadrature amplitude modulation

ReLU rectified linear unit

xx

RF radio frequency

RNN recurrent neural network

RSS received signal strength

SGAN semi-supervised generative adversarial network

SNR signal-to-noise ratio

SVM support vector machine

tanh hyperbolic tangent

USC United States Code

USRP universal software radio peripheral

V2X vehicular-to-everything

Wi-Fi wireless fidelity

WSN wireless sensor network

xxi

THIS PAGE INTENTIONALLY LEFT BLANK

xxii

CHAPTER 1:
Introduction

Information security [1] — the protection of integrity, confidentiality, and availability — is
a challenge in wireless networks. Unlike networks with wired point-to-point connections,
the broadcast nature of radio frequency (RF) grants bona fide users and malicious actors
the same access to the communication channel. Therefore, other means must be employed
to maintain security. Unfortunately, these means and controls still have vulnerabilities that
a motivated adversary can exploit, and in some instances provide very little security [2] at
the expense of increased complication or worse quality of service [3].

In this work, we investigate physical-layer authentication and leverage deep learning to
ensure strong authentication on a variety of devices with disparate applications. Knowing
the identity of the person or device one is communicating with is a vital part of secure
communications. Without a robust method to ensure authenticity, a fake message can be
sent or a valid transmission can be altered.

As the 3rd Generation Partnership Project (3GPP) and 5th generation (5G) mobile network
bring the promise of highmobile data rates, these communicationsmust be secure [4]. These
networks will connect many different types of devices, dynamically adapt, and support
minimum latency [5]. However, without appropriate security, there will be intrusions and
attacks, countering the networks’ benefits. There is no lack of reporting on computer network
attacks, and continued justification in improving security against a myriad of threats at the
federal, state, and private level [6]–[9].

As wireless networks evolve to 5G mobile networks to take advantage of technologies such
as Internet of Things (IoT), vehicular-to-everything (V2X), and video streaming [10], robust
and efficient network security mechanisms are necessary. Physical-layer authentication can
be used tomitigate the challenges of cryptographic authenticationmethods as shown in [11]–
[14]. The efficient performance [15] of physical-layer authentication can be used to augment
or replace cryptographic-based protocols.

The application of machine learning techniques is well suited for complex problems and

1

dynamic environments with consistently fluctuating data [16]. Several different algorithms
and models have been developed to improve the accuracy and the efficiency of machine
learning results based on the type of problem being addressed, the quantity and nature of
available training data, and the measure of performance required. One important break-
through in machine learning was to create a model based on the biological neuron. Just
as airplanes were inspired by birds but only vaguely resemble them now, modern artificial
neural networks inspired by the architecture of the brain make use of only a few character-
istics of their biological counterpart. However, this inspiration has recently been the engine
of a wide variety of technical achievements. In particular, a discriminator artificial neural
network, also known as a binary classifier, can be used to tell real samples from fakes
following a dedicated training period. There are many factors that ultimately determine the
unique properties of the received signal such as channel characteristics and variations in the
transmitter hardware itself [17]. During training, the discriminator will learn which features
from the channel state information are most relevant to the authentic channel.

With respect to notation, and unless otherwise addressed in this dissertation, we use 9 to
represent

√
−1, vectors are indicated with bold lower-case letters, and matrices with bold

upper-case letters.

1.1 Objective
The objective of this dissertation is to advance the authentication aspect of cyber security
by restricting authentication to transmitters based on the characteristics of received wireless
transmissions. Specifically, we investigate authentication by using received channel state
information (CSI) in a multiple-input multiple-output (MIMO) channel and the employment
of machine learning techniques, including the use of deep learning and the generative
adversarial network (GAN). We investigate how GANs and CSI can be used to provide
physical-layer authentication in MIMO-enabled wireless networks.

1.2 Authentication
Verifying the identity of a user, process, or device is authentication [18]. When sharing
information, particularly of a sensitive nature, integrity as defined in 44 USC §3552 [1]
is of paramount importance and necessitates authenticity. As modern society becomes

2

more reliant on improvements and conveniences offered by digital information systems,
attackers can exploit weaknesses in those systems, requiring additional emphasis placed on
cybersecurity.

Figure 1.1 depicts two entities, Alice and Bob, authenticating with each other. That is, Alice
is communicating to Bob and providing some sort of information to prove to Bob that Alice
is indeed Alice and not someone else. Bob, in turn, will also prove himself to Alice. A third
entity, Eve, can also communicate with Alice and Bob and eavesdrop on their conversation.
Strong authentication ensures that Eve cannot pose as either Alice or Bob.

Figure 1.1. Alice and Bob mutually authenticating in the presence of Eve.

Authentication in military and other Department of Defense (DoD) environments is key
to ensuring only trusted entities receive and transmit execution orders, intelligence and
planning information, and official correspondence. Trust relationships established between
information systems may allow further access to other information systems. Among several
additional requirements, authentication needs to be scrutinized and maintained to sustain
cyberspace defense against unauthorized activity [19]. The requirement for mobile and
expeditionary operations is supported by technologies that make use of the RF spectrum.
Wireless communication greatly enhances command, control, communications, and com-
puter (C4) systems by allowing for rapid deployment and complex operations over large
distances [20].

Authentication is widely and successfully accomplished using key-based cryptography, but
as the network grows and becomes more complex, key distribution and management may
not scale without causing undue user delays [12], [21]. Each device must have the ability

3

to recognize unique passwords or keys from every device it’s connected to in a network. In
a dynamic and interconnected wireless network, maintaining the integrity of passwords or
keys presents several challenges, to include: the distribution and management of keys [11],
intolerable latencies induced by key generation/detection [12], and the vulnerability of
the key or password to compromise [13], [14]. Transmitting an encryption key does not
necessarily mean an eavesdropper can determine the decryption key [22]; however, there
is an infrastructure and processing power cost for this feature. In addition to maintaining
security, seamless handoffs are a necessity in multi-domain networks to support low-latency
tolerant applications [10], [23], [24].

1.3 Physical-Layer Characteristics
The literature proposes different methods to distinguish legitimate from illegitimate devices
at the physical layer [12], [25] without the use of a pre-shared secret, cryptography, user-
provided credentials, or higherOpenSystems Interconnection (OSI)-level processing andwe
will examine two of the most prevalent techniques. The first relies on unique imperfections
of the transmitter hardware that manifest as RF fingerprints or signatures [17], [26], [27].
Based on manufacturing processes and designs, the transmitted signal will be uniquely
distorted from device to device, even if only slightly. The second method leverages the
wireless channel to take advantage of multi-path fading environments. The temporally and
spatially-unique impulse or frequency response can be used to identify the transmitter [28]–
[30].

1.3.1 Transmitter Imperfections
Transmitters of the same brand and model often reveal different characteristics in the RF
environment, and because these characteristics are dependent on the transmitter and not
the channel, these attributes do not change with time [26]. Imperfections may reside in
any number of components that comprise a wireless transmitter system and must not cause
the system to exceed the bounds of the respective protocol specification. Slight changes in
production process and clean-room variations can manifest as signatures during transmitter
operation [27]. These signatures, such as transients associatedwith the start-up period before
transmission, can be measured and subsequently used to authenticate trusted devices [31].
Another practically unavoidable signature, in-phase (I) quadrature (Q) imbalance, can be

4

compensated for with known techniques [32], but can still be detected and used to make
an authentication decision. Figure 1.2 shows the result to the constellation of an amplitude
and phase imbalance on a 64-QAM system in additive white Gaussian noise (AWGN).
Unfortunately, the non-temporal quality of hardware-based transmitter characteristics leads
to a vulnerability where malicious adversaries can intentionally distort their transmitter
characteristics to mimic other transmitters or to keep their own signatures hidden [33].

(a) (b)

Figure 1.2. Amplitude and IQ imbalance for 64-QAM (a) before and (b) after
3 dB amplitude and 15 degree phase imbalance.

1.3.2 Channel Attributes
Consider a receiver with # antennas in a multipath channel environment. At each antenna,
the wideband received signal as a function of time ~| (C) is given by ~| (C) = A (C) cos(lC +
\ (C)), where A is the amplitude, l is the carrier frequency in radians per second, and \ is
the received phase of the signal. The received signal is represented as a vector y| (C) by

y| (C) =

~1(C)
~2(C)
...

~# (C)

=

A1(C) cos(lC + \1(C))
A2(C) cos(lC + \2(C))

...

A# (C) cos(lC + \# (C))

. (1.1)

5

We can alter Equation 1.1 to describe the received signal in the complex plane through the
use of trigonometric identities, resulting in

y| (C) =

A1(C) cos(lC + \1(C))
A2(C) cos(lC + \2(C))

...

A# (C) cos(lC + \# (C))

=

A1(C) cos(lC) cos(\1(C)) − A1(C) sin(lC) sin(\1(C))
A2(C) cos(lC) cos(\2(C)) − A2(C) sin(lC) sin(\2(C))

...

A# (C) cos(lC) cos(\# (C)) − A# (C) sin(lC) sin(\# (C))

.

(1.2)

Breaking y| (C) into its respective in-phase and quadrature components by letting
~�= (C) = A= (C) cos(\= (C)) and ~&= (C) = A= (C) sin(\= (C)), where 1 ≤ = ≤ # , we have

y| (C) =

~�1(C) cos(lC) − ~&1 (C) sin(lC)
~�2(C) cos(lC) − ~&2 (C) sin(lC)

...

~�
#
(C) cos(lC) − ~&

#
(C) sin(lC)

(1.3)

or alternatively in the baseband,

y(C) =

~�1(C) + 9~

&

1 (C)
~�2(C) + 9~

&

2 (C)
...

~�
#
(C) + 9~&

#
(C)

=

A1(C) cos(\1(C)) + 9A1(C) sin(\1(C))
A2(C) cos(\2(C)) + 9A2(C) sin(\2(C))

...

A# (C) cos(\# (C)) + 9A# (C) sin(\# (C))

. (1.4)

If we assume a channel with bandwidth narrow enough to produce a flat channel [34], we
further simplify Equation 1.4 to

y =

A1 cos(\1) + 9A1 sin(\1)
A2 cos(\2) + 9A2 sin(\2)

...

A# cos(\#) + 9A# sin(\#)

. (1.5)

Embedded in the received signal described by Equation 1.5 is the distorted transmitted
signal and AWGN. The nature of the wireless medium affects the transmitted signal as it

6

propagates to the receiver. The channel response, H, is also referred to as CSI [29] and
in the frequency domain, channel frequency response (CFR) [35]. The result of wireless
signal deterioration due to factors including fade, shadowing, scattering, and path loss can
be characterized by CSI.

The narrowband model of the wireless channel [36] is given by

y = Hx + n (1.6)

where y is the received signal, x is the transmitted signal, H is the time-varying channel
response, and n is complex AWGN.H is a complex" × # matrix that represents changes in
signal amplitude and phase caused by multiple channel conditions such as multi-path fading
and the use of multiple antennas [34]. The number of transmitter antennas is " and the
number of receiver antennas is # . Each complex element within H, h=,< (1 ≤ = ≤ # , 1 ≤
< ≤ "), is composed of real and imaginary zero-mean independent Gaussian random
variables with identical variance and with Rayleigh distributed magnitude for non line-of-
sight (NLOS) scenarios. Jakes’ uniform scattering model [37] states that antennas spatially
separated more than two carrier wavelengths from each other will observe sufficiently
independent fading channels due to rapid decorrelation of the signal envelope among
receivers. The complex coefficient values in H, ℎ=,<, are random and independent of x and
n [36]. Figure 1.3 illustrates the MIMO narrowband channel model.

Figure 1.3. MIMO narrowband channel model and CSI matrix. Adapted
from [38].

7

In a multipath environment, two identical transmitters in different locations will have unique
channel responses H0 and H1. Based on the channel response from one transmitter H0, a
receiver can discriminate from another transmitter since that channel response H1, will
differ from H0. For example, in [39], Liu et al. developed a test statistic and threshold to
differentiate the identities of transmitters for authentication. Liu used an adaptive threshold
based on signal-to-noise ratio (SNR) to maintain a consistent false alarm rate.

In dynamic or mobile environments, channel conditions on the received signal are repre-
sented as an # ×" matrix of channel responses H(C; g) at time C, to an impulse transmitted
at time C−g. Following Biglieri and Taricco in [40] and Pedersen et al. in [41], the wideband
channel model describing H(C; g) is a tapped delay line as shown in

H(C; g) =
!∑
;=1

H; (C)X(g − g;), (1.7)

where each H; is an # × " matrix of circularly symmetric complex-valued Gaussian
random variables, g; is the path delay and ! is the total number of path delays. The received
signal vector y(C) is related to the transmitted signal vector x(C) by

y(C) =
∫ ∞

−∞
H(C; g)x(C − g)dg + n(C). (1.8)

As before in the narrowband flat-frequency response case, the time-varying channel re-
sponse between two spatially diverse transmitters in a mobile environment H0(C; g) and
H1(C; g) will be different at each sample time C. Additionally, the channel responses from
one transmitter will change at each sample time. That is, the elements within H0(C1; g) will
be uncorrelated to the elements H0(C2; g) due to changes in phase. However, the magni-
tudes within the CSI elements from neighboring samples |ℎ=,< (C1; g) |, |ℎ=,< (C2; g) |, . . . ,
|ℎ=,< (CB; g) | will exhibit correlation as long as the difference between sample times is small,
as shown in [42]. Because correlation exists for the magnitude of time-sampled elements
within H0, |ℎ0,=,< (C; g) | with C ∈ {C1, C2 . . . CB}, we can measure the value of |ℎ0,=,< (C; g) |
and subsequently measure |ℎ0,=,< (C + 1; g) | and determine if they are correlated. As we in-
crease # and " , and adjacent samples of |ℎ0,=,< (C; g) | continue to be correlated, we may be
able to correctly distinguish |ℎ0,=,< (C; g) | from |ℎ1,=,< (C; g) | and differentiate the respective

8

transmitters.

1.3.3 Authentication Using Channel State Information
If a receiver should authenticate H0 and otherwise deny authentication, the properties
of H0 must be identified. When the receiver antennas and transmitters are each spaced
greater than a carrier frequency wavelength apart, the complex-valued elements of the CSI
are statistically uncorrelated. For NLOS channels, the magnitude of these elements are
Rayleigh distributed, and for line of sight (LOS), the magnitudes are Ricean distributed.
The phase component is uniformly distributed for both NLOS and LOS.

Unfortunately, based on Equation 1.6, the receiver does not directly detect H, but also some
amount of noise n. Therefore a tolerance about the value of the CSI elements is needed to
account for small, random variations of the detected CSI. We could create an authentication
scheme where if the values of the received CSI elements are bounded by an established
tolerance, the transmitter(s) would be authenticated. If the received CSI elements exceed
the tolerance, authentication would be denied.

The attack to this model would be for an adversary to emulate a particular channel response
from a legitimate transmitter to the receiver. As no single transceiver would be able to
directly measure the CSI between other receiver-transmitter pairs, attempts to conduct an
impersonation attack against such an authentication scheme will be akin to guessing random
values as shown in [43]. However, a determined actor may expend significant resources to
either guessing or using a nefarious scheme to impersonate a legitimate device. For this
reason, a strong protection mechanism must be in place.

One such protective mechanism is the judicious selection of the tolerance needed to au-
thenticate. If the tolerance is too large, resourceful and nefarious users may be able to spoof
legitimate transmitters. On the other hand, too small a tolerance denies authentication to
legitimate transmitters if n exceeds an expected magnitude. This dissertation investigates
the use of machine learning algorithms to implicitly find the tolerance that optimizes the
authentication accuracy of the receiver.

While the channel response will change when either the transmitter or receiver moves,
Xiao et al. [44] provided a scheme to conduct physical-layer authentication for mobile

9

terminals in a multi-carrier system. In Xiao’s work, the authors presented two strategies to
overcome the challenge of decorrelation between time-sampled CSI elements from the same
transmitter: (1) for inter-burst authentication where more time is expected to have passed
between successive frames, initiate the sequence with a higher OSI-level authentication and
then transmit the previously measured channel response within the data burst as a key used
to discriminate users; (2) for intra-burst authentication between frames in the same time slot
after having already initiated authentication with higher OSI-level techniques, they showed
that a Neyman-Pearson test against channel response measurements in consecutive frames
outperformed a least-squares adaptive filter method in terms of correct detection rates and
overhead.

The nature of the RF environment between any two receiver-transmitter pairs has also been
researched in an effort to exploit a way to generate cryptographic keys. Instead of using a bit
sequence stored by a device, the measured CSI is used to determine how messages will be
encrypted. In [45] a secret key generation systemwas developed following a round of training
broadcasts by two cooperative transceivers. In [46], an algorithm was developed based on
the channel response and a secret keywas generatedwith relatively low computational power
demands. Using the theory of channel reciprocity, Quist and Jensen [47] along withWilson,
et al. [48] explored the upper bound for the number of bits that can be generated based on
channel estimation between beamformed antenna systems. Even by simply measuring the
received signal strength (RSS), it is possible to differentiate between transmitters as shown
in [49], [50].

In addition to distinguishing between legitimate users with CSI, it is also informative to
detect spoofing attempts by illegitimate users [28], [44], [51], [52]. By recognizing an
attack, that data can be used to adjust security posture or take appropriate measures. Also,
dismissing these attempts at the physical layer and not letting illegitimate users try to
authenticate to the network prevents a resource attack at higher levels in the OSI.

1.4 Machine Learning in the RF Domain
Machine learning for a variety of uses is well suited to the rich feature-space of raw physical-
layer wireless signal data. The application of machine learning within the RF domain can
be accomplished by understanding the overarching purpose and applying an algorithm to

10

satisfy the task. Machine learning tasks that are appropriate to RF-related applications
include classification, regression, and anomaly detection. There are a variety of algorithms
that may be applied to the same task with various levels of performance. Determining the
task and choosing the most suitable algorithm to employ will help ensure the results of the
machine learning process are optimized.

Classification is the task of determining which of = classes an input should be labeled.
The properties of the input x are examined by the machine learning algorithm 5 and an
output ~ provides either the class to which x belongs, or the probability distribution of the
class {1, . . . , =} that x is a member. Implementing this function, ~ = 5 (x) can be used to
differentiate among various received signals. Depending on the algorithm and the features
contained in the input, a signal can be classified by categories such as modulation type,
transmission specification, and/or source transmitter.

The regression task is used to predict a future output or outputs based on a given input(s).
Like the classification task, the machine learning function 5 operates on the input and
provides an output. However, for regression, a singular output shares the characteristics of
a singular input with respect to dimensionality. An example of an application for regression
within the RF domain is the prediction of received signal strength.

The task of determining if inputs conform to regular behavior or if they represent unusual
events can be accomplished with anomaly detection. By surveying a range of inputs, those
that represent statistical outliers can be flagged as anomalies. Anomaly detection in network
traffic can be used to identify malicious behavior. Atypical RF received transmissions
based on spectrum use, frequency of broadcast, and signal magnitude can all be used to
determine a change in channel environment, transmitter operating characteristics, or receiver
performance.

1.5 Machine Learning Algorithms
Machine learning algorithms are broadly separated into two categories: unsupervised learn-
ing and supervised learning [53]. Unsupervised learning algorithms extract properties of
features contained in a dataset of samples. Supervised learning algorithms use the dataset
features and also associate each sample with a label or target variable. The labels may indi-
cate the category to which a sample belongs for a classification task, and for a regression

11

task, the target variable is the dependent variable correlated to an independent input [54].

A third category formachine learning algorithms is known as semi-supervised learning [55].
This category uses a dataset of labeled and unlabeled samples. Semi-supervised learning
requires that only a portion of the training data be labeled. As opposed to supervised learning
where all the training data is labeled or unsupervised learning where there are no labels
and the algorithm must find its own way to organize the data, semi-supervised algorithms
attempt to correctly identify samples when only a small portion of the training data is
labeled. This can be very helpful when the dataset is large and it would be laborious and
time-intensive for an expert to correctly label every sample manually [55].

1.5.1 Support Vector Machines
The support vector machine (SVM) is a binary classifier, or discriminator, that uses a
supervised training dataset to determine which of two classes a sample belongs. The SVM
creates a hyperplane that separates the training data based on the space defined by the
samples, and then assigns new data to one of the two categories [54].

A limitation to using SVMs for RF-related tasks is that the dataset requires samples from
two different classes. Extensions to the traditional SVM include multi-class SVMs [54] as
well as the one-class support vector machine (OC-SVM) [56] that is discussed later in this
section. Unfortunately, achieving high accuracy with SVMs is a challenge, especially when
dimensionality is increased [57].

Physical-layer authentication with a SVM algorithm using channel responses in an
orthogonal frequency division multiplexing (OFDM) system was proposed by Liu et al.
in [58]. Liu showed that by using CSI, authentication accuracy in indoor environments
achieved 92% accuracy, compared with 40% accuracy using received signal strength. Liu
also noted that authentication accuracy improved when multiple receiver and transmitter
antennas are used with their CSI approach.

1.5.2 K-Nearest Neighbor
One method to classify RF samples is to give the samples the same class as the samples
to which it is nearest. The k-nearest neighbor (kNN) algorithm measures the Euclidean

12

distance from one sample to the other samples, and then filters to the : samples that have
the least distance [57]. The new sample is then assigned to the cluster that most of its :
neighbors share. kNN can also be used in a regression task, where the target variable for
the sample is the average of the values from the : neighbors.

Like the SVM algorithm, implementing kNN is simple and straightforward. However, as
the number of samples and dimensions increase, the process is greatly slowed [57].

In addition to using SVMs in [58], Liu et al. also used k-means clustering followed by
kNN classification to determine if a spoofing transmitter is active during the physical-layer
authenticating process.

1.5.3 One-class Machine Learning Algorithms
There is broad use for detection systems that identify RF samples with features outside of
the expected. A one-class machine learning problem trains on data from a single class, and
during testing the tool will provide an output recognizing new samples as either inliers of
the statistical distribution or outliers.

Local outlier factor (LOF) from Breunig et al. in [59] quantifies the relative degree of
isolation of a sample to its neighbors. For samples with density similar to that of the local
cluster, the LOF value approaches 1. Inlier samples with higher density than their neighbors
have a LOF less than 1, and outliers have a LOF greater than 1.

Isolation forest (iForest) from the works of Liu et al. in [60], [61] does not use density
measurements to detect anomalies, but randomly selects a threshold between maximum and
minimum values of a randomly selected feature. The iForest algorithm takes advantage of
the defining characteristics of an anomaly: there are few of them, and they have features
unlike normal samples.

The OC-SVM as presented by Schölkopf et al. in [56] is an extension to the traditional
SVM technique but uses unsupervised learning and unlabeled training data. The goal of the
OC-SVM algorithm is to determine the smallest region containing the training data. The
algorithm returns a value of 1 if a new sample falls within this region, and a -1 is returned
for samples outside the threshold.

13

A depiction of these one-class algorithms is shown in Figure 1.4. The LOF algorithm
in Figure 1.4a illustrates the relative degree of isolation using circles of different sizes,
where outlier samples have larger circles around them compared to the inlier samples.
In Figures 1.4b and 1.4c, we can see the decision boundary surrounding the samples
constructed by the iForest and OC-SVM algorithms, respectively.

(a) LOF (b) iForest (c) OC-SVM

Figure 1.4. One-class machine learning algorithm examples. Source: [62].

A large advantage in implementing these one-class machine learning tools is the speed at
which they can be trained and tested [61]. Unfortunately, the performance of these tools
may not scale as the dimensionality of the task increases [62]. Additionally, if anomalous
samples or CSI from rogue or nefarious transmitters enter the training dataset, these samples
would be characterized as belonging to the trusted class since the distribution of the dataset
would be changed in such a way to accommodate these illegitimate samples.

1.5.4 Neural Networks
One of the most powerful and versatile implementations of machine learning is the artificial
neural network (ANN) (hereafter, neural network). In 1943, McCulloch and Pitts [63]
developed the first model based on how neurons in the brain work and demonstrated that
a small network of artificial neurons could replicate any logical computation. In 1957,
Rosenblatt invented the perceptron algorithm, in which a layer of artificial neurons sum
multiple weighted inputs and produce a value based on a threshold or activation function
[64]. A neural network that has at least two hidden layers is called a deep neural network
(DNN) [16].

14

By adding multiple perceptron layers, and training through backpropagation, the multiple-
layer perceptron (MLP) eliminated earlier limitations and gained the ability to efficiently
correct errors by adjusting the weighted connections between neurons [16]. During the
training of an ANN, the network-generated output is compared to the ground truth. A loss
function acts upon the output and ground truth to create a loss value. The loss value is then
applied to layers and neurons in the network so that the network will iteratively improve. The
backpropagation process updates the initially randomized weights and biases connecting the
neurons. Thus, the network "learns" as it minimizes errors until an acceptable success rate is
reached. When the error is minimized, the training of the neural network is stopped, and the
network weights can be saved and applied to more samples. If the probability distribution
is the same between the training data and the new samples, the network will produce new
results with similar performance compared to the last training iterations.

In the remainder of this section, we will discuss three types of ANNs and their uses.
First, we introduce the densely-connected neural network, then then convolutional neural
network (CNN), and finally the recurrent neural network (RNN).

Densely-Connected Neural Networks
When the artificial neurons in a layer of a MLP network are each connected to every
artificial neuron in the previous and the next layer, this is known as a fully-connected, or
densely-connected, layer. A drawback to this arrangement is that densely connected layers
can easily increase in complexity and are susceptible to producing overfit solutions [54].
One way to prevent overfitting and provide regularization is to implement a technique called
dropout [65]. During a forward pass, dropout randomly turns off a fraction of the artificial
neurons in a given layer, essentially disconnecting those neurons from the greater network.
On subsequent forward passes, neurons in the layer are randomly turned on or off based on
the fraction assigned to the dropout, producing a layer that isn’t reliant on the response from
a single neuron, and resistant to a single neuron dominating the solution.

Densely-connected neural networks can automatically discover features in a dataset, result-
ing in accuracy improvement over hand-selected features usedwith the previouslymentioned
machine learning algorithms [53]. In cases where a high level of accuracy is required, and
especially if the samples contain high dimensionality, the neural network is the preferred
algorithm [66].

15

Convolutional Neural Networks
Another method to achieve regularization is the use of a CNN [67]. A CNN applies a
convolutional operation at a layer before passing the result to the next layer. Convolutional
operations create feature maps that allow the network to produce accurate solutions for the
task [68]. For example, a classification task that identifies basic shapes may include feature
maps that indicate the edges of objects. If the feature maps present an arcing or round shape,
the network may classify the object as a circle. Likewise, with a feature map with strong
responses in the vertical and horizontal directions, the network may classify the object as a
square, and if the feature maps have the greatest values in a diagonal orientation, the output
of the network may indicate the object is a triangle. Each layer in a CNN further abstracts the
output from the previous layer, resulting in a tool that is adept at extracting visual features
and well-suited for image-related projects.

CNNs take advantage of the spatial relationship of features within a dataset. By filtering the
properties of larger features into their constituent parts, the CNN can be used to identify
salient details and categorize accordingly. They then are best used when the data contains
spatially correlated features [53].

O’Shea and Hoydis in [69] and O’Shea et al. in [66] used a CNN for classifying signals
using different modulation schemes. In [69], O’Shea and Hoydis were able to improve the
modulation classification performance over other machine learning algorithms using a CNN
below 10 dB SNR. In [66], O’Shea modified the CNN architecture using residual units and
gained improvement over the baseline CNN with synthetic and universal software radio
peripheral (USRP) over-the-air samples.

Recurrent Neural Networks
The application of a RNN to RF tasks is appropriate when the samples can be arranged
as time-series data [70]. With time-series data, each sample in the dataset is consecutive
with respect to the time domain. RNNs have been shown to be successful with temporally
correlated data rather than data that is only spatially correlated.

For a sequence of samples, a RNN uses the output obtained with the previous time step as
part of the input to calculate the output for the next time step as shown in Figure 1.5. In this
example, x, h, and o are time-series vectors respectively representing the input, hidden layer

16

state, and the output of the network. The neural network weight matrices are given by U,
V, andW. The hidden layer state is also an output from the current cell to the next cell and
is calculated as hC = �1(U · xC + V · hC−1), while the output is oC = �2(W · hC), where �1 and
�2 are activations that may include functions such as sigmoid or hyperbolic tangent (tanh)
which are defined as

sigmoid B f(I) = 1
1 + 4−I (1.9)

hyperbolic tangent B tanh(I) = 4
I − 4−I
4I + 4−I . (1.10)

Figure 1.5. Recurrent neural network. Source: [71].

RNNs can be beneficial when the sequential samples are not independent from one another
and has applications for time-series prediction [72] and anomaly detection [73]. TheRNNar-
chitectures discussed in this dissertation use variations of long short-term memory (LSTM)
and gated recurrent unit (GRU) cells illustrated in Figure 1.6.

17

Figure 1.6. LSTM and GRU cell. Source: [71].

LSTM cells addressed the exploding of gradient problem of previous RNNs [74]. The
current input vector xC is concatenated with the output vector of the previous LSTM cell
hC−1. Concatenation is denoted by [·, ·], producing [xC , hC−1]. The output is hC and the current
state of the cell is sC while the previous cell state is sC−1. The LSTM cell has three gates
named input (iC), output (oC), and forget (fC). The equations for these functions are

iC = f(W8 · [xC , hC−1] + b8) (1.11)

oC = f(W> · [xC , hC−1] + b>) (1.12)

fC = f(W 5 · [xC , hC−1] + b 5) (1.13)

sC = fC ⊗ sC−1 + iC ⊗ tanh([xC , hC−1]) (1.14)

hC = tanh(sC) ⊗ oC , (1.15)

whereW and b are the weight matrices and bias vectors for the LSTM gates. Element-wise
multiplication, or the Hadamard product, is symbolized with ⊗.

The GRU cell [75] uses two gates, reset (rC) and update (zC), thus requiring less parameters
and fewer tensor operations compared to the LSTM cell. These gates and the output hC are

18

calculated by

rC = f(WA · [xC , hC−1] + bA) (1.16)

zC = f(WI · [xC , hC−1] + bI) (1.17)

hC = (1 − zC) ⊗ hC−1 + tanh([xC , rC ⊗ hC−1]) ⊗ zC . (1.18)

AlthoughGRUs are less computationally expensive, performance superiority betweenGRUs
and LSTMs is task dependent [76], [77].

Several works have explored the use of RNNs to predict channel characteristics such as Liu
et al. [78] for narrowband prediction, and [79] where Ding et al. used a recurrent complex-
valued neural network to improve prediction results. Jiang and Schotten [80] demonstrated
the use of LSTM and GRU cells for improving channel prediction over previous RNNs.
Wang et al. [81] used convolutional layers and RNNs for physical-layer authentication using
CSI in a stationary office environment. Roy et al. [82] used LSTM and GRU cells to classify
transmitters based on in-phase and quadrature time-series measurements.

1.5.5 Summary of Machine Learning Algorithms
For most cases simple machine learning techniques, such as SVM, kNN, and the one-class
algorithms, are straightforward to implement and provide relatively fast results [54], [62].
For all supervised training algorithms such as SVM and kNN, all the training samples
must be fully labeled. Unfortunately, these tools also suffer inaccuracy as dimensionality
increases [62]. In modern wireless communications, the physical layer can be modeled
with several dimensions to account for properties including magnitude, phase, subcarriers,
multiple antennas, and time. Additionally, the kNN algorithm greatly slows down as the
number of samples gets larger [57].

When there is sufficient training data available, the processing and time expense required
for neural networks can be translated into improved accuracy and speed [54]. While densely
connected neural networks can identify parametric features in the data, they do not gener-
ally perform well when the data are spatially or temporally correlated [53]. For spatially
correlated data, the filtered extraction of low-level features is best accomplished using con-
volutional operations within the CNN [53]. When the data can be described as a time series,
RNNs are the preferred algorithm choice [70].

19

Even if the training process takes place in a benign environment, it should be understood that
none of these algorithms are fully protected against an adversary transmitter. A nefarious
user could learn the authentication process and mimic the features that would allow their
transmitter to be authenticated. However, this also holds true for password or encryption
key protected networks.

1.6 Generative Adversarial Networks
Introduced byGoodfellow et al. [83], theGAN framework trains two artificial neural network
models called the discriminator and the generator as they compete against each other in an
adversarial competition.

The competition is a minimax game where the discriminator attempts to correctly label
training samples from a data distribution and fake training samples created by the generator.
The discriminator is trained to maximize the probability of assigning the correct label,
while the generator is trained to minimize the same probability. The loss function for
the discriminator J (D) is the cross-entropy function when training a binary classifier with
sigmoid output [84]

J (D) () (D) ,) (G)) = −1
2
EG∼?30C0 (G) [log� (G)] − 1

2
EI∼?I (I) [log(1 − � (� (I)))], (1.19)

where E is the expectation with respect to the distribution identified in the subscript, D(x)
is the probability that x came from the data distribution pdata(x) containing real training
samples, I is a random variable generator network input, and D(G(z)) is the estimate of the
probability that the discriminator incorrectly identifies the fake instance as authentic. The
weights of the discriminator and generator networks are given by) (�) and) (�) , respectively.

To specify the loss function for the generator, we use the concept of a zero-sum game, where
the sum of the loss functions for both players is zero, that is J (G) = −J (D) . When optimizing
Equation 1.19, the 1/2 constant is irrelevant, resulting in the value function that describes
this game from the original work by Goodfellow [85] given by

min
�

max
�
+ (�,�) = EG∼?30C0 (G) [log� (G)] + EI∼?I (I) [log(1 − � (� (I)))] . (1.20)

The generator network attempts tomaximize Equation 1.20, while the discriminator network

20

tries to minimize it. [85]

Figure 1.7 shows a functional depiction of a GAN in training where the discriminator D,
receives real samples from the training data or fake samples from the generator network G.
The discriminator then assigns a probability from zero to one based on whether the sample
is fake (0.0) or real (1.0). The classification error is calculated, and the loss value is provided
to the discriminator in order to update the trainable parameters in the network. When the
discriminator assesses fake samples, the loss value for the generator is also provided to the
generator network [86].

Figure 1.7. Generative adversarial network. Source: [87].

As each entity battles each other, they learn to improve their individual performance. If the
discriminator output correctly identifies fake samples created by the generator network, the
generator network will update its weights through backpropagation. Likewise, the discrim-
inator network will update its weights when it incorrectly identifies real or fake samples.
The results of this training are a generative neural network adept at creating data that closely
mimics training data and a discriminator neural network that can identify all but the best
fakes. The generator attempts to capture the data distribution pdata(x) and the discrimi-
nator estimates the probability that a sample came from the training data rather than the
generator [85].

The GAN has enjoyed great success in the fields of image processing and computer vision,
especially when high resolution is required [88]–[90]. As mentioned by Goodfellow in [84],

21

after training is completed the discriminator is usually discarded, while the generator is
retained and is used to create images or other domain-relevant output. A trained generator
may perfectly mimic authentic data resulting in a coin-flip guess by the discriminator.
However, at the end of training the discriminator network has also learned, suggesting that
a trained discriminator will outperform all but fully-trained generative networks.

1.6.1 Semi-Supervised GAN
With semi-supervised learning, a small percentage of the training data is labeled, and instead
of using a binary classifier, the discriminator is a multi-class classifier. For # classes, the
model requires # + 1 outputs to account for all the authentic classes plus one additional
class for the fake generated class [91].

Figure 1.8 shows a functional depiction of a semi-supervised generative adversarial network
(SGAN) in training. The training dataset is partially labeled and provided to the D/C
model for classification by C. The remainder of the training dataset, as well as the generated
samples from G, are used as input toD/C for discrimination whereD will predict whether
the sample came from the training dataset or if it was created by G.

Figure 1.8. Training a semi-supervised generative adversarial network with N
classes. Adapted from [38].

Based on earlier work by O’Shea et al. for radio modulation classification [92], Li et al. [93]
employed a SGAN to classify 11 different modulation types and improved the classification
performance over a CNN model. The CsiGAN was proposed by Xiao et al. in [94] for

22

CSI-based human activity recognition. Xiao used a SGAN against human activity datasets
to improve classification accuracy.

1.6.2 CGAN
Further extending the GAN framework, the conditional generative adversarial network
(CGAN) incorporates extra information for the discriminator and generator. In addition
to the inputs that the vanilla GAN uses, conditional information is also provided to D
and/or G. The conditional information can be a label or other target variable. Figure 1.9
illustrates a CGAN during training. The CGANgenerator and discriminator neural networks
can be made using densely connected layers, convolutional layers, recurrent cells, or any
combination thereof. With conditional information ~, the CGAN value function, based on
Equation 1.20, becomes

min
�

max
�
+ (�,�) = EG∼?30C0 (G) [log� (G |~)] + EI∼?I (I) [log(1 − � (� (I |~)))] . (1.21)

Works for CGANs using recurrent networks include Esteban et al. [95] where a recurrent
CGANwith LSTM cells was used to produce realistic time-series medical information. Ad-
ditionally, Koochali et al. [96] explored using either LSTM or GRU cells in a CGAN to fore-
cast one-step ahead values in datasets related to weather measurements, the Mackey-Glass
time-delay differential equation, and internet traffic. Like many GAN-based applications,
the CGAN has also been applied with success in imagery-dependent fields, however within
the RF field, a CNN-CGAN was used by Dong et al. in [97] for channel prediction.

Figure 1.9. CGAN training architecture. Adapted from [71].

23

1.7 Contributions of This Dissertation
The focus of this dissertation is the improvement of wireless communication security using
adversarial machine learning algorithms. We propose the use of three adversarial training
frameworks to make an authentication decision at the physical layer in an RF channel. We
analyze the amount of training data needed and required iterations of that data through
our proposed neural networks to reach accuracy metrics. We also explore the impact of
degraded channels on authentication accuracy by using CSI at a variety of SNR levels.

The main contributions of this dissertation are:

• We introduce analysis and simulation illustrating how the received CSI matrix ele-
ments and measurement error can be used for physical-layer authentication.We create
a hypothesis test and also develop a GAN for the purpose of determining if received
CSI samples should be permitted or denied authentication. Our generative model cre-
ates fake CSI samples that closely match the characteristics of legitimate CSI matrix
samples from a trusted source. We compare the accuracy yielded by the GAN to the
hypothesis test approach as well as three one-class machine learning algorithms.

• Using a dataset modeling a multipath NLOS Rayleigh channel, we take a semi-
supervised approach to discriminating legitimate from nefarious transmitters. We
develop two SGAN models and compare their performance against that of a densely-
connected ANN classifier and a CNN classifier at various SNR levels. Our SGAN
models can be used to classify transmitters by MIMO CSI as a method to provide
physical-layer authentication. Requiring only a small portion of the samples to be
labeled, we effectively reduce overhead while still achieving high classification accu-
racy at low SNR levels.

• Simulating the implementation of a SGAN using 5Gmillimeter wave carrier frequen-
cies, we assess SGAN classification accuracy based on receivers in close proximity.
We create CSI matrices that correspond to receiver positions in an urban setting using
a MATLAB-based tool that leverages ray-tracing software. We then compare the per-
formance of the SGAN across a range of SNR levels to other neural network models.
Our proposed SGAN-based physical-layer authentication system can be implemented
to provide high authentication accuracy at even low SNR values. The system first
uses the SGAN-trained discriminator to allow only trusted transmitters to authenti-
cate. The SGAN-trained classifier then identifies the trusted transmitter and can be

24

used to allow the user a tailored degree of access.
• Finally,we propose twonovelmethods for accomplishing channel prediction and phys-
ical layer-authentication for mobile devices. Specifically, our method uses a CGAN
to predict mobile MIMO channel response magnitudes. Our CGAN uses RNNs and
conditional information in the form of previous channel responses. We propose two
methods to make an authentication decision: (1) an adversarially-trained discrimina-
tor can be used to authenticate or deny access, and (2) based on the difference from
the predictive channel responses and the true channel response, a threshold based
on mean-squared error (MSE) can be used to grant or deny authentication. We then
compare the performance of our adversarial models to alternative RNNs.

1.8 Organization
This chapter introduced the objective and contributions of this dissertation and presented an
overview onmachine learning applied to RF tasks. Chapter 2 reviews the salient literature to
identify related works concerning physical-layer authentication, the application of machine
learning tools, and deep learning model techniques that are most appropriate for wireless
authentication. Next, in Chapter 3, we propose a method to conduct physical-layer authen-
tication by training neural networks in a GAN framework. Using a variant of GAN-trained
neural networks, we differentiate transmitters based on CSI in Chapters 4 and 5. Using
recurrent neural networks, we propose methods to conduct physical-layer authentication
based on time-series CSI in Chapter 6. Finally, we conclude by summarizing the results
and contributions of this dissertation and discuss future work in Chapter 7. An appendix
is provided to introduce some of the fundamental elements regarding neural networks. The
scope of the appendix includes mathematical operations in feedforward neural networks
and common terms associated with the training process.

The contents of this dissertation include material adapted from work published and to
be published by the author. Sections from Chapter 3 contain some revised material from
“Physical-LayerAuthenticationUsingChannel State Information andMachine Learning" by
Ken St. Germain and Frank Kragh, published in the 14th International Conference on Signal
Processing and Communication Systems [87]. Sections from Chapter 4 contain some re-
vised material from “Multi-Transmitter Physical-Layer Authentication Using Channel State
Information and Deep Learning" by Ken St. Germain and Frank Kragh, published in the

25

14th International Conference on Signal Processing and Communication Systems [98]. Sec-
tions from Chapter 5 contain some revised material from “Multi-subcarrier Physical-Layer
Authentication Using Channel State Information and Deep Learning” by Ken St. Germain
and Frank Kragh, published in the 54th Hawaii International Conference on System Sci-
ences [38]. Sections from Chapter 6 contain revised material from “Channel Prediction
and Transmitter Authentication with Adversarially-Trained Recurrent Neural Networks” by
Ken St. Germain and Frank Kragh published in the Institute of Electrical and Electronic
Engineers (IEEE) Open Journal of the Communications Society [99] and also “Mobile
Physical-Layer Authentication Using Channel State Information and Conditional Recurrent
Neural Networks" to be published in the 93rd Vehicular Technology Conference: VTC2021-
Spring [71].

26

CHAPTER 2:
Literature Review

This chapter reviews and explores the most recent and seminal works in machine learning
in communication systems, physical-layer authentication, and GANs.

2.1 Physical-Layer Authentication
Depending on their use, accessibility, and connectivity, authentication in computer sys-
tems must be appropriately strong to prevent attacks resulting in unauthorized access or
modification of data [100]. In a wireless communication environment, data is transmitted
to a wide audience of users, many who are unintended recipients. Included among these
recipients may be nefarious users with malicious intent. For this reason, wireless data
transmission is typically protected through the employment of cryptographic methods at
the OSI network-layer or higher [13]. Cryptographic systems have been shown to improve
transmission confidentiality, however there is a cost in the form of computational power and
latency [101]–[103]. Because of issues such as energy needs, processing capability, and
storage requirements, many IoT devices do not support strong security mechanisms [104].

Authentication is often employed at various levels of the OSI model: media access con-
trol (MAC)-layer authentication [105], network-layer authentication [106], transport-layer
authentication [21], and application-layer authentication [107]. While employing authenti-
cation at different layers may enhance wireless security, the overhead remains a debt to be
paid in computational complexity and latency [108], [109]. Additionally, cryptographic sys-
tems have vulnerabilities [14] and have not proven to be computationally unbreakable [13].
Another drawback for cryptographic systems is the challenge of key distribution and man-
agement in a decentralized, dynamic, and heterogeneous network [11], [12]. As suggested
in [110], authentication can be accomplished at least in part, if not fully, at the physical
layer.

27

2.2 Machine Learning in Communication Systems
Using the spatially-unique properties of the CSI, many researchers have leveraged ma-
chine learning and deep neural networks in particular to successfully resolve localization
challenges.

There are several examples in the literature where authors mapped collected CSI to the
a priori known position of legitimate transmitters, trained machine learning systems to
recognize those signatures, then accurately determined the position of the transmitter [111]–
[113].

Nerguizian et al. [111] used a neural network to learn and then match signatures generated
by a transmitter located in different areas of an underground mine. Four hundred ninety
measurements were taken, composed of seven channel parameters and the true position
of a transmitter. The channel parameter information was fed to the input of an ANN and
was trained using the true position. During testing, the ANN output was the estimated user
position and was accurate within 2 meters for 90% of the trained positions.

Wang et al. [112] used a densely connected ANN system with four hidden layers trained
on CSI and positional data to determine the location of an indoor transmitter. In two
different scenarios, one with many line-of-sight paths and one with few line-of-sight paths
as shown in Figure 2.1, CSI measurements were taken off-line at predetermined locations
with half-meter spacing. During testing, new positions in each room were selected, and the
localization performance exceeded that of methods that solely use RSS and another scheme
that used the weighted CSI location average over multiple antennas, known as fine-grain
indoor fingerprinting system [113].

28

Figure 2.1. Training and testing locations in two different rooms. Adapted
from [112].

2.3 Authentication Through Machine Learning and CSI
Taking the concept of position identification a step further, much research has been con-
ducted with machine learning and location information to make an authentication decision
based on CSI.

Wang et al. [81] used three USRPs in an office setting to generate an equal number of
channel estimates pre-labeled as either legitimate or illegitimate. The networks they explored
included a RNN, a hybrid CNN-RNN architecture, and a skip-layer CNN.Wang showed that
usingmachine learning algorithms outmatched a heuristic Neyman-Pearson test with respect
to authentication accuracy and minimizing false positives and false negatives. Overall, the
neural network using the RNN with the CNN gave the best authentication accuracy, scoring
99.7%.

Xiao et al. [114] used channel information and reinforcement learning to detect spoofing
attacks in wireless networks. A zero-sum game was constructed between detection and
spoofing to determine a threshold for use in authentication. The performance of false alarm
rate and missed detections of this static threshold was worse than when reinforcement learn-

29

ing techniques were used to ultimately decide whether to authenticate the transmitter. Their
results show how machine learning can improve physical-layer authentication performance
in a dynamic RF environment.

Pan et al. [115] demonstrated using CSI for physical-layer authentication in various en-
vironments including indoors, outdoors, moving, and stationary by using data collected
by the National Institute of Standards and Technology (NIST) [116]. A location for the
legitimate transmitter is chosen, and the corresponding CSI is then used to calculate the
normalized channel difference, based on the Euclidean distance from CSI corresponding to
chosen location and subsequently sampled CSI data. Using a predetermined threshold, au-
thentication is granted or denied and detection and false alarm rates are calculated. Among
their conclusions, they showed that authentication performance was better in scenarios with
stationary systems, abundant multi-path effects, and separation of transmitters by more than
one-half wavelength. By dynamically changing the channel-based test statistic threshold
based on machine learning results [117], Pan et al. improved their successful physical-layer
authentication rate over the static method.

Liao et al. [118] compared deep-learning models for physical-layer authentication in an
industrial wireless sensor network (WSN) using numerical simulation and experimentation
with USRPs. They used a CSI-based scheme where transmitters with two, four, or eight
antennas were placed in different locations in an industrial setting, the CSI was estimated
by a base station with eight antennas, and then a variety of neural networks were trained.
The results showed that a densely-connected ANN had better performance over the two
CNNs in terms of authentication accuracy. Liao noted that the training parameters of the
densely-connected ANN will grow exponentially as the CSI dimensions increase, resulting
in an undesired increase in computational complexity. In another publication, [119], Liao
et al. investigated security threats for mobile-edge computing on their CSI-based physical-
layer authentication system that used a densely-connected ANN. Liao compared the use of a
densely-connected neural network against hypothesis tests using a basis entropy model and
a least-squares estimation algorithm. Testing with SNR values ranging from 0 dB to 8 dB,
the neural network had the highest authentication accuracy. At 0 dB, the neural network
achieved 94% compared to 86.3% for the basis entropy model and 75% for the least-squares
algorithm. At 8 dB, the scores were much closer: 100%, 99%, and 99.8% for the neural
network, basis entropymodel, and least-squares algorithm. This suggests the neural network

30

is the more suitable choice for lower SNR environments.

In [120], Abyaneh et al. used a CNN trained on pre-mapped transmitter locations in order
to grant authentication. If a broadcasting transmitter emitted from one of the pre-mapped
locations, the transmitter would be authenticated. They also included the complex value of
the CSI element as input to their neural network, whereas the majority of CSI-related works
with machine learning only used the magnitude of the CSI elements.

2.4 General Adversarial Networks
As of 2019, there were over 500 types of GANmodels [121] and this number has continued
to grow. Based on the task being addressed, different adjustments have beenmade to advance
the field. For example, Radford et al. [122] noted the shortcomings in image quality for
generative networks and instability in using CNNs for GANs. They then adopted changes
to CNNs including using an all convolutional network [123], eliminated fully connected
layers [124], employed batch normalization [125], used the rectified linear unit (ReLU) [126]
activation in the generator, and leaky rectified linear unit (LeakyReLU) [127], [128] in the
discriminator. As a result, Radford developed the deep convolutional GAN, resulting in a
stable generative network that created much improved image samples.

The literature contains several cautionary notes on training GANs. Even in Goodfellow’s
seminal paper on GANs [85], he mentions the difficulty in training, and instead of mini-
mizing log(1 − D(G(z)) in Equation 1.20, it is better to maximize log(D(G(z)) to ensure a
strong gradient when training first starts.

Another problem often seen is called mode collapse [84]. The symptoms of mode collapse
are a generator that creates only a narrow portion of the data distribution. An example of
how mode collapse can be diagnosed is a GAN built to replicate the hand-written numbers
used in the Modified National Institute of Standards and Technology (MNIST) dataset. A
generator network in mode collapse would only create a couple of any of these numbers,
such as one and seven, but never any of the other numbers from zero to nine. A recognized
mitigation against mode collapse is to train the GAN using mini-batch discrimination [129].

Once training is underway and mode collapse is avoided, performance evaluation of the
GAN is needed. Unlike other neural network models that use loss as a measure of training

31

completeness [54], the evaluation of GANs is more subjective. Unfortunately, GANs do not
have an objective function, so evaluation is typically difficult without human intervention
[129], [130], however, it is possible [131].

Advances are being made based on published research and theory-based principles, in-
cluding more experimental methods shown to stabilize and improve GAN training perfor-
mance [132], [133] such as:

• Normalize pixel values for images from -1 to 1
• Use maximize log(D(G(z)) for the generator network loss function
• For the generator noise input z don’t use a uniform distribution
• Use mini-batches for real and fake samples to the discriminator
• Avoid sparse gradients such as ReLU, however, LeakyReLU is good
• Smooth labels by avoiding solely using 1.0 for real and 0.0 for fake
• Use the adaptive moment estimation (Adam) [134] optimizer

While GANs have successfully contributed to many areas that rely on image processing
such as single image super-resolution (creating high resolution images based on low reso-
lution images) [88], medical radiology [135], facial recognition [136], etc., there have been
breakthroughs by applying GANs to problems in the RF field as well.

O’Shea et al. [137] used a GAN to determine the optimal modulation scheme to minimize
symbol error in a given channel, showing how GANs can allow for adaptation to the RF
environment.

The amplitude-feature deep convolutional GAN was used by Li et al. [138] to reduce the
effort and increase the accuracy in creating a MIMO CSI-based fingerprint database for a
Wi-Fi localization system. The authors collected CSI from subcarriers in an IEEE 802.11n
network and converted that information into amplitude feature maps. A GAN using deep
convolutional neural networks created additional samples similar to the amplitude feature
maps converted from the collected CSI data. By combining the samples created from
collected CSI and samples created with generated CSI data, the error distance was reduced
compared to only using processed collected CSI data. The results improved the accuracy of
locating the position of transmitters in an indoor, classroom setting.

32

There have also been some works that have researched GANs with a goal to improve
physical-layer security.

In an adversarial situation such as jamming and spoofing, Roy et al. [139] proposed a GAN-
based method to determine legitimate from illegitimate transmitters based on the imbalance
of in-phase and quadrature components of a symbol constellation. Roy again [140] used
GANs to train a receiver to classify trusted receivers and identify rogue RF transmitters
based on IQ imbalance.

Shi et al. [43] proposed the idea of spoofing a physical-layer authentication scheme with
signals from the generator network. In this research, a generator network is trained by posi-
tioning an adversary receiver physically close to the intended target receiver. The adversary
receiver acts like a discriminator as it senses the channel with legitimate transmitters com-
municating to the target receiver. An adversary transmitter acts like a generator and trains
by communicating with the adversary receiver. When the adversary transmitter generator
network converges, it can spoof signals that the target receiver authenticates more than
75% of the time. Their results using the GAN show improved spoofing ability compared to
simple replay attacks with incomplete channel knowledge.

Alshinina and Elleithy [141] used GANs to confuse an adversary attack on a WSN. By
generating fake, but real-looking data and mixing it with authentic data, there was an
increase in authentic data throughput, a decrease in energy consumption, and improved
security through the WSN compared to conventional methods.

2.5 Summary
Several works exist and continue to develop in order to improve the goal of physical
layer authentication. The advent of machine learning and the use of neural networks has
improved the accuracy of a receiver correctly identifying legitimate transmitters that should
be authenticated and illegitimate transmitters that should be denied authentication. While
most applications using a GAN are focused on the generator network to create realistic-
looking images, data, image-to-image translation, etc., the task of classification or anomaly
detection is more suited towards the discriminator network.

Based on a thorough review of the literature, and aside from our own published or submitted

33

papers, we have not been able to find a published work that uses a GAN for physical-layer
authentication using CSI in a MIMO configuration. The closest work to ours is Roy’s
research in [53], [139], [140], where they used IQ imbalance and GANs for the purpose of
identifying rogue transmitters and authenticating trusted transmitters.

To implement many proposals, researchers pre-processed collected raw CSI and used the
magnitude of the CSI elements |ℎ=,< | in their implementations. Additionally, those that
use neural networks used training data that required advance knowledge of CSI between a
monitor and either the CSI of an adversary transmitter or possible legitimate and illegitimate
transmitters positions. In Chapters 3, 4, and 5, we retain the complex elements of the CSI
to retain a rich set of features. Our methodology does not need a priori CSI samples from
an attacker’s position while we make use of unsupervised machine learning to reach an
authentication decision. We also examine the performance of the SGAN and additional
neural networks across a range of SNR. In Chapter 6 we study physical-layer authentication
in mobile channels and also use the magnitude of the CSI elements |ℎ=,< |. Distinguishing
from previous research in Chapter 6, this dissertation explores the use of LSTM and
GRU cells incorporated into a CGAN architecture for transmitter authentication based on
CSI. We use the generator network from the CGAN for channel prediction to authenticate
transmitters based on mobile channel conditions. The CGAN discriminator network is also
used to authenticate transmitters by assessing the received impulse response conditioned on
previously recorded channel responses.

34

CHAPTER 3:
Adversarial Learning and Authentication

In this chapter, we investigate physical-layer authentication using received complex-valued
CSI. We explore various methods to authenticate. First, we introduce a hypothesis test that
uses the covariance of the noise introduced to the signal due to the receiver. Next, we
develop a GAN model where the discriminator decides if wireless transmissions should be
authenticated. Finally, we test these twomethods and also compare those results to one-class
machine learning algorithms including LOF, iForest, and OC-SVM.

This chapter includes material adapted from work published by the author. Revised material
is included from “Physical-Layer Authentication Using Channel State Information and
MachineLearning” byKenSt. Germain and FrankKragh, published in the 14th International
Conference on Signal Processing and Communication Systems [87].

3.1 Model for Authentication with CSI
For the scenario presented here, once a transmitter is initially authenticated, a receiver will
continue to authenticate a transmitter if the received CSI varies less than a threshold applied
to the received CSI from previous transmissions. This requires some method of initial
authentication, such as the use of cryptographic methods or physical-layer authentication
using RF fingerprinting from transmitter imperfections. During initial authentication, the
receiver makes CSI measurements of the channel and stores that information for future
authentication.

During channel measurement, even in a stable static environment, the receiver imparts
noise to the received signal, resulting in variation to the measured CSI elements. This error
& is modeled as an additive complex zero-mean Gaussian process CN(0,�n) where the
covariance of the sample mean is �n = 1/B∑B

1 �n for B samples during the measurement.
Therefore, the :th CSI measured by the receiver Ĥ: is given as

Ĥ: = H + & : : = 1, 2, . . . , B (3.1)

35

where H is the true CSI from Equation 1.6 and &k is a complex # × " matrix with
independent identically distributed elements. Since & : is zero-mean, H can be estimated
with a variety of techniques including least-squares estimation, minimummean-square error
estimation, and through successive measurements and element-wise averaging of Ĥ: for
: = {1, 2, . . . , B} as demonstrated in [142].

3.2 Authentication Hypothesis Test Based on a Threshold
A threshold is then applied to each CSI element h=,< where the transmitter is authenticated
if the distance from every received element ĥ=,<,: to the estimated element h=,< from H
is less than or equal to a threshold z=,< based on the average eigenvalue _0{4 from the
covariance matrix �n=,< . To simplify the notation, we will consider z=,< the same value I for
all = and < terms, however, in practice I could vary among CSI elements. The numbered
sequential transmission count is represented by : . Following the hypothesis testing in [143],
we have the null hypothesis H0 to authenticate, and the alternative hypothesis H1 to deny
authentication such that

H0 :(Re(ĥ=,<,:) − Re(h=,<))2

+ (Im(ĥ=,<,:) − Im(h=,<))2 ≤ z2
∀=, <

H1 :(Re(ĥ=,<,:) − Re(h=,<))2

+ (Im(ĥ=,<,:) − Im(h=,<))2 > z2
∃=, <,

(3.2)

where Re(·) and Im(·) return the real and imaginary parts of the CSI matrix elements,
respectively and z is a tunable parameter that can be adjusted to suit the requirements of the
system. To minimize false positives, z can be set to a relatively small value such as _

1
2
0{4, and

to minimize false negatives, z can be expanded to a greater value such as 6_
1
2
0{4. As evident

in the equation forms for H0 and H1, the regions for authentication are circles of radius
I centered on the coordinates provided by the CSI elements ℎ=,<. In order to successfully
authenticate, all elements in H and z must jointly meet the criteria forH0.

As an example, consider Figure 3.1 illustrating the measured CSI elements for the 2 × 2
MIMO case. The markers in shades of blue indicate measured samples gathered during the
initial authentication. Comparing the red-shaded CSI elements from ĥ=,<,1 and gray-shaded

36

elements in ĥ=,<,2, the desired outcome is that ĥ=,<,1 will authenticate, but ĥ=,<,2 will not
authenticate due to ĥ1,1,2 likely being outside of the error tolerance for I1,1, where for this
case I = 5_

1
2
0{4 for all =< terms.

Figure 3.1. Measured 2x2 MIMO CSI elements with receiver noise. Source:
[87].

Given an # × " array of normally distributed random variables, we can determine the
probability of one transmitter being accidentally authenticated as another based on the error
tolerance for the first transmitter z. Let 0=,< be the real part and 1=,< be the imaginary
part of the complex value for the true CSI element ℎ=,< = 0=,< + 9 1=,<. Both 0=,< and
1=,< are independent Gaussian random variables with variance f2/2. The joint probability
distribution function (PDF) for 0=,< and 1=,< is

5 (0=,<, 1=,<) =
exp

(
−0

2
=,<+12

=,<

f2

)
2c

√
|�0=,<,1=,< |

-0=,<,1=,< =

(
0
0

)
, �0=,<,1=,< =

(
f2/2 0

0 f2/2

)
.

(3.3)

37

To ℎ=,<, we add the result of the receiver noise & . The real and imaginary parts of n=,<
are zero-mean independent Gaussian distributed random variables each with sample mean
covariance Σn=,< .

For a transmitter to be authenticated H0 must be satisfied for every CSI element h=,<.
Given h=,< = 0=,< + 9 1=,<, we can determine the probability that another transmitter will
be authenticated. Let I = 5_

1
2
0{4 where _0{4 is the average eigenvalue from the receiver noise

covariance matrix �n=,< and D and { be the respective real and imaginary parts of the CSI
from another transmitter. The probability of D + 9 { resulting inH0 for ℎ=,< is

%([D + 9 {] ∈ D=,<) =
∬
D=,<

exp
(
−D2+{2

f2

)
2c

√
|�D,{ |

3D 3{

where,

D=,< = {(D, {) |
(
D − 0=,<

)2 +
(
{ − 1=,<

)2 ≤ I2}

and,

-D,{ =

(
0
0

)
, �D,{ =

(
f2/2 0

0 f2/2

)
.

(3.4)

38

With independent D and {, Equation 3.4 can be evaluated using %(- ∩ .) = %(. |-) · %(-),
where %(-) is the probability that 0=,< − I ≤ D ≤ 0=,< + I, and %(. |-) is the probability
that 1=,< −

√
I2 − (D − 0=,<)2 ≤ { ≤ 1=,< +

√
I2 − (D − 0=,<)2. Therefore,

%([D + 9 {] ∈ D=,<) = (&(�) −&(�)) · (&(�) −&(�))

where,

� =
0=,< − I
f

� =
0=,< + I
f

� =
1=,< −

√
I2 −

(
D − 0=,<

)2

f

� =
1=,< +

√
I2 −

(
D − 0=,<

)2

f

and the &(·) function is

&(G) =
∫ +∞

G

1
√

2c
exp

(
− C

2

2

)
3C.

(3.5)

As a toy representation, we consider a single CSI element ℎ with 0 = −0.5 and 1 = 0.2.
Without added noise, the true CSI element is ℎ = −0.5 + 90.2. The noise covariance matrix

is given by � =

(
0.2 0
0 0.2

)
. With the addition of AWGN, the joint density function for ℎ

is illustrated in Figure 3.2. Note that Figure 3.2b is the view of Figure 3.2a from a vector
orthogonal to the real and imaginary axes in the complex plane. The peak of the joint
probability distribution in Figure 3.2a and center of the circle in Figure 3.2b is the point
(0, 1).

39

(a) (b)

Figure 3.2. Joint density function and threshold for authentication.

To authenticate, D and { must jointly fall within the region illustrated by the dotted line in
Figures 3.2a and 3.2b. The dotted line is a circularly-shaped threshold with radius I centered
on (0, 1) where I is directly proportional to

√
0.2, the average eigenvalue of �. We see that

if 0 − I ≤ D ≤ 0 + I then { is dependent on D, 0, and 1.

The transmitter must satisfy H0 for every CSI element as we saw with the red-shaded
markers in Figure 3.1. The probability for authentication in a MIMO channel with "

transmit antennas and # receive antennas is given by

"∏
<=1

#∏
==1

%([D=,< + 9 {=,<] ∈ D=,<),

D=,< = {(D=,<, {=,<) |
(
D=,< − 0=,<

)2

+
(
{=,< − 1=,<

)2 ≤ I2}.

(3.6)

Simulating Equations 3.5 and 3.6 with 0=,<, 1=,<, D, and { all distributed as N(0, 0.5),
Figure 3.3 illustrates how likely an accidental authentication will be as the number of
antenna elements of the receiver and transmitter are increased and the threshold is reduced.

40

Figure 3.3. Probability of authentication for various MIMO configurations
and thresholds. Source: [87].

Fixing the threshold, we see that as transmitter and receiver antennas are increased, the
probability of accidental authentication decreases. Fixing the number of transmit and receive
antennas, decreasing the threshold also decreases the chance that a transmitter will be
accidentally authenticated.

To implement this authentication scheme and determine which hypothesis ĥ=,<,: satisfies,
we require advance knowledge of the noise power our receiver imparts to H to determine
I, and that may change over time and be different among devices. Instead, we will allow
a neural network to implicitly determine the threshold and perform the authentication
decision. We created a GAN that is trained on authentic samples from a dataset and samples
produced by a generative model. The discriminative model then learned the characteristics
of h=,< and �n=,< . Following training, two testing datasets validated the performance of the
discriminativemodel to accurately distinguishH between trusted and untrusted transmitters.

41

3.3 Adversarial System Model
We consider a wireless MIMO communications channel with trusted users and untrusted
users, some of the latter group who are malicious adversaries. The adversaries have re-
sources available to change their transmitter antenna characteristics, RF path timing, output
power, and/or present reflectors between themselves and the receiver. Thus, they are able
to change their CSI as measured by the receiver. The adversaries likely do not have perfect
knowledge of what the legitimate CSI should be at the receiver, however we assume they
have advanced knowledge of the environment and have the ability to conduct surveys be-
tween potential transmitter and receiver locations in order to know the received CSI needed
to authenticate. Just as an adversary may be able to authenticate by discovering crypto-
graphic or other credentials in a traditional wireless system, we allow the nefarious actors
additional resources to spoof our system. To defeat this scenario, the discriminative model
at the receiver is adversarially trained by a generative model that creates authentic looking
CSI samples. By training with increasingly high-quality spoofed samples, the discriminative
network learns the features of transmitters that should be authenticated and the features of
those that should not be authenticated.

3.3.1 GAN Architecture
The adversarial competition in the GAN is a minimax game where the discriminative model
attempts to correctly label training samples from a distribution produced by CSI matrix
elements ?30C0 (ℎ=,<) and fake training samples created by the generator. The discriminative
model is trained to maximize the probability of assigning the correct label, while the gener-
ative model is trained to minimize the same probability. The value function that describes
this relationships from the original work by Goodfellow [83] is given by Equation 1.20.

As each entity adversarially trains each other, they learn to improve their individual per-
formance. When the discriminative model correctly identifies fake samples created by the
generative model, the generative network will update its parameter weights through back-
propagation to make more realistic samples. Likewise, the discriminative model will update
its parameter weights when it incorrectly identifies real or fake samples. The results of this
training are a generator neural network adept at creating data that closely mimics training
data and a discriminator neural network that can identify all but the best fakes.

42

3.3.2 Discriminative Model
The discriminator estimates the probability that a sample came from the training data,
rather than the generator. When training begins, the discriminator won’t know pdata(hn,m),
so the accuracy of correctly assigning authentic and fake samples will be near 0.5. The
accuracy will increase with more iterations of samples and backpropagation as the authentic
data distribution is learned until the generator network creates samples such that the fake
sample distribution pg(z) optimally matches pdata(hn,m). At this point, the accuracy of
correctly assigning authentic and fake samples will return to 0.5 since for the optimal
discriminator �∗, and fixed generator�, D∗G(G) =

pdata (hn,m)
pdata (hn,m)+pz (z) . When pdata(hn,m) = pz(z),

D∗G(G) = 0.5 [85].

3.3.3 Generative Model
Without having direct access to pdata(hn,m), the generator attempts to capture this distribution
through feedback based on the probabilities the discriminator assigns to generated fake
samples [85]. The weights of the generator network are updated via the loss function J (G)

so that the generator will create better samples.

3.4 Simulation
To simulate the adversarial system model, we create a GAN to process a single subcarrier
in a MIMO 4 × 4 configuration. Therefore, the discriminative model has 16 complex inputs
and one real output, while the generative model has one real input and 16 complex outputs.
The inputs for the discriminative model and the outputs for the generative model represent
the complex elements in the CSI matrix.

3.4.1 GAN development
The GAN is implemented using the Python programming language, Keras [144] front-
end, and Tensorflow [145] back-end. Additionally, Numpy, Pandas, and Matplotlib Python
libraries were used. The overall GAN design is summarized in Table 3.1, with a total of
9,057 parameters. The file size of the discriminator network was 104 KB.

43

Table 3.1. GAN architecture. Source: [87].

Discriminator:
Layer output size activation

Input 1: G ∼ ?30C0 (ℎ1,1) 2
Input 2: G ∼ ?30C0 (ℎ1,2) 2
...

...

Input 16: G ∼ ?30C0 (ℎ4,4) 2
Concatenated 32
Fully connected 64 LeakyReLU (alpha = 0.3)
Dropout = 0.2
Fully connected 32 LeakyReLU (alpha = 0.3)
Dropout = 0.2
Output 1 sigmoid

Generator:
Layer output size activation
Input: I ∼ ?I (I) 5
Fully connected 16 LeakyReLU (alpha = 0.3)
Fully connected 32 LeakyReLU (alpha = 0.3)
Fully connected 64 tanh
Output 1 2 linear
Output 2 2 linear
...

...
...

Output 16 2 linear

The discriminator network D has 16 inputs of size 2 merged into one concatenated layer.
Each of the 16 inputs is a vector of size 2 to accommodate the real and imaginary parts of the
complex CSI matrix element. The concatenated layer merges the input vectors, resulting in
a vector of size 32. Two additional fully connected layers of size 64 and 32 with LeakyReLU
activations (alpha = 0.3) follow. Both of these hidden layers use dropout of 0.2 to prevent
overfitting. The output layer of size one is fully connected and uses a sigmoid activation
to provide values (0.0, 1.0). The learning rate for D was 0.0003 using the Adam [134]
optimizer.

The generator network G has a single input with five neurons fully connected to the first
hidden layer of size 16. Two additional hidden layers of sizes 32 and 64 are again fully
connected using LeakyReLU (alpha = 0.3) and tanh activations respectively. Finally, 16

44

output layers of size 2 are connected using linear activations. The learning rate for G was
0.0009 using the Adam optimizer.

3.4.2 Datasets
A master dataset was created by adding measurement error in the form of AWGN across
a range of SNR levels to a single 4 × 4 CSI matrix composed of 16 circularly symmetric
Gaussian complex values with zero mean, and unit variance CN(0, 1). The SNR values
ranged from 0 dB to 30 dB in steps of 2 dB, and 1,000 samples were created at each SNR
level. Each sample is a 4 × 4 complex matrix.

Splitting evenly across SNR levels, the training dataset uses 70% of the master dataset
samples, reserving 30% for the testing dataset. Two testing datasets were created, each
consisting of 700 samples for each SNR value. In addition to the 300 valid samples taken
from the master dataset, 400 more testing samples were created to simulate two different
operating scenarios.

The first testing dataset replicated the accidental authentication case. There are six transmit-
ters, one of which should be authenticated. The 300 samples taken from the master dataset
represent the transmitter that should be authenticated. For the remaining transmitters, five
new 4 × 4 CSI matrices with elements taken from CN(0, 1) were created. To each matrix,
AWGN at varying SNR values was added to produce 80 samples at each SNR value. These
samples were then added to the accidental authentication dataset, resulting in 300 legiti-
mate samples and 400 illegitimate samples. We will refer to this dataset as the accidental
authentication test dataset.

The second testing dataset emulated five nefarious users attempting to authenticate by
matching the CSI matrix of a single legitimate transmitter. If by some unlikely method, an
adversary were able to know the channel characteristics between two legitimately authen-
ticated transmitters, such as described by Shi et al. in [43], the adversary may also have
the resources necessary to spoof their transmitted CSI to appear as the received CSI from
another transmitter. As before, 300 test samples from the master dataset for each of the
16 SNR levels ranging from 0 dB to 30 dB in steps of 2 dB are the legitimate samples.
To complete this dataset, five different complex number offsets were added to the original
legitimate CSI matrix. The offsets values of 0.2 + 90.2, 0.2 − 90.2, −0.2 + 90.2, 0.5 + 90.5,

45

and −0.5 + 90.2 were selected to loosely surround the legitimate samples. Samples were
created as previously described by the addition of AWGN, again resulting in 300 legitimate
samples and 400 illegitimate samples. We will refer to this dataset as the nefarious users
test dataset.

Training was restricted to a maximum of 50 epochs in mini-batches of 64 samples. An
example of samples from the training, accidental test dataset, and nefarious user test dataset
are shown in Figure 3.4, where blue dots correspond to the 16 clusters of legitimate samples,
and the orange circles represent illegitimate samples that should not be authenticated. Note
that in Figure 3.4, only one example from each of the illegitimate test group is shown. The
accidental authentication dataset in Figure 3.4a depicts in orange one of five clusters of CSI
elements that should be denied authentication. Likewise, in Figure 3.4b, the orange clusters
have an offset of 0.2 + 90.2 from CSI elements that should be authenticated. Not included
in Figure 3.4 are the four additional randomly selected CSI matrices in the accidental
authentication test dataset or the four additional CSI matrices created with different offset
values from the legitimate CSI in the nefarious users test dataset.

(a) (b)

Figure 3.4. Samples from the (a) accidental authentication and (b) nefarious
users test datasets at 20 dB SNR.

3.5 Accidental Authentication Dataset Results
In this section, we present the results of the simulation using the accidental authentication
dataset. We examine the performance of the GAN-trained discriminator, the hypothesis
test, and three one-class machine learning algorithms. To illustrate performance, we use

46

confusion matrices to show how the samples are assigned from the test datasets. The
horizontal axis is the predicted result for whether or not authentication should be granted.
If the sample is assessed to be legitimate, the sample is tallied in the “Real” column. If
the predicted result is that the sample is illegitimate and should not be authenticated, the
sample is allocated to the “Fake” column. The vertical axis is the ground truth of the sample
from the dataset, where legitimate samples are assigned to the “Real” row, and illegitimate
samples are shown in the “Fake” row.

3.5.1 GAN Discriminator Results
Against the accidental authentication testing dataset, the discriminator achieves 100% ac-
curacy for SNR greater than or equal to 10 dB. As shown in Figure 3.5, for SNR less than
10 dB, the discriminator makes errors in correctly identifying legitimate samples but never
allows illegitimate samples to be authenticated. The generator was trained to create samples
that mimic the legitimate CSI from the training dataset and the illegitimate CSI matrices in
the accidental authentication testing dataset were not created with prior knowledge of what
CSI values should be used to authenticate.

(a) SNR = 0 dB (b) SNR = 4 dB (c) SNR = 8 dB (d) SNR = 10 dB

Figure 3.5. GAN discriminator performance against accidental authentication
test dataset with SNR levels at (a) 0 dB, (b) 4 dB, (c) 8 dB, (d) 10 dB.

3.5.2 Hypothesis Test Results
Using the hypothesis test with I = 5_ 1

2 , we also achieve 100% accuracy when SNR is
greater than or equal to 10 dB. However, unlike the GAN, the hypothesis test incorrectly
labeled “Fake” samples for “Real” as we can see with non-zero values in the upper right
quadrants in the confusion matrices shown in Figure 3.6. If implemented, this would allow
illegitimate transmitters to authenticate.

47

(a) SNR = 0 dB (b) SNR = 4 dB (c) SNR = 8 dB (d) SNR = 10 dB

Figure 3.6. Hypothesis performance against accidental authentication test
dataset with I = 5_ 1

2 and SNR levels at (a) 0 dB, (b) 4 dB, (c) 8 dB,
(d) 10 dB.

Because illegitimate transmitters are being authenticated, we need to restrict the threshold.
Lowering the threshold to I = 4_ 1

2 , and I = 3_ 1
2 , we are able to reduce the number of

incorrectly classified “Fake” samples. Figure 3.7 shows the confusion matrices based on
using the hypothesis test with I = 4_ 1

2 . We see in the upper right quadrant of each confusion
matrix that the number of illegitimate samples is reduced as compared with I = 5_ 1

2 shown
in Figure 3.6. Also, note the change in performance with respect to SNR. For I = 4_ 1

2 , the
hypothesis test is more accurate for lower SNR levels, reaching 100% at 8 dB and greater.

(a) SNR = 0 dB (b) SNR = 4 dB (c) SNR = 6 dB (d) SNR = 8 dB

Figure 3.7. Hypothesis performance against accidental authentication test
dataset with I = 4_ 1

2 and SNR levels at (a) 0 dB, (b) 4 dB, (c) 6 dB,
(d) 8 dB.

Reducing the threshold again to I = 3_ 1
2 , we again see improvement using the hypothesis

test against the accidental authentication test data set as shown in Figure 3.8. With this
tighter threshold, we reach 100% accuracy at 6 dB SNR or greater, however, at 4 dB SNR,
there is one legitimate sample that was incorrectly labeled as “Fake” in Figure 3.8c. As
SNR increases, the cluster size of CSI elements decreases while I remains fixed, reducing
the probability that higher SNR received CSI measurements will exceed the threshold. Even

48

with I = 3_ 1
2 , there are illegitimate samples categorized as “Real” using the hypothesis test

unlike using the GAN discriminator.

(a) SNR = 0 dB (b) SNR = 2 dB (c) SNR = 4 dB (d) SNR = 6 dB

Figure 3.8. Hypothesis performance against accidental authentication test
dataset with I = 3_ 1

2 and SNR levels at (a) 0 dB, (b) 2 dB, (c) 4 dB,
(d) 6 dB.

3.5.3 One-Class Machine Learning Algorithm Results
In addition to comparing the GAN discriminator performance against the hypothesis test
with a variety of thresholds, we also explore the use of three different machine learning
algorithms. Because the master dataset does not contain illegitimate samples, the techniques
we use are limited to one-class, novelty, or anomaly detection algorithms. We employed
LOF, iForest, and OC-SVM. These techniques are available and were implemented from
the Scikit-learn project [62]. These algorithms used the same training and testing datasets
previously used with the GAN. Figures 3.9, 3.10, and 3.11 contain the confusion matrices
of the one-class machine learning algorithms against the accidental authentication testing
dataset.

49

(a) SNR = 0 dB (b) SNR = 2 dB

(c) SNR = 4 dB (d) SNR = 30 dB

Figure 3.9. LOF confusion matrices against
accidental authentication test dataset with
SNR levels at (a) 0 dB, (b) 2 dB, (c) 4 dB,
(d) 30 dB.

(a) SNR = 0 dB (b) SNR = 2 dB

(c) SNR = 4 dB (d) SNR = 30 dB

Figure 3.10. iForest confusion matrices
against accidental authentication test
dataset with SNR levels at (a) 0 dB,
(b) 2 dB, (c) 4 dB, (d) 30 dB.

(a) SNR = 0 dB (b) SNR = 2 dB

(c) SNR = 4 dB (d) SNR = 30 dB

Figure 3.11. OC-SVM confusion matrices against accidental authentication
test dataset with SNR levels at (a) 0 dB, (b) 2 dB, (c) 4 dB, (d) 30 dB.

In Figure 3.9, we see that the LOF algorithm achieves 100% accuracy at 4 dB and greater
SNR. However, below 4 dB, the LOF does categorize some “Fake” samples as “Real”,
similar to the hypothesis test results with larger threshold values. The iForest and OC-SVM
algorithms results against the accidental authentication dataset are shown in Figures 3.10

50

and 3.11, respectively. Based on the confusion matrices, these algorithms never reach 100%
accuracy for any SNR. The iForest results in Figure 3.10 indicate that legitimate users will
always be authenticated, based on zero being the value in the lower left quadrant for all
SNR values. This is similar to the hypothesis test results with I = 5_ 1

2 and I = 4_ 1
2 shown

in Figures 3.6 and 3.7 where the threshold level was too large to achieve high authentication
accuracy. The OC-SVM results indicate a relatively flat performance regardless of SNR.
Comparing the results with respect to the same quadrants across Figures 3.11a, 3.11b,
3.11c, and 3.11d, we see similar values, suggesting SNR has less impact to OC-SVM as
compared to the previous machine learning algorithms. When compared to the other one-
class machine learning algorithms, we also note that OC-SVM resulted in a relatively large
percentage of legitimate samples being labeled as “Fake”, as shown with non-zero values
in the lower left quadrants of the confusion matrices in Figure 3.11.

3.6 Nefarious User Dataset Results
In this section, we analyze the results of the GAN, the hypothesis test, and the same one-class
machine learning algorithms from the previous section against the nefarious users dataset.
The positions of the CSI elements for the nefarious users are distributed much closer to
the CSI elements received from the authentic transmitter as illustrated in Figure 3.4, and it
should be expected that there will be more difficulty in discerning “Real” from “Fake” at
the physical layer with low SNR levels.

3.6.1 GAN Discriminator Results
For the nefarious user testing dataset, the discriminator doesn’t achieve 100% until the SNR
reaches 20 dB. As shown in Figure 3.12, in addition tomischaracterizing legitimate samples,
the discriminator allows some number of illegitimate samples to be authenticated, since there
are samples counted in the “Fake” row and “Real” column. This is unlike the case with
the accidental authentication dataset where the GAN would not have allowed illegitimate
transmitters to authenticate even when the overall accuracy was still below 100%. It appears
that during training, the discriminator establishes regions where the legitimate samples are
likely to be found.During testing, someof the nefarious user samples arewithin those regions
at low SNR values. This is unlikely to be the case with the accidental authentication testing
dataset as those samples were created with elements drawn from CN(0, 1), whereas the

51

nefarious users dataset was created with predetermined offsets from the legitimate samples.
As the SNR increases, the region the discriminator establishes can become smaller, and is
able to correctly distinguish the legitimate samples from the illegitimate samples.

(a) SNR = 0 dB (b) SNR = 4 dB (c) SNR = 8 dB (d) SNR = 10 dB

(e) SNR = 14 dB (f) SNR = 16 dB (g) SNR = 18 dB (h) SNR = 20 dB

Figure 3.12. GAN discriminator performance against nefarious users test
dataset with SNR levels at (a) 0 dB, (b) 4 dB, (c) 8 dB, (d) 10 dB, (e) 14 dB,
(f) 16 dB, (g) 18 dB, (h) 20 dB.

3.6.2 Hypothesis Test Results
Like the discriminator performance, the hypothesis test with I = 5_ 1

2 reaches 100% accu-
racy for higher SNR values than was required with the accidental authentication dataset.
An accuracy of 100% was reached at 26 dB. Because the mean of each of the received
illegitimate CSI elements are close in proximity to the mean of the received legitimate
CSI elements, the threshold I = 5_ 1

2 is too large to discern between the two categories.
Figure 3.13 shows the confusion matrices for I = 5_ 1

2 with SNR equal to 0 dB, 10 dB,
20 dB, and 26 dB. With SNR at 10 dB or less, all the samples are classified as legitimate,
incorrectly allowing 400 illegitimate samples to authenticate.

As before, we reduced the tolerance I to 4_ 1
2 and then 3_ 1

2 , resulting in the respective
confusion matrices shown in Figure 3.14 and Figure 3.15. With I = 4_ 1

2 , all the sample are
categorized as legitimate when the SNR is 8 dB or less.

52

(a) SNR = 0 dB (b) SNR = 10 dB (c) SNR = 20 dB (d) SNR = 26 dB

Figure 3.13. Hypothesis test performance against nefarious users test dataset
with I = 5_ 1

2 and SNR levels at (a) 0 dB, (b) 10 dB, (c) 20 dB, (d) 26 dB.

(a) SNR = 0 dB (b) SNR = 8 dB (c) SNR = 20 dB (d) SNR = 24 dB

Figure 3.14. Hypothesis test performance against nefarious users test dataset
with I = 4_ 1

2 and SNR levels at (a) 0 dB, (b) 8 dB, (c) 20 dB, (d) 24 dB.

By constricting I, we can better filter illegitimate samples if they are far enough away from
the predefined threshold. With the nefarious user dataset, we see that the hypothesis test is
able to filter the illegitimate samples, but only when I is small enough and the SNR reaches
a certain level. It is rare for legitimate samples to be identified as illegitimate, but we see that
it can happen when we set I to low enough value such as I = 3_ 1

2 as shown in Figure 3.15b.
At the same threshold, we also saw a legitimate sample categorized as illegitimate with the
accidental authentication dataset in Figure 3.8c.

(a) SNR = 0 dB (b) SNR = 4 dB (c) SNR = 8 dB (d) SNR = 20 dB

Figure 3.15. Hypothesis test performance against nefarious users test dataset
with I = 3_ 1

2 and SNR levels at (a) 0 dB, (b) 4 dB, (c) 8 dB, (d) 20 dB.

53

3.6.3 One-Class Machine Learning Algorithms
Finally, we trained and then tested the LOF, iForest, and OC-SVM algorithms against the
nefarious users dataset. Figures 3.16, 3.17, and 3.18 show the respective confusion matrices
for LOF, iForest, and OC-SVM against the nefarious users dataset. Similar to the discrim-
inator and hypothesis test results, we see that the one-class machine learning algorithms
required larger SNR to achieve similar authentication accuracy when compared to the ac-
cidental authentication dataset results. Neither the iForest nor the OC-SVM algorithms
reached 100% accuracy using the nefarious users test dataset, however, the LOF algorithm
achieved perfect authentication accuracy at SNR equal to and greater than 16 dB.

(a) SNR = 0 dB (b) SNR = 12 dB

(c) SNR = 14 dB (d) SNR = 16 dB

Figure 3.16. LOF confusion matrices against
nefarious users test dataset with SNR levels
at (a) 0 dB, (b) 12 dB, (c) 14 dB, (d) 16 dB.

(a) SNR = 0 dB (b) SNR = 14 dB

(c) SNR = 16 dB (d) SNR = 30 dB

Figure 3.17. iForest confusion matrices
against nefarious users test dataset with SNR
levels at (a) 0 dB, (b) 14 dB, (c) 16 dB,
(d) 30 dB.

In Figures 3.16 and 3.17,we see that the LOF and iForest algorithms had similar performance
for legitimate samples against the nefarious users datasets as compared to the legitimate
samples against the accidental authentication case shown in Figures 3.9 and 3.10. That is,
the LOF and iForest algorithms both correctly classified all the legitimate samples as “Real”
regardless of SNR. As SNRwas increased, these algorithms improved their accuracy against
the illegitimate samples, and maintain their accuracy with the legitimate samples.

At higher SNR values, the OC-SVM algorithm improved in accuracy using the nefarious
users testing dataset when compared to the accidental authentication dataset. In Figure 3.18

54

(a) SNR = 0 dB (b) SNR = 14 dB

(c) SNR = 16 dB (d) SNR = 30 dB

Figure 3.18. OC-SVM confusion matrices against nefarious users test dataset
with SNR levels at (a) 0 dB, (b) 14 dB, (c) 16 dB, (d) 30 dB.

we see that as the SNR increased from 0 dB to 16 dB, the OC-SVM algorithm accuracy
increased at identifying legitimate samples and correctly classified all the legitimate samples
for SNR greater than or equal to 16 dB as seen in Figure 3.18c. This is in contrast to the
OC-SVMperformance against the accidental authentication dataset as we saw in Figure 3.11
where the OC-SVM algorithm accuracy was roughly the same from 0 dB to 30 dB SNR.
The reason for this may be explained by the approach used in the SVM algorithm briefly
mentioned in Section 1.5.1 where a hyperplane is used to separate different classes. For
the single-class case, the OC-SVM algorithm attempts to create a small region in which
the training data is contained. The illegitimate samples from the accidental authentication
dataset were drawn from the same distribution as the legitimate samples, and the nefarious
dataset illegitimate samples were created by applying offsets to the legitimate samples. The
regions created by the OC-SVM algorithm based on the training data likely resulted in the
testing data from the nefarious user dataset being more linearly separable than the accidental
authentication testing dataset.

55

3.7 Accuracy Comparison of Physical-Layer Authentica-
tion Techniques

For the accidental authentication test dataset, Figure 3.19 shows the accuracy performance
of the physical-layer authentication techniques we’ve explored in this chapter. We see that
the LOF algorithm reaches 100% accuracy first and that the GAN and hypothesis test with
I = 3_ 1

2 are very close in performance.

Figure 3.19. Accuracy vs SNR for accidental authentication dataset.

Figure 3.20 illustrates the accuracy of the machine learning techniques against the nefarious
users test dataset. While, LOF is the first algorithm to reach 100% accuracy, its performance
at low SNR values in this dataset is outmatched by the OC-SVM. The GAN performance
again trails that of the LOF algorithm. We noted that all techniques including the GAN, as
we’ve seen in Fig. 3.12, incorrectly categorize illegitimate samples as “Real” for low SNR
against the nefarious users who are able to closely match the CSI of legitimate transmitters.

56

Figure 3.20. Accuracy performance vs SNR for nefarious users dataset.

In the case where there is only one transmitter to authenticate and a single carrier frequency
is used in the MIMO system, the LOF is preferred due to the accuracy performance and the
increased amount of complexity in training the GAN-based discriminator. For the situation
where nefarious users may attempt to emulate the lone legitimate transmitter CSI, we see
from Figures 3.19 and 3.20 that additional SNR is required tomaintain 100% authentication.

Another benefit to using the LOF algorithm is its relative low complexity as compared to
the GAN resulting in less time needed to train. The one-class machine learning algorithms
all trained on the order of seconds, while the GAN required minutes to train. However,
the drawback to the one-class machine learning algorithms are that their implementations
in [62] are limited to two dimensions. Contrast this limitation with neural networks that are
easily adapted to multi-dimensional input and are well suited for such tasks [66].

3.8 Summary
In this chapter, we showed how CSI could be used as a method to provide physical-layer
authentication. Our analysis illustrated that the probability of accidentally authenticating
other transmitters decreases as the number of receive and transmit antennas are increased
and a threshold value is judiciously applied.

57

We created a hypothesis test based on a threshold determined by the amount of receiver
noise added to the received CSI. We then developed a GAN that was trained on a dataset of
CSI matrices to perform physical-layer authentication in an adversarial environment. The
performance of the GAN-trained discriminative model indicates the viability of using a
GAN for physical-layer authentication using CSI. We then implemented the LOF, iForest,
and OC-SVM one-class machine learning algorithms. Across all levels of AWGN, the LOF
algorithm was best at reaching 100% accuracy.

The LOF algorithmwas not only themost accurate for all SNR, but it was alsomuch faster to
train than the GAN. However, the anomaly detection capability provided by LOF is limited
to two dimensional inputs, whereas neural networks can support samples that have multiple
dimensions.

Although the GAN was constructed using best practices [84], [129], [133], adjustment of
hyperparameters and training methodology for the GAN can be applied to improve results.
For example, by increasing the mini-batch size from 64 to 128, we saw an improvement
in identifying the illegitimate samples. Unfortunately, this also caused a reduction in the
number of legitimate samples identified. Changes to the original GAN architecture in this
work is left for future refinement.

In this chapter, we had one authentic transmitter and several illegitimate transmitters. In
the next chapter, we will extend our GAN-based system to classify a number of authentic
transmitters.

58

CHAPTER 4:
Multitransmitter Classification

In this chapter, the goal is to correctly classify several different transmitters through re-
ceived CSI. A system that uses wireless communications may have multiple layers of access
available. By classifying trusted transmitters, we can also decide what level of access to
provide to a device. Just as a user account shouldn’t be granted full admin privileges with-
out additional authentication, we can stratify permissions at the physical layer following
classification. In Chapter 3, we illustrated how we can classify trusted and untrusted trans-
mitters to make an authentication decision. Here, we improve the authentication decision
by conducting fine-grained classification of trusted transmitters instead of merely assigning
a label of “trusted” or “untrusted”, or “Real”, or “Fake” to all transmitters.

This chapter includes material adapted from work published by the author. This revised
material is from “Multi-Transmitter Physical Layer Authentication Using Channel State
Information and Deep Learning” by Ken St. Germain and Frank Kragh, published in the
14th International Conference on Signal Processing and Communication Systems [98].

4.1 System Model
We consider a 4 × 4 wireless MIMO communications channel with 10 trusted transmitters
that should be authenticated and 10 illegitimate “Eve” transmitters that should not be
authenticated. The channel model used is the same as described in Chapter 3, where each
trusted transmitter has CSI elements drawn from CN(0,�n). To these elements, AWGN is
added to simulate SNR environments from -10 dB to 30 dB.

Once trained, the SGAN discriminator will be used to differentiate the received CSI as
either “Real” or “Fake”. The received CSI samples that are classified as “Fake” will be
denied authentication. If the discriminator classifies a sample as “Real”, the transmitter will
be authenticated, and subsequently categorized by the classifier network.

59

4.2 SGAN Architecture
The discriminative model at the receiver is adversarially trained by a generative model G
that creates CSI samples that appear authentic. By training with increasingly high-quality
spoofed samples, the discriminative networkD learns the features of transmitters that should
be authenticated and the features of those that should not be authenticated. Parallel to the
adversarial training between D and G, the classifier C learns the correct labels assigned to
the 10 trusted users.

Once the transmitter is classified as trusted or untrusted, the trusted transmitters can be
authenticated at the appropriate level. Here, we will use an SGAN to classify several
transmitters for authentication at various SNR levels.

The adversarial competition in the SGAN is a minimax game described by Equation 1.20
where the discriminative model attempts to correctly identify authentic training samples
from a distribution produced by CSI matrix elements ?30C0 (ℎ=,<) and fake training samples
created by the generator. A depiction of a SGAN in training is shown in Figure 1.8.

WhileD and G adversarially train each other, they learn to improve their individual perfor-
mance. Additionally, C is trained on labeled samples from the training dataset. Although C
does not directly receive unlabeled authentic or fake samples, the weights of C are affected
since it shares weights with D in the D/C implementation.

The classifier shares all but the final activation layer with the discriminator and is trained to
determine which of the 10 trusted transmitters will be authenticated. The weights of D/C
are iteratively updated as D and C are trained.

4.3 Simulation
The SGAN processed a single subcarrier in a MIMO 4 × 4 configuration with 10 trusted
transmitters. Therefore, the classifier model has 16 complex inputs and 1 real output for each
transmitter label, the discriminative model has 16 complex inputs and 1 real output denoting
trusted or untrusted, while the generative model has 1 real input and 16 complex outputs.
The inputs for the discriminative and classifier model and the outputs for the generative
model represent the complex elements in the CSI matrix. A dataset of 210,000 authentic
sampleswas created, where each sample is a 4 × 4 complexmatrix. For each of the 10 trusted

60

transmitters, there are 1,000 CSI samples at the 21 SNR levels between -10 dB and 30 dB
inclusive, in steps of 2 dB.

4.3.1 SGAN development
The SGAN was implemented using the Python programming language, Keras [144] front-
end, and Tensorflow [145] back-end. Additionally, Numpy, and Matplotlib Python libraries
were used. The dataset was created using MATLAB [146] and Python. The overall SGAN
design is summarized in Table 4.1, with a total of 9,722 parameters for the discriminator
and the generator, and 4,890 parameters for the classifier. The file size of the classifier was
112 KB.

Table 4.1. SGAN dense architecture.
Discriminator/Classifier:
layer output size activation
Input 1: G ∼ ?30C0 (G1,1) 2
Input 2: G ∼ ?30C0 (G1,2) 2
... 2
Input 16: G ∼ ?30C0 (G4,4) 2
Concatenated 32
Fully Connected 64 LeakyReLU (alpha = 0.3)
Dropout = 0.5
Fully Connected 32 LeakyReLU (alpha = 0.3)
Dropout = 0.5
Fully Connected 16 LeakyReLU (alpha = 0.3)
Fully Connected 10: ;= = {;1, ;2, . . . , ;10}
Discriminator Output 1 sigmoid
Classifier Output 10 softmax

Generator:
layer output activation
Input: I ∼ ?I (I) 5
Fully Connected 16 LeakyReLU (alpha = 0.3)
Fully Connected 32 LeakyReLU (alpha = 0.3)
Fully Connected 64 tanh
Output 1 2 linear
Output 2 2 linear
... 2
Output 16 2 linear

The discriminator/classifier networkD/C is a dense or fully-connected DNNwith 16 inputs

61

of size 2 merged into one concatenated layer. Each input has 2 neurons to accommodate the
real and imaginary parts of the complexCSImatrix element. Four additional fully-connected
layers of size 64, 32, and 16 with LeakyReLU activations (alpha = 0.3) follow. The first three
of these hidden layers use dropout of 0.5 to prevent overfitting. Prior to the output layers, a
fully connected layer of size 10 is used to capture the number of transmitters to be classified.
The discriminator output layer of size 1 is fully connected and uses a sigmoid activation
to provide values (0.0, 1.0). The classifier output is a softmax activation connected to the
10-neuron layer. The learning rate for D/C was 0.0002 using the Adam [134] optimizer
and training was done with batches of 128 samples.

The generator network G has a single input with five neurons fully connected to the
first hidden layer of size 16. Two additional hidden layers of sizes 32 and 64 are again
fully connected using LeakyReLU (alpha = 0.3) and tanh activations respectively. Finally,
16 output layers of size 2 are connected using linear activations. The learning rate for G
was 0.0002 using the Adam optimizer.

4.3.2 Datasets
The dataset consisted of 210,000 samples, of which 70% were randomly allocated for
training, and the remaining 30% set aside for testing. Each sample started with a 4 × 4
matrix consisting of 16 circularly symmetric Gaussian complex values with zero mean, and
unit variance CN(0, 1). Ten of these distinct 4 × 4 samples were generated, and for each
of the ten samples, 1,000 samples of measurement error in the form of 21 different levels
of SNR were generated. Simulating thermal noise in the receiver, decreasing amounts of
AWGN were combined with the original signal to produce the 21 different levels of SNR
ranging from -10 dB to 30 dB in steps of 2 dB. This was inspired by the technique used by
O’Shea et al. to create distortion for the modulation classification task in [92], except we
used MATLAB instead of Python and GNU Radio libraries.

Classifier Datasets
From the 147,000 training samples, 50 (0.034%) were randomly selected as labeled samples
for the supervised training of the classifier. Care was taken to ensure that each class was
equally represented in the supervised sample training dataset, however the selection of SNR
values for the supervised samples was left to chance. The labels assigned to each of the

62

10 transmitters were {*B4A0,*B4A1, . . . ,*B4A9}. These labels were then transformed to
a one-hot vector for training and testing the classifier. The testing dataset for the classifier
was 63,000 samples (30% of the original dataset).

Discriminator Datasets
In addition to the 30% of the original dataset samples that were set aside for testing, 21,000
more samples were added to complete the testing dataset for the discriminator. Using the
samemethod to create the samples in the original dataset, the new 21,000 “Eve” samples are
for testing the ability of the discriminator to discern legitimate from illegitimate samples.
Ten 4 × 4 matrices consisting of 16 circularly symmetric Gaussian complex values with
zero mean, and unit variance CN(0, 1), represent ten different transmitters that should not
be authenticated. To these matrix elements, AWGNwas combined, resulting in 100 samples
for each “Eve” transmitter at every SNR value ranging from -10 dB to 30 dB in steps of
2 dB.

4.3.3 Additional networks
To compare the performance of the SGAN dense DNN classifier, we constructed three ad-
ditional networks. Instead of training in an SGAN architecture, we first created a standalone
dense DNN classifier. This classifier uses the same parameters as our SGAN dense clas-
sifier C. Next, we used another SGAN classifier, but we used convolutional layers instead
of fully-connected layers. This gives us a SGAN CNN classifier. The layers for this are
summarized in Table 4.2. Finally, we implemented a standalone CNN classifier, using the
same parameters of the SGAN CNN classifier.

63

Table 4.2. SGAN CNN architecture.
Discriminator/Classifier:
layer output shape activation
Input 1: G ∼ ?30C0 (G1,1) 2x1
Input 2: G ∼ ?30C0 (G1,2) 2x1
... 2x1
Input 16: G ∼ ?30C0 (G4,4) 2x1
Concatenated 32x1
Convolution 32x32 LeakyReLU (alpha = 0.3)
Dropout = 0.5
Convolution 32x16 LeakyReLU (alpha = 0.3)
Dropout = 0.5
Flatten 512
Fully Connected 10 ;= = {;1, ;2, . . . , ;# }
Discriminator Output 1 sigmoid
Classifier Output 10 softmax

Generator:
layer output shape activation
Input: I ∼ ?I (I) 5
Fully Connected 8 LeakyReLU (alpha = 0.3)
Reshape 8x1 LeakyReLU (alpha = 0.3)
Convolution 8x8 LeakyReLU (alpha = 0.3)
Convolution 7x16 tanh
Flatten 112
Dense, Reshape 112x1 linear
Output 1 2x1
Output 2 2x1
... 2x1
Output 16 2x1

4.4 Results
The performance of the neural networks against the dataset of simulated CSI samples is
presented here. The accuracy of the neural networks are assessed and compared.

4.4.1 Discriminator Results – 50 Labeled Samples
During testing, the densely-connected discriminator and CNN discriminator processed
63,000 samples from the original dataset that were not used in testing. All of these samples
should be classified as “Real”. Additionally, the 21,000 “Eve” samples should be classified

64

as “Fake”. Figure 4.1 shows how accurate these discriminators were across the range of
SNR values.

Figure 4.1. Discriminator accuracy performance vs SNR for 50 labeled sam-
ples.

From Figure 4.1, we see the densely-connected discriminator has relatively low accuracy
compared to the CNN discriminator at small SNR values, but is more accurate for SNR
greater than 5 dB and eventually reaches 100% for SNR ≥ 26 dB.

We can use confusion matrices to better understand the discriminator output. Figure 4.2
and Figure 4.3 show the classification predictions of the densely-connected and CNN
discriminators, respectively, across a range of SNR values.

65

(a) SNR = 0 dB (b) SNR = 14 dB (c) SNR = 24 dB (d) SNR = 26 dB

Figure 4.2. Densely-connected discriminator test predictions for SNR levels
at (a) 0 dB, (b) 14 dB, (c) 24 dB, and (d) 26 dB after training with the 50
labeled samples dataset.

(a) SNR = 0 dB (b) SNR = 14 dB (c) SNR = 24 dB (d) SNR = 30 dB

Figure 4.3. CNN discriminator test predictions for SNR levels at (a) 0 dB,
(b) 14 dB, (c) 24 dB, and (d) 30 dB after training with the 50 labeled
samples dataset.

In Figure 4.2, we can see that as the SNR value increases, the densely-connected discrim-
inator simultaneously improves in identifying “Real” samples as the number in the lower
left quadrant decreases in value, and also in identifying “Fake” samples as the upper right
quadrant diminishes to zero. Contrast with the behavior of the CNN discriminator, where
the upper right quadrant does not decrease with larger SNR, and the values in the lower left
quadrant decrease quickly early on but then stalls before reaching zero.

When the upper right quadrant of the confusion matrix is zero, this indicates that the
discriminator did not misclassify CSI samples from an illegitimate transmitter. Having
no illegitimate sample misclassifications is an important trait for authentication as this
prevents untrusted transmitters from gaining access to the network. Ideally, the discriminator
prevents all untrusted transmitters from authenticating and allows all trusted transmitters to
authenticate. Unfortunately, that does not occur until the authentication accuracy is 100%
at 26 dB using the densely-connected discriminator as shown in Figure 4.2d.

66

We also observe that there is a small difference in the numbers of samples being processed
at each SNR value. Because the original dataset was separated by choosing random samples
to create the training and testing datasets, the same number of legitimate samples is not
represented across all SNR values. This is evident by adding the values in the lower right
and lower left quadrants in Figures 4.2 and 4.3, and noting the sums are not equal for each
SNR value. However, all of the illegitimate “Eve” samples are equally represented at each
SNR, as seen by the sums of the upper quadrants in Figures 4.2 and 4.3.

4.4.2 Classifier Results – 50 Labeled Samples
Testing on 63,000 samples not seen during training, the classifiers are tasked to correctly
assign each sample to its appropriate class label. The accuracy of the densely-connected
and CNN SGAN-trained classifiers is compared to the standalone densely-connected and
CNN classifiers in Figure 4.4.

Figure 4.4. Classifier accuracy performance vs SNR after training on dataset
with 50 labeled samples.

Figure 4.4 shows that all the classifiers reached 100% accuracy well before the densely-
connected discriminator achieved 100% at 26 dB. The CNN SGAN classifier reached
100% accuracy at the lowest SNR value, 4 dB. With an additional 2 dB SNR, we see that

67

the densely-connected SGAN and the CNN classifiers reached 100% at 6 dB SNR. The
densely-connected classifier didn’t reach 100% accuracy until the SNR was 14 dB.

Figures 4.5-4.8 show the confusion matrices for the classifiers using 50 labeled samples.
The confusion matrices for the classifiers are normalized, so the matrix entries shown are
the categories predicted for the samples divided by the actual categories of the sample.
The elements along the matrix diagonal correspond to the correct category being predicted.
When we compare the classifier confusion matrices, we can see that even at the lowest
SNR value of -10 dB, all the classifiers demonstrate a trend of having darker shades of blue
along the diagonal, indicating the classifier is correctly identifying many of the legitimate
transmitters.

68

(a) SNR = -10 dB (b) SNR = -4 dB

(c) SNR = 0 dB (d) SNR = 4 dB

Figure 4.5. Classification predictions from densely-connected SGAN classifier
trained on 50 labeled samples with SNR levels at (a) -10 dB, (b) -4 dB,
(c) 0 dB, and (d) 4 dB.

69

(a) SNR = -10 dB (b) SNR = -4 dB

(c) SNR = 0 dB (d) SNR = 4 dB

Figure 4.6. Classification predictions from CNN SGAN classifier trained on
50 labeled samples with SNR levels at (a) -10 dB, (b) -4 dB, (c) 0 dB, and
(d) 4 dB.

70

(a) SNR = -10 dB (b) SNR = -4 dB

(c) SNR = 0 dB (d) SNR = 4 dB

Figure 4.7. Classification predictions from densely-connected standalone clas-
sifier trained on 50 labeled samples with SNR levels at (a) -10 dB, (b) -4 dB,
(c) 0 dB, and (d) 4 dB.

71

(a) SNR = -10 dB (b) SNR = -4 dB

(c) SNR = 0 dB (d) SNR = 4 dB

Figure 4.8. Classification predictions from CNN standalone classifier trained
on 50 labeled samples with SNR levels at (a) -10 dB, (b) -4 dB, (c) 0 dB,
and (d) 4 dB.

The classifier confusion matrix results indicate that all the classifiers have similar classifi-
cation performance. It does appear that both the SGAN-trained CNN and standalone CNN
have slightly better performance at the lowest range of SNR values for this dataset. The
spatial correlation of received CSI may be the reason that the CNN classifier networks were
more accurate than the densely-connected classifier networks. The convolutional operations
performed within the CNNs extract spatial features from the input samples and are used to

72

train the networks to make a classification decision.

We note that the densely-connected discriminator performed better than the CNN discrimi-
nator, while the SGAN CNN classifier performed better than the SGAN densely-connected
classifier. The “Eve” samples were created using the same distribution of CSI elements as
the legitimate samples before mixing with AWGN. Because CNNs use spatial features to
make classification decisions, it may be more difficult for the CNN network to differentiate
between “Real” and “Fake” samples since the same distribution was used to create all the
samples, even as the amount of AWGN is reduced at higher values of SNR. That is, the
SGAN-trained CNN discriminator may have been trained to identify the spatial relationship
among the CSI elements, whereas the densely-connected discriminator network is not as
sensitive to any spatial correlation in the input samples.

4.4.3 Discriminator Results – 50,000 Labeled Samples
By increasing the amount of labeled samples, we hope to improve the performance of
our neural networks, specifically the classifiers. We repeat our simulation, and retrain our
networks using 50,000 labeled samples (34% of the 147,000 training samples).

Using this new training dataset, the confusion matrices for the SGAN-trained discriminators
against the test dataset are shown in Figure 4.9 and Figure 4.10. For SNR values equal to
0 dB, 14 dB, 26 dB, and 30 dB, Figure 4.9 shows the outputs of the densely-connected SGAN
discriminator and Figure 4.10 provides the output results of the CNN SGAN discriminator.

(a) SNR = 0 dB (b) SNR = 14 dB (c) SNR = 26 dB (d) SNR = 30 dB

Figure 4.9. Densely-connected discriminator test predictions for SNR levels
at (a) 0 dB, (b) 14 dB, (c) 26 dB, and (d) 30 dB after training with 50,000
labeled samples dataset.

73

(a) SNR = 0 dB (b) SNR = 14 dB (c) SNR = 26 dB (d) SNR = 30 dB

Figure 4.10. CNN discriminator test predictions for SNR levels at (a) 0 dB,
(b) 14 dB, (c) 26 dB, and (d) 30 dB after training with 50,000 labeled
samples dataset.

Compared to the discriminators with 50 labeled samples in the dataset, and across all SNR
values, we notice an improvement in the predictions made by the discriminators trained with
50,000 labeled samples regarding legitimate transmitters. Comparing the densely-connected
discriminator results from Figure 4.2 and Figure 4.9, the discriminators trained with the
50,000 labeled samples made more correct predictions for “Real” test samples. The same
was true for the CNN discriminator, with 50 labeled samples in Figure 4.3 and 50,000 in
Figure 4.10.

Unfortunately, the discriminators trained on the dataset with 50,000 labeled samples did
worse at recognizing illegitimate transmitters across all SNR values compared with the
discriminators trained on the dataset with 50 labeled samples. This is evident by noting
the larger value in the upper right quadrant of the confusion matrices when comparing
the densely-connected discriminator in Figures 4.2 and 4.9 and the CNN discriminator in
Figures 4.3 and 4.10. We speculate that this degrading performance is due to the additional
number of training samples provided to the classifier and that the classifier received a
larger distribution of low-SNR samples in the 50,000 labeled samples case compared to the
50 labeled samples case. The samples processed by the classifier were evenly distributed
across classes but did not control for SNR value. When processing 50,000 labeled samples,
the discriminator and classifier network weights may have been adjusted to create a larger
region for which acceptable CSI element values may occupy than with the region created
with the 50 labeled samples. At low SNR values and larger acceptable CSI element ranges, it
may have been challenging to differentiate “Real” and “Fake” samples from the test dataset
ultimately leading tomore illegitimate samples being assessed as legitimate. By virtue of the
improvement the discriminators made at recognizing “Real” samples, the overall accuracy

74

improves at almost every SNR value as shown in Figure 4.11, however, this behavior would
allow more instances of illegitimate transmitters to authenticate.

In Figure 4.9, we can see that as the SNR value increases, the densely-connected discrim-
inator simultaneously improves in identifying “Real” samples as the number in the lower
left quadrant decreases in value, and also in identifying “Fake” samples as the upper right
quadrant diminishes to zero. Contrast with the behavior of the CNN discriminator, where
the upper right quadrant does not decrease with larger SNR, and the values in the lower left
quadrant decrease quickly early on and then stall before reaching zero.

Figure 4.11 shows the accuracy of the retrained discriminators across the range of SNR
values using 50,000 labeled samples in the training dataset as well as the accuracy with 50
labeled samples.

Figure 4.11. Discriminator accuracy performance vs SNR for 50,000 labeled
samples.

The performance of the densely-connected SGAN-trained discriminator appears to improve
at all values of SNR, however it doesn’t reach 100% accuracy until 30 dB. Training on the

75

dataset with 50 labeled samples, the densely-connected SGAN discriminator reached 100%
at 26 dB as shown in the confusion matrix in Figure 4.2d.

4.4.4 Classifier Results – 50,000 Labeled Samples
After training with a dataset containing 50,000 labeled samples, the classifiers are tasked
to correctly assign each of 63,000 test samples to the appropriate class label. Comparing
the results of these classifiers against the classifiers trained with 50 labeled samples, we see
an accuracy improvement for three of the four classifiers as shown in Figure 4.12. Only the
SGAN-trained CNN classifier has a slight reduction in classification accuracy.

Figure 4.12. Classifier accuracy vs SNR for 50,000 labeled samples.

While the SGAN-trained densely-connected classifier improved after training with 50,000
labeled samples, it was a more modest improvement than that of the standalone classifiers
as shown in Figure 4.12. However, all classifiers reached 100% accuracy at 4 dB.

Figures 4.13-4.16 show the confusion matrices for the classifiers after training with 50,000
labeled samples.

76

(a) SNR = -10 dB (b) SNR = -4 dB

(c) SNR = 0 dB (d) SNR = 4 dB

Figure 4.13. Densely-connected SGAN classifier performance against 50,000
labeled samples test dataset with SNR levels at (a) -10 dB, (b) -4 dB,
(c) 0 dB, and (d) 4 dB.

77

(a) SNR = -10 dB (b) SNR = -4 dB

(c) SNR = 0 dB (d) SNR = 4 dB

Figure 4.14. CNN SGAN classifier performance against 50,000 labeled sam-
ples test dataset with SNR levels at (a) -10 dB, (b) -4 dB, (c) 0 dB, and
(d) 4 dB.

78

(a) SNR = -10 dB (b) SNR = -4 dB

(c) SNR = 0 dB (d) SNR = 4 dB

Figure 4.15. Densely-connected standalone classifier performance against
50,000 labeled samples test dataset with SNR levels at (a) -10 dB, (b) -
4 dB, (c) 0 dB, and (d) 4 dB.

79

(a) SNR = -10 dB (b) SNR = -4 dB

(c) SNR = 0 dB (d) SNR = 4 dB

Figure 4.16. CNN standalone classifier performance against 50,000 labeled
samples test dataset with SNR levels at (a) -10 dB, (b) -4 dB, (c) 0 dB,
and (d) 4 dB.

Based on the changes in accuracy performance from Figure 4.12, we see very little
change in SGAN-trained classifier performance comparing Figures 4.5 and 4.6 with Fig-
ures 4.13 and 4.14. Across the 10 classes of legitimate users, the confusion matrices appear
very similar across the range of SNR. On the other hand and indicating an improvement
in prediction accuracy, the standalone classifiers trained with 50,000 labeled samples have

80

much darker diagonal elements in their respective confusion matrices compared to the
standalone classifiers trained with 50 labeled samples. This is especially evident at -10 dB
and -4 dB in Figures 4.7 and 4.15 for the standalone densely-connected ANNs and Fig-
ures 4.8 and 4.16 for the standalone CNNs.

4.4.5 Training Epochs
During training, we saw that the SGAN discriminators and classifiers reached their highest
levels of accuracy in less than 50 epochs. The standalone classifiers took many more epochs
to reach their peak performance while using the training dataset with 50 labeled samples,
however this was greatly reducedwhenmore labeled samples weremade available. Table 4.3
summarizes the amount of training required by the networks to produce the results in this
section.

Table 4.3. Training epochs required to produce best result.

50 labeled samples 50,000 labeled samples
Densely-connected SGAN 32 7

CNN SGAN 49 14
Densely-connected standalone 1005 22

CNN standalone 570 49

Although theGAN-based networks required fewer passes through the dataset to achieve their
best results, the training routine required more computations and took more time. While the
standalone classifiers shared the same parameters as the SGAN classifiers/discriminators,
the training plan was more simple. For each epoch, the standalone classifiers conducted
forward passes and backpropagation based on the labeled batch size. The SGAN conducted
these same forward and backward passes for the classifier networks, but also added more
processing for the discriminator using unlabeled samples and the generator. Additionally,
the SGAN training required a serial implementation for the classifier, discriminator, and the
generator, meaning that parallel processing could not be used to speed up the task.

81

4.5 Summary
In this chapter, we showed how machine learning, specifically the use of deep SGAN,
can be used to classify transmitters by MIMO CSI as a method to provide physical layer
authentication. We considered a system of multiple transmitters each operating on a single
carrier. Our simulation results using the training dataset with 50 labeled samples illustrated
that with a very small percentage of labeled CSI samples, accurate classification can be
made with a SGAN-trained classifier for SNR values greater than 4 dB. During the initial
authentication setup between two transceivers, a small number of labeled samples is desired
to minimize overhead. While fewer passes through the training datasets were required for
the SGAN-trained classifiers, if more labeled samples were available to the receiver, the
standalone classifiers produced better results at all SNR levels.

While the classifier networks from the SGANs performed well, especially with a small
number of labeled samples, the discriminators did not fare as well. Although the densely-
connected SGAN discriminator performed better than the CNN discriminator, our system
model as described in Section 4.1 only would use the classifier portion of the SGAN if a
sample was categorized as “Real” by the discriminator. Unfortunately, the discriminators
didn’t perform at 100% accuracy across the range of SNR tested here.

One method to address the shortcoming of the discriminator is to implement the classifiers
with a method to categorize # + 1 classes consisting of # legitimate transmitters and one
additional class for assigning illegitimate transmitters. In this configuration, the classifier is
capable of classifying legitimate and illegitimate transmitter CSI. A GAN-based approach
can be used here, with the generator creating samples that attempt to match one or several
of the CSI matrices produced by a legitimate transmitter.

Another method to improve the discriminator is to provide additional features to the input
samples. We showed in this chapter that our SGAN approach was sound and that the results
encouraged additional research. We used a simple approach to generate CSI elements, and
although our discriminator networks did not achieve 100% accuracy, we were successful in
developing neural networks that were able to classify received transmitter CSI at various
SNR levels. In the next chapter, we will consider communication systems that use multiple
subcarriers. The subcarriers provide another dimension from which additional features can
be extracted and learned. Changes to the architecture of the discriminator and classifier

82

were required to account for the changes to the SGAN input.

83

THIS PAGE INTENTIONALLY LEFT BLANK

84

CHAPTER 5:
Multisubcarrier Authentication and Classification

In Chapter 4, we used a SGAN to prevent illegitimate devices from authenticating, and
then correctly identified multiple legitimate transmitters based on features observed at
the physical layer. In this chapter, we extend the SGAN for use when there are multiple
subcarriers.

To simulate MIMO millimeter wave OFDM subchannels, we take advantage of the Deep-
MIMO dataset [147], based on ray-tracing data from the Remcom Insite tool [148]. The
DeepMIMO dataset is configurable to a variety of wireless applications, and we use it to
create samples that train and test the SGAN in a 4 × 4 MIMO environment operating with a
60 GHz carrier frequency with 16 pilot subcarriers from a 512 OFDM subcarrier system in
an urban setting. Although the DeepMIMO dataset scenario is based on an urban environ-
ment, more fully appropriate use-cases for static channels might include an uninhabitable
industrial setting, or a in a remote, deployed sensor network.

This chapter includes material adapted from work published by the author. This revised
material is from “Multi-Subcarrier Physical Layer Authentication Using Channel State
Information andDeep Learning” byKen St. Germain and FrankKragh, published in the 14th
Hawaii International Conference on Signal Processing and Communication Systems [38].

5.1 Channel Model
Although CSI elements may be independent for a single subcarrier, that does not necessarily
hold truewhen there aremultiple subcarriers, such as in anOFDMsystem. For subcarriers,
we extend (1.6) by adding an additional dimension as a superscript where : = 1, 2, . . . ,
is the sampled subcarrier, resulting in

y: = H:x: + n: (5.1)

where H: is a three-dimensional tensor of size # × " × . Fading across the subcarrier
channels will be correlated if the coherence bandwidth is large [149], resulting in corre-

85

lated CSI elements across subchannels, for example, h:1,1. For example, depending on the
coherence bandwidth, there may be correlation between adjacent OFDM channels, but not
across the entire band of subcarriers or adjacent pilots channels.

5.2 Authentication with Measured CSI
We will continue to use our previously-introduced authentication model, as described in
Section 3.1. A receiver continues to authenticate a transmitter if the received CSI varies
less than a threshold applied to the received CSI from previous transmissions. This requires
some method of initial authentication, such as the use of cryptographic methods or phys-
ical layer authentication using RF fingerprinting from transmitter imperfections. During
initial authentication, the receiver makes CSI measurements of the channel and stores that
information for future authentication.

As described in Section 3.1, the measurements made by the receiver of the CSI elements
are altered due to noise in the receiver. This error & is modeled as an additive complex
zero-mean Gaussian process on each subcarrier CN(0,�n) where the covariance of the
sample mean is �n = �n/B for B samples during the measurement. Extending Equation 5.2,
the Cth CSI measured by the receiver at subcarrier : Ĥ:

C is given as

Ĥ:

C = H: + & :C C = 1, 2, . . . , B (5.2)

whereH: is the true CSI from (5.1) and & :t is a complex # × " × tensor with independent
identically distributed elements. Since & :C is zero-mean,H: can be estimatedwith a variety of
techniques including least squares estimation, minimum mean-square error estimation, and
through successive measurements and element-wise averaging of Ĥ:

C for C = {1, 2, . . . , B}
as demonstrated in [142].

5.3 Semi-Supervised GAN
Introduced in Chapter 1 and demonstrated in Chapter 4, semi-supervised learning uses a
small percentage of labeled training data. Implementing a multiple-class classifier network
from a binary classifier can be done in a variety of ways. Following Salimans et al. [129],
we can build an #-class classifier network C with output logits {;1, ;2, . . . , ;# } prior to the
softmax activation for C. The logits vector is then used as the input to the activation function

86

for D, which is given as � (G) = / (G)
/ (G)+1 , where / (G) =

∑#
==1 exp[;= (G)]. In Chapter 4, the

last layer of the densely-connect network and the CNN discriminators were a single fully-
connected node followed by a sigmoid activation function. Here, we use the implementation
suggested by Salimans in [129] to remove the final densely-connected layer and the associ-
ated weights to be trained, thereby improving efficiency in the network. Because D and C
share the same weights, both networks act as a single network D/C that is updated during
backpropagation based on their respective loss functions � (D) and � (C) . The generator loss
function is given by � (G) .

The training dataset is partially labeled and provided to the D/C model for classification
by C. The remainder of the training dataset as well as the generated samples from G are
used as input to D/C for discrimination where D will predict whether the sample came
from the training dataset or if it was created by G.

5.4 The DeepMIMO Dataset
Using the Remcom Insite ray-tracing tool [148], Alkhateeb developed the DeepMIMO
dataset generation framework [147]. The framework allows researchers to tailor parameters
in a MATLAB [146] program to suit the need of their machine learning based wireless
application. This section discusses the setting we use to obtain our training and testing data,
and the parameters we selected for our model.

5.4.1 Target data and labels
The target data for our proposed SGAN is the received 4 × 4 MIMO CSI from a transmitter
to 14 distinct legitimate user locations {*B4A0,*B4A1, . . . ,*B4A13} across 16 subcarriers.
The transmitter and receivers operate at 60 GHz using 512 OFDM subcarriers. Each of the
16 pilot subcarriers are evenly spaced 32 subcarriers apart. A single target sample consists
of 256 complex numbers, accounting for 16 CSI elements in each of their respective
16 subcarriers.

For each CSI target sample created in the dataset, there is an accompanying target label,
denoting the user. During training, the goal for the SGAN classifier will be to differentiate
among the legitimate users. The SGAN discriminator will attempt to categorize these
legitimate users as “Real”, and categorize the generator-created samples as “Fake”.

87

During testing for the discriminator, an additional user, representing a malicious actor
will be added to the test dataset. The discriminator will not have seen this data during
testing, but will need to identify samples from the malicious user’s CSI as “Fake” to prevent
authentication. The classifier will attempt to assign the correct label for each users’ CSI
from the test dataset, however the classifier will not be exposed to the malicious user’s CSI,
since in application, the discriminator would have already prevented authentication.

5.4.2 DeepMIMO scenario
The setting used for the scenario is denoted “O1” and is described in detail in [147]. The
“O1” scenario is an outdoor urban setting with a variety of possible transmitter base station
locations and user locations on the streets surrounded by buildings of various heights.
Figure 5.1 shows the position of the 14 legitimate users denoted by blue circles and the
red square indicating the malicious user in the white patch above the “User Grid 3” label.
The user locations are specified by rows in one of the three grids that correspond to the
streets in the scenario. We selected three rows to place our 15 users. Base station 7 (BS7)
is the transmitter for our case, circled in white and is across the intersection from the users.
Both streets are 40 m wide, and the user positions are centered in the street going in the
X direction and 7 m from the street going in the Y direction. There are 10 cm between
adjacent users, and each user as well as BS7 has four antennas.

88

Figure 5.1. DeepMIMO scenario “O1.” Source: [38].

5.4.3 DeepMIMO parameters
The parameters were chosen to emulate advanced wireless communication technologies,
but they are not intended to model any specific standard. Table 5.1 summarizes the pa-
rameters used. Advanced technologies refers to communications systems using millimeter
wavelengths and multiple antennas for transmitting and receiving signals. We believe that
such devices will become adopted and more commonplace in the future. While the param-
eters chosen do not match any particular technology, they are analogous to those described
by IEEE standards recently released or currently in draft.

89

Table 5.1. DeepMIMO dataset parameters. Source: [38].

Base Station 7
First row of users 4528
Last row of users 4531
Center frequency 60 GHz
Antenna spacing 1 wavelength
System bandwidth 8.64 GHz
OFDM channels 512
OFDM channel interval 32
Number of paths 3

5.5 System Model
Weconsider a 4 × 4wirelessMIMOcommunications channel using 512OFDMsubchannels
with 16 pilots. There are 14 trusted users and some unknown number of untrusted users;
some of the latter group are malicious adversaries. The adversaries have resources available
to change their antenna characteristics, transmitter RF path timing, output power, and/or
present reflectors between themselves and the receiver. Thus, they are able to change their
CSI as measured by the receiver and may have an accomplice receiver to provide feedback
as described by Shi et al. in [43]. Although the adversaries have the ability to change their
CSI, they do not have accurate advanced knowledge of the CSI required to spoof the user. A
user becomes a victim if the malicious adversary is able to create CSI that is authenticated
as the transmitter by the user.

To defeat this scenario, the discriminative model at the receiver is trained by a generative
model that creates authentic looking CSI samples. By training with increasingly high quality
“Fake” samples, the discriminative network learns the features of transmitters that should
be authenticated and the features of those that should not be authenticated. Parallel to the
adversarial training between D and G, the classifier C learns the correct labels assigned to
the 14 trusted users.

During an initial authentication session by other means, the pilot subcarriers from the
transmitters are measured and recorded for training the SGAN. Initially authenticating by

90

other means, higher protocol layers are used, however for subsequent packet transfers,
authenticating at the physical layer reduces the workload on these higher-layer protocols as
discussed in [150].

The classifier provides identification only after the discriminator successfully authenticates.
The discriminator authenticates when a sample is assessed to be “Real”. The discriminator
may make an incorrect authentication decision (denying authentication when the sample is
“Real” or authenticating when the sample was actually faked), therefore we explored how
SNR can affect discriminator accuracy.

5.5.1 SGAN architecture
The adversarial competition in the SGAN is a minimax game described by Equation 1.20
where the discriminative model attempts to correctly identify authentic training samples
from a distribution produced by CSI matrix elements ?30C0 (ℎ=,<) and fake training samples
created by the generator.

As D and G adversarially train each other, they learn to improve their individual perfor-
mance. When the discriminative model correctly identifies fake samples created by the
generative model, the generative network will update its parameter weights through back-
propagation to make more realistic samples. Likewise, the discriminative model will update
its parameter weights when it incorrectly identifies “Real” or “Fake” samples. The results
of this training are a generator neural network adept at creating data that closely mimics
training data, a discriminator neural network that can identify all but the best fakes, and a
classifier neural network that can determine which trusted transmitter produced the received
CSI.

Additionally, C is trained on labeled samples from the training dataset. Although C does
not directly receive unlabeled authentic or fake samples, the weights of C are affected since
it shares weights with D in the D/C implementation.

Best practices from GAN researchers [151] were used to create the SGAN. The architecture
for the discriminator and classifier was chosen to enable feature extraction from the input
tensor. A reverse architecture was used for the generator to create realistic-looking samples.

91

5.6 Simulation
This section describes the simulation of the system model from Section 5.5. The dataset for
the SGAN is described and results are presented.

5.6.1 Dataset
A dataset of 224,000 authentic samples was created, where each sample was a 4 × 4 × 16
complex tensor. The training dataset was allocated 70% of the greater dataset, while the
remaining 30% was set aside for testing. Every sample started as a position-dependent
4 × 4 × 16 tensor created by the DeepMIMO dataset. For each of the samples, 1,000 ad-
ditional samples of measurement error in the form of 16 different levels of SNR were
generated. Simulating thermal noise in the receiver, decreasing amounts of AWGN were
combined with the original signal to produce the 16 different levels of SNR ranging from
-10 dB to 20 dB in steps of 2 dB.

The SGAN processed 16 subcarriers in a MIMO 4 × 4 configuration with 14 trusted trans-
mitters. Therefore, the classifier model would need to have 16 × 16 complex inputs and
1 real output for each transmitter label. However, we separated the real and imaginary parts
for processing through the neural networks, resulting in inputs tensors of shape 16 × 2 × 16.
The discriminative model also has inputs of shape 16 × 2 × 16 and 1 real output denoting
“Real” or “Fake”, while the generative model has 1 real input and 16 × 2 × 16 outputs.
Additionally, the values of the real and imaginary parts were preprocessed to scale [−1, 1]
to allow for the hyperbolic tangent activation function range in the generator network as
mentioned in Section 5.6.2.

To mimic the malicious user’s attempt to fool a legitimate user, CSI is generated for a user
position in the center of the group of legitimate users, as shown in Figure 5.1. This sample
is preprocessed as before, to include creating 1,000 samples of 16 different levels of SNR.
These samples are then added to the testing dataset, remaining unknown to the SGAN until
testing following the completion of training.

5.6.2 SGAN development
The SGAN was implemented using the Python programming language, Keras [144] front-
end, and Tensorflow [145] back-end. Additionally, Numpy, and Matplotlib Python libraries

92

were used. The dataset was created using MATLAB and Python. The overall SGAN design
is summarized in Table 5.2, with a total of 9,098,542 parameters for the classifier and the
discriminator, and 7,511,664 parameters for the generator.

Table 5.2. SGAN architecture.

Classifier Discriminator Generator
Inputs 16 16 1
Hidden Layers 9 9 9
Outputs 1 1 16
Parameters 9.1M 9.1M 7.5M

The discriminator/classifier networkD/C is a dense or fully-connected DNNwith 16 inputs
of size 2 × 16 merged into one concatenated layer. Each input has two neurons to accom-
modate the real and imaginary parts of the complex CSI matrix element. Nine additional
fully connected layers with LeakyReLU activations (alpha = 0.3) follow. All hidden layers
use Dropout of 0.5 to prevent overfitting. Prior to the output layers, a fully-connected layer
of 14 neurons is used to capture the number of transmitters to be classified. The discrimi-
nator output layer of size 1 is fully-connected and uses a custom activation � (G) = / (G)

/ (G)+1 ,
where / (G) = ∑#

==1 exp[;= (G)] to provide values (0.0, 1.0) as discussed in Section 5.3. The
classifier output is a softmax activation connected to the 14-neuron layer. The learning rate
for D/C was 0.00009 using the Adam [134] optimizer and training was done with batches
of 128 samples.

The generator network G has a single input with 5 neurons fully connected to the first hidden
layer of size 16. Seven additional hidden layers are again fully connected using LeakyReLU
(alpha = 0.3). The last hidden layers are 16 fully-connected layers of size 32 followed by
hyperbolic tangent activations. Finally, the output is reshaped to produce 16 output layers
of size 2 × 16. The learning rate for G was 0.00009 using the Adam optimizer.

5.6.3 Results
Training was conducted over the course of 20 epochs. Of the 156,800 samples in the training
dataset, just over 10% (15,988) were labeled. These labeled samples trained the classifier to
identify the legitimate users. When selecting the labeled samples, care was taken to ensure

93

an equal distribution of samples for each of the 14 legitimate users, however the SNR in
the samples for each of the users was left to chance. All the training samples as well as
those created by the generator were used to train the discriminator. Following training, the
classifier and discriminator networks and their respective weights were saved. For testing,
the classifier and discriminator networks and weights were reloaded and presented with the
test dataset. The test dataset for the discriminator contained additional samples associated
with the malicious user.

Figures 5.2 and 5.3 show that the discriminator performs well for SNR greater than 2 dB.
The confusion matrices in Figure 5.2 show the discriminator labeled the malicious user’s
CSI as “Real” for low SNR, but gradually began to correctly categorize them as “Fake” as
the SNR increases. At each SNR, there are 1,000 “Fake" samples, however the number of
“Real” samples varies slightly due to the random split of the original dataset into training
and testing components. For authentication, if there is an error it is likely more favorable
to have a false negative rather than a false positive. Although this can be frustrating for
the authentic user denied authentication and result in lower throughput rates because of
restarting the authentication process, malicious users are kept out of the system.

(a) SNR = -10 dB (b) SNR = -4 dB (c) SNR = 2 dB (d) SNR = 4 dB

Figure 5.2. SGAN dense discriminator performance with SNR at
(a) -10 dB, (b) -4 dB, (c) 2 dB, and (d) 4 dB. Source: [38].

94

Figure 5.3. SGAN dense discriminator accuracy vs SNR. Source: [38].

The SGAN-trained densely connected discriminator was accurately able to differentiate
“Real” from “Fake” at SNR values above 4 dB. This result shows the limitations of the
SGAN approach. The quality of the generator is one aspect that determines how well the
discriminator will perform. Training a traditional standalone neural network to differentiate
“Real” from “Fake” without a robust generator requires “Fake” samples from another
source. While this can be obtained, it is likely not feasible to sample every possible fake
CSI sample. The SGAN does not need these negative examples because it creates its own
and still performs well provided a sufficient SNR.

The test dataset without the CSI samples from the malicious user was then used to obtain
the performance for the classifier. As shown in Figure 5.4, the confusion matrices indicate
accurate classification performance even at low SNR values. Accuracy is measured by
dividing the correctly classified samples by the sumof the correctly and incorrectly classified
samples. Figure 5.4a shows that the classifier attained classification accuracy above 90%
for most of the users at -10 dB SNR, and Figure 5.4b shows 100% accuracy at -4 dB SNR.

95

(a) SNR = -10 dB (b) SNR = -4 dB

Figure 5.4. SGAN dense classifier performance with SNR at (a) -10 dB,
(b) -4 dB. Source: [38].

5.6.4 Additional networks
To compare the performance of the SGAN dense classifier, we constructed three additional
networks. First, we used another SGAN classifier, but use convolutional layers instead of
fully connected layers. This gives us a SGAN CNN classifier. Next, instead of training in a
SGAN architecture, we created a standalone dense classifier. This classifier uses the same
parameters as our SGAN dense classifier C. Finally, we implemented a standalone CNN
classifier, using the same parameters of the SGAN CNN classifier.

By training the SGAN CNN classifier, we also trained a SGAN CNN discriminator. Unfor-
tunately the CNN discriminator did not perform as well as the SGAN dense discriminator.
As shown in Figure 5.5, the CNN discriminator did not correctly identify all the legitimate
users as “Real”. However, at all SNR values, the CNN was able to identify the malicious
user as “Fake”, so there may be a use case where this is desirable behavior even though it
incorrectly prevents some number of users from successfully authenticating.

96

(a) SNR = -10 dB (b) SNR = 20 dB

(c)

Figure 5.5. SGAN CNN discriminator performance for (a) -10 dB, (b) 20 dB,
(c) -10 dB to 20 dB. Source: [38].

Figure 5.6 shows the results of the various classifier testing after training. All the neural
networks reach 100% accuracy with sufficient SNR. The standalone dense classifier trained
for 125 epochs and obtained almost 100% accuracy for all SNR except -10 dB. At -10 dB, the
standalone dense classifier was 99.929% accurate. The standalone CNN classifier trained
for 667 epochs and had very similar performance to the SGAN dense classifier. Finally, the
SGANCNN classifier trained for 30 epochs, and lagging the others, reached 100% accuracy
at 6 dB.

97

Figure 5.6. Classifier accuracy vs SNR. Source: [38].

Where the discriminators were not able to differentiate between legitimate and generator-
produced samples with increased noise levels, the classification results show that the clas-
sifiers are able to differentiate among users at these same SNR values. The reason for this
is that the generators’ samples at low SNR closer approximate the sample distribution from
the authentic dataset, making training difficult for the discriminators. Contrast with the
classifiers’ training where they only receive samples from the dataset and learns the features
relevant to the 14 transmitters’ CSI.

Recalling the performance of the LOF machine learning algorithm in Chapter 3, we at-
tempted to apply LOF to the task of discriminating the multi-subcarrier CSI samples.
Because the implementation from [62] is limited to two dimensions, we flattened the input
from a three dimensional tensor to a two dimensional tensor. Unfortunately, the LOF algo-
rithm did not perform well at any SNR, only reaching 21.4% accuracy at 20 dB SNR with
the confusion matrix shown in Figure 5.7.

98

Figure 5.7. LOF confusion matrix with SNR = 20 dB.

5.7 Summary
In this chapter, we demonstrated a SGAN implementation that achieved 100%authentication
accuracy for SNR greater than 4 dB and classification accuracy for SNR greater than -4 dB.
We improved our architecture from Chapter 4 to take advantage of additional RF features
inherit in the multiple-subchannel MIMO wireless communication environment.

We showed how the use of a SGAN can be employed at millimeter wave frequencies
with multiple subcarriers in this chapter. Our simulation results illustrated that with a very
small percentage of labeled CSI samples, accurate discrimination between legitimate and
adversary transmitters as well as classification can bemade with a SGAN dense classifier for
SNR values greater than 4 dB. An adversary may achieve a high degree of accuracy when
spoofing a legitimate transmitter, but by measuring the magnitude and phase of the CSI
elements, we have shown that our system can differentiate transmitter CSI from positions
10 cm apart.

Our proposed SGAN-based physical-layer authentication system can be implemented to
provide high authentication accuracy at even low SNR values. The system first uses the
SGAN-trained discriminator to allow only trusted transmitters to authenticate. The SGAN-
trained classifier then identifies the trusted transmitter and can be used to allow the user a
tailored degree of access. While this was the goal in Chapter 4, our proposed discriminator
in that chapter was not able to achieve high authentication accuracy unless the SNR was
relatively high (greater than 26 dB SNR). In this chapter, we were able to realize our goal
by creating more robust neural networks and providing additional input features by using

99

CSI from multiple subcarriers.

As in Chapter 4, we saw that although the SGAN-trained classifiers required less epochs
to train with a small amount of labeled samples. While the dense classifier had the best
performance overall, the classifiers only can be used to classify legitimate transmitters. By
virtue of the training architecture, the SGAN is able to first discriminate and then classify.
The networks do not have a mechanism to create a discriminator andmust train this network
separately.

While our results are promising, up until this point in the dissertation, our system models
have used the static environment, where the magnitude and phase of the complex CSI
elements don’t appreciably change. While we’ve been able to use this to our advantage and
incorporate the features of the real and imaginary parts of the complex elements, the mobile
channel is dynamic and time-variant. In the next chapter, we examine a mobile environment
where we conduct physical-layer authentication using CSI measured as time-series data.

100

CHAPTER 6:
Mobile Channel Prediction and Transmitter

Authentication

Prediction of channel characteristics allows for a variety of techniques to make efficient use
of a wireless link [37], [152]. By applying adaptive measures such as changing transmitter
power, modulation, channel coding, antenna diversity, etc., improved performance can be
achieved between transmitter and receiver while ensuring symbol error rate remains at
acceptable levels [153]. CSI estimation and prediction is crucial in adaptive systems [154]
and has been a topic of much research. Notably, as communication systems have evolved and
become more complex with the inclusion of MIMO antenna architectures and OFDM with
multiple subcarriers, ANNs have been shown to outperform traditional linear algorithms
[155] resulting in several neural network-based solutions [78], [156]–[158] to channel
prediction.

In this chapter, we leverage machine learning to predict the future characteristics of a
channel and use this prediction to make an authentication decision. We explore physical
layer authentication and ANNs with the objective of correctly authenticating legitimate
devices and denying authentication to illegitimate transmitters. Since elements of the CSI
matrix are unique to the coupled positions of the receiver and transmitter in a fading channel
environment, we exploit these features to ensure transmission from legitimate transmitters
are authenticated, while illegitimate transmitters are denied authentication.

This chapter includes material adapted from work published and work to be published
by the author. Already published, this chapter contains revised material from “Channel
Prediction and Transmitter Authentication with Adversarially-Trained Recurrent Neural
Networks” by Ken St. Germain and Frank Kragh published in the IEEE Open Journal of
the Communications Society [99]. Additionally, this revised material is also included from
“Mobile Physical-Layer Authentication Using Channel State Information and Conditional
Recurrent Neural Networks”, by Ken St. Germain and Frank Kragh to be published in the
93rd Vehicular Technology Conference: VTC2021-Spring [71].

101

6.1 Channel Model
In a dynamic environment, the CSI matrix H(CB), changes for every sample time, where
CB ∈ {C1, C2, . . . C(} where (is the number of samples. Likewise, the magnitude of each
CSI element |h=,< |#×" changes. Following Jiang and Schotten in their work in channel
prediction [159], we will use the magnitude of the CSI elements to discern the transmitter to
be authenticated using the intuitive notion that magnitude will change more slowly than the
phases. We construct a time-varying channel gain tensor Q(CB) = [|h=,< (CB) |]#×"×(where
we further decompose the CSI elements into a two-dimensional matrix,

Q̃ =

|h1,1(C1) | |h1,1(C2) | . . . |h1,1(C() |
|h1,2(C1) | |h1,2(C2) | . . . |h1,2(C() |

...
...

...
...

|h#," (C1) | |h#," (C2) | . . . |h#," (C() |

, (6.1)

where Q̃ is a time-series representation of the channel gain matrix where one dimension is
time, and the other dimension is spatial. Each column in Equation 6.1 is a vector represen-
tation of the magnitude of the CSI elements for a particular channel sampled at one instant
in time.

6.1.1 Channel prediction
The time-series channel gain matrix Q̃ is obtained by measuring the magnitude of the CSI
elements within H(C). This can be accomplished through pilot symbols where the complex
value of the transmitted symbol is known a priori by the receiver. Pilot symbols can be
extracted from dedicated pilot channels in an OFDM framework or in the preamble of a
transmitted packet. We consider a fading channel where the channel changes from symbol
to symbol. We assume channel variations from symbol to symbol are correlated for a short
time, consistent with mobile channel measurements [37].

We achieve channel prediction by first measuring a sequence of (channel gain vectors from
a series of received transmissions, and then forecasting the next sequence of predictions %.
For example, consider Figure 6.1a and Figure 6.1b, where a sequence of (received channel
gain vectors are measured, and % channel gain vectors are predicted. This illustrates a
single-input single-output channel with a CSI matrix of dimension 1 × 1. Increasing the

102

number of receiver and transmitter antennas likewise increases the dimensions of H(C).
Although there will be correlation for each of the individual CSI element magnitudes in
time, we expect different CSI elements to have independent channel gains.

(a) (b)

Figure 6.1. Impulse response predictions for (a) (= 6, % = 1 and
(b) (= 6, % = 5. Source: [99].

6.1.2 CGAN
When training a vanilla GAN in an unsupervised learning architecture, the discriminative
model D is a binary classifier that receives unlabeled authentic samples from the training
dataset or fake samples generated by the generative model G. The generative model creates
fake samples based on random variable input and the parameters in G.

For the CGAN, we also provide conditional information to the discriminator and generator.
The conditional information is the previous magnitudes of the CSI elements associated with
CB ∈ {C1, C2 . . . C(}. The vector q(C1) is the magnitude of the CSI elements at time C1, and
Q̃ = {q(C1), q(C2), . . . , q(C()}. The output of the discriminator is the probability that X is
the channel gain matrix composed of channel gain vectors at time C? ∈ {C(+1, C(+2, . . . , C(+%},
given the previous channel gain matrix Q̃. The number of future channel measurements is
%, while the number of historic channel measurements is (.

The generator output � (z|Q̃) is a channel gain matrix approximating X, given that Q̃ was
the matrix composed of previous channel gain vectors. Latent points from a random noise

103

distribution are used to create the vector z. Therefore, Equation 1.20 becomes

min
�

max
�
+ (�,�) = EX∼?30C0 (X) [log� (X|Q̃)]

+ Ez∼?z (z) [log(1 − � (� (z|Q̃)))] .
(6.2)

where D calculates � (X|Q̃), and G produces � (z|Q̃). Figure 6.2 illustrates a CGAN
during training. Using Equation 6.2, the loss functions that should be minimized for the
discriminator and generator are

�
(D)
minimax = −EX∼?30C0 (X) [log� (X|Q̃)]

− Ez∼?z (z) [log(1 − � (� (z|Q̃)))]
�
(G)
minimax = Ez∼?z (z) [log(1 − � (� (z|Q̃)))]

(6.3)

where � (D)minimax is the sign-opposite of Equation 6.2, since the result of � (D)minimax should be
minimized, and Equation 6.2 calls for the discriminator network to maximize the value
function. The term containing � (X|Q̃) from Equation 6.2 is omitted from �

(G)
minimax in

Equation 6.3 since the generator is not connected to the discriminator while the samples
from the dataset X are being passed to the discriminator.

104

Figure 6.2. CGAN training architecture. Source: [99].

Alternative loss functions can also be used for the discriminator and generator networks.
In this work, we use the loss functions in Equation 6.3 and also train networks in a CGAN
framework using a MSE loss for the generator network. In [160], Mao et al. introduced
the least-squares generative adversarial network (LSGAN) in order to address the issue of
vanishing gradients while training GANs by applying a MSE loss to the discriminator. To
compare the performance of the discriminator and generator with alternative loss functions
to the vanilla cross-entropy loss for both networks, we also use the loss functions from [160],
i.e.,

�
(D)
MSE = EX∼?30C0 (X) [(� (X|Q̃) − 1)2]

+ Ez∼?z (z) [(� (� (z|Q̃)) − 0)2]
�
(G)
MSE = Ez∼?z (z) [(� (� (z|Q̃))) − 1)2] .

(6.4)

105

Additionally, we’ll train the CGAN with a hybrid of loss functions: the binary cross-
entropy (BCE) loss in Equation 6.3 for the discriminator, and use a MSE loss for the
generator, as shown in

�
(D)
hybrid = −EX∼?30C0 (X) [log� (X|Q̃)]

− Ez∼?z (z) [log(1 − � (� (z|Q̃)))]
�
(G)
hybrid = Ez∼?z (z) [(� (� (z|Q̃))) − 1)2] .

(6.5)

6.2 Simulation
In this section, we discuss the channel model and the architecture of the neural networks
under consideration. We continue with our evaluation methodology and present our results.

6.2.1 System model
We consider an independent and identically distributed 2 × 2 MIMO Rayleigh multipath
fading channel with path delay profile shown in Table 6.1. The path delay profile is specified
by the extended vehicular A (EVA) model in [161]. The power spectral density used is the
Clarke model [162], with a maximum Doppler shift of 70 Hz. We simulated our channel
with a 10 kHz sample rate and scaled the amplitude of the CSI elements [0,1]. To train
the networks, 60% of the samples were used for training and the remaining 395 samples
were reserved for testing. Figure 6.3 shows the magnitude of the CSI elements and the
partitioning of the dataset.

Table 6.1. Channel model power delay profile. Source: [161].

delay number, ; 1 2 3 4 5 6 7 8 9

tap delay, g; , (ns) 0 30 150 310 370 710 1090 1730 2510
relative power (dB) 0.0 -1.5 -1.4 3.6 -0.6 -9.1 -7.0 -12.0 -16.9

106

Figure 6.3. CSI element magnitude in channel model. Source: [71].

The training and testing data was sequenced so that every input sample consisted of (time
steps and four amplitude features each. The target variable for training and testing was
likewise sequenced so that every sample consisted of % future time steps and four amplitude
features each.

6.2.2 Neural network development
The RNNs we considered were composed of LSTM cells or GRU cells. To avoid overfitting,
all the networks used a recurrent dropout of 0.5 within the LSTM and GRU cells, and the
Adam optimizer [163]. The input for the standalone LSTM and GRU networks was the
matrix composed of previous channel response vectors Q̃. The LSTM and GRU CGANs
had a conditional input consisting of the concatenation of Q̃ and a random seed tensor z.
The CGAN generator input is made by combining Q̃ and latent points from U(0, 1). The
discriminator input X, is either the target variable from the dataset or a channel gain matrix
created by the generator � (z|Q̃). A summary of the architecture of the neural networks is

107

shown in Table 6.2.

Table 6.2. Neural networks architecture. Source: [71].

Input Layer Hidden Layer Output Layer
Input Output Size Units Type Output Size Units Type Output Size

CGAN-LSTM
D [Q̃,X] ((+ %, 4) 128 LSTM 128 1 Dense 1
G [Q̃, I] ((+ 100, 4) 128 LSTM 128 % × 4 Dense (%, 4)

CGAN-GRU
D [Q̃,X] ((+ %, 4) 128 GRU 128 1 Dense 1
G [Q̃, I] ((+ 100, 4) 128 GRU 128 % × 4 Dense (%, 4)

LSTM Q̃ ((, 4) 128 LSTM 128 % × 4 Dense (%, 4)
GRU Q̃ ((, 4) 128 GRU 128 % × 4 Dense (%, 4)

For the standalone LSTM and GRU networks, the loss function used was MSE,

MSE =
1
)

)∑
8=1

48

48 =
1
#"

∑
=,<

(
Q=,< − Q̂=,<

)2
(6.6)

where) is the number of samples, Q is the true value for the channel gain tensor at each
time C?, and Q̂ is the networks’ predicted value for each C?. The element-wise mean squared
error between Q and Q̂ for sample 8 is 48. The CGANs used the loss functions described in
Equations 6.3, 6.4, and 6.5.

6.2.3 Evaluation criteria
To assess relative performance, we used MSE between the predicted channel gain and the
true channel gain as our metric. After training the networks, we evaluated the standalone
LSTM and GRU networks and the generator networks from the CGANs. After gathering
MSE measurements, we can establish a threshold "(�) for authentication.

MSE ≤"(�) → authenticate

MSE >"(�) → do not authenticate
(6.7)

108

If the error between the predicted and actual channel measurement is less than or equal to
the threshold, the transmitter is authenticated. Otherwise, the transmission is rejected.

We created additional channel responses representing four other users using the same EVA
power delay profile shown in Table 6.1. There were 395 samples in each group of channel
responses. These 1,580 samples from the new profiles were not seen by the networks
before testing and represent trials to assess the networks’ ability to recognize illegitimate
transmitters.

Since the CGANs train a discriminator and a generator, we can also use the discriminator to
make the authentication decision. The discriminator output will indicate whether the input
is “Real” or “Fake”. Since the discriminator is trained on the channel gain profile shown
in Figure 6.3, these samples should be assessed as “Real”, while the samples from the
additional profiles should be assessed as “Fake”. If the sample is “Real”, we authenticate,
and if they are “Fake” we will not authenticate.

6.3 Results
In this section, we present the results of our simulations applying the BCE loss from
Equation 6.3, the MSE loss from Equation 6.4, and the hybrid loss from Equation 6.5 to
the CGAN networks. The standalone LSTM and GRU networks both use the MSE loss in
Equation 6.6.

With (=5, % is increased from 1 to 10, allowing the networks to predict future MIMO
channel response magnitudes. With our 10 kHz sample rate, the amount of time elapsed
for every prediction step % is 100 µs. Except for %=1 where the CGAN-GRU predicted the
channel better than any other network configuration, the standalone networks performed
better than the generator networks in the CGANs, achieving the least amount of error as
shown in Figure 6.4.

109

(a) (b)

(c)

Figure 6.4. Mean square error performance with (=5, % from 1 to 10 for
(a) BCE loss, (b) MSE loss, and (c) hybrid loss for CGAN networks and
MSE loss used for the standalone networks, where (is the number of pre-
vious channel responses, and % is the number of future channel predictions.
Source: [99].

We applied Equation 6.7 with (=5 and %=1 for "(�) values −50 dB ≤ "(�) ≤ −20 dB
to determine which transmitter associated with a channel gain profile to authenticate. Al-
though accuracy increases for all networks up to "(�) of −25 dB as shown in Figure 6.5,
false positives begin to arise at −25 dB and greater, which would allow illegitimate trans-
mitters to authenticate. At −30 dB, there are no false positives, as shown in the upper right
quadrants of Figure 6.6a through Figure 6.6d. As shown in Figure 6.5, the standalone GRU
network was most accurate in authenticating using MSE from channel prediction, achieving
98.1% accuracy. The generator from the CGAN-GRU using BCE loss was the next-best
configuration, reaching 96.2% accuracy in Fig. 6.5a. Note that in Figure 6.5, no model

110

performs worse than 80% when the MSE is -45 dB or less. This is an artifact of the testing
dataset and the byproduct of all the samples – the 395 legitimate samples and the 1,580
illegitimate samples – being categorized as “Fake”.

(a) BCE loss (b) MSE loss

(c) Hybrid loss

Figure 6.5. Authentication performance using mean squared error threshold
method for (= 5, % = 1 for CGAN networks using (a) BCE loss, (b) MSE
loss, and (c) hybrid loss and MSE loss used for the standalone networks,
where (is the number of previous channel responses, and % is the number
of future channel predictions. Source: [99].

111

(a) (b)

(c) (d)

Figure 6.6. Confusion matrices showing authentication performance using
mean square error threshold at −30 dB for (a) CGAN-LSTM trained with
BCE loss, (b) CGAN-GRU trained with BCE loss, (c) LSTM, and (d) GRU
networks. Source: [99].

In addition to authenticating based on channel prediction and applying a threshold to the
MSE, the CGAN-trained discriminators can be used for authentication. For (= 5 and
% = 1, Fig. 6.7 shows the confusion matrices for the CGAN-LSTM and CGAN-GRU
discriminator networks using BCE loss, MSE loss, and the hybrid loss. Compared to the
MSE authentication method, the CGAN-GRU trained with the hybrid loss improves its
authentication performance from 96.2% to 98.5% as shown in Figure 6.7f. This matches
the authentication accuracy of the standalone GRU while still preventing any illegitimate
transmitters from authenticating.

112

(a) (b)

(c) (d)

(e) (f)

Figure 6.7. Confusion matrices for discriminators performing authentication
trained through (a) CGAN-LSTM with BCE loss, (b) CGAN-GRU with BCE
loss, (c) CGAN-LSTM with MSE loss, (d) CGAN-GRU with MSE loss,
(e) CGAN-LSTM with hybrid loss, and (f) CGAN-GRU with hybrid loss.
Source: [99].

Although we have no false positive results using "(�) = −30 dB or the CGAN discrim-
inators as shown in Figure 6.6 and Figure 6.7, respectively, this does not suggest that an
illegitimate transmitter will always be denied authentication. However, as seen in our results,
all 1,580 testing samples were correctly categorized as “Fake”, implying the probability of
inadvertently authenticating an illegitimate transmitter is on the order of 0.001 or less.

113

6.4 Summary
By constructing a time-series channel gain matrix based on the measured magnitude of
the received CSI elements, we were able to show how physical-layer authentication can
be accomplished in a mobile channel environment. We used RNNs based on LSTM and
GRU cells for channel prediction and incorporated RNNs into a GAN framework to accom-
plish both channel prediction and binary classification. For the tasks of predicting channel
responses and classifying whether or not a transmitter should be authenticated based on
received CSI element magnitudes, architectures using GRU cells were superior to networks
that used LSTM cells.

The standalone RNNs were able to predict future channel responses with less error than the
CGAN-trainedRNNs. This led to the standalone networks performingmore accurately using
the MSE threshold authentication technique. By using the discriminator from the GRU-
based CGAN trained with the hybrid loss, the authentication accuracy of the standalone
GRU RNN was matched.

The value of "(�) was set to prevent illegitimate transmitters from authenticating. Un-
fortunately, the channel conditions may change that result in a need to dynamically adjust
the threshold to prevent inadvertent authentication. Using the CGAN discriminator as the
basis of authentication does not require the constant manipulation of a threshold variable.
However, the process of training the CGAN system must be persistent in order to adapt to
changing channel conditions.

To implement a CGAN-trained discriminator for mobile physical-layer authentication, a
pair of discriminators should be initially trained. Following training, the two discriminators
should alternate in making the authentication decision. While one discriminator is process-
ing the real-time received CSI samples, the other discriminator uses those same samples as
the conditional information for the next series of real-time received CSI samples. The two
discriminators then switch roles, providing the receiver with uninterrupted authentication
decisions.

114

CHAPTER 7:
Conclusion

In this dissertation, we demonstrated the use of adversarial machine learning to characterize
RF transmitters for the purpose of physical-layer authentication. We also examined the
application of several machine learning techniques for use in the RF domain.Many physical-
layer authentication techniques are not effective when used in the presence of nefarious users
who are able to spoof the underlying physical-layer authentication traits. Our approach used
CSI as a means to prevent unauthorized access since received CSI in a MIMO system is
difficult for a third party to estimate, let alone emulate. However, a determined adversary
may be able to alter timing, power levels, and other transmitter characteristics in the RF
path in order to match the received CSI of a legitimate transmitter. To counter the potential
of malicious behavior in wireless systems, we explored the use of adversarial learning.

Our implementation of adversarial machine learning can improve cybersecurity through the
use of physical-layer authentication. We established the theoretic construct of using GANs
for physical-layer authentication through the use of stochastic and software-based models
to represent the wireless domain. However, more challenges and research remain. The next
iterative step is the live capture of RF signals and processing the received CSI. Additionally,
refinement of the neural networks and hyperparameter optimization to the input features of
actual RF signals would be appropriate.

7.1 Summary
In this chapter, we review the results of this dissertation with respect to our overarching goal
of using received CSI from the wireless channel to differentiate and ultimately authenticate
transmitters. We conclude with future research that can be accomplished to further enhance
cybersecurity through physical layer authentication using the GAN framework.

7.1.1 Authentication using CSI
In Chapter 3, we demonstrated the use of adversarial machine learning for the task of robust
RF transmitter characterization. We showed how channel information in the form of CSI

115

could be used as a method to provide physical-layer authentication.

Our analysis illustrated that the probability of accidentally authenticating other transmitters
decreases as receive and transmit antennas are increased and a threshold value is judiciously
applied.We developed a GAN trained on a dataset of CSI matrices to perform physical-layer
authentication in an adversarial environment. After training less than 50 epochs, the dis-
criminator reached 100% accuracy on two separate testing datasets, implicitly determining
appropriate thresholds for received CSI matrix elements. When a nefarious user was able
to closely match the CSI from a legitimate transmitter, higher SNR was needed to achieve
accurate results.

We compared the results of the GAN to a variety of one-class machine learning algorithms,
including LOF, iForest, and OC-SVM. Across all levels of AWGN, the LOF algorithm
reached and maintained 100% accuracy at the lowest SNR value. The use of LOF is well
suited to low-dimensionality challenges such as we explored with a single transmitter and
single carrier frequency. However, the performance of LOF degrades as the additional
dimensions of features are introduced [62].

7.1.2 SGAN for Classification using CSI
In Chapter 4 demonstrated how physical-layer authentication can be accomplished in a
flat-fading single-carrier wireless channel environment. We used an SGAN architecture to
categorizemultiple transmitters using CSI. Our implementation of SGAN-trained classifiers
required fewer labeled training samples to reach high accuracy levels. With only 50 labeled
samples, our CNN SGAN classifier reached 100% accuracy at a 4 dB SNR. By reducing
the number of labeled samples, data overhead and processing expenditure can be reduced.

We showed howmachine learning, specifically the use of deep neural networks, can be used
to classify transmitters by MIMO CSI as a method to provide physical layer authentication.
Our simulation results illustrated that with a very small percentage of labeled CSI samples,
accurate classification can be made with a SGAN-trained classifiers for SNR values greater
than 4 dB. During the initial authentication setup between two transceivers, a small number
of labeled samples is desired to minimize overhead. However, if more labeled samples are
available to the receiver, the standalone classifier produces better results at all SNR levels.

116

Chapter 4 provided positive results regarding the use of adversarial machine learning for the
application of physical-layer authentication using CSI. We provided a method for differenti-
ation and classification of transmitters using received CSI. Unfortunately, the SGAN-trained
discriminators did not perform well at low SNR levels. Where the classifiers could reach
100% authentication accuracy at 4 dB and greater, the best discriminator network we im-
plemented was able to reach 100% at 26 dB. By providing additional input features for the
discriminator to extract and providing a more robust architecture with which to optimize
the weight parameters, we improved accuracy as shown in Chapter 5.

7.1.3 Classification using CSI atMillimeterWave Carrier Frequencies
By providing the neural network additional input features in the form of CSI measurements
across multiple subcarriers and adding additional capability to our SGANs, we improved
upon the results presented in Chapter 4. Our proposed SGAN-based physical-layer authen-
tication system can be implemented to provide high authentication accuracy at even low
SNR values. The system first uses the SGAN-trained discriminator to allow only trusted
transmitters to authenticate. The SGAN-trained classifier then identifies the trusted trans-
mitter and can be used to allow the user a tailored degree of access. While this was the
goal in Chapter 4, our proposed discriminator in that chapter was not able to achieve high
authentication accuracy unless the SNR was relatively high (greater than 26 dB SNR). In
this chapter, we were able to realize our goal by creating more robust neural networks and
providing additional input features by using CSI from multiple subcarriers.

We showed how the use of a SGAN can be employed at millimeter wave frequencies
with multiple subcarriers in Chapter 5. Our simulation results illustrated that with a very
small percentage of labeled CSI samples, accurate classification can be made with a SGAN
dense classifier for SNR greater than -4 dB. Likewise the densely-connected discriminator
also achieved high accuracy for SNR greater than 4 dB. Based on this result, we can pair
the trained discriminator and classifier to: (1) determine whether or not to authenticate a
transmitter, and (2) classify the trusted transmitter to provide access at the appropriate level.

The dataset we used was based on ray-tracing software and provided a high degree of
accuracy with respect to modeling the environment. An adversary may achieve a high
degree of accuracy when spoofing a legitimate transmitter, but by retaining the magnitude

117

and phase of the CSI elements, we showed that our system can differentiate transmitter CSI
from positions 10 cm apart.

7.1.4 Physical Authentication in a Mobile Environment
In Chapter 6, we explored various RNN architectures to make authentication decisions at
the physical layer in a mobile MIMO multipath channel. The previous chapters assumed a
static environment and treated the channel as invariant.

Alternative loss functions for the CGAN networks were also explored with BCE outper-
forming MSE in an LSGAN configuration and a hybrid loss where the discriminator used
BCE and the generator used MSE. Varying the amount of channel responses and channel
prediction time, regression performance was measured using mean square error against
the ground truth. Using a MSE threshold of -30 dB, and without any false positive errors,
the standalone GRU network achieved the highest authentication performance at 98.1%,
followed by the CGAN-GRU at 96.2% accuracy. Using a CGAN-trained discriminator with
a hybrid loss function, the network was able to authenticate at a 98.5% rate. For the tasks
of predicting channel responses and classifying whether or not a transmitter should be
authenticated, architectures using GRU cells were superior to networks that used LSTM
cells.

The implementation of our proposed mobile environment can be accomplished using the
CGAN-trained discriminator. We recommend two discriminators be used, so that the mag-
nitude of the CSI elements currently being measured can be used as conditional information
for future physical-layer authentication. Both discriminators are trained and they are then
used in an alternating fashion to produce continuous authentication decisions on received
channel gain vector samples.

7.2 Future Work
While we created our neural networks using best practices in the field of machine learning
and we made changes to the hyperparameters of our neural networks based on their training
performance, we may have not used the optimal settings for our tasks. There may be better
hyperparameters chosen to improve the performance as presented in this work. The GANs

118

should be optimized and reevaluated on additional training and test datasets to demonstrate
effectiveness in a variety of wireless environments.

Additionally, transfer learning should be explored. We saw that the standalone classifiers
in Chapters 4 and 5 took longer to train than the SGANs, but were more accurate given
enough training samples. Transfer learning of the weights from a SGAN-trained classifier to
a standalone network could reduce the training time of the standalone classifier and increase
overall performance.

Future work for the CGAN in Chapter 6 includes application of the methods in this disser-
tation to multi-carrier channels as well as classifying a variety of time-series channel gain
profiles to enable multiple transmitter authentication. In Chapter 6, we determined whether
a single transmitter using a single carrier should be authenticated, however, we did not use
multiple subcarriers or use the CGAN to perform transmitter classification.

Finally, throughout this dissertation, none of the frameworks were implemented using
live wireless transmissions. Simulated datasets were created using statistical models that
represented the RF channel. We also included the use of the DeepMIMO dataset that was
developed using ray-tracing in Chapter 5. Software defined radio systems such as USRPs
can be used to provide MIMO transmitters and receivers and also provide capability to
implement the neural network. Live-captured signals can be used to provide greater insight
into real-world application of physical-layer authentication how adversarial architectures
can be used to enhance the security of wireless systems.

119

THIS PAGE INTENTIONALLY LEFT BLANK

120

APPENDIX: Neural Network Essentials

This appendix provides an introduction to some of the fundamental elements regarding neu-
ral networks with emphasis on concepts, terms, and details required for a full understanding
of the work described in this dissertation. The topics herein include the mathematical op-
erations in feedforward neural networks and common terms associated with the training
process.

A.1 Linear Regression
Consider a regression problem where the task is to predict a scalar value ~ based on an
independent variable x = (G1, G2, . . . , G#)) , where) is the transpose operation. We seek to
find a function 5 to fit the training data to a simple linear model as suggested in [54],

~ ≈ 5\ (x) = \0 + \1G1 + \2G2 + · · · + \#G# =
#∑
==1

\=G= + \0. (A.1)

The intercept term \0 is known as the bias, and collectively the parameters of the vector)
are called weights [164]. For convenience, we can add another term G0 = 1 to the vector x.
Therefore, our new input vector is x̃ = (G0, G1, G2, . . . , G#)) and we rewrite Equation A.1 as

5\ (x̃) =
#∑
==0

\=x̃= = x̃)) , (A.2)

In general, instead of a scalar ~, the dependent variable can be y = (~1, ~2, . . . , ~), a vector
of length . In that case,) will be an (# + 1) × coefficient matrix, and f\ (x̃) will be a
vector function [164].

To learn the parameters in) , we use a loss function that measures how close the predicted
values in 5\ (x̃) are to the actual vector y. A common function to use is the squared error
function [165]:

� ()) = 1
2

"∑
<=1

(
f\ (x̃(<)) − y(<)

)2
, (A.3)

121

where " is the number of training examples in the training set and the pair
(
x̃(<) , y(<)

)
is

a single training example. Since � ()) captures the amount of error in the prediction, we
want to select) that minimizes � ()). Since Equation A.3 is a quadratic function, there is
a single minimum, however that is not the case with all loss functions. For instance, the
binary crossentropy loss function used in generative adversarial networks has a saddle point
that represents neither the minimum loss for the discriminator nor the generator neural
networks, but value where the discriminator and generator reach equilibrium [67]. After
an initial random assignment of values to) , we will use the gradient descent algorithm
to gradually adjust) to values that hopefully converge to a) that minimizes � ()). Until
convergence, the gradient descent algorithm repeatedly updates) by

)=4| =) − Um� ())
m)

(A.4)

where U is the learning rate and m� ())
m) is the gradient of � (\). The learning rate, typically

0 < U < 1, is a tunable hyperparameter that can be used to control the size of the update
step for)=4|. If the learning rate is too small, it may take a long time to reach convergence
where � ()) is minimized. If the learning rate is too large, the algorithm may not converge
at a minimum.

In order to perform Equation A.4, we need to compute m� ())
m) . Following [165], using a single

training example " = 1 and scalar output = 1 (x̃, ~) we have

m� ())
m)

=
m

m)

1
2
(5 (x̃) − ~)2 (A.5)

= (5 (x̃) − ~) m
m)

(
x̃)) − ~

)
(A.6)

= (5 (x̃) − ~) x̃. (A.7)

Substituting Equation A.7 into Equation A.4, we update) by

)=4| =) + U (~ − 5\ (x̃)) x̃. (A.8)

To make updates to) for " > 1, we can return the summation term from Equation A.3,

122

resulting in

)=4| =) + U
"∑
<=1

(
~(:) − 5\ (x̃:)

)
x̃(:) . (A.9)

Equation A.9 is called batch gradient descent [165]. This will update) only after going
through the entire training set, or once per epoch. Another method, known as stochastic
gradient descent, will update) for each training example. In Algorithm 1, we see that)

Algorithm 1 Stochastic Gradient Descent
Given initial)
for < ← 1 to " do
)=4| =) + U(~(<) − 5\ (x̃<))x̃(<)
Update) =)=4|

end for

is updated and begins to optimize before reaching the sample " . With stochastic gradient
descent, the parameters in) progress to a better result before the algorithm completes
iterating through the dataset, a large advantage when " is large [165].

A hybrid technique combining batch gradient descent and stochastic gradient descent is
called mini-batch gradient descent [166]. Instead of updating) once per epoch with batch
gradient descent, or at every sample with stochastic gradient descent, we update) based
on a mini-batch block of samples �. The update on) is shown in Algorithm 2. If � = 1,

Algorithm 2Mini-Batch Gradient Descent
Given initial) ,
for < ← 1 to " do
)=4| =) + U 1

�

∑�
1=1(~(<) − 5\ (x̃<))x̃(<)

Update) =)=4|
end for

mini-batch gradient descent is equivalent to stochastic gradient descent, and when � = " ,
we have batch gradient descent. For 1 < � < " , there is typically an optimum value
where increasing values of � improve training time due to parallelism or efficient matrix
multiplication, however a large value for � also results in a decreasing number of updates
to) , slowing convergence [166].

123

A.2 Linear Classification
In Section A.1, the model 5\ was a linear function of the parameters in) , however in a
classification task, we predict discrete labels or posterior probabilities [54]. To accomplish
this, we use a nonlinear function � resulting in a change to 5\ , namely

5\ (x̃) = �
(
x̃))

)
. (A.10)

The nonlinear function � is known as an activation function [54]. If we consider a two-class
classification problem, we can denote one class with a value of 0, and the other class with
a value of 1. Thus, with I = x̃)) , we define � as a step function,

�(I) =

1, if I ≥ 0

0, I < 0.
(A.11)

Using � defined in Equation A.11, if we substitute Equation A.10 into Equation A.8, we
have the perceptron learning algorithm [165],

)=4| =) + U
(
~ − �

(
x̃))

))
x̃. (A.12)

Updates to the weight parameters in) can be made using the same gradient descent methods
as discussed in Section A.1. The drawbacks of using Equation A.10 are that the output of
the perceptron �(I) does not provide probabilistic outputs, and that the error is a piecewise
constant function of) . The latter results in discontinuities at the boundary based on slight
changes of) [54]. The perceptron learning algorithm can be used to categorize an input
x̃ as belonging to one of two classes based on a boundary defined by x̃)) = 0. For cases
where there are more than two classes, additional decision boundaries need to be defined.

In Equation A.11, we denoted the classes using values 0 and 1. This is known as integer
encoding. Another method to encode classes is by using a one-hot vector. The one-hot
method consists of vectors the same size as the number of classes with a 1 in the position
representing the class, and the other positions are filled with 0 [167]. For example, a task
may be to categorize images into one of three classes: ‘Dog’, ‘Cat’, and ‘Bird’. These
strings must be converted to numbers for use with machine learning models. Using integer
encoding, we can assign ‘Dog’, ‘Cat’, and ‘Bird’ to 1, 2, and 3, respectively. Or, using

124

one-hot vectors, we denote ‘Dog’ as (0, 0, 1)) , ‘Cat’ as (0, 1, 0)) , and ‘Bird’ as (1, 0, 0)) .
One-hot encoding allows for a simple implementation in digital circuits, however it likely
requires more flip-flops to represent binary data (in our example integer encoding would
require two flip-flops to encode the classes in binary, and three flip flops for the one-hot
classes) [167].

A.3 Activation Functions
As we saw in Equation A.11, activation functions introduce nonlinearity into the output of
5\ , leading to more complex properties compared to the linear regression models [54]. In
this section we will introduce commonly used activation functions.

A.3.1 Sigmoid
The sigmoid activation function is a continuous function centered on zero on the independent
axis and ranging from (0, 1) on the dependent axis [54]. Defined as

sigmoid B f(I) = 1
1 + 4−I , (A.13)

the sigmoid function is shown in Figure A.1.

Figure A.1. Sigmoid activation function.

125

The sigmoid function can readily be used for a two-class (# = 2) classification problem,
where a value of 0 is used for one class, and a value of 1 is used for the other. The classes
can be distinguished using a boundary of 0.5, such as

= =

1, if f(I) ≥ 0.5

0, f(I) < 0.5.
(A.14)

A.3.2 Softmax
For a classification task where # > 2, a normalized exponential, also known as the softmax
activation function can be used [54]. Defined as

softmax B softmax(z) 9 =
4I 9∑#
==1 4

I=
, (A.15)

we see that the softmax activation function operates on a vector z with elements I 9 , as
opposed to a scalar I with the sigmoid function.

A.3.3 Hyperbolic Tangent
Like the sigmoid function, the hyperbolic tangent function bounds the dependent variable
across all values on the independent axis. However, instead of ranging from (0, 1) as with the
sigmoid function, the hyperbolic tangent function bounds are (−1, 1). Shown in Figure A.2,
the hyperbolic tangent function is defined as

hyperbolic tangent B tanh(I) = 4
I − 4−I
4I + 4−I . (A.16)

When dealing with data that is scaled in such a way that the average value is near zero, the
hyperbolic tangent activation is preferred over the sigmoid in order to reach convergence
faster [168].

126

Figure A.2. Hyperbolic tangent activation function.

A.3.4 Rectified Linear Unit
We have seen that both the sigmoid and hyperbolic tangent activation functions limit the
output of � to a finite range. When the output of � is then used for follow-on processing,
the saturation caused by the finite range makes the task of determining weight parameters
challenging due to gradients equal to nearly zero [127].

Rectified linear units are defined by the activation function

�(I) =

I, if I ≥ 0

0, I < 0,
(A.17)

or equivalently �(I) = max{0, I}. Figure A.3 depicts the rectified linear unit activation
function. Unfortunately the gradient descent optimization methods can’t be applied to this
activation function when �(I) = 0 [67].

127

Figure A.3. Rectified linear unit activation function.

An extension to the rectified linear unit is the leaky rectified linear unit [127]. For values
of I < 0, the leaky rectified linear unit allows for non-zero values of �(I), resulting in a
small, but non-zero gradient. The leaky rectified linear unit is shown in Figure A.4 where
the slope of �(I) for I < 0 is denoted alpha.

Figure A.4. Leaky rectified linear unit activation function (alpha = 0.2).

128

A.4 Neural Networks
Neural networks are nonlinear statistical models [164]. Capable of performing regression as
well as classification, a neural network uses the same processes as previously described in
Sections A.1 and A.2. Instead of an output based on a single input vector and an activation
function 5\ (x̃))) = � (x̃) an output can be produced by the sum of nodes, called neurons,
with their respective input vector,weight parameters, and activation functions.Going further,
this output can be used as a portion of an input to another neuron. The neural network uses
a linear combination of inputs to model the target as a nonlinear function of the extracted
features [164].

A.4.1 Neural Network Training
As an example of how a neural network is trained, we will consider a two-class classifi-
cation task using a model of a feed-forward densely-connected neural network as shown
in Figure A.5. This configuration is also known as a multiple-layer perceptron network,
where each neuron is an individual perceptron and the links between the neurons are the
weight parameters. From left to right, a vector of size 3 with values G1, G2, and G3, are each
connected to all four neurons in the hidden layer ℎ and every hidden layer neuron is then
connected to the output neuron ~̂. The shaded-in neurons denoted 0 are the additional input
and hidden variables equal to one and correspond to the biases in each layer. Since this is a
classification task, we use the sigmoid activation function f(I) at the output. To simplify
this demonstration, the hidden layer neuron activation functions will also use sigmoid and
we will only have one sample in the dataset.

129

Figure A.5. Densely-connected neural network with one hidden layer.

During the forward pass, a sample x is processed through the neural network to the neurons
of the hidden layer and the output layer neurons. We also add another element G0 = 1 to
our input layer and ℎ0 = 1, to our hidden layer. The weights between the input layer and
hidden layer are identified as \G,ℎ

8, 9
, where 8 indicates the neuron corresponding to G and 9 is

the neuron in the hidden layer. Likewise, \ℎ,~̂
8, 9

results in the weight parameter from a hidden
layer neuron to the output layer neuron. The bias between the input and hidden layer is given

130

by \G,ℎ0, 9 , while \
ℎ,~̂

0, 9 is the bias between the hidden and output layer. Therefore,

ℎ1 = f
(
\
G,ℎ

1,1G1 + \G,ℎ2,1G2 + \G,ℎ3,1G3 + \G,ℎ0,1

)
(A.18)

ℎ2 = f
(
\
G,ℎ

1,2G1 + \G,ℎ2,2G2 + \G,ℎ3,2G3 + \G,ℎ0,2

)
(A.19)

ℎ3 = f
(
\
G,ℎ

1,3G1 + \G,ℎ2,3G2 + \G,ℎ3,3G3 + \G,ℎ0,3

)
(A.20)

ℎ4 = f
(
\
G,ℎ

1,4G1 + \G,ℎ2,4G2 + \G,ℎ3,4G3 + \G,ℎ0,4

)
(A.21)

~̂ = f

(
\
ℎ,~̂

1,1ℎ1 + \ℎ,~̂2,1ℎ2 + \ℎ,~̂3,1ℎ3 + \ℎ,~̂4,1ℎ4 + \ℎ,~̂0,1

)
. (A.22)

Using the squared error loss function in Equation A.3, we begin the process of backprop-
agation by calculating the difference between the output predicted value ~̂ and the target
value ~.

Illustrated in Figure A.6, backpropagation is the process of updating the parameters in) ,
starting from the weights connecting the hidden layer to the output)ℎ,~̂, and systematically
moving back to the weights connecting the input neurons with the hidden layer neurons
)G,ℎ [169]. To demonstrate backpropagation using gradient descent, we use the chain rule
as shown in [170]. Using Equations A.4 and A.8 to update \ℎ,~̂1,1 , we have

� ()) = 1
2
(~̂ − ~)2 (A.23)

I = \
ℎ,~̂

1,1ℎ1 + \ℎ,~̂2,1ℎ2 + \ℎ,~̂3,1ℎ3 + \ℎ,~̂4,1ℎ4 + \ℎ,~̂0,1 (A.24)

~̂ = f(I) = 1
1 + 4−I (A.25)

m� ())
m\

ℎ,~̂

1,1

=
m� ())
mf(I)

mf(I)
mI

mI

\
ℎ,~̂

1,1

. (A.26)

131

Examining each term on the right in Equation A.26,

m� ())
mf(I) = (f(I) − ~) (A.27)

mf(I)
I

=
4−I

(1 + 4−I)2
(A.28)

= f(I) (1 − f(I)) (A.29)

mf(I)
\
ℎ,~̂

1,1

= ℎ1, (A.30)

and substituting these terms into Equation A.26, we have

m� ())
m\

ℎ,~̂

1,1

= (f(I) − ~) f(I) (1 − f(I)) ℎ1 (A.31)

m� ())
m\

ℎ,~̂

1,1

= (~̂ − ~) ~̂ (1 − ~̂) ℎ1. (A.32)

Updating \ℎ,~̂1,1 by gradient descent, we adjust our weight parameter, finally resulting in(
\
ℎ,~̂

1,1

)
new

= \
ℎ,~̂

1,1 − U
m� ())
m\

ℎ,~̂

1,1

(A.33)

= \
ℎ,~̂

1,1 + U (~ − ~̂) ~̂ (1 − ~̂) ℎ1. (A.34)

132

Figure A.6. Backpropagation to update weight parameters.

This process continues for the remaining neurons in the hidden layer, updating \ℎ,~̂2,1 , \
ℎ,~̂

3,1 ,
\
ℎ,~̂

4,1 , and \
ℎ,~̂

0,1 . For the weight parameters connecting the input and hidden layer neurons
)G,ℎ the procedure is similar but also includes the forward pass output values of the hidden
layer neurons from Equations A.18-A.21. To find the weight parameter \G,ℎ1,1 , we again use
the chain rule as shown in [170] to find the change in the loss function with respect to the
change in \G,ℎ1,1 , giving us

m� ())
m\

G,ℎ

1,1

=

(
m� ())
mf(I)

mf(I)
mI

mI

mf(|)

)
mf(|)
m|

m|

m\
G,ℎ

1,1

(A.35)

133

where

I = \
ℎ,~̂

1,1ℎ1 + \ℎ,~̂2,1ℎ2 + \ℎ,~̂3,1ℎ3 + \ℎ,~̂4,1ℎ4 (A.36)

| = \
G,ℎ

1,1G1 + \G,ℎ2,1G2 + \G,ℎ3,1G3. (A.37)

Collecting the terms on the right of Equation A.44, we get

m� ())
mf(I) = (f(I) − ~) (A.38)

mf(I)
mI

= f(I) (1 − f(I)) (A.39)

mI

mf(|) = \
ℎ,~̂

1,1 (A.40)

mf(|)
m|

= f(|) (1 − f(|)) (A.41)

m|

m\
G,ℎ

1,1

= G1, (A.42)

resulting in
m� ())
m\

G,ℎ

1,1

= (~̂ − ~) ~̂ (1 − ~̂) \ℎ,~̂1,1ℎ1(1 − ℎ1)G1. (A.43)

Applying gradient descent to update \G,ℎ1,1 , we have(
\
G,ℎ

1,1

)
new

= \
G,ℎ

1,1 + U (~ − ~̂) ~̂ (1 − ~̂) \
ℎ,~̂

1,1ℎ1(1 − ℎ1)G1. (A.44)

This process for updating the hidden layer weight parameters is then repeated for each
connection between the input and hidden layer neurons.

The weight parameter updates are adjusted in part by the learning rate U as seen in Equa-
tions A.34 and A.44. Usually a constant, U can also be adjusted at each update to minimize
error [164] in optimization schemes such as adaptive momentum estimation [134].

134

A.4.2 Neural Network Architecture
The type of mathematical operation carried out by the neuron is informed by the nature of
the data. Data with parametric features is well suited to the linear combination of functions
used in densely-connected neural networks [53]. If the data is spatially correlated such
as in an image, the convolutional operations in a convolutional neural network are more
appropriate in order to extract input features [53]. Recursive neural networks are preferred
when capturing dynamic temporally-based features are needed [70].

Aside from the learning rate, there are other hyperparameter choices to make regarding the
architecture of the neural network. Depending on features of the input samples and the task
to accomplish, the selection of the number of hidden layers and neurons can determine how
well the network performs against new samples after training. Background knowledge of
the sample features and the goal of the task as well as experimentation inform the selection
of the number of neurons and layers required [164]. With too many weight parameters,
neural networks are likely to overfit the training data, however this can be mitigated with
stopping training before fully converging and reaching the minimum loss value [164]. Each
hidden layer uses input features for regression or classification. The implementation of
multiple hidden layers allows for the network to process these features at multiple levels of
abstraction [70].

As the number of hidden neurons and layers are increased, the number of weight parameters
also increases. Saving these parameters for use at a later time requires storage, so depending
on the application, a neural network may be constrained to a certain architecture based
on memory available [70]. However, if a neural network doesn’t have enough neurons, the
network may be difficult to train resulting in inaccurate results and taking a long time to
train [171].

A.5 Summary
Neural networks originated in an attempt to represent the biological neuron behavior with
mathematical functions [63]. There is no suggestion that artificial neural networks should
represent biological information processing [54], however neural networks were loosely
inspired by neuroscience [67]. Neural networks can be used for classification as well as
regression tasks and can model linear and nonlinear functions.

135

The architecture of a neural network is partly an art informed by experimentation [164].
Knowledge of the features being processed and the effect of the mathematical functions can
be used to design a successful neural network.

In this Appendix, we have provided the essential elements to understand how feedforward
neural networks work based on linear algebra. We have also introduced activation functions
commonly used employed in neural networks. Finally, we discussed the overall architec-
ture of the neural network and noted considerations for developing a neural network to
accomplish a task.

136

List of References

[1] Information Security Definitions, 44 U.S. Code § 3552. Dec. 2014. [Online]. Avail-
able: https://www.law.cornell.edu/uscode/text/44/3552

[2] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the key scheduling algorithm
of RC4,” in Proceedings of the 4th Annual Workshop on Selected Areas of Cryptog-
raphy, 2001, pp. 1–24.

[3] D. Menasce, “QoS issues in Web services,” IEEE Internet Computing, vol. 6, no. 6,
pp. 72–75, Nov. 2002.

[4] A. Dua, N. Kumar, A. K. Das, and W. Susilo, “Secure message communication
protocol among vehicles in smart city,” IEEE Transactions on Vehicular Technol-
ogy, vol. 67, no. 5, pp. 4359–4373, May 2018.

[5] D. Fang, Y. Qian, and R. Q. Hu, “Security for 5G mobile wireless networks,” IEEE
Access, vol. 6, pp. 4850–4874, 2018.

[6] L. Ferdinando, “’Terabyte of death’ cyberattack against DOD looms, DISA direc-
tor warns.” [Online]. Available: https://www.defense.gov/Explore/News/Article/
Article/1414146/terabyte-of-death-cyberattack-against-dod-looms-disa-director-
warns/

[7] F. Konkel, “Pentagon thwarts 36 million email breach attempts daily,” 2018.
[Online]. Available: https://www.nextgov.com/cybersecurity/2018/01/pentagon-
thwarts-36-million-email-breach-attempts-daily/145149/

[8] S. Gallagher, “Hacker’s paradise: Louisiana’s ransomware disaster far from
over | Ars Technica.” [Online]. Available: https://arstechnica.com/information-
technology/2019/11/hackers-paradise-louisianas-ransomware-disaster-far-from-
over/

[9] CBS News, “Hackers demand $14 million from nursing homes in ransomware
attack,” 2019. [Online]. Available: https://www.cbsnews.com/news/hackers-
ransomware-nursing-homes-14-million/

[10] T. Ma, F. Hu, and M. Ma, “Fast and efficient physical layer authentication for 5G
HetNet handover,” in 2017 27th International Telecommunication Networks and
Applications Conference (ITNAC), Nov. 2017, pp. 1–3.

137

https://www.law.cornell.edu/uscode/text/44/3552
https://www.defense.gov/Explore/News/Article/Article/1414146/terabyte-of-death-cyberattack-against-dod-looms-disa-director-warns/
https://www.defense.gov/Explore/News/Article/Article/1414146/terabyte-of-death-cyberattack-against-dod-looms-disa-director-warns/
https://www.defense.gov/Explore/News/Article/Article/1414146/terabyte-of-death-cyberattack-against-dod-looms-disa-director-warns/
https://www.nextgov.com/cybersecurity/2018/01/pentagon-thwarts-36-million-email-breach-attempts-daily/145149/
https://www.nextgov.com/cybersecurity/2018/01/pentagon-thwarts-36-million-email-breach-attempts-daily/145149/
https://arstechnica.com/information-technology/2019/11/hackers-paradise-louisianas-ransomware-disaster-far-from-over/
https://arstechnica.com/information-technology/2019/11/hackers-paradise-louisianas-ransomware-disaster-far-from-over/
https://arstechnica.com/information-technology/2019/11/hackers-paradise-louisianas-ransomware-disaster-far-from-over/
https://www.cbsnews.com/news/hackers-ransomware-nursing-homes-14-million/
https://www.cbsnews.com/news/hackers-ransomware-nursing-homes-14-million/

[11] Z. Liu, J. Ma, Q. Huang, and S. Moon, “Asymmetric key pre-distribution scheme
for sensor networks,” IEEE Transactions on Wireless Communications, vol. 8,
no. 3, pp. 1366–1372, Mar. 2009.

[12] X. Wang, P. Hao, and L. Hanzo, “Physical-layer authentication for wireless security
enhancement: current challenges and future developments,” IEEE Communications
Magazine, vol. 54, no. 6, pp. 152–158, June 2016.

[13] A. Mukherjee, S. A. A. Fakoorian, J. Huang, and A. L. Swindlehurst, “Principles of
physical layer security in multiuser wireless networks: A survey,” IEEE Communi-
cations Surveys Tutorials, vol. 16, no. 3, pp. 1550–1573, 2014.

[14] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection attacks on
cryptographic devices: Theory, practice, and countermeasures,” Proceedings of the
IEEE, vol. 100, no. 11, pp. 3056–3076, Nov. 2012.

[15] P. L. Yu, J. S. Baras, and B. M. Sadler, “Physical-layer authentication,” IEEE
Transactions on Information Forensics and Security, vol. 3, no. 1, pp. 38–51, 2008.
[Online]. Available: http://ieeexplore.ieee.org/document/4451099/

[16] A. Géron, Hands-on machine learning with Scikit-Learn and TensorFlow: Con-
cepts, tools, and techniques to build intelligent systems, first edition ed. Sebastopol,
CA, USA: O’Reilly Media, 2017. [Online]. Available: http://shop.oreilly.com/
product/0636920052289.do

[17] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identification with
radiometric signatures,” in Proceedings of the 14th ACM international conference
on Mobile computing and networking - MobiCom ’08. San Francisco, CA, USA:
ACM Press, 2008, p. 116.

[18] National Institute of Standards and Technology, “Minimum security requirements
for federal information and information systems,” National Institute of Standards
and Technology, Gaithersburg, MD, Tech. Rep. NIST FIPS 200, Mar. 2006. [On-
line]. Available: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.200.pdf

[19] Cybersecurity, DOD Instruction 8500.01, Department of Defense, Washington,
DC, USA, Mar. 2014. [Online]. Available: https://www.esd.whs.mil/portals/54/
documents/dd/issuances/dodi/850001_2014.pdf

[20] Doctrine for the Armed Forces of the United States, JP-6-0, Joint Chiefs of Staff,
Washington, DC, USA, June 2015. [Online]. Available: https://www.jcs.mil/
Portals/36/Documents/Doctrine/pubs/jp6_0.pdf

138

http://ieeexplore.ieee.org/document/4451099/
http://shop.oreilly.com/product/0636920052289.do
http://shop.oreilly.com/product/0636920052289.do
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.200.pdf
https://www.esd.whs.mil/portals/54/documents/dd/issuances/dodi/850001_2014.pdf
https://www.esd.whs.mil/portals/54/documents/dd/issuances/dodi/850001_2014.pdf
https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp6_0.pdf
https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp6_0.pdf

[21] R. Fantacci, L. Maccari, T. Pecorella, and F. Frosali, “Analysis of secure handover
for IEEE 802.1x-based wireless ad hoc networks,” IEEE Wireless Communications,
vol. 14, no. 5, pp. 21–29, Oct. 2007.

[22] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signa-
tures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126,
Feb. 1978. [Online]. Available: http://doi.acm.org/10.1145/359340.359342

[23] Y. Deng, G. Wang, J. Cao, and X. Xiao, “Practical secure and fast handoff frame-
work for pervasive Wi-Fi access,” IET Information Security, vol. 7, no. 1, pp. 22–
29, Mar. 2013.

[24] M. R. Asaar, M. Salmasizadeh, W. Susilo, and A. Majidi, “A secure and efficient
authentication technique for vehicular ad-hoc networks,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 6, pp. 5409–5423, June 2018.

[25] K. Zeng, K. Govindan, and P. Mohapatra, “Non-cryptographic authentication and
identification in wireless networks [Security and Privacy in Emerging Wireless
Networks],” IEEE Wireless Communications, vol. 17, no. 5, pp. 56–62, Oct. 2010.

[26] O. Gungor and C. E. Koksal, “On the basic limits of RF-fingerprint-based authen-
tication,” IEEE Transactions on Information Theory, vol. 62, no. 8, pp. 4523–4543,
Aug. 2016.

[27] A. C. Polak, S. Dolatshahi, and D. L. Goeckel, “Identifying wireless users via
transmitter imperfections,” IEEE Journal on Selected Areas in Communications,
vol. 29, no. 7, pp. 1469–1479, Aug. 2011.

[28] J. K. Tugnait, “Wireless user authentication via comparison of power spectral den-
sities,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 9, pp.
1791–1802, Sep. 2013.

[29] Yingbin Liang, H. Poor, and S. Shamai, “Secure communication over fading chan-
nels,” IEEE Transactions on Information Theory, vol. 54, no. 6, pp. 2470–2492,
June 2008.

[30] N. Al Khanbashi, N. Al Sindi, S. Al-Araji, N. Ali, Z. Chaloupka, V. Yenamandra,
and J. Aweya, “Real time evaluation of RF fingerprints in wireless LAN localiza-
tion systems,” in 2013 10th Workshop on Positioning, Navigation and Communica-
tion (WPNC), Mar. 2013, pp. 1–6.

[31] O. Ureten and N. Serinken, “Wireless security through RF fingerprinting,” Cana-
dian Journal of Electrical and Computer Engineering, vol. 32, no. 1, pp. 27–33,
2007.

139

http://doi.acm.org/10.1145/359340.359342

[32] M. Valkama, M. Renfors, and V. Koivunen, “Advanced methods for I/Q imbalance
compensation in communication receivers,” IEEE Transactions on Signal Process-
ing, vol. 49, no. 10, pp. 2335–2344, Oct. 2001.

[33] A. C. Polak and D. L. Goeckel, “RF fingerprinting of users who actively mask their
identities with artificial distortion,” in 2011 Conference Record of the Forty Fifth
Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Nov. 2011,
pp. 270–274.

[34] K. Yu and B. Ottersten, “Models for MIMO propagation channels: A review,”
Wireless Communications and Mobile Computing, vol. 2, no. 7, pp. 653–666, 2002.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/wcm.78

[35] B. Yang, K. Letaief, R. Cheng, and Z. Cao, “Channel estimation for OFDM trans-
mission in multipath fading channels based on parametric channel modeling,”
IEEE Transactions on Communications, vol. 49, no. 3, pp. 467–479, Mar. 2001.

[36] S. Verdu, “Spectral efficiency in the wideband regime,” IEEE Transactions on In-
formation Theory, vol. 48, no. 6, pp. 1319–1343, June 2002.

[37] W. C. Jakes, Microwave Mobile Communications. New York, NY, USA: Wiley,
1974.

[38] K. St. Germain and F. Kragh, “Multi-subcarrier physical layer authentication using
channel state information and deep learning,” Kauai, HI, USA, Jan. 2021. [Online].
Available: http://scholarspace.manoa.hawaii.edu/handle/10125/71467

[39] F. J. Liu, Xianbin Wang, and H. Tang, “Robust physical layer authentication using
inherent properties of channel impulse response,” in 2011 - MILCOM 2011 Mili-
tary Communications Conference, Nov. 2011, pp. 538–542.

[40] E. Biglieri and G. Taricco, “Transmission and reception with multiple antennas:
Theoretical foundations,” Foundations and Trends® in Communications and Infor-
mation Theory, vol. 1, no. 2, pp. 183–332, Aug. 2004, publisher: Now Publishers,
Inc. [Online]. Available: https://www.nowpublishers.com/article/Details/CIT-002

[41] K. Pedersen, J. Andersen, J. Kermoal, and P. Mogensen, “A stochastic multiple-
input-multiple-output radio channel model for evaluation of space-time cod-
ing algorithms,” in Vehicular Technology Conference Fall 2000. IEEE VTS Fall
VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152), Sep.
2000, vol. 2, pp. 893–897 vol.2.

[42] Z. Liu, L. Zhang, and Z. Ding, “Exploiting bi-directional channel reciprocity in
deep learning for low rate massive MIMO CSI feedback,” IEEE Wireless Commu-
nications Letters, vol. 8, no. 3, pp. 889–892, June 2019.

140

https://onlinelibrary.wiley.com/doi/abs/10.1002/wcm.78
http://scholarspace.manoa.hawaii.edu/handle/10125/71467
https://www.nowpublishers.com/article/Details/CIT-002

[43] Y. Shi, K. Davaslioglu, and Y. E. Sagduyu, “Generative adversarial network for
wireless signal spoofing,” in Proceedings of the ACM Workshop on Wireless Secu-
rity and Machine Learning - WiseML 2019. Miami, FL, USA: ACM Press, 2019,
pp. 55–60. [Online]. Available: http://dl.acm.org/citation.cfm?doid=3324921.
3329695

[44] L. Xiao, L. Greenstein, N. Mandayam, and W. Trappe, “A physical-layer technique
to enhance authentication for mobile terminals,” in 2008 IEEE International Con-
ference on Communications, May 2008, pp. 1520–1524.

[45] Y. Liu, S. C. Draper, and A. M. Sayeed, “Exploiting channel diversity in secret key
generation from multipath fading randomness,” IEEE Transactions on Information
Forensics and Security, vol. 7, no. 5, pp. 1484–1497, Oct. 2012.

[46] H. Taha and E. Alsusa, “Physical layer secret key exchange using phase random-
ization in MIMO-OFDM,” in 2015 IEEE Global Communications Conference
(GLOBECOM), Dec. 2015, pp. 1–6.

[47] B. T. Quist and M. A. Jensen, “Maximizing the secret key rate for informed radios
under different channel conditions,” IEEE Transactions on Wireless Communica-
tions, vol. 12, no. 10, pp. 5146–5153, Oct. 2013.

[48] R. Wilson, D. Tse, and R. A. Scholtz, “Channel identification: Secret sharing using
reciprocity in ultrawideband channels,” IEEE Transactions on Information Foren-
sics and Security, vol. 2, no. 3, pp. 364–375, Sep. 2007.

[49] D. B. Faria and D. R. Cheriton, “Detecting identity-based attacks in wireless net-
works using signalprints,” in Proceedings of the 5th ACM workshop on Wireless
security - WiSe ’06. Los Angeles, California: ACM Press, 2006, p. 43. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1161289.1161298

[50] Y. Chen, W. Trappe, and R. P. Martin, “Detecting and localizing wireless spoofing
attacks,” in 2007 4th Annual IEEE Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks, June 2007, pp. 193–202.

[51] L. Xiao, L. Greenstein, N. Mandayam, and W. Trappe, “Fingerprints in the ether:
Using the physical layer for wireless authentication,” in 2007 IEEE International
Conference on Communications, June 2007, pp. 4646–4651.

[52] L. Xiao, L. J. Greenstein, N. B. Mandayam, and W. Trappe, “Channel-based spoof-
ing detection in frequency-selective Rayleigh channels,” IEEE Transactions on
Wireless Communications, vol. 8, no. 12, pp. 5948–5956, Dec. 2009.

141

http://dl.acm.org/citation.cfm?doid=3324921.3329695
http://dl.acm.org/citation.cfm?doid=3324921.3329695
http://portal.acm.org/citation.cfm?doid=1161289.1161298

[53] D. Roy, T. Mukherjee, and M. Chatterjee, “Machine learning in adversarial RF
environments,” IEEE Communications Magazine, vol. 57, no. 5, pp. 82–87, May
2019.

[54] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[55] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised Learning (Adaptive
Computation and Machine Learning). The MIT Press, Sep. 2006.

[56] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson,
“Estimating the support of a high-dimensional distribution,” Neural Computa-
tion, vol. 13, no. 7, pp. 1443–1471, July 2001. [Online]. Available: https://www.
mitpressjournals.org/doi/abs/10.1162/089976601750264965

[57] L. Devroye, L. Gyorfi, and G. Lugosi, A Probabilistic Theory of Pattern Recogni-
tion (Applications of Mathematics). New York, NY, USA: Springer-Verlag, 1996,
no. 31.

[58] H. Liu, Y. Wang, J. Liu, J. Yang, Y. Chen, and H. V. Poor, “Authenticating users
through fine-grained channel information,” IEEE Transactions on Mobile Comput-
ing, vol. 17, no. 2, pp. 251–264, Feb. 2018.

[59] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying density-
based local outliers,” ACM SIGMOD Record, vol. 29, no. 2, pp. 93–104, May 2000.
[Online]. Available: http://doi.org/10.1145/335191.335388

[60] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth IEEE In-
ternational Conference on Data Mining, Dec. 2008, pp. 413–422.

[61] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly detection,” ACM
Transactions on Knowledge Discovery from Data, vol. 6, no. 1, pp. 3:1–3:39, Mar.
2012. [Online]. Available: http://doi.org/10.1145/2133360.2133363

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, no. 85, pp.
2825–2830, 2011. [Online]. Available: http://jmlr.org/papers/v12/pedregosa11a.
html

[63] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in ner-
vous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133,
Dec. 1943. [Online]. Available: https://doi.org/10.1007/BF02478259

142

https://www.mitpressjournals.org/doi/abs/10.1162/089976601750264965
https://www.mitpressjournals.org/doi/abs/10.1162/089976601750264965
http://doi.org/10.1145/335191.335388
http://doi.org/10.1145/2133360.2133363
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1007/BF02478259

[64] F. Rosenblatt, “The Perceptron. A Perceiving and Recognizing Automaton.” Tech.
Rep. 85-460-1, Jan. 1957. [Online]. Available: https://blogs.umass.edu/brain-wars/
files/2016/03/rosenblatt-1957.pdf

[65] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal of
Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014. [Online]. Avail-
able: http://jmlr.org/papers/v15/srivastava14a.html

[66] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based radio sig-
nal classification,” IEEE Journal of Selected Topics in Signal Processing, vol. 12,
no. 1, pp. 168–179, Feb. 2018.

[67] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. [On-
line]. Available: http://www.deeplearningbook.org

[68] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
Nov. 1998.

[69] T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical layer,”
IEEE Transactions on Cognitive Communications and Networking, vol. 3, no. 4,
pp. 563–575, Dec. 2017.

[70] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial neural networks-
based machine learning for wireless networks: A tutorial,” IEEE Communications
Surveys Tutorials, vol. 21, no. 4, pp. 3039–3071, 2019.

[71] K. St. Germain and F. Kragh, “Mobile physical-layer authentication using channel
state information and conditional recurrent neural networks,” in IEEE 93rd Vehic-
ular Technology Conference: VTC2021-Spring. Helsinki, Finland: to be published,
Apr. 2021.

[72] J. T. Connor, R. D. Martin, and L. E. Atlas, “Recurrent neural networks and robust
time series prediction,” IEEE Transactions on Neural Networks, vol. 5, no. 2, pp.
240–254, Mar. 1994. [Online]. Available: http://doi.org/10.1109/72.279188

[73] T. J. O’Shea, T. C. Clancy, and R. W. McGwier, “Recurrent neural radio anomaly
detection,” arXiv:1611.00301 [cs], Nov. 2016, arXiv: 1611.00301. [Online]. Avail-
able: http://arxiv.org/abs/1611.00301

[74] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-
putation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available: https:
//www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735

143

https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://www.deeplearningbook.org
http://doi.org/10.1109/72.279188
http://arxiv.org/abs/1611.00301
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735

[75] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN encoder–decoder for
statistical machine translation,” in Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Associa-
tion for Computational Linguistics, Oct. 2014, pp. 1724–1734. [Online]. Available:
https://www.aclweb.org/anthology/D14-1179

[76] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of recur-
rent network architectures,” in Proceedings of the 32nd International Conference
on International Conference on Machine Learning - Volume 37 (ICML’15). Lille,
France: JMLR.org, July 2015, pp. 2342–2350.

[77] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated re-
current neural networks on sequence modeling,” NIPS 2014 Workshop on Deep
Learning, Dec. 2014.

[78] W. Liu, L.-L. Yang, and L. Hanzo, “Recurrent neural network based narrowband
channel prediction,” in 2006 IEEE 63rd Vehicular Technology Conference, May
2006, vol. 5, pp. 2173–2177.

[79] T. Ding and A. Hirose, “Fading channel prediction based on combination of
complex-valued neural networks and chirp Z-transform,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 25, no. 9, pp. 1686–1695, Sep. 2014.

[80] W. Jiang and H. D. Schotten, “Recurrent neural networks with long short-term
memory for fading channel prediction,” in 2020 IEEE 91st Vehicular Technology
Conference (VTC2020-Spring), May 2020, pp. 1–5.

[81] Q. Wang, H. Li, D. Zhao, Z. Chen, S. Ye, and J. Cai, “Deep neural networks for
CSI-based authentication,” IEEE Access, vol. 7, pp. 123 026–123 034, 2019.

[82] D. Roy, T. Mukherjee, M. Chatterjee, and E. Pasiliao, “RF transmitter fingerprint-
ing exploiting spatio-temporal properties in raw signal data,” in 2019 18th IEEE
International Conference On Machine Learning And Applications (ICMLA). Boca
Raton, FL, USA: IEEE, Dec. 2019, pp. 89–96.

[83] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proceedings of the
27th International Conference on Neural Information Processing Systems - Vol-
ume 2 (NIPS’14). Cambridge, MA, USA: MIT Press, 2014, pp. 2672–2680, event-
place: Montreal, Canada.

[84] I. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks,”
arXiv:1701.00160 [cs], Dec. 2016, arXiv: 1701.00160. [Online]. Available:
http://arxiv.org/abs/1701.00160

144

https://www.aclweb.org/anthology/D14-1179
http://arxiv.org/abs/1701.00160

[85] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” arXiv:1406.2661 [cs,
stat], June 2014, arXiv: 1406.2661. [Online]. Available: http://arxiv.org/abs/1406.
2661

[86] J. Langr and V. Bok, GANs in Action: Deep learning with Generative Adversar-
ial Networks, Sep. 2019. [Online]. Available: https://livebook.manning.com/book/
gans-in-action/about-this-book/

[87] K. St. Germain and F. Kragh, “Physical-layer authentication using channel state in-
formation and machine learning,” in 2020 14th International Conference on Signal
Processing and Communication Systems (ICSPCS), Adelaide, AUS, Dec. 2020.

[88] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,
A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-
resolution using a generative adversarial network,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017, pp. 105–114.

[89] Y. Li, S. Liu, J. Yang, and M.-H. Yang, “Generative face completion,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017,
pp. 5892–5900.

[90] J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, and S. Yan, “Perceptual generative adver-
sarial networks for small object detection,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017, pp. 1951–1959.

[91] A. Odena, “Semi-supervised learning with generative adversarial networks,”
arXiv:1606.01583 [cs, stat], Oct. 2016, arXiv: 1606.01583. [Online]. Available:
http://arxiv.org/abs/1606.01583

[92] T. J. O’Shea, J. Corgan, and T. C. Clancy, “Convolutional radio modulation recog-
nition networks,” in Engineering Applications of Neural Networks (Communica-
tions in Computer and Information Science), C. Jayne and L. Iliadis, Eds. Cham:
Springer International Publishing, 2016, pp. 213–226.

[93] M. Li, G. Liu, S. Li, and Y. Wu, “Radio classify generative adversarial networks: A
semi-supervised method for modulation recognition,” in 2018 IEEE 18th Interna-
tional Conference on Communication Technology (ICCT), Oct. 2018, pp. 669–672.

[94] C. Xiao, D. Han, Y. Ma, and Z. Qin, “CsiGAN: robust channel state information-
based activity recognition with GANs,” IEEE Internet of Things Journal, vol. 6,
no. 6, pp. 10 191–10 204, Dec. 2019.

145

http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
https://livebook.manning.com/book/gans-in-action/about-this-book/
https://livebook.manning.com/book/gans-in-action/about-this-book/
http://arxiv.org/abs/1606.01583

[95] C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (medical) time series gen-
eration with recurrent conditional GANs,” arXiv:1706.02633 [cs, stat], Dec. 2017,
arXiv: 1706.02633. [Online]. Available: http://arxiv.org/abs/1706.02633

[96] A. Koochali, P. Schichtel, A. Dengel, and S. Ahmed, “Probabilistic forecasting of
sensory data with generative adversarial networks – ForGAN,” IEEE Access, vol. 7,
pp. 63 868–63 880, 2019.

[97] Y. Dong, H. Wang, and Y.-D. Yao, “Channel estimation for one-bit multiuser mas-
sive mimo using conditional gan,” IEEE Communications Letters, pp. 1–1, 2020.

[98] K. St. Germain and F. Kragh, “Multi-transmitter physical layer authentication using
channel state information and deep learning,” in 2020 14th International Confer-
ence on Signal Processing and Communication Systems (ICSPCS), Adelaide, AUS,
Dec. 2020.

[99] K. St. Germain and F. Kragh, “Channel prediction and transmitter authentication
with adversarially-trained recurrent neural networks,” IEEE Open Journal of the
Communications Society, pp. 964–974, 2021.

[100] R. Atkinson and N. Haller, “On Internet Authentication,” Oct. 1994. [Online].
Available: https://tools.ietf.org/html/rfc1704

[101] T. Zia, A. Zomaya, and N. Ababneh, “Evaluation of overheads in security mech-
anisms in wireless sensor networks,” in 2007 International Conference on Sensor
Technologies and Applications (SENSORCOMM 2007), Oct. 2007, pp. 181–185.

[102] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller, and M. Si-
chitiu, “Analyzing and modeling encryption overhead for sensor network nodes,”
in Proceedings of the 2Nd ACM International Conference on Wireless Sensor Net-
works and Applications (WSNA ’03). New York, NY, USA: ACM, 2003, pp. 151–
159, event-place: San Diego, CA, USA. [Online]. Available: http://doi.acm.org/10.
1145/941350.941372

[103] Y. Kim, A. Perrig, and G. Tsudik, “Group key agreement efficient in communica-
tion,” IEEE Transactions on Computers, vol. 53, no. 7, pp. 905–921, July 2004.

[104] F. Meneghello, M. Calore, D. Zucchetto, M. Polese, and A. Zanella, “IoT: Internet
of threats? A survey of practical security vulnerabilities in real IoT devices,” IEEE
Internet of Things Journal, vol. 6, no. 5, pp. 8182–8201, Oct. 2019.

[105] M. D. Aime, G. Calandriello, and A. Lioy, “Dependability in wireless networks:
Can we rely on WiFi?” IEEE Security Privacy, vol. 5, no. 1, pp. 23–29, Jan. 2007.

146

http://arxiv.org/abs/1706.02633
https://tools.ietf.org/html/rfc1704
http://doi.acm.org/10.1145/941350.941372
http://doi.acm.org/10.1145/941350.941372

[106] X. Xing, E. Shakshuki, D. Benoit, and T. Sheltami, “Security analysis and authenti-
cation improvement for IEEE 802.11i specification,” in IEEE GLOBECOM 2008 -
2008 IEEE Global Telecommunications Conference, Nov. 2008, pp. 1–5.

[107] J. Dizdarević, F. Carpio, A. Jukan, and X. Masip-Bruin, “A survey of communica-
tion protocols for internet of things and related challenges of fog and cloud comput-
ing integration,” ACM Comput. Surv., vol. 51, no. 6, pp. 116:1–116:29, Jan. 2019.
[Online]. Available: http://doi.acm.org/10.1145/3292674

[108] G. Apostolopoulos, V. Peris, P. Pradhan, and D. Saha, “Securing electronic com-
merce: reducing the SSL overhead,” IEEE Network, vol. 14, no. 4, pp. 8–16, July
2000.

[109] Y. Zou, J. Zhu, X. Wang, and L. Hanzo, “A survey on wireless security: Technical
challenges, recent advances, and future trends,” Proceedings of the IEEE, vol. 104,
no. 9, pp. 1727–1765, Sep. 2016.

[110] P. Baracca, N. Laurenti, and S. Tomasin, “Physical layer authentication over MIMO
fading wiretap channels,” IEEE Transactions on Wireless Communications, vol. 11,
no. 7, pp. 2564–2573, July 2012.

[111] C. Nerguizian, C. Despins, and S. Affes, “Geolocation in mines with an impulse
response fingerprinting technique and neural networks,” in IEEE 60th Vehicular
Technology Conference, 2004. VTC2004-Fall. 2004, Sep. 2004, vol. 5, pp. 3589–
3594 Vol. 5.

[112] X. Wang, L. Gao, S. Mao, and S. Pandey, “CSI-based fingerprinting for indoor lo-
calization: A deep learning approach,” IEEE Transactions on Vehicular Technol-
ogy, vol. 66, no. 1, pp. 763–776, Jan. 2017.

[113] J. Xiao, K. Wu, Y. Yi, and L. M. Ni, “FIFS: Fine-grained indoor fingerprinting sys-
tem,” in 2012 21st International Conference on Computer Communications and
Networks (ICCCN), July 2012, pp. 1–7.

[114] L. Xiao, Y. Li, G. Han, G. Liu, and W. Zhuang, “PHY-layer spoofing detection
with reinforcement learning in wireless networks,” IEEE Transactions on Vehic-
ular Technology, vol. 65, no. 12, pp. 10 037–10 047, Dec. 2016.

[115] F. Pan, Z. Pang, M. Luvisotto, X. Jiang, R. N. Jansson, M. Xiao, and H. Wen, “Au-
thentication based on channel state information for industrial wireless communica-
tions,” in IECON 2018 - 44th Annual Conference of the IEEE Industrial Electron-
ics Society, Oct. 2018, pp. 4125–4130.

147

http://doi.acm.org/10.1145/3292674

[116] R. Candell, K. A. Remley, J. T. Quimby, D. Novotny, A. Curtin, P. B. Papazian,
M. Kashef, and J. Diener, “Industrial wireless systems radio propagation mea-
surements,” National Institute of Standards and Technology, Gaithersburg, MD,
Tech. Rep. NIST TN 1951, Jan. 2017. [Online]. Available: http://doi.org/10.18434/
T44S3N

[117] F. Pan, H. Wen, R. Liao, Y. Jiang, A. Xu, K. Ouyang, and X. Zhu, “Physical layer
authentication based on channel information and machine learning,” in 2017 IEEE
Conference on Communications and Network Security (CNS), Oct. 2017, pp. 364–
365.

[118] R.-F. Liao, H. Wen, J. Wu, F. Pan, A. Xu, Y. Jiang, F. Xie, and M. Cao, “Deep-
learning-based physical layer authentication for industrial wireless sensor net-
works,” Sensors (Basel, Switzerland), vol. 19, no. 11, May 2019. [Online]. Avail-
able: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603790/

[119] R.-F. Liao, H. Wen, J. Wu, F. Pan, A. Xu, H. Song, F. Xie, Y. Jiang, and M. Cao,
“Security enhancement for mobile edge computing through physical layer authenti-
cation,” IEEE Access, vol. 7, pp. 116 390–116 401, 2019.

[120] A. Y. Abyaneh, A. H. G. Foumani, and V. Pourahmadi, “Deep neural networks
meet CSI-based authentication,” arXiv:1812.04715 [cs, eess, stat], Nov. 2018,
arXiv: 1812.04715. [Online]. Available: http://arxiv.org/abs/1812.04715

[121] A. Hindupur, “The-gan-zoo: A list of all named GANs!” [Online]. Available: https:
//github.com/hindupuravinash/the-gan-zoo

[122] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks,” arXiv:1511.06434 [cs], Nov.
2015, arXiv: 1511.06434. [Online]. Available: http://arxiv.org/abs/1511.06434

[123] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for
simplicity: The all convolutional net,” arXiv:1412.6806 [cs], Apr. 2015, arXiv:
1412.6806. [Online]. Available: http://arxiv.org/abs/1412.6806

[124] A. Mordvintsev, C. Olah, and M. Tyka, “Inceptionism: Going deeper into neu-
ral networks,” 2015. [Online]. Available: https://ai.googleblog.com/2015/06/
inceptionism-going-deeper-into-neural.html

[125] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” in International Conference on Machine
Learning, June 2015, pp. 448–456. [Online]. Available: http://proceedings.mlr.
press/v37/ioffe15.html

148

http://doi.org/10.18434/T44S3N
http://doi.org/10.18434/T44S3N
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603790/
http://arxiv.org/abs/1812.04715
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1412.6806
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html

[126] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines,” in Proceedings of the 27th International Conference on International Con-
ference on Machine Learning (ICML’10). Haifa, Israel: Omnipress, 2010, pp. 807–
814. [Online]. Available: http://dl.acm.org/citation.cfm?id=3104322.3104425

[127] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural
network acoustic models,” Proceedings of ICML, vol. 30, p. 6, 2013.

[128] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activa-
tions in convolutional network,” arXiv:1505.00853 [cs, stat], Nov. 2015, arXiv:
1505.00853. [Online]. Available: http://arxiv.org/abs/1505.00853

[129] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
“Improved techniques for training GANs,” in Advances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, Eds. Curran Associates, Inc., 2016, pp. 2234–2242. [Online]. Avail-
able: http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf

[130] L. Theis, A. v. d. Oord, and M. Bethge, “A note on the evaluation of generative
models,” arXiv:1511.01844 [cs, stat], Apr. 2016, arXiv: 1511.01844. [Online].
Available: http://arxiv.org/abs/1511.01844

[131] Y. Wu, Y. Burda, R. Salakhutdinov, and R. Grosse, “On the quantitative analysis
of decoder-based generative models,” arXiv:1611.04273 [cs], June 2017, arXiv:
1611.04273. [Online]. Available: http://arxiv.org/abs/1611.04273

[132] S. Chintala, “How to train a GAN.” NIPS 2016 Workshop on Adversarial Train-
ing: NIPS 2016 Workshop on Adversarial Training, vol. NIPS 2016 Workshop
on Adversarial Training. [Online]. Available: https://www.youtube.com/watch?
v=myGAju4L7O8

[133] S. Chintala, E. Denton, M. Arjovsky, and M. Mathieu, “soumith/ganhacks,” Dec.
2019, original-date: 2016-12-09T16:09:27Z. [Online]. Available: https://github.
com/soumith/ganhacks

[134] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980 [cs], Jan. 2017, arXiv: 1412.6980. [Online]. Available: http:
//arxiv.org/abs/1412.6980

[135] K. Armanious, C. Jiang, M. Fischer, T. Küstner, T. Hepp, K. Nikolaou, S. Gatidis,
and B. Yang, “MedGAN: Medical image translation using GANs,” Computerized
Medical Imaging and Graphics, p. 101684, Nov. 2019. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0895611119300990

149

http://dl.acm.org/citation.cfm?id=3104322.3104425
http://arxiv.org/abs/1505.00853
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
http://arxiv.org/abs/1511.01844
http://arxiv.org/abs/1611.04273
https://www.youtube.com/watch?v=myGAju4L7O8
https://www.youtube.com/watch?v=myGAju4L7O8
https://github.com/soumith/ganhacks
https://github.com/soumith/ganhacks
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://www.sciencedirect.com/science/article/pii/S0895611119300990
http://www.sciencedirect.com/science/article/pii/S0895611119300990

[136] J. Bao, D. Chen, F. Wen, H. Li, and G. Hua, “CVAE-GAN: Fine-grained image
generation through asymmetric training,” in 2017 IEEE International Conference
on Computer Vision (ICCV), Oct. 2017, pp. 2764–2773.

[137] T. J. O’Shea, T. Roy, N. West, and B. C. Hilburn, “Physical layer communications
system design over-the-air using adversarial networks,” in 2018 26th European Sig-
nal Processing Conference (EUSIPCO), Sep. 2018, pp. 529–532.

[138] Q. Li, H. Qu, Z. Liu, N. Zhou, W. Sun, S. Sigg, and J. Li, “AF-DCGAN: Ampli-
tude feature deep convolutional GAN for fingerprint construction in indoor local-
ization systems,” IEEE Transactions on Emerging Topics in Computational Intelli-
gence, pp. 1–13, 2019.

[139] D. Roy, T. Mukherjee, M. Chatterjee, E. Blasch, and E. Pasiliao, “RFAL: Adversar-
ial learning for RF transmitter identification and classification,” IEEE Transactions
on Cognitive Communications and Networking, pp. 1–1, 2019.

[140] D. Roy, D. T. Mukherjee, M. Chatterjee, and D. E. L. Pasiliao, “Detection of rogue
RF transmitters using generative adversarial nets,” IEEE Wireless Communications
and Networking Conference, p. 7, 2019.

[141] R. Alshinina, “A highly accurate deep learning based approach for developing
wireless sensor network middleware,” Thesis, Sep. 2018. [Online]. Available:
https://scholarworks.bridgeport.edu/xmlui/handle/123456789/2492

[142] Y. Chapre, A. Ignjatovic, A. Seneviratne, and S. Jha, “CSI-MIMO: Indoor Wi-Fi
fingerprinting system,” in 39th Annual IEEE Conference on Local Computer Net-
works, Sep. 2014, pp. 202–209.

[143] L. Xiao, L. J. Greenstein, N. B. Mandayam, and W. Trappe, “Using the physical
layer for wireless authentication in time-variant channels,” IEEE Transactions on
Wireless Communications, vol. 7, no. 7, pp. 2571–2579, July 2008.

[144] F. Chollet, et al., Keras, 2015. [Online]. Available: https://keras.io

[145] M. Abadi, et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems,” 2015. [Online]. Available: https://www.tensorflow.org/

[146] MATLAB, version 9.6.0.1072779 (2019a). Natick, Massachusetts: The Mathworks
Inc., 2019.

[147] A. Alkhateeb, “DeepMIMO: A generic deep learning dataset for millimeter wave
and massive MIMO applications,” in Proc. of Information Theory and Applications
Workshop (ITA), San Diego, CA, Feb. 2019.

150

https://scholarworks.bridgeport.edu/xmlui/handle/123456789/2492
https://keras.io
https://www.tensorflow.org/

[148] Remcom, “Wireless InSite,” https://www.remcom.com/wireless-insite.

[149] A. Goldsmith, Wireless Communications. Cambridge University Press, Aug. 2005.

[150] L. Xiao, A. Reznik, W. Trappe, C. Ye, Y. Shah, L. Greenstein, and N. Mandayam,
“PHY-authentication protocol for spoofing detection in wireless networks,” in 2010
IEEE Global Telecommunications Conference GLOBECOM 2010, Dec. 2010, pp.
1–6.

[151] S. Chintala, “How to train a GAN,” NIPS 2016 Workshop on Adversarial Train-
ing, 2016. [Online]. Available: https://github.com/soumith/ganhacks,https://www.
youtube.com/watch?v=myGAju4L7O8

[152] A. Duel-Hallen, “Fading channel prediction for mobile radio adaptive transmission
systems,” Proceedings of the IEEE, vol. 95, no. 12, pp. 2299–2313, Dec. 2007.

[153] A. Duel-Hallen, S. Hu, and H. Hallen, “Long-range prediction of fading signals,”
IEEE Signal Processing Magazine, vol. 17, no. 3, pp. 62–75, May 2000.

[154] L. Hanzo, C. H. Wong, and M. S. Yee, Adaptive Wireless Transceivers. Chichester,
UK: John Wiley & Sons, Ltd, Feb. 2002. [Online]. Available: http://doi.wiley.com/
10.1002/047084776X

[155] X. Gao, J. Tanskanen, and S. Ovaska, “Comparison of linear and neural network-
based power prediction schemes for mobile DS/CDMA systems,” in Proceedings of
Vehicular Technology Conference - VTC, Apr. 1996, vol. 1, pp. 61–65.

[156] C.-K. Wen, W.-T. Shih, and S. Jin, “Deep learning for massive MIMO CSI feed-
back,” IEEE Wireless Communications Letters, vol. 7, no. 5, pp. 748–751, Oct.
2018.

[157] W. Jiang and H. D. Schotten, “Deep learning for fading channel prediction,” IEEE
Open Journal of the Communications Society, vol. 1, pp. 320–332, 2020.

[158] C. Luo, J. Ji, Q. Wang, X. Chen, and P. Li, “Channel state information prediction
for 5G wireless communications: A deep learning approach,” IEEE Transactions
on Network Science and Engineering, vol. 7, no. 1, pp. 227–236, Jan. 2020.

[159] W. Jiang and H. D. Schotten, “Neural network-based channel prediction and its
performance in multi-antenna systems,” in 2018 IEEE 88th Vehicular Technology
Conference (VTC-Fall), Aug. 2018, pp. 1–6.

[160] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley, “Least squares
generative adversarial networks,” in 2017 IEEE International Conference on Com-
puter Vision (ICCV), Oct. 2017, pp. 2813–2821.

151

https://github.com/soumith/ganhacks, https://www.youtube.com/watch?v=myGAju4L7O8
https://github.com/soumith/ganhacks, https://www.youtube.com/watch?v=myGAju4L7O8
http://doi.wiley.com/10.1002/047084776X
http://doi.wiley.com/10.1002/047084776X

[161] “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)
Radio Transmission and Reception.” [Online]. Available: https://www.3gpp.org

[162] R. H. Clarke, “A statistical theory of mobile-radio reception,” The Bell System
Technical Journal, vol. 47, no. 6, pp. 957–1000, July 1968.

[163] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Proceed-
ings of the 3rd International Conference on Learning Representations (ICLR), Dec.
2014.

[164] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning
(Statistics). New York, NY, USA: Springer-Verlag, 2001.

[165] A. Ng, “CS229: Machine Learning,” 2020. [Online]. Available: https://see.stanford.
edu/materials/aimlcs229/cs229-notes1.pdf

[166] Y. Bengio, “Practical recommendations for gradient-based training of deep archi-
tectures,” arXiv:1206.5533 [cs], Sep. 2012, arXiv: 1206.5533. [Online]. Available:
http://arxiv.org/abs/1206.5533

[167] D. Harris and S. Harris, Digital Design and Computer Architecture, 2nd ed. Else-
vier, 2013.

[168] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient BackProp,” in
Neural Networks: Tricks of the Trade: Second Edition (Lecture Notes in Com-
puter Science), G. Montavon, G. B. Orr, and K.-R. Müller, Eds. Berlin, Heidelberg:
Springer, 2012, pp. 9–48. [Online]. Available: https://doi.org/10.1007/978-3-642-
35289-8_3

[169] “Neural network: A complete beginners guide in 2019,” Aug. 2019. [Online].
Available: https://gadictos.com/neural-network-pt1/

[170] MIT OpenCourseWare, “12a: Neural Nets,” Apr. 2016. [Online]. Available: https:
//www.youtube.com/watch?v=uXt8qF2Zzfo

[171] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational efficiency of
training neural networks,” in Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 1 (NIPS’14). Cambridge, MA,
USA: MIT Press, Dec. 2014, pp. 855–863.

152

https://www.3gpp.org
https://see.stanford.edu/materials/aimlcs229/cs229-notes1.pdf
https://see.stanford.edu/materials/aimlcs229/cs229-notes1.pdf
http://arxiv.org/abs/1206.5533
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://gadictos.com/neural-network-pt1/
https://www.youtube.com/watch?v=uXt8qF2Zzfo
https://www.youtube.com/watch?v=uXt8qF2Zzfo

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

153

	21Jun_St. Germain_Kenneth_First8_
	21Jun_St. Germain_Kenneth
	Introduction
	Objective
	Authentication
	Physical-Layer Characteristics
	Machine Learning in the RF Domain
	Machine Learning Algorithms
	Generative Adversarial Networks
	Contributions of This Dissertation
	Organization

	Literature Review
	Physical-Layer Authentication
	Machine Learning in Communication Systems
	Authentication Through Machine Learning and CSI
	General Adversarial Networks
	Summary

	Adversarial Learning and Authentication
	Model for Authentication with CSI
	Authentication Hypothesis Test Based on a Threshold
	Adversarial System Model
	Simulation
	Accidental Authentication Dataset Results
	Nefarious User Dataset Results
	Accuracy Comparison of Physical-Layer Authentication Techniques
	Summary

	Multitransmitter Classification
	System Model
	SGAN Architecture
	Simulation
	Results
	Summary

	Multisubcarrier Authentication and Classification
	Channel Model
	Authentication with Measured CSI
	Semi-Supervised GAN
	The DeepMIMO Dataset
	System Model
	Simulation
	Summary

	Mobile Channel Prediction and Transmitter Authentication
	Channel Model
	Simulation
	Results
	Summary

	Conclusion
	Summary
	Future Work

	Appendix: Neural Network Essentials
	Linear Regression
	Linear Classification
	Activation Functions
	Neural Networks
	Summary

	List of References
	Initial Distribution List

