
 

NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

THESIS 
 

TACTICAL APPLICATION OF MACHINE LEARNING 
TECHNIQUES FOR ANALYZING AUDIT RECORD 

GENERATION AND UTILIZATION SYSTEM (ARGUS) DATA 
TO DETECT BOTNET TRAFFIC 

by 

John T. Ross II and Nathaniel J. Males 

June 2021 

Thesis Advisor: Brian P. Wood 
Co-Advisor: Victor R. Garza 
Second Reader: Vinnie Monaco 

 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions 
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis 
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188) Washington, DC, 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2021

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
TACTICAL APPLICATION OF MACHINE LEARNING TECHNIQUES FOR
ANALYZING AUDIT RECORD GENERATION AND UTILIZATION
SYSTEM (ARGUS) DATA TO DETECT BOTNET TRAFFIC

5. FUNDING NUMBERS

NRP-20-N033-A

6. AUTHOR(S) John T. Ross II and Nathaniel J. Males

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
OPNAV N8/NCIS, District of Columbia

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE 
A

13. ABSTRACT (maximum 200 words)
Advancing botnet threats in cyberspace threaten the security of the Department of Defense (DOD)

Information Network (DODIN) and have the potential to overwhelm the Defensive Cyber Forces’ ability to 
provide timely assessments of network flow information due to the sheer volume of traffic. This is a problem 
because the DOD relies heavily on the capacity of the DODIN to command and control forces and achieve 
strategic objectives. This research assesses the performance of various machine learning algorithms on their 
ability to detect various types of botnet traffic using labeled ARGUS data. The research utilizes the Bot-IoT 
dataset that is composed of ARGUS files that summarize network traffic flows collected during several 
different botnet activities including Operating System fingerprinting, Service Scan, Data Exfiltration, and 
Keylogging data. The identification and categorization of botnet traffic within labeled data is a classification 
problem for which supervised learning methods are most appropriate. The algorithms explored are Random 
Forest, k-Nearest Neighbor, and Support Vector. The metrics to assess performance of the classifiers are 
sourced from rates of true positive, true negative, false positive and false negative. Those rates are used to 
calculate a score of accuracy, precision, and recall for each model on each type of botnet traffic. This research 
demonstrates that the Random Forest model is an effective tool to accurately classify and detect botnet traffic. 

14. SUBJECT TERMS
machine learning, Audit Record Generation and Utilization System, ARGUS, DOD 
Information Network, DODIN, command and control, C2, Tactics Techniques and 
Procedures, TTPs, decision tree, random forest, naive Bayes, k-Nearest Neighbor, Support 
Vector, network flow, network behavior, Python, Scikit learn

15. NUMBER OF
PAGES

83
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18

i 



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



 
 

Approved for public release. Distribution is unlimited. 

TACTICAL APPLICATION OF MACHINE LEARNING TECHNIQUES FOR 
ANALYZING AUDIT RECORD GENERATION AND UTILIZATION SYSTEM 

(ARGUS) DATA TO DETECT BOTNET TRAFFIC 

John T. Ross II 
Lieutenant Commander, United States Navy 

BS, Excelsior College, 2009 
 

Nathaniel J. Males 
Lieutenant, United States Navy 

BS, United States Naval Academy, 2015 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN NETWORK OPERATIONS AND TECHNOLOGY 

from the 

NAVAL POSTGRADUATE SCHOOL 
June 2021 

Approved by: Brian P. Wood 
 Advisor 

 Victor R. Garza 
 Co-Advisor 

 Vinnie Monaco 
 Second Reader 

 Alex Bordetsky 
 Chair, Department of Information Sciences 

iii 



  

THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



 
ABSTRACT 

 Advancing botnet threats in cyberspace threaten the security of the Department of 

Defense (DOD) Information Network (DODIN) and have the potential to overwhelm the 

Defensive Cyber Forces’ ability to provide timely assessments of network flow information 

due to the sheer volume of traffic. This is a problem because the DOD relies heavily on the 

capacity of the DODIN to command and control forces and achieve strategic objectives. 

This research assesses the performance of various machine learning algorithms on their 

ability to detect various types of botnet traffic using labeled ARGUS data. The research 

utilizes the Bot-IoT dataset that is composed of ARGUS files that summarize network 

traffic flows collected during several different botnet activities including Operating System 

fingerprinting, Service Scan, Data Exfiltration, and Keylogging data. The identification 

and categorization of botnet traffic within labeled data is a classification problem for which 

supervised learning methods are most appropriate. The algorithms explored are Random 

Forest, k-Nearest Neighbor, and Support Vector. The metrics to assess performance of the 

classifiers are sourced from rates of true positive, true negative, false positive and false 

negative. Those rates are used to calculate a score of accuracy, precision, and recall for 

each model on each type of botnet traffic. This research demonstrates that the Random 

Forest model is an effective tool to accurately classify and detect botnet traffic. 
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I. INTRODUCTION 

A. OVERVIEW 

This research focuses on the analysis of supervised Machine Learning (ML) 

techniques applied to Audit Record Generation and Utilization System (ARGUS) datasets 

to determine the potential application of the techniques on DOD networks to detect 

Botnets. This research explored the optimization of feature selection on four Botnet traffic 

types: Service Scan, OS Fingerprinting, Keylogging, and Data Exfiltration. Subsequently, 

ML models were developed. The models leveraged algorithms obtained from the publicly 

available Scikit Learning suite of capabilities and were tailored to meet the objectives of 

this research. The ML models were applied to selections of features organized by 

importance and traffic types. After training and testing the models on each of the traffic 

types, the performance of each model was compared to one another. 

B. MOTIVATION 

The amount of network security related data is overwhelming Defensive Cyber 

Forces (DCFs). While additional defensive cyber forces were commissioned to grapple 

with the ever-increasing challenges associated with defending the DoDIN (Department of 

Defense Information Network), they employ tactics, techniques, and procedures (TTPs) 

that are reactive in nature. DCFs are not manned to maintain a network defender level of 

knowledge on the nuances of the configuration of all networks under their purview. The 

distributed placement of these additional defensive cyber forces renders them ill-equipped 

to respond to threats that are executing in real time. DCFs cannot rely on traditional 

signature-based threat mitigation measures to adequately protect the DoDIN. Nor is it 

feasible or cost effective to man DCFs to the level necessary to review millions of lines of 

log data to detect unknown threats as they occur. DCFs require capabilities that employ 

user friendly ML technology and techniques that help automate defense analysis processes 

and reduce the number of alerts that need to be investigated. 
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C. SCOPE 

This research makes evaluations and recommendations on appropriate ML models, 

algorithms, and methods to apply towards the analysis of ARGUS network flows. The 

DOD does not currently employ capabilities or methods at Network Operations Centers 

(NOCs) that are able to identify unknown cyber threats. This thesis intends to provide 

recommendations of capabilities that could be employed to close this gap. For example, 

the capabilities used to counter known threats are effective if DCFs meticulously ensure 

that threat signatures are current which requires diligent monitoring of intelligence on 

emerging threats. However, this provides little to no protection against zero-day attacks 

and other unknown exploits for which there is no signature-based defense. This research 

will focus on supervised Machine Learning methods that can be employed with minimal 

training and expertise to detect malicious Botnet activity. The implementation of 

capabilities of this kind would enable DOD to detect Botnets faster than could be achieved 

by any current team of defensive cyber forces.  

The ML models we developed may be applied as an investigative tool but will not 

serve the same function as a firewall, intrusion protection system/intrusion detection 

system (IPS/IDS), access control list (ACL), or another traditional network security device. 

The ML algorithms enable the analysis of network output from ARGUS for the 

aforementioned traffic types but will not include all performance and subprograms which 

enable core capabilities including processing requirements, output speed, power 

requirements, Command and Control (C2) requirements, and all associated software/

hardware requirements. 

Initial plans for this research included conducting a user study to further explore 

use of ML in the practical domain. Unfortunately, time restrictions and the additional 

requirements encompassed within that endeavor required us to omit the objective from our 

research.  

D. OBJECTIVES 

The intent of this research is to answer three questions: (1) what operations and 

maintenance considerations apply to long term utilization of ML algorithms against Botnet 
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traffic; (2) which, if any, existing Machine Learning algorithms or techniques could be 

usefully applied to analyze network flow data: and (3) what caveats/limitations must be 

considered by consumers of alerts produced by ML analysis of network flow data?  The 

scope of this research is limited to the analysis of ARGUS network flows. 

E. ASSUMPTIONS 

For the purposes of this research, it is assumed that NOCs have the capability to 

conduct packet captures and convert them into ARGUS formatted comma separated value 

(CSV) file. It is also assumed that there are sufficient resources available for the 

employment of the recommendations of this research. Sufficient resources include but are 

not limited to a Linux operating system with enough processing capability to run Python 

scripts and Scikit Learn modules.  

F. APPROACH 

The overall approach is to conduct tests of various ML algorithms on individual 

types of Botnet traffic. First, a publicly available dataset was used as a source to generate 

datasets of the four types of traffic: Service Scan, OS Fingerprinting, Keylogging, and Data 

Exfiltration. Three models were developed, and an iterative approach was applied to the 

training and test datasets to compare the efficiency of each model. Using the results of each 

model on each dataset, tables and graphs were developed to determine which models were 

best suited to identify Botnet traffic over a range of metrics and what factors contributed 

to their success.  

G. BENEFITS OF RESEARCH 

This research will consolidate and assess the successes of current Machine Learning 

capabilities to detect threats without relying upon malicious threat signature repositories. 

It will inform the design requirements of ML models that will aid in investigative analysis. 

It is an analysis of the application of available algorithms and methods to detect 

unidentified Botnets in a controlled setting analogous to the DoDIN. 
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H. ORGANIZATION 

Chapter II provides background on Botnets, Botnet traffic, machine-learning 

algorithms, and historical relevancy of this research. Chapter III describes the model 

design. Chapter IV discusses the results of the experimentation. Finally, Chapter V 

provides research conclusions, findings and suggests possible avenues for future research 

to expand on the methodology, data, and lessons learned from this research.  
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II. LITERATURE REVIEW 

A. BACKGROUND 

Experts equipped with a broad range of tools and capabilities aid in the defense of 

networks against a myriad of threats. The internet environment is constantly in flux as new 

defensive mechanisms as well as new threats are introduced. One such tool that has been 

weaponized for nefarious behaviors is a Botnet. Emerging academic publications have 

consistently identified the need for capabilities that counter previously unidentified 

Botnets. Therefore, an analysis on the application of probabilistic detections capabilities 

towards the defense of the Department of Defense Information Network (DoDIN) is 

imperative. As defensive cyber forces are already oversaturated with information, 

additional defensive capabilities may serve to improve detection, analytics, collaboration, 

response, and reporting to anomalies and threats. The academic & scientific communities 

have made significant achievements in the development of probabilistic models, methods, 

and technologies supporting a broader effort to further identify and classify threats.  

B. BOTS AND BOTNETS 

Internet robots, commonly called bots, have existed since the late 1980s in the form 

of Internet Relay Chat (IRC) bots (Knecht, 2016). The earliest bots served to keep chat 

servers from shutting down chat rooms due to inactivity. Since then, bots have been 

evolved to serve a myriad of purposes from chat management to workload reduction. In 

2000 the GTbot was discovered, masquerading as an mIRC client program and was used 

to launch various denial of service (DoS) attacks (Knecht, 2016). In 2007, a massive bot 

network (Botnet), named Storm, was discovered. Estimates indicated upwards of 50 

million computers had been infected with malware correlating to Botnets (Knecht, 2016) 

and were being used for various cybercrimes. Botnets are networks of connected devices 

which have been infected with malicious software and can be remotely controlled through 

what is commonly referred to as a “Command and Control (C2) Server.”  In most cases, 

infected devices act as sleeping agents, otherwise known as zombies. Once infected, these 
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zombies can be activated to carry out a variety of exploits or malicious activities. For the 

remainder of our research, the terms bots, Botnets, and zombies refer to malicious bots. 

Understanding the proliferation of Botnets aids in constructing a more complete 

picture as to why pose a substantial threat. Even in the early stages of the Botnet 

development, cyber criminals recognized the need for bots to install themselves onto client 

machines (Knecht, 2016). Several propagation methods for bot binary (a bot installation 

software) to become installed on a computer. While we will not delve into the details of 

the various methods employed to propagate Botnets, common methods include emails 

links, media devices, executables, drive-by downloads, and scanning for hosts with known 

vulnerabilities. Some of these methods leverage social engineering and common 

penetration techniques which allow the bot binary to be quickly downloaded (Khattak et 

al., 2014). Once downloaded, the bot establishes communication with the C2 server where 

it becomes part of the Botnet and can be used by the botmaster, an entity that directs the 

actions of bots under their control. 

Botnets are ideal tools for many cybercriminals. The advent of the Internet of 

Things (IoT) has greatly increased the demand for Botnets as cyber hackers have 

recognized that many devices lack sufficient encryption, utilize low quality hardware or 

software, and can be easily infected to support Botnets (Agazzi, 2020). Botnets offer 

computing power and a level of anonymity to the botmaster. One can easily deduce how a 

large network of controlled devices can enable a plethora of attack vectors for savvy 

botmasters. Attacks such as “Distributed Denial of Service attacks (DDoS), Keylogging, 

Phishing, Spamming, Click fraud, Identity theft, and even the proliferation of other Bot 

malware” (Koroniotis et al., 2019) all become substantially more effective with the 

employment of Botnets. The botmaster’s indirect relationship between the bots and the C2 

server lays the stepping stones for avoiding detection and discover (Khattak et al., 2014). 

Botnets are particularly problematic because they are very hard to detect due to the malware 

that affects the devices root themselves at the X layer, which are deeper than the application 

or user layer by which most users interact (IBM Security, 2016). Once infected, the bots 

are subsequently controlled by a botmaster through a C2 infrastructure  (Koroniotis et al., 

2019). 
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C. OVERVIEW OF MACHINE LEARNING 

Navy Network Operations Centers (NOCs) employ tactics, techniques, and 

procedures that are reactive in nature: “Typical detectors are based on traditional intrusion 

detection techniques, focusing on identifying Botnets based on existing signatures of 

attacks by examining the behavior of underlying malicious activities” (Zhao et al., 2013). 

NOCs cannot rely on traditional signature-based threat mitigation measures to DoDIN. 

They require capabilities that employ user friendly Machine Learning technology and 

techniques that determine threats probabilistically based on a priori configurations.  

D. ALGORITHMS 

Numerous studies of Machine Learning algorithms have been successfully 

conducted to support the claim that Machine Learning can be an accurate tool to detect, 

classify, and enhance capabilities to identify Botnet attacks. “Machine Learning is an 

application of Artificial Intelligence wherein the system gets the ability to automatically 

learn and improve based on experience” (Geron, 2017). Machine Learning helps users to 

collect, track, and analyze data much more efficiently than if they were utilizing standard 

data analysis by collecting and storing in a database to be represented on spreadsheets. 

Classification is a subset of Supervised Learning in which data comes with additional 

attributes on which a prediction is made in the field of Machine Learning, classification 

problems require the use of a classifier. Classifiers are algorithms that can learn to detect 

and classify types of traffic based on their features. In our research, these classifiers will 

be incorporated into models written using the programming language Python. In supervised 

learning, examples which consist of labeled data are used to train a Machine Learning 

algorithm. The trained Machine Learning algorithm will then be used to make prediction 

on new data. When a user employs supervised learning methods, the user already has all 

the information required, and the Machine Learning tool can then be used to correlate 

features to the appropriately labeled data (Geron, 2017). In this case, the tool will predict 

whether the network traffic is the result of a malicious Botnet or just normal traffic.  The 

classifiers that will be explored are Random Forest, k-Nearest Neighbor, and Support 

Vector.  
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1. Random Forest 

Random Forests are composed of an ensemble of Decision Trees. A Decision Tree 

is a tree shaped diagram wherein each branch of the tree represents a possible decision that 

is made on the data. These decisions at each branch are made according to the values of 

the features of the data. Figure 1 offers a graphic representation of method in which a 

Decision Tree would use distinguishable features to differentiate between two different 

objects. The branch structures that perform successful classification and are also common 

amongst the most trees are chosen by the random forest as the final decision tree structure.  

 
Illustrates the process by which a Decision Tree Algorithm would make a classification 
prediction. 

Figure 1. Decision Tree Algorithm. 

2. K-Nearest Neighbor 

The k-Nearest Neighbor (Figure 2) is the simplest of supervised Machine Learning 

algorithms. It classifies a data point based on how its neighbors are classified. The k-

Nearest Neighbor algorithm classifies each new instance by calculating the distance 

between the new instance and the distance of the labeled instances in the trained model. If 
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most of the labeled instances are of a certain class then new instance is classified by the k-

nearest neighbor algorithm as that same class. In the example given by Figure 2 two out of 

three of the closest labeled instances to the new instance are green triangles, so the new 

instance is classified as a green triangle.  

 
Figure 2. K-Nearest Neighbor Algorithm. Source: Geron (2017). 

3. Support Vector 

A Support Vector classifier groups classes of data (Figure 3) entries using their 

distinguishing characteristics and estimates the optimal linear separation between the 

groups. The Support Vector algorithm classifies each new instance by observing where the 

new instances reside with respect to the vector that separates the classes in the trained 

model. In the example given by Figure 3 the new instance is on the side of the vector 

populated by green triangles, so the new instance is classified as a green triangle.  
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Figure 3. Support Vector Algorithm. Source: Geron (2017). 

4. Approach to Model Design 

There are two predominant emerging approaches to the detection of bots: detection 

using network flow based features and detection using graph-based features (Chowdhury 

et al., 2017). A network flow is a sequence of packets over some amount of time that are 

organized by a set of identifying features. A common software platform for converting data 

to network flow format is ARGUS. “ARGUS data is designed specifically for flow feature-

based, as well as early and sub-flow-based, traffic analytics and classification” 

(openargus.org, n.d.).  

The methodologies for previous research on Machine Learning vary significantly. 

Therefore, there is very little foundation from which to structure a uniform approach and 

apply those results towards NOC traffic analysis. Technology Acceptance Model (TAM) 

has an elegant and simple structure that fits well with the defenders of the DoDIN. Han’s 

research, Individual Adoption of Information Systems in Organizations (Han, 2003), 

highlights the benefits of applying TAM to emerging technologies compared with other 

methods. TAM considers two drivers to adoption, perceived ease of use and perceived 

usefulness. Despite demonstrating high detection accuracy, deep inspection of the contents 

of network traffic is typically resource intensive and requires the parsing of large amounts 

of packet data which is a slow process. Therefore, the usefulness of conducting deep 

inspection of network traffic is progressively diminishing. Additionally, if a Botnet 
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employs encryption to conceal communications then it defeats the deeper inspection 

capabilities.  

Network flow based traffic analysis is founded on the idea that there is homogeneity 

in Botnet traffic behavior. The features of Botnet traffic are used to distinguish them from 

normal traffic and further classify and and typify the traffic types (Zhao et al., 2013). This 

method of analysis performs classification based on features that cannot be evaded by 

encryption.  (Zhao D. T., 2013) make the case for classification techniques with a high 

performance for the purposes of real time detection while simultaneously exhibiting high 

detection accuracy. Over the course of their individual research pursuits, they investigated 

several Machine Learning techniques for Botnet detection through network behavior 

analysis, including, Neural Networks, Support Vector classifiers, and k-Nearest Neighbor 

classifiers (Saad et al., 2011), and Bayes and Decision Tree (Zhao et al., 2012). There is 

potential to build upon the findings of their individual research efforts. Outside the Closed 

World (Sommer & Paxson, 2010) argued for the need of the system to be understood from 

a capabilities and limitations perspective. Upon delivery of ML capabilities to defensive 

cyber forces, operation of the ML capability must be as user friendly as possible to ensure 

that implementation is seamless and that capabilities are adopted quickly. The 

implementation of an ML capability should not require burdensome or overly difficult 

training for users to understand how to detect threats. The assessment of Machine Learning 

algorithms and techniques in this research will attempt to address perceived ease of use 

and perceived usefulness to potential users of any ML capability while also determining 

which existing Machine Learning algorithms or techniques can be usefully applied for 

detection of Botnets. 

Previous researchers have used different datasets to conduct their research based 

upon the dataset’s applicability to the goals of their research. Many have also used rates of 

True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) for 

the evaluation of methods to detect Botnets. These terms are subject to various definitions 

based on the structure of the experiment being performed. For the purpose of this research 

the following are TP, TN, FP, and FN within the context of this topic. A TP is when a 

model correctly classifies the traffic as Botnet traffic (Salazar, 2018). A TN is when the 
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model correctly classifies the traffic as normal traffic (Salazar, 2018). An FP is when the 

model incorrectly classifies the traffic as Botnet traffic, otherwise known as a type I error  

(Salazar, 2018).  An FN is when the model incorrectly classifies the traffic as normal traffic, 

otherwise known as a type II error (Salazar, 2018). Garcia (2014) leveraged the publicly 

available CTU-13 dataset, a dataset created by Czech Technical University in 2011 

comprised of various types of analogous Botnet traffic, to assess Botnet detection methods. 

They used the ARGUS software suite to convert packet capture (PCAP) files to network 

flows. The detection methods that were used in their research consisted of a variety of 

approaches. Throughout their experimentation, they evaluated their methods using TP, TN, 

FP, and FN. Ding (2018) also assessed Botnet traffic using the CTU-13 dataset. She also 

used ARGUS tools as a method to output network flows which serves to segregate network 

traffic according to features in the network flow data. The Machine Learning algorithms 

used in her research were random forest and naïve Bayesian classifiers. Her research 

demonstrated methods that can be employed on training data to achieve a desirable balance 

between FP and FN.  

There are three formulas that can be leveraged to encompass TP, TN, FP, and FN 

for the evaluation of a model’s ability to classify traffic. Accuracy is the percentage of 

correctly classified instances and is given by TP+TN
TP+TN+FP+FN

. Precision provides insight into 

how FPs are affecting model performance and is given by TP
TP+FP

. Recall provides insight 

into how FNs are affecting model performance and is given by TP
TP+FN

. Koroniotis et al. 

(2019) made Botnet predictions on network traffic using classifiers trained with the Bot-

IoT dataset that they created in their testbed and subsequently made available for public 

use. They also used ARGUS tools to segregate network traffic according to features in the 

network flow data. The Machine Learning models that they used to further eliminate 

superfluous features in their training data consisted of Support Vector, Recurrent Neural 

Network and Long-Short Term Memory Recurrent Neural Network.  

It is difficult to compare one set of results to another as many studies on Botnet 

detection apply their varying methods and metrics to different datasets which were 

collected in structurally diverse testbeds. In many cases, the datasets are private or only 
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available upon approval (Garcia, 2014). However, the aforementioned results are similar 

in that the classifications were made based on the characteristics of the selected features on 

the observed network flows. While detection methods that rely upon network flow as an 

input are popular, they have received criticism.  

Botnet Detection using Graph-based Feature Clustering, highlights that “network 

flow traffic features rely on computing statistical features of flow traffic. As a result, these 

methods only capture the characteristics of a bot’s effect on individual links, rather than on 

the topological structure of the neighborhood/subgraph as a whole” (Chowdhury et al., 

2017). They further argue that network flow-based traffic analysis does not monitor 

network behaviors in a holistic manner and are more likely to be evaded when attackers 

employ tactics that alter the behavioral characteristics of malicious traffic. If a Machine 

Learning algorithm is being trained with live traffic then it is vulnerable to alterations to 

the traffic which may lead to misclassification of network flow data (Chen et al., 2017). 

Using live traffic to train Machine Learning algorithms may leave it susceptible to 

manipulation or enable hostile agents to alter their data to appear less malicious. In contrast, 

Botnet Detection Based on Traffic Behavior Analysis and Flow Iintervals (Zhao et al., 

2013) heralds the benefits of using netflow characteristics to detect Botnets. Detection 

methods utilizing network traffic characteristics are not subject to the vulnerabilities of 

encryption algorithms  (Zhao et al., 2013). They are computationally cheaper compared to 

earlier methods that depended on deeper inspection of the contents of network traffic. 

Network flows can be split into characteristic time windows to enable quick detection and 

isolate the threat before an attack has made any serious impact. 

According to In Machine Learning for Cybersecurity: Network-based Botnet 

Detection Using Time-Limited Flows (Ding, 2018), the Internet of Things (IoT) provides 

more platforms to launch Botnets attacks such as “smart household devices with built-in 

network capabilities.”  In order to leverage Machine Learning to address the threat posed 

by Botnets, an appropriate dataset must enable proper training of an algorithm to detect 

them. An Empirical Comparison of Botnet Detection Methods (Garcia, 2014) highlights 

the importance for datasets to include ground-truth labels, heterogeneity, or real-world 

traffic. It also presents a methodology by which to compare Botnet detection methods. To 
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the best of our knowledge, the Bot-IoT dataset from Towards the Ddevelopment of 

Realistic Botnet Dataset in the Internet of Things for Network Forensic Analytics 

(Koroniotis et al., 2019) is currently the only one publicly available dataset that provides 

full range of network packet capture which better caters to verifying outcomes (Koroniotis 

et al., 2019). In a comparison of 12 datasets, the Bot-IoT dataset uniquely provides ARGUS 

data, realistic testbed configuration, realistic traffic, labeled data, IoT traces, diverse attack 

scenarios, full packet capture, and new generated features (Koroniotis et al., 2019). The 

dataset consists of 72 million records of Botnet traffic. The testbed was configured to 

simulate normal bidirectional traffic utilizing DNS, email, FTP, HTTP, and SSH servers. 

SSH, Secure Shell, is a protocol that is used to operate network services remotely and 

securelyacross an unsecure network. The simulated normal traffic also consists of IoT 

services encountered in a smart home such as weather station applications, smart 

appliances, motion activated lights, remotely activated garage doors, and smart thermostats 

(Koroniotis et al., 2019). Instead of conducting packet captures of actual Botnets, the 

creators of the Bot-IoT dataset simulated attacks that used Botnet characteristic. The Botnet 

attacks consisted of information gathering, denial of service, and information theft. The 

level of diversity in the testbed traffic developed by Koroniotis et al., (2019) is similar to 

the complex collection of traffic that an Information Systems Security Officer would 

analyze at a Network Operations Center (NOC). 

The Bot-IoT dataset consists of over 73 million total records. The dataset partially 

addresses the issue of real-world traffic by using the Ostinato tool (Koroniotis et al., 2019) 

to generate massive amounts of realistic normal traffic along with periodically inserting 

traffic that makes use of services on the servers within the testbed. Ostinato is a network 

traffic simulation program that enables operators to simulate real traffic characteristics 

within a virtual environment (ostinato.org, n.d.). The issue of ground-truth labeling is 

addressed by ensuring that all traffic within the testbed is appropriately labelled. The large 

number of rows in the dataset account for the “curse of dimensionality.” In the application 

of Machine Learning problems, the curse of dimensionality means that if the number of 

features used to describe the data increases, then the ability of a model to generalize will 

depend upon an exponentially increasing number of samples (Bellman, 1957). Using their 
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“10-best” feature selection, Koroniotis et al. (2019) observed the highest precision and 

recall using a linear support vector classifier (SVC). Their selected features do not include 

details of the specific source and destination. This indicates that malicious traffic may be 

classified based on features independent of source and destination. Some Botnets employ 

techniques that conceal the source of Botnet traffic (Zhao et al., 2013). Since previous 

works have demonstrated that varied behavior between Botnet and normal traffic can be 

exposed through network flow-based Machine Learning methods, this research will 

explore the performance of those methods on subsets of Botnet traffic. This research will 

seek to optimize the combination of feature selections on those subsets of the Bot-IoT 

dataset for the purposes of striking a balance between accuracy, precision, and recall. 

Additionally, publicly available methods from the Scikit Learning suite of capabilities will 

be trained with those features and assessed using a simplified version of the methodology 

of analysis used by Garcia (2014). That assessment will be compared with the initial 

performance of the Machine Learning methods described in Koroniotis et al. (2019) Bot-

IoT paper.  

Network managers across many network types lack the tools necessary to detect 

many modern threats. Such gaps enable threats such as Botnets to infect a network and 

propagate undetected until called upon to conduct attacks. Machine Learning enables us to 

develop new toolsets to counter problems such as Botnet detection through rapid and 

systemic methods of model training to detect and classify Botnets based on their distinctive 

features. As the environment changes, learning algorithms can be updated to identify and 

capture emerging threats. Current tools in use are largely signature based and detect threats 

that have already been seen but Machine Learning enables us to detect threats based on the 

features of network traffic.  



16 

THIS PAGE INTENTIONALLY LEFT BLANK 



17 

III. METHODOLOGY 

A. CHOICE OF MODELS 

To begin research for the application of Machine Learning (ML) algorithms in the 

detection of Botnets using ARGUS data, the first step was to determine the appropriate ML 

approach for this type of data and successfully train the Random Forest, k-Nearest 

Neighbor, and Support Vector models. The Bot-IoT dataset was published with labeled 

data. Additionally, during discovery of ML methods, unsupervised ML was continuously 

documented as more suitable for tasks involving unlabeled data thus eliminating it as an 

approach. We determined that algorithms typically used for supervised learning problems 

would be most appropriate. The authors of the Bot-IoT dataset (Koroniotis et al., 2019) 

observed the highest precision and recall when they used a linear Support Vector Classifier. 

In one scenario they observed perfect precision at the expense of recall. In another scenario 

they observed perfect recall at the expense of precision. This research will explore whether 

these results can be improved by applying a support vector with a polynomial kernel in lieu 

of a linear kernel (also known as a linear support vector). Another motivating factor in the 

further exploration of Support Vector Classifiers is to determine whether there is a linear 

separation between the two classes of network traffic, Botnet and normal. A polynomial 

kernel applies polynomial functions to the data that shifts data points to allow greater 

flexibility in finding that linear separation. Given that relatively little ML experimentation 

has been conducted on this dataset, a simple algorithm such as the k-Nearest Neighbor will 

also be explored.  

B. THE DATASET AND DATA FORMAT 

The Bot-IoT dataset presented data in many formats. For ease of use and 

uniformity, the data was converted to the CSV format. The dataset is 74 files comprised of 

approximately 74 million network flow records. The dataset is composed of Distributed 

Denial of Service (DDoS), Denial of Service (DoS), Operating System (OS) 

Fingerprinting, Service Scan, Keylogging, and Data Exfiltration traffic. This dataset was 

reduced to traffic that is less overt and more difficult to detect to engage threats that would 
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likely pose the greatest risk and cause the most damage to the DoDIN. As a result, DoS 

and DDoS traffic were removed from the scope of this research. To reduce the datasets to 

the four remaining target subsets of malicious traffic, Microsoft Excel functions were 

utilized to extract them (Figure 4). The Bot-IoT dataset includes simulated normal traffic 

generated with the Ostinato tool. This traffic adds realistic network flow data to the dataset 

to test the models against one another without creating unnecessary real-world traffic. The 

three models are to be developed and will each use an iterative approach to the training and 

test datasets to compare the efficiency of each model. Both the training and test datasets 

will be discussed in greater depth later in this chapter. The models will be modularly 

structured such that they may be interchangeably used within the Botnet classification and 

detection code. The code used throughout this chapter is sourced from the author’s code 

repository on GitHub (Ross, 2020). 

 
Figure 4. Four Subsets of Malicious Traffic 

C. CODE STRATEGY 

The purpose in designing the code in a modular format is to streamline the process 

of editing sections of the code without needing to create one from scratch and facilitate 
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future research on different classification algorithms. The format will enable data to be 

loaded and replaced efficiently while clearly differentiating which dataset is loaded to train 

the algorithm. The code structure also provides a modular interface to interchange any 

classification algorithm within the Scikit-learn library such that classification algorithms 

not explored in this research may be applied for future experimentation. 

D. PROCESS FOR FINDING OPTIMAL FEATURES AND NUMBER OF 
FEATURES FOR EACH MODEL 

To identify the number of features that optimizes model performance, a reductionist 

approach will be utilized. The feature reduction will be initiated beginning with all ARGUS 

features from the Bot-IoT dataset into the training datasets. Then, using the feature 

importance function from Scikit-learn’s classification report package, we will be able to 

rank the importance of features in accordance with their importance to the model. Once 

importance is determined, the least important features may be eliminated one at a time until 

the optimal features to maximize predictive performance for each model are found.  

 This process continues until three features remain, and the results of the confusion 

matrices have been recorded. If the model had too few features, it would be overly inclusive 

of results akin to trying to identify a fruit such as an apple based on only color and shape; 

every object that meets color and shape of an apple would be included in the data and thus 

incur excessive false positives. After recording the results of all confusion matrices, the 

outcomes of each model on each dataset will be compared using scores of accuracy, 

precision, and recall. This entire process is shown in Figure 5.  
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Figure 5. Feature Selection Process. 

E. CODE EXPLANATION 

The following in Figure 6 import commands enable the use of applicable Machine 

Learning algorithms and requisite mathematical functions. The commands simplify the 

process of importing data by optimizing memory usage for the mathematical functions, 

loading the desired ML algorithms, normalizing data, and formatting the dataset to be 

analyzed according to the applicable data type.  

 
Figure 6. Importing Python and Scikit-learn Modules.  

The next segment of code in Figure 7 is the applicable dataset by the local directory. 

The separation of datasets would enable DoDIN operators to load them individually to 

ultimately determine how each algorithm type performs against various categories of 

Botnet traffic.  
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Figure 7. Loading Datasets.  

The following segment of code in Figure 8 is particularly important in shaping the 

dataset to ensure that the ML algorithms can process information within the datasets. Some 

fields within the datasets include non-numeric values that cannot be processed by the 

algorithms and provide no information that would change the outcome of the models. 

Furthermore, some of the columns of the datasets contain no values and must be dropped 

to ensure that the ML algorithms can properly function. 

 
Figure 8. Data Cleaning and Formatting Steps.  

The next line of code in Figure 9 imports the packages required for the creation of 

the training and test sets to be built within the ML environment. The training sets are used 

to train the models to detect the various types of Botnet traffic and the test sets are used to 

evaluate the ability of each model to detect Botnet traffic.  
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Figure 9. Importing Scikit-Learn Modules.  

The next line in Figure 10 defines the target variables, the dependent variables in 

which the algorithm will use to calculate a relationship between individual features and the 

target variable. Within the dataset, the target variable is the label assigned to each record. 

A label (the value of the row) of 0 indicates that a record is designated as normal traffic. A 

label of 1 indicates that the record designated is Botnet traffic. These labels are the training 

features that are used together to train a model to detect Botnet traffic. 

 
Figure 10. Establishing Target Variables.  

The next section in Figure 11 creates the training and test set using the previously 

imported functions for preparing the ML environment. This command splits the dataset 

into a training set and a test set which both consist of their own set of features and a target 

variable. The segments divide the data into 80% for the training set and 20% for the test 

set.  

 
Figure 11. Create Training and Test Set.  

Support Vector and k-Nearest Neighbor algorithms are designed such that they 

require numeric values to be scaled or normalized. These datasets contain a non-numeric 

categorical feature named state which need to be transformed into a numeric value. The 

most applicable method to transform the feature was OneHotEncoding whereby a column 

in the dataset is created for each category. The state feature has 11 categories, so 11 

columns are created. The values for each record would be a one for the applicable column 

and zero for the remaining 10 columns. For example, if a record had a categorical value of 
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Connected (CON) for state then the newly created CON column would have a value of 1 

and the remaining 10 columns would have a value of 10. Since the OneHotEncoding of 

state assigns the values of zero or one, the remaining numeric features were also 

normalized. 

Next, the preprocessing module is loaded from Scikit-learn into the environment. 

Preprocessing contains the prerequisite functions necessary to perform OneHotEncoding, 

normalization, ColumnTransformer, and pipeline transform as shown in Figure 12. 

Variables are assigned as appropriate to enable transforming the original values to their 

desired values. Modules are also imported to enable the aforementioned functions to be 

placed in a sequential pipeline, and finally execute the commands that transform the 

categorical columns into OneHotEncoded columns (Table 1) and transform the numeric 

values into normalized numeric values. 

 
Figure 12. Data Preprocessing Steps.  
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Table 1. Example of One Hot Encoding. 

 
 

In order to determine which features are the most significant, it is necessary to 

import packages into Python capable of sorting features based on their importance ranking 

as shown in Figure 13. This step is important in creating the model because each 

combination of a dataset and algorithm within the models is hypothesized to require a 

different number of features for the generation of ideal results. The feature importance 

graphs will be products of the imported package output and will show the features based 

on importance for its respective dataset. The graphs will be generated for each of the traffic 

types to identify which features are relevant to each model and help determine a correlation 

between the selection of features and Botnet detection. 



25 

 
Figure 13. Determining Feature Importance.  

The next portion of code in Figure 14 is responsible assigning the model that will 

be used on the loaded dataset. It is important because it determines which of the three 

models will be used to detect the Botnet traffic of an assigned dataset. Each of the three 

sections of code has settings that may be adjusted for model optimization. For Random 

Forest the default settings were used because they sufficiently detected and classified the 

Botnet traffic. For k-Nearest Neighbor, choosing the optimal value of K is not 

straightforward and there is not a universal standard that may be applied across datasets as 

the results will vary from one type of dataset to another. For the datasets used in this 

research a value of K=3 is used because it was determined through hyperparameter tuning 

to be the most efficient K value for this model. . Choosing the ideal settings for k-Nearest 

Neighbor requires experimentation and is dependent upon the dataset being used. For 

Support Vector Classifier, the default settings are used except for the kernel. Following 

creation of the Bot-IoT dataset, the authors conducted initial testing using a linear Support 

Vector classifier which produced inconsistent results (Koroniotis et al., 2019). By using a 

Support Vector classifier with a different kernel further insight may be granted into whether 

Service Scan, OS Fingerprinting, Keylogging or Data Exfiltration are linearly separable by 

class, Botnet and normal.   
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Figure 14. Defining Models.  

This portion in Figure 15 trains the model to make predictions using the training 

data. 

 
Figure 15. Training the Model.  

 
The next step of the code in Figure 16 makes predictions on the testing portion of 

the dataset based upon how the model was trained using the training data. 

 
Figure 16. Make Predictions on Test Data.  
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The final portion of the code in Figure 17 collects the model outputs and generates 

a confusion matrix which categorizes the results into four categories, true positive, false 

positive, true negative, and false negative.  

 
Figure 17. Generate Confusion Matrix. 
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Each row in a confusion matrix as shown in Figure 18 represents the actual traffic 

present, while each column represents the predicted traffic (Salazar, 2018). The first row 

of this matrix considers normal traffic (the negative class) in whichTN is representative of  

the number of detections correctly classified as normal traffic (Salazar, 2018). FP 

represents the quantity of traffic incorrectly classified  as suspect (Salazar, 2018). The 

second row within the confusion matrix considers the Botnet traffic (the positive class) FN 

(Salazar, 2018). FN represents the quantity of traffic detections incorrectly classified as 

normal, while TP represents detections  classified correctly as suspect (Salazar, 2018). 

Ideally, a classifier would be characterized only be fully represented by true positives and 

true negatives. Visually, the matrix would be composed of nonzero values in the upper 

diagonal for TP and TN (Salazar, 2018).  
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Figure 18. Confusion Matrix Example.  

Once the confusion matrices have been generated, the results will be graphed and 

analyzed for patterns. If noticeable patterns are observed, then they are assessed and 

compared against correlation calculations, feature importance rankings, and plots of the 

dataset, as applicable.  
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IV. ANALYSIS 

A. DATA COLLECTION 

Analysis of the model performances against the datasets in this study offers insight 

into potential applications and vulnerabilities of Machine Learning algorithms in the realm 

of network defense. This chapter will discuss the performance of the Random Forest, k-

Nearest Neighbor, and Support Vector Classifier models against the pertinent analyzed 

traffic from the Bot-IoT dataset. Figure 19 below provides a graphical and elementary view 

of the data collection process to present a concise summary of the methodology previously 

discussed. It was taken from snapshots of the results of the Support Vector Classifier 

against the OS Fingerprinting dataset. The upper left flow chart introduces the iterative 

process by which the three algorithm classes were applied to the four datasets. The 

confusion matrix in the upper right of Figure 19 provides an example of the output from a 

single iteration of one of the algorithms. In the confusion matrix, the upper left contains 

the number of true negatives (TN), the upper right contains the number of false positives 

(FP), the lower left contains the number of false negatives (FN), and the lower right 

contains the number of true positives (TP), In this diagram. The arrows drawn from the 

Confusion matrix to the table illustrate the inputs of a single iteration of the algorithm as 

features are removed to search for optimal performance of the algorithm. Finally, the graph 

depicts the algorithm performance using the metrics accuracy, precision, and recall against 

each selection of features.  
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Figure 19. Data Collection Process 

B. FEATURE RANKING 

To execute the data collection process as described in Figure 19 and discussed in 

the methodology section of this research, feature importance for each dataset was 

determined using the Scikit-learn toolkit in Python. Figure 20 shows the output using that 

toolkit to display the varying importance of each feature as it pertains to its associated 

dataset. The features consist of attributes of network flow data in ARGUS format that were 

chosen by the authors of the Bot-IoT dataset. The three letter acronyms represent the 

possible transaction states of a network flow record in each dataset. Exhaustively 

describing the possible combinations of ARGUS attributes is outside the scope of this 

research. For more information reference the manual for ARGUS (openargus.org, n.d.). 

That varying importance provides clarity to the question of whether feature selection 

matters for detection of different types of Botnet traffic. When applied to an operational 
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setting, this research demonstrates that the feature selection plays a critical role in Botnet 

detection because features cannot be applied ubiquitously to a detection model; the feature 

selection must be tailored to the target traffic types. 
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Figure 20. Scikit-Learn Feature Importance Output  
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C. PROCESS OF ANALYSIS 

Once the dataset features had been ranked according to importance and the data 

collection process was complete, analysis was conducted in a row-by-row fashion, 

comparing how each model performed against the various types of network traffic, then a 

column-by-column fashion was used to compare the performance of each model against 

another, and concluded by conducting a holistic analysis of the models. The initial analysis 

was conducted with the data displayed graphically at a scale of 85% to 100% as an 

appropriate range to include the lower performing models. At the 85% to 100% scale, all 

three models performed with greater than 99% precision, accuracy, and recall for the OS 

Fingerprinting and Service Scan datasets. Therefore, the same analysis was conducted at a 

custom scale for each individual model to better capture the more subtle behavioral 

differences of the highest performing models. Experimentation enabled sufficient data to 

be captured to compare the three distinct models’ ability to classify and detect malicious 

traffic. The results of the model’s performance were assessed by comparing accuracy, 

precision, and recall. To reiterate from the previous chapter, accuracy is a measure of a 

model’s percentage of correct predictions, precision is a measure of the effect of false-

positives as given by the equation TP
TP+FP

 , and recall is a measure of the effect of false-

negatives as given by equation TP
TP+FN

. The overall performance of each model on each 

dataset is shown in Table 2. The table shows that each model did well for every metric 

except for k-Nearest Neighbor against the Data Exfiltration dataset, and Support Vector 

against the Keylogging and Data Exfiltration datasets.  
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Table 2. Algorithm Performance Summary.  

 
 

D. GENERAL OBSERVATIONS 

The four datasets used in this research were derived from the Bot-IoT dataset and 

separated  by traffic type. The Service Scan dataset contains the most Botnet traffic with a 

total of 1,048,575 records, 1,046,582 being Botnet traffic. The OS Fingerprinting dataset 

contains the second most Botnet traffic with a total of 372,759 records, 358,275 of which 

is Botnet traffic. The Keylogging dataset contains the second least Botnet traffic with a 

total of 11,012 records, 1,469 of which is Botnet traffic. These numbers are derived from 

Table 3. The Data Exfiltration dataset contains the least Botnet traffic with a total of 14,602 

records, 118 of which is Botnet traffic. This is reflected in Table 4 later in this chapter 

where further analysis on this observation is also discussed. For Service Scan, OS 

Fingerprinting, and Keylogging, over 90% of the traffic labeled as Botnet traffic had a 

Transmission Control Protocol (TCP) state of reset (RST) for its value of the state feature.  

TCP is a connection-oriented, end-to-end reliable protocol designed to fit 
into a layered hierarchy of protocols which support multi-network 
applications. The TCP provides for reliable inter-process communication 
between pairs of processes in host computers attached to distinct but 
interconnected computer communication networks. TCP is intended to 
provide a reliable process-to-process communication service in a 
multinetwork environment. The TCP is intended to be a host-to-host 
protocol in common use in multiple networks. (DARPA, 1981)  



37 

The purpose of the RST state is to reset the connection between two hosts. This 

means that over 90% of the model’s ability to make predictions originated from the value 

of a single feature, TCP State RST. Based upon the observations made on the Bot-IoT 

dataset over the course of this research, the Kali Linux tools that were used to generate the 

Botnet traffic consisted of traffic with significantly more RSTs compared to the normal 

traffic generated by the Ostinato tool. While the Botnet traffic consists of legitimate 

examples of malicious traffic, the normal traffic does not seem to be representative of what 

one would expect in the real-world. This means that the “normal traffic” from the Bot-IoT 

dataset is not representative of normally observed network traffic.  

A study by Arlitt and Williamson (2005) reveals TCP RSTs are surprisingly 
common on the internet. Their research examined various states of TCP 
packets from the University of Calgary’s border router over the course of 
one year. Roughly 15% of all TCP flows were terminated by an RST packet 
after the payload had already been sent in at least one direction. The reset 
rate was even higher for HTTP traffic, with 22% of the flows terminated by 
a client-side RST, and 3% by a server-side RST. In contrast, TCP RSTs 
occurred in less than 0.2% of records labeled as normal traffic in the Bot-
IoT dataset. (Weaver et al., 2009)  

The state feature for the Data Exfiltration dataset was more balanced as it was not 

characterized by a bias in its values. This explains the statistically significant performance 

disparity between each model’s ability to classify Botnet traffic in the Data Exfiltration 

dataset as compared to the other datasets. In short, the datasets bias towards TSP state of 

RST enabled each model to classify Botnet traffic more effectively regarding the OS 

fingerprinting, Service Scan, and Keylogging subsets. 

Table 3. Notional TSP State of RST Exclusion Table. 
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E. RANDOM FOREST OVERVIEW 

Figure 21 shows that the Random Forest model performed exceptionally well 

against the Service Scan and OS Fingerprinting datasets but also performed well against 

the Keylogging dataset despite having significantly less malicious traffic to train the model.  

The Data Exfiltration dataset contained the lowest number of Botnet records on which the 

algorithm could be trained and did not exhibit a bias in the state feature like the other 

datasets, subsequently the Random Forest models performed less effectively against the 

Data Exfiltration dataset than the other models. Against the Data Exfiltration dataset, the 

Random Forest models yielded no observable patterns for accuracy, precision, or recall. In 

a Random Forest algorithm, each feature is used to separate Botnet traffic from normal 

traffic. The process is repeated until there are no features left and the dataset has been 

divided as much as the features will allow.  

 
Figure 21. Random Forest Performance Summary. 
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F. RANDOM FOREST ON SERVICE SCAN 

Figure 22 shows that Random Forest consistently achieved greater than 99.95% 

accuracy, precision, and recall against the Service Scan dataset. As the number of features 

were reduced, the performance as measured by accuracy, precision, and recall remained 

relatively constant and effective until less than seven features were included in the model. 

 
Figure 22. Random Forest Service Scan Performance Summary. 

G. RANDOM FOREST ON OS FINGERPRINTING 

Figure 23 shows that Random Forest consistently achieved greater than 99.86% 

accuracy, precision, and recall against the OS Fingerprinting dataset. When the number of 

features was reduced to less than seven the model performance dropped slightly, which 

was a behavior also observed on the Service Scan dataset. 
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Figure 23. Random Forest OS Fingerprinting Performance Summary. 

H. RANDOM FOREST ON KEYLOGGING 

Figure 24 shows that Random Forest consistently achieved greater than 97.9% 

accuracy, precision, and recall against the Keylogging dataset. There are no obvious 

patterns in performance as the scores for precision and recall randomly oscillate between 

97.9% and near 100%. 
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Figure 24. Random Forest Keylogging Performance Summary 

I. RANDOM FOREST ON DATA EXFILTRATION 

Figure 25 shows that the Accuracy metric for Random Forest against the Data 

Exfiltration data consistently achieved greater than 99.8%, while precision and recall 

achieved greater than 91.3% and 88%, respectively. There are no obvious patterns in 

performance as the scores for precision and recall randomly oscillate between 88% and 

100%. 
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Figure 25. Random Forest Data Exfiltration Performance Summary 

J. K-NEAREST NEIGHBOR OVERVIEW 

Figure 26 shows that the k-Nearest Neighbor model’s performance was like the 

Random Forest model in many respects; the model performed quite well against the Service 

Scan, OS Fingerprinting, and Keylogging traffic but was less impressive against the Data 

Exfiltration traffic. As previously discussed, the Data Exfiltration dataset contained the 

lowest number of Botnet records on which the algorithm could be trained and the Data 

Exfiltration dataset also does not exhibit a bias in the state feature as does the other datasets. 

While the performance on the Data Exfiltration dataset yielded the model’s least 

impressive results, it exhibited sinusoidal patterns with points of perfect performance. In a 

k-Nearest Neighbor algorithm, the features are leveraged to plot groups of Botnet traffic 

versus normal traffic and classify new instances based upon the classification of the 

surrounding group. One selection of features may result in Botnet and normal traffic being 

grouped such that there is a higher number of false positives while another choice of feature 

selection may result in a high number of false negatives. 
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Figure 26. K-Nearest Neighbor Performance Summary 

K. K-NEAREST NEIGHBOR ON SERVICE SCAN 

Figure 27 shows that the k-Nearest Neighbor algorithm consistently achieved 

greater than 99.995% accuracy, precision, and recall against the Service Scan dataset. As 

the number of features were reduced, the performance as measured by accuracy and 

precision steadily decreased while recall remained relatively unchanged. 
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Figure 27. K-Nearest Neighbor Service Scan Performance Summary 

L. K-NEAREST NEIGHBOR ON OS FINGERPRINTING 

Figure 28 shows that the k-Nearest Neighbor algorithm consistently achieved 

greater than 99.9% accuracy, precision, and recall against the OS Fingerprinting dataset. 

Generally, the overall performance remained relatively consistent through feature 

reduction until less than five features were used. The k-Nearest Neighbor best performed 

on the OS Fingerprinting dataset with 7 features.  
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Figure 28. K-Nearest Neighbor OS Fingerprinting Performance Summary 

M. K-NEAREST NEIGHBOR ON KEYLOGGING 

Figure 29 shows that the k-Nearest Neighbor algorithm consistently achieved 

greater than 98.3% in accuracy, precision, and recall against the Keylogging dataset. There 

are no obvious patterns in performance as the scores for precision and recall randomly 

oscillate between 98.3% and 100%. 
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Figure 29. K-Nearest Neighbor Keylogging Performance Summary 

N. K-NEAREST NEIGHBOR ON DATA EXFILTRATION  

Figure 30 shows that the Accuracy metric for the k-Nearest Neighbor algorithm 

consistently achieved greater than 99.7%, while precision and recall achieved greater than 

83.0% and 78.9%, respectively, against the Data Exfiltration dataset. There are two points 

at which the algorithm reaches perfect performance. Those points are when the algorithm 

uses 7 features and 15 features.  
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Figure 30. K-Nearest Neighbor Data Exfiltration Performance Summary 

O. SUPPORT VECTOR OVERVIEW 

Figure 31 shows that the Support Vector results were inconsistent and varied in 

accuracy, precision, and recall with each dataset. Support Vector performed well on 

Service Scan and OS Fingerprinting but performed erratically on Keylogging. Support 

Vector yielded no useful results against Data Exfiltration dataset due to the low number of 

Botnet instances that were available to train the model as well as the difference between 

Data Exfiltration and the other datasets regarding the TCP state. In a Support Vector 

algorithm, the features are leveraged to calculate where a separation is drawn between the 

classification of Botnet or normal traffic is made. One selection of features may result in 

the Support Vector that separates classifications of Botnet and normal traffic being drawn 

such that there is a higher number of false positives while another choice of feature 

selection may result in a high number of false negatives.  
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Figure 31. Support Vector Performance Summary 

P. SUPPORT VECTOR ON SERVICE SCAN 

Figure 32 shows that the Support Vector algorithm consistently achieved greater 

than 99.83% accuracy, precision, and recall against the Service Scan dataset. Regardless 

of the selection of features, the performance as measured by accuracy, precision, and recall 

remained largely unchanged. 
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Figure 32. Support Vector Service Scan Performance Summary 

Q. SUPPORT VECTOR ON OS FINGERPRINTING 

Figure 33 shows that the Support Vector algorithm consistently achieved greater 

than 99.69% accuracy, precision, and recall against the Service Scan dataset. Regardless 

of the selection of features, the performance as measured by accuracy, precision, and recall 

remained largely unchanged. 
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Figure 33. Support Vector OS Fingerprinting Performance Summary 

R. SUPPORT VECTOR ON KEYLOGGING 

Figure 34 shows that while performance as measured by accuracy is consistently 

greater than 98.5%, Support Vector results were widely inconsistent and varied in precision 

and recall (varying from 88% and up) through each iteration of feature selection. As the 

number of features were reduced, precision and recall alternated in results, as one metric 

improved the other would decrease. This performance can best be explained by the 

selection of features changing where the line of separation between Botnet and normal 

traffic is made. The iteration of feature selection caused the Support Vector that determines 

the separation between Botnet and normal traffic to oscillate between having a higher 

number of false positives and having a higher number of false negatives. 
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Figure 34. Support Vector Keylogging Performance Summary 

S. SUPPORT VECTOR ON DATA EXFILTRATION 

At first glance, the performance of Support Vector on the Data Exfiltration dataset 

shown in Figure 35 is deceiving. While performance as measured by accuracy is 

consistently greater than 99.5%, precision is very inconsistent with values ranging between 

46.1% and 100%, and the value for recall never exceeds 46.6%. This is likely due to the 

small amount of Data Exfiltration traffic in the dataset on which the algorithm could be 

trained. There were only 118 instances of Data Exfiltration traffic in the dataset compared 

to 14,484 instances of normal traffic. If an algorithm were to classify all instances in the 

Data Exfiltration dataset as normal, then it would still achieve an accuracy of just under 

99.2%. However, in that same notional scenario the recall would be 0%. Precision is 

undefined in this notional scenario because it is zero true positives divided by the sum of 

zero false positives and zero true positives. This is illustrated in Table 4. 

 



52 

 
Figure 35. Support Vector Data Exfiltration Performance Summary 

 

Table 4. Notional Data Exfiltration Accuracy Matrix 

 
 

T. SUMMARY OF ANALYSIS 

The analysis conducted during this research focused on the performance of 

Machine Learning models and how model performance is impacted by feature selection 

and the quantity and quality of data. Built-in Python tools from Scikit-Learn modules were 

used to calculate the importance of the features relative to each dataset. The team was able 

to demonstrate that feature importance varies between datasets, which may affect the 

optimization of ML model performance and the ability to successfully detect Botnet traffic. 

This research found that some traffic types were consistently easier to detect. The order of 

the datasets by performance from best to worst were Service Scan, OS Fingerprinting, 

Keylogging, and Data Exfiltration. Of note, the k-Nearest Neighbor model exhibited a 
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notable pattern of behavior against the Data Exfiltration dataset in which a local maximum 

was reached during the sequence of feature reduction. No other scenario exhibited this 

behavior. Additionally, analysis showed a positive correlation between model performance 

against a given dataset and the prevalence of Botnet traffic. Finally, analysis revealed that 

different models performed better overall against some datasets versus others. From best 

overall performance to worst performance, the order of the models are Random Forest, k-

Nearest Neighbor, and Support Vector. 
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V. CONCLUSIONS 

A. SUMMARY OF RESEARCH 

The primary objective of this research was to investigate the application of Machine 

Learning (ML) to ARGUS data to ultimately answer three research questions regarding the 

broader application of ML for network security. The three research questions are: (1) what 

operations and maintenance considerations apply to long term utilization of ML algorithms 

against Botnet traffic; (2) which, if any, existing Machine Learning algorithms or 

techniques could be usefully applied to analyze network flow data: and (3) what caveats/

limitations must be considered by consumers of alerts produced by ML analysis of network 

flow data?   

1. Research Question 1 

The first research question, what operations and maintenance considerations apply 

to long term utilization of ML algorithms against Botnet traffic, shaped the perspective of 

this research towards long term ML for use in defense of the DoDIN. This research 

highlighted two long-term ML utilization considerations regarding operations and 

maintenance for the detection of Botnet traffic. The first consideration that was identified 

for an ML solution identified was the dataset used to train the ML models. The comparison 

between the results of this research and the results of the previous BOT-IoT research as 

shown in Table 5 indicated that the ideal approach to detect Botnets or otherwise malicious 

traffic was to train the ML model to detect a specific type of traffic rather than several types 

of traffic at the same time. This is important because ML models learn to distinguish 

between the data presented. However, if one were to attempt to train the ML model to 

detect and distinguish between multiple types of traffic it becomes significantly less 

effective. In the case of this research, the quality and size of the dataset were determined 

to be important. The datasets were shaped by two critical factors, the quality of the data 

and the quantity of data. In terms of quality, the dataset must properly represent the TTPs 

employed for that type of traffic because ML model’s performance is a reflection of the 

quality of data on which it was trained. For example, if an ML model is trained with data 



56 

to classify all red and round objects as apples it will misclassify anything red and round 

that is not an apple. The normal traffic must also be representative of typical internet traffic 

seen in a NOC environment. In terms of volume, the larger datasets containing relevant 

instances of each traffic to be made available to the ML model for training increased the 

effectiveness the models’ overall performance. The characteristics size and quality that 

shaped the datasets used to train ML models were highly influential in the results of this 

research. 

Table 5. Random Forest Model Performance against Each Data Type 

 
This table compares the results of Random Forest against each dataset as compared to the results on 
those same Botnet traffic types as reported by the authors of the Bot-IoT Paper. The Bot-IoT paper 
lists scores of zero for precision and recall. 

 

The second consideration of this research for long-term ML utilization was the 

selection of features within each dataset used to train each ML model. Each model’s 

features had to be tailored for the type of traffic targeted for detection and for the model 

used for detection. This research showed that feature importance and selection are 

significant and vary for each traffic type and each ML model. However, the features that 

were selected for the datasets in this research may not yield the same results on a dataset 

that is more representative of realistic Botnet and normal traffic. Therefore, ranking by 

feature importance should be done on the dataset followed by feature selection being 

performed for the model.  
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The quality and quantity of data shape the management and accumulation of 

datasets to be used to train ML models. While this point will be emphasized in greater 

depth, careful management and strict filtering must be considered when collecting and 

organizing datasets for use in ML models for network defense. Data can quickly become 

obsolete in the modern cyber environment, sustained efforts to maintain an up-to-date 

database of existing threat traffic types is paramount system maintenance and operational 

success. 

2. Research Question 2 

The second research question, which, if any, existing Machine Learning algorithms 

or techniques could be usefully applied to analyze network flow data, became self-evident 

during the analysis of our findings. There is no “best” Machine Learning model that can 

be applied universally to all datasets, but given a particular dataset there could be an ideal 

model. Between the ML algorithms explored over the course of this research, Random 

Forest consistently outperformed the other models. Random Forest proved to be less 

computationally complex. Computational complexity closely ties to the demand for 

computational resources, the more complex the higher the resource demand. The 

characteristic serves as an attractive quality in resource constrained environments which 

should be weighed in any decision-making process for the selection of an ML solution for 

network security. 

To offer perspective, this research was accomplished using a COTS computer with 

16 gigabytes of memory, a 4-gigahertz processor, and a 4-gigabyte graphics card. While 

computational complexity and resource demand can be somewhat mitigated by increasing 

the capabilities of a computer or distributing the workload over multiple devices, Random 

Forest starkly contrasted the other models by more quickly and accurately classifying the 

datasets for each traffic type. 

3. Research Question 3 

The third research question, what caveats/limitations must be considered by 

consumers of alerts produced by ML analysis of network flow data, presented noteworthy 

items of consideration discovered over the course of this research. While the Random 
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Forest algorithm performed well there was always a risk of false positives and false 

negatives which was demonstrated in Chapter IV. The risk of false positives contributed to 

the discussion regarding the question of what caveats/limitations must be considered by 

consumers of alerts produced by Machine Learning analysis of network flow data. This 

risk may be increased once an ML model has been trained using datasets composed of more 

realistic examples of network traffic. One way to mitigate the impact of that risk would be 

to incorporate context to the results of ML models by comparing traffic that is typically 

discovered earlier vs. later in an Offensive Cyber Campaign (OCO). OCOs leverage 

various methods and techniques that lie beyond the scope of this discussion, but for 

simplicity’s sake we will surmise that regarding the detection of certain types of traffic, the 

order of detection matters. For example, an advanced persistent threat (APT) will make 

some effort to enumerate the target network by using information gathering tactics. At 

some point during the OCO, the APT may use information gained about the target network 

to conduct some action such as exfiltrating data. In this example, the context of the type of 

traffic being detected matters. So, if the operator or system defending the network detects 

Service Scan or OS Fingerprinting followed by data exfiltration against the same network 

addresses, then the detection is much less likely to be a false positive. It is important to 

recognize that this information could be used against the defender. If the dataset used to 

train the ML model is not tightly controlled, then the APT could corrupt the dataset in an 

attempt to circumvent detection. The risk of this scenario would be the highest in an 

environment where the ML model is being trained using live traffic.  

The three research questions explored over the course of this research culminate in 

enabling us to answer an overarching question pertaining to network security. Can ML 

using ARGUS data be used to detect Botnets for network defense and security. The results 

of experimentation and analysis conducted over the course of the research support the 

hypothesis that ML can accurately and reliably use ARGUS data to detect the presence of 

Botnets and traffic representative of Botnet traffic. The ML algorithms tested each 

achieved various levels of performance from perfect detection and classification to 

unreliable. We can conclude that when appropriate models are selected and properly 

trained, ML can serve as an early warning system for Botnet threats to a network and to 
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automate elements of the detection process to better support network operators. More 

experimentation and testing are warranted before implementing new tactics and techniques 

to defend the DoDIN, some suggestions are outlined in the Future Work section of this 

chapter. 

B. FUTURE WORK 

1. Dataset Creation 

Datasets could be created for each broad type of malicious traffic. They should be 

balanced between normal and malicious traffic and should also be as representative of each 

traffic type as possible. Including a broad range of realistic traffic according to type may 

aid future ML models in being able to detect malicious traffic in operational environments. 

One method of achieving such results would be to include more stealthy attack tactics and 

reduce the overall number of both overt and DoS attacks in the training and test datasets.  

The production of datasets may be an ongoing and evolving endeavor. As 

understanding of the cyber domain evolves, so will the techniques and tactics implemented 

by nefarious actors. ML algorithms are susceptible to variations in the data which may lead 

to misclassification of network flow data. For example, if the model continually learns 

based upon live traffic inputs, a malicious actor may contaminate the training data by 

incrementally injecting traffic that is more representative of the malicious traffic or 

exploitation method that the actor intends to send. Essentially, the malicious actor 

desensitizes the ML model to the malicious traffic. Therefore, DOD must maintain tight 

control over how models are trained. 

2. Model Optimization 

Each of the models explored during this research have parameters that can be 

optimized to increase performance. Due to time limitations, the optimization of those 

parameters could not be fully explored. Once realistic datasets become available, further 

research is needed to identify the proper parameter values for each model on each dataset. 

For example, research could be conducted to evaluate the results of a Support Vector using 

a different kernel or evaluate a Random Forest with decision trees of varying breadth and 
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depth. Exploration of alternate kernels or variations to the algorithms may yield more 

favorable results, particularly for models that initially fail to achieve acceptable results.  

3. Model Testing in a Training Environment 

Once the datasets have been produced as recommended and the parameters for each 

model have been optimized, the models need to be tested in a training environment. Since 

the code that was developed for this research is readily available for use towards the efforts 

of follow-on research, moving from an academic to a lab environment for testing is feasible 

in the immediate future. The idea structure for testing based upon the scope of this research 

would be for a Red Team to conduct a cyber campaign against a target in the training 

environment. Packet Captures of the traffic from the Red Team would be converted to an 

ARGUS comma separated value file, then that file would be processed by a trained ML 

model to see whether the Red Team’s malicious traffic is properly classified.  

4. Neural Network Exploration 

Due to time constraints, exploration of the use of neural networks in the context of 

this research was not feasible. Neural networks may serve as a viable option in the use of 

ML to detect Botnets.  

C. LIMITATIONS 

1. Time 

The single greatest limitation to this research was time, due to the structure of the 

academic experience at the Naval Postgraduate school, students must set attainable goals 

to be accomplish during their limited tenure. As a result, initial ambitions to develop a user 

interface and conduct a user study were quickly tapered to focus on the most important 

aspects of ML utilizing ARGUS data. 

2. Knowledge 

The research process in pursuing ML applications was as much a desire to learn as 

it was to meet graduation requirements. The research process taught our team a great deal 

about ML, coding in Python, and cyber threats. With more time and the knowledge our 
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team gained over the course of this research we could have accomplished a great deal more 

in this area of study.  

3. Dataset 

While the BOT-IoT dataset provided our research team with an exceptional way to 

conduct our research by having ARGUS data in a convenient format, the dataset was 

limited in quantity of Keylogging and Data exfiltration training data. This is a limiting 

factor because as described earlier in the paper, effectiveness of the models was highly 

influenced by the quality and quantity of the data. 
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