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ABSTRACT 


 As artificial intelligence (AI) continues to evolve with ever-increasing speed, 


especially in the commercial sector, the military community runs the risk of being left 


behind. This is especially problematic for Special Operations Forces (SOF) worldwide, as 


they are often the first to encounter new methods and technology employed by irregular 


adversaries. By studying contemporary research and interviewing experts within the field 


of AI, the authors employ a mixed-methods approach to explore what factors the SOF 


community must consider when acquiring and evaluating new AI capabilities. 


Furthermore, the authors attempt to clarify what qualifies as AI and what  factors affect 


its adoption and user acceptance. The results of this study suggest that to avoid or 


minimize the traps associated with AI, the military must partner with other organizations, 


focusing on the right products and managing the education and expectations of the users 


within their organization. Rather than recommend specific products or solutions, this 


capstone report proposes a tentative model focused on risk mitigation and fast 


procurement chains to allow SOF to maintain its edge on the current battlefield. 
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I. INTRODUCTION 


As current developments in artificial intelligence (AI) rapidly move forward, 


several implementations are emerging that promise enhancements to both the conduct of 


military operations as well as the functions within organizations. Nevertheless, since AI 


research is both expensive and often driven by the civilian sector, and thereby general 


public demand, the edge in research and development is mainly confined to large and 


economically strong nations such as China and the United States.1 As special operations 


forces (SOF) often are at the forefront of implementing new technology within nations’ 


militaries, the issue of identifying trends, as well as adapting the organization to 


accommodate new technologies, is highly relevant within the SOF community. To achieve 


and maintain an acceptable level of implementation and utilization of emerging 


technologies, SOF must understand the problems connected to implementing AI with its 


organization in order to determine which technologies and capabilities to pursue. By 


examining the different approaches other organizations have taken to implement AI, as 


well as trying to identify future capabilities predicted by both the civilian sector and 


academia, this capstone explores a way forward for the SOF community for acquiring AI. 


Hence, the question to be answered is: What factors must the SOF community consider 


when acquiring and evaluating new AI capabilities? 


A. STRUCTURE 


Initially, a context for the capstone is presented by looking at what AI is, and what 


AI promises to be, followed by an explanation of the methodology used throughout the 


research. The subsequent analysis is based on previous research regarding military 


acquisition of AI and identified problem sets. As the results of the analysis are presented, 


this capstone produces guidelines for the SOF community and suggests a SOF-specific 


model on how to evaluate and assess the utility of AI implementation. The conclusion is 


 
1 Lee, Kai-Fu, AI Superpowers: China, Silicon Valley, and the New World Order (Boston: Houghton 


Mifflin Harcourt, 2018), 168. 
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that the SOF community is well suited to gain the edge in the AI race provided the 


limitations of being a small organization are accepted and AI-specific pitfalls are mitigated. 


B. DEFINITIONS 


Within the framework of this capstone, the following definitions are used 


throughout the research. Further detail on the history and a literature review of AI and 


foundational knowledge regarding the subject of data is presented in Appendix A. 


Artificial Intelligence is, as further discussed in Appendix A – History of AI, a 


highly contested subject. While some scholars argue that everything that can produce a 


calculation and reach a result void of human interaction constitutes as AI, others reject this 


notion and argue that only a machine that can adapt to context, learn new tasks, and 


function as a human should be considered intelligent.2 Therefore, the following analysis 


focuses on Machine Learning (ML), something that most scholars agree to be AI.3 Jason 


Bell, the author of the book Machine Learning: Hands-On for Developers and Technical 


Professionals, defines ML as: 


Machine learning is a branch of artificial intelligence. Using computing, we 
design systems that can learn from data in a manner of being trained. The 
systems might learn and improve with experience, and with time, refine a 
model that can be used to predict outcomes of questions based on the 
previous learning.4 


While ML consists of several sub-divisions, such as assisted learning, unassisted 


learning, and deep learning, all ML is based on the use of data to learn new traits.5 


 
2 Kelley M. Sayler, Artificial Intelligence and National Security, CRS Report R45178 (Washington, 


DC: Congressional Research Service, 2019), 1–2, https://fas.org/sgp/crs/natsec/R45178.pdf.  


3 Rafay Chaudhary, “Artificial Intelligence: More than Machine Learning,” Towards Data Science, 
September 2019, https://towardsdatascience.com/artificial-intelligence-more-than-machine-learning-
fc95a1f8c2f5.  


4 Jason Bell, Machine Learning: Hands-On for Developers and Technical Professionals (Indianapolis, 
IN: John Wiley & Sons, 2014), 2, http://ebookcentral.proquest.com/lib/ebook-
nps/detail.action?docID=1818248.  


5 Yang Xin et al., “Machine Learning and Deep Learning Methods for Cybersecurity,” IEEE Access 6 
(May 2018): 35367, https://doi.org/10.1109/ACCESS.2018.2836950.  
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Confidentiality, Integrity, and Accessibility (CIA) is a well-known triad of 


cybersecurity.6 The CIA triad, which describes the need for protection of data while still 


allowing access for authorized users, emerged as a measure for cybersecurity in the early 


1980s.7 Since then, the abbreviation has developed into the main parameters for measuring 


the security of a network, especially within the military.8 


Strategy is often described as the effort to balance ways (how) and means (what) to 


achieve reachable ends (goals) while considering risks (threats).9 In his article “Defining 


Military Strategy,” Arthur Lykke described the relationship of ends, ways, and means as a 


three-legged stool used to counter the risks of a nation.10 Using the analogy of the stool, 


Lykke argued that disproportion among the ends, means, and ways results in an unstable 


strategy to counter the risks.11 Although the main purpose of this capstone is not to produce 


a strategy for AI, the ends, ways, and means construct provides the structure to suggest 


best practices to deflect the risks of implementing AI in a military setting. 


  


 
6 Mehul S. Raval, Ratnik Gandhi, and Sanjay Chaudhary, “Insider Threat Detection: Machine 


Learning Way,” in Versatile Cybersecurity, ed. Mauro Conti, Gaurav Somani, and Radha Poovendran, 
Advances in Information Security (Cham, Switzerland: Springer International Publishing, 2018), 204, 
https://doi.org/10.1007/978-3-319-97643-3_2.  


7 Spyridon Samonas and David Coss, “The CIA Strikes Back: Redefining Confidentiality, Integrity 
And Availability In Security,” Journal of Information System Security 10, no. 3 (2014): 21–22, 
http://www.proso.com/dl/Samonas.pdf.  


8 Samonas and Coss, 25. 


9 Mackubin Thomas Owens, “Strategy and the Strategic Way of Thinking,” Naval War College 
Review 60, no. 4, Article 10. (2007): 112, https://digital-commons.usnwc.edu/nwc-review/vol60/iss4/10.  


10 Arthur F. Lykke, “Defining Military Strategy,” Military Review 77, no. 1 (February 1997): 183–85, 
http://search.proquest.com/docview/225319163/abstract/B68261794C094016PQ/1. 


11 Lykke, 184. 
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II. THE PROMISE OF ARTIFICIAL INTELLIGENCE 


As new technologies emerge, there is often a sense that they will alter the world 


entirely, as was the case with the harnessing of electricity, the innovation of flight, and the 


completion of the nuclear bomb. Although these technologies have certainly changed the 


world as we know it in one way or another, however, the rate of change has seemingly 


always depended on society’s ability to absorb and distribute change. Only the atom bomb 


can be said to have created a sudden and instant change in society.12 Furthermore, all of 


these technologies have yet to achieve some of their purported impact; electricity has not 


yet eradicated fossil fuels as the primary source of propulsion, flight has yet to allow for 


mass travel around the world at supersonic speed, and much less did the advent of the 


atomic bomb provide the means to end to all wars.13 Still, most scholars agree that AI 


promises change within several areas, such as world economics, transportation, and 


military capabilities in the near future.14 Perhaps AI will prove the odd one out by radically 


and forever upsetting society within a matter of years in what some call an “AI 


revolution.”15 Nonetheless, even though AI promises a future where machines not only 


replace humans performing menial jobs, but also threaten even the fabric underpinning 


corporate culture and the world economy, there are reasons to be skeptical.16 AI research 


 
12 Robert A. Buchanan, “History of Technology, WWII, The Japanese Surrender,” Britannica, 


Technology, November 2020, https://www.britannica.com/event/World-War-II/Hiroshima-and-Nagasaki. 


13 George Orwell, “You and the Atom Bomb,” The Orwell Foundation, April 2,2020, 
https://www.orwellfoundation.com/the-orwell-foundation/orwell/essays-and-other-works/you-and-the-
atom-bomb/. 


14 Michael C. Horowitz et al., “Strategic Competition in an Era of Artificial Intelligence,” Artificial 
Intelligence and International Security (Washington, DC: Center for a New American Security, July 2018), 
7; Katja Grace et al., “Viewpoint: When Will AI Exceed Human Performance? Evidence from AI Experts,” 
Journal of Artificial Intelligence Research 62 (July 31, 2018): 729, https://doi.org/10.1613/jair.1.11222; 
Joseph Byrum, “Taking Advantage of the AI Revolution,” ISE; Industrial and Systems Engineering at 
Work 50, no. 6 (June 2018): 29, 
http://search.proquest.com/docview/2054133919/abstract/27A128515D48480DPQ/1; Lee, AI Superpowers, 
144. 


15 Byrum, “Taking Advantage of the AI Revolution,” 29. 


16 Byrum, 32. 
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and implementation has in fact already affected society during the last seventy years.17 


Furthermore, similar forecasts of displacement of labor were made as early as the 1980s 


by several scholars looking into the possibilities of AI.18 It, therefore, seems hard to say 


that the “revolution” suddenly will upset the current way of life.  


Just as most innovations plateau when they are at their most promising height, AI 


has also suffered from “AI Winters,” as several scholars point out.19 Furthermore, the 


widespread adoption of almost all inventions is reliant on customer demand and 


profitability, rather than on pure possibility and actual benefits to society.20 With the 


construction of the Concorde, for example, the engineers were looking into accessing 


supersonic speeds for commercial travel. Uniting visions and promising a revolution in 


commercial flight, the prospect of traversing the globe in mere hours led countries and 


companies to pour significant funding into the project. In the end, this turned out to be a 


non-profitable market, resulting in the abandonment of the Concord in 2003.21 At the 


moment, there is a sense of the same evolution facing AI; the mere promise of possibilities 


seems to have sparked a self-revolving revolution in AI. In fear of missing out and lagging 


behind the competition, government procurement organizations seem interested in almost 


anything labeled “AI.” 


 
17 John Haugeland, Artificial Intelligence: The Very Idea, 1st paperback ed. (Cambridge, MA: MIT 


Press, 1989), 176, https://ieeexplore-ieee-
org.libproxy.nps.edu/xpl/ebooks/bookPdfWithBanner.jsp?fileName=6302870.pdf&bkn=6276821&pdfTyp
e=chapter.  


18 Robert Trappl, ed., Impacts of Artificial Intelligence: Scientific, Technological, Military, Economic, 
Societal, Cultural, and Political, 1st ed. (New York, NY: Elsevier Science Publishers B.V., 1986), 39–42. 


19 James Hendler, “Avoiding Another AI Winter,” IEEE Intelligent Systems 23, no. 2 (March 2008): 
2, https://doi.org/10.1109/MIS.2008.20 ; Andreas Holzinger et al., “Current Advances, Trends and 
Challenges of Machine Learning and Knowledge Extraction: From Machine Learning to Explainable AI,” 
in Machine Learning and Knowledge Extraction, ed. Andreas Holzinger et al., vol. 11015 (Cham, 
Switzerland: Springer International Publishing, 2018), 2, https://doi.org/10.1007/978-3-319-99740-7_1; 
Lee, AI Superpowers, 6–8. 


20 Bhaskar Chakravorti, “The New Rules for Bringing Innovations to Market,” Harvard Business 
Review, 2004, 5. 


21 Florian Ion Tiberiu Petrescu and Relly Victoria Petrescu, The Aviation History. (Norderstedt, 
Germany: Books on Demand GmbH, 2012), 40–41, https://doi.org/10.13140/RG.2.1.1273.9285.  
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As Kai-Fu Lee, an acknowledged expert within the field of AI points out, society 


will continue to dilute the effect of inventions, which require new infrastructure, 


regulations, and norms that are time consuming and expensive to establish.22 Driverless 


cars are one current example, promising safer transportation by eliminating the human 


factor.23 As humans are reluctant to put their lives in the hands of pure automation, 


however, there is little evidence that the public would allow the total automation of all cars 


within the next few years.24  This does not mean that driverless vehicles are utopic (they 


already exist in small numbers); instead, it suggests that it takes time for humans to accept 


and get accustomed to new inventions. 


Considering the inherent inertia in society to swiftly adopt changes, militaries, as 


well as society, should therefore be cautious of products promising swift solutions for 


everything. Nevertheless, this does not mean that the advancements in AI should, or can, 


be neglected.25 Instead, a more sensible approach for assessing new capabilities in AI 


might be one that considers the inertia of adaptation to new technology produced by 


legislation, culture, and resistance to change within organizations.26 After all, AI will 


undoubtedly have some effect on both economic growth and military capabilities, as well 


as how society functions as a whole, as agreed by most scholars.  


A. AI AND THE MILITARY 


From a military perspective, the utility of AI promises not only smarter and better 


decisions at a lower cost but also new possibilities of facing the enemy at a lesser risk to 


 
22 Lee, AI Superpowers, 164. 


23 Lee, 101. 


24 Taulli, Artificial Intelligence Basics, 164–65. 


25 Byrum, “Taking Advantage of the AI Revolution,” 31. 


26 Lee, AI Superpowers, 142–142. 
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human life.27 In a society highly concerned with price and human welfare, this has sparked 


the race to be at the forefront of AI technology. This race has provided ample opportunities 


for AI researchers around the globe to present their products to the military.28 In response 


to Chinese advances in the field, the U.S. Army has commissioned several Defense 


Advanced Research Projects Agency (DARPA) projects worth billions in revenues to 


exploit the new gains AI offers in processing big data.29 The United States, supported by 


well-functioning academia, has so far maintained its advantage in the race by adopting a 


careful approach, where big companies such as Apple, Google, and Microsoft have been 


allowed to dominate the market.30 Yet, while the U.S. approach from the government has 


focused on restricting the dissemination and use of data, the Chinese method is quite the 


opposite.  


China’s miraculous advances in the field, on the other hand, have relied more on 


mass, that is to say, free enterprising, unchained competition, blatant plagiarism, and a 


continuously growing number of scientists focused on AI, all supported and subsidized by 


the government.31 This approach has allowed the Chinese government to kick-start 


development and leverage their control of information by facilitating unrestricted use of 


 
27 Elsa B. Kania, “Chinese Military Innovation in the AI Revolution,” The RUSI Journal 164, no. 5–6 


(September 19, 2019): 26–34, https://doi.org/10.1080/03071847.2019.1693803 ; Zhu Feng et al., 
“Inspiration for Battlefield Situation Cognition from AI Military Programs Launched by DARPA of USA 
and Development of AI Technology,” in Theory, Methodology, Tools and Applications for Modeling and 
Simulation of Complex Systems, ed. Lin Zhang, Xiao Song, and Yunjie Wu, vol. 644 (Singapore: Springer 
Singapore, 2016), 566–77, https://doi.org/10.1007/978-981-10-2666-9_57 ; R. Rasch, A. Kott, and K.D. 
Forbus, “Incorporating AI into Military Decision Making: An Experiment,” IEEE Intelligent Systems 18, 
no. 4 (July 2003): 18–26, https://doi.org/10.1109/MIS.2003.1217624.  


28 Edward Moore Geist, “It’s Already Too Late to Stop the AI Arms Race—We Must Manage It 
Instead,” Bulletin of the Atomic Scientists 72, no. 5 (September 2, 2016): 319, 
https://doi.org/10.1080/00963402.2016.1216672.  


29 Feng et al., “Inspiration for Battlefield Situation Cognition from AI Military Programs Launched by 
DARPA of USA and Development of AI Technology,” 567. 


30 Lee, AI Superpowers, 136. 


31 Gregory C. Allen, Understanding China’s AI Strategy: Clues to Chinese Strategic Thinking on 
Artificial Intelligence and National Security (Washington, DC: Center for New American Security, 2019), 
8–9, https://www.cnas.org/publications/reports/understanding-chinas-ai-strategy.  
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information within their own country.32 So far, this unregulated approach by the Chinese 


has proven to be an effective method, according to Lee.33 Currently, several researchers 


agree that the state-backed Chinese development process and the huge amount of 


unregulated data, allows China to compete at the same level as American academia and 


company-led research.34 


By contrast, as the Swedish Defence Research Institute (SDRA) paper by Peter 


Svenmarck et al. “Possibilities and Challenges for Artificial Intelligence in Military 


Applications,” prepared for the North Atlantic Treaty Organization (NATO), points out, 


regardless of the chosen approach, the three main challenges of transparency, security, and 


data must be considered when implementing AI into Military Activities.35 First, whether 


the product relies on Machine Learning (ML) or Deep Learning (DL), the actual algorithms 


producing the result need to be known and evaluated.36 Revealing the algorithms seldom 


lies in the interest of the seller of the product, however, since these are the actual source of 


the product, and revealing them makes the company more vulnerable to exploitation and 


loss of information.37 Furthermore, even if the algorithms are known, the need for an 


educated procurement chain arises, entailing close cooperation with academia or constant 


recruitment and education of personnel, as described by Elsa B. Kania in her article 


“Chinese Military Innovation in the AI Revolution.”38 Further, in their recent article 


published in War On The Rocks: “Can Warfighters Remain the Masters of AI?,” Harrison 


 
32 Horowitz et al., “Strategic Competition in an Era of Artificial Intelligence,” 9. 


33 Lee, AI Superpowers, 82–84. 


34 Lee, 91–92; Taulli, Artificial Intelligence Basics, 167; Horowitz et al., “Strategic Competition in an 
Era of Artificial Intelligence,” 12. 


35 Peter Svenmarck et al., “Possibilities and Challenges for Artificial Intelligence in Military 
Applications,” NATO Big Data and Artificial Intelligence for Military Decision Making, (Stockholm: 
Swedish Defence Research Agency, May 2018), 4, 
https://www.researchgate.net/publication/326774966_Possibilities_and_Challenges_for_Artificial_Intellige
nce_in_Military_Applications.  


36 Svenmarck et al., 2. 


37 Lee, AI Superpowers, 91. 


38 Kania, “Chinese Military Innovation in the AI Revolution,” 34. 
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Schramm and Jeff Kline highlight the problem of obtaining sufficiently educated personnel 


to utilize AI.39 


Second, implementing AI offers new security considerations for organizations; how 


will commercial companies guarantee a military organization that the enemy does not have 


insight into and the ability to exploit weaknesses in these developments through 


manipulation of the data or the model?40 Albeit companies and universities responsible for 


developing the algorithms might have a strong incentive for keeping them a secret, it has 


hardly prevented copying and exploitation in the past.41 There seems to be a great risk of 


buying into a system at great cost, only to have the system become a risk rather than an 


asset for the organization. Furthermore, the possible manipulation of data is a problem that 


was noted as early as 1985 by Robert Trappl in his book Impacts of Artificial Intelligence, 


and emphasized in 2018 by Daniel S. Hoadley and Nathan J. Lucas in their Congressional 


Research Service paper “Artificial Intelligence and National Security.”42 As the systems 


themselves are getting more and more complicated, the possibilities to identify and correct 


a faulty system becomes harder and harder, if not impossible in a time-sensitive situation 


such as war.43 This statement certainly applies today, as it is getting hard even for the 


designers to back-track the process within several layers of DL.44 


Lastly, the available data quantities and quality are crucial in determining what kind 


of systems to consider and to what degree it will be effective enough to motivate the 


 
39 Harrison Schramm and Jeff Kline, “Can Warfighters Remain the Masters of AI?” War on the 


Rocks, February 6, 2020, https://warontherocks.com/2020/02/can-warfighters-remain-the-masters-of-ai/.  


40 Svenmarck et al., “Possibilities and Challenges for Artificial Intelligence in Military Applications,” 
7. 


41 Lee, AI Superpowers, 91. 


42 Taulli, Artificial Intelligence Basics, 37; Daniel S. Hoadley and Nathan J. Lucas, Artificial 
Intelligence and National Security, CRS Report R45178 (Washington, DC: Congressional Research 
Service, 2018), 28–30, https://digital.library.unt.edu/ark:/67531/metadc1157028/m1/1/.  


43 Trappl, Impacts of Artificial Intelligence, 37. 


44 Hoadley and Lucas, “Artificial Intelligence and National Security,” 31. 
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investment.45 As Lee points out, an organization might not reap the anticipated benefits of 


acquiring a costly AI system if the organization lacks access to considerable amounts of 


the “right” data to analyze.46 For a relatively small community, such as SOF, this could 


cause a problem.47 Therefore, it seems wise to consider working together with other 


countries and organizations to maximize the benefits of AI systems. However, this also 


implies that interagency regulations and international law, as well as national laws, must 


be taken into consideration, furthering the need for a complete judicial analysis before 


acquiring certain systems.48 


Even though the considerations mentioned previously apply to military 


procurement of AI in general, they might provide a foundation for further development of 


a smaller set of guidelines more specifically applicable to the needs of SOF. Given that 


SOF units and the special circumstances surrounding their missions often require bespoke 


equipment, employed under special conditions, the Joint Publication 3-05 describes Special 


Operations as: 


Operations requiring unique modes of employment, tactical techniques, 
equipment and training often conducted in hostile, denied, or politically 
sensitive environments and characterized by one or more of the following: 
time sensitive, clandestine, low visibility, conducted with and/or through 
indigenous forces, requiring regional expertise, and/or a high degree of 
risk.49 


As noticed by Michael A. Pfarrer in his 2000 Naval Postgraduate School (NPS) 


master’s thesis “Optimizing Procurement of Special Operations Weapons,” the usual 


procurement process of a nation’s army, air force, or navy seldom meets the requirements 


 
45 Svenmarck et al., “Possibilities and Challenges for Artificial Intelligence in Military Applications,” 


8. 


46 Lee, AI Superpowers, 56. 


47 Elliot A. Cohen, Commandos and Politicians: Elite Military Units in Modern Democracies, 
Harvard Studies of International Affairs 40 (Cambridge, MA: Center for International Affairs at Harvard 
University, 1978), 54. 


48 Richard Kemp, Legal Aspects of Artificial Intelligence (London, UK: Kemp It Law, 2016), 1.  


49 Joint Chiefs of Staff, Special Operations, JP 3-05 (Washington, DC: Joint Chiefs of Staff, 2014), 
GL-11, http://edocs.nps.edu/2014/July/jp3_05.pdf.  
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of the SOF community.50 Therefore, it seems likely that separate factors might apply for a 


smaller organization, such as SOF, when considering implementation of AI into the 


organization.  


B. SUMMARY 


Even though AI may continue to change several aspects of society, many questions 


still need addressing before this technology turns life upside down. History provides many 


examples when innovation has altered the world, often for the better in retrospect. Not 


many innovations have revolutionized society within a few years, but rather most have led 


to incremental changes to which the world has adapted. As the world continues to change, 


it seems likely that the integration and advances in AI will continue to gradually affect the 


military as well. Nonetheless, considering humans’ reluctance to adapt to changes, SOF 


and their unique requirements might be fortuitously positioned at the tip of the spear in this 


technological race, if they can adapt a sound procurement process for the assessment and 


acquisition of AI. 


  


 
50 Michael A. Pfarrer, “Optimizing Procurement of Special Operations Weapons and Equipment” 


(master’s thesis, Monterey, CA, Naval Postgraduate School, 2000), xii, 
https://calhoun.nps.edu/bitstream/handle/10945/7758/optimizingprocur00pfar.pdf?sequence=1&isAllowed
=y.  
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III. RESEARCH APPROACH 


Aiming to produce a SOF-specific model to assist in the assessment of whether a 


particular type of AI is viable for implementation, this capstone builds on the foundational 


considerations of transparency, security, and data identified in the previously mentioned 


cooperative paper from NATO and the SDRA, “Possibilities and Challenges for Artificial 


Intelligence in Military Applications.” To develop a model, this research uses an iterative 


effort to identify SOF-specific factors through a combination of secondary sources and 


interviews. In the next section, the applicability of the chosen model in a SOF-specific 


context is explained, followed by a description of the proposed conduct and selected 


method of the research. Finally, a summary of the expected results of the study clarifies 


the aim of the chosen approach. 


A. TENTATIVE MODEL FOR CONSIDERING AI PROCUREMENT 


Representing the three areas of primary concern for military acquisition of AI 


products, the SDRA paper’s aim is to present NATO forces with guidelines for what to 


consider before investing in AI. These areas are further elaborated on in the previous 


chapter “Military and AI” and consist of: 


1. Transparency 


2. Security 


3. Data 


Since these factors are presented as essential considerations when investigating the 


potential benefits and risks of AI, they will provide the foundation for analysis in this 


capstone.51   As an integral part of a nation’s military forces, SOF often provide the testbed 


for new tactics, equipment, and rely on different procurement chains, budget, and 


operational requirements.52  Therefore, based on the assumption that SOF has specific 


 
51 Svenmarck et al., “Possibilities and Challenges for Artificial Intelligence in Military Applications,” 


1. 


52 Cohen, Commandos and Politicians: Elite Military Units in Modern Democracies, 31–32. 
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needs and structural differences from the military in general, the developed model should 


reflect these needs in other or new areas of consideration for SOF, as they relate to AI. 


Hence, the overarching question of this capstone is: What factors must the SOF community 


consider when acquiring and evaluating new AI capabilities?  


To identify these factors and determine what the SOF community can leverage in 


order to maintain the edge within AI implementation, the following questions provide the 


framework for the analysis: 


o What is currently considered to be AI? 


 As there is no consensus on what constitutes AI, does this debate 


provide opportunities, or does it only present hurdles to overcome? 


o What are the current ethical considerations regarding AI? 


 What is perceived as the most fundamental ethical problem with AI 


and does this make some areas of AI more troublesome for 


implementation? 


o What are the demands for infrastructure? 


 Do the requirements for infrastructure, maintenance, educated 


personnel, or need for data make some of the current AI inventions 


unsuitable for SOF? 


o How can AI be evaluated for effectiveness? 


 How can the actual efficacy of implementation be measured and 


what does this imply for organizations acquiring products? 


o What is the cost of implementing AI? 
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 Does the cost of certain AI-based systems prevent a smaller 


organization from acquiring equipment, regardless of perceived 


benefit? 


o How can SOF leverage its shorter procurement chains? 


 Are there any benefits to acquiring existing AI “Commercial of the 


Shelf” (COTS) products compared to bespoke military products? 


B. METHODOLOGY 


Aiming is to discover something new rather than testing an existing theory, this 


capstone utilizes a mixed-methods approach, incorporating both qualitative and 


quantitative data. Since the research to a large extent will be iterative, based on reading and 


interpreting text, a hermeneutic approach fits the study well, as explained by Sebastian K. 


Boell and Dubravka Cecez-Kecmanovic in their article “A Hermeneutic Approach for 


Conducting Literature Reviews and Literature Searches”:  


The hermeneutic route to understanding is always iterative: an 
understanding of a text (a part) draws from the reader’s preunderstanding 
of a context (a whole); and vice versa, the understanding of a context (a 
whole) develops from understanding individual texts or text equivalents 
(parts).53 


Furthermore, with the intent to explore how AI fits into the greater context of 


military applications, a holistic, qualitative approach is chosen, rather than exploring the 


individual metrics of some particular products within the AI field.54 On the other hand, as 


qualitative studies do not rely on quantifiable data, the validity of the research is often 


questioned; therefore, several sources of data are used to enhance the credibility of the 


 
53 Sebastian K. Boell and Dubravka Cecez-Kecmanovic, “A Hermeneutic Approach for Conducting 


Literature Reviews and Literature Searches,” Communications of the Association for Information Systems 
34 (2014): 263, https://doi.org/10.17705/1CAIS.03412.  


54 Barbara M. Wildemuth, Applications of Social Research Methods to Questions in Information and 
Library Science, 2nd ed. (Santa Barbara, CA: ABC-CLIO, 2017), 319. 
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study through the use of data triangulation.55 If there are existing quantitative data 


available to strengthen the findings of the research further, these are incorporated, as 


suggested by David A. Lake, in his -ism critical article: “Why “isms” Are Evil: Theory, 


Epistemology, and Academic Sects as Impediments to Understanding and Progress.”56  


C. DATA COLLECTION 


A mix of textual analysis, interviews, and survey of the current product 


developments in the field of AI is used to provide the necessary information for the 


research. Although most information can be acquired through secondary sources like 


books, the internet, and papers written on the subject, the field of AI is continually 


changing. Therefore, the information gathered through secondary sources is complemented 


by interviews conducted with persons connected to relevant AI competencies within the 


commercial sector, military, and academia. Furthermore, throughout the research, recent 


developments in AI use in the military reported through news outlets and seminars are 


incorporated to maintain relevancy. Following is a brief clarification of the sources. 


1. Secondary Sources 


Current articles, books, and theses provide the foundation for the research. Both 


AI-oriented literature and works regarding military procurement are utilized to evaluate 


and produce a working model. Sources were scrutinized for relevance, credibility, and 


potential biases. Journals used for the research consist of military publications, such as War 


on the Rocks, conference proceedings, and RAND, as well as technology-centric 


publications like MIT Technology Review and other publications on AI development. 


However, as the AI field is continually changing, there is a risk that new material emerges 


during the research, which is why it becomes imperative to repeat and update the analysis 


constantly. 


 
55 Lisa A. Guion, David C. Diehl, and Debra McDonald, “View of Triangulation: Establishing the 


Validity of Qualitative Studies,” EDIS 2011, no. 8 (August 2011): 1–2, https://doi.org/10.32473/edis-
fy394-2011.  


56 David A. Lake, “Why ‘Isms’ Are Evil: Theory, Epistemology, and Academic Sects as Impediments 
to Understanding and Progress,” International Studies Quarterly 55, no. 2 (2011): 475–76, 
http://www.jstor.org/stable/23019696.  







 


17 


2. Interviews 


Through the Naval Postgraduate School’s (NPS) collaboration with several local 


AI corporations in the San Francisco area, the authors gained access to commercial 


companies producing military applications, which allows the research to explore a non-


military perspective on military procurement. Since this capstone uses an inductive method 


and qualitative research strategy with a focused group as its design, data is gathered through 


oral interviews using a pre-approved bank of questions in compliance with the NPS Human 


Research Protection Program Office & Institutional Review Board (IRB) process.57 


Although there are disadvantages to face-to-face meetings as they are time-consuming, and 


require coding and transcription, the interviews are conducted face-to-face through media 


platforms, allowing for the assessment body language, the ability to ask to follow-up 


questions, and the reduction in delay between questions and answers.58 Furthermore, even 


though the interviews are semi-structured, meaning there is a set of questions to follow, 


this approach still allows for the interviewer and the interviewee to elaborate on answers 


and follow up on issues identified in during the interview.59 At the same time, since 


commercial companies are driven by the need for continued profit, this was considered 


when evaluating the information collected from company representatives. The interviews 


were recorded, coded, and transcribed to allow for back-tracing.  


3. Seminars and Product Fairs 


Seminars oriented towards military application can provide information outside the 


previously mentioned sources, thereby adding a new perspective based on the actual market 


available compared to the more objective views of singular enterprises. However, to 


identify a possible divide between the needs of the SOF and the regular military, the 


 
57 “Human Research Protection Program Office & Institutional Review Board (IRB),” Naval 


Postgraduate School, accessed May 4, 2021, https://nps.edu/web/research/irb-home.  


58 Raymond Opdenakker, “Advantages and Disadvantages of Four Interview Techniques in 
Qualitative Research,” Forum Qualitative Sozialforschung / Forum: Qualitative Social Research 7, no. 4 
(September 2006): 1–14, https://doi.org/10.17169/fqs-7.4.175.  


59 Neil Stephens, “Collecting Data from Elites and Ultra Elites: Telephone and Face-to-Face 
Interviews with Macroeconomists,” Qualitative Research 7, no. 2 (May 2007): 203–16, 
https://doi.org/10.1177/1468794107076020.  
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research on current capabilities offered helps identify potential areas targeted by the 


commercial sector when selling to specific customers. 


Due to the current effect of Covid-19, most seminars and product fairs were 


suspended during the information-gathering process for this capstone. Although further 


direct access, apart from the seminars and company briefs attended, would have been 


preferable; articles, product leaflets, and news outlets have supplemented as sources for 


data gathering.  


D. VALIDITY OF SOURCES 


Information tends to be subjective, whether intentionally or not. Therefore, all 


sources used in the research are scrutinized according to the following factors based on the 


Currency, Relevance, Authority, Accuracy, and Purpose (CRAAP) test criteria:60  


• Type: Relates to the actual nature of the information, such as peer-


reviewed articles, interviews, seminars, product leaflets, or product 


spokespersons. 


• Possible dependence: Does the source of information have connections or 


demands that might produce a biased result?  


• First or secondhand information: Is the source providing its unique 


knowledge, or is the information given based on previous or other 


sources? 


• Tendencies: Is the source likely to be favorable of a specific idea or 


concept? 


Keeping this simple framework in mind, while conducting the research, the authors 


could reduce the risk of promoting a single point of view. Furthermore, to mitigate the 


 
60 Dawn Emsellem Wichowski and Laura E. Kohl. “Establishing Credibility in the Information 


Jungle: Blogs, Microblogs, and the CRAAP Test.” In Online Credibility and Digital Ethos: Evaluating 
Computer-Mediated Communication, ed. Moe Folk and Shawn Apostel (Hershey, PA: IGI Global, 2013), 
231. http://doi:10.4018/978-1-4666-2663-8.ch013.  
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apparent potential for bias, several types of sources and methods of data collection 


(triangulation of information) are used.61 However, if a source provides valuable 


information but can be questioned regarding credibility or potential bias, the authors 


mention that in the text. 


E. EXPECTED RESULTS 


Since the commercial sector currently is at the forefront of development in AI, there 


is a myriad of innovations appearing on the market. The short lifespan of these inventions 


does not justify significant investment since there will soon be a new, better, faster, and 


more potent products on the market. Provided the opportunities a fast-moving field such as 


AI offers, readily available COTS products, combined with the quicker SOF procurement 


chain procurement, should present SOF with the opportunity to maintain the edge on the 


battlefield. On the other hand, since there is, and will continue to exist, a need to develop 


highly specialized systems for managing complex tasks that require large infrastructures 


for data management, maintenance, and know-how as well as special considerations 


regarding their effects on existing systems, these more demanding, bespoke systems 


present a problem for the smaller SOF communities. Yet, in recognizing the need for both 


rapid procurement and robust infrastructure, it should be possible to establish a division of 


responsibilities regarding the implementation of AI between SOF and the regular armed 


forces. Building on the traditional use of SOF as a platform for experimentation, with a 


focus on the implementation of COTS products, while the regular armed forces focus on 


the demands of more complex AI-systems, can form a division of responsibilities within 


AI-implementation capable of creating a mutually beneficial synergy between SOF and 


conventional forces. 


  


 
61 Sharan B. Merriam and Elizabeth J. Tisdell, Qualitative Research: A Guide to Design and 


Implementation (Newark, NJ: John Wiley & Sons, Incorporated, 2015), 259, 
http://ebookcentral.proquest.com/lib/ebook-nps/detail.action?docID=2089475.  
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IV. ANALYSIS 


In this chapter, the three main pillars of transparency, security, and data proposed 


for the tentative model are analyzed and their actual meaning discussed. Using both 


historical and contemporary research, this chapter scrutinizes the implications and 


possibilities of the three pillars for their relevance when answering the overarching 


research question of what SOF must consider when acquiring AI. Each pillar is first 


presented and the connection to AI established, followed by an examination. Its historical 


meaning is contrasted against contemporary research and its relevance to AI is discussed. 


Finally, a summary of the analysis presents the identified specific implications for SOF 


procurement of AI. 


A. TRANSPARENCY 


In the case of AI, transparency often refers to whether it is possible to explain, 


understand, and interpret the actions and results of the AI-model, either focusing on how 


an AI-model reaches its decision or examining the results.62  Based on the notion that AI 


will ultimately reach a point where it surpasses human understanding and develop a mind 


of its own, one prevailing argument has been that AI needs to be transparent in order to be 


trusted.63 With the apocalyptic versions of society depicted in films like James Cameron’s 


The Terminator and Stanley Kubrick’s classic 2001: A Space Odyssey where AI takes on 


a life of its own and refuses to cooperate with humans, as well as recent failures of self-


driving cars in mind, trust in AI continues to be an issue that is highly debated.64 Aiming 


to further explore the argument that transparency is necessary, the actual meaning of 


transparency and its relation to trust is explored, followed by its implications for 


 
62 Zachary C. Lipton, “In Machine Learning, the Concept of Interpretability Is Both Important and 


Slippery,” Queue 16, no. 3 (May 2018): 6, https://dl.acm.org/doi/pdf/10.1145/3236386.3241340.  


63 Andrew Burt, “The AI Transparency Paradox,” Harvard Business Review, summary. December 
2019, https://hbr.org/2019/12/the-ai-transparency-paradox.  


64 George Hurlburt, “How Much to Trust Artificial Intelligence?” IT Professional 19, no. 4 (2017): 7, 
https://doi.org/10.1109/MITP.2017.3051326.  
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transparency in AI. Finally, building on the arguments made in the subsequent discussion, 


three suggestions are proposed to enhance the effects of transparency to promote trust in 


AI.  


This analysis concludes that while transparency might be a good way to achieve 


quality assurance, institutions and organizations can only leverage transparency if they are 


capable of accurately evaluating the products. To best benefit from transparency, 


procurement of AI should rely on historically trustworthy partners and focus on increasing 


the knowledge within organizations and institutions to manage the user’s expectations on 


AI. Trust in AI, then, is more reliant on human perception, interaction, and the 


trustworthiness of the companies developing future solutions than the actual transparency 


of AI itself. 


1. Transparency and Trust 


Transparency as a term, although widely used and hard to define, is often related to 


the ability to create trust and has been frequently used in the field of economics.65 One 


example is Brad L. Rawlins’ paper from 2008 “Measuring the Relationship between 


Organizational Transparency and Employee Trust,” in which Rawlins suggests that an 


individual’s perception of an organization’s transparency is closely related to the level of 


trust.66 Rawlins adheres to Elinor Ostrom and James Walker’s definition of trust in the 


book Whom Can We Trust?, “the willingness to take some risk in relation to other 


individuals on the expectation that the others will reciprocate.”67 The idea that presenting 


vulnerability is necessary to build trust, not only correlates with transparency as a concept 


of being accountable and sharing information that is potentially harmful, but also builds on 


 
65 Stefan Larsson and Fredrik Heintz, “Transparency in Artificial Intelligence,” Internet Policy Review 


9, no. 2 (May 5, 2020): 4–5, https://doi.org/10.14763/2020.2.1469.  


66 Brad R. Rawlins, “Measuring the Relationship between Organizational Transparency and Employee 
Trust,” Public Relations Journal 2, no. 2 (2008): 15, https://prjournal.instituteforpr.org/wp-
content/uploads/Measuring-the-relationship.pdf. 


67 James Walker and Elinor Ostrom, “Trust and Reciprocity as Foundations for Cooperation,” in 
Whom Can We Trust? How Groups, Networks, and Institutions Make Trust Possible, ed. Karen S. Cook, 
Margaret Levi, and Russell Hardin (New York, NY: Russell Sage Foundation, 2009), 91. 
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Ostrom’s belief that reciprocity in order to be trusted, you need to show trust — is needed 


for trust to be beneficial. However, research more focused on the correlation between 


expectations and trust, conducted by René F. Kizilicec from Stanford University, suggests 


that although there is a correlation between transparency and trust, the perception of 


violated expectations greatly affects the benefits of transparency.68 


Trust is also a topic that has been thoroughly researched in several different areas, 


such as sociology, economy, and political science.69 With this in mind, trust is often 


explored through different types of social exchanges of goods between people. In his article 


“The Market for Lemons,” Nobel Prize winning author George Akerlof posits that there is 


a clear link between information asymmetry, uncertainty, and the level of trust in a market. 


Akerlof argues the need for institutions to control and maintain a level of certainty for a 


market to exist.70 Although these ideas do not directly assess the effects of transparency, 


the idea of limiting the information asymmetry and uncertainty for trust to exist can be 


related to the level of transparency of a product.  


Contrary to Akerlof´s belief in institutional trust, another Nobel Prize winning 


scientist, Elinor Ostrom, argues in her article “Solving the Problem of the Commons,” that 


the need for institutions is overemphasized since trust is based on reciprocity rather than 


sanctions alone.71  Ostrom’s conclusions are further supported by Karen S. Cook, Russel 


Hardin, and Margaret Levi, who conclude that “A trust relation emerges out of mutual 


interdependence and the knowledge developed over time of reciprocal trustworthiness.”72 


 
68 René F. Kizilcec, “How Much Information?: Effects of Transparency on Trust in an Algorithmic 


Interface,” in Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San 
Jose, CA: ACM, 2016), 2393, https://doi.org/10.1145/2858036.2858402.  


69 Russell Hardin, Trust and Trustworthiness, 4th ed. (New York, NY: Russell Sage Foundation, 
2002), xviii. 


70 George A. Akerlof, “The Market for ‘Lemons’: Quality Uncertainty and the Market Mechanism,” 
The Quarterly Journal of Economics 84, no. 3 (August 1970): 488, https://doi.org/10.2307/1879431.  


71 Elinor Ostrom, “Coping with Tragedies of The Commons,” Annual Review of Political Science 2, 
no. 1 (June 1999): 507–8, https://doi.org/10.1146/annurev.polisci.2.1.493.  


72 Karen S. Cook, Russell Hardin, and Margaret Levi, Cooperation Without Trust, vol. IX (New York, 
NY: Russell Sage Foundation, 2005), 2. 
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Furthermore, Cook, Hardin, and Levi dismiss the notion that trust is provided by 


regulations and institutions. Instead, they argue that institutions and regulations are 


necessary when trust does not exist, since trust is an encapsulated interest —our expectancy 


that our interest and the other party’s interest coincide to be mutually beneficial— where 


the incentive of being trustworthy is incumbent upon the parties.73  


In terms of trust in AI, one question is whether trust should be directed at the actual 


AI model or how the model is perceived by its users.74 Marco Ribeiro, Sameer Singh, and 


Carlos Guestrin propose that for humans to trust AI, interpretability and explainability is 


crucial.75 Based on their argument that “if the users do not trust a model or a prediction, 


they will not use it,” they conclude that individuals need a level of transparency to trust 


AI.76 On the other hand, Andrea Ferrario, Michele Loi,  and Eleonora Viganò of the 


Mobiliar Lab for Analytics in Zürich contest this idea and argue that trustworthiness rather 


relies on the perception and education of the user rather than the actual AI model itself.77 


Furthermore, they refute the idea that lack of trust will prohibit the use of AI; instead, they 


relate the trust in AI to necessity. The AI model will be considered relatively trustworthy 


if the user is limited in options, but an AI is absolutely trustworthy if it is the best option 


available.78  


2. Transparency in AI 


Transparency in AI can simply be explained as “for a model to be fully understood, 


a human should be able to take the input data together with the parameters of the model 


 
73 Cook, Hardin, and Levi, Cooperation Without Trust, 5. 


74 Larsson and Heintz, “Transparency in Artificial Intelligence,” 7. 


75 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, “‘Why Should I Trust You?’: Explaining 
the Predictions of Any Classifier,” ArXiv:1602.04938 (San Jose, CA: Association for Computational 
Linguistics August 9, 2016): 10, http://arxiv.org/abs/1602.04938.  


76 Ribeiro, Singh, and Guestrin, 1. 


77 Andrea Ferrario, Michele Loi, and Eleonora Viganò, “In AI We Trust Incrementally: A Multi-Layer 
Model of Trust to Analyze Human-Artificial Intelligence Interactions,” Philosophy & Technology 33 
(October 2019): 537, https://doi.org/10.1007/s13347-019-00378-3.  


78 Ferrario, Loi, and Viganò, 536. 
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and in reasonable time step through every calculation required to produce a prediction.”79 


Simply put, a human has to be able to understand how and why an AI system has reached 


its conclusion in order to be able to trust the outcome.80 Transparency, then, allows buyers 


to trust sellers and their product by evaluating the quality, as argued by Akerlof in “The 


Market for Lemons.”81 Following Akerlof’s argument, institutions and other mechanisms 


can therefore be used to ensure the quality and limit the asymmetry of information in the 


market, making buyers trust the sellers.82 Nonetheless, as research has shown quality 


assurance and product transparency can affect trade in the opposite way, making looser 


bonds between buyers possible as the risk of investment goes down.83 This, then, would 


indicate that if transparency equates to quality assurance, it might also negate the need for 


trust under certain circumstances.  


Similar to the arguments just described, Akerlof posits that uncertainty, and the 


information asymmetry, must be reduced between the buyer and seller of goods to create a 


functioning market. Therefore, if there is a way for institutions to certify the quality of a 


product, there will be a reason for the buyer to trust the seller, preventing the market from 


being filled with ‘lemons.’84 In this aspect, the need for transparency seems to hold true: 


If the asymmetry in information between the seller and buyer is minimized through the 


interpretability and explainability of the product, this should provide the basis for building 


trust.85 Furthermore, in providing insight into the workings of the products, a manufacturer 


fulfills the parameter of exposing vulnerability, which aligns with Ostrom and Walker’s 


 
79 Lipton, “In Machine Learning, the Concept of Interpretability Is Both Important and Slippery,” 13. 


80 Keng Siau and Weiyu Wang, “Building Trust in Artificial Intelligence, Machine Learning, and 
Robotics,” Cutter Business Technology Journal 31, no. 2 (2018): 53, 
https://www.cutter.com/sites/default/files/itjournal/2018/cbtj1802.pdf.  


81 Akerlof, “The Market for ‘Lemons’,” 490. 


82 Akerlof, 499–500. 


83 Peter Kollock, “The Emergence of Exchange Structures: An Experimental Study of Uncertainty, 
Commitment, and Trust,” American Journal of Sociology 100, no. 2 (September 1994): 316, 318, 342, 
https://doi.org/10.1086/230539.  


84 Akerlof, “The Market for ‘Lemons.’” 


85 Akerlof, 500. 
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concept of trust.86 There are some indications, however, that transparency might be 


counterproductive to trust as well.  


First, Brad Rawlings’ somewhat brash definition of transparency put forward in his 


paper “Measuring the Relationship between Organizational Transparency and Employee 


Trust,” where he states that “Simply put, transparency is the opposite of secrecy,” raises 


questions about transparency’s applicability in the realm of AI.87 As several studies point 


out, attacks against AI can be significantly more effective if information about the target is 


known.88 Therefore, it seems that although transparency can act as a factor in building 


trust, the gains of transparency must be weighed against the security implications for AI.89 


Hence, the vulnerability aspect seems to limit the utility of transparency under certain 


conditions. 


Secondly, as René F. Kizilcec’s paper “Much Information? Effects of Transparency 


on Trust in an Algorithmic Interface” suggests: “Transparency may promote or erode 


users’ trust in a system by changing beliefs about its trustworthiness.”90  Kizilcec’s study 


suggests that only when the expectations of the user have not been violated can increased 


transparency also affect trust positively. Conversely, too much information seemed to 


negate the positive effect when expectations were violated.91 This would imply that in an 
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AI context, transparency to a certain degree can maintain trust, but ultimately, trust is based 


on products meeting expectations.  


3. Trust in AI 


Trust and trustworthiness are complex issues that are hard to define. However, 


consistent with both Elinor Ostrom’s argument about the need for communication and 


repeated interactions, as well as Akerlof’s point about the need for quality assurance, 


Russel Hardin sums it up pretty well in his book Trust and Trustworthiness:  


If we consider all the trust relations we experience, we find that a large 
fraction of them fall into three categories: relationships or interactions that 
are iterated, those that are backed up by institutions, and those that are 
mediated by other (noninstitutional) third parties.92 


In terms of AI, trust seems to fall into these three categories: people have re-


occurring interactions with AI, they trust institutions and certain brands to validate the 


performance of AI being sold in the market, and they expect academics and inventors to 


strive for the greater good of the public. Furthermore, in order to clarify the relationship 


between trust and public relations, in their 1999 paper “Guidelines for Measuring 


Relationships in Public Relations,” Linda Childers Hon and James Grunig point out that 


perceived integrity, dependability, and competence make up the three factors of trust in a 


relationship.93 With this in mind, trust is the expectation for another party to consistently 


fulfill expectations based on perceived capabilities.94 Transferred to AI, this would imply 


that it is our knowledge and expectations on the performance of AI models, based on the 


manufacturer’s promise, that makes up the foundation for our trust. 


In their article “In AI We Trust Incrementally: A Multi-layer Model of Trust to 


Analyze Human-Artificial Intelligence Interactions” Andrea Ferrario, Michele Loi, and 


Eleonora Viganò provide support for the previous argument. First, they posit that “In AI, 
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the strength of evidence of trustworthiness regarding properties of AI systems decreases 


with the decreasing expertise of the agent interacting with the systems.”95 This implies that 


the level of education of the operator is relevant for the perceived trust in a certain system 


or model. This correlates with the argument previously mentioned by Kizilcec where 


information is only necessary to a certain point. Second, Ferrario et al. suggest that the 


trustworthiness of AI is directly related to the options available as an alternative solution.96 


In short, if there are no other solutions available, then users tend to subjectively trust the 


chosen solution. As previously mentioned, since AI has already proliferated in society, and 


lacking alternative solutions, we already subjectively trust AI.  


4. Implications of Transparency for Trust in AI 


Considering the arguments made previously, transparency seems to be a double-


edged sword. On the one hand, transparency can promote trust by removing uncertainty 


and information asymmetry. On the other hand, there also seems to be a limit to how much 


transparency is beneficial for trust, and instead decreases trust by threatening to make the 


systems vulnerable. Crucial for transparency, then, is to acknowledge that trust in AI seems 


to depend at least as much on the user’s perception of the product as the product itself. 


Considering that the effect of transparency is closely related to the education level of the 


personnel responsible for utilizing the AI, as both Kizilcec’s and the Ferrario, Loi, and 


Viganò’s papers argue, their logic seems reasonable: Building trust in AI is more about 


expectation management than the actual transparency or results of the products 


themselves.97  Yet, given the proper education of personnel evaluating the AI product, 


transparency can both increase trust and serve as a quality assurance.  


In order to clarify the argument just presented, a car might provide a good analogy. 


We trust our car to work, and when it does not, we usually hand it over to a mechanic for 


repairs. Even though all information about the inner workings of a car might be readily 
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available, few can say that they know everything about how their vehicle works. If 


problems keep occurring, the dependability of the car is in question, and we tend to lose 


trust in our car. While the mechanic can perceive the problems as minor, this does not 


mitigate the fact that we cannot use the car during the time it takes to repair it. 


Consequently, if we have similar experiences with several cars from the same 


manufacturer, the chances are that next time, we will choose a different brand. That said, 


we rarely lose trust in all vehicles and resort to walking, especially if there are no viable 


alternatives available.98 Instead, we might end up with a new car, which we trust, until it 


too starts to break down. 


In the context of AI, trust does not seem to be all that different. Although some 


argue that full transparency is required and persons operating AI systems should be experts, 


this hardly seems like a realistic solution. Instead, we should be practical and focus on 


maintaining and increasing the existing trust by providing a foundation where we can 


benefit from transparency. Following are three suggestions on how transparency can 


increase trust in AI: 


a. Trustworthy Partners 


In the field of AI, there are certain companies that invoke more trust than others, 


such as Google, Microsoft, or Apple.99 As these companies stake their reputation on their 


products, they also make themselves vulnerable, providing a foundation for trust and a 


guarantee for quality.100 Although the existing trust might not lie in specific AI models, 


their liability remains the same. The ability to build on this existing trust (brand naming) 


and providing sufficient transparency for the products to be evaluated by qualified 


personnel (institutions) should increase public trust in products along with the need for 


quality assurance, as argued by Akerlof.101 Hence, in this case, transparency also relates 
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to the reciprocal part of trust, where companies are willing to provide transparency into 


their corporations to remain trusted by the users. 


b. Education 


As highlighted in the 2020 Cyberspace Solarium Commission (CSC) report “A 


Warning from Tomorrow,” there is a deficit in the number of skilled personnel to operate 


and evaluate the systems, even in an AI superpower such as the United States.102 With this 


shortcoming in mind, organizations and institutions should prioritize the education of a 


workforce responsible for the evaluation of AI. As argued by Ferrario, Loi, and Viganò, to 


best benefit from transparency, manufacturers need an educated counterpart to be able to 


evaluate their product. However, building on the example of trust in cars, perhaps we 


should not aim for a nation of mechanics, but rather a workforce of informed users with AI 


driver’s licenses, backed up by mechanics. 


c. Expectation Management 


Although transparency might give an insight into the expected functionality of a 


new product, it will not be able to create trust if the product is perceived as insecure, 


undependable, or unable to produce the expected results. Therefore, Kizilcec’s argument 


about expectation management seems crucial. However, since proper evaluation of 


products is necessary to produce reasonable expectations, Akerlof ‘s argument regarding 


the need for quality assurance and institutions also holds true. Hence, a certain level of 


transparency is necessary to allow institutions and organizations to evaluate products in 


order to produce reasonable expectations in users. Through providing sufficient 


transparency, producers can help manage the expectations of users to maintain and increase 


trust, as argued by Kizilcec.  
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5. Conclusion Analysis of Transparency 


AI is, and will continue to be, an issue of debate for the foreseeable future. Merely 


the fact that there is no clear definition of what actually constitutes AI is enough for several 


books to be written. However, in the debate about the need for transparency as a foundation 


for trust, three points can be made: First, although transparency is an essential part of 


quality assurance and allows for trust to be maintained, human perception and historical 


interaction seem to play a more important part in trusting AI. Furthermore, considering the 


security implications related to transparency in AI, maintaining trustworthy partners 


remains crucial. Second, the effect of transparency in building trust is closely related to the 


potential user’s level of understanding and ability to evaluate the products. To benefit fully 


from transparency, organizations must focus efforts on educating operators supported by a 


core of highly skilled personnel, who are able to evaluate the potential benefits of 


incorporation of AI. Third, transparency can provide the foundation for organizations and 


institutions to manage the expectations for AI. Allowing for products to be scrutinized can 


help organizations align expectations with actual results delivered, thereby increasing and 


maintaining trust in AI when the products are consistently reliable and dependable at 


performing a given task. 


Transparency, then, does not automatically equate to increased trust in AI. 


Transparency relies on the institutions, organizations, and the user’s ability to evaluate the 


products and correctly assess the benefits and expected results of the products. In a world 


where AI is already incorporated throughout society, people have already begun to trust AI 


by proxy. Given this reality, transparency should be recognized as the means to enhance 


the already existing trust, instead of a requirement to build trust. 


B. SECURITY 


As most nations have already implemented different applications using AI within 


their societies, military establishments around the world find themselves faced with the 


fact that AI solutions are a part of both the offensive and defensive cyber capabilities.103 


 
103 Geist, “It’s Already Too Late to Stop the AI Arms Race—We Must Manage It Instead,” 318. 







 


32 


While the United States has adopted a gradual and restrictive approach, China opts for an 


unrestricted implementation, possibly outpacing the rest of the world in the near future.104 


In times of crisis, such as the Covid-19 outbreak, however, even the Western world has 


acknowledged that the benefits of speeding up the use of AI sometimes outweighs the 


risks.105 At first glance, the gains of unrestricted and quick implementation of AI can seem 


beneficial for the military. Still, since AI and the sub-field of ML to a high degree depend 


on learning based on large quantities of data, this creates novel weaknesses in a nation’s 


cyber defense.106 Even though most states have cyber strategies in place, these seldom 


address the specific threats related to AI. Therefore, the risks associated with learning from 


data provides the foundation for the following AI specific security assessment.  


Focusing on the potential dangers of implementing AI into existing structures, this 


analysis suggests that secrecy through regulations and quality assurance through 


institutions can add a much-needed layer of protection. To achieve this, the military needs 


to collaborate with trusted partners in the civilian sector, implement institutions for quality 


assurance, and set realistic goals. 


1. Risks Related to ML 


The use of AI-augmented hacking and counter-hacking has been going on for some 


time.107 As the use of ML-based systems increases in this domain, the need for subsequent 


ML implementations to counter these incursions increases. In the foreseeable future, any 


system not implementing some sort of ML-driven defense will inevitably succumb to 
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attacks.108 Nevertheless, as ML is incorporated into the defense of important 


infrastructure, it also allows for attacks directed at the heart of ML. Here, two main efforts 


of attack stand out and are explored further: Poisoning attacks and evasion attacks.109 


Poisoning attacks target the ML algorithms and learning data (the ML model) by 


introducing new associations into the model to corrupt the model.110 Considering the 


“Black box” dilemma caused by the use of deep neural networks (DNN) in some parts of 


ML, where humans have a hard time analyzing how the system has arrived at a certain 


conclusion, the risk of having faulty models operating undetected increases.111 Evasion 


attacks are instead aimed at misguiding an otherwise working model into faulty 


classification by presenting an adversarial example.112 In the following paragraphs, 


poisoning, evasion attacks, and common ways to defend against these attacks are presented. 


a. Poisoning Attacks 


In order to train a machine, a data set is determined by the model’s intended aim, 


be it analysis of pictures of objects for classification, data streams to determine flows in a 


network, or words for a linguistic model, and used for initial learning.113 As further 


training of the model is needed, this will occur either through the relearning of specific data 


sets or directly during the use of the model. Regardless of the method, it is the data used 
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for learning that provides a foundation for the model to execute its given task.114 Poisoning 


works by manipulating the data set used for learning or even by changing the algorithm 


itself to create “back doors” into a seemingly functioning system.115 If the algorithm can 


be augmented through introducing changes in a neural network, these will merge, 


essentially becoming a part of the model. As the learning process depends on the integrity 


of the algorithm, any alterations can render the model practically useless.116 If undetected, 


these attacks can be used to deceive the opponent, trigger responses, or degrade trust in a 


system. 


Manipulating the initial data training set or the algorithm in production is obviously 


the most effective way, since the adversary can more or less input any number of backdoors 


or totally alter the behavior of the model.117 Unfortunately, direct access to the initial 


learning data is not always required, since some types of ML also “learn on the job.” The 


reoccurring training of models offers possibilities for attack through novel methods by 


introducing data sets aimed at dislocating the model’s boundaries in the ongoing learning 


process. If the network from which the model learns is known and data can be infused into 


the stored data sets used for relearning, then the boundaries of the model can be skewed to 


misinterpret information, or even allow for a back door.118 For instance, if a system learns 


to always classify a certain string of data as benign, this string can then be attached to any 


malicious hardware in the future to hamper the effectiveness of the system further. 


Although not as effective a method as directly controlling the algorithm or data, it offers 
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an adversary a more obtainable option to interfere with a potential target’s decision 


chains.119  


Defense against poisoning has proven hard, but the most common way is through 


outlier identification, or adversarial-noise resilient regression.120 The basic idea of this 


method is that the adversarial training example can be classified as an outlier, and therefore 


be disregarded in the training process.121 Another approach that shows signs of efficiency 


is the use of micro-models, where small sets of the larger training data are used to trains 


several models, which then assess the large data together, basically sanitizing the large data 


set from anomalies.122 


b. Evasion Attacks 


Even though the learning data and the algorithm might be intact, and the system 


conducts the assigned duties flawlessly, the possibility to exploit flaws in the algorithms to 


evade accurate categorization exists. Through minor alterations in the input data, a model 


can be tricked into misclassifying data. Known as evasion attacks or adversarial examples, 


these can produce spectacular results.123 One famous example of this is when an AI system 


was tricked into categorizing a STOP sign as a 45-miles per hour sign through the simple 


method of applying some tape to the road sign.124 More typical use, though, is the inclusion 
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of certain pictures, phrases, or words in an email to trick spam filters into classifying the 


mail as safe.125  


There are several categories of evasion attacks, relying on different methods: 


Gradient attacks leverage the knowledge of the algorithm and score based attacks utilize 


the predicted scores of a model, while transfer based attacks require knowledge of the 


learning data sets.126 Although most of these attacks require some knowledge of the model 


attacked, recent studies suggest that systems can be attacked with limited or no knowledge 


of the model.127 Furthermore, one of the difficulties related to defending against these 


attacks is that it is not totally clear why these attacks work.128  


Although there are many existing methods to increase resistance against evasion 


attacks—such as regulating the effect an input has on the gradient of the model, or a multi-


model defense where the model is supported by several models of the same family to 


increase success—the most common is through different methods of adversary training.129 


This method is based on presenting adversarial examples in a controlled way to teach the 


model to avoid misclassifications. Although the method can make the models more robust, 


it has also proven to make models less reliable.130 As more effort is put into the research 


of defense against these attacks, they will surely evolve; however, so will the attacks. 
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c. Summary of Risks Related to ML 


With the possibilities offered through poisoning and input attacks of tricking ML 


models into missing or failing to detect threats, the consequences can be catastrophic, 


especially in a military context. As several experiments have proven, even minute changes 


in the data used to train machines can render models totally unreliable.131 The need to 


ensure the integrity of algorithms and training data becomes clear; if there are any faults in 


the training data set, the interpretation of incoming data by the machine will be affected.132 


2. Ensuring Secure Military ML 


Since producing novel results unobtainable through human brain power is one of 


the obvious strengths of ML, paradoxically, this also seems to be one of the major 


weaknesses of ML. Even though there has been much development in the field of 


understanding how deep learning really works, there is still much left to understand, 


making attacks to the systems harder to re-trace and detect the point of failure.133 


Nevertheless, as most of the attacks just mentioned rely on knowledge of either the data 


sets or the algorithm used in the model, and even though “black-box” attacks are becoming 


more practical and frequent, limiting access to and information about the model used, 


seems crucial to ensure the integrity of the model. Furthermore, the need for quality 


assurance of both the algorithms and the training data is apparent.   


a. Secrecy 


With both poisoning and evasion attacks, the effect and possibilities to attack are 


closely related to the knowledge of the models. Even though direct access to or knowledge 


of a model is not required for all types of attacks, knowledge facilitates tailoring the attacks 
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and opens the way for more direct invasions into the integrity of the models employed.134 


Therefore, following the logic of security from obscurity, maintaining strict secrecy 


regarding the existence and features of the model’s algorithms and the data used for 


training should prevent some of the attacks.135 One example of this could be the use of 


secure enclaves to ensure data confidentiality, where the data can be monitored and only 


accessed by authorized personnel, as proposed in Stoica et al.’s paper “A Berkley View of 


Systems Challenges for AI” from 2017.136 On the other hand, since security through 


obscurity is highly contested as a method, security should not solely rely on obscurity but 


work as an extra layer in conjunction with other security measures.137 Therefore, given the 


military’s ability to classify sensitive information, and the array of possible attacks faced, 


limiting an adversary’s knowledge of models and data used seems to be a possible method 


to enhance security when paired with regular cybersecurity.  


b. Quality Assurance 


Traditionally, the data required for the initial learning has been provided by the 


organization producing the product, thereby ensuring the quality of the data used to train 


the model. However, increased demand for big data sets has led to cloud learning and data 


sharing becoming more common.138 Even though, as a thumb rule, a larger data set 


produces a more accurate model, this also increases the risk for manipulation.139 


Therefore, since poisoning and input attacks can occur during the later stages of learning 
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as well, the need to monitor and evaluate the data used for teaching the ML-models exists 


over time.140 


As the military increases its use of data in operations, it will face a greater need for 


quality assurance, thus increasing the need for qualified personnel.141 Even though there 


are a number of private companies engaged in quality assurance, due to the nature of 


military use of ML in warfare, this will require a military-specific perspective to allow for 


accountability and ethical use.142 Therefore, while many of these tasks can be performed 


by civilian contractors, there is a need to allow for adequate resources to be allocated to 


this perform task within the military organizations themselves. 


3. Best Practices 


As noted in the previous section, ML requires the need for assurance and trust in 


the supply chain, as well as an ability to certify and scrutinize the integrity of the products. 


The following paragraphs explore the ways and means to achieve the desired goals of 


developing and implementing robust systems, capable of adhering to the confidentiality, 


integrity, and accessibility demands of the military related to the posed threats. 


a. Ways 


Apart from the standard cyber protection put in place by nations around the world 


to keep the models and data used secure, secrecy seems to be the best way to further 


strengthen the security of military ML applications. As the Russian hack of the Ukraine 


Artillery application reported in 2016 blatantly showed, rushing unsecure products into use 
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might cause organizations considerable harm.143 Recognizing that cooperation with the 


commercial sector is required, however, three ways are suggested for maintaining secrecy. 


Own production: This is decidedly the best option, as control of the product is 


maintained from the idea stage, all the way to actual implementation. China has already 


started an ambitious program to heighten the expertise within its military, aiming to leave 


the rest of the world in its wake.144 Even though America is competitive now, China’s 


ability to leverage its state control of the commercial sector and academia might see 


America falling behind in the future.145 


While “in house” production might be the best way from a security standpoint, due 


to the inherent financial demands and know-how needed for this option, it seems unlikely 


that this approach is appropriate for other than the most affluent nations. In truth, even an 


AI superpower like the United States has problems to fill the knowledge gap within the 


military, as pointed out by the 2020 Solarium Commission report.146 


Close supervised cooperation with the commercial sector: Since most nations have 


special rules for government and military contracts, these contracts can enforce strict 


regulations on companies regarding the release of information. This practice is 


commonplace today and will probably be the standard procedure for ML products used by 


the military as well.147 Nonetheless, even if the companies provide the essential 


information for the ML algorithms and security for the data sets used in training, the need 
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for scrutiny of the effectiveness of the product still resides with the military, requiring 


educated personnel.148  


An example of this solution is the U.S. effort to incorporate AI full-motion video 


into drones, project MAVEN.149 Apart from the security aspects, where the military can 


have full control over the software, hardware, and training data, this approach also allows 


the military personnel involved to gain insights into and understanding of the product being 


produced.150 Working in close connection with trusted companies bound by secrecy 


agreements ensures product quality as well as limits knowledge of the products being 


developed. Even if there are a few projects implementing this approach, however, these 


tend to be both knowledge-intensive and costly.151 Furthermore, as it turned out in the case 


of project MAVEN, partnering with the military can raise ethical issues within the civilian 


sector that might impact the security of the project.152 


Commercial of the Shelf (COTS): Accepting that the commercial sector is at the 


forefront of development, one possibility for the military is to acquire already developed 


products from the commercial sector. Since a product has already been implemented in the 


civilian market, this can serve as a quality assurance factor, allowing the military to buy a 


mature and tested product. The benefits of buying an existing product are not only 


financial; it also reduces the need to incorporate an ample research and development 
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organization specifically aimed at ML.153 On the other hand, the organization’s insight 


into the model purchased and control of information might not be the same as if developed 


in close supervised cooperation with the company.154   


Even though several firms are making their products available for sale to the 


military, the potential risks of security breaches are evident. Merely the fact that the product 


is available on the market implies that all potential buyers will be able to acquire some 


insight into the product.155 To adopt this approach, the military must consider only 


trustworthy and well-documented companies. Furthermore, when employing a COTS 


product in a sensitive fashion, such as intelligence gathering, the military should also 


consider the risk of production breaches in security.156 Although a viable option, COTS 


products might be best implemented in less sensitive and demanding areas, where breaches 


in security might have lesser consequences.  


b. Means 


In order to achieve robust and resilient enough structures capable of ensuring the 


CIA triad, there is a need to create an organization capable of continuously evaluating data 


and algorithms. Two ways of strengthening the military’s position in ML are by creating 


institutions capable of conducting quality assurance and increasing the knowledge within 


the organization. 


Regulatory institutions: As previously stated by Akerlof, one way to limit the 


uncertainties in products is to create institutions.157 Considering the consequences of 
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buying an ML “lemon,” there is a vital need for regulation and scrutiny of ML models prior 


to the implementation into military applications. Since most countries already have 


organizations and regulations for cyber security, these organizations should also include 


branches dedicated to developing both national and international AI standards and ethical 


norms for the military to adhere to.158 


Furthermore, institutions charged with scrutinizing and regulating ML must have 


the proper knowledge to be able to make informed decisions.159 Therefore, it is not only 


imperative that the military are a part of these institutions and can offer their perspective, 


but also focus efforts on building their own institutions in order to provide proper guidance 


and expertise. 


Cooperative institutions: As previously mentioned, institutions able to draw 


expertise from both the military and civilian sector are much needed. In the United States, 


the construction of the Joint Artificial Intelligence Center (JAIC) is a good example of 


institutionalizing collaboration between the military and the civilian sector.160 By not 


leveraging the knowledge of ML in the civilian sector and academia in a proper way, 


military organizations and schools utilizing and teaching AI run the risk of becoming 


obsolete and incapable of monitoring such systems. 


Creating institutions where the military and commercial sector interact not only 


leverages the knowledge base in a financially responsible way but also allows for the 


development of trust.161 Building on these foundations, perhaps the military can gradually 
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mitigate problems such as Google’s refusal to cooperate with the Department of Defense 


(DOD) in project MAVEN.162   


c. Goals 


Faced with the threats posed by AI-augmented attacks, the military needs to 


implement AI within defense. Paraphrasing John Arquilla’s statement: “It takes networks 


to fight networks,” the same seems to hold true for AI as well.163 Even though Symantec’s 


review of defense against cyber-attacks presents that a 100% success rate in the defense 


against ransomware attacks could be achieved when using a cloud-based ML platform, 


setting goals where all attacks can be averted could seem unrealistic.164 As new forms of 


defense are invented, inevitably, so are new methods of attack. It is more likely that 


organizations will have to focus on creating robust and resilient structures, based on a 


layered defense as described in the CSC report.165 In conjunction with a more layered 


defense strategy, militaries should also focus on setting achievable goals, in order to 


increase productivity and manage expectations. 


Although research has proven the benefits in effectiveness of setting both short- 


and long-term goals, policy and guidelines for AI are often too ambitious.166 As the RAND 


article “Pentagon’s Ambitious Vision and Strategy for AI Not Yet Backed by Sufficient 


Visibility or Resources” points out, the JAIC would be better off focusing on building a 


structure able to cope with contemporary problems rather than overshooting its 
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capacity.167 By setting achievable goals, not only can effectiveness in organizations be 


improved but expectation management can also be achieved.168  Therefore, in order to 


avoid dissonance, the available ways and means must correlate with the goals. Instead of 


striving for far-reaching goals, military institutions should focus on expectation 


management, providing the foundation for facilitating the implementation of AI. In a 


business where a mistake easily translates into loss of life, there is little room for wishful 


thinking or worrying about the consequence’s later type of mindset. 


4. Conclusion Analysis of Security 


Given the threats posed by poisoning and evasion attacks to AI, and ML-models in 


particular, the need for controlled implementation of ML into the military becomes 


apparent. Of course, the problems do not cease to exist once implemented but require 


competent supervision throughout its useful lifespan. By investing in institutions capable 


of evaluating and monitoring AI and leveraging existing protocols when working with the 


commercial sector, the military can achieve several benefits. First, an increased 


collaboration with academia and the private sector allows for trustworthy partners to be 


identified and a mutual understanding regarding the needs for security to develop. 


Regardless of the procurement method chosen, to highlight the need for secrecy when 


necessary, another layer of security can be added to ensure the integrity of sensitive data 


and algorithms used. Second, institutions do not only provide quality assurance but also 


the necessary platforms to deepen and develop knowledge sharing between different 


agencies and organizations. Thus, institutions and cooperative institutions, such as the 


JAIC and the CSC, improve the military’s ability to make informed decisions and decide 


on regulations. Lastly, by setting short term and achievable goals, it is possible to manage 


expectations effectively, and provide a foundation for acceptance of new technology into 


the military.  
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Although AI promises changes to society as a whole, it also promises to introduce 


challenges. Although many institutions and regulations do already exist within the 


overarching cybersecurity construct, there is a need to focus on the present problems, rather 


than assume that AI will change the world by itself. Given the potential impact of poisoning 


and evasion on ML-models working relatively autonomously in life-or-death situations, 


building trust in the public eye becomes imperative for a nation’s military. Lack of 


institutions assuring proper use and functionality of military AI, along with poor 


cooperation with the private sector and academia, might very well push a nation’s military 


to the sidelines in the AI-arms race. 


C. DATA  


According to Joint Intelligence Publication 2–0, “raw data by itself has relatively 


limited utility. However, when data is collected from a sensor and processed into an 


intelligible form, it becomes information and gains greater utility.”169 From an intelligence 


point of view, we can tell the data itself has limited value. It needs, therefore, examination 


within a broader scope and in conjunction with the information. Arguably, data has 


essential value within the context of AI since it is the initiator for the result. The 


Organization for Economic Cooperation and Development (OECD) Glossary of Terms 


provides several academic definitions of data. Still, the generalized definition is “data – 


characteristics of information, usually numerical, collected through observation.”170 It 


loops back to our earlier statement that data is a polymorphic problem. Whether or not the 


data collection is accomplished via observation, it is highly dependent on the system that 


is collecting it. 


The definition emphasizes both collection and numerical value. The latter becomes 


particularly relevant in AI if we examine the data from a computational core function, the 


binary code. Data is not a simple, standalone entity; it is a syntax of several complex or 


non-complex parts. Thus, a syntax explanation describes the function better than a semantic 
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definition. When the researchers Agnar Aamodt and Mads Nygård refer to data and its 


syntax, they explain the following: “data are syntactic entities. Data are patterns with no 


meaning; they are input to an interpretation process, i.e., to the initial step of decision 


making.”171 They simplify the model by explaining an input [environment] – decision step 


– output [environment] model. Their foundation for this model is the use of data in a 


decision-making process. By explaining data from a syntactic perspective rather than a 


semantic view, we generate an understanding of data’s place in AI. The decision step 


within the model can be replaced with a black box, or a CPU processor, or an AI function. 


Whatever the preferred option, there is still an input of data and an output of something.  


Aamodt and Nygård leave one more challenge for us to explain—the environment. 


If one derives data from the environment, how can we explain that? The setting is all the 


things or possible things in one’s surroundings that could produce data inputs. Thus, it is 


probably more valid to discuss what types of collectors of data there are, rather than explain 


all the things surrounding us. Data inputs can be collected from the environment by 


different sources, such as observations, surveys, interviews, polls, reports, optical means, 


and other data sources. Almost everything one can observe, hear, smell, or feel can with 


different methods translate into data. 


Rama Vedashree, the CEO of the Data Security Council of India, explains the 


importance of data in the article “How Data Grids Will Power the Economy and Influence 


Our Future.” According to Vedashree, “data is more than seemingly random collections of 


ones and zeros. It is information, currency, social fabric, safety, knowledge, confidence, 


and innovation.”172 In light of the broad explanation of data given by Rama Vedashree, 


the syntax of how it all connects in the digital world becomes more apparent. That also 


implies the necessity of categorizing data to meet its different demands better. On the other 


hand, it is not necessary or sufficient to divide data for AI into primary and secondary 
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data.173 Data is also, arguably by many, becoming a strategic resource or value. Arquilla 


and Ronfeldt expand on the subject by stating, “information is becoming a strategic 


resource that may prove as valuable and influential in the post-industrial era as capital and 


labor have been in the industrial age.”174 Once again, we note the importance of both 


monetary value and computing value for decision making that data and information bring. 


1. Types of Data 


Tom Taulli expands on the subject and clarifies where data emerges and what types 


of data there are, concluding that data can come from various sources such as the web/ 


social media, biometric data, point of sale systems, the internet of things, cloud systems, 


and corporate databases.175 And, because different types of data demand different kinds 


of structures, Taulli suggests four ways to organize data: structured data, unstructured data, 


semi-structured data, and time-series data.176  


a. Structured Data 


Structured data, often formatted in Excel files and Structured Query Language 


(SQL) databases, includes lists of phone numbers, social security numbers, and other 


financial information.177 Relational databases or spreadsheets are some further examples 


of structured data formats.178 Due to its structured and organized nature, Daniel Nelson 


argues that structured data lends itself to training AI, referred to as supervised learning.179  
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b. Unstructured Data 


Unstructured data represents about 80% of all the data on the internet, making it a 


source for feeding an AI system. There is no defined relationship between the data points, 


and they reside in a data lake or a large pool of unstructured data. Taulli mentions NoSQL 


databases as the next-generation tool to hold this type of data. Examples of unstructured 


data include images, videos, and social media information.180  


c. Semi-structured Data 


Semi-structured data is a hybrid consisting of structured and unstructured data, 


according to Taulli. Data of this kind includes Extensible Markup Language (XML) files 


and JavaScripts Object Notation (JSON), and CSV files, or Application Programming 


Interfaces (API).181 


d. Time-Series Data 


Time-series data, as the name indicates, is data ordered in time. It can be structured 


or unstructured.182 Taulli explains it as pieces of information about interactions utilized to 


track a customer journey. As he stated, “When a user goes to a website, uses an app, or 


even walks in a store.”183   


2. Data and AI 


When attempting to define data, it seems more prudent to utilize a syntax 


explanation rather than the semantic meaning. Thus, data represents the input of something 


(points of information) into a computational system (the specific function of the AI 
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capacity), generating a predetermined output based on the data input and the computational 


calculations within the AI function. Data quantity, quality, and representativeness are 


therefore essential to a customer of an AI function.184 There are some challenges with data 


that we need to address to understand the problems it could cause. As a customer, one must 


define the data to which an AI system should have access. One should assess whether the 


information is structured, unstructured, or semi-structured because that will affect the 


decision of a specific AI function. Furthermore, several reports and articles suggest a 


problem with biases, such as sexism and racism. James Zou and Londa Schiebinger write 


in one of their articles that “a major driver of data biases in AI is in the training data.”185 


This implies that if an AI system or function trains on the wrong sets of data, there can be 


consequences. Lastly, as data has become a valuable commodity, the question of cost must 


be addressed. 


a. Biases 


Biases can occur both in models and in data; while this section only focuses on 


data, one should be aware that biases can occur on several occasions within an AI system. 


The challenge as well as the solution to the problem is how and where the collection of 


data takes place. If, as suggested by Zou and Schiebinger, training data gets scraped from 


the internet, including Google images and Google News, the collected data sets come from 


what is most popular on those websites at that particular time. Furthermore, that method, 


as Zou and Schiebinger highlight, “could unintentionally produce data that encode gender, 


ethnic and cultural biases.”186 ImageNet, for example, provides datasets for many machine 


learning systems to learn and train on to function. It is one of the world’s largest producers 


of imagery for training sets.187 The dataset connects to WordNet, a database that provides 
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synonyms, constituted by several words or phrases. Each synonym set has thousands of 


pictures associated with it to describe the word. All the over 14 million images on ImageNet 


have been tagged and categorized by Amazon Mechanical Turk, a crowdsourcing 


project.188  Here Zou and Schiebinger point to a statistical problem 45% of ImageNet’s 


pictures stemming from the United States. However, the United States is only home to 4% 


of the world’s population.189 That points to a possible bias when the selection is mainly 


from the United States. How will that affect overseas usage? The tendencies in this 


particular example are known, and its potential biases are known. 


With the awareness that data can be biased, one solution often offered is to keep 


humans in the loop as a controller. However, humans too have biases. Therefore, since 


both data and humans might create or imply bias in an AI algorithm, perhaps as David 


Danks—a renowned researcher within the field of ethics—suggests, the focus should be 


on biases that cause harm.190  Accepting and understanding that biases exist within data, 


our first step is to identify and mitigate potential problems. The best solution to the 


problem, then, is to educate and build awareness within organizations utilizing AI, while 


continuously monitoring and re-assessing algorithms in order to identify shortfalls. 


b. Access 


Implementing an AI solution implies that some data will have to be assessed or 


examined by the function. Earlier, we mentioned that data could come in several forms, at 


rest, in process, or in transit: all of these demands’ thoughtful consideration. The previous 


discussion also assumes that one has access to data. To further explore the information for 


use as an input to an AI function, it is essential to categorize the data. Taulli utilizes three 


standard bins to do that: in-house data, open-source data, and third-party data.191 In-house 
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data emerges from the sensors at the user’s disposal. Open-source data is the type of 


information one can collect and access from other sources, open to all over the internet or 


different networks. Third-party data is points of information a user buys from a company 


or enterprise. An example could be to purchase data from Facebook, Google, or similar 


enterprises. The next step is to define how to store the data at rest.  


Regardless of how access to data is acquired, all data collected still needs to be 


assessed, evaluated, and stored, requiring a sufficient infrastructure at the end user. 


Furthermore, when handling data for a military purpose, security may bring further 


limitations. It could mean that a COTS option or cloud storage is not viable. Hence, the 


need for trustworthy sources of data and in-house ability to maintain the security of and 


assure the integrity of the data used, collected, and disseminated is essential.  


c. Cost  


Our findings of calculations of costs are based on Amit Kumar Dutta and Ragib 


Hasan’s research paper, “How Much Does Storage Really Cost? Towards a Full Cost 


Accounting Model for Data Storage,” and another by D. Sculley et al., “Hidden Technical 


Debt in Machine Learning Systems.” The two papers take different approaches to 


calculating costs; Dutta and Hasan propose a more traditional model, while Sculley et al. 


propose a set of questions to ask when trying to estimate the specific costs of implementing 


an ML functionality. Dutta and Hasan have assessed and mathematically modeled the cost 


in their research on the topic.192 They suggest a full cost accounting approach to develop 


a realistic model of the actual price. The model that Dutta and Hasan present includes direct 


private costs, indirect personal costs, and social and environmental costs.193 Some of the 


factors that need consideration are the following: initial value, floor rent, energy, service, 
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disposal cost, and environmental costs, to mention a few, as per the authors’ suggestion.194 


The cost model to account for the total cost would be the following: 


𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸195 


In addition to these costs, military units may face organizational changes to meet 


new demands. In the end, the ability to provide the necessary infrastructure will always 


determine whether AI is a plausible solution. Failure to accommodate adequate security, 


maintenance, and assessment exposes the system to adversarial attacks and potential 


degradation of efficiency. An additional point to the total costs of ML is made in the article 


“Hidden Technical Debt in Machine Learning Systems.” In contrast, the authors argue that 


there are several initially hidden costs with managing machine learning systems. The 


authors know, since all of them are long time employees within Google Inc.196 The authors 


mention an article from Ward Cunningham in 1992 that uses the term technical debt. In 


short, calculations of the costs when moving fast into new software engineering risks 


missing out on the long-term costs that a quick move can bring. An exciting discussion 


arises about the encapsulation of data or the system. We earlier mentioned that AI systems 


depend on data, internal or external, which brings us to the conclusion that it is difficult or 


nearly impossible to encapsulate a larger ML system if one wants it to work at its full 


potential. Scully et al. named this the erosion of boundaries.197 Eroded boundaries occur 


because models in ML AI systems are interchangeable, and to seek a solution to one 


problem could introduce another problem or opportunity. As we have earlier said, one way 


of accessing data to fuel the function within the technological operation is by buying data. 


 
194 Dutta and Hasan, 4–5. 


195 Dutta and Hasan, 6. 


196 D. Sculley, Gary Holt, D. Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay 
Chaudhary, Michael Young, Jean-François Crespo and Dan Dennison, “Hidden Technical Debt in Machine 
Learning Systems,” NIPS (2015), 1, https://www.semanticscholar.org/paper/Hidden-Technical-Debt-in-
Machine-Learning-Systems-Sculley-Holt/1eb131a34fbb508a9dd8b646950c65901d6f1a5b.  


197 Sculley et al., 2. 
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Scully et al. call this data dependency,198 which also creates complexity when calculating 


an AI functionality’s costs. According to Sculley et al., the precise cost assessment is hard 


to estimate and demands a holistic view of the system. A human-centric approach that asks 


the following questions could then provide a supportive contribution to Dutta and Hasan’s 


costs. Suggested questions, according to Scully et al., are:  


• How easily can an entirely new algorithmic approach be tested at full 
scale? 


• What is the transitive closure of all data dependencies? 
• How precisely can the impact of a new change to the system be 


measured? 
• Does improving one model or signal degrade others? 
• How quickly can new members of the team be brought up to speed?199 


When pursuing the introduction of AI functionality into the organization, it is 


necessary to make several calculations and estimates to assess the actual cost. And, because 


those calculations are challenging to carry out effectively, we recommend that individuals 


with specific knowledge be brought onto the acquisition team for this purpose.  


3. Conclusion Analysis of Data 


Before the decision is made to implement AI functions within an organization, 


decision makers must consider several issues, revealing one of the core challenges with 


data; it cannot be examined and judged as a single problem, but must be viewed as a part 


of the AI discussion as a whole. Thus, it has the similarities of a wicked problem, since the 


function or the outcome of an AI capability is dependent on the type of data used to train, 


feed, and mine it with. Therefore, as soon as AI presents an option to solve a problem, the 


complications that data mining, storage, and access associated with the solution present 


must be considered. Lack of sufficient infrastructure, knowledge, or possibilities to acquire 


and examine data might put an end to the project, as well as harm an organization’s 


credibility. 


 
198 Sculley et al., 3. 


199 Sculley et al., 8. 
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Since understanding and identifying the potential pitfalls related to data is 


paramount, educated personnel are vital to examining and scrutinizing the process. In order 


to mitigate these problems, education, trustworthy sources for data, and reliable checks and 


balances must be used. These considerations hold true for all aspects of AI, and cannot be 


neglected at any time; rather, these should provide the foundation for all AI discussions 


within an organization and be weighed against current monetary limitations.  


D. INTERVIEWS 


The interviews for our research were conducted with persons within the academic, 


business, and military sectors. All the interviewed persons were chosen for their knowledge 


within the field of AI and their differing perspectives on the use of AI in military 


applications, as described in Appendix B. By contrasting the different drivers of 


development of AI through their respective positions, the intent was twofold; identify the 


validity of transparency, security, and data as considerations for acquiring AI, as identified 


in the SDRA document “Possibilities and Challenges for Artificial Intelligence in Military 


Applications.” Furthermore, the aim was to examine whether there were other aspects that 


were reoccurring and might be incorporated to enhance the current model, adapting it to 


the specifics of SOF procurement. 


1. Findings 


All interviewed persons acknowledge the previous mentioned pillars of 


transparency, security, and data as a sound foundation for the application of AI into an 


existing organization. Some aspects touched upon were more specific to smaller 


organizations and were therefore particularly interesting for this research. The reoccurring 


themes were those of speed, flexibility, and front-end vs. back-end usage of AI. During the 


interviews, cost was never addressed as a problem and none of the interviewed individuals 


brought up price as a go- or no-go criterion. Perhaps this is because the interviews focused 


on U.S. individuals and personnel, who are accustomed to the U.S. defense budget, which 


in 2019 accounted for 38% of the entire world’s total military spending according to the 
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Stockholm International Peace Research Institute (SIPRI).200 In the case of a smaller 


country with limited resources, cost must be considered, regardless of whether the goal 


sometimes might justify any means.  


a. Speed 


The general opinion during the interviews was that the primary gain of introducing 


AI into an organization is that processes can be sped up, thereby shortening the decision 


cycle. At the same time, with this speed comes an inherent need to know what the AI is 


capable of, and what the aim of acquiring a specific system is. Furthermore, one of the 


interviewed subjects expressed that the speed of decision making, enhanced by AI, will 


eventually only be hampered by the humans.201 Therefore, there is a risk that AI will be 


called upon not only to analyze but also make decisions in order to outperform an 


adversary. If this becomes a reality, there is an apparent risk that humans lose control over 


the systems, actively losing accountability for the decisions taken during a war.202 With 


this in mind, several of the subjects expressed concerns that many organizations currently 


are buying into AI enhanced products without the proper knowledge of the limitations and 


capacities of the systems.203 Hence, all AI procurements must be based on educated 


decisions, clearly understanding the implications of incorporating AI systems into 


organizations. 


In order to manage the speed offered through AI enhancement, there is a need to 


educate users of the potential shortfalls and gains offered. Allowing AI to make decisions 


just to increase performance might seem like a good solution; however, there must always 


be a system of checks and balances in place to mitigate potentially dangerous outcomes of 


 
200 “Global Military Expenditure Sees Largest Annual Increase in a Decade—Says SIPRI—Reaching 


$1917 Billion in 2019,” SIPRI, April 27, 2020, https://www.sipri.org/media/press-release/2020/global-
military-expenditure-sees-largest-annual-increase-decade-says-sipri-reaching-1917-billion.  


201 Source #30, Capstone Interview AI Source #30, in-person meeting, September 17, 2020. 


202 Source #30. 


203 Source #10, Capstone Interview AI Source #10, Microsoft Teams, June 8, 2020; Source #20, 
Capstone Interview AI Source #20, Microsoft Teams, June 10, 2020; Source #30, Capstone Interview AI 
Source #30. 
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the systems.204 As AI is a field still under development and constantly promising new 


implementations, it might also grow outside its originally intended boundaries as new 


functions are developed. Especially the dangers of bias in the training and learning of an 


AI system were highlighted more than once in the interviews.205 Nevertheless, the benefit 


of using AI will always transcend the potential shortcomings, and using it for a specific 


purpose and maintaining humans in the loop can mitigate most of these problems. In the 


current situation on the modern battlefield, as long as AI lacks some aspects of human 


decision-making capability based on the information received, there will probably remain 


a need for a human in the loop. 


b. Flexibility 


One of the clearest points made during the interviews was one of flexibility; that is, 


the need for organizations to be able to quickly adapt to, incorporate, and understand AI in 


order to truly reap the benefits in the future.206 Maintaining an edge on the enemy, 


however, requires more than just “getting the right stuff.” It requires a chain where 


procurement decisions are based on knowledge about current systems, well thought 


through use, and capable operators of the equipment. As mentioned previously regarding 


the need for understanding, the whole chain within an organization must be equipped to 


trust, understand, and utilize the products for their intended purposes to be effective. 


Furthermore, organizations must take the emergence of AI seriously, developing protocols 


and procedures to speed up the process of certifying the use of new technology.207 


With a constantly developing and lucid field such as AI, procurement processes 


must adapt to the increasing speed of development. Five-year procurement plans might 


work for huge systems, such as replacing an entire network; however, as recent fighting in 


the Nagorno-Karabakh region suggests, failing to incorporate new technology at the right 


 
204 Source #20, Capstone Interview AI Source #20. 


205 Source #20; Source #50, Capstone Interview AI Source #50, Microsoft Teams, August 11, 2020. 


206 Source #20; Source #30; Source #50. 


207 Source #50. 
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time might turn out to be very costly.208 Therefore, when it comes to procuring AI, flexible 


procurement procedures in the SOF community lend themselves well to maintaining an 


edge on the enemy. By contrast, the lack of knowledge within organizations must be 


addressed at all levels through building networks where the full potential of the defense 


industry, private industry, and academia can be put to full use.209 Given the constant 


developments within the field, it is hardly possible for a single organization to maintain a 


working knowledge regarding current developments. Expanding the network outside the 


defense industry, such as the efforts within NATO’s invention program, will also allow for 


the necessary trust to be built between organizations.210 


c. Front-end vs. Back-end AI 


There are certain distinctions between the different AI products produced and used 


for military applications that were highlighted during the interviews. The main differences 


mentioned were what amount of data the model requires and how it learns. Most decision 


enhancing models, based on analyzing and comparing data, require huge amounts of data 


and interconnected networks to produce the best outcome. These systems often “learn on 


the job,” requiring scrutiny of incoming data and recertification of the model.211 


Contrasting this, there are several systems based on a small learning database employed to 


perform a certain task, such as surveillance systems augmented by shape recognition AI, 


which uses a controlled data set to learn to recognize and categorize different shapes prior 


to deployment. Once in use, these models work on the already trained data and do not learn 


on the job.212 A suggested way to differentiate between these different AI models might 


 
208 Shaan Shaikh and Wes Rumbaugh, “The Air and Missile War in Nagorno-Karabakh: Lessons for 


the Future of Strike and Defense,” Center for Strategic & International Studies, last modified December 8, 
2020, https://www.csis.org/analysis/air-and-missile-war-nagorno-karabakh-lessons-future-strike-and-
defense.  


209 Source #30. 


210 NATO, “About Innovation Hub,” NATO Innovation Hub, accessed March 13, 2021, 
https://www.innovationhub-act.org/about. 


211 Source #10. 


212 Source #40, Capstone Interview AI Source #40, Microsoft Teams, August 14, 2020. 
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be to label the data heavy and learning models as “back-end” products—since they require 


large infrastructure both in regard to the amounts of data as well as support and 


monitoring—whilst the more field adapted products that are trained once on a limited data 


set are labeled “front-end” products. 


A division between front-end and back-end products and concepts can be found in 


a multitude of disciplines, such as management, innovation, and computer science. 


Although no previous division of military front-end and back-end AI exists to the authors’ 


knowledge, the proposed division builds on a mixture of interpretations of management 


philosophy and innovation theory. In management, the division of front-end and back-end 


activities often focuses on efficiency gains by separating high consumer contact (front-end) 


activities—requiring close contact with customers—from less consumer intense (back-


end) activities aimed at maximizing efficiency of the organization.213 Another 


interpretation is offered by James P. Ignizio in the foreword to Adolfo Crespo Márquez’s 


book “Dynamic Modeling for Supply Chain Management: Dealing With Front-end, Back-


end, and Integration Issues”:  


The front end addresses those portions of the organisation and its business 
processes that deal with sales and marketing, organised according to 
customer type. The back end portion of the model encompasses the units 
that deal with research, development, and the methods and processes of 
manufacturing.214  


In the case of military AI, front-end solutions can then be understood as systems 


incorporating AI that task are oriented and can be controlled, understood, and evaluated by 


an end-user without a large support infrastructure. Conversely, back-end AI are products 


that require large support structures, research, are less visible to the end-users, and might 


imply potential structural changes affecting an organization. 


 
213 Jawwad Z. Raja, Mehmet Chakkol, Mark Johnson, Ahmad Beltagui, “Organizing for 


Servitization: Examining Front- and Back-End Design Configurations,” International Journal of 
Operations & Production Management 38, no. 1 (2018): 252–53, 
http://dx.doi.org.libproxy.nps.edu/10.1108/IJOPM-03-2016-0139.  


214 Adolfo Crespo Márquez, Dynamic Modelling for Supply Chain Management (London, UK: 
Springer London, 2010), viii. https://doi.org/10.1007/978-1-84882-681-6.  
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According to this perspective, the front-end solutions are what is visible to the 


client, or in a military context, the user. This also allows the front-end concept to imply the 


interpretation regarding front-end innovations suggested in the paper “From Preliminary 


Ideas to Corroborated Product Definitions: Managing the Front End of New Product 


Development,” published in the California Management Review: “The front end can be 


understood as three key activities: idea and concept development, idea and concept 


alignment, and idea and concept legitimization.”215 Hence, the concept of front-end 


military AI lends itself well to the SOF mindset of rapid testing and concept development. 


Back-end products, on the other hand, might be more suitable for use within larger 


organizations—since operating, maintaining, and updating them usually involves a higher 


economic cost and need for highly skilled personnel within the organization. However, 


since these types of systems, once implemented, will be used for a foreseeable future, the 


effects of a breach in security can have more long-term strategical effects. In turn, this 


emphasizes the need for long-term planning, research, and careful consideration prior to 


procurement of back-end AI products. In contrast, the front-end products can rely on data 


and models that can be physically monitored by the users, lowering the requirements for a 


larger security infrastructure while the products are in use. Since the aim of a front-end AI 


product is to speed up more time critical tasks, which are constantly evolving and changing 


by their nature, one factor of these products should be that the risk of a breach in security 


would only cause tactical effects. Hence, the risk mitigation considerations should factor 


in whether an AI application falls under the front-end or back-end category of AI. To 


simplify, if the data used and gathered can be physically owned and controlled by 


individual operators while in use, and the loss of data or AI model would only produce 


effects at the tactical level, this should indicate that the product is to be considered as a 


front-end application. Hence, front-end products should not require an organization to 


maintain them, but rather be considered as more or less COTS products, where a company 


delivers a product that is ready to use with minimal training.  


 
215 Henrik Florén and Johan Frishammar, “From Preliminary Ideas to Corroborated Product 


Definitions: Managing The Front End of New Product Development,” California Management Review 54, 
no. 4 (Summer 2012): 21–22, https://doi.org/10.1525/cmr.2012.54.4.20.  
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Given the changing nature of missions and relative lack of infrastructure of SOF, 


front-end AI should provide a more relevant focus for the organization seeking to maintain 


an edge on the battlefield. Since these systems are easier to maintain and might even be 


bespoke for certain missions, the need for rapid procurement seems more necessary. The 


rapid procurement chains of the SOF should provide the necessary flexibility to keep up 


with development. In contrast, back-end applications are constantly learning—relying on 


masses of data that needs to be monitored and evaluated by trained technicians—and the 


security of such products can have strategical consequences, making a larger organization 


more suitable to acquire and maintain them. Specializing on a certain type of system could 


also prove beneficial for division of labor between the regular forces and SOF, leading to 


synergy between the two as one can benefit of the developments of the other. 


E. CONCLUSION OF ANALYSIS 


Every military has its own acquisition evaluation matrices. Nonetheless, when it 


comes to incorporating AI, lengthy processes and lack of knowledge, might result in missed 


opportunities in the battlefield.216 Although it is true that security concerns on a strategical 


level require all the preparation and precautions necessary to safeguard vital information 


and people, most militaries around the world currently lack educated personnel with the 


required skills to assess AI; there must be other ways to move forward. 


As discussed in the previous chapters about trust and AI, it is not only transparency 


that can mitigate trust issues related to AI, but equally important is the human trust between 


persons and a product’s ability to perform its given task. Hence, when procuring front-end 


products for applications in the field, the need for trust in the provider of the product will 


often be more important, especially in the cases where the organization itself will not own 


the actual data used to train the models. Unless an organization has the economic 


wherewithal to augment its resources and constantly attract the most skilled personnel in 


the field of AI, is the organization has only two options to move forward: use trustworthy 


 
216 Lindsey Sheppard, “Accelerating the Defense Department’s AI Adoption,” Council on Foreign 


Relations, last modified April 9, 2020, https://www.cfr.org/report/accelerating-defense-departments-ai-
adoption.  
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suppliers that adhere to present military standards, regulations, and security requirements 


or get left behind on the AI battlefield. To maintain a forward momentum in the 


procurement of AI, the military cannot merely seek to reproduce the knowledge that is 


available in academia and private enterprises. Instead, the military must create reliable 


networks, such as the NATO Innovation Hub initiative, that can assist in the innovation 


and implementation of AI into the organization.217 This is especially true for SOF, since 


available manpower and funding are often limited within such organizations.  


When it comes to acquisition, AI should not be treated much differently from other 


hardware. First, a problem that needs to be solved should be identified, before even 


considering a purchase. Second, every plausible solution should be considered and 


evaluated before deciding that AI must be involved. Lastly, the economic consequences 


must always have the last say before a new system is decided upon. There is a parenthesis 


to the problem statement; sometimes, a community or organization needs to be presented 


with an opportunity to realize they have a problem. However, the common and preferred 


way should be to identify the problem or the concern to be solved. If the best solution 


involves AI, there should be a model for evaluating the potential for a successful 


implementation of a system within the organization. While the NATO model provides an 


excellent foundation for considerations regarding military applications for AI, when 


adapting it to SOF-specific considerations two additional pillars are suggested based on the 


analysis: Application and Risk. 


a. Application 


The previous front-end vs. back-end discussion, including the implications for 


where and how AI is intended to be used, can guide the considerations for the need for data, 


security, and transparency. Answering these questions will give an idea of whether the 


acquisition will entail a lengthy process of coordination with other agencies or if there is a 


need for further ethical discussions before implementing the product.  


 
217 NATO, “About Innovation Hub.” 
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• Where the product is intended to be employed physically will have 


consequences for the type of security needed, both concerning the physical 


product as well as for the data used; how might the AI model and data be 


exposed to adversaries? 


• How the model is used indicates the need for ethical considerations and 


training needed for the operators based on whether there will be a human 


in the loop or if the product is intended to operate autonomously. 


If the risks associated with where the model is employed can be mitigated, and the 


ethical and educational requirements of the how factor are known and acceptable, then, 


there should be no real hindrance as to why the product should not be treated as any other 


COTS system. Although there is often talk about bias in algorithms, it is only an issue if 


the algorithm has been programmed to behave in a particular way—that is, the designer 


has projected his or her bias, or the data used for training is faulty or biased in its 


composition—rather than any inherent bias in algorithms themselves.218 Therefore, by 


using trusted manufacturers, voicing these concerns during the development of products, 


and scrutinizing the data used for training, organizations can address much of the ethical 


issues before implementation.219 Furthermore, as argued by several scholars; as long as 


there is a human in the loop, the system itself can hardly be blamed for any action it 


suggests.220 Awareness of the potential problem with biases will also create sufficient 


knowledge of the problem within the community; after all, biases could potentially exist in 


different forms in many acquisitions and implementations.  


 
218 Manish Raghavan and Solon Barocas, “Challenges for Mitigating Bias in Algorithmic Hiring,” 


Brookings, last modified December 6, 2019, https://www.brookings.edu/research/challenges-for-
mitigating-bias-in-algorithmic-hiring/.  


219 James Manyika, Jake Silberg, and Brittany Presten, “What Do We Do About the Biases in AI?,” 
Harvard Business Review, October 25, 2019, https://hbr.org/2019/10/what-do-we-do-about-the-biases-in-
ai.  


220 Ryan Daws, “Pentagon Is ‘falling behind’ in Military AI, Claims Former NSWC Chief,” AI News, 
October 23, 2019, https://artificialintelligence-news.com/2019/10/23/pentagon-military-ai-former-nswc-
chief/.  
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b. Risk 


Even though security of information has already been mentioned as a part of the 


concept, mission security adds a new dimension to considerations regarding AI. Since 


some systems incorporate the AI algorithm in the physical product—as in the case of the 


assassination of the Iranian nuclear scientist, which sparked speculations that a facial 


recognition algorithm was used to identify the target—protecting the product might require 


certain restrictions to implementation.221 Although a loss of an algorithm or model might 


not impede the success of the current mission, it might turn out to be problematic if the 


same solution is to be used again. As previously stated, if the algorithm is known it becomes 


easier to manipulate and exploit its weaknesses. Therefore, especially when considering 


the use of front-end AI, the organization must establish protocols and procedures to 


mitigate potential information loss. 


Although AI can support a mission, it can also cause severe harm to the 


organization if not properly managed.222 If data and algorithms are stored in a place that 


the enemies have access to, there is always a possibility that the tactics, technology, and 


knowledge of a target can be compromised. Therefore, limiting the use of sensitive systems 


to smaller and specialized units such as SOF, where security can be monitored and 


guaranteed, seems preferable. Yet, even if the SOF community would serve well as a 


platform to test, evaluate, and develop procedures for mitigating the risks before a large-


scale implementation of front-end AI is implemented, if the risk to mission is deemed too 


great, other options must be considered. Hence, Risk, as in long-term risk to mission, should 


be a factor to consider in the early stages of procurement, along with other security issues 


connected to AI. 


  


 
221 Zoe Kleinman, “Mohsen Fakhrizadeh: ‘Machine-Gun with AI’ Used to Kill Iran Scientist,” BBC 


News, December 7, 2020, sec. Middle East, https://www.bbc.com/news/world-middle-east-55214359.  
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V. RESULTS 


The interviews conducted for this research not only cemented the previous factors 


of Transparency, Security, and Data as a foundation for considerations when incorporating 


AI into the military, but also added several insights for enhancing the model for application 


within the SOF community. The inherent flexibility in procurement available for many 


SOF provides the foundation for a divide in focus between the usually more rigid regular 


army and the SOF. As the author David Egerton explains in his book The Shock of The 


Old: Technology and Global History Since 1900, “although we can stop projects, it is often 


said that we cannot uninvent technologies, usually meaning we cannot get rid of them,” 


implying that we need to move forward into a future that incorporates the technology 


whether we like it or not.223 While AI most likely will be incorporated throughout most 


organizations in the foreseeable future, the flexibility needed to remain in the front-line of 


development must be ensured within the SOF community, leading the way in more field-


oriented applications where the need for infrastructure is not as great. Connected to the 


need to utilize the current developments in an ethical and an orderly fashion, it is apparent 


that organizations must develop networks capable of providing both trustworthy products 


and the required knowledge. Developing networks, such as the JAIC’s project Tradewind, 


which spans the military, private, and the academic sectors, is required to maintain an edge 


within the field, since they all interact to reshape the current battlefield.224 


Focusing on front-end applications allows for a more rapid incorporation and use 


of systems and reduces the security considerations related to more data heavy applications. 


Furthermore, even though front-end applications mitigate many of the long-term support 


and maintenance issues, the mere fact that operators use and encounter AI on a regular 


 
223 David Edgerton, The Shock of The Old: Technology and Global History since 1900 (New York, 


NY: Oxford University Press, 2011), 211, https://books.google.com/books?id=IdVGikvzIHoC.  


224 Jared Serbu, “DOD’s JAIC Rolling out New Contracts to Speed up AI Acquisition,” Federal News 
Network, February 11, 2021, https://federalnewsnetwork.com/artificial-intelligence/2021/02/dods-jaic-
rolling-out-new-contracts-to-speed-up-ai-acquisition/.  
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basis will most likely help build trust in the systems that work, while other systems can be 


evaluated and sent back to the drawing board.225 Building this trust and knowledge in 


products, manufacturers, and the technology should surely benefit the entire armed forces 


in the end. Regardless, since technology can decide the outcome on the battlefield in 


today’s modern war, a testbed for emerging and existing technology must exist within 


every modern army. SOF, through its culture and small scale, has traditionally provided 


this testbed for other military hardware, such as weapons, communications, and tactics. 


Given the wide and undefined nature of AI, at the end of the day, there is nothing to prevent 


much of what is labeled AI to be part of this. In addition, borrowing from the “lean start 


up” community, we suggest that it is important to start small and be prepared to scale or 


fail fast and then move on.226 Hence, it is important to start with some AI functionality 


now, rather than wait for the perfect solution or ending up in a large and time-consuming 


procurement process. 


Admittedly, unproven technology might pose risk to mission, and that risk should 


be addressed through continued testing, evaluating, and disseminating lessons learned. 


However, with the current development within the field of AI, armies cannot afford the 


luxury of long-term evaluation processes before tapping the perceived benefits of simple 


products that are readily available to the public. Instead, tests, implementation, and 


evaluation must be considered as a continuous process. Since this has been a hallmark of 


SOF in the past, and considering the ambiguity of the concept of AI and the continuously 


evolving tasks of SOF, there seems to be little to hinder the future use of SOF as a testbed 


in this area as well.227 While some systems might prove likely to endanger the integrity of 


 
225 M. L. Cummings, Artificial Intelligence and the Future of Warfare, International Security 


Department and U.S. and the Americas Programme (London, UK: Chatham House, 2017), 1, 
https://www.chathamhouse.org/sites/default/files/publications/research/2017-01-26-artificial-intelligence-
future-warfare-cummings-final.pdf.  


226 Eric Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create 
Radically Successful Businesses (New York, NY: Crown Business, 2011). 
https://books.google.com/books?id=r9x-OXdzpPcC.  


227 Andrew White, “How NATO’s Special Operations Can Take Advantage of the Tech Boom,” 
C4ISRNET, July 16, 2019, https://www.c4isrnet.com/artificial-intelligence/2019/07/26/how-natos-special-
operations-can-take-advantage-of-ai/.  
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an entire country, there are several instances where these risks can be considered local and 


outweighed by the potential benefits versus the risks of not applying AI as a solution. With 


this in mind, we advance a simple model to evaluate whether the proposed technology is 


suitable for rapid test and development, or if a more comprehensive analysis is needed. 


A. PROPOSED MODEL  


As a result of our research, building on the pillars of transparency, security and 


data, we propose a model for organizations to use when aiming to acquire AI technology. 


Its intention is to support decision makers in assessing common factors. In addition to the 


three earlier mentioned criteria, our findings suggest adding risk and application as primary 


considerations, along with the front-end/back-end technologies construct for cooperative 


considerations between conventional forces and SOF. Following the assessment of the 


parameters in the tentative model, the proposed model provides a broad foundation for 


considerations before acquiring and adopting AI into military organizations. Although the 


model is intended as a model for determining the suitability for rapid implementation and 


testing of systems within the SOF structure, it is generic in its nature and would serve as 


an AI acquisition evaluation tool for organizations of any size or military affiliation. 


Following are the model and suggested considerations connected to Risk and Application. 







 


68 


 
Figure 1. Proposed Model for Analysis 


Risk — Since AI in its current applications seldom appears as a single entity, but 


rather as incorporated into existing systems and machines to enhance capabilities and speed 


up processes, it is more important to focus on the products’ combined features than on the 


specifics of a particular AI-model. In many cases, AI need not be treated as something that 


always requires special attention, considering that facial recognition, pattern analysis, and 


self-driving cars exist, and the technology has existed for quite some time. When AI 


proposes to fundamentally change the decision process or actively make changes to the 


information provided for decision makers, however, a larger, more holistic approach is 


required. Hence, looking at the potential risks of the proposed solution in a suitable context, 


while acknowledging the aspect of AI as a facilitator for the solution, it is possible to avoid 


unnecessary considerations that might end up slowing down procurement. Suggested 


parameters for selection could be as simple as: 


• Mission, Tactical, or Strategic: Will the loss of data or algorithm inflict 


irreparable damage, or will the damage be of a negligible character? 







 


69 


• Life, System, or Product: Will a malfunction of the AI component cause 


bodily harm, disruption of a larger dependent system, or simply lower 


trust in the product? 


• Autonomous, Controlled, or Supporting: How will the AI component 


affect decision making; will action be autonomous, controlled by a human, 


or only used to support human decision making? 


If the answers to these questions are acceptable, can be mitigated, and controlled 


locally, just as for any other equipment, there should be little reason as to why AI-driven 


solutions could not be implemented as well. Although these parameters are only 


suggestions, and organizations will surely adapt their own framework of risk assessment, 


they can provide a quick way to assess whether the product poses an acceptable risk for 


quick implementation, or if a more thorough assessment and procurement procedure is 


needed. 


Application — Depending on how the product is configured and its intended use, 


the application of the product will indicate if it is suitable for rapid acquisition or requires 


a larger support structure to perform the expected tasks. While there are many factors to 


consider, the main issues center around the need for training, physical configuration of the 


product, and where it needs to be deployed. In a similar fashion as the proposed risk 


assessment, a few simple questions can be applied to determine whether the product can 


be tried, tested, and assessed within the organization. Suggested parameters could be: 


• Plug and Play, Organizational Support, or Outside Expertise:  What kind 


of expertise is needed to operate the product? Will a single untrained 


operator be able to use and maintain the product or does it require the 


support from existing experts within or outside the organization? 


• Standalone, Integrated, or Foundational: What kind of effects will the 


product have on other parts of the organization? Is the product intended to 


work as a separate entity, be integrated as a part of an existing system, or 


even provide the foundation for a new system? 
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• High Risk, Controlled, or Secure: Where will the product be applied? Will 


the product be deployed unsupervised in the field, in a controlled office 


environment, or implemented in a setting where a high level of security is, 


or can be, maintained.  


Considering which other systems are affected by the application, it is crucial to 


determine the overall effects of the implementation. Determining the second and third order 


effects of the system will give guidance as to whether the product is to be considered a 


front- or back-end AI implementation. If the solution is provided by a trustworthy source, 


the data used is controlled and confined to the organization, and there is little or no need 


for expert maintenance, it is likely that the system can be considered a front-end solution.  


The combined results of the initial analyses of the risks and the proposed 


application, as well as the resulting implications of implementing a specific AI-system, 


will help decide the remaining questions related to the need for transparency, security, and 


data. Furthermore, the result should also give an indication in an early stage whether the 


product is suitable for SOF-specific acquisition or if a more formal process is needed.  


B. SUMMARY OF RESULTS 


As has previously been discussed, there is no real consensus on what AI entails; 


therefore, it is unnecessary for organizations to fear implementing a product, just because 


it contains an AI element. Instead, what becomes interesting is what the product proposes 


to solve, how it solves the problem, and what implications this has for the product’s 


usability in a certain application. By expanding the previously proposed existing 


parameters for evaluation of AI in the military context—data, transparency, and security—


along with risk and application considerations, the model proposes a simple tool for initial 


analysis for SOF AI procurement. Although there is little novel in doing a quick mission 


or risk analysis before implementing a product, the novelty in the proposed method consists 


of looking at AI as a system of systems instead of focusing on the possible dilemmas 


implied simply by the name AI. Paradoxically, looking beyond the current discussion of 


what AI is seems to be the only way to keep up in the current AI race.  
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VI. CONCLUSION 


Support from the empirical studies and interviews used in this research suggests 


that it is more important for SOF to invest in available front-end AI systems today, rather 


than more extensive and complex back-end solutions tomorrow. Since many intricate 


functions and designs are available on the market today, speed in acquisitions is vital to 


develop an organization’s understanding of how and what AI can bring to the future 


battlefield. Although there are certain risks and ethical considerations associated with 


adopting any new inventions, many potential pitfalls can be mitigated through simple 


measures such as maintaining a mechanism that allows for human intervention or for 


working with trustworthy partners. Only through constant exposure, development, 


adaptation, and experimentation will an organization be able to maintain the edge in AI 


tomorrow. Instead of focusing on the term AI itself, as with all future acquisitions, 


organizations need to focus on the problem or system that needs to be addressed and apply 


the best solution available to solve it. Realizing that the main benefits of AI functions are 


improved efficiencies in an organization, rather than a silver bullet to eliminate all 


challenges faced by the organization, is a good starting point. Based on the conducted 


research, the proposed model offers a suggested framework of considerations to be 


incorporated into the regular decision-making process and procurement process. 


Additionally, three guidelines related to SOF acquiring and implementing an AI 


functionality can be discerned; the need to assess organizational capability, focus on front-


end solutions, and manage expectations.  


First, assessing organizational capability is critical to make sure that the proposed 


solution will render the desired effects. When conducting the assessment, it is essential to 


address the question of capability; does the organization have the necessary knowledge to 


run and maintain an AI functionality, or what is needed to acquire these critical 


capabilities? By applying the proposed model, an organization should be able to rapidly 


determine whether outside support or new skills are needed to implement a solution. 


Although knowledge and skill are vital to address the issue of adopting AI, these skills take 
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a long time to acquire and maintain. Therefore, a smaller organization should focus on its 


strengths, which in the case of SOF is the faster acquisition process rather than a high 


degree of technical expertise. For more complicated applications, the SOF will likely need 


to collaborate with organizations capable of educating proficient AI professionals. By 


determining the problem to be solved and applying the model, if the suggested solution 


contains an AI element, the organization should quickly realize if the capacity exists within 


the organization to implement the suggested solution or if outside support is needed.  


Second, a front-end focus is also essential. Starting with a front-end solution will 


enable a quicker acquisition process, and the investment cost will likely be lower. The risk 


of creating an economic black hole might be mitigated by promoting the benefit of gaining 


a first understanding of the technology. An early adoption within the organization might 


not only give an edge to the organization but also act to increase trust in future AI solutions. 


As recommended within the lean start-up industry, start small and scale, or in other words, 


fail fast to get organizational understanding. Remember, AI is software, and all software 


can in some way be upgraded as technology progresses and user development continues. 


To reduce the risk posed by the technology, it might be desirable to field test products in a 


less contested environment, such as counterterrorism operations, that is closely associated 


with SOF operations. However, once the proper understanding of possible security 


concerns has been established and tested, the knowledge acquired can be used to gain an 


edge against a more conventional adversarial competitor.  


The third factor is managing expectations. AI can, and will, bring drastic change 


within society and the future battlefield. Nonetheless, here and now, AI is primarily 


focused on replacing human conversation within call centers and facilitating information 


exchange with Alexa and Siri while struggling to make self-driving cars acceptable on the 


freeway; hence, it seems unlikely that an autonomous SkyNet option á la The Terminator 


movie will gain acceptance in the near future. To be clear, that is our main point; although 


there is almost no limitation to what an AI-powered technology could do or perform, 


human thought and culture will still be in the driver’s seat of societal adoption. It is critical 


to accept this fact and focus on the possible solutions available, instead of getting stuck 


investing in the next AI winter. This mindset should help the SOF community hedge 
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against projects that might never be, while taking advantage of opportunities to buy in at a 


low cost when they become available. In short, adhering to the proposed model and these 


recommendations will not in itself produce an AI revolution, but will keep the SOF 


organization agile, ready, and adaptive on the ever-changing battlefield of tomorrow.  


Although there is much debate regarding the implementation of AI in military 


products and solutions, AI is already implemented directly or indirectly in our everyday 


work right now. Working with trustworthy partners to test new ideas and concepts aimed 


at solving present and future challenges is the only way forward for the SOF community. 


As an organization constantly on the edge of development of new skills and tactics, the 


SOF community seems to provide a perfect platform to implement new technology that 


promises increased efficiency and capabilities to front-end users, while pushing the need 


to develop back-end solutions to further the gains made. With little to suggest that society 


will become less reliant on AI implementations in the future, the military needs to accept 


and embrace AI now in order to remain relevant in the future. In the world of AI, it seems, 


that failing to try is trying to fail. 
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APPENDIX A. HISTORY OF AI 


This literature review aims to provide a historical foundation for understanding the 


possibilities, weaknesses, and potential of AI. The review consists of three parts. First, the 


focus is on the origins and emergence of AI; second, an explanation of the differences 


within AI, machine learning, deep learning, supervised learning, and unsupervised learning 


are explored. Finally, a short explanation on data is provided. 


A. THE EMERGENCE OF AI 


Prof. John Haugeland defines AI as “the idea that thinking and computing are 


radically the same,”228 while Tom Taulli describes AI as, “where computers can learn from 


experience, which often involves processing data using sophisticated algorithms.”229 


When examining AI, it is worth highlighting the differences between humans and 


machines, as this could otherwise be confusing when talking about intelligence. One 


overarching way to compare the differences is presented by the Human Intelligence 


website, shown in the Table 1.230 


 
228 Haugeland, Artificial Intelligence, 2. 


229 Taulli, Artificial Intelligence Basics, 179. 


230 Jean Brown, “Difference Between Artificial Intelligence and Human Intelligence” Difference 
Between Net, August 30, 2018, http://www.differencebetween.net/science/difference-between-artificial-
intelligence-and-human-intelligence/.  
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Table 1. Human and Artificial Intelligence231.  


 
 


Academia suggests that the first study on AI began in 1955. In the spring of 1956, 


there was a seminar, an early year tech convention, that first introduced AI: the McCarty’s 


Dartmouth Summer Research Project on Artificial Intelligence. During the convention, the 


three fathers of AI emerged, Allen Newell, Cliff Shaw, and Herbert Simon.232 They 


assumed that intelligence is the ability to solve problems, and that solving problems is the 


same as finding solutions.  


Both computing and implementations of AI have different explanations within 


academia. Haugland explains in Artificial Intelligence: The Very Idea, “a computer is an 


interpreted automatic formal system. A formal system can be described as a game in which 


tokens are manipulated according to rules, to see what configurations can be obtained.”233 


To further understand this, it can help to imagine tokens as characters in a game, like chess. 


If a player moves the “king,” the player is only allowed to move him according to 


previously agreed on rules. As pieces are moved around on the board, the situation changes, 


but the rules remain constant, resulting in different configurations. This mind game will 


help the reader to understand how a basic automatic formal system works. 


 
231 Adapted from J. Brown, “Difference Between Artificial Intelligence and Human Intelligence.” 


232 Haugeland, Artificial Intelligence, 176. 


233 Haugeland, 48. 
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An example of a basic formal system is the calculator; we have agreed upon the 


rule that 1 + 1 = 2. When a calculator user presses the keys 1, + , 1, and finally the key =,  


the configuration of 2 is presented, according to the rules already set and the automated 


answer it produces. It describes a digital system following a formal set of rules, such as a 


computer, and the essence of artificial intelligence.  


The measurement of computational intelligence, explored in one way by academia, 


is the Turing Test. Alan Turing suggested that a philosophical approach to intelligence 


would impose deep discussions on thinking and intelligence. Turing proposed that machine 


intelligence could be tested based on a simple game called the imitation game. The game 


was developed in the 1950s and is now known as the Turing Test.234 The imitation game 


consists of three characters, two witnesses, and one interrogator. With the characters 


separated in space, the interrogator tries to guess which of the witnesses is a machine and 


which is the human. The interrogator only knows the witnesses by the letters X and Y. The 


interrogator can ask a question of the type, “Will X please tell me whether X plays 


chess?”235 The answers are presented on a screen without sound to avoid the problem with 


voices; the machine has achieved intelligence if it can persuade the interrogator to perceive 


the other witness as a machine. Presently, there are other ways of testing machines, but the 


Turing Test is still used to test whether and to what degree a machine can think.236 


However, as Haugeland suggests, the essence is talk; does the machine talk like a human, 


and is the machine perceived as a human in the eyes of an observer? 237 


One could ask if something is intelligent, why not test it with an IQ test? Haugeland 


has a good answer to this: IQ tests test the degree of intelligence on the assumption that it 


has some intelligence to measure. This, Haugland argues, is the issue itself; we must know 


whether it makes sense to attribute intelligence to machines at all before we can ask how 


 
234 Haugeland, Artificial Intelligence, 6. 


235 Graham Oppy and David Dowe, “The Turing Test,” in The Stanford Encyclopedia of Philosophy, 
ed. Edward N. Zalta, Spring 2019 (Metaphysics Research Lab, Stanford University, 2019), 
https://plato.stanford.edu/archives/spr2019/entriesuring-test/.  


236 Taulli, Artificial Intelligence Basics, 17. 


237 Haugeland, Artificial Intelligence, 6. 
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much of it they have.238 We rather need a test that can determine whether a computer is 


intelligent at all, invoking the need for something like the Turing Test. One of the major 


differences between humans and computers is the speed of calculation. A human is capable 


of one calculation per second, while a computer can do one billion calculations per second, 


implying that we can hardly measure intelligence as the rate of calculations over time. 


To summarize, something is artificial if humans make it and it does not occur as a 


result of natural growth. Something is intelligent in the computer realm if it can pass the 


Turing Test (or similar) rather than discussing it from a philosophical view. Artificial 


intelligence is, therefore, something created that can adopt knowledge and pass a test 


deceiving humans. We should, therefore, not misinterpret strict human intelligence and 


behaviors with machines passing the Turing Test. Just because a machine could have 


intelligence and deceive a human in one area does not mean that it is valid over several 


areas or realms.  


B. ARTIFICIAL INTELLIGENCE AND ITS SUBFIELDS 


Within AI several subfields exist, and these subfields are graphicly displayed in 


Figure 2, and further explained in the following paragraphs. Figure 2 shows the connections 


and a suggested hierarchy of the different subsets; this capstone focuses on the ones 


described in Figure 2.239 The visualization aims to clarify how different types and subsets 


within AI are connected or interrelated with each other.  


Figure 2. Graphical Overview of AI. 


 
238 Haugeland, 7. 


239 The figure is a visualization of the corresponding chapters in Taulli, Artificial Intelligence Basics. 
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1. Machine Learning 


Machine learning (ML) is how a computer can learn without being programmed.240 


ML is an area with several subcategories: supervised learning (SL), unsupervised learning 


(UL), and deep learning (DL), ML is the most well-known part of AI.241  


ML algorithms use statistics or pre-defined images to identify patterns in large 


amounts of data. According to Karen Hao, typically ML encompasses numbers, words, 


images, and other data, which is processed and enabled by many of the services that we 


use today, exemplified by Netflix, YouTube, and Spotify.242 In these services, the aim is 


to give the user a more tailored experience. Within SL, a user will train the network to learn 


a certain input-output function, given a large dataset of examples. The outputs work as 


labels for the inputs, and the network will classify them.243 In SL, the computer trains on 


labeled data. By doing so, the computer will know what pattern to look for.244 UL is 


somewhat the opposite to SL, as the raw data has no markers or tags; the machine searches 


and develops patterns by itself. Some, like Hao, would argue that is why UL is not equally 


popular, and the applications are not obvious.245 The difference between SL and UL is that 


SL uses labeled data, and UL does not.246 


2. Deep Learning 


Deep learning is considered by some scholars as the revolution in AI, as further 


explained in this paragraph. The argument maintains that even for a lot of data, DL can 


find a solution by the algorithms within DL. Taulli explains, “systems … can process huge 


 
240 Taulli, Artificial Intelligence Basics, 66. 


241 Chaudhary, “Artificial Intelligence.” 


242 Karen Hao, “What Is Machine Learning?,” MIT Technology Review, November 17, 2018, 
https://www.technologyreview.com/s/612437/what-is-machine-learning-we-drew-you-another-flowchart/.  


243 Peter Denning, “A Hierarchy of AI Machines” (class notes for CS4000: Harnessing AI, Naval 
Postgraduate School, October 2, 2019). 


244 Hao, “What Is Machine Learning?” 


245 Hao. 


246 Taulli, Artificial Intelligence Basics, 67. 
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amounts of data to find relationships and patterns that humans are often unable to 


detect.”247 This argument is reinforced by Hao when she states, “it [DL] uses a technique 


that gives machines an enhanced ability to find – and amplify – even the smallest patterns, 


this technique is called deep neural networks.”248 DL sometimes uses artificial neural 


networks; these networks are based more on a human brain and are not logic-based like 


other ML techniques.249 DL is dependent on computational power, and therefore, its rise 


has come somewhat newly. DL sometimes is described as using ML models of multiple 


layers of non-linear processing units.250  


3. Robotic Process Automation 


Robotic Process Automation (RPA) is the possibility for companies to automate 


rule-based processes. Taulli describes RPA when he says “robots do not mean physical 


robots; it is about software-based robots or bots.”251 These bots can replace humans 


performing rule-based tasks; an example of typical tasks can be found in the Deloitte report 


on RPA, such as “opening email and attachments, moving files and folders, filling in forms, 


and reading and writing to databases.”252 RPA is the use of software to ease the burden of 


the human workforce. The aim is to replace “simple” tasks that could be done by machines 


rather than using human resources to do them. Taulli concludes that RPA can lead to major 


savings. RPA is therefore an attractive option for implementing basic AI within a 


community or company. 


 
247 Taulli, Artificial Intelligence Basics, 71. 


248 Hao, “What Is Machine Learning?” 


249 Selmer Bringsjord and Naveen Sundar Govindarajulu, “Artificial Intelligence,” in The Stanford 
Encyclopedia of Philosophy, ed. Edward N. Zalta, Winter 2019 (Stanford, California: Metaphysics 
Research Lab, Stanford University, 2019), 62–74, 
https://plato.stanford.edu/archives/win2019/entries/artificial-intelligence/.  


250 Svenmarck et al., “Possibilities and Challenges for Artificial Intelligence in Military 
Applications.” 


251 Taulli, Artificial Intelligence Basics, 93. 


252 Deloitte U.K., The Robots Are Ready – Are You?, (London, 2017), 3, 
https://www2.deloitte.com/cn/en/pages/strategy-operations/articles/the-robots-are-ready.html.  
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To summarize, RPA is a software bot (robot) tool that could enhance effectiveness 


within an organization by replacing human resources assigned to rule-based tasks. 


Achieving efficiency, however, demands proper planning and assessments of the tasks 


performed by humans that can be easily replaced by software bots. 


4. Natural Language Processing 


Natural Language Processing (NLP) is an area described by Michael J. Garbade as 


“a branch of artificial intelligence that deals with the interaction between computers and 


humans using the natural language.”253 An interaction between the computer and the 


human client is utilizing NLP. People often encounter NLP in daily situations without 


realizing it is powered by an AI functionality.  Taulli explains this as “the first interaction 


with NLP is with virtual assistants.”254 Virtual assistants have become popular over the 


last couple of years. The technology can, just like RPA, provide substantial savings for a 


company. Insurance companies and customer service interfaces, such as Amazon’s chat 


bot, are examples of this technology and its functionality will likely continue to flourish. 


Taulli continues with the argument that “NLP will become increasingly important for e-


commerce and customer service.”255 Both Garbade and Taulli refer to ML when 


describing NLP; however, not all NLP techniques rely on ML.256  NLP is typically used in 


modern services like Alexa, Cortana, and Siri.257 


5. Physical Robots 


Physical Robots (PR) are, according to Taulli, characterized by four main parts, 


Physical, Act, Sense, and Intelligence. Taulli suggests that the physical aspects of a robot 


 
253 Michael J. Garbade, “A Simple Introduction to Natural Language Processing,” Medium, October 


15, 2018, https://becominghuman.ai/a-simple-introduction-to-natural-language-processing-ea66a1747b32.  


254 Taulli, Artificial Intelligence Basics, 123. 


255 Taulli, 123. 


256 Taulli, 48; Garbade, “A Simple Introduction to Natural Language Processing.ˮ  


257 Taulli, Artificial Intelligence Basics, xii. 
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shape range from massive industrial systems and underwater vessels to flying machines.258 


A robot does not necessarily have to look like the famous Star Wars character R2-D2, but 


it could. When describing the act characteristic, Taulli defines it as the actions a robot can 


perform, including moving items and talking.259 For a robot to act, it must be able to sense 


and understand its environment; thus, it requires sensors and a feedback system. Haugeland 


goes even deeper to describe feelings related a robot. He lists seven kinds of feelings that 


might or might not affect the behavior of robots and AI.260 Finally, a robot needs 


intelligence to be programmed. Robots are an emerging technology within AI and are 


moving more and more towards autonomy; an example of a daily use robot is the Roomba 


vacuum cleaner.261 


To summarize, AI has several subsets with different possibilities and constraints. 


Machine learning is the foundation of modern AI and its subsidiaries; supervised learning, 


unsupervised learning, and deep learning enable other subsets of AI. 


C. DATA EXPLAINED 


Bits describes data, and is short for a binary digit, and described in binary language 


as a one [1] or a zero [0]. When we define amounts of data, the term “bytes” describes the 


size of stored data. Data is in one of three states: in transit, in process, or at rest. Data at 


rest is data stored in a computer’s memory, a hard drive, or a cloud. The opposite is when 


a user works on his or her client (computer), where the data is in process. Data in transit is 


when data is sent between a host and a client; for example, when a user sends an email. 


When examining AI, it is inevitable to mention storage space and the process rate of bits 


and bytes to get a better understanding of the concept, and the speed at which a computer 


conducts computation. In Table 2, the authors have borrowed from Taulli to clarify data 


volumes. 


 
258 Taulli, Artificial Intelligence Basics, 126. 


259 Taulli, 126. 


260 Haugeland, Artificial Intelligence, 232. 


261 Taulli, Artificial Intelligence Basics, 140. 
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Table 2. Data Volumes Explained262  


 
 


  


 
262 Adapted from Taulli, Artificial Intelligence Basics, 21. 
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APPENDIX B. INTERVIEWS 


When conducting interviews, the authors chose to use close-ended questions and 


open-ended questions. The function or the aim of close-ended questions is described by 


Lorène Fauvelle as “closed-ended questions are designed and oriented to follow a pattern 


and framework predefined by the interviewer.”263 A close-ended question offers, 


therefore, a limited number of answers, often a simple yes or no.264 The intention is to 


provide the interviewer with a clear and easily measured answer. Although a comparative 


study could be done with the yes and no answers alone where conclusions could be drawn 


and shown on graphs, Fauvelle notes that “an open-ended question is a question that allows 


the respondent to express himself or herself freely on a given subject.”265 It allows the 


interviewer to ask the interviewee to elaborate or explain his or her standpoint on a specific 


subject. Rather than comparing the number of yes and no answers, a researcher can 


compare what specifics within a topic stands out or are similar between different thematic 


areas.  


In this report, the use of open-ended questions as per the SAGE Encyclopedia on 


Qualitative Research Methods is motivated by the following: “Open-ended questions also 


called open, unstructured, or qualitative questions, refer to those questions for which the 


response patterns or answer categories are provided by the respondent, not the 


interviewer.”266 As the researchers’ knowledge of the AI area is not deep enough to allow 


for a comprehensive question bank, open-ended questions allow the range of possible 


answers to exceed what could be provided in a questionnaire.267 


 
263 Lorene Fauvelle, “Qualitative Research: Open-Ended and Closed-Ended Questions,” Market 


Research Consulting (blog), April 19, 2019, https://www.intotheminds.com/blog/en/qualitative-research-
open-and-closed-ended-questions/.  


264 Fauvelle. 


265 Fauvelle. 


266 Kathryn J. Roulston, “Open-Ended Question,” in The SAGE Encyclopedia of Qualitative Research 
Methods, ed. Lisa M. Given (Thousand Oaks: SAGE Publications, Inc., 2008), 583, 
https://doi.org/10.4135/9781412963909.  


267 Roulston, 583. 
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A. INTERVIEWEES 


The authors chose to interview five individuals from private corporations, scholars 


within the area of AI, and finally, military personnel with user experiences. 


a. Source # 10 


Source #10 is an employee within the commercial sector in Silicon Valley.  


b. Source # 20 


Source #20 works within an organization close to the U.S. SOCOM that helps 


develop and leverage new technologies. 


c. Source # 30 


Source #30 works within a defense support organization in Silicon Valley.  


d. Source # 40 


Source #40 is the CEO of an A.I. company that delivers easy-to-use front end A.I. 


solutions.  


e. Source # 50 


Source #50 is a professor at the Naval Postgraduate School in Computer Science. 
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B. QUESTIONS FOR INTERVIEWS 


Since our framework for this research is transparency, security, and data, these 


words frame some of the questions. The questions build upon the following main 


categories, justification, experience, presence, security, transparency, data, procurement, 


and future application. There are two sets of questions, one that focuses on the individual 


and the individual’s opinions. The other set of questions focuses on the organizational 


perspective and a corporate viewpoint. The interviewee was contacted beforehand and had 


the option to answer from a regulatory/organizational perspective or a personal perspective. 


The interview questions, along with the rationale for asking the question and its 


category for coding, are presented in Table 3. 


 


Table 3. Interview Questions 


 
# Individual Opinion Motive Coding 
1.1 What qualifies you to answer 


questions on AI? 
It is an essential 
question because it 
will help us as 
researchers to justify 
the answers of the 
interviewee. 


Background 


1.2 How would you define AI? Will help us when 
coding the response. 


 


1.3 How did you come in contact with 
AI? 


  


1.4 Do you or your organization 
currently use AI? 


  


1.5 If yes, how and in what ways, 
means, or types do you and your 
organization utilize AI? 


  


2.1 What do you consider to be AI? Different individuals 
and organizations 
have diverse 
definitions of AI. 


Framing 


2.2 What is NOT AI? It is sometimes easier 
to describe what 
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something is not 
instead of what it is. 


2.3 Within AI, which of the subsets are 
most common or familiar? 


Help validate answers 
on the application and 
transparency of AI. 


 


2.4 From your point of view, what are 
the three most important drivers of 
AI? 


It will give us a 
direction of potential 
biases in the later 
answers. 


 


2.5 What are the possible adverse 
outcomes with AI? 


Could give a hint on 
moral and ethical 
perspectives. 


 


2.6 When acquiring AI, was it a quick 
fix or a long-term implementation? 


It is interesting 
because, often SOF 
has a different 
acquisition track, 
which leads to faster 
shopping. 


Timeframe 


2.7 Depending on the answer, 
successful or not? 


  


2.8 After how long did your 
organization have an impact on the 
acquired AI system? 


Interesting to compare 
acquisition times with 
effectiveness. 


 


3.1 How would you describe 
transparency in procurement or 
acquisition? 


Will show if the 
interviewee has 
considered different 
factors on 
transparency and 
procurement. 


Transparency  


3.2 Did your organization acquire AI 
because of need or because of an 
introduction to a product or 
solution? 


  


3.3 When acquiring AI, what should 
one question? 


This question will 
give guidance on the 
mindset of acquisition. 


 


3.4 When acquiring AI, give us your 
thoughts on what an enterprise 
should consider? 


See above.  


3.5 Do you think it is vital to get 
access to the source code of an 
algorithm when acquiring AI, 
please develop your answer? 


See above. It will also 
tell the willingness to 
question or present – 
Transparency. 
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3.6 What infrastructural considerations 
have you discovered when 
acquiring AI? 


Is it a demanding 
infrastructural project 
or not? 


Infrastructure 


3.7 Has infrastructure inflicted any 
limitations on your procurement or 
the acquiring process? 


Plan ahead.  


3.8 Has the lack of infrastructure made 
you or your organization turn down 
an AI product? 


Why didn’t or did the 
organization buy a 
product. 


 


3.9 Have you made organizational 
changes? 


Have the personnel 
been replaced by 
machines or have 
human resources been 
able to focus on other 
areas? 


 


4.1  What is security, and is it 
important? 


How does the person 
define security? Will 
help us to get the 
context of the answers 
on the security 
questions. 


Security 


4.2 From your point of view, describe 
possible security issues when 
acquiring and implementing AI? 


It will give examples 
of security flaws. 


 


4.3 How can these possible security 
issues be mitigated? 


See above.  


4.4 Have you heard of, or have you 
experienced any security flaws 
directly connect to the 
implementation of AI? 


Possible 
straightforward 
answers. 


 


5.1 When discussing AI, talking data is 
essential: what is data? 


How do the 
interviewees define 
data? 


Data 


5.2  What does the availability of data 
mean to you? 


Will give the 
perspective on data 
and AI. 


 


5.3 Is it essential to define what data 
one possesses before acquiring AI? 


It will provide us with 
a hint on the focus 
area of AI. 


 


5.4 Are there specific areas within AI 
that address data? 


Data in transit or 
process. Data at rest, 
or is data just what’s 
being observed by a 
UAV that is using AI 
to navigate? 
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5.5 If data is not essential to AI, what 
is? 


A more philosophical 
angle. 


 


6.1 What can we expect from AI in the 
future? 


A prediction of future 
application. 


Future 


6.2 What will we NOT see from AI in 
the future? 


Interesting to get the 
person’s angle. 


 


6.3 What ethical considerations did 
you or your organization have? 


Ethical discussions are 
vast when it comes to 
AI. Therefore, the 
position on this 
subject is interesting. 


Ethics 


6.4 Do you or your organization have 
an ethical framework for AI and its 
utilization? 


  


6.5 Would there be ethical decisions 
that prevent your organization from 
buying an AI system? 


  


6.6 How did you implement the ethical 
discussion, the framework into 
your organization? 


  


7.1 Have you evaluated the 
effectiveness of your AI system? 


 Measure of effect 


7.2 How were you able to evaluate 
this? 


  


7.3 Has AI affected your overall 
budget? 


The answer can be 
diverse; yes, in the 
short term, it has been 
costly, but we think 
we will have a return 
on an investment after 
x years. 


 


8.1 What, from your perspective, are 
the three main vital takeaways we 
should consider when we continue 
our pursuit of solving our 
capstone?  


A chance to stress 
what’s essential for 
the individual. 


Key points 


8.2 Any final considerations and 
anything you would like to remove, 
change, or add? 


The last chance to 
change or take back 
any answers or add 
information. 


Final 
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1.1a What qualifies your position 
within the organization to 
answer questions on AI? 


It is an essential 
question because it 
will help us as 
researchers to justify 
the answers of the 
interviewee. 


Background 


1.2a How would your organization 
define AI? 


Will help us when 
coding the response. 


 


1.3a How did your organization 
come in contact with AI? 


  


1.4a Does your organization 
currently use AI? 


  


1.5a If yes, how and in what ways, 
means, or types does your 
organization utilize AI? 


  


2.1b What does your organization 
consider to be AI? 


Different 
organizations have 
diverse definitions of 
AI. 


Framing 


2.2b What is NOT AI? It is sometimes 
easier to describe 
what something is 
not instead of what it 
is. 


 


2.3b Within AI, which of the subsets 
are most common or familiar, 
according to your organization? 


Help validate 
answers on the 
application and 
transparency of AI. 


 


2.4b From your organizational point 
of view, what are the three 
most important drivers of AI? 


It will give us a 
direction of potential 
biases in the later 
answers. 


 


2.5b What are the possible adverse 
outcomes with AI? 


Could give a hint on 
moral and ethical 
perspectives. 


 


2.6b When your organization 
acquired AI, was it a quick fix 
or a long-term implementation 
from an organizational point of 
view? 


It is interesting 
because often SOF 
has a different 
acquisition track, 
which leads to faster 
shopping. 


Timeframe 


2.7b Depending on the answer, 
successful or not? 
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2.8b After how long did your 
organization have an impact on 
the acquired AI system? 


Interesting to 
compare acquisition 
times with 
effectiveness. 


 


3.1c How would your organization 
describe transparency in 
procurement or acquisition? 


Will show if the 
interviewee has 
considered different 
factors on 
transparency and 
procurement. 


Transparency  


3.2c Did your organization acquire 
AI because of need or because 
of an introduction to a product 
or solution? 


  


3.3c When purchasing AI, what 
should one question according 
to your organization? 


This question will 
give guidance on the 
mindset of 
acquisition. 


 


3.4c When acquiring AI, give us 
your organization’s thoughts on 
what an enterprise should 
consider? 


See above.  


3.5c Does your organization think it 
is vital to get access to the 
source code of an algorithm 
when acquiring AI, and please 
develop the answer? 


See above. It will 
also tell the 
willingness to 
question or present – 
Transparency. 


 


3.6c What infrastructural 
considerations has your 
organization discovered when 
acquiring AI? 


Is it a demanding 
infrastructural 
project or not? 


Infrastructure 


3.7c Has infrastructure inflicted any 
limitations on your 
procurement or the acquiring 
process? 


Plan ahead.  


3.8c Has the lack of infrastructure 
made your organization turn 
down an AI product? 


Why didn’t or did 
the organization buy 
a product. 


 


3.9c Has your org. made 
organizational changes? 


Have the personnel 
been replaced by 
machines or have 
human resources 
been able to focus on 
other areas? 
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4.1 d What is security, and how is it 
essential to your organization? 


How does the person 
define security? Will 
help us to get the 
context of the 
answers on the 
security questions. 


Security 


4.2d From your organization’s point 
of view, describe possible 
security issues when acquiring 
and implementing AI? 


It will give examples 
of security flaws. 


 


4.3d How can these possible 
security issues be mitigated 
according to your organization? 


See above.  


4.4d Has your organization heard of, 
or has it experienced any 
security flaws directly connect 
to the implementation of AI? 


Possible 
straightforward 
answers. 


 


5.1e When discussing AI, talking 
data is essential: what is data 
according to your organization? 


How do the 
interviewees define 
data? 


Data 


5.2 e What does the availability of 
data mean to your 
organization? 


Will give the 
perspective on data 
and AI. 


 


5.3e Is it essential to define what 
data one possesses before 
acquiring AI into an 
organization? 


It will provide us 
with a hint on the 
focus area of AI. 


 


5.4e Are there specific areas within 
AI that address data? 


Data in transit or 
process. Data at rest, 
or is data just what’s 
being observed by a 
UAV that is using AI 
to navigate? 


 


5.5e If data is not essential to AI, 
what is? 


A more 
philosophical angle. 


 


6.1f What can we expect from AI in 
the future, according to your 
organization? 


A prediction of 
future application. 


Future 


6.2f What will we NOT see from AI 
in the future, according to your 
organization? 


Interesting to get the 
person’s angle. 


 


6.3f What ethical considerations did 
your organization have? 


Ethical discussions 
are vast when it 
comes to AI. 
Therefore, the 


Ethics 
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position on this 
subject is interesting. 


6.4f Does your organization have an 
ethical framework for AI and 
its utilization? 


  


6.5f Would there be ethical 
decisions that prevent your 
organization from buying an AI 
system? 


  


6.6f How did your organization 
implement the ethical 
discussion, the framework into 
your organization? 


  


7.1g Has your organization 
evaluated the effectiveness of 
your AI system? 


 Measure of effect 


7.2g How was your organization 
able to evaluate this? 


  


7.3g Has AI affected your 
organization’s overall budget? 


The answer can be 
diverse; yes, in the 
short term, it has 
been costly, but we 
think we will have a 
return on an 
investment after x 
years. 


 


8.1h What, from your organization’s 
perspective, are the three main 
vital takeaways we should 
consider when we continue our 
pursuit of solving our 
capstone?  


A chance to stress 
what’s essential for 
the individual. 


Key points 


8.2h Any final considerations and 
anything your organization 
would like to remove, change, 
or add? 


The last chance to 
change or take back 
any answers or add 
information. 
 
 


Final 
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SUPPLEMENTALS: QUICK REVIEW AND ANIMATION 


A. CAPSTONE QUICK REVIEW  


The supplemental briefly describes major findings of the research and potential 


applications for the model discussed in the main body of the capstone report and is 


presented in a more accessible format. The supplement uses parts of the main body text 


and is intended for presentational use only. Access to the report is possible either via link 


available within the main thesis catalog entry in the NPS Institutional Archive, Calhoun, 


or by contacting the NPS library. 


B. SHORT ANIMATION AND INTRODUCTION 


A short animation in Doodley depicts the research results as three guidelines. The 


guidelines aim to help an organization interested in acquiring AI and serves to nurture 


interest in the research report/capstone. It is intended for presentational use only via social 


media. The animation refers to the capstone report. Access to the animation is possible 


either via link available within the main thesis catalog entry in the NPS Institutional 


Archive, Calhoun, or by contacting the NPS library. 
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GETTING AHEAD IN THE AI RACE 
As Artificial Intelligence (AI) continues to evolve with ever-increasing speed, especially 
in the commercial sector, the military community runs the risk of being left behind. 
This is especially problematic for the Special Operations Forces (SOF) worldwide as 
they often are the first to encounter new methods and technology employed by 
irregular adversaries. By studying contemporary research and interviewing current 
experts within the field of AI, this capstone report suggests which factors the SOF 
community must consider when acquiring and evaluating new AI capabilities. Avoiding 
the traps associated with AI can only be done in conjunction with other organizations, 
focusing on the right products and managing user expectation. As a solution, the 
report on which this presentation is based proposes a tentative model focused on risk 
mitigation and rapid procurement chains to allow for SOF to maintain its edge on the 
current battlefield. 
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1 John Haugeland, Artificial Intelligence: The Very Idea, 1st paperback ed. (Cambridge, MA: MIT Press, 1989), 176, 
https://ieeexplore-ieee-org.libproxy.nps.edu/xpl/ebooks/bookPdfWithBanner.jsp?fileName=6302870.pdf&bkn= 
6276821&pdfType=chapter. 
2 René F. Kizilcec, “How Much Information?: Effects of Transparency on Trust in an Algorithmic Interface,” in Proceedings 
of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, CA: ACM, 2016), 2393. 
https://doi.org/10.1145/2858036.2858402. 


WHAT IS THE PROBLEM WITH AI? 
The current discussion about AI is often centered around how this new technology is plagued with 
accountability problems and biases. Faced with the idea that new technology might harm rather than 
help organizations, as soon as AI is mentioned, potential buyers often regard AI with skepticism and 
fear. This apprehension about new technologies often results in long investigations and assessments 
before a product can be implemented. However, there is little new about AI: depending on how AI is 
defined, it has been around for nearly 70 years (about as long as commercial flight).1 Furthermore, the 
question about biases and accountability is deeply connected to the tasks the specific AI is expected to 
perform, rather than to the AI model itself. So how can we mitigate these potential pitfalls to shorten the 
time from idea to implementation? 
 
Trust  
For new technology to get accepted in society, humans must trust that the product performs as 
projected. However, in order to develop this trust, we must use, test, and try products. It does not matter 
if the specifications guarantee 100% effectiveness at a task if the product breaks down once every hour. 
If the product does not work, we will not trust nor use it. But, if a product actually performs its tasks and 
is reliable, we will gradually trust it, thereby allowing us to expect similar or better results from similar 
products. So how do we begin to build this trust? 
 
 Expectation Management 
Research has proven that our expectations reflect how much we trust products.2 If the general 
feeling is that AI will revolutionize every aspect of our work tomorrow, many will feel that AI has let 
them down. In the same way that we don’t expect a new rifle will make every round hit the target, 
we can’t expect AI to perform miracles. Innovations and development seldom make giant leaps; 
instead, we should focus on constantly making small improvements. 


 
 Trustworthy Partners 
Although several organizations and companies promise exactly these quantum leaps in 
development, there is reason to be skeptical: a one-off sportscar made by an upstart company might 
have the better specifications, but you will probably buy a car from a more established brand, since 
you know that their cars usually are of high quality and comes with guarantees and established 
service sites. Hence, working with and through trustworthy partners within the commercial sector 
and academia, the military can maintain and create trust in the AI products it considers procuring. 


 
 Education 
Paramount in building the trust in AI is educating users. If users know how something works, they 
have a better understanding of what to expect. However, this does not mean that everyone must 
be an expert to use an AI-driven product; you do not have to be a certified mechanic to drive a car, 
but you do need a driver’s license. Although there must be some experts skilled in repairing and 
analyzing the products, the military should tap the expertise that already exists in academia and the 
commercial sector to create innovation networks and benefit fully from the evolution of AI. 







 
 


SUPPLEMENT 1 OF 2 
QUICK REVIEW: 


“Tip of the Spear: Can Special Forces Lead the Way for Military 
Applications of AI?” 


4 


 


Managing the Risks of AI 
Although AI promises new solutions for military 
applications, it also introduces several potential risks: 
Lack of transparency can mean that decisions are 
made on faulty assumptions, as the operator does not 
fully understand how the AI model reached a certain 
conclusion. The security of the AI-model itself must 
be maintained, as it can be attacked and corrupted 
through adversarial attacks. Similarly, the data used 
can be corrupted or stolen.  
 
 
 Security 
Apart from regular cyber security risks, two main threats to AI stand out: poisoning attacks and 
evasion attacks. Poisoning attacks target the ML algorithms and learning data (the ML model) by 
introducing new associations into the model to corrupt the model.3 Evasion attacks are instead 
aimed at misguiding an otherwise working model into faulty classification by presenting an 
adversarial example.4 With the possibilities offered through poisoning and input attacks of tricking 
ML models into missing or failing to detect threats, the consequences can be catastrophic, 
especially in a military context. 


 
 Transparency 
Transparency in AI comes from understanding; as Stoica et al. explain, “for a model to be fully 
understood, a human should be able to take the input data together with the parameters of the 
model and in reasonable time step through every calculation required to produce a prediction.”5 
Simply put, a human has to be able to understand how and why an AI system functions. To benefit 
fully from transparency, organizations must focus efforts on educating operators and ensuring 
support by a core of highly skilled personnel capable of evaluating the potential benefits of 
incorporation of AI. 


 
 Data 
AI is driven by data. Without access to data to learn from or process, AI cannot function. However, 
since data constitutes the foundation for working AI, the integrity, safe storage, and access to data 
used become essential. Three main issues relate to the data used by AI: biases, access, and cost. 
Biases can occur from using bad data to train the AI or skew the analysis.6 Access refers to how 
to obtain the needed data (own resources, commercial companies, or other government 
organizations.) Lastly, obtaining and maintaining data implies infrastructure costs to organizations.7 


                                            
3 Ion Stoica et al., A Berkeley View of Systems Challenges for AI, UCB/EECS-2017-159 (Berkley, CA: Electrical 
Engineering and Computer Sciences University of California at Berkeley, 2017), 5, 
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.pdf. 
4 Ilja Moisejevs, “Evasion Attacks on Machine Learning (or “Adversarial Examples”),” Towards Data Science, July 2019, 
Evading Machine Learning, https://towardsdatascience.com/evasion-attacks-on-machine-learning-or-adversarial-
examples-12f2283e06a1. 
5 Zachary C. Lipton, “In Machine Learning, the Concept of Interpretability Is Both Important and Slippery.” Queue 16, no. 
3 (May 2018),13. https://dl.acm.org/doi/pdf/10.1145/3236386.3241340. 
6 James Zou and Londa Schiebinger, “AI Can Be Sexist and Racist — It’s Time to Make It Fair,” Nature 559, no. 7714, 
July 2018, 324–326, https://doi.org/10.1038/d41586-018-05707-8. 
7 D. Sculley, Gary Holt, D. Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, 
Jean-François Crespo and Dan Dennison., “Hidden Technical Debt in Machine Learning Systems,” NIPS (2015), 1, 
https://www.semanticscholar.org/paper/Hidden-Technical-Debt-in-Machine-Learning-Systems-Sculley-
Holt/1eb131a34fbb508a9dd8b646950c65901d6f1a5b 


Figure 1: Visualization of the identified main components of 
AI security identified in the capstone report. 
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SPEEDING UP IMPLEMENTATION OF AI 
Keeping up in the AI-arms race requires procurement policies and supply chains that maintain the 
relevance of the current situation. Fortunately, large parts of the SOF community around the world have 
rapid procurement chains, protocols for testing, and procedures in place for evaluation. However, 
regardless of how fast the procurement chain might be, the military must focus on the right products to 
avoid the risk of simple solutions getting bogged down in slow multi-organization procurement. 
 
 Product and Capability Focus 
Examining all possible ways to solve the problem at hand, instead of requiring the solution to 
incorporate AI, is a great first step to approach the problem. However, if the solution turns out to be 
based on an AI-driven product, it is important to focus on the actual tasks the product is expected 
to perform, instead of searching for potential pitfalls in the AI. Few have any objections about using 
a phone to support their everyday life, while many might object to using voice recognition AI to 
identify specific persons. 


 
 Realistic AI Products 
By avoiding products that promise autonomous actions and decision making outside of human 
control or intervention, it is possible to reduce the risk of getting caught up in ethical debates not 
yet been solved (and that might not be solved for a very long time), such as the question of self-
driving cars. Instead, focusing on solutions that speed up decision making and actions while 
maintaining a human in the loop greatly enhances the possibilities of actual implementation. 


 
 Front-end AI 
A focus on user-friendly products of a “Plug-n-Play” character that are less reliant on r support of 
back-end systems to operate potentially limits the need for lengthy cooperative evaluations before 
implementation of the product. If the safety, maintenance, and risk of implementing the product can 
be accommodated by the organization, the potential time for implementation can be drastically 
reduced. 


 


 
Figure 2: Simplified division of front- and back-end AI. 


Evaluate the Current Organization 
Assessing organizational capability is critical to make sure that the proposed solution will render the 
desired effects. When conducting the assessment, it is essential to address the question of capability:; 
Does the organization have the necessary knowledge to run and maintain an AI functionality? If not, 
then what is needed to acquire these critical capabilities? 
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Speed up the Process  
When a problem or an AI-solution is identified or presented, the requirements of the actual application 
(not only focusing on the AI) should be identified. However, the depth in evaluation of the earlier 
identified parameters of transparency, security, and data might be greatly reduced if a proposed 
product is first assessed by its application and risk. 
 
 Application 


Where the product is intended to be employed physically and How the model will be used indicate the 
need for security, ethical considerations, training, infrastructure, and the required support and 
maintenance. 
 
 Risk 


Assessing the risk of failure or compromise of the AI product relates to mission, tactical, or strategic 
levels. If the failure will affect other parties or systems, their needs must be considered during the 
process. 
 


If there is a need for a support structure outside the 
organization for the product to work efficiently, this 
might indicate that the solution is of a “back-end” 
character. If so, the need to work with the 
stakeholders of other connected systems and data 
must be considered. 
 
If the solution is manageable within the organization, 
and more of a “front-end” character, the specific risks 
of the product should be considered. Higher risks 
would indicate that implementation might affect other 
parts of the military or organizations. 
 
However, if there are no apparent issues identified, 
the SOF organization should be capable of 
implementing, testing, and evaluating the product 
within its own organization. 
 
 
 
 
 


 
Why Is This Important? 
Smaller organizations, like SOF, should focus on their strengths. In the case of SOF, this often entails 
the faster acquisition process rather than a high degree of technical expertise. Hence, collaborating 
with organizations capable of educating proficient AI professionals might be necessary for the more 
complicated applications. By determining the problem to be solved and applying the model, if the 
suggested solution contains an AI element, the organization should quickly realize if the capacity and 
capability to implement the product exists within the organization or if outside support is needed. 
 
While larger and more complex solutions certainly will be necessary, the main point is to find a way to 
use, learn, and begin to trust AI solutions as quickly as possible. As more solutions containing AI are 
implemented, knowledge and capacity will grow within the organization, making it more receptive to 
new ideas in the future.  


Figure 3: Capstone model applied in a process. 
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SUMMARY 
Even though AI may continue to change several aspects of society, many questions still need 
addressing before AI gains the full trust of humanity. History provides many examples of innovations 
that altered the world; however, few innovations have revolutionized society within a few years. Most 
led to incremental changes to which the world has adapted. As the world continues to change, it seems 
likely that the integration of and advances in AI will continue to gradually affect the military as well. 
However, considering humans' reluctance to adapt to changes, SOF and their unique requirements 
might have an opportunity to remain at the tip of the spear. If a sound procurement process can be 
adopted, mitigating potential risks to and limitations of the organizations, it may be possible to increase 
knowledge of and trust in AI incrementally. Eventually, the broad base of acquired trust will allow for 
larger, more sophisticated solutions to be implemented with less resistance. As it turns out, learning to 
crawl might be the only way to win the AI race. 
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