RAEsTANTlA PER sCIENnAM

g

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

A GENERALIZED ANALYTIC FOR THE DETECTION
OF SYNTHETIC MEDIA

by
Patrick L. Reilly
June 2021

Thesis Advisor: Robert L. Bassett
Second Reader: Ross J. Schuchard

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

Form Approved OMB
REPORT DOCUMENTATION PAGE No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
(Leave blank) June 2021 Master's thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A GENERALIZED ANALYTIC FOR THE DETECTION OF SYNTHETIC

MEDIA

6. AUTHOR(S) Patrick L. Reilly

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND 10. SPONSORING /
ADDRESS(ES) MONITORING AGENCY
N/A REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release. Distribution is unlimited. A

13. ABSTRACT (maximum 200 words)

Convolutional neural networks (CNNs) and generative adversarial networks (GANs) have quickly
become leading tools for the creation of convincing synthetic images. Such images increase the difficulty of
discerning fact from fiction in the information space, where such challenges can degrade the quality and
timeliness of decision-making. To compete, we must develop tools that can automatically detect artificially
generated images. A major challenge in this area centers around the high number of unique image
generation methods. We therefore seek a classification analytic that can successfully generalize when
tested on images from multiple image generation algorithms. The 2020 paper “CNN-Generated
Images Are Surprisingly Easy to Spot... For Now” by Wang et al. proposes such an approach. The
study conducted here independently tests and validates this analytic in a variety of use cases. We
begin by focusing on the reproducibility of the analytic using both publicly released and retrained
models, the performance of the analytic on a dataset of images where generator type is unknown, and
the analytic’s effectiveness in the detection of traditional deepfakes. We also examine the analytic’s
robustness in response to reductions in image quality via compression and adversarial perturbations.
Finally, we attempt to improve the analytic’s performance by using a state-of-the-art generator to produce a

new image training set.

14. SUBJECT TERMS 15. NUMBER OF
image classification, machine learning, synthetic media, image generation, neural networks, | PAGES
convolutional neural networks, CNNs, generative adversarial networks, GANs, deepfakes 69

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS | CLASSIFICATION OF | ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified uu
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

1

Approved for public release. Distribution is unlimited.

A GENERALIZED ANALYTIC FOR THE DETECTION OF SYNTHETIC
MEDIA

Patrick L. Reilly
Captain, United States Marine Corps
BA, University of Virginia, 2011
MA, University of Virginia, 2012

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH
from the

NAVAL POSTGRADUATE SCHOOL
June 2021

Approved by: Robert L. Bassett
Advisor

Ross J. Schuchard
Second Reader

W. Matthew Carlyle
Chair, Department of Operations Research

i1

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Convolutional neural networks (CNNs) and generative adversarial networks
(GANs) have quickly become leading tools for the creation of convincing synthetic
images. Such images increase the difficulty of discerning fact from fiction in the
information space, where such challenges can degrade the quality and timeliness of
decision-making. To compete, we must develop tools that can automatically detect
artificially generated images. A major challenge in this area centers around the high
number of unique image generation methods. We therefore seek a classification analytic
that can successfully generalize when tested on images from multiple image
generation algorithms. The 2020 paper “CNN-Generated Images Are Surprisingly
Easy to Spot... For Now” by Wang et al. proposes such an approach. The study
conducted here independently tests and validates this analytic in a variety of use cases.
We begin by focusing on the reproducibility of the analytic using both publicly
released and retrained models, the performance of the analytic on a dataset of
images where generator type is unknown, and the analytic’s effectiveness in the
detection of traditional deepfakes. We also examine the analytic’s robustness in
response to reductions in image quality via compression and adversarial
perturbations. Finally, we attempt to improve the analytic’s performance by using a

state-of-the-art generator to produce a new image training set.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction
1.1 Motivation .
1.2 Relevance .

1.3 Technical Context .

2 Supporting Concepts and Data
2.1 Supporting Concepts .
2.2 The Data

3 Summary of the Analytic
3.1 Classifier Design

3.2 Training the Classifier .
3.3 Evaluating Test Datasets
3.4 Results .

3.5 Analysis.

4 Reproducibility and Experiments
4.1 Reproducibility Results .

4.2 Experiments .

4.3 Conclusion.

List of References

Initial Distribution List

vii

N N =

14

27
27
27
28
30
32

33

33

35

45

47

51

THIS PAGE INTENTIONALLY LEFT BLANK

viii

List of Figures

Figure 2.1 Two basic neural networks
Figure 2.2 An image RGB tensor
Figure 2.3 Basic CNN convolution

Figure 2.4 Basic GAN architecture

Figure 2.5 Basic deepfake autoencoder scheme

Figure 2.6 General deepfake creation process

Figure 2.7 Unconditional GANs

Figure 2.8 Conditional GANs

Figure 2.9 Non-adversarial semantic layoutmodels

Figure 2.10 Non-adversarial low-light/high-resolution models

Figure 2.11 Deepfakemodelso

Figure 3.1 Original analytic AP graphic

Figure 3.2 Original analytic robustness to augmentations

Figure 4.1 New StyleGAN?2 training dataset

Figure 4.2 Experiment: adversarial perturbation example

iX

10
11
12
13
14
15
18
20
21

22

30

31

40

43

THIS PAGE INTENTIONALLY LEFT BLANK

List of Tables

Table 3.1

Table 3.2

Table 4.1
Table 4.2
Table 4.3

Table 4.4

Table 4.5
Table 4.6
Table 4.7
Table 4.8

Table 4.9

Model training parameters

Original analyticresults

Reproducibility results: pre-trained author models
Reproducibility results: re-trained author models
Experiment: performance on test set of mixed generators

Experiment: retrained model performance on additional deepfake
datasets

Experiment: JPEG Only model performance on deepfake datasets

StyleGAN?2 training and validationsets
Experiment: StyleGAN?2 model results on author dataset
Experiment: StyleGAN?2 model results on deepfake datasets

Experiment: model performance on perturbed images

X1

28

30

33
34

36

37
38
40
42
42

44

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

List of Acronyms and Abbreviations

AP
CIELAB
CRN
CNN
DFDC
DFDD
DOD
GAN
IMLE
LSUN
mAP
NPS
ReLLU
SAN
SITD
SISR
WFIR

average precision

CIE L*a*b*

cascaded refinement network
convolutional neural network
Deepfake Detection Challenge
Deepfake Detection Dataset
Department of Defense
generative adversarial network
implicit maximum likelihood estimation
Large Scale Scene Understanding
mean average precision

Naval Postgraduate School
rectified linear unit

second-order attention network
See-in-the-Dark

single image super-resolution

‘Which Face is Real

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

Executive Summary

Convolutional neural networks (CNNs) and generative adversarial networks (GANs) have
quickly become leading tools for the creation of synthetic images. A significant challenge in
the detection of these artificial images centers around the high number of unique CNN-based
image generation methods now available, each of which is algorithmically distinct, with its
own set of strengths and weaknesses as to the types of images it produces. Organizations
and agencies whose duties include media authentication must possess tools that enable the
accurate classification of suspected synthetic images without prior knowledge of the images’
provenance. We therefore seek a classification analytic that can successfully generalize when

tested on images from multiple image generation algorithms.

The paper CNN-generated images are surprisingly easy to spot... for now by Wang et al.
(2020) proposes such an approach. Using training images from a single CNN model with
real images as negative examples, the authors claim to achieve a minimum of 88.2 percent
average precision against 10 different CNN-based image generators, as well as traditional
deepfake face replacements (Wang et al. 2020). If authentic and reproducible, these results

would represent a significant breakthrough in the fight against manipulated imagery.

In this study, we seek to understand and validate the algorithm proposed in Wang et al.
(2020) by examining the assumptions of the paper and attempting to recreate the paper’s
results. After testing both publicly released models and retraining the models described in
the paper, we find that while we were able to reproduce many of the paper’s results, the
analytic is not a reliable detector of deepfake face swaps. We also create a new dataset to
test the analytic’s performance in a simulated real-world scenario where the analytic must

classify images of unknown provenance.

To further understand the strengths and weaknesses of the proposed analytic, we also eval-
uate the analytic’s performance against four new deepfake datasets and assess the analytic’s
robustness to image compression and adversarial perturbations. Finally, we attempt to im-
prove the performance of the analytic on high-resolution images and deepfakes by retraining

its underlying models on StyleGAN?2, a new state-of-the-art image generator.

XV

List of References

Wang SY, Wang O, Zhang R, Owens A, Efros AA (2020) CNN-generated images are surprisingly
easy to spot... for now. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 8695-8704.

Xvi

CHAPTER 1

Introduction

This thesis is a reproducibility study of the paper CNN-generated images are surprisingly
easy to spot...for now by Wang et al. (2020). The authors of this paper propose an analytic
based on a convolutional neural network (CNN) for the classification of images as real or
synthetic. When trained on images from a single artificial image generator, the analytic
is reported to successfully classify images from a variety of different image generation
algorithms. In this thesis, we attempt to independently reproduce the authors’ results,
extend the analytic’s performance to additional datasets, evaluate the analytic’s robustness
to compression and adversarial perturbations, and improve the analytic’s performance by

retraining the analytic on images from a new, state-of-the-art image generator.

1.1 Motivation

CNNs have quickly become leading tools for the creation of synthetic images. A significant
challenge in the detection of these artificial images centers around the high number of unique
CNN-based image generation methods now available, each algorithmically distinct with its
own set of strengths and weaknesses as to the types of images it produces. Researchers have
successfully trained classifiers capable of detecting images generated by individual CNN-
based algorithms, but such classifiers have been shown to perform unsatisfactorily when
tested against similar images created by different methods (Wang et al. 2020). We therefore
seek a classification analytic that can successfully generalize when tested on images from

multiple image generation algorithms.

The paper independently evaluated in this thesis proposes such an approach. Using training
images from a single CNN model with real images as negative examples, the authors claim
to achieve a minimum of 88.2 percent average precision (AP) against 10 different CNN-
based image generators, as well as traditional deepfake face replacements. If authentic and
reproducible, these results would represent a significant breakthrough in the fight against

manipulated imagery.

1.2 Relevance

Amplified in their influence by global social media networks, manipulated and artificial
images and videos may soon impact domestic and international politics on a regular basis.
In May 2019, a digitally manipulated video of House Speaker Nancy Pelosi was posted
to several political Facebook pages, which appeared to show the House Speaker speaking
incoherently in an onstage speech. Using only rudimentary editing techniques, the original
video had been slowed down and re-rendered, with the audio track modified to match the
video without a resulting loss in pitch. The video received wide distribution and at least 2
million views. A variation was shared by the sitting President of the United States on social
media (Harwell 2019).

Elsewhere, in the central-African Gabonese Republic, a 2019 New Year’s video address
by an ailing President Ali Bongo was widely interpreted to be manipulated. Owing to
perceived changes in the facial appearance of President Bongo, now known to be the
result of a recent stroke, opposition figures claimed that the video featured the leader’s
face artificially superimposed onto a body double. Stoking fears of President Bongo’s
medical incapacitation and a subsequent digital cover-up, opposition leaders sparked an
unsuccessful military coup (Cahlan 2020). These incidents exemplify the potential impact
that manipulated images and videos may have in the domestic and international political

spheres.

Moreover, good decision making requires access to timely, accurate information, which
in turn requires the ability to quickly distinguish fact from fiction. Manipulated media
threatens to diminish this ability, but by developing tools to detect artificially generated
images we can better equip decision-makers with the information they need. Furthermore,
by automating this detection process, we hope to compete with the rate at which artificial

media is generated.

1.3 Technical Context

In the past decade, CNNs have emerged as a leading architecture for image analysis tasks,
with applications that include both synthetic image generation and detection. In generative
applications, neural network models essentially seek to approximate probability distribu-

tions by training on a set of representative samples from such distributions (Ruthotto and

Haber 2021). In the context of synthetic image generation, these samples consist of sets of
images with common features that a user might seek to replicate artificially. For example, a
user seeking to create synthetic images of human faces might train models on a set of real

portraits.

While some image generation techniques employ non-adversarial methods to create syn-
thetic images, an increasingly common approach is to employ a generative adversarial net-
work (GAN). This architecture features a generative network and a discriminative network
working in parallel. The generator attempts to construct images that fool the discriminator,
while the discriminator attempts to determine if the generated images came from a training
dataset or from the generator (Goodfellow et al. 2014). Insights from the discriminator are
shared with the generator, theoretically allowing the generation of increasingly convincing

synthetic images over time.

Another related and emerging technique for artificial image generation concerns deepfakes!
in which two neural network-based autoencoders replace the face of an individual with that
of another person. Unlike other generative techniques which create entirely new synthetic
images, deepfakes replace only the facial region of a source image or video, leaving the rest

of the source image or video in its original form.

The growth in research into synthetic image generation approaches has also sparked parallel
research into techniques for detecting such images, and a variety of detection techniques have
been proposed in the last five years. To detect fake GAN-based images, Zhang et al. (2019)
propose a classifier model that does not rely on a dataset of synthetic images for training.
Zhang et al. (2019) construct a synthetic image simulator that generates spectral artifacts
similar to those produced by the upsampling layer of many GANSs, and then overlays these
artifacts onto real images. The researchers then train a classifier on the frequency spectra
of their real and simulated synthetic images. The classifier demonstrates high accuracy
against real and fake images from the dataset used to train their GAN simulator but fails to

generalize when shown images from other datasets (Zhang et al. 2019).

1A note on terminology: Some organizations and publications use the term deepfake to refer to any
synthetic image or video created using a deep learning approach. Here, we use the definition of deepfake in
its most specific form to refer only to those images and videos in which the face of an individual is replaced
with the face of a second individual through an autoencoder-based face swap. This convention matches that
used in the documentation for our analytic of study.

Cozzolino et al. (2018) create a classifier based on an autoencoder architecture that learns
forensic information such as high-frequency noise from an initial training set and preserves
this information in the latent space alongside the data required for the classifier’s prediction.
The researchers then show their classifier a small sample of images from a new target
image generator from which they wish to classify images. Cozzolino et al. (2018) achieve
promising accuracy results, but the requirement of their classifier to see images from new
datasets in advance before generalizing, along with the limited pairings of training and
testing generators included in their study, restrict the utility of their classifier in areas where

broad generalization across image generators is required (Cozzolino et al. 2018).

Other research teams have proposed methods which specifically focus on detecting synthetic
human subjects. Wang et al. (2019) propose an analytic which uses the neuron behavior in
the layers of a third-party facial recognition system as the input to a shallow binary classifier.
This technique contrasts with the image classifiers above, which rely on image pixel data or
frequency spectra inputs. The classifier exhibits strong performance against several GAN-
based image generators and two deepfake datasets, but its reliance on facial recognition
software prohibits generalization beyond images with human subjects and visible facial
regions (Wang et al. 2019).

More recently, Liu et al. (2020) have proposed a classifier that relies on the differences in
the texture data of real and synthetic images to make predictions. The researchers build
upon a ResNet model by incorporating an additional layer to capture global texture data
and then test their classifier on a variety of GAN-based datasets. The classifier shows
promising performance, but as above, training and testing dataset pairings are limited, and

the researchers restrict their test datasets to those featuring human faces (Liu et al. 2020).

Guarnera et al. (2020) construct a classifier using an expectation maximization technique
to record the local correlation between pixels in images from several common GAN-based
generators, under the assumption that the final convolutional layers of such generators
produce unique sets of correlations. The classifier can detect differences between real and
fake images across several image GAN-based generators and can also correctly label the
generator that produced a given fake image in a two-class dataset of synthetic images.
However, the classifier must be trained on images from multiple generators to be effective,

and the testing conducting by the researchers was limited to datasets featuring human faces.

Finally, while this report was in draft, Frank and Holz (2021) published a second independent
reproducibility study of the analytic proposed by Wang et al. (2020). Our report and that
completed by Frank and Holz (2021) have significant methodological differences and areas
of focus. Frank and Holz (2021) reconstruct the analytic without the use of the authors’
published code base, and focus on evaluating two specific claims regarding the impact of
training set diversity and image augmentations at training time on the analytic’s performance
(a full summary of the analytic is included in Chapter 3). Despite the differences in our
reports, we observe some common findings about the efficacy of the analytic, and taken

together, these reports illustrate the high priority of research into this field.

In this chapter, we have briefly summarized the analytic of interest, provided motivation
for our reproducibility study, and shown that this analysis has social, military, and political
relevance. In the next chapter, we discuss the supporting technical concepts behind the
analytic, and explore the image generators and datasets used to train and test the analytic’s

classifiers.

THIS PAGE INTENTIONALLY LEFT BLANK

CHAPTER 2:
Supporting Concepts and Data

In Chapter 2, we define several machine learning concepts which are critical to the under-
standing of the analytic of study. We also document each of the image datasets used to train

and test the analytic’s proposed classifier.

2.1 Supporting Concepts
Chapter 1 briefly introduced the concepts CNNs and GANSs in the context of image analysis.
In this section, we define these concepts in greater detail to support the discussion of the

analytic in subsequent chapters.

2.1.1 Neural Networks

Neural networks are a class of machine learning algorithms capable of modeling complex,
nonlinear relationships. In the most general sense, a neural network seeks to model a true
relationship f* between an input x and an output y. By learning a set of parameters 6, the
neural network defines a new function f such thaty = f(x; @) models the true relationship
f* with the highest possible fidelity (Goodfellow et al. 2016).

In practice, neural networks are usually a composite of many different functions which
together accept an input and produce an output. Each function within this composite will
have a set of different parameters that must be learned and optimized by the model. We
can visualize this composite as an acyclic graph with three or more vectors of nodes, with
each vector representing a single function. We define each function or vector of nodes as
a layer of the neural network; we further define each node within a layer as a neuron.
A neural network must possess, at a minimum, an input layer, an output layer, and an
internal (or hidden) layer (Goodfellow et al. 2016). The output of a network with no hidden
layers amounts to a linear transformation of the input layer, and cannot model nonlinear
relationships. Neural networks with a single hidden layer are referred to as shallow, while

those with two or more hidden layers are defined as deep. A layer with neurons that receive

connections from every neuron in the previous layer is said to be fully connected. Figure

2.1 illustrates two basic networks with fully connected layers in graph form.

> @) S
SO
A\‘i/
output layer

tput layer
input layer input layer

hidden layer hidden layer 1 hidden layer 2

0

X
e

i
o,
@

Figure 2.1. An illustration of two simple neural networks. Left: A neural net-
work with a single hidden layer and a two-dimensional output. Right: A neu-
ral network with two hidden layers and a one-dimensional output. Source: Li
et al. (2021b).

Each layer of a neural network consists of one or more nodes, or neurons. Each neuron is
simply a cell in which the network stores a numeric value. The activation of a given neuron
is determined by several operations on its inputs which are built into the design of the
network or optimized at training time. Returning to Figure 2.1, we see that in both models,
the values in each neuron are passed as input to neurons in the next layer via pathways called
weights. Weights are scalars that can increase or decrease the influence of the inputs to a
neuron on its eventual value; the initial value passed to a neuron is a linear combination of
the input values from the previous layer and their weights. A bias offset is sometimes added
to the end of this linear combination to allow for more granular control of the final value

passed to a neuron (Li et al. 2021b).

The value passed to a neuron undergoes a final transformation by an activation function
to allow the modeling of nonlinear relationships. Common activation functions include
the sigmoid and rectified linear unit (ReLLU) functions. The sigmoid activation function
computes S(x) = ﬁ while the ReLLU function computes R(x) = max(0, x). Different
activation functions can be applied at different layers of a neural network as part of its design,
while weights and biases are optimized during model training. Activation functions are not
generally applied to the output layer of a neural network (Li et al. 2021b). In summary, we
can represent the value of a given neuron y with respective vectors of inputs x and weights

w, bias b, and sigmoid activation function S as

8

y=Sx'w+b). 2.1)

Due to the inherent nonlinearity of the relationships that neural networks often model, loss
functions for optimization of the network tend to be non-convex, making linear solvers
and techniques that seek global convergence inappropriate for this application (Goodfellow
et al. 2016). For this reason, training algorithms for neural networks seek to minimize a loss
function at the output layer via gradient descent without a guarantee of achieving a global
minimum. Stochasticity is introduced by calculating the loss function using only limited
samples from the training set at each iteration (Li et al. 2021c). The size of the sample
shown to the network during a given iteration is called the batch size, while the number
of times the network sees the whole training set is defined as an epoch. Finally, a learning
rate dictates the step size taken in the direction of steepest descent for the loss function at
each iteration. Effective neural network designs require careful selection of the loss function
to balance computational efficiency and modeling performance during training (Li et al.
2021c).

In Section 2.1.2, we extend the definitions introduced here to CNNs, which form the

computational backbone of many common image analysis tasks.

2.1.2 Convolutional Neural Networks

CNNs s are a subclass of deep neural networks inspired by the biology of animal vision that
have exhibited strong performance when applied to the analysis of imagery and other types
of data where information can be specified as an array. CNNs resemble the neural networks
described in Section 2.1.1, but with restructured connections between layers and neurons
(Li et al. 2021a). In applications like imagery analysis, using pixel data as input to a fully
connected neural network quickly becomes computationally intractable, with the required
numbers of weights expanding exponentially with each hidden layer. The architecture of
CNN:s treats the arrangement of neurons volumetrically in three dimensions. This approach
makes sense for imagery analysis, since we can think of an image as a multidimensional
array (or tensor) of pixel data with width and height dimensions equal to the image’s
resolution, with a depth equivalent to the number of color channels: red, blue, and green

(Goodfellow et al. 2016). An example of such a tensor containing pixel data by color is

shown in Figure 2.2.

3 Colour Channels

Height: 4 Units
(Pixels)

Width: 4 Units
(Pixels)

Figure 2.2. An illustration of an RGB image tensor. Color information for
the image is spread across three individual arrays. Source: Saha (2018).

Again referencing the networks described in Section 2.1.1, CNNs require an input layer
and output layer, and in most cases, several fully-connected layers. However, CNNs’ use
of convolutional layers and pooling layers set them apart from simple neural networks (Li
et al. 2021a). The values of a convolutional layer are derived from a weighting filter (or
kernel). The kernel is generally small in width and height relative to the input, but its depth
is equal to that of the input. For example, if evaluated on the RGB tensor above, the kernel
would also have a depth dimension of three. During the evaluation of an input, the kernel
slides across the width and height of the input much like a rectangular magnifying glass
over a block of text. This sliding operation is called a convolution. During a convolution,
the kernel computes the inner product of the kernel weights and its input values at each
step, producing a feature map that represents this computation at each position occupied
by the kernel. Since the kernel also applies weighting over the depth of the traversed array,
a feature map is created for each depth dimension of the input (Li et al. 2021a). Figure 2.3

shows a convolution over a 3x4 input.

Convolutional operations allow the network to “learn” specific features of the input, with
successive layers allowing increasing refinement in the features learned. Convolutional
layers may also be interspersed with pooling layers. As an input traverses a network, pooling
layers at critical junctures allow controlled downsampling to reduce the dimensionality of

the data, reduce computational complexity, and prevent overfitting (Li et al. 2021a).

10

Input

Kernel
c
w z
! ! |
' ! \—’k

v Output

Y z

\ 4

aw + bz + bw + ez + caw + dr +
ey + fz fy + gz gy + hz

ew + fz + fw + gz + gw + hzx +
iy o+ jz jy + kz ky + lz

Figure 2.3. An illustration of a single CNN convolution. A 2x2 kernel operates
on a 3x4 array with stride 1 (i.e., slides one unit at a time), producing a 2x3
output. Source: Goodfellow et al. (2016).

CNNss have applications in both generative and discriminative contexts. Generative models
fundamentally seek to learn approximations of complex probability distributions by training
on representative examples; these models then generate new samples that resemble those
from the training sample (Ruthotto and Haber 2021). For example, a CNN-based image
generator may be trained on images of planes and learn to reproduce samples from an
approximation of the probability distribution that governs the pixel data in such images.
Discriminative models are useful for tasks like classification. In these models, the network is
again exposed to examples of a probability distribution during training, but given an input,
the trained model reports a class score estimating the conditional probability of membership
of the input in the training distribution. In image analysis, classification models can report a
binary classification score, or report probabilities of membership in a specific image class.
In the former case, we might assess whether an input image is real or synthetic; in the latter,
we might test for an image’s class membership to a specific subject category, such as planes
or helicopters. In the next section, we examine the GAN architecture, which relies on both

generative and discriminative networks in support of realistic image generation.

11

2.1.3 Generative Adversarial Networks

In Section 1.3, we briefly introduced the concept of GANs, an increasingly common gen-
erative architecture. We now explore this concept in greater detail. Like other generative
models, GANs seek to create new samples from a learned approximation of a probability
distribution. However, GANs use two neural networks working together to circumvent the
limitations of traditional loss functions that would compare the training data to the generated
samples (Goodfellow et al. 2016). We will use the example of an architecture designed to

create synthetic images throughout this section.

Real images ——»| Sample

ss0
JojeujWILDSIA

Discriminator

Generator | —»| Sample

ss0]
10jes0UD

Figure 2.4. An illustration of a simple GAN architecture. A discriminator
is initially trained on real images, while a generator initializes with random
inputs. Generated data is passed to the discriminator, whose classification
outputs influence both generator and discriminator loss. Source: Google De-
velopers (2019).

In a GAN architecture for image generation, a generator is paired with a discriminator in
an adversarial game. We can think of the discriminator as a binary classifier. Prior to the
start of the game, the discriminator is trained using examples of the target class of images
to be generated, which are used as positive training examples. At the beginning of the
game, the generator will produce only images of random noise, which are then passed to
the discriminator for classification. The discriminator also augments its original training
data with these synthetic images produced by the generator, which are coded as negative
examples (Google Developers 2019). An example of this architecture is shown in Figure 2.4.
After the discriminator has assessed a generated image, the output of the discriminator is
returned to the generator, which is penalized for synthesizing an image that the discriminator
classified as not belonging to the target distribution. Likewise, once the generator begins
producing images that fool the discriminator, the discriminator is penalized for incorrectly
classifying the images. Training generally concludes when the discriminator’s performance

amounts to random guessing, or 50 percent accuracy (Google Developers 2019). Synthetic

12

image generators frequently rely on GAN-based architectures; the majority of the synthetic
testing images used by the analytic of interest were created using GAN-based generators.
In the next section, we explore one final technological concept required to begin detailed

discussion of the analytic.

2.1.4 Deepfakes

Deepfakes are an emerging class of synthetic media where the face of an individual is
replaced with the face of another person in an image or video. Deepfakes have many
potentially damaging applications in the social, political, and military information space.
As such, academic institutions, government agencies, and media corporations have become

increasingly interested in developing technologies to combat deepfakes.

Latent representation
of face A

=
Reconstructed
Face B from A

GEMERATION

Figure 2.5. An illustration of the encoder/decoder training process and the
creation of a deepfake. Note that the target face is passed to the source's
decoder for reconstruction. Source: Masood et al. (2021).

While image and video face swaps have been possible for many years with traditional
editing software, the proliferation of open-source deepfake generation tools has enabled
the creation of such manipulations with greater speed and scale. While there now exist a
variety of techniques to create convincing deepfakes, the datasets subsequently explored
here rely on training autoencoder networks to perform the desired swap. An autoencoder is

a type of neural network designed to recreate an input in a lower-dimensional space. In the

13

context of deepfakes, an autoencoder trained on images of a given individual’s face learns

to reconstruct an approximation of that face in a lower dimension (Zucconi 2018).

Deepfake creation techniques based on autoencoders generally require the training of at
least two such networks. The first, called the encoder, learns to represent the faces of both
the source individual and the target with respect to the shared features between both faces
(Zucconi 2018). Separately, a decoder learns only the features of the source individual. To
create the deepfake, an approximation of the target individual’s face is reconstructed using
the source individual’s decoder and overlaid on the source. In a successful implementation
of this technique, the pose and movements of the overlaid target face will match those of the
source (Zucconi 2018). Different deepfake creation algorithms may also employ various
types of processing on the source image or video and final output to produce deepfakes of
higher visual quality. Figure 2.6 shows a general procedure for the creation and processing

of deepfakes.

Xg andfor Xy Detect & Crop Intermediate Representation Generation Blending
s =

Lanamarlu,n’ Boundariesf 3DMM a a
A keypoints Skeleton Parameters B

aﬁ‘ m w :"’

UV Map Depth Map

Driver and/or :
Identify Preprocessing Postprocessing

Figure 2.6. A general process for the creation of deepfakes. The source face is
detected and cropped, and may undergo additional preprocessing to inform
generation of the deepfake. The target face is then superimposed on the
source, and may undergo additional post-processing to enhance the visual
quality of the final output. Source: Mirsky and Lee (2021).

In this section, we described some of the necessary technical concepts required to introduce
the analytic. In Section 2.2, we introduce the diverse array of synthetic image generators

and datasets used to train and test the analytic.

2.2 The Data

The analytic of interest relies on a large corpus of image datasets for training and testing

of its classifier models. Each dataset consists of both real and synthetic images, with the

14

naming convention of the dataset derived from the name of the generator used to create
the synthetic images. These generators can be arranged into several broad categories, each

of which is explored the following sections. With the exception of ProGAN, all datasets

described here are used for classifier testing only.

2.2.1 Unconditional GANs

Image generators based on unconditional GANs attempt to recreate representative examples
from the image dataset used for training. For example, an unconditional GAN successfully
trained on real images of cars would learn to create synthetic images of cars. In this section,
we explore four different unconditional GAN models used for training or testing in the

analytic. Figure 2.7 shows representative real and synthetic examples from each dataset.

‘4

Synthetic

wl '/I": 3 .‘.‘ -;}M i gw.:}

ProGAN StyleGAN StyleGAN2 BigGAN

Figure 2.7. Representative images from the unconditional GAN datasets.
From left to right, image classes are: car, car, cat, dog. Images from Wang
et al. (2020) Git repository and derived from Karras et al. (2017, 2019,

2020b); Brock et al. (2018).

ProGAN
The ProGAN dataset is derived from an architecture proposed by Karras et al. (2017),

and serves several important functions in the analytic of interest. The ProGAN architecture

begins as a conventional GAN which is initially exposed to low-resolution training images.

15

As training progresses, the network is introduced to images of increasing resolution, and
the generator and discriminator grow together through the addition of new layers. This
process allows the network to learn high-level distributional information about the training
dataset in the initial layers; as new layers grow the network learns refined features without

significant disruptions to the already-optimized initial layers (Karras et al. 2017).

To create the dataset used in the analytic, Wang et al. (2020) generate synthetic images from
20 object categories defined by the Large Scale Scene Understanding (LSUN) dataset (Yu
et al. 2015) and draw an equivalent number of real images from the same categories. Wang
et al. (2020) then divide these images into three subsets, each with an equal proportion of
real and synthetic images: a training set consisting of 720,000 images, a validation set with

4,000 images, and a test set of 8,000 images. All images are 256x256 pixels.

StyleGAN

StyleGAN is an image generator proposed by Karras et al. (2019) that relies on techniques
inspired by neural style transfer concepts. The StyleGAN architecture omits an input layer
in favor of a constant input learned in training. Inputs to the network are instead mapped to
an intermediate latent space, which controls adjustments to certain features of the generated
image at the convolutional layers of the network (Karras et al. 2019). This design enables
macro-level features like camera orientation and subject identity to be combined with
variable details like the superficial appearance of the subject (Karras et al. 2019). Wang
et al. (2020) sample their synthetic StyleGAN images from publicly released models based
on the LSUN bedroom, car, and cat object classes, with real images sourced from the training
set of each model. Images based on the bedroom and cat classes are 256x256 pixels, while
those from the car class are 512x384 pixels (Wang et al. 2020) The total dataset size is
12,000 images.

StyleGAN2

StyleGAN?2 is an update to StyleGAN from Karras et al. (2020b) that makes several changes
to the network architecture to address frequently occurring image artifacts in StyleGAN-
generated images. Karras et al. (2020b) introduce additional regularization and normal-
ization processes in their generator to reduce the number of undesired artifacts and allow

the creation of more convincing synthetic images. Wang et al. (2020) construct their Style-

16

GAN?2 dataset using publicly released models based on the cat, car, church, and horse LSUN
classes, with real images again drawn from the training set of each model. All image res-
olutions are 256x256 pixels except for the car class, which is again 512x384 pixels (Wang
et al. 2020). Due to the timing of the StyleGAN?2 release, Wang et al. (2020) were only able
to conduct limited testing with this dataset. In this report, we include a more comprehensive

test of the analytic against this generator.

2.2.2 Which Face Is Real

To simulate a dataset and test their analytic on a dataset of real and fake images that might
be found in on the internet or social media, Wang et al. (2020) extract 1,000 real and fake
images from whichfaceisreal.com (West and Bergstrom 2019). whichfaceisreal.com features
pairings of real and synthetic human portraits, with visitors to the site asked to select the
real image for each pairing. Fake portraits are created using the StyleGAN generator from
Karras et al. (2019), with real images sourced from the StyleGAN model’s training set.
All images on whichfaceisreal.com undergo JPEG compression with unspecified quality
settings. Wang et al. (2020) only test a single classifier model on this dataset. In this study,

we conduct a more comprehensive test.

BigGAN

BigGAN is an image generation architecture developed by Brock et al. (2018) that employs
significantly more hyperparameters and a much larger batch size than its competitors, with
a goal of increasing the visual quality and subject variations achievable by the generator.
Wang et al. (2020) create and test a dataset of 4,000 images, with synthetic images generated
by a publicly released model and real images drawn from the model’s training data. All

images are 256x256 pixels.

2.2.3 Conditional GANs

Whereas unconditional GAN-based generators reproduce representative examples from a
learned distribution, conditional GANSs train on data with class labels. This addition allows
a user to specify a class label during image generation to produce images with desired

attributes (Mirza and Osindero 2014). In this section, we explore three conditional GAN

17

architectures used to test the classifiers in the analytic. Figure 2.8 shows representative real

and synthetic examples from each dataset.

Real

T —

Synthetic

!‘/ } A {?. ¥
GauGAN CycleGAN StarGAN

Figure 2.8. Representative images from the conditional GAN datasets. Im-
ages from Wang et al. (2020) Git repository and derived from Park et al.
(2019); Zhu et al. (2017); Choi et al. (2018).

GauGAN

GauGAN is an architecture proposed by Park et al. (2019) that combines semantic image
generation, in which an image is synthesized from a labeled pixel map, with style-based
generation like that seen in Karras et al. (2019). Here, a user selects a pixel map and
a reference image; the pixel map is used to generate the base image content, while the
reference image controls finer details in the appearance of the scene or subject (Park et al.
2019). For example, a pixel map might describe an urban skyline, while a reference image
provides the generator with additional context, like the lighting conditions associated with
a certain time of day. Wang et al. (2020) use a public-release model to generate synthetic
images and pair them with real images from the associated training data. The total dataset

contains 10,000 images at 256x256 pixels each.

CycleGAN
CycleGAN is an image-to-image translator proposed by Zhu et al. (2017) that attempts

to learn the relationships between images under multiple conditions, without a reliance on

18

paired images of the same subject. Zhu et al. (2017) also seek to make their generator “cycle-
consistent,” such that images transformed from one domain to another can be transformed
back to the original domain with minimal loss (Zhu et al. 2017). For example, a landscape
image depicting a sunset might be transformed to one that depicts the lighting conditions
of midday, before being transformed back to an image of a sunset. Wang et al. (2020)
produce synthetic images from six CycleGAN models, and pair the synthetic images with
real images from the CycleGAN training data. The final test dataset features 2,600 images
at 256x256 pixel resolution.

StarGAN

StarGAN is another image-to-image translator proposed by Choi et al. (2018). The StarGAN
architecture attempts to conduct translation between multiple image domains with a single
model, unlike competitors like Zhu et al. (2017) who rely on multiple models. By training on
images that feature all possible or desired combinations of features, StarGAN can generate
images with user-specified attributes provided there are sufficient representative examples
in the training data (Choi et al. 2018). For example, given an input portrait of a human
subject, a user could specify changes to personal appearance attributes like hair color, age,
expression, or complexion. Wang et al. (2020) use real and synthetic images sourced from
publicly released StarGAN models to produce a test dataset of 4,000 images at 256x256

pixel resolution.

2.2.4 Non-adversarial Models

In this section, we explore several different models and their associated datasets that do not
rely on adversarial architectures for training. We specifically describe two generators based
on semantic layouts, shown in Figure 2.9, and two low-light vision and super-resolution

models, shown in Figure 2.10.

IMLE

As described in Section 2.2.3, semantic layout-based image generators seek to synthesize
an image from a labeled pixel map specified as input. The generator proposed by Li et al.
(2019) performs this task without adversarial training, instead relying on a conditional

implicit maximum likelihood estimation (IMLE) optimization approach that allows the

19

Reali

Map

Synthetic

IMLE CRN

Figure 2.9. Representative images from the non-adversarial semantic layout
datasets. A semantic layout map is included in the middle row for context.
Wang et al. (2020) use only the real and synthetic images to test their
classifiers. Real and synthetic images from Wang et al. (2020) Git repository
and derived from Li et al. (2019); Chen and Koltun (2017). Semantic maps
sourced directly from Li et al. (2019).

synthesis of multiple images from a single pixel map through variations in noise sampling.
The authors use real images and semantic maps from the GTA-5 dataset, derived from the
video game of the same name (Li et al. 2019). Wang et al. (2020) use publicly released
IMLE models to generate synthetic images and draw real images from the released training

data. The final testing dataset contains 12,800 images at a resolution of 512x256 pixels.

CRN

Similar to the IMLE generator developed by Li et al. (2019), Chen and Koltun (2017)
employ a non-adversarial approach to image synthesis from semantic maps. In this case,
the researchers construct a neural network with layers grouped into modules of increasing
resolution. Chen and Koltun (2017) define this architecture as a cascaded refinement network
(CRN). Wang et al. (2020) source the real images in the CRN dataset from IMLE repository,
and generate synthetic images using the real images’ associated pixel maps. The final CRN

testing dataset matches the IMLE dataset in size and resolution.

20

Real

Synthetic

SITD SAN

Figure 2.10. Representative images from the non-adversarial low-light/high-
resolution datasets. Images from Wang et al. (2020) Git repository and de-
rived from Chen et al. (2018); Dai et al. (2019).

SITD

Chen et al. (2018) propose an algorithm for processing photographs taken in very dark
lighting conditions without the resultant increase in image noise associated with the higher
camera gains required in these conditions. In this application, Chen et al. (2018) construct
a convolutional neural network trained to generate images from raw camera sensor inputs
that are indistinguishable from long exposure photographs of the same subject. Wang et al.
(2020) construct their See-in-the-Dark (SITD) dataset using publicly released synthetic
images produced by the SITD algorithm and pair these images with their corresponding
long exposure photographs. The resulting dataset contains 360 total images and a mean

resolution of 5113x3420 pixels.

SAN

Similar to the approximation of low-light images in well conditions in the SITD model,
single image super-resolution (SISR) generators seek to synthesize a high-resolution image
from a low-resolution input (Dai et al. 2019). Designed to overcome the limitations of other
CNN-based SISR generators, the second-order attention network (SAN) proposed by Dai

et al. (2019) focuses on learning more complex relationships between image features using

21

higher-order feature statistics. Wang et al. (2020) create their SAN dataset from synthesized
high-resolution training images and real input images from the public SAN code release.

The final dataset consists of 440 images with a mean resolution of 691x563 pixels.

2.2.5 Traditional Deepfakes

In the analytic of interest, Wang et al. (2020) also test their classifier on a dataset of deepfake
images derived from the FaceForensics++ dataset from Rossler et al. (2019). We describe
this dataset below, alongside four additional datasets we have added as test sets in this study.

Representative images from each dataset are shown in Figure 2.11.

FF++ (Auth.) FF++ (Resamp.) DFDD DFDC CELEB-DF
Figure 2.11. Representative images from the deepfake datasets. FaceForen-
sics++ (Author) images from Wang et al. (2020) Git repository and derived
from Rossler et al. (2019). FaceForensics++ (Resampled), DFDD, DFDC,

and CELEB-DF images sampled and cropped from Rossler et al. (2019);
Dufour and Gully (2019); Dolhansky et al. (2020); Li et al. (2020)

Synthetic

FaceForensics++ (Author)

The FaceForensics++ dataset created by Rossler et al. (2019) is designed to serve as a
benchmark for deepfake detection algorithms. The dataset features both real videos sourced
from YouTube and deepfakes created using various source and target subject combinations
in the real videos. All videos are formatted as .mp4. Rossler et al. (2019) use four different
publicly available generators to create the deepfakes in their dataset: Face2Face, FaceSwap,

DeepFakes, and NeuralTextures. The authors also apply varying levels of compression to

22

their deepfake outputs to simulate the wide variability in quality observed in deepfakes
circulating on the internet. Wang et al. (2020) extract cropped subject faces from the real
and deepfake videos in the FaceForensics++ dataset using the Faced face detection tool
from Itzcovich (2018). In cases where the resulting face crop is smaller than 256 pixels
on the short side, the image is resized with bilinear interpolation such that this condition
i1s met (Wang et al. 2020). These steps result in a new dataset of 5,400 videos at a mean
resolution of 261x291. In the analytic of interest, this dataset is referred to as Deepfake. To

avoid confusion in this study, we will refer to this dataset as FaceForensics++ (Author).

FaceForensics++ (Resampled)

In this study, we also create a new dataset based on FaceForensics++ for additional testing.
We sample five frames from each real and fake video in the FaceForensics++ catalog, and
crop and extract faces using the Dlib package from King (2009). The resulting dataset
contains approximately 8,000 images with a mean resolution of 183x183 pixels?; we refer
to this dataset as FaceForensics++ (Resampled).

Deepfake Detection Dataset

In 2019, Rossler et al. (2019) augmented their FaceForensics++ benchmark with an addi-
tional dataset. Developed by Google Al in collaboration with Jigsaw, the Deepfake Detection
Dataset (DFDD) contains approximately 13,000 real images and deepfakes featuring 28 paid
actors, with the deepfakes generated using a variety of undisclosed methods and processing
techniques (Dufour and Gully 2019). In this study, we use this dataset as an additional test
set for the analytic’s classifiers. We capture faces from each of the released DFDD images

and produce an equivalently sized dataset with a mean resolution of 183x183 pixels.

Deepfake Detection Challenge

In 2020, Dolhansky et al. (2020) partnered with the data science website Kaggle to host
the Deepfake Detection Challenge (DFDC), a public competition in support of deepfake
detection technology development. The accompanying training and testing dataset fea-

tures approximately 100,000 real and synthesized video clips with over 3,000 paid actors

2A note on deepfake image size: Instead of globally resizing the images in these additional deepfake
datasets to 256 pixels on the short side, as seen in the FaceForensics++ (Author) dataset from Wang et al.
(2020), we add the ability to resize deepfake images at classifier run time as part of our experimental design.

23

(Dolhansky et al. 2020). A variety of factors make this dataset especially challenging for
classifiers designed to detect synthetic media and deepfakes. Dolhansky et al. (2020) use
five different synthetic media generators to create the videos in the dataset, but do not dis-
close the number of videos created by each generator. The generators include a traditional
autoencoder-based deepfake generator, a method that creates a face mask with fixed eye
and mouth expressions, two additional GAN-based generators, and a method that replaces a
source face with a synthesized StyleGAN face in every frame. Videos with face swaps also
received additional blending and alignment operations in post-processing, with a sharpen-
ing effect applied to certain faces at random (Dolhansky et al. 2020). Seventy percent of
videos in the dataset received additional augmentations including changes to video scale,
rotation color, framerate, contrast, and compression. Thirty percent of the videos received
text or graphics overlays (Dolhansky et al. 2020). To create the dataset used in this study,
we randomly select 800 images from the real and deepfake videos in the public DFDC
sample and capture cropped faces from each image using DIib. Our final dataset has a mean

resolution of 156x156 pixels.

CELEB-DF

The CELEB-DF dataset, created by Li et al. (2020), serves as another deepfake detection
benchmark, with a special emphasis on the visual quality of the included deepfakes. Li
et al. (2020) produce deepfakes using a standard autoencoder-based GAN architecture,
but include additional post-processing steps to create deepfakes representative of the high-
quality examples commonly circulated on the internet and social media. The CELEB-DF
network produces synthetic faces at 256x256 pixel resolution, and the architecture includes
provisions to reduce temporal noise along facial landmarks (Li et al. 2020). Synthesized
face masks include a larger region of the face, allowing for more refined blending operations
when the face is composited onto the source video. Output deepfakes also undergo color-
matching between the source and target faces (Li et al. 2020). To create our dataset for
testing, we extract five frames from each video in the original CELEB-DF dataset, and crop
for faces using Dlib. We then balance our real and fake classes by sampling from the face
captures of fake faces. We produce a final dataset of approximately 4,600 images with a

mean resolution of 145x145 pixels.

In this chapter, we have explored several supporting technical concepts that provide context

24

for the analytic of interest. We have also explored each of the image generators and datasets
used to train and test the analytic in Wang et al. (2020) and in our reproducibility study. In

the next chapter, we provide a summary of the analytic itself.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

CHAPTER 3:
Summary of the Analytic

In this chapter, we describe the aspects of classifier design, classifier training, and image
pre-processing that are unique to the analytic of interest, and present the authors’ results to

be reproduced in this study.

3.1 Classifier Design

Wang et al. (2020) construct a binary classifier in PyTorch (Facebook, Inc 2021) using an
off-the-shelf ResNet-50 model with pretrained ImageNet weights from He et al. (2016). The
authors select an Adam optimizer with parameters £; = 0.9 and > = 0.999, and train with
a constant batch size of 64. The learning rate begins at 10~ and undergoes a reduction by a
factor of 10 if the classifier does not achieve an increase on the validation set of > 0.1% after

five epochs. Training concludes when the learning rate reaches 1076 (Wang et al. 2020).

3.2 Training the Classifier

In their paper, Wang et al. (2020) test the impact of training set diversity on classifier
generalization by subsetting their ProGAN training set into smaller datasets of 2, 4, 8, and
16 LSUN object categories, but achieve the best overall analytic performance by training on
their full 720,000-image training set. In this study, we seek to reproduce the generalization
achieved by the best performing classifier, so the training process described here focuses on
the classifiers trained with the full 20-class ProGAN dataset.

All training images are left-right flipped with probability 0.5 and receive a 224x224-
pixel random crop (Wang et al. 2020). To test robustness to certain image post-processing
operations that might characterize synthetic images in the wild, Wang et al. (2020) create
five different classifiers with various image pre-processing steps performed at training time,
as summarized in Table 3.1. In the first model, referred to in this study as No Aug, training
images receive no augmentation beyond the left-right flipping and cropping described above.
In the Blur Only model, Gaussian blur is applied to training images using the SciPy library
from Virtanen et al. (2020) with o ~ Unif(0, 3) with probability 0.5, where o denotes

27

Table 3.1. Summary of image pre-processing operations performed at train-
ing time by model. If an operation is not performed in a given model, the
associated probability and operation parameters are specified as N/A.

Name Probability Parameters
Blur JPEG Blur JPEG
No Aug N/A N/A N/A N/A
Blur Only 0.5 N/A o ~ Unif(0, 3) N/A
JPEG Only N/A 0.5 N/A Qual. ~ Unif{30, 100}

Blur + JPEG (0.1) 0.1 0.1 o ~ Unif(0,3) Qual. ~ Unif{30, 100}
Blur + JPEG (0.5) 0.5 0.5 o ~ Unif(0,3) Qual. ~ Unif{30, 100}

the standard deviation of the Gaussian kernel, and where Unif(a, b) denotes a continuous
uniform distribution with support [a, b] (Virtanen et al. 2020; Wang et al. 2020). In the
JPEG Only model, training images are converted to JPEG by the Python Imaging Library
from Clark (2021) with probability 0.5 and quality defined by ~ Unif{30, 100}, where
Unif{a, b} denotes a discrete uniform distribution with support {a,a + 1,...,b — 1,b}
(Wang et al. 2020). Two additional models combine both Gaussian blur and compression.
In the Blur + JPEG (0.1) model, blur and JPEG compression are applied independently
to the training images, each with probability 0.1. In the Blur + JPEG (0.5) model, these
probabilities increase to 0.5 (Wang et al. 2020).

3.3 Evaluating Test Datasets

At testing time, images passed to a trained classifier for evaluation are center-cropped to
224x224 pixels. No other processing operations are performed at testing time in the original
analytic (Wang et al. 2020). In their final code release, Wang et al. (2020) also include an
option to evaluate test images without an explicit crop. Wang et al. (2020) configure the
average pooling layer of the ResNet model in an adaptive setting, allowing the evaluation of
images of arbitrary size. We incorporate this option into our experimental design, and test

all classifiers in both settings.

28

3.3.1 Average Precision

Wang et al. (2020) select AP as their primary means of evaluating their classifiers’ per-
formance on a given dataset, and we continue this practice in our study. AP is defined as
the area under a precision-recall curve. Precision, denoted as p, describes the ratio of true
positive predictions to the sum of all positive predictions made by a model, as shown in
Equation 3.1. Recall, denoted as r, describes the ratio of true positive predictions to the
sum of all actual positive examples in the evaluated data, as shown in Equation 3.2. Wang
et al. (2020) also compute the mean average precision (mAP) of each trained model over all
evaluated generators g € G to compare overall model performance, as shown in Equation
3.4, where AP, denotes the AP achieved over each generator g and n(G) denotes the total

number of tested generators. We continue this use of mAP in our study.

True Positives

= 3.1
p True Positives + False Positives -1
. True Positives ‘ (3.2)
True Positives + False Negatives
1
AP = / p(r)dr (3.3)
0
AP=— > AP (3.4)
mAP = ——)
n(G) &= g

The calculation of precision and recall does not require knowledge of the true negative
example rate in the evaluated data, making AP robust to datasets with numerically imbal-
anced classes. Additionally, unlike accuracy and other similar measures of performance,
AP does not require that a specific confidence level be selected as the cutoff between pos-
itive and negative predictions. In this study, we represent AP on the interval [0, 1], with a
score of 1 indicating perfect positive predictive performance and a score of 0.5 representing

performance commensurate with guessing the positive labels at random.

29

3.4 Results

In models trained on the full 20-class training set, the analytic demonstrates strong per-
formance against each of the tested datasets. This performance suggests that training on
ProGAN images may contribute to generalization across CNN-based image generators and
against non-adversarial models. Figure 3.1 shows the performance of each classifier model
by test dataset. Table 3.2 provides a numerical summary of performance, with mAP also

reported by model over all tested datasets.

Chance
e No aug

Blur only

JPEG only
mm Blur+PEG(0.5)
e Blur+]PEG(0.1)

ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN IMLE SITD DeepFake

100

Al
w
=1

o

Figure 3.1. AP performance by dataset and model in the original analytic.
Source: Wang et al. (2020).

Table 3.2. Summary of the original analytic results for the 20-class models.
The mAP column on the right provides mean AP over all tested generators
by model. The highest AP performance in each column is bolded. Note that
the strongest performance on CycleGAN and IMLE were achieved by models
trained on fewer LSUN classes, so no bolding appears in these columns.
Source: Wang et al. (2020).

Training settings Individual test generators Total
Name .
. No. Augments Pro- Style- Big- Cycle- Star- Gau- Deep-
Train Input (a6 _Auements GAN GAN GAN GAN GAN GAN CRN IMLE SITD SAN Fake mAP
Blur JPEG
No aug ProGAN RGB 20 0963 0.722 0.840 1.000 0.670 0.935 0.903 0962 0936 0.982 0.901
Blur only ProGAN RGB 20 v 0.990 0.825 0.901 1.000 0.747 0.666 0.667 0.996 0.537 0.951 0.844

Blur+JPEG (0.5) ProGAN RGB 20 v v
Blur+JPEG (0.1) ProGAN RGB 20 T T

0.985 0.882 0.968 0.954 0.981 0.989 0995 0927 0.639 0.663 0.908

1.00¢
1.00(
JPEG only ProGAN RGB 20 v 1.00¢
1.00(
1.000 0.996 0.845 0.935 0982 0895 00982 0.984 0.972 0.705 0.890 0.926

)
)
) 0990 0.878 00932 0918 0.975 0.990 0.995 0887 0.781 0.881 0.930
)
)

Average precision (AP) across 11 generators. Symbols v and mean the augmentation is applied with

50% or 10% probability, respectively, at training.

Examining Table 3.2, Wang et al. (2020) observe the highest mAP performance from the
JPEG Only model, although the Blur + JPEG (0.1) model also exhibits a high mAP. Several
clear trends emerge. First, all models achieve an AP of 1.000 against the withheld ProGAN

test set, indicating perfect fake image detection against new images from the generator used

30

for training. Second, we observe that image augmentations at training time generally result
in stronger analytic performance across all generators, with three notable exceptions (Wang
et al. 2020). In the case of StarGAN, we note that the No Aug and Blur Only models tie
for best performance, but we also see near-equivalent performance from the Blur + JPEG
(0.5) model, so we resist drawing conclusions about the impact of augmentations here.
However, the No Aug model clearly exhibits the highest performance against the SAN and
FaceForensics ++ (Author)3 datasets. In the case of the SAN dataset, Wang et al. (2020)
hypothesize that the high-frequency content produced by the generator provides the best
indication of whether a given image is synthetic; models trained with augmentations that
would destroy this information struggle to make correct predictions (Wang et al. 2020). In
the case of the FaceForensics ++ (Author) dataset, Wang et al. (2020) refrain from drawing

conclusions as to why the No Aug model exhibits the best performance.

.
Robustness to Blur Robustness to Compression
ProGAN StyleGAN BigGAN CycleGAN ProGAN StyleGAN BigGAN CycleGAN
100 100 4
a a \\
< <
N N N ~ N,
50 ——— e T | 50 T — 2=
StarGAN GauGAN CRN IMLE StarGAN GauGAN CRN IMLE
100 = 100
. .
< <
“ - _— N © > N
SITD SAN DeepFake SITD SAN DeepFake
100 Chance 100 Chance
> ~—=— No aug. —=— No aug.
Blur only Blur only
JPEG only s JPEG only
a Blur+)PEG (0.5) o Blur+JPEG (0.5)
< Blur+JPEG (0.1) < Blur+JPEG (0.1)
50 - - e 50

0 2 40 2 40 2 4 100 65 30 100 65 30 100 65 30
sigma sigma sigma quality quality quality

Figure 3.2. AP performance by dataset and model against test images aug-
mented with blur and compression. Source: Wang et al. (2020).

Wang et al. (2020) also test their analytic’s robustness to images with augmentations applied.
Figure 3.2 shows AP performance by model against each dataset with Gaussian blurring
and JPEG compression applied to the test images. The researchers note that the No Aug

model performance decreases as more intense blurring and compression are applied. The

3As indicated in Section 2.2.5, Wang et al. (2020) refer to this dataset as Deepfake in the supporting tables
and graphics here.

31

Blur Only and JPEG Only models appear fairly robust to their associated augmentation,
while the combined models perform well in almost all cases (Wang et al. 2020). The results
of this experiment indicate that models trained with augmentations may be suited to tasks
requiring the detection of synthetic images suspected to have undergone transformations,

like those seen on the internet or social media (Wang et al. 2020).

3.5 Analysis

The results achieved by Wang et al. (2020) are significant for several reasons. First, the
ability of the analytic to train on images from a single CNN-based generator and record
strong performance against other related generators is striking, and suggests that there
may be common artifacts in CNN-based images that enable their detection (Wang et al.
2020). Second, while the creation of fully synthetic images and deepfake face swaps share
underlying concepts, the outputs of deepfake creation are fundamentally different from
those of other synthetic image generators. The strong performance of the No Aug model
against the FaceForensics ++ (Author) dataset here is unexpected and worthy of further
investigation. Finally, the analytic promises both high performance and simplicity, with
only a single training set, an off-the-shelf model, and some variable pre-processing as
its requirements. This simplicity in design contributes to the potential value and possible

applications of the analytic, if reproducible.

In the next chapter, we describe the methods and results of our reproducibility study, and

document additional experiments that further test the analytic of interest.

32

CHAPTER 4
Reproducibility and Experiments

In this chapter, we first document the results of our reproducibility study. We then present
the results of additional experiments designed to identify the strengths and weaknesses of

the analytic of interest.

4.1 Reproducibility Results

In our reproducibility study, we conducted two experiments to verify the published results
from Wang et al. (2020). We first attempted to reproduce the results from Wang et al. (2020)
using two models included as part of the public code release for the analytic. We then
retrained the five classifiers from the analytic described in Section 3.2, and tested them on

the authors’ original training set.

4.1.1 Reproducing Author Results with Publicly Released Models

As part of their public code release, Wang et al. (2020) include two pre-trained versions
of their Blur + JPEG (0.1) and Blur + JPEG (0.5) models. In our first reproducibility
experiment, we download these model weights and test them on each of the generator
datasets included in the original study using both the center-crop and uncropped settings;
we also test these models again the StyleGAN2 and Which Face is Real (WFIR) datasets.

Table 4.1 provides a summary of our results.

Table 4.1. Summary of reproducibility results using publicly released models
from Wang et al. (2020). Results from the best performing model against
each generator are bolded. In the center-crop setting, results on individual
generators exactly match those achieved by Wang et al. (2020) in Table 3.2.

Name Crop ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN CRN IMLE SITD SAN FF++ (Author) WFIR mAP

Blur+JPEG (0.1) None 1.000 0.998 0.995 0860 0.949 0.990 0.908 0.998 0.998 0.998 0.686 0.845 0.998 0.940
Blur+JPEG (0.1) 224px (center) 1.000 0.996 0.991 0.845 0.935 0.982 0.895 0982 0984 0972 0.705 0.890 0932 0931
Blr+JPEG (0.5) None 1000~ 0993 0991 0.904 0979 | 0975 0988 1.000 1.000 0996 0.628 0.631 1.000 0930
Blur+JPEG (0.5) 224px (center) 1.000 0.985 0.980 0.882 0.968 0.954 0.981 0.989 0995 0.927 0.639 0.663 0.888 0912

We observe that in the center-crop setting, the model results on individual generators exactly

match those achieved by Wang et al. (2020), as shown in Table 3.2. Because we include

33

test results from the StyleGAN2 and WFIR datasets in our summary table, our mAP results
for the Blur + JPEG (0.1) and Blur + JPEG (0.5) models in the center-crop setting are
slightly higher than those reported by Wang et al. (2020) in Table 3.2. Moreover, while
Wang et al. (2020) did not provide results for their models in the “no crop” setting in their
original paper, we observe that in general, refraining from center-cropping images at testing
time improves model performance, with the only exceptions occurring on the SAN and

FaceForensics++ (Author) datasets.

4.1.2 Reproducing Author Results by Retraining Models

In our next experiment, we use the documentation in the public code release from Wang
et al. (2020) to retrain each of the five 20-class models featured in the original paper on the
authors’ ProGAN training set, with pre-processing settings as prescribed in Table 3.1. We
then test these models against each generator in the authors’ test set, again including the
StyleGAN2 and WFIR datasets. Table 4.2 provides a summary of our full results.

Table 4.2. Summary of reproducibility results using retrained models. Re-
sults from the best performing model against each generator are bolded. In
the center-crop setting, results on individual generators are similar to those
achieved by Wang et al. (2020) in Table 3.2.

Name Crop ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN CRN IMLE SITD SAN FF++ (Author) WFIR mAP
No Aug None 1.000 0.979 0.998 0.700 0.832 1.000 0.712 0.888 0.883 0.979 0.956 0.976 0.970 0913
No Aug 224px (center) 1.000 0.976 0.996 0.686 0.798 1.000 0.679 0.873 0.858 0.970 0.919 0.987 0.891 0.895
"BlurOnly None 1.000 0989 1 1000 0.843 0926 1.000 0772 0766 0766 0999 0525 0868 0.981 0.870
Blur Only 224px (center) 1.000 0.984 1.000 0.822 0.904 1.000 0.751 0712 0.714 0.996 0.571 0.926 0.842 0.863
"JPEGOnly None 1.000 099 098 0909 0940 0.949 0978 0999 1000 0941 0.746 0760 0.997 0939
JPEG Only 224px (center) 1.000 0.991 0.977 0.896 0916 0.915 0.971 0.987 0.995 0.854 0.747 0.813 0913 0.921
Blur+JPEG (0.1) None 1.000 0998 099 0.859 0950 0.990 0922 0998 0999 099 0.688 0.821 0.995 0939
Blur+JPEG (0.1) 224px (center) 1.000 0.996 0.992 0.841 0.934 0.980 0.909 0.982 0.989 0.969 0.702 0.875 0.906 0.929
"Br+JPEG (0.5) None 1.000 0993 0992 0.901 0972 0978 0.988 1.000 1.000 099 0.631 0.664 1000 0.932
Blur+JPEG (0.5) 224px (center) 1.000 0.983 0.980 0.880 0.959 0.959 0.981 0.992 0.995 0.907 0.639 0.706 0.920 0915

We again observe that in the center-crop setting, individual generator results closely match
those achieved by Wang et al. (2020) in Table 3.2, with the strong performance from at least
one model on each generator. We observe the highest mAP performance from the JPEG
Only and Blur + JPEG (0.1) models. As before, across all models, performance in the
uncropped setting is generally higher than performance in the center-crop setting, with the
exception in this case being results on the FaceForensics++ (Author) dataset. Nonetheless,
the very high AP achieved by the No Aug model on the FaceForensics++ (Author) dataset

in both crop settings is striking and warrants further investigation.

34

Our findings in both reproducibility experiments suggest that the analytic is suitable for
detecting images from a wide variety of CNN-based generators, especially if informa-
tion is available regarding which generator may have created a suspect image. However,
since the authors’ test set includes only one dataset of deepfake images, we refrain from
drawing conclusions about the analytic’s suitability for detecting deepfakes without further

experiments.

4.2 Experiments
Guided by our reproducibility results, we conduct five additional experiments to further
explore the analytic’s strengths and weaknesses regarding generalization, performance on

deepfakes, and robustness to exploitation by adversarial perturbations.

4.2.1 Performance on a Test Set of Mixed Generators

Results from our reproducibility experiments indicate that the analytic performs well against
a wide variety of generators when tested individually. However, since each generator dataset
may have its own ideal prediction confidence threshold that separates real and synthetic
images, measuring overall model performance with mAP across all generators may result
in an overly optimistic assessment of the analytic’s ability to generalize. In this experiment,
we construct a new test set featuring a sample of real and synthetic images from each
generator dataset such that the ideal confidence threshold dividing our real and synthetic
images becomes uncertain. This experiment also simulates real world applications of the

analytic, where potential users may not know the provenance of suspected synthetic images.

To construct our new test set, we sample 360 real and fake images from each of the 13
generators in the authors’ testing dataset. We then test each of our retrained models on the
9,360 images in this new test set in both available crop settings. Table 4.3 summarizes the

results of this experiment.

We observe that for most models, performance against this new multi-generator dataset
is similar to the mAP achieved across all generators in Section 4.1.2. Greater image pre-
processing at training time appears beneficial in this application, with the Blur + JPEG
(0.5) model in the uncropped setting exhibiting the best performance. The JPEG Only and
Blur + JPEG (0.1) models also perform well. Meanwhile, the Blur Only and No Aug

35

Table 4.3. Summary of the analytic’s results on a resampled test set con-
sisting of images from multiple generators. Results from the best performing
model are bolded. Model results are similar to the mAP results achieved
across all generators in Section 4.1.2.

Name Crop AP

No Aug None 0.838

No Aug 224px (center) 0.856
"BlurOnly 1 None 0.802

Blur Only 224px (center) 0.794
"JPEGOnly 1 None (0.945

JPEG Only 224px (center) 0.926
Blur+JPEG (0.1) None 0932

Blur+JPEG (0.1) 224px (center) 0.919
Blur+JPEG (0.5) None 0.950

Blur+JPEG (0.5) 224px (center) 0.930

models demonstrate slightly worse performance in comparison to their mAP results across
all generators in Section 4.1.2. As before, we see that models operating in the uncropped
setting achieve slightly higher performance than when operating in the center-crop setting,

with the exception here being the No Aug model.

These results in a simulated real-world setting suggest that the analytic may perform well
against images from an unknown subset of CNN-based image generators. Our results also
match the findings of Wang et al. (2020) and our own reproducibility experiments, where
a mixture of blur and compression pre-processing at training time appears beneficial for

classifier generalization.

4.2.2 Performance on Additional Deepfake Datasets

To better understand the analytic’s performance against deepfake face swaps, we test the
analytic on the additional deepfake datasets introduced in Section 2.2.5. Additionally, while
Wang et al. (2020) resized the face crops in their FaceForencics++ (Author) dataset to
256x256 pixels with bilinear interpolation prior to testing the images, we add an option to
resize test images at classifier runtime, and include this option in our experimental design.

We therefore test each model using all four combinations of our crop and resize settings.

36

Images not resized at testing time are left at their original resolution prior to any cropping
operations. In cases where the classifier must center-crop an un-resized image smaller than
224x224 pixels in either dimension, the center-cropping operation pads the test image with

zero prior to cropping. Table 4.4 provides our full results.

Examining Table 4.4, we observe mixed results on the additional deepfake datasets. On our
resampled version of FaceForensics++, our best performing model demonstrates similar
performance to that achieved by Wang et al. (2020) on their FaceForensics++ (Author)
dataset in Table 3.2. We also achieve relatively high performance on DFDD. We note
that the No Aug model in the resize setting achieves the best results against both of these
datasets. Center-cropping improves performance on DFDD but reduces performance against

FaceForensics++ (Resampled).

Table 4.4. Full results of retrained model testing on additional deepfake
datasets in cropped/uncropped and resized /not resized settings. Results from
the best performing model against each dataset are bolded.

Model Crop Resize CELEB-DF DFDC (Facebook) DFDD (Google) FF++ (Resampled) mAP
No Aug None No 0.527 0.519 0.918 0.786 0.687
No Aug None Yes 0.525 0.523 0.923 0.860 0.708
No Aug 224px (center) No 0.528 0.520 0.920 0.783 0.688
No Aug 224px (center) Yes 0.526 0.525 0.926 0.858 0.709

"BlurOnly None No 0533 0517 092 0786 0.690
Blur Only None Yes 0.523 0.533 0.917 0.851 0.706
Blur Only 224px (center) No 0.533 0.511 0.925 0.787 0.689
Blur Only 224px (center) Yes 0.523 0.528 0.921 0.853 0.706

"JPEG Only None No 0534 0518 0921 0790 0.691
JPEG Only None Yes 0.517 0.527 0.924 0.846 0.704
JPEG Only 224px (center) No 0.533 0.517 0.921 0.795 0.692
JPEG Only 224px (center) Yes 0.516 0.526 0.924 0.851 0.704

" Blur+JPEG (0.1) None No 0533 0516 0921 0791 0.690
Blur+JPEG (0.1) None Yes 0.522 0.527 0.920 0.846 0.704
Blur+JPEG (0.1) 224px (center) No 0.531 0.517 0.923 0.794 0.691
Blur+JPEG (0.1) 224px (center) Yes 0.521 0.528 0.922 0.848 0.705

" Blur+JPEG (0.5) None No 0536 0516 0922 0789 0.691
Blur+JPEG (0.5) None Yes 0.520 0.525 0.920 0.846 0.703
Blur+JPEG (0.5) 224px (center) No 0.536 0.519 0.923 0.793 0.693
Blur+JPEG (0.5) 224px (center) Yes 0.520 0.529 0.921 0.850 0.705

In the case of CELEB-DF and DFDC, we observe poor performance across all models, with
results commensurate with guessing the positive labels at random. We note that the DFDC
dataset is intended to be a challenging deepfake detection benchmark, and the analytic’s

performance here resembles that achieved by most of the models submitted as part of the

37

associated competition on the competition’s private test set. However, the best submission
achieved an AP of 0.902 across all real and synthetic videos in the challenge (Dolhansky
et al. 2020). CELEB-DF is a similarly challenging benchmark; Li et al. (2020) tested 13
deepfake detection algorithms against their dataset and achieved a maximum AUC of 65.5.
Despite the analytic’s good performance on FaceForensics++ (Resampled) and DFDD, our
results on DFDC and CELEB-DF suggest that the analytic is not suitable for real world
deepfake detection tasks.

4.2.3 Robustness to Compression on Deepfake Datasets

To further examine the analytic’s performance against deepfakes, we test the analytic’s
robustness to compression in deepfake test images. In this experiment, we compress the
real and synthetic images in each deepfake dataset using the Python Imaging Library from
Clark (2021) at quality settings 25, 50, 75, and 954. We also include a fifth Random quality
category, where we compress images with quality ~ Unif{30, 100}, recalling the application
of image compression at training time for some of the analytic’s classifier models. Table

4.5 provides our results from the JPEG Only model.

Table 4.5. JPEG Only model performance on deepfake datasets. Image
compression on deepfake datasets generally reduces analytic performance.

Model Crop Resize Quality CELEB-DF DFDC DFDD FF++ (Resampled) FF++ (Author) mAP
JPEG Only None No 25 0.527 0.538 0.907 0.583 0.673 0.646
JPEG Only None No 50 0.529 0.540 0.906 0.589 0.689 0.651
JPEG Only None No 75 0.529 0.539 0908 0.597 0.702 0.655
JPEG Only None No 95 0.530 0.541 0910 0.613 0.720 0.663
JPEG Only None No Rand 0.529 0.539 0907 0.596 0.700 0.654
“JPEG Only None Yes 25 (0549 0558 0.886 0.659 0.673 0.665
JPEG Only None Yes 50 0.551 0.558 0.885 0.664 0.689 0.669
JPEG Only None Yes 75 0.550 0.557 0.886 0.672 0.702 0.673
JPEG Only None Yes 95 0.550 0.559 0.888 0.691 0.720 0.682
JPEG Only None Yes Rand 0.550 0.557 0.886 0.671 0.700 0.673
"JPEG Only 224 px (center) No 25 0525 0545 0899 0.608 0705 0656
JPEG Only 224 px (center) No 50 0.527 0.551 0.899 0.619 0.716 0.662
JPEG Only 224 px (center) No 75 0.528 0.555 0901 0.63 0.726 0.668
JPEG Only 224 px (center) No 95 0.530 0.561 0.904 0.652 0.737 0.677
JPEG Only 224 px (center) No Rand 0.527 0.552 0.901 0.628 0.724 0.666
"JPEG Only 224 px (center) Yes 25 (0550 0550 0.888 0.644 0.670 0.660
JPEG Only 224 px (center) Yes 50 0.551 0.555 0.888 0.653 0.684 0.666
JPEG Only 224 px (center) Yes 75 0.550 0.558 0.888 0.663 0.695 0.671
JPEG Only 224 px (center) Yes 95 0.551 0.561 0.891 0.682 0.709 0.679
JPEG Only 224 px (center) Yes Rand 0.550 0.556 0.889 0.661 0.692 0.670

4Clark (2021) recommends using a maximum quality setting of 95; quality settings above 95 result in
larger image file sizes without an accompanying increase in image quality.

38

We observe that on datasets where the analytic had previously exhibited strong performance,
image compression generally reduces the analytic’s AP results. The JPEG Only model
achieves the highest performance across all datasets, with the smallest reduction in AP
generally observed in images with quality 95. Performance against DFDD remains high,
with results similar to those seen from the JPEG Only model in 4.2.2. Results on both
FaceForensics++ datasets demonstrate greater performance losses, while results against

CELEB-DF and DFDC exhibit no meaningful changes from their uncompressed baselines.

Given that deepfake images and videos encountered in real world scenarios may suffer from
compression and poor image quality, the loss of performance observed here provides further

evidence that the analytic is not suitable for deepfake detection applications.

4.2.4 Training on StyleGAN2 Images

In Section 4.2.2, we noted that the DFDC and CELEB-DF deepfake datasets represent
relatively new, challenging benchmarks for deepfake detection. However, the ProGAN
generator from Karras et al. (2017) used to create the synthetic images in the training and
validation sets of the analytic is now several years old. To better understand the analytic’s
performance on newer deepfake detection benchmarks, we construct new training and
validation datasets using synthetic images generated with StyleGAN2 from Karras et al.
(2020b). As introduced in Section 2.2.1, StyleGAN2 is a recently updated conditional GAN
architecture capable of producing very convincing synthetic images. We retrain each of our
five classifier models using these new training and validation sets, with all other training
parameters as described in Chapter 3. We then test our retrained models against the authors’

test set and the additional deepfake datasets.

Creating a StyleGAN2 Training Dataset

To create the training and validation images used in our new dataset, we source real images
from the Animal Faces HQ dataset from Choi et al. (2020), the Flickr-Faces-HQ dataset
from Karras et al. (2019), and the Metfaces dataset from Karras et al. (2020a). We then
obtain five StyleGAN2 models from Karras et al. (2020b), each pre-trained on one of our
real image sources, and generate a number of synthetic images equal to the number of real
images available by dataset. We then divide the images into a training set of approximately

86,000 real and synthetic images and a validation set of 1,300 real and synthetic images. The

39

Real

Synthetic

i/

AFHQ-Cat

Figure 4.1. Example images from each class of our new StyleGAN2 training
dataset. Real images sourced from the Animal Faces HQ dataset from Choi
et al. (2020), the Flickr-Faces-HQ dataset from Karras et al. (2019), and
the Metfaces dataset from Karras et al. (2020a). Synthetic images generated
using pre-trained StyleGAN2 models from Karras et al. (2020b).

R

AFHQ-Dog AFHQ-Wild FFHQ Metfaces

Table 4.6. StyleGAN2 training and validation sets by model /image category
and the number of real and synthetic images in each set.

Category Training Validation
Real Synthetic Real Synthetic
AFHQ-Cat 5,573 5,573 80 80
AFHQ-Dog 5,159 5,159 80 80
AFHQ-Wild 5,158 5,158 80 80
Flickr-Faces-HQ 68,960 68,960 1,040 1,040
Metfaces 1,316 1,316 20 20
“Total 86,166 86,166 1,300 1,300

resulting proportion of training images to validation images approximates the proportion
used for the ProGAN training and validation sets seen in Wang et al. (2020). Table 4.6 shows
the number of real and synthetic images in each dataset by StyleGAN2 model category.
Figure 4.1 shows example real and synthetic images from our new training and validation

datasets.

StyleGAN2 Model Results
Testing our new StyleGAN2-trained models on the authors’ dataset, we observe similar

results to those achieved by Wang et al. (2020) when using classifiers trained on ProGAN

40

images. We note strong performance against each of the GAN-based image generators, with
at least one classifier achieving an AP above 0.900 against each generator. However, we
also observe greater variability in model performance on certain generators, with larger
differences between the AP achieved by the best and worst performing models than those
seen in Wang et al. (2020). We also see reduced model mAP across all generators compared
to Wang et al. (2020) and our own reproducibility results in Section 4.1.2. As before, we
generally observe higher model performance in the uncropped setting, excepting perfor-
mance against the FaceForensics++ (Author) dataset. We again observe that the No Aug
model offers the best performance against this deepfake dataset, but still underperforms
slightly in comparison to the No Aug model trained on ProGAN images from Wang et al.
(2020).

Testing the StyleGAN2 models against our additional deepfake datasets, we observe strong
performance against DFDD across all models. However, we see no significant improvement
in performance against DFDC and CELEB-DF, and we also observe a catastrophic loss in
performance against FaceForensics++ (Resampled), where the ProGAN-based models had

previously exhibited relatively strong performance.

This experiment reinforces the hypothesis in Wang et al. (2020) that training a classifier on
images from a single CNN-based image generator does result in generalization sufficient
to detect images from other CNN-based generators, although it appears that the ProGAN-
based training set from Wang et al. (2020) offers superior generalization in comparison to
our StyleGAN2-based training set created for this experiment. We note that Karras et al.
(2020b) offer several additional pre-trained StyleGAN2 models not used here; potential
future work might encompass the creation of a larger or more diverse StyleGAN?2 training
set. This experiment also demonstrates that training the analytic on images from StyleGAN2
does not improve performance on challenging deepfake benchmarks, and actually results in
a loss of performance on a dataset where ProGAN-based models had performed strongly.
This finding provides further evidence to suggest that the analytic is not suitable for deepfake

detection tasks.

41

Table 4.7. StyleGAN2 model results on the authors’ dataset. Results from
the best performing model against each generator are bolded.

Model Crop StyleGAN2 = StylecGAN ProGAN BigGAN CycleGAN StarGAN GauGAN CRN IMLE SITD SAN FF++ (Author) WFIR mAP
No Aug None 0.971 0.903 0.997 0.959 0.933 1.000 0.933 0.801 0.897 0.932 0.802 0.808 0942 0914
No Aug 224px (center) 0.966 0.910 0.995 0.946 0.919 1.000 0.907 0.675 0.733 0.926 0.703 0.880 0.921 0.883
"BlurOnly 1 None | 0.987 0955 0998 0878 0928 0999 0.898 0992 1.000 0938 0533 0817 0.964 0914
Blur Only 224px (center) 0.978 0.946 0.996 0.860 0.915 0.996 0.867 0.960 0.995 0.921 0.556 0.829 0.928 0.904
"IPEGOnly 1 None | 0845 0956 0963 0783 0851 0.844" 0932 0923 0987 0907 0.614 0470 0.985 ~ 0.851
JPEG Only 224px (center) 0.794 0.919 0.950 0.755 0.843 0.818 0.907 0.828 0938 0915 0.628 0.442 0.871 0.816
"Blur+JPEG (0.) None | 0916 0962 0986 0882 0.880 0.922° 0931 0942 0998 0999 059 0574 0.991 0.891
Blur + JPEG (0.1) 224px (center) 0.887 0.943 0.978 0.860 0.870 0.873 0.904 0.814 0974 0971 0.587 0.570 0.963 0.861
"Blur+JPEG (0.5 None | 0.808° 0938 0963 0777 0845 0.823° 0937 0919 0995 0973 0527 0573 0.997 0.852
Blur + JPEG (0.5) 224px (center) 0.750 0.881 0.950 0.758 0.827 0.766 0.912 0.759 0956 0.878 0.538 0.564 0.900 0.803

Table 4.8. StyleGAN2 model results on the additional deepfake datasets.
Results from the best performing model against each generator are bolded.

Model Crop Resize CELEB-DF DFDC DFDD FF++ (Resampled) mAP
No Aug None No 0.537 0518 0.899 0.575 0.632
No Aug None Yes 0.512 0512 0924 0.572 0.630
No Aug 224px (center) No 0.538 0.516 0.897 0.577 0.632
No Aug 224px (center) Yes 0.513 0511 0923 0574 0.630
"BlurOnly 1 None | No 0536 0518 0901 0583 0.634
Blur Only None Yes 0.513 0.513 0919 0.568 0.628
Blur Only 224px (center) No 0.536 0.515 0901 0.583 0.634
Blur Only 224px (center) Yes 0.513 0.511 0.920 0.568 0.628
"JPEGOnly 1 None | No 0530 ¢ 0516 0901 0564 0628
JPEG Only None Yes 0.516 0.508 0.920 0.587 0.633
JPEG Only 224px (center) No 0.527 0.518 0.900 0.563 0.627
JPEG Only 224px (center) Yes 0.513 0.509 0.920 0.586 0.632
Blur +JPEG (0.1) None | No 0530 0513 0896 0578 0629
Blur + JPEG (0.1) None Yes 0.517 0.514 0925 0.572 0.632
Blur + JPEG (0.1) 224px (center) No 0.529 0512 0.895 0.579 0.629
Blur + JPEG (0.1) 224px (center) Yes 0.516 0.513 0926 0.572 0.632
Blur +JPEG (0.5) None | No 0533 0516 0.897 0581 0632
Blur + JPEG (0.5) None Yes 0.515 0.509 0.925 0.570 0.630
Blur + JPEG (0.5) 224px (center) No 0.532 0519 0.896 0.581 0.632
Blur + JPEG (0.5) 224px (center) Yes 0.513 0.511 0925 0.570 0.630

4.2.5 Robustness to Adversarial Perturbations

In our final experiment, we test the analytic’s robustness to adversarial image perturbations.
We draw upon previous research conducted at Naval Postgraduate School (NPS) by Bassett
et al. (2020) to apply color and edge-aware adversarial perturbations to the real and synthetic
images in the FaceForensics++ (Author) dataset, and test our retrained ProGAN-based No

Aug model against this perturbed dataset.

Adversarial perturbations exploit a weakness of neural networks, in which very small
changes to an input passed to a network can result in unexpected outputs. In an image
classification context, small changes to the pixel values of an input image can cause a neural
network-based classifier to report the image as belonging to an entirely different class (Geng

and Veerapaneni 2018).

42

Original Image Deepfake Perturbation Perturbed Result

P(Fake) < 0.0001 P(Fake) > .9999 P(Fake) < 0.0001

Far left: A real image from the FaceForensics++ (Author) dataset. The No Aug
model correctly predicts that the image is real. Center left: A deepfake face swap
performed on the original image. The classifier correctly predicts that the image is
synthetic. Center right: A color and edge-aware perturbation generated using the
deepfake image and targeting the real class label. Far right: The deepfake image
with the perturbation applied. The No Aug model now incorrectly predicts that
the image is real. Real and deepfake images sourced from Git repository of Wang
et al. (2020) and derived from Rossler et al. (2019). Perturbation and perturbed
result generated using code from Bassett et al. (2020).

Figure 4.2. An example of an adversarial perturbation applied to a deepfake
image from the FaceForensics++ (Author) dataset.

Color and Edge-Aware Adversarial Image Perturbations

Bassett et al. (2020) propose a new procedure for the application of targeted adversarial
perturbations, where noise is injected into an image to cause a neural network to report a spe-
cific desired misclassification. Bassett et al. (2020) specifically contribute two methods for
the construction of adversarial perturbations which are imperceptible or near-imperceptible

to the human eye.

The edge-aware method penalizes changes to an image in smooth regions where the hu-
man eye is more likely to detect the added noise (Bassett et al. 2020). The color-aware
method converts images to the CIE L*a*b* (CIELAB) color space prior to the creation of
perturbations, and constructs perturbations which are small with respect to the ¢, distance
in CIELAB space between the image’s original pixel values and the perturbed pixel values.
Since differences in color which are small with respect to ¢, in the CIELAB color space
are less perceptible to the human eye than corresponding changes in other color spaces, the

color-aware method creates less noticeable adversarial perturbations (Bassett et al. 2020). In

43

the context of deepfakes, perturbed images created using color and edge-aware techniques
preserve the appearance of the swapped face, with perturbations applied to high-contrast
regions of the face (Bassett et al. 2020).

Perturbation Application and Testing

To construct our perturbed dataset, we use our retrained ProGAN-based No Aug model
to apply color and edge-aware perturbations to the real and synthetic images in the Face-
Forensics++ (Author) dataset while targeting the opposite class label. We then test all five
retrained ProGAN-based models on the perturbed dataset.

Table 4.9. Model performance on the FaceForensics++ (Author) dataset
with the real and synthetic images perturbed with color and edge-aware
perturbations. We observe catastrophic degradation in performance across
all models, indicating that the analytic is not robust to small changes in the

input image.

Model Crop Resize AP
No Aug None No 0.392
No Aug None Yes 0.368
No Aug 224px (center) No 0.392
No Aug 224px (center) Yes 0.368

"BlurOnly] None No 0381
Blur Only None Yes 0.368
Blur Only 224px (center) No 0.392
Blur Only 224px (center) Yes 0.379

"JPEGOnly] None No 0387
JPEG Only None Yes 0.368
JPEG Only 224px (center) No 0.392
JPEG Only 224px (center) Yes 0.373

Blur +JPEG (0.1) None No 0385
Blur + JPEG (0.1) None Yes 0.368

Blur + JPEG (0.1) 224px (center) No 0.392
Blur + JPEG (0.1) 224px (center) Yes 0.375
Blur + JPEG (0.5) None No 0391
Blur + JPEG (0.5) None Yes 0.368
Blur + JPEG (0.5) 224px (center) No 0.392

Blur + JPEG (0.5) 224px (center) Yes 0.369

44

We observe a catastrophic degradation in the analytic’s performance across all models,
as shown in Table 4.9. Our models universally produce predictions that are worse than
selecting the predicted labels uniformly at random, indicating the active misclassification
of negative examples as positive. This experiment indicates that the analytic is not robust to

small changes in the input image.

4.3 Conclusion

In these experiments, we have shown that the initial results achieved by Wang et al. (2020)
are both valid and reproducible. Our subsequent experiments related to generalization
provide additional evidence in support of the authors’ hypothesis that training a classifier
on synthetic images from a single CNN-based generator allows the classifier to generalize

and detect synthetic images from a wide variety of image generators.

However, we found that the results achieved by Wang et al. (2020) against the FaceForen-
sics++ (Author) dataset do not extend to datasets featuring high quality deepfakes. We were
also unable to improve performance against these datasets by training on similarly high
quality StyleGAN?2 images. These findings indicate that the analytic may not be suitable for
classification tasks involving deepfake detection.

Finally, we observed that the analytic is not robust to small changes in the input image.
Prospective users of the analytic should be aware of this lack of robustness and employ the

analytic with caution.

Together, these findings indicate that the analytic proposed by Wang et al. (2020) is highly
capable in classification tasks against many types of synthetic images, but may not be

suitable for image analysis and classification tasks in the Department of Defense (DOD).

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

List of References

Bassett R, Graves M, Reilly P (2020) Color and edge-aware adversarial image perturba-
tions. arXiv preprint arXiv:2008.12454.

Brock A, Donahue J, Simonyan K (2018) Large scale GAN training for high fidelity natu-
ral image synthesis. arXiv preprint arXiv:1809.11096.

Cahlan S (2020) How misinformation helped spark an attempted coup in Gabon. The
Washington Post.

Chen C, Chen Q, Xu J, Koltun V (2018) Learning to see in the dark. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 3291-3300.

Chen Q, Koltun V (2017) Photographic image synthesis with cascaded refinement net-
works. Proceedings of the IEEE International Conference on Computer Vision, 1511—
1520.

Choi Y, Choi M, Kim M, Ha JW, Kim S, Choo J (2018) Stargan: Unified generative adver-
sarial networks for multi-domain image-to-image translation. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 8789—8797.

Choi Y, Uh Y, Yoo J, Ha JW (2020) Stargan v2: Diverse image synthesis for multiple
domains. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 8188-8197.

Clark A (2021) Pillow. Pillow. Accessed April 21, 2021,
https://pillow.readthedocs.io/en/stable/.

Cozzolino D, Thies J, Rossler A, Riess C, Nielner M, Verdoliva L (2018) Forensic-
transfer: Weakly-supervised domain adaptation for forgery detection. arXiv preprint
arXiv:1812.02510.

Dai T, Cai J, Zhang Y, Xia ST, Zhang L (2019) Second-order attention network for single
image super-resolution. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 11065-11074.

Dolhansky B, Howes R, Pflaum B, Baram N, Ferrer CC (2020) The deepfake detection
challenge (dfdc) dataset. arXiv preprint arXiv:2006.07397 1(2).

Dufour N, Gully A (2019) Contributing data to deepfake detection research. Google Al.
Accessed April 16, 2021, https://ai.googleblog.com/2019/09/contributing-data-to-
deepfake-detection.html.

47

Facebook, Inc (2021) PyTorch. Facebook, Inc. Accessed April 15, 2021,
https://pytorch.org/.

Frank J, Holz T (2021) [re] CNN-generated images are surprisingly easy to spot... for
now. arXiv preprint arXiv:2104.02984.

Geng D, Veerapaneni R (2018) Tricking neural networks: Create your own ad-
versarial examples. University of California, Berkeley. Accessed May 4, 2021,
https://ml.berkeley.edu/blog/posts/adversarial-examples/.

Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning, volume 1 (MIT
Press Cambridge).

Goodfellow 1J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A,
Bengio Y (2014) Generative adversarial networks. arXiv preprint arXiv:1406.2661.

Google Developers (2019) Generative adversarial networks. Google. Accessed April 9,
2021, https://developers.google.com/machine-learning/gan.

Guarnera L, Giudice O, Battiato S (2020) Deepfake detection by analyzing convolutional
traces. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops.

Harwell D (2019) Faked Pelosi videos, slowed to make her appear drunk, spread across
social media. The Washington Post 24.

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770—
778.

Itzcovich I (2018) Faced. Github. Accessed April 21, 2021,
https://github.com/iitzco/faced.

Karras T, Aila T, Laine S, Lehtinen J (2017) Progressive growing of GANS for improved
quality, stability, and variation. arXiv preprint arXiv:1710.10196.

Karras T, Aittala M, Hellsten J, Laine S, Lehtinen J, Aila T (2020a) Training generative
adversarial networks with limited data. arXiv preprint arXiv:2006.06676.

Karras T, Laine S, Aila T (2019) A style-based generator architecture for generative ad-
versarial networks. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 4401-4410.

Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T (2020b) Analyzing and im-
proving the image quality of stylegan. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 8110-8119.

48

King D (2009) Dlib-ml: A machine learning toolkit. Journal of Machine Learning Re-
search 10:1755-1758.

Li FF, Krishna R, Xu D (2021a) Convolutional neural networks: Architectures, convolu-
tion / pooling layers. Class notes, CS231n: Convolutional Neural Networks for Visual
Recognition, Spring Quarter, Department of Computer Science, Stanford University,
April, 5, Stanford, CA.

Li FF, Krishna R, Xu D (2021b) Neural networks part 1: Setting up the architecture. Class
notes, CS231n: Convolutional Neural Networks for Visual Recognition, Spring Quarter,
Department of Computer Science, Stanford University, April, 5, Stanford, CA.

Li FF, Krishna R, Xu D (2021¢) Optimization: Stochastic gradient descent. Class notes,
CS231n: Convolutional Neural Networks for Visual Recognition, Spring Quarter, De-
partment of Computer Science, Stanford University, April, 5, Stanford, CA.

Li K, Zhang T, Malik J (2019) Diverse image synthesis from semantic layouts via con-
ditional imle. Proceedings of the IEEE/CVF International Conference on Computer
Vision, 4220-4229.

Li Y, Yang X, Sun P, Qi H, Lyu S (2020) Celeb-df: A large-scale challenging dataset for
deepfake forensics. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 3207-3216.

Liu Z, Qi X, Torr PH (2020) Global texture enhancement for fake face detection in the
wild. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Masood M, Nawaz M, Malik KM, Javed A, Irtaza A (2021) Deepfakes generation and
detection: State-of-the-art, open challenges, countermeasures, and way forward. arXiv
preprint arXiv:2103.00484.

Mirsky Y, Lee W (2021) The creation and detection of deepfakes: A survey. ACM Com-
puting Surveys (CSUR) 54(1):1-41.

Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784.

Park T, Liu MY, Wang TC, Zhu JY (2019) Semantic image synthesis with spatially-
adaptive normalization. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2337-2346.

Rossler A, Cozzolino D, Verdoliva L, Riess C, Thies J, Nielner M (2019) Faceforen-
sics++: Learning to detect manipulated facial images. Proceedings of the IEEE/CVF
International Conference on Computer Vision, 1-11.

49

Ruthotto L, Haber E (2021) An introduction to deep generative modeling. arXiv preprint
arXiv:2103.05180.

Saha S (2018) A comprehensive guide to convolutional neural networks — the eli5 way.
Towards Data Science. Accessed April 5, 2021, https://towardsdatascience.com/a-
comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski
E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ,
Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat I, Feng Y, Moore
EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Har-
ris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy 10 Contrib-
utors (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods 17, https://rdcu.be/bO8Wh.

Wang R, Ma L, Juefei-Xu F, Xie X, Wang J, Liu Y (2019) Fakespotter: A simple baseline
for spotting ai-synthesized fake faces. arXiv preprint arXiv:1909.06122 2.

Wang SY, Wang O, Zhang R, Owens A, Efros AA (2020) CNN-generated images are sur-
prisingly easy to spot... for now. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 8695-8704.

West J, Bergstrom C (2019) Which face is real. URL https://www.whichfaceisreal.com,
which Face Is Real. Accessed April 21, 2021, https://www.whichfaceisreal.com.

Yu F, Seff A, Zhang Y, Song S, Funkhouser T, Xiao J (2015) Lsun: Construction of a
large-scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365.

Zhang X, Karaman S, Chang SF (2019) Detecting and simulating artifacts in gan fake
images. 2019 IEEE International Workshop on Information Forensics and Security
(WIFS), 1-6 (IEEE).

Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using
cycle-consistent adversarial networks. Proceedings of the IEEE International Confer-
ence on Computer Vision, 2223-2232.

Zucconi A (2018) Understanding the technology behind deepfakes. Alan Zucconi. Ac-
cessed April 13, 2021, https://www.alanzucconi.com/2018/03/14/understanding-the-
technology-behind-deepfake.

50

https://www.whichfaceisreal.com

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

51

	21Jun_Reilly_Patrick_First8
	21Jun_Reilly_Patrick
	Introduction
	Motivation
	Relevance
	Technical Context

	Supporting Concepts and Data
	Supporting Concepts
	The Data

	Summary of the Analytic
	Classifier Design
	Training the Classifier
	Evaluating Test Datasets
	Results
	Analysis

	Reproducibility and Experiments
	Reproducibility Results
	Experiments
	Conclusion

	List of References
	Initial Distribution List

